Hug, François; Drouet, Jean Marc; Champoux, Yvan; Couturier, Antoine; Dorel, Sylvain
2008-11-01
The aim of this study was to determine whether high inter-individual variability of the electromyographic (EMG) patterns during pedaling is accompanied by variability in the pedal force application patterns. Eleven male experienced cyclists were tested at two submaximal power outputs (150 and 250 W). Pedal force components (effective and total forces) and index of mechanical effectiveness were measured continuously using instrumented pedals and were synchronized with surface electromyography signals measured in ten lower limb muscles. The intersubject variability of EMG and mechanical patterns was assessed using standard deviation, mean deviation, variance ratio and coefficient of cross-correlation (_R(0), with lag time = 0). The results demonstrated a high intersubject variability of EMG patterns at both exercise intensities for biarticular muscles as a whole (and especially for Gastrocnemius lateralis and Rectus femoris) and for one monoarticular muscle (Tibialis anterior). However, this heterogeneity of EMG patterns is not accompanied by a so high intersubject variability in pedal force application patterns. A very low variability in the three mechanical profiles (effective force, total force and index of mechanical effectiveness) was obtained in the propulsive downstroke phase, although a greater variability in these mechanical patterns was found during upstroke and around the top dead center, and at 250 W when compared to 150 W. Overall, these results provide additional evidence for redundancy in the neuromuscular system.
PATTERN PREDICTION OF ACADEMIC SUCCESS.
ERIC Educational Resources Information Center
LUNNEBORG, CLIFFORD E.; LUNNEBORG, PATRICIA W.
A TECHNIQUE OF PATTERN ANALYSIS WHICH EMPHASIZES THE DEVELOPMENT OF MORE EFFECTIVE WAYS OF SCORING A GIVEN SET OF VARIABLES WAS FORMULATED. TO THE ORIGINAL VARIABLES WERE SUCCESSIVELY ADDED TWO, THREE, AND FOUR VARIABLE PATTERNS AND THE INCREASE IN PREDICTIVE EFFICIENCY ASSESSED. RANDOMLY SELECTED HIGH SCHOOL SENIORS WHO HAD PARTICIPATED IN THE…
McKenzie, D.; Hessl, Amy E.; Peterson, D.L.
2001-01-01
We explored spatial patterns of low-frequency variability in radial tree growth among western North American conifer species and identified predictors of the variability in these patterns. Using 185 sites from the International Tree-Ring Data Bank, each of which contained 10a??60 raw ring-width series, we rebuilt two chronologies for each site, using two conservative methods designed to retain any low-frequency variability associated with recent environmental change. We used factor analysis to identify regional low-frequency patterns in site chronologies and estimated the slope of the growth trend since 1850 at each site from a combination of linear regression and time-series techniques. This slope was the response variable in a regression-tree model to predict the effects of environmental gradients and species-level differences on growth trends. Growth patterns at 27 sites from the American Southwest were consistent with quasi-periodic patterns of drought. Either 12 or 32 of the 185 sites demonstrated patterns of increasing growth between 1850 and 1980 A.D., depending on the standardization technique used. Pronounced growth increases were associated with high-elevation sites (above 3000 m) and high-latitude sites in maritime climates. Future research focused on these high-elevation and high-latitude sites should address the precise mechanisms responsible for increased 20th century growth.
The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation
Thompson, David W. J.; van den Broeke, Michiel R.
2017-01-01
Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735
A new variable-resolution associative memory for high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annovi, A.; Amerio, S.; Beretta, M.
2011-07-01
We describe an important advancement for the Associative Memory device (AM). The AM is a VLSI processor for pattern recognition based on Content Addressable Memory (CAM) architecture. The AM is optimized for on-line track finding in high-energy physics experiments. Pattern matching is carried out by finding track candidates in coarse resolution 'roads'. A large AM bank stores all trajectories of interest, called 'patterns', for a given detector resolution. The AM extracts roads compatible with a given event during detector read-out. Two important variables characterize the quality of the AM bank: its 'coverage' and the level of fake roads. The coverage,more » which describes the geometric efficiency of a bank, is defined as the fraction of tracks that match at least one pattern in the bank. Given a certain road size, the coverage of the bank can be increased just adding patterns to the bank, while the number of fakes unfortunately is roughly proportional to the number of patterns in the bank. Moreover, as the luminosity increases, the fake rate increases rapidly because of the increased silicon occupancy. To counter that, we must reduce the width of our roads. If we decrease the road width using the current technology, the system will become very large and extremely expensive. We propose an elegant solution to this problem: the 'variable resolution patterns'. Each pattern and each detector layer within a pattern will be able to use the optimal width, but we will use a 'don't care' feature (inspired from ternary CAMs) to increase the width when that is more appropriate. In other words we can use patterns of variable shape. As a result we reduce the number of fake roads, while keeping the efficiency high and avoiding excessive bank size due to the reduced width. We describe the idea, the implementation in the new AM design and the implementation of the algorithm in the simulation. Finally we show the effectiveness of the 'variable resolution patterns' idea using simulated high occupancy events in the ATLAS detector. (authors)« less
NASA Astrophysics Data System (ADS)
Zimmermann, A.
2007-05-01
The diverse tree species composition, irregular shaped tree crowns and a multi-layered forest structure affect the redistribution of rainfall in lower montane rain forests. In addition, abundant epiphyte biomass and associated canopy humus influence spatial patterns of throughfall. The spatial variability of throughfall amounts controls spatial patterns of solute concentrations and deposition. Moreover, the living and dead biomass interacts with the rainwater during the passage through the canopy and creates a chemical variability of its own. Since spatial and temporal patterns are intimately linked, the analysis of temporal solute concentration dynamics is an important step to understand the emerging spatial patterns. I hypothesized that: (1) the spatial variability of volumes and chemical composition of throughfall is particularly high compared with other forests because of the high biodiversity and epiphytism, (2) the temporal stability of the spatial pattern is high because of stable structures in the canopy (e.g. large epiphytes) that show only minor changes during the short term observation period, and (3) the element concentrations decrease with increasing rainfall because of exhausting element pools in the canopy. The study area at 1950 m above sea level is located in the south Ecuadorian Andes far away from anthropogenic emission sources and marine influences. Rain and throughfall were collected from August to October 2005 on an event and within-event basis for five precipitation periods and analyzed for pH, K, Na, Ca, Mg, NH4+, Cl-, NO3-, PO43-, TN, TP and TOC. Throughfall amounts and most of the solutes showed a high spatial variability, thereby the variability of H+, K, Ca, Mg, Cl- and NO3- exceeded those from a Brazilian tropical rain forest. The temporal persistence of the spatial patterns was high for throughfall amounts and varied depending on the solute. Highly persistent time stability patterns were detected for K, Mg and TOC concentrations. Time stability patterns of solute deposition were somewhat weaker than for concentrations for most of the solutes. Epiphytes strongly affected time stability patterns in that collectors situated below thick moss mats or arboreal bromeliads were in large part responsible for the extreme persistence with low throughfall amounts and high ion concentrations (H+ showed low concentrations). Rainfall solute concentrations were low compared with a variety of other tropical lowland and montane forest sites and showed a small temporal variability during the study period for both between and within-event dynamics, respectively. Throughfall solute concentrations were more within the range when compared with other sites and showed highly variable within-event dynamics. For most of the solutes, within-event concentrations did not reach low, constant concentrations in later event stages, rather concentrations fluctuated (e.g. Cl-) or increased (e.g. K and TOC). The within-event throughfall solute concentration dynamics in this lower montane rain forest contrast to recent observations from lowland tropical rain forests in Panama and Brazil. The observed within-event patterns are attributed (1) to the influence of epiphytes and associated canopy humus, and (2) to low rainfall intensities.
High Variability in Outcome Reporting Patterns in High-Impact ACL Literature.
Makhni, Eric C; Padaki, Ajay S; Petridis, Petros D; Steinhaus, Michael E; Ahmad, Christopher S; Cole, Brian J; Bach, Bernard R
2015-09-16
ACL (anterior cruciate ligament) reconstruction is one of the most commonly performed and studied procedures in modern sports medicine. A multitude of objective and subjective patient outcome measures exists; however, nonstandardized reporting patterns of these metrics may create challenges in objectively analyzing pooled results from different studies. The goal of this study was to document the variability in outcome reporting patterns in high-impact orthopaedic studies of ACL reconstruction. All clinical studies pertaining to ACL reconstruction in four high-impact-factor orthopaedic journals over a five-year period were reviewed. Biomechanical, basic science, and imaging studies were excluded, as were studies with fewer than fifty patients, yielding 119 studies for review. Incorporation of various objective and subjective outcomes was noted for each study. Substantial variability in reporting of both objective and subjective measures was noted in the study cohort. Although a majority of studies reported instrumented laxity findings, there was substantial variability in the type and method of laxity reporting. Most other objective outcomes, including range of motion, strength, and complications, were reported in <50% of all studies. Return to pre-injury level of activity was infrequently reported (24% of studies), as were patient satisfaction and pain assessment following surgery (8% and 13%, respectively). Of the patient-reported outcomes, the International Knee Documentation Committee (IKDC), Lysholm, and Tegner scores were most often reported (71%, 63%, and 42%, respectively). Substantial variability in outcome reporting patterns exists among high-impact studies of ACL reconstruction. Such variability may create challenges in interpreting results and pooling them across different studies. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)
NASA Astrophysics Data System (ADS)
Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto
2017-04-01
The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.
Floodplain complexity and surface metrics: influences of scale and geomorphology
Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.
2015-01-01
Many studies of fluvial geomorphology and landscape ecology examine a single river or landscape, thus lack generality, making it difficult to develop a general understanding of the linkages between landscape patterns and larger-scale driving variables. We examined the spatial complexity of eight floodplain surfaces in widely different geographic settings and determined how patterns measured at different scales relate to different environmental drivers. Floodplain surface complexity is defined as having highly variable surface conditions that are also highly organised in space. These two components of floodplain surface complexity were measured across multiple sampling scales from LiDAR-derived DEMs. The surface character and variability of each floodplain were measured using four surface metrics; namely, standard deviation, skewness, coefficient of variation, and standard deviation of curvature from a series of moving window analyses ranging from 50 to 1000 m in radius. The spatial organisation of each floodplain surface was measured using spatial correlograms of the four surface metrics. Surface character, variability, and spatial organisation differed among the eight floodplains; and random, fragmented, highly patchy, and simple gradient spatial patterns were exhibited, depending upon the metric and window size. Differences in surface character and variability among the floodplains became statistically stronger with increasing sampling scale (window size), as did their associations with environmental variables. Sediment yield was consistently associated with differences in surface character and variability, as were flow discharge and variability at smaller sampling scales. Floodplain width was associated with differences in the spatial organization of surface conditions at smaller sampling scales, while valley slope was weakly associated with differences in spatial organisation at larger scales. A comparison of floodplain landscape patterns measured at different scales would improve our understanding of the role that different environmental variables play at different scales and in different geomorphic settings.
Thinking Visually about Algebra
ERIC Educational Resources Information Center
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
Ramírez, Alonso; Pringle, Catherine M.
2018-01-01
Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages. PMID:29420548
Zuellig, Robert E.; Bruce, James F.; Evans, Erin E.; Stogner, Sr., Robert W.
2007-01-01
In 2003, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to evaluate the influence of urbanization on stream ecosystems. To accomplish this task, invertebrate, fish, stream discharge, habitat, water-chemistry, and land-use data were collected from 13 sites in the Fountain Creek basin from 2003 to 2005. The Hydrologic Index Tool was used to calculate hydrologic indices known to be related to urbanization. Response of stream hydrology to urbanization was evident among hydrologic variables that described stormflow. These indices included one measurement of high-flow magnitude, two measurements of high-flow frequency, and one measurement of stream flashiness. Habitat and selected nonstormflow water chemistry were characterized at each site. Land-use data were converted to estimates of impervious surface cover and used as the measure of urbanization annually. Correlation analysis (Spearman?s rho) was used to identify a suite of nonredundant streamflow, habitat, and water-chemistry variables that were strongly associated (rho > 0.6) with impervious surface cover but not strongly related to elevation (rho < 0.60). An exploratory multivariate analysis (BIO-ENV, PRIMER ver 6.1, Plymouth, UK) was used to create subsets of eight urban-related environmental variables that described patterns in biological community structure. The strongest and most parsimonious subset of variables describing patterns in invertebrate community structure included high flood pulse count, lower bank capacity, and nutrients. Several other combinations of environmental variables resulted in competing subsets, but these subsets always included the three variables found in the most parsimonious list. This study found that patterns in invertebrate community structure from 2003 to 2005 in the Fountain Creek basin were associated with a variety of environmental characteristics influenced by urbanization. These patterns were explained by a combination of hydrologic, habitat, and water-chemistry variables. Fish community structure showed weaker links between urban-related environmental variables and biological patterns. A conceptual model was developed that showed the influence of urban-related environmental variables and their relation to fish and invertebrate assemblages. This model should prove helpful in guiding future studies on the impacts of urbanization on aquatic systems. Long-term monitoring efforts may be needed in other drainages along the Front Range of Colorado to link urban-related variables to aquatic communities in transition zone streams.
Arriaga-Jiménez, Alfonsina; Halffter, Gonzalo
2018-01-01
Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB) in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest–shrubland–pasture (FSP) mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS) displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled). These discoveries may indicate that speciation rate is high among these volcanoes—a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity and abundance patterns found during sampling. Together, we interpret these results as indicating that species richness and composition in the high mountains of the TMVB may be driven by biogeographical history while variability in diversity is determined by ecological factors. We argue that current conservation strategies do not focus sufficiently on protecting high mountain fauna, and that there is a need for developing and applying new conservation concepts that take into account the high spatial and temporal variability of this system. PMID:29507842
A discussion of the links between solar variability and high-storm-surge events in Venice
NASA Astrophysics Data System (ADS)
Barriopedro, David; GarcíA-Herrera, Ricardo; Lionello, Piero; Pino, Cosimo
2010-07-01
This study explores the long-term frequency variability of high-surge events (HSEs) in the North Adriatic, the so-called acqua alta, which, particularly during autumn, cause flooding of the historical city center of Venice. The period 1948-2008, when hourly observations of sea level are available, is considered. The frequency of HSEs is correlated with the 11 year solar cycle, solar maxima being associated with a significant increase in the October-November-December HSE frequency. The seasonal geopotential height pattern at 1000 hPa (storm surge pattern; SSP) associated with the increased frequency of HSEs is identified for the whole time period and found to be similar to the positive phase of the main variability mode of the regional atmospheric circulation (empirical orthogonal function 1; EOF1). However, further analysis indicates that solar activity modulates the spatial patterns of the atmospheric circulation (EOF) and the favorable conditions for HSE occurrence (SSP). Under solar maxima, the occurrence of HSEs is enhanced by the main mode of regional atmospheric variability, namely, a large-scale wave train pattern that is symptomatic of storm track paths over northern Europe. Solar minima reveal a substantially different and less robust SSP, consisting of a meridionally oriented dipole with a preferred southward path of storm track activity, which is not associated with any dominant mode of atmospheric variability during low-solar periods. It is concluded that solar activity plays an indirect role in the frequency of HSEs by modulating the spatial patterns of the main modes of atmospheric regional variability, the favorable patterns for HSE occurrence, and their mutual relationships, so that constructive interaction between them is enhanced during solar maxima and inhibited in solar minima.
NASA Astrophysics Data System (ADS)
Perdigón, J.; Romero-Centeno, R.; Barrett, B.; Ordoñez-Perez, P.
2017-12-01
In many regions of Mexico, precipitation occurs in a very well defined annual cycle with peaks in May-June and September-October and a relative minimum in the middle of the rainy season known as the midsummer drought (MSD). The MJO is the most important mode of intraseasonal variability in the tropics, and, although some studies have shown its evident influence on summer precipitation in Mexico, its role in modulating the bimodal pattern of the summer precipitation cycle is still an open question. The spatio-temporal variability of summer precipitation in Mexico is analyzed through composite analysis according to the phases of the MJO, using the very high resolution CHIRPS precipitation data base and gridded data from the CFSR reanalysis to analyzing the MJO influence on the atmospheric circulation over Mexico and its adjacent basins. In general, during MJO phases 8-2 (4-6) rainfall is above-normal (below-normal), although, in some cases, the summer rainfall patterns during the same phase present considerable differences. The atmospheric circulation shows low (high) troposphere southwesterly (northeasterly) wind anomalies in southern Mexico under wetter conditions compared with climatological patterns, while the inverse pattern is observed under drier conditions. Composite anomalies of several variables also agreed well with those rainfall anomalies. Finally, a MJO complete cycle that reinforces (weakens) the bimodal pattern of summer rainfall in Mexico was found.
Infant feeding patterns over the first year of life: influence of family characteristics
Betoko, Aisha; Charles, Marie-Aline; Hankard, Régis; Forhan, Anne; Bonet, Mercedes; Saurel-Cubizolles, Marie-Josephe; Heude, Barbara; De Lauzon-Guillain, Blandine
2013-01-01
Background/Objectives Early eating patterns and behaviors can determine later eating habits and food preferences and they have been related to the development of childhood overweight and obesity. We aimed to identify patterns of feeding in the first year of life and to examine their associations with family characteristics. Subjects/Methods Our analysis included 1004 infants from the EDEN mother-child cohort. Feeding practices were assessed through maternal self-report at birth, 4, 8 and 12 months. Principal component analysis was applied to derive patterns from breastfeeding duration, age at complementary food (CF) introduction and type of food used at 1y. Associations between patterns and family characteristics were analyzed by linear regressions. Results The main source of variability in infant feeding was characterized by a pattern labeled ‘Late CF introduction and use of ready-prepared baby foods’. Older, more educated, primiparous women with high monthly income ranked high on this pattern. The second pattern, labeled ‘Longer breastfeeding, late CF introduction and use of home-made foods’ was the closest to infant feeding guidelines. Mothers ranking high on this pattern were older and more educated. The third pattern, labeled ‘Use of adults’ foods’ suggests a less age-specific diet for the infants. Mothers ranking high on this pattern were often younger and multiparous. Recruitment center was related to all patterns. Conclusion Not only maternal education level and age but also parity and region are important contributors to the variability in patterns. Further studies are needed to describe associations between these patterns and infant growth and later food preferences. PMID:23299715
Infant feeding patterns over the first year of life: influence of family characteristics.
Betoko, A; Charles, M-A; Hankard, R; Forhan, A; Bonet, M; Saurel-Cubizolles, M-J; Heude, B; de Lauzon-Guillain, B
2013-06-01
Early eating patterns and behaviors can determine later eating habits and food preferences and they have been related to the development of childhood overweight and obesity. We aimed to identify patterns of feeding in the first year of life and to examine their associations with family characteristics. Our analysis included 1004 infants from the EDEN mother-child cohort. Feeding practices were assessed through maternal self-report at birth, 4, 8 and 12 months. Principal component analysis was applied to derive patterns from breastfeeding duration, age at complementary food (CF) introduction and type of food used at 1 year. Associations between patterns and family characteristics were analyzed by linear regressions. The main source of variability in infant feeding was characterized by a pattern labeled 'late CF introduction and use of ready-prepared baby foods'. Older, more educated, primiparous women with high monthly income ranked high on this pattern. The second pattern, labeled 'longer breastfeeding, late CF introduction and use of home-made foods' was the closest to infant feeding guidelines. Mothers ranking high on this pattern were older and more educated. The third pattern, labeled 'use of adults' foods' suggests a less age-specific diet for the infants. Mothers ranking high on this pattern were often younger and multiparous. Recruitment center was related to all patterns. Not only maternal education level and age, but also parity and region are important contributors to the variability in patterns. Further studies are needed to describe associations between these patterns and infant growth and later food preferences.
Wilson, Anthony B; Whittington, Camilla M; Bahr, Angela
2014-12-20
The genes of the major histocompatibility complex (MHC/MH) have attracted considerable scientific interest due to their exceptional levels of variability and important function as part of the adaptive immune system. Despite a large number of studies on MH class II diversity of both model and non-model organisms, most research has focused on patterns of genetic variability at individual loci, failing to capture the functional diversity of the biologically active dimeric molecule. Here, we take a systematic approach to the study of MH variation, analyzing patterns of genetic variation at MH class IIα and IIβ loci of the seahorse, which together form the immunologically active peptide binding cleft of the MH class II molecule. The seahorse carries a minimal class II system, consisting of single copies of both MH class IIα and IIβ, which are physically linked and inherited in a Mendelian fashion. Both genes are ubiquitously expressed and detectible in the brood pouch of male seahorses throughout pregnancy. Genetic variability of the two genes is high, dominated by non-synonymous variation concentrated in their peptide-binding regions. Coding variation outside these regions is negligible, a pattern thought to be driven by intra- and interlocus recombination. Despite the tight physical linkage of MH IIα and IIβ loci, recombination has produced novel composite alleles, increasing functional diversity at sites responsible for antigen recognition. Antigen recognition by the adaptive immune system of the seahorse is enhanced by high variability at both MH class IIα and IIβ loci. Strong positive selection on sites involved in pathogen recognition, coupled with high levels of intra- and interlocus recombination, produce a patchwork pattern of genetic variation driven by genetic hitchhiking. Studies focusing on variation at individual MH loci may unintentionally overlook an important component of ecologically relevant variation.
2013-01-01
Background Among life-style factors affecting mental health, dietary habits are becoming a public health concern in their relation to psychological distress and social capital. We examined associations between interest in dietary pattern, social capital, and psychological distress with a population-based cross-sectional study in rural Japan. Methods A total of 16,996 residents of a rural town in northern Japan aged 30–79 years participated in this questionnaire survey. The questionnaire gathered data about socio-demographic variables, psychological distress, issues related to dietary habits, including interest in dietary pattern, and the social capital factors of reciprocity and sense of community belonging. Factors related to psychological distress were analyzed by using multiple logistic regression analysis. Results A high interest in dietary pattern was significantly associated with a high level of social capital. In addition, an association between interest in dietary pattern and frequencies of intake of vegetables and fruits was confirmed. The multiple logistic regression analyses showed significant associations between interest in dietary pattern, social capital, frequency of intake of vegetables, and psychological distress after adjusting for socio-demographic variables. Low interest in dietary pattern was positively associated with psychological distress after adjusting for socio-demographic variables (OR = 2.18; 95%CI: 1.69-2.81). Low levels of both reciprocity and sense of community belonging were associated with psychological distress after adjusting for socio-demographic variables (OR = 3.46 with 95%CI of 2.10–5.71 for reciprocity, and OR = 7.42 with 95%CI of 4.64–11.87 for sense of community belonging). Conclusion Low interest in dietary pattern, low frequency of intake of vegetables, and low levels of social capital were significantly associated with psychological distress after adjusting for socio-demographic variables. PMID:24099097
Patterns of Organizational Conflict
ERIC Educational Resources Information Center
Corwin, Ronald G.
1969-01-01
Patterns of relationships were identified between indices of organizational conflict and several measures of each of five organizational variables. The measures were adapted from 1500 questionnaires and 600 interviews in 28 public high schools. (Author)
Patterns of Health-Risk Behavior among Japanese High School Students.
ERIC Educational Resources Information Center
Takakura, Minoru; Nagayama, Tomoko; Sakihara, Seizo; Willcox, Craig
2001-01-01
Surveyed Japanese high school students' health risk behavior patterns, examining clustering and accumulation of health risk behaviors. Physical inactivity and alcohol use were the most common risk behaviors. Prevalence rates for most risk behaviors varied by demographic variables. Smoking, drinking, and sexual intercourse clustered among both…
High storm surge events in Venice and the 11-yr solar cycle
NASA Astrophysics Data System (ADS)
Barriopedro, David; García-Herrera, Ricardo; Lionello, Piero; Pino, Cosimo
2010-05-01
In the last years the Venice lagoon has received much attention as a case of coastal vulnerability, mainly because of relative sea level rise and increase frequency of storm surge events, the so-called "aqua alta", which, particularly during autumn, cause the flooding of the Venice historical city center. Long-term fluctuations in solar activity and large-scale climate patterns have been suggested as feasible factors of flooding variability. This study explores the long-term frequency variability of High Surge Events (HSE) in Venice for the period 1948-2008 and its modulation by the 11-yr solar cycle. A significant decadal variability in the frequency of HSE is found in good correspondence with the 11-yr cycle, solar maxima being associated to a significant increase of the October-November-December HSE frequency. A Storm Surge Pattern (SSP), i.e. the seasonal 1000 hPa height pattern associated to increased frequency of HSE, is identified and found similar to the positive phase of the main variability mode of the regional atmospheric circulation (EOF1). However, further analyses indicate that the increase of HSE in solar maxima cannot be simply explained by a higher recurrence of positive EOF1 phases during high solar years. It rather seems that solar activity modulates the spatial patterns of the atmospheric circulation (EOF) and the favorable conditions for HSE occurrence (SSP). Thus, under solar maxima, the occurrence of HSE is enhanced by the EOF1, namely a large-scale wave train pattern that is symptomatic of storm track paths over northern Europe. Solar minima reveal a substantially different and less robust SSP, consisting of a meridionally oriented dipole with a preferred southward path of storm track activity, which is not associated to any EOF during low solar periods. It is concluded that solar activity plays an indirect role in the frequency of HSE by modulating the spatial patterns of the main modes of atmospheric regional variability, the favorable patterns for HSE occurrence and their mutual relationships, so that constructive interaction between them is enhanced during solar maxima and inhibited in solar minima.
Flo, Víctor; Bosch, Jordi; Arnan, Xavier; Primante, Clara; Martín González, Ana M; Barril-Graells, Helena; Rodrigo, Anselm
2018-01-01
Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change.
Primante, Clara; Martín González, Ana M.; Barril-Graells, Helena
2018-01-01
Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change. PMID:29346453
NASA Astrophysics Data System (ADS)
Kurita, Naoyuki; Nakatsuka, Takeshi; Ohnishi, Keiko; Mitsutani, Takumi; Kumagai, Tomo'omi
2016-10-01
We present a unique proxy for reconstructing the interannual variability of summer precipitation associated with the quasi-stationary front (Baiu front) in central Japan. The rainfall from the Baiu front has a relatively lower oxygen isotopic composition than other types of nonfrontal precipitation. The variability in the oxygen isotopes in summer rainfall is closely related to the Baiu frontal activity. In this study we used a mechanistic tree ring isotope model to reconstruct a 106 year long oxygen isotopic composition of precipitation during the early rainy season (June) based on the oxygen isotopic compositions of the annual rings of Chamaecyparis obtusa Endl trees from central Japan. The year-to-year variations of the isotopes over the most recent 25 years are associated with several teleconnection patterns that often lead to the Baiu precipitation anomalies in central Japan (such as the Pacific-Japan (PJ) pattern, Silk Road pattern, and wave train pattern along the polar jet). Yet none of these external forcing mechanisms apply further back in time. From the 1950s to 1980s, the interannual isotopic variability is predominantly related to local factors such as anomalous intensification/weakening of the Bonin High. Before the 1950s, the variability of the oxygen isotopic composition of precipitation is mainly associated with a wave train pattern along the polar jet. The isotopic variability is predominantly linked to the PJ pattern, while the PJ index is correlated with El Niño-Southern Oscillation. These findings suggest that the teleconnection patterns influencing Baiu precipitation variability vary according to interdecadal time scales during the twentieth century.
NASA Astrophysics Data System (ADS)
Doering, K.; Steinschneider, S.
2017-12-01
The variability of renewable energy supply and drivers of demand across space and time largely determines the energy balance within power systems with a high penetration of renewable technologies. This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy production (precipitation, wind speeds, insolation) and energy demand (temperature) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the major modes of joint variability between summer wind speeds and precipitation and related patterns of insolation and temperature. Canonical variates are then related to circulation anomalies to identify common drivers of the joint modes of climate variability. Results show that the first two modes of joint variability between summer wind speeds and precipitation exhibit pan-US dipole patterns with centers of action located in the eastern and central CONUS. Temperature and insolation also exhibit related US-wide dipoles. The relationship between canonical variates and lower-tropospheric geopotential height indicates that these modes are related to variability in the North Atlantic subtropical high (NASH). This insight can inform optimal strategies for siting renewables in an interconnected electric grid, and has implications for the impacts of climate variability and change on renewable energy systems.
[Variables related to the emergence of differential patterns in work motivation].
Arrieta, Carlos; Navarro, José; Vicente, Susana
2008-11-01
Several longitudinal studies have shown that motivation at work acts chaotically. In very few cases, it may be linear or random. However, the factors that might explain why these different patterns emerge have not been analysed to date. In this exploratory study, we interviewed 73 employees whose motivational patterns were previously known. The results revealed that chaotic patterns were associated with high levels of motivation, self-efficacy beliefs, and perceptions of instrumentality, and also with intrinsic personal goal orientation and a perception of high work control. Linear patterns were associated with extrinsic goals and a perception of work as difficult, and random patterns were linked to high flexibility at work.
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans
1995-12-01
IBM's high-throughput e-beam stepper approach PRojection Exposure with Variable Axis Immersion Lenses (PREVAIL) is reviewed. The PREVAIL concept combines technology building blocks of our probe-forming EL-3 and EL-4 systems with the exposure efficiency of pattern projection. The technology represents an extension of the shaped-beam approach toward massively parallel pixel projection. As demonstrated, the use of variable-axis lenses can provide large field coverage through reduction of off-axis aberrations which limit the performance of conventional projection systems. Subfield pattern sections containing 107 or more pixels can be electronically selected (mask plane), projected and positioned (wafer plane) at high speed. To generate the entire chip pattern subfields must be stitched together sequentially in a combination of electronic and mechanical positioning of mask and wafer. The PREVAIL technology promises throughput levels competitive with those of optical steppers at superior resolution. The PREVAIL project is being pursued to demonstrate the viability of the technology and to develop an e-beam alternative to “suboptical” lithography.
NASA Astrophysics Data System (ADS)
Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus
2017-04-01
Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments in terms of regional and large-scale climate variability during the past.
Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals
NASA Astrophysics Data System (ADS)
Chen, Youhua; Peng, Shushi
2017-03-01
Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.
Chen, Youhua; Peng, Shushi
2017-03-16
Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.
North Atlantic sub-decadal variability in climate models
NASA Astrophysics Data System (ADS)
Reintges, Annika; Martin, Thomas; Latif, Mojib; Park, Wonsun
2017-04-01
The North Atlantic Oscillation (NAO) is the dominant variability mode for the winter climate of the North Atlantic sector. During a positive (negative) NAO phase, the sea level pressure (SLP) difference between the subtropical Azores high and the subpolar Icelandic low is anomalously strong (weak). This affects, for example, temperature, precipitation, wind, and surface heat flux over the North Atlantic, and over large parts of Europe. In observations we find enhanced sub-decadal variability of the NAO index that goes along with a dipolar sea surface temperature (SST) pattern. The corresponding SLP and SST patterns are reproduced in a control experiment of the Kiel Climate Model (KCM). Large-scale air-sea interaction is suggested to be essential for the North Atlantic sub-decadal variability in the KCM. The Atlantic Meridional Overturning Circulation (AMOC) plays a key role, setting the timescale of the variability by providing a delayed negative feedback to the NAO. The interplay of the NAO and the AMOC on the sub-decadal timescale is further investigated in the CMIP5 model ensemble. For example, the average CMIP5 model AMOC pattern associated with sub-decadal variability is characterized by a deep-reaching dipolar structure, similar to the KCM's sub-decadal AMOC variability pattern. The results suggest that dynamical air-sea interactions are crucial to generate enhanced sub-decadal variability in the North Atlantic climate.
NASA Astrophysics Data System (ADS)
Wang, Fuming; Hunsche, Stefan; Anunciado, Roy; Corradi, Antonio; Tien, Hung Yu; Tang, Peng; Wei, Junwei; Wang, Yongjun; Fang, Wei; Wong, Patrick; van Oosten, Anton; van Ingen Schenau, Koen; Slachter, Bram
2018-03-01
We present an experimental study of pattern variability and defectivity, based on a large data set with more than 112 million SEM measurements from an HMI high-throughput e-beam tool. The test case is a 10nm node SRAM via array patterned with a DUV immersion LELE process, where we see a variation in mean size and litho sensitivities between different unique via patterns that leads to a seemingly qualitative differences in defectivity. The large available data volume enables further analysis to reliably distinguish global and local CDU variations, including a breakdown into local systematics and stochastics. A closer inspection of the tail end of the distributions and estimation of defect probabilities concludes that there is a common defect mechanism and defect threshold despite the observed differences of specific pattern characteristics. We expect that the analysis methodology can be applied for defect probability modeling as well as general process qualification in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Qian, Yun; Zhang, Yaocun
This paper presents a comprehensive analysis of interannual and interdecadal variations of summer precipitation and precipitation-related extreme events in China associated with variations of the East Asian summer monsoon (EASM) from 1979-2012. A high-quality daily precipitation dataset covering 2287 weather stations in China is analyzed. Based on the precipitation pattern analysis using empirical orthogonal functions, three sub-periods of 1979-1992 (period I), 1993-1999 (period II) and 2000-2012 (period III) are identified to be representative of the precipitation variability. Similar significant variability of the extreme precipitation indices is found across four sub-regions in eastern China. The spatial patterns of summer mean precipitation,more » the number of days with daily rainfall exceeding 95th percentile precipitation (R95p) and the maximum number of consecutive wet days (CWD) anomalies are consistent, but opposite to that of maximum consecutive dry days (CDD) anomalies during the three sub-periods. However, the spatial patterns of hydroclimatic intensity (HY-INT) are notably different from that of the other three extreme indices, but highly correlated to the dry events. The changes of precipitation anomaly patterns are accompanied by the change of the EASM regime and the abrupt shift of the position of the west Pacific subtropical high around 1992/1993 and 1999/2000, respectively, which influence the moisture transport that contributes most to the precipitation anomalies. Lastly, the EASM intensity is linked to sea surface temperature anomaly over the tropical Indian and Pacific Ocean that influences deep convection over the oceans.« less
Martens, Jonas; Daly, Daniel; Deschamps, Kevin; Staes, Filip; Fernandes, Ricardo J
2016-12-01
Variability of electromyographic (EMG) recordings is a complex phenomenon rarely examined in swimming. Our purposes were to investigate inter-individual variability in muscle activation patterns during front crawl swimming and assess if there were clusters of sub patterns present. Bilateral muscle activity of rectus abdominis (RA) and deltoideus medialis (DM) was recorded using wireless surface EMG in 15 adult male competitive swimmers. The amplitude of the median EMG trial of six upper arm movement cycles was used for the inter-individual variability assessment, quantified with the coefficient of variation, coefficient of quartile variation, the variance ratio and mean deviation. Key features were selected based on qualitative and quantitative classification strategies to enter in a k-means cluster analysis to examine the presence of strong sub patterns. Such strong sub patterns were found when clustering in two, three and four clusters. Inter-individual variability in a group of highly skilled swimmers was higher compared to other cyclic movements which is in contrast to what has been reported in the previous 50years of EMG research in swimming. This leads to the conclusion that coaches should be careful in using overall reference EMG information to enhance the individual swimming technique of their athletes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Kai; Xiong, Jinbo; Chen, Xinxin; Zheng, Jialai; Hu, Changju; Yang, Yina; Zhu, Jianlin
2014-01-01
Multiple anthropogenic disturbances to bacterial diversity have been investigated in coastal ecosystems, in which temporal variability in the bacterioplankton community has been considered a ubiquitous process. However, far less is known about the temporal dynamics of a bacterioplankton community responding to pollution disturbances such as toxic metals. We used coastal water microcosms perturbed with 0, 10, 100, and 1,000 μg liter−1 of cadmium (Cd) for 2 weeks to investigate temporal variability, Cd-induced patterns, and their interaction in the coastal bacterioplankton community and to reveal whether the bacterial community structure would reflect the Cd gradient in a temporally varying system. Our results showed that the bacterioplankton community structure shifted along the Cd gradient consistently after a 4-day incubation, although it exhibited some resistance to Cd at low concentration (10 μg liter−1). A process akin to an arms race between temporal variability and Cd exposure was observed, and the temporal variability overwhelmed Cd-induced patterns in the bacterial community. The temporal succession of the bacterial community was correlated with pH, dissolved oxygen, NO3−-N, NO2−-N, PO43−-P, dissolved organic carbon, and chlorophyll a, and each of these parameters contributed more to community variance than Cd did. However, elevated Cd levels did decrease the temporal turnover rate of community. Furthermore, key taxa, affiliated to the families Flavobacteriaceae, Rhodobacteraceae, Erythrobacteraceae, Piscirickettsiaceae, and Alteromonadaceae, showed a high frequency of being associated with Cd levels during 2 weeks. This study provides direct evidence that specific Cd-induced patterns in bacterioplankton communities exist in highly varying manipulated coastal systems. Future investigations on an ecosystem scale across longer temporal scales are needed to validate the observed pattern. PMID:25326310
Patch-based iterative conditional geostatistical simulation using graph cuts
NASA Astrophysics Data System (ADS)
Li, Xue; Mariethoz, Gregoire; Lu, DeTang; Linde, Niklas
2016-08-01
Training image-based geostatistical methods are increasingly popular in groundwater hydrology even if existing algorithms present limitations that often make real-world applications difficult. These limitations include a computational cost that can be prohibitive for high-resolution 3-D applications, the presence of visual artifacts in the model realizations, and a low variability between model realizations due to the limited pool of patterns available in a finite-size training image. In this paper, we address these issues by proposing an iterative patch-based algorithm which adapts a graph cuts methodology that is widely used in computer graphics. Our adapted graph cuts method optimally cuts patches of pixel values borrowed from the training image and assembles them successively, each time accounting for the information of previously stitched patches. The initial simulation result might display artifacts, which are identified as regions of high cost. These artifacts are reduced by iteratively placing new patches in high-cost regions. In contrast to most patch-based algorithms, the proposed scheme can also efficiently address point conditioning. An advantage of the method is that the cut process results in the creation of new patterns that are not present in the training image, thereby increasing pattern variability. To quantify this effect, a new measure of variability is developed, the merging index, quantifies the pattern variability in the realizations with respect to the training image. A series of sensitivity analyses demonstrates the stability of the proposed graph cuts approach, which produces satisfying simulations for a wide range of parameters values. Applications to 2-D and 3-D cases are compared to state-of-the-art multiple-point methods. The results show that the proposed approach obtains significant speedups and increases variability between realizations. Connectivity functions applied to 2-D models transport simulations in 3-D models are used to demonstrate that pattern continuity is preserved.
Tornow, Matthew A; Ford, Susan M; Garber, Paul A; de Sa Sauerbrunn, Edward
2006-07-01
Analyses of dental variation in geographically restricted, wild populations of primates are extremely rare; however, such data form the best source for models of likely degrees of variation within and between fossil species. Data from dental casts of a geographically restricted population of moustached tamarins (Saguinus mystax mystax) from Padre Isla, Peru, document high levels of dental variability, as measured by coefficients of variation, in a nonsexually dimorphic species, despite its isolation and small population size. Like other primates, moustached tamarins show lower variability in the dimensions of the first molars and increased variability in the dimensions of the final molars in the toothrow. Moustached tamarins from Padre Isla have a distinctive pattern of variability in the remaining teeth, including more stable tooth lengths in the anterior and posterior portions of the toothrow, and more stable tooth widths in the midregion of the toothrow. High variability in incisor width may be due to age effects of a distinctive diet and pattern of dental wear.
NASA Astrophysics Data System (ADS)
Murawski, Aline; Bürger, Gerd; Vorogushyn, Sergiy; Merz, Bruno
2016-04-01
The use of a weather pattern based approach for downscaling of coarse, gridded atmospheric data, as usually obtained from the output of general circulation models (GCM), allows for investigating the impact of anthropogenic greenhouse gas emissions on fluxes and state variables of the hydrological cycle such as e.g. on runoff in large river catchments. Here we aim at attributing changes in high flows in the Rhine catchment to anthropogenic climate change. Therefore we run an objective classification scheme (simulated annealing and diversified randomisation - SANDRA, available from the cost733 classification software) on ERA20C reanalyses data and apply the established classification to GCMs from the CMIP5 project. After deriving weather pattern time series from GCM runs using forcing from all greenhouse gases (All-Hist) and using natural greenhouse gas forcing only (Nat-Hist), a weather generator will be employed to obtain climate data time series for the hydrological model. The parameters of the weather pattern classification (i.e. spatial extent, number of patterns, classification variables) need to be selected in a way that allows for good stratification of the meteorological variables that are of interest for the hydrological modelling. We evaluate the skill of the classification in stratifying meteorological data using a multi-variable approach. This allows for estimating the stratification skill for all meteorological variables together, not separately as usually done in existing similar work. The advantage of the multi-variable approach is to properly account for situations where e.g. two patterns are associated with similar mean daily temperature, but one pattern is dry while the other one is related to considerable amounts of precipitation. Thus, the separation of these two patterns would not be justified when considering temperature only, but is perfectly reasonable when accounting for precipitation as well. Besides that, the weather patterns derived from reanalyses data should be well represented in the All-Hist GCM runs in terms of e.g. frequency, seasonality, and persistence. In this contribution we show how to select the most appropriate weather pattern classification and how the classes derived from it are reflected in the GCMs.
Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang
2018-05-01
Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.
Weather and climate applications for rangeland restoration planning
USDA-ARS?s Scientific Manuscript database
Rangeland ecosystems generally have an arid or semi-arid climatology, and are characterized by relatively high variability in seasonal and annual patterns of precipitation. Weather variability during seedling establishment is universally acknowledged as a principal determinant of rangeland seeding...
Kasser, Susan L; Goldstein, Amanda; Wood, Phillip K; Sibold, Jeremy
2017-04-01
Individuals with multiple sclerosis (MS) experience a clinical course that is highly variable with daily fluctuations in symptoms significantly affecting functional ability and quality of life. Yet, understanding how MS symptoms co-vary and associate with physical and psychological health is unclear. The purpose of the study was to explore variability patterns and time-bound relationships across symptoms, affect, and physical activity in individuals with MS. The study employed a multivariate, replicated, single-subject repeated-measures (MRSRM) design and involved four individuals with MS. Mood, fatigue, pain, balance confidence, and losses of balance were measured daily over 28 days by self-report. Physical activity was also measured daily over this same time period via accelerometry. Dynamic factor analysis (DFA) was used to determine the dimensionality and lagged relationships across the variables. Person-specific models revealed considerable time-dependent co-variation patterns as well as pattern variation across subjects. Results also offered insight into distinct variability structures at varying levels of disability. Modeling person-level variability may be beneficial for addressing the heterogeneity of experiences in individuals with MS and for understanding temporal and dynamic interrelationships among perceived symptoms, affect, and health outcomes in this group. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sevastou, K.; Lampadariou, N.; Polymenakou, P. N.; Tselepides, A.
2013-07-01
The long-held perception of the deep sea consisting of monotonous slopes and uniform oceanic basins has over the decades given way to the idea of a complex system with wide habitat heterogeneity. Under the prism of a highly diverse environment, a large dataset was used to describe and compare spatial patterns of the dominant small-size components of deep-sea benthos, metazoan meiofauna and microbes, from Mediterranean basins and slopes. A grid of 73 stations sampled at five geographical areas along the central-eastern Mediterranean Basin (central Mediterranean, northern Aegean Sea, Cretan Sea, Libyan Sea, eastern Levantine) spanning over 4 km in depth revealed a high diversity, irrespective of the benthic group or level of taxonomic analysis. A common decreasing bathymetric trend was detected for meiobenthic abundance, major taxa diversity and nematode genera richness, but no differences were found between the two habitats (basin vs slope). In contrast, microbial richness is significantly higher at the basin ecosystem and tends to increase with depth. Multivariate analyses (β- and δ-diversity and ordination analysis) complemented these results and underlined the high within-habitat variability of benthic communities. Meiofaunal communities in particular were found to change gradually and vary more towards the abyss. On the other hand, microbial communities were highly variable, even among samples of the same area, habitat and bathymetry. A significant proportion of the variation of benthic communities and their descriptors was explained by depth and proxies of food availability (sedimentary pigments and organic content), but the combination of predictor variables and the strength of the relationship varied depending on the data set used (based on type of habitat, benthic component, taxonomic level). This, along with the observed high within-habitat variability suggests that other factors, which tend to vary at local scale (hydrodynamics, substrate structure, geochemistry, food quality, etc.), may also relate to the observed benthic patterns. Overall, the results presented here suggest that differences in small-size benthos between the basin and slope habitats are neither strong nor consistent; it appears that within-habitat variability is high, differences among depth ranges are important and further investigation of possible environmental drivers of benthic patterns is needed.
USDA-ARS?s Scientific Manuscript database
Weight loss (WL) induced by energy restriction is highly variable even in controlled clinical trials. An integrative analysis of the plasma metabolome coupled to traditional clinical variables may reveal a WL “responder” phenotype. Therfore, we predicted WL in overweight and obese individuals on a...
USDA-ARS?s Scientific Manuscript database
Weight loss (WL) induced by energy restriction is highly variable even in controlled clinical trials. An integrative analysis of the plasma metabolome coupled to traditional clinical variables may reveal a WL “responder” phenotype. Therfore, we predicted WL in overweight and obese individuals on a...
Suzuki, T; Okamura, K; Kimura, Y; Watanabe, T; Yaegashi, N; Murotsuki, J; Uehara, S; Yajima, A
2000-05-01
The appearance of the sinusoidal heart rate pattern found on fetal cardiotocograms has not been fully explained, either physiologically or clinically. In this study we performed power spectral analysis on the sinusoidal heart rate pattern obtained by administration of arginine vasopressin and atropine sulfate to investigate its frequency components in fetal lambs with long-term instrument implantation. Eleven tests were performed in 4 fetal lambs at 120 to 130 days' gestation. An artificial sinusoidal heart rate pattern was obtained by administration of atropine sulfate and arginine vasopressin in 9 tests. An autoregression model was used to compare the spectral patterns before and during the sinusoidal heart rate pattern. Marked decreases in low-frequency (0.025-0.125 cycles/beat) and high-frequency (0.2-0.5 cycles/beat) areas were observed in the presence of the sinusoidal heart rate pattern. However, there were no significant changes in the very-low-frequency area (0.01-0.025 cycles/beat), which corresponds to the frequency of the sinusoidal heart rate pattern. The sinusoidal heart rate pattern may represent a very low-frequency component inherent in fetal heart rate variability that appears when low- and high-frequency components are reduced as a result of strongly suppressed autonomic nervous activity.
NASA Astrophysics Data System (ADS)
Jeong, Yerim; Ham, Yoo-Geun
2016-04-01
The convection activity and variability are active in Tropic-subtropic area because of equatorial warm pool. The variability's impacts on not only subtropic also mid-latitude. The impact effects on through teleconnection between equatorial and mid-latitude like Pacific-Japan(PJ) pattern. In this paper, two groups are divided based on PJ pattern and JJA Korean precipitation for the analysis that Korean precipitation is affected by PJ pattern. 'PJ+NegKorpr' is indicated when PJ pattern occur that JJA(Jun-July_August) Korean precipitation has negative value. In this case, positive precipitation in subtropic is expanded to central Pacific. And the positive precipitation's pattern is increasing toward north. Because, the subtropical south-eastly wind is forming subtropical precipitation's pattern through cold Kelvin wave is expanding eastward. Cold Kelvin wave is because of Indian negative SST. Also, Korea has negative moisture advection and north-eastly is the role that is moving high-latitude's cold and dry air to Korea. So strong high pressure is formed in Korea. The strong high pressure involves that short wave energy is increasing on surface. As a result, The surface temperature is increased on Korea. But the other case, that 'PJ_Only' case, is indicated when PJ pattern occur and JJA Korean precipitation doesn't have negative value over significant level. The subtropic precipitation's pattern in 'PJ_Only' shows precipitation is confined in western Pacific and expended northward to 25°N near 130°E. And tail of precipitation is toward equatorial(south-eastward). Also, Korean a little positive moisture advection and south-westly is the role that is moving low-latitude's warm and wet air to Korea. So weak high pressure is formed in Korea. The weak high pressure influence amount of short wave energy, so Korean surface temperature is lower. In addition, the case of 'PJ_Only' and Pacific Decal Oscillation(PDO) are occur at the same time has negative impact in Korea temperature through subtropical cyclone and positive PDO. The positive PDO is the role that negative temperature in Korea. So, Korean temperature confined lower by subtropical cyclone and positive PDO. In summary, the relation between PJ pattern and JJA Korean temperature and precipitation depends on subtropical precipitation's pattern. And The subtropical precipitation is effected by Indian SST and PDO's teleconnection.
NASA Astrophysics Data System (ADS)
Heslop, E.; Ruiz, S.; Allen, J.; Tintoré, J.
2012-04-01
One of the clear challenges facing oceanography today is to define variability in ocean processes at a seasonal and sub-seasonal scale, in order to clearly identify the signature of both natural large-scale climatic oscillations and the long-term trends brought about by the human-induced change in atmospheric composition. Without visibility of this variance, which helps to determine the margins of significance for long-term trends and decipher cause and effect, the inferences drawn from sparse data points can be misleading. The cyclonic basin scale circulation pattern in the Western Mediterranean has long been known; the role/contribution that processes in the Balearic Basin play in modifying this is less well defined. The Balearic Channels (channels between the Balearic Islands) are constriction points on this basin scale circulation that appear to exert a controlling influence on the north/south exchange of water masses. Understanding the variability in current flows through these channels is important, not just for the transport of heat and salt, but also for ocean biology that responds to physical variability at the scale of that variability. Earlier studies at a seasonal scale identified; an interannual summer/winter variation of 1 Sv in the strength of the main circulation pattern and a high cruise-to-cruise variability in the pattern and strength of the flows through the channels brought about by mesoscale activity. Initial results using new high-resolution data from glider based monitoring missions across the Ibiza Channel (the main exchange channel in the Balearic Basin), combined with ship and contemporaneous satellite data, indicate surprisingly high and rapid changes in the flows of surface and intermediate waters imposed on the broad seasonal cycle. To date the data suggests that there are three potential 'modes' of water volume transport, generated from the interplay between basin and mesoscale circulation. We will review the concept of transport modes as seen through the earlier seasonal ship based studies and demonstrate that the scales of variability captured by the glider monitoring provides a unique view of variability in this circulation system, which is as high on a weekly timescale as the previously identified seasonal cycle.
NASA Astrophysics Data System (ADS)
Wachter, Paul; Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus; Höppner, Kathrin
2017-04-01
Large parts of the Polar Regions are affected by a warming trend associated with substantial changes in the cryosphere. In Antarctica this positive trend pattern is most dominant in the western part of the continent and on the Antarctic Peninsula (AP). An important driving mechanism of temperature variability and trends in this region is the atmospheric circulation. Changes in atmospheric circulation modes and frequencies of circulation types have major impacts on temperature characteristics at a certain station or region. We present results of a statistical downscaling study focused on AP temperature variability showing both results of large-scale atmospheric circulation modes and regional weather type classifications derived from monthly and daily gridded reanalysis data sets. In order to investigate spatial trends and variabilities of the Southern Annular Mode (SAM), we analyze spatio-temporally resolved SAM-pattern maps from 1979 to 2015. First results show dominant multi-annual to decadal pattern variabilities which can be directly linked to temperature variabilities at the Antarctic Peninsula. A sub-continental to regional view on the influence of atmospheric circulation on AP temperature variability is given by the analysis of weather type classifications (WTC). With this analysis we identify significant changes in the frequency of occurrence of highly temperature-relevant circulation patterns. The investigated characteristics of weather type frequencies can also be related to the identified changes of the SAM.
Using Empirical Orthogonal Teleconnections to Analyze Interannual Precipitation Variability in China
NASA Astrophysics Data System (ADS)
Stephan, C.; Klingaman, N. P.; Vidale, P. L.; Turner, A. G.; Demory, M. E.; Guo, L.
2017-12-01
Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. A consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. It produces known teleconnections, that include high positive correlations with ENSO in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that variability along the southeast coast in winter, in the Yangtze valley in spring, and in eastern China in autumn, are associated with extratropical Rossby wave trains. The same analysis is applied to six climate simulations of the Met Office Unified Model with and without air-sea coupling and at various horizontal resolutions of 40, 90 and 200 km. All simulations reproduce the observed patterns of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are all patterns associated with the observed physical mechanism. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. Finer resolution does not improve the fidelity of these patterns or their associated mechanisms. Evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient; attention must be paid to associated mechanisms.
Li, Xinghui; Zhang, Jinchao; Zhou, Qian; Ni, Kai; Pang, Jinchao; Tian, Rui
2016-04-01
In this Letter, we propose a variable-line-spacing (VLS) grating pattern for a hybrid diffractive device termed a grating Fresnel (G-Fresnel) lens, which is used in spectrometers to improve spectral resolution over a wide spectral range. The VLS grating pattern disperses light of specific wavelengths with a different angle and position such that the aberration caused by the Fresnel surface can be compensated for. In this manner, high resolution can be achieved over a relatively wide spectral range. The VLS grating pattern is designed based on the least wave-change principle and simulated by ZEMAX. Results reveal that the VLS G-Fresnel device allows a subnanometer resolution over a spectral range of 200 nm.
An Investigation of Variable Time Interval K-like Geomagnetic Indices
1999-12-16
ionosphere system. The index is widely used to drive empirical models of auroral particle precipitation, high-latitude convection patterns...81 35 Kp use in TDIM simulations 86 36 Fredericksburg magnetic disturbance for 28 July 1990 88 Xlll 37 The Heppner-Maynard convection patterns used...in our TDIM simulations 90 38 High-latitude electron density difference histograms for 0500 UT on 28 July 1990 95 39 High-latitude NmF2 percent
Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele
2018-02-01
Restricted Boltzmann machines are described by the Gibbs measure of a bipartite spin glass, which in turn can be seen as a generalized Hopfield network. This equivalence allows us to characterize the state of these systems in terms of their retrieval capabilities, both at low and high load, of pure states. We study the paramagnetic-spin glass and the spin glass-retrieval phase transitions, as the pattern (i.e., weight) distribution and spin (i.e., unit) priors vary smoothly from Gaussian real variables to Boolean discrete variables. Our analysis shows that the presence of a retrieval phase is robust and not peculiar to the standard Hopfield model with Boolean patterns. The retrieval region becomes larger when the pattern entries and retrieval units get more peaked and, conversely, when the hidden units acquire a broader prior and therefore have a stronger response to high fields. Moreover, at low load retrieval always exists below some critical temperature, for every pattern distribution ranging from the Boolean to the Gaussian case.
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas Pappas; Vidale, Pier Luigi; Turner, Andrew George; Demory, Marie-Estelle; Guo, Liang
2018-06-01
Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. To improve its understanding and prediction, many studies have associated precipitation variability with particular causes for specific seasons and regions. Here, a consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to 1951-2007 high-resolution precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. The EOT method is validated by the reproduction of known relationships to the El Niño Southern Oscillation (ENSO): high positive correlations with ENSO are found in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that wintertime rainfall variability along the southeast coast is associated with anomalous convection over the tropical eastern Atlantic and communicated to China through a zonal wavenumber-three Rossby wave. Furthermore, spring rainfall variability in the Yangtze valley is related to upper-tropospheric midlatitude perturbations that are part of a Rossby wave pattern with its origin in the North Atlantic. A circumglobal wave pattern in the northern hemisphere is also associated with autumn precipitation variability in eastern areas. The analysis is objective, comprehensive, and produces timeseries that are tied to specific locations in China. This facilitates the interpretation of associated dynamical processes, is useful for understanding the regional hydrological cycle, and allows the results to serve as a benchmark for assessing general circulation models.
Medina, A M; Michelangeli, C; Ramis, C; Díaz, A
2001-01-01
In order to identify and to determine the genetic variability of 36 annatto genotypes (Bixa orellana L.) collected in five Venezuelan regions (Oriente, Centro, Llanos, Andes and Amazonas) and in Brazil, hydrosoluble protein patterns as well as specific isozyme patterns (alpha-esterase, beta-esterase and peroxidase) were studied using extracts of germinated annatto seeds with radicles of 10 to 15 mm long. Each electrophoretic system allowed genotype discrimination by means of unique banding patterns: both the hydrosoluble protein and the electrophoretic system of beta-esterase with nine banding patterns each; whilst alpha-esterase and peroxidase discriminated eight and three genotypes, respectively. On the other hand, a combination of all the systems permitted a greater discrimination since 34 out of 36 genotypes could be distinguished. Eight mayor groups were formed that showed high levels of genetic diversity (40 to 60%) with no association between geographic and genetic distances, probably because of human influence in the aleatory distribution of this crop. Results obtained indicated that using electrophoretic banding patterns, a classification system could be established for identification and genetic variability purposes in this species.
Affonso, A G; Queiroz, H L; Novo, E M L M
2015-11-01
This paper examines water properties from lakes, (depression lakes, sensu Junk et al., 2012), channels (scroll lakes with high connectivity, sensu Junk et al., 2012) and paleo-channels (scroll lakes with low connectivity-sensu Junk et al., 2012, locally called ressacas) located in Mamirauá Sustainable Development Reserve, in Central Amazon floodplain, Amazonas, Brazil. We analysed surface temperature, conductivity, pH, dissolved oxygen, turbidity, transparency, suspended inorganic and organic matter, chlorophyll-a, pheophytin, total nitrogen, total phosphorus, organic and inorganic carbon in 2009 high water phase, 2009 and 2010 low water phases. Multivariate statistical analyses of 24 aquatic systems (6 ressacas, 12 lakes and 6 channels, 142 samples) were applied to the variables in order to: 1) quantify differences among aquatic system types; 2) assess how those differences are affected in the different phases of the hydrological year. First, we analysed the entire set of variables to test for differences among phases of the hydrological year and types of aquatic systems using a PERMANOVA two-way crossed design. The results showed that the all measured limnological variables are distinct regarding both factors: types of aquatic systems and hydrological phases. In general, the magnitude and amplitude of all variables were higher in the low water phase than in the high water phase, except for water transparency in all aquatic system's types. PERMANOVA showed that the differences between aquatic system's types and hydrological phases of all variables were highly significant for both main factors (type and phase) and for the type x phase interaction. Limnological patterns of Amazon floodplain aquatic systems are highly dynamic, dependent on the surrounding environment, flood pulse, main river input and system type. These patterns show how undisturbed systems respond to natural variability in such a diverse environment, and how distinct are those aquatic systems, especially during the low water phase. Aquatic systems in Mamirauá floodplain represent limnological patterns of almost undisturbed areas and can be used as future reference for comparison with disturbed areas, such as those of the Lower Amazon, and as a baseline for studies on the effects of anthropogenic influences and climate change and on Amazon aquatic ecosystem.
Patterns of change in climate and Pacific salmon production
Nathan J. Mantua
2009-01-01
For much of the 20th century a clear north-south inverse production pattern for Pacific salmon had a time dynamic that closely followed that of the Pacific Decadal Oscillation (PDO), which is the dominant pattern of North Pacific sea surface temperature variability. Total Alaska salmon production was high during warm regimes of the PDO, and total Alaska salmon...
Moreira, Fabiana Tavares; Prantoni, Alessandro Lívio; Martini, Bruno; de Abreu, Michelle Alves; Stoiev, Sérgio Biato; Turra, Alexander
2016-01-15
Microplastics such as pellets have been reported for many years on sandy beaches around the globe. Nevertheless, high variability is observed in their estimates and distribution patterns across the beach environment are still to be unravelled. Here, we investigate the small-scale temporal and spatial variability in the abundance of pellets in the intertidal zone of a sandy beach and evaluate factors that can increase the variability in data sets. The abundance of pellets was estimated during twelve consecutive tidal cycles, identifying the position of the high tide between cycles and sampling drift-lines across the intertidal zone. We demonstrate that beach dynamic processes such as the overlap of strandlines and artefacts of the methods can increase the small-scale variability. The results obtained are discussed in terms of the methodological considerations needed to understand the distribution of pellets in the beach environment, with special implications for studies focused on patterns of input. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi
2017-01-01
The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly influenced by the climate and human factors.
Spatiotemporal variability of summer precipitation in southeastern Arizona
USDA-ARS?s Scientific Manuscript database
The Walnut Gulch Experimental Watershed (WGEW) in Southeastern Arizona covers ~150 km2 and receives the majority of its annual precipitation from highly variable and intermittent summer storms during the North American Monsoon. In this study the patterns of precipitation in the United States Departm...
Soft-assembled Multilevel Dynamics of Tactical Behaviors in Soccer
Ric, Angel; Torrents, Carlota; Gonçalves, Bruno; Sampaio, Jaime; Hristovski, Robert
2016-01-01
This study aimed to identify the tactical patterns and the timescales of variables during a soccer match, allowing understanding the multilevel organization of tactical behaviors, and to determine the similarity of patterns performed by different groups of teammates during the first and second halves. Positional data from 20 professional male soccer players from the same team were collected using high frequency global positioning systems (5 Hz). Twenty-nine categories of tactical behaviors were determined from eight positioning-derived variables creating multivariate binary (Boolean) time-series matrices. Hierarchical principal component analysis (PCA) was used to identify the multilevel structure of tactical behaviors. The sequential reduction of each set level of principal components revealed a sole principal component as the slowest collective variable, forming the global basin of attraction of tactical patterns during each half of the match. In addition, the mean dwell time of each positioning-derived variable helped to understand the multilevel organization of collective tactical behavior during a soccer match. This approach warrants further investigations to analyze the influence of task constraints on the emergence of tactical behavior. Furthermore, PCA can help coaches to design representative training tasks according to those tactical patterns captured during match competitions and to compare them depending on situational variables. PMID:27761120
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, C.; Riley, W.J.
2009-11-01
Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less
Peladeau-Pigeon, Melanie
2017-01-01
Purpose The ability to generate tongue pressure plays a major role in bolus transport in swallowing. In studies of motor control, stability or variability of movement is a feature that changes with age, disease, task complexity, and perturbation. In this study, we explored whether age and tongue strength influence the stability of the tongue pressure generation pattern during isometric and swallowing tasks in healthy volunteers. Method Tongue pressure data, collected using the Iowa Oral Performance Instrument, were analyzed from 84 participants in sex-balanced and decade age-group strata. Tasks included maximum anterior and posterior isometric pressures and regular-effort saliva swallows. The cyclic spatiotemporal index (cSTI) was used to capture stability (vs. variability) in patterns of pressure generation. Mixed-model repeated measures analyses of covariance were performed separately for each task (anterior and posterior isometric pressures, saliva swallows) with between-participant factors of age group and sex, a within-participant factor of task repetition, and a continuous covariate of tongue strength. Results Neither age group nor sex effects were found. There was no significant relationship between tongue strength and the cSTI on the anterior isometric tongue pressure task (r = −.11). For the posterior isometric tongue pressure task, a significant negative correlation (r = −.395) was found between tongue strength and the cSTI. The opposite pattern of a significant positive correlation (r = .29) between tongue strength and the cSTI was seen for the saliva swallow task. Conclusions Tongue pressure generation patterns appear highly stable across repeated maximum isometric and saliva swallow tasks, despite advancing age. Greater pattern variability is seen with weaker posterior isometric pressures. Overall, saliva swallows had the lowest pressure amplitudes and highest pressure pattern variability as measured by the cSTI. PMID:29114767
NASA Astrophysics Data System (ADS)
Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.
2017-12-01
An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.
NASA Astrophysics Data System (ADS)
Konrad, C.; Brasher, A.; May, J.
2007-12-01
River restoration depends on re-establishment of the range of physical and biological processes that comprise the river ecosystem. Streamflow is the definitive physical processes for river ecosystems, so hydrologic alteration represents a potentially significant issue to be addressed by restoration efforts. Given adaptation of lotic species to naturally variable streamflow patterns over evolutionary time scales, however, lotic communities are resilient to at least some forms of hydrologic variability. As a result, river restoration may be successful despite limited but biologically insignificant hydrologic alteration. The responses of benthic invertebrate assemblages to variation in streamflow patterns across the western United States were investigated to identify biologically important forms and magnitudes of hydrologic variability. Biological responses to streamflow patterns were analyzed in terms of ceilings and floors on invertebrate assemblage diversity and structure using a non-parametric screening procedure and quantile regression. Variability at daily and monthly time scales was the most common streamflow pattern associated with broad metrics of invertebrate assemblages including abundance; richness and relative abundance of Ephemeroptera, Plecoptera, Trichoptera and non-insects; dominance; and diversity. Low flow magnitude and annual variability were associated with richness and trophic structure. The frequency, magnitude, and duration of high flows were associated with abundance and richness. Longer term streamflow metrics (calculated over at least 5 years) were more important than recent flows (30 and 100 days prior to invertebrate sampling). The results can be used as general guidance about when hydrologic alteration is likely to be an important factor and what streamflow patterns may need to be re-established for successful river restoration.
Similarities and differences among half-marathon runners according to their performance level
Morante, Juan Carlos; Gómez-Molina, Josué; García-López, Juan
2018-01-01
This study aimed to identify the similarities and differences among half-marathon runners in relation to their performance level. Forty-eight male runners were classified into 4 groups according to their performance level in a half-marathon (min): Group 1 (n = 11, < 70 min), Group 2 (n = 13, < 80 min), Group 3 (n = 13, < 90 min), Group 4 (n = 11, < 105 min). In two separate sessions, training-related, anthropometric, physiological, foot strike pattern and spatio-temporal variables were recorded. Significant differences (p<0.05) between groups (ES = 0.55–3.16) and correlations with performance were obtained (r = 0.34–0.92) in training-related (experience and running distance per week), anthropometric (mass, body mass index and sum of 6 skinfolds), physiological (VO2max, RCT and running economy), foot strike pattern and spatio-temporal variables (contact time, step rate and length). At standardized submaximal speeds (11, 13 and 15 km·h-1), no significant differences between groups were observed in step rate and length, neither in contact time when foot strike pattern was taken into account. In conclusion, apart from training-related, anthropometric and physiological variables, foot strike pattern and step length were the only biomechanical variables sensitive to half-marathon performance, which are essential to achieve high running speeds. However, when foot strike pattern and running speeds were controlled (submaximal test), the spatio-temporal variables were similar. This indicates that foot strike pattern and running speed are responsible for spatio-temporal differences among runners of different performance level. PMID:29364940
Temporally variable environments maintain more beta-diversity in Mediterranean landscapes
NASA Astrophysics Data System (ADS)
Martin, Beatriz; Ferrer, Miguel
2015-10-01
We examined the relationships between different environmental factors and the alpha and beta-diversity of terrestrial vertebrates (birds, mammals, amphibians and reptiles) in a Mediterranean region at the landscape level. We investigated whether the mechanisms underlying alpha and beta-diversity patterns are influenced by energy availability, habitat heterogeneity and temporal variability and if the drivers of the diversity patterns differed between both components of diversity. We defined alpha-diversity as synonym of species richness whereas beta-diversity was measured as distinctiveness. We evaluated a total of 13 different predictors using generalized linear mixed model (GLMM) analysis. Habitat spatial heterogeneity increased alpha-diversity, but contrastingly, it did not significantly affect beta-diversity among sites. Disturbed landscapes may show higher habitat spatial variation and higher alpha-diversity due to the contribution of highly generalist species that are wide-distributed and do not differ in composition (beta-diversity) among different sites within the region. Contrastingly, higher beta-diversity levels were negatively related to more stable sites in terms of temporal environmental variation. This negative relationship between environmental stability and beta-diversity levels is explained in terms of species adaptation to the local environmental conditions. Our study highlights the importance of temporal environmental variability in maintaining beta-diversity patterns under highly variable environmental conditions.
How temperament and personality contribute to the maladjustment of children with autism.
De Pauw, Sarah S W; Mervielde, Ivan; Van Leeuwen, Karla G; De Clercq, Barbara J
2011-02-01
To test the spectrum hypothesis--postulating that clinical and non-clinical samples are primarily differentiated by mean-level differences--, this study evaluates differences in parent-rated temperament, personality and maladjustment among a low-symptom (N = 81), a high-symptom (N = 94) ASD-group, and a comparison group (N = 500). These classic spectrum hypothesis tests are extended by adding tests for similarity in variances, reliabilities and patterns of covariation between relevant variables. Children with ASD exhibit more extreme means, except for dominance. The low- and high-symptom ASD-groups are primarily differentiated by mean sociability and internal distress. Striking similarities in reliability and pattern of covariation of variables suggest that comparable processes link traits to maladaptation in low- and high-symptom children with ASD and in children with and without autism.
Soundscapes from a Tropical Eastern Pacific reef and a Caribbean Sea reef
NASA Astrophysics Data System (ADS)
Staaterman, E.; Rice, A. N.; Mann, D. A.; Paris, C. B.
2013-06-01
Underwater soundscapes vary due to the abiotic and biological components of the habitat. We quantitatively characterized the acoustic environments of two coral reef habitats, one in the Tropical Eastern Pacific (Panama) and one in the Caribbean (Florida Keys), over 2-day recording durations in July 2011. We examined the frequency distribution, temporal variability, and biological patterns of sound production and found clear differences. The Pacific reef exhibited clear biological patterns and high temporal variability, such as the onset of snapping shrimp noise at night, as well as a 400-Hz daytime band likely produced by damselfish. In contrast, the Caribbean reef had high sound levels in the lowest frequencies, but lacked clear temporal patterns. We suggest that acoustic measures are an important element to include in reef monitoring programs, as the acoustic environment plays an important role in the ecology of reef organisms at multiple life-history stages.
Comprehensive assessment of dam impacts on flow regimes with consideration of interannual variations
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Shao, Quanxi; Zhao, Tongtiegang
2017-09-01
Assessing the impact of human intervention on flow regimes is important in policy making and resource management. Previous impact assessments of dam regulation on flow regimes have focused on long-term average patterns, but interannual variations, which are important characteristics to be considered, have been ignored. In this study, the entire signatures of hydrograph variations of Miyun Reservoir in northern China were described by forty flow regime metrics that incorporate magnitude, variability and frequency, duration, timing, and rate of change for flow events based on a long-term synchronous observation series of inflow and outflow. Principal component analysis and cluster analysis were used to reduce the multidimensionality of the metrics and time and to determine impact patterns and their interannual shifts. Statistically significant driving factors of impact pattern variations were identified. We found that dam regulation resulted in four main impact classes on the flow regimes and that the regulated capacity was interannually attenuated from 1973 to 2010. The impact patterns alternated between the highly regulated class with extremely decreasing flow magnitude, slight variability, and extreme intermittency and the slightly regulated class with extremely increasing flow magnitude, slight variability, and extreme intermittency from 1973 to 1987 and then stabilized in the latter class from 1988 to 2001. After 2001, the pattern gradually changed from the moderately regulated class with moderately decreasing flow magnitude, extreme variability, and extreme intermittency to the slightly regulated class with slightly decreasing flow magnitude, slight variability, and no intermittency. Decreasing precipitation and increasing drought were the primary drivers for the interannual variations of the impact patterns, and inflow variability was the most significant factor affecting the patterns, followed by flow event frequency and duration, magnitude, and timing. This study shows that the use of interannual characteristics can help to gain more insight into the impact of dam regulation on flow regimes and will provide important information to scientifically guide the multi-purpose regulation of dams.
The Meal Pattern Questionnaire: A psychometric evaluation using the Eating Disorder Examination.
Alfonsson, S; Sewall, A; Lidholm, H; Hursti, T
2016-04-01
Meal pattern is an important variable in both obesity treatment and treatment for eating disorders. Momentary assessment and eating diaries are highly valid measurement methods but often cumbersome and not always feasible to use in clinical practice. The aim of this study was to design and evaluate a self-report instrument for measuring meal patterns. The Pattern of eating item from the Eating Disorder Examination (EDE) interview was adapted to self-report format to follow the same overall structure as the Eating Disorder Examination Questionnaire. The new instrument was named the Meal Patterns Questionnaire (MPQ) and was compared with the EDE in a student sample (n=105) and an obese sample (n=111). The individual items of the MPQ and the EDE showed moderate to high correlations (rho=.63-89) in the two samples. Significant differences between the MPQ and EDE were only found for two items in the obese sample. The total scores correlated to a high degree (rho=.87/.74) in both samples and no significant differences were found in this variable. The MPQ can provide an overall picture of a person's eating patterns and is a valid way to collect data regarding meal patterns. The MPQ may be a useable tool in clinical practice and research studies when more extensive instruments cannot be used. Future studies should evaluate the MPQ in diverse cultural populations and with more ecological assessment methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kawamura, Marenori; Sato, Susumu
2018-05-01
The variable range of lens power of a liquid-crystal (LC) lens driven by two voltages is discussed on the basis of calculated and experimental results. The LC lens has two electrodes, which are a circularly hole-patterned electrode and a circular electrode, in addition to a common electrode, and highly resistive transparent films. The variable range of lens power increases with increasing driving voltage applied across the circularly hole-patterned electrode and the common electrode, and with decreasing diameter of highly resistive films. However, the optical-phase retardation profile tends to deviate from a parabolic curve in these cases. As a method to improve the trade-off properties, the highly resistive film is divided into two regions with different diameters, where the sheet resistance of an outer film is larger than that of an inner one. The improved LC lens has a lens power that varies in a wide range, and it exhibits a good parabolic phase retardation profile.
Regional patterns of dead wood in forested habitats of Oregon and Washington.
Janet L. Ohmann; Karen L. Waddell
2002-01-01
We describe regional patterns of variation in dead wood across 20 million ha of upland forests of all ownerships in Oregon and Washington, based on an analysis of data on snags and down wood collected on over 16,000 field plots. Current patterns of dead wood are highly variable and complex. The strongest differences were among nine habitats that reflect strong regional...
Domingues, Carla P.; Nolasco, Rita; Dubert, Jesus; Queiroga, Henrique
2012-01-01
Background Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings In this study we test whether dispersal and connectivity patterns generated from a bio-physical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p<0.05) and strong, ranging from 0.34 to 0.81 at time lags of −6 to +5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p<0.001, and r = 0.79, p<0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provide meaningful predictions of the patterns and causes of fine-scale variability in larval supply to marine populations. PMID:22558225
NASA Astrophysics Data System (ADS)
Amorim, Ana L.; León, Pablo; Mercado, Jesús M.; Cortés, Dolores; Gómez, Francisco; Putzeys, Sebastien; Salles, Soluna; Yebra, Lidia
2016-06-01
The Alboran Sea is a highly dynamic basin which exhibits a high spatio-temporal variability of hydrographic structures (e.g. fronts, gyres, coastal upwellings). This work compares the abundance and composition of picophytoplankton observed across the northern Alboran Sea among eleven cruises between 2008 and 2012 using flow cytometry. We evaluate the seasonal and longitudinal variability of picophytoplankton on the basis of the circulation regimes at a regional scale and explore the presence of cyanobacteria ecotypes in the basin. The maximal abundances obtained for Prochlorococcus, Synechococcus and picoeukaryotes (12.7 × 104, 13.9 × 104 and 8.6 × 104 cells mL- 1 respectively) were consistent with those reported for other adjacent marine areas. Seasonal changes in the abundance of the three picophytoplankton groups were highly significant although they did not match the patterns described for other coastal waters. Higher abundances of Prochlorococcus were obtained in autumn-winter while Synechococcus and picoeukaryotes exhibited a different seasonal abundance pattern depending on the sector (e.g. Synechococcus showed higher abundance in summer in the west sector and during winter in the eastern study area). Additionally, conspicuous longitudinal gradients were observed for Prochlorococcus and Synechococcus, with Prochlorococcus decreasing from west to east and Synechococcus following the opposite pattern. The analysis of environmental variables (i.e. temperature, salinity and inorganic nutrients) and cell abundances indicates that Prochlorococcus preferred high salinity and nitrate to phosphate ratio. On the contrary, temperature did not seem to play a role in Prochlorococcus distribution as it was numerically important during the whole seasonal cycle. Variability in Synechococcus abundance could not be explained by changes in any environmental variable suggesting that different ecotypes were sampled during the surveys. In particular, our data would indicate the presence of at least two ecotypes of Synechococcus: a summer ecotype widely distributed in the whole Alboran Sea and a winter ecotype adapted to lower temperature and higher nutrient concentration whose growth is favoured in the eastern sector.
Arctic Climate and Atmospheric Planetary Waves
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Haekkinen, S.
2000-01-01
Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.
Seasonal weather-related decision making for cattle production in the Northern Great Plains
USDA-ARS?s Scientific Manuscript database
High inter-annual variability of seasonal weather patterns can greatly affect forage and therefore livestock production in the Northern Great Plains. This variability can make it difficult for ranchers to set yearly stocking rates, particularly in advance of the grazing season. To better understand ...
Segev, Aviv; Gabay-Weschler, Hila; Naar, Yossi; Maoz, Hagai; Bloch, Yuval
2017-01-01
Current research refers to videogames as a constant variable. However, games today are designed to be highly interactive and versatile: two players may be using the same videogame, but as a result of different using patterns, the game will not necessarily encompass the same content and gameplay. The current study examined the possible relationship between psychopathology and in-game playing patterns. We hypothesized that adolescents would play videogames differently, in a manner that would reflect their particular psychopathologies. We examined 47 male adolescents from three diagnostic groups: those suffering from externalizing psychopathologies, internalizing psychopathologies and controls. We performed a high-resolution examination of their gameplay, using in-game quantitative statistics mechanisms of two fundamentally different games, a structured racing game and an unstructured adventure game. While there was no difference in the groups' using patterns of the structured game, there was a high variability between the groups' using patterns when they were using a non-structured game. These findings suggest that virtual behavior in unstructured games is reflective of adolescent-players psychopathology, and might shed light on an unexplored facet of videogames research. Possible implications are discussed.
Gabay-Weschler, Hila; Naar, Yossi; Maoz, Hagai; Bloch, Yuval
2017-01-01
Current research refers to videogames as a constant variable. However, games today are designed to be highly interactive and versatile: two players may be using the same videogame, but as a result of different using patterns, the game will not necessarily encompass the same content and gameplay. The current study examined the possible relationship between psychopathology and in-game playing patterns. We hypothesized that adolescents would play videogames differently, in a manner that would reflect their particular psychopathologies. We examined 47 male adolescents from three diagnostic groups: those suffering from externalizing psychopathologies, internalizing psychopathologies and controls. We performed a high-resolution examination of their gameplay, using in-game quantitative statistics mechanisms of two fundamentally different games, a structured racing game and an unstructured adventure game. While there was no difference in the groups' using patterns of the structured game, there was a high variability between the groups' using patterns when they were using a non-structured game. These findings suggest that virtual behavior in unstructured games is reflective of adolescent-players psychopathology, and might shed light on an unexplored facet of videogames research. Possible implications are discussed. PMID:28708879
Interpret with caution: multicollinearity in multiple regression of cognitive data.
Morrison, Catriona M
2003-08-01
Shibihara and Kondo in 2002 reported a reanalysis of the 1997 Kanji picture-naming data of Yamazaki, Ellis, Morrison, and Lambon-Ralph in which independent variables were highly correlated. Their addition of the variable visual familiarity altered the previously reported pattern of results, indicating that visual familiarity, but not age of acquisition, was important in predicting Kanji naming speed. The present paper argues that caution should be taken when drawing conclusions from multiple regression analyses in which the independent variables are so highly correlated, as such multicollinearity can lead to unreliable output.
Angeler, David G.; Allen, Criag R.; Johnson, Richard K.
2012-01-01
Understanding the social and ecological consequences of species invasions is complicated by nonlinearities in processes, and differences in process and structure as scale is changed. Here we use discontinuity analyses to investigate nonlinear patterns in the distribution of biomass of an invasive nuisance species that could indicate scale-specific organization. We analyze biomass patterns in the flagellate Gonyostomum semen (Raphidophyta) in 75 boreal lakes during an 11-year period (1997-2007). With simulations using a unimodal null model and cluster analysis, we identified regional groupings of lakes based on their biomass patterns. We evaluated the variability of membership of individual lakes in regional biomass groups. Temporal trends in local and regional discontinuity patterns were analyzed using regressions and correlations with environmental variables that characterize nutrient conditions, acidity status, temperature variability, and water clarity. Regionally, there was a significant increase in the number of biomass groups over time, indicative of an increased number of scales at which algal biomass organizes across lakes. This increased complexity correlated with the invasion history of G. semen and broad-scale environmental change (recovery from acidification). Locally, no consistent patterns of lake membership to regional biomass groups were observed, and correlations with environmental variables were lake specific. The increased complexity of regional biomass patterns suggests that processes that act within or between scales reinforce the presence of G. semen and its potential to develop high-biomass blooms in boreal lakes. Emergent regional patterns combined with locally stochastic dynamics suggest a bleak future for managing G. semen, and more generally why invasive species can be ecologically successful.
2009-01-01
Background Shigella flexneri is one of the causative agents of shigellosis, a major cause of childhood mortality in developing countries. Multilocus variable-number tandem repeat (VNTR) analysis (MLVA) is a prominent subtyping method to resolve closely related bacterial isolates for investigation of disease outbreaks and provide information for establishing phylogenetic patterns among isolates. The present study aimed to develop an MLVA method for S. flexneri and the VNTR loci identified were tested on 242 S. flexneri isolates to evaluate their variability in various serotypes. The isolates were also analyzed by pulsed-field gel electrophoresis (PFGE) to compare the discriminatory power and to evaluate the usefulness of MLVA as a tool for phylogenetic analysis of S. flexneri. Results Thirty-six VNTR loci were identified by exploring the repeat sequence loci in genomic sequences of Shigella species and by testing the loci on nine isolates of different subserotypes. The VNTR loci in different serotype groups differed greatly in their variability. The discriminatory power of an MLVA assay based on four most variable VNTR loci was higher, though not significantly, than PFGE for the total isolates, a panel of 2a isolates, which were relatively diverse, and a panel of 4a/Y isolates, which were closely-related. Phylogenetic groupings based on PFGE patterns and MLVA profiles were considerably concordant. The genetic relationships among the isolates were correlated with serotypes. The phylogenetic trees constructed using PFGE patterns and MLVA profiles presented two distinct clusters for the isolates of serotype 3 and one distinct cluster for each of the serotype groups, 1a/1b/NT, 2a/2b/X/NT, 4a/Y, and 6. Isolates that had different serotypes but had closer genetic relatedness than those with the same serotype were observed between serotype Y and subserotype 4a, serotype X and subserotype 2b, subserotype 1a and 1b, and subserotype 3a and 3b. Conclusions The 36 VNTR loci identified exhibited considerably different degrees of variability among S. flexneri serotype groups. VNTR locus could be highly variable in a serotype but invariable in others. MLVA assay based on four highly variable loci could display a comparable resolving power to PFGE in discriminating isolates. MLVA is also a prominent molecular tool for phylogenetic analysis of S. flexneri; the resulting data are beneficial to establish clear clonal patterns among different serotype groups and to discern clonal groups among isolates within the same serotype. As highly variable VNTR loci could be serotype-specific, a common MLVA protocol that consists of only a small set of loci, for example four to eight loci, and that provides high resolving power to all S. flexneri serotypes may not be obtainable. PMID:20042119
Global-scale modes of surface temperature variability on interannual to century timescales
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1994-01-01
Using 100 years of global temperature anomaly data, we have performed a singluar value decomposition of temperature variations in narrow frequency bands to isolate coherent spatio-temporal modes of global climate variability. Statistical significance is determined from confidence limits obtained by Monte Carlo simulations. Secular variance is dominated by a globally coherent trend; with nearly all grid points warming in phase at varying amplitude. A smaller, but significant, share of the secular variance corresponds to a pattern dominated by warming and subsequent cooling in the high latitude North Atlantic with a roughly centennial timescale. Spatial patterns associated with significant peaks in variance within a broad period range from 2.8 to 5.7 years exhibit characteristic El Nino-Southern Oscillation (ENSO) patterns. A recent transition to a regime of higher ENSO frequency is suggested by our analysis. An interdecadal mode in the 15-to-18 years period and a mode centered at 7-to-8 years period both exhibit predominantly a North Atlantic Oscillation (NAO) temperature pattern. A potentially significant decadal mode centered on 11-to-12 years period also exhibits an NAO temperature pattern and may be modulated by the century-scale North Atlantic variability.
NASA Astrophysics Data System (ADS)
Detzer, J.; Loikith, P. C.; Mechoso, C. R.; Barkhordarian, A.; Lee, H.
2017-12-01
South America's climate varies considerably owing to its large geographic range and diverse topographical features. Spanning the tropics to the mid-latitudes and from high peaks to tropical rainforest, the continent experiences an array of climate and weather patterns. Due to this considerable spatial extent, assessing temperature variability at the continent scale is particularly challenging. It is well documented in the literature that temperatures have been increasing across portions of South America in recent decades, and while there have been many studies that have focused on precipitation variability and change, temperature has received less scientific attention. Therefore, a more thorough understanding of the drivers of temperature variability is critical for interpreting future change. First, k-means cluster analysis is used to identify four primary modes of temperature variability across the continent, stratified by season. Next, composites of large scale meteorological patterns (LSMPs) are calculated for months assigned to each cluster. Initial results suggest that LSMPs, defined using meteorological variables such as sea level pressure (SLP), geopotential height, and wind, are able to identify synoptic scale mechanisms important for driving temperature variability at the monthly scale. Some LSMPs indicate a relationship with known recurrent modes of climate variability. For example, composites of geopotential height suggest that the Southern Annular Mode is an important, but not necessarily dominant, component of temperature variability over southern South America. This work will be extended to assess the drivers of temperature extremes across South America.
Skip-row Planting Patterns Stabilize Corn Grain Yields in the Central Great Plains
USDA-ARS?s Scientific Manuscript database
The highly variable climate of the Central Great Plains makes dryland corn (Zea mays) production a risky enterprise. Twenty-three field trials were conducted across the Central Great Plains from 2004 through 2006 to quantify the effect of various skip-row planting patterns and plant populations on g...
Respiratory Patterns and Strategies during Feeding in Preterm Infants
ERIC Educational Resources Information Center
Vice, Frank L.; Gewolb, Ira H.
2008-01-01
Because patterns of integration of respiration into rhythmic suck-swallow efforts are highly variable, we examined the vagaries of respiratory efforts as they evolve from the first tentative attempts at integration through more complex rhythmic interactions, with a focus on several strategies in which breathing and suck-swallow are coordinated.…
Hierarchical Letters in ASD: High Stimulus Variability under Different Attentional Modes
ERIC Educational Resources Information Center
Van der Hallen, Ruth; Vanmarcke, Steven; Noens, Ilse; Wagemans, Johan
2017-01-01
Studies using hierarchical patterns to test global precedence and local-global interference in individuals with ASD have produced mixed results. The current study focused on stimulus variability and locational uncertainty, while using different attentional modes. Two groups of 44 children with and without ASD completed a divided attention task as…
Vegetation and environmental controls on soil respiration in a pinon-juniper woodland
Sandra A. White
2008-01-01
Soil respiration (RS) responds to changes in plant and microbial activity and environmental conditions. In arid ecosystems of the southwestern USA, soil moisture exhibits large fluctuations because annual and seasonal precipitation inputs are highly variable, with increased variability expected in the future. Patterns of soil moisture, and periodic severe drought, are...
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2013-08-01
Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.
NASA Astrophysics Data System (ADS)
Sangadji, Iriansyah; Arvio, Yozika; Indrianto
2018-03-01
to understand by analyzing the pattern of changes in value movements that can dynamically vary over a given period with relative accuracy, an equipment is required based on the utilization of technical working principles or specific analytical method. This will affect the level of validity of the output that will occur from this system. Subtractive clustering is based on the density (potential) size of data points in a space (variable). The basic concept of subtractive clustering is to determine the regions in a variable that has high potential for the surrounding points. In this paper result is segmentation of behavior pattern based on quantity value movement. It shows the number of clusters is formed and that has many members.
The 3of5 web application for complex and comprehensive pattern matching in protein sequences.
Seiler, Markus; Mehrle, Alexander; Poustka, Annemarie; Wiemann, Stefan
2006-03-16
The identification of patterns in biological sequences is a key challenge in genome analysis and in proteomics. Frequently such patterns are complex and highly variable, especially in protein sequences. They are frequently described using terms of regular expressions (RegEx) because of the user-friendly terminology. Limitations arise for queries with the increasing complexity of patterns and are accompanied by requirements for enhanced capabilities. This is especially true for patterns containing ambiguous characters and positions and/or length ambiguities. We have implemented the 3of5 web application in order to enable complex pattern matching in protein sequences. 3of5 is named after a special use of its main feature, the novel n-of-m pattern type. This feature allows for an extensive specification of variable patterns where the individual elements may vary in their position, order, and content within a defined stretch of sequence. The number of distinct elements can be constrained by operators, and individual characters may be excluded. The n-of-m pattern type can be combined with common regular expression terms and thus also allows for a comprehensive description of complex patterns. 3of5 increases the fidelity of pattern matching and finds ALL possible solutions in protein sequences in cases of length-ambiguous patterns instead of simply reporting the longest or shortest hits. Grouping and combined search for patterns provides a hierarchical arrangement of larger patterns sets. The algorithm is implemented as internet application and freely accessible. The application is available at http://dkfz.de/mga2/3of5/3of5.html. The 3of5 application offers an extended vocabulary for the definition of search patterns and thus allows the user to comprehensively specify and identify peptide patterns with variable elements. The n-of-m pattern type offers an improved accuracy for pattern matching in combination with the ability to find all solutions, without compromising the user friendliness of regular expression terms.
Timing of climate variability and grassland productivity
Craine, Joseph M.; Nippert, Jesse B.; Elmore, Andrew J.; Skibbe, Adam M.; Hutchinson, Stacy L.; Brunsell, Nathaniel A.
2012-01-01
Future climates are forecast to include greater precipitation variability and more frequent heat waves, but the degree to which the timing of climate variability impacts ecosystems is uncertain. In a temperate, humid grassland, we examined the seasonal impacts of climate variability on 27 y of grass productivity. Drought and high-intensity precipitation reduced grass productivity only during a 110-d period, whereas high temperatures reduced productivity only during 25 d in July. The effects of drought and heat waves declined over the season and had no detectable impact on grass productivity in August. If these patterns are general across ecosystems, predictions of ecosystem response to climate change will have to account not only for the magnitude of climate variability but also for its timing. PMID:22331914
NASA Astrophysics Data System (ADS)
Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan
2018-02-01
Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.
Wu, Yili; Pang, Zengchang; Zhang, Dongfeng; Jiang, Wenjie; Wang, Shaojie; Li, Shuxia; Kruse, Torben A; Christensen, Kaare; Tan, Qihua
2012-01-01
By focusing on four health variables, handgrip strength, near visual acuity, tooth loss and hearing level, this study examined the different patterns of age-related changes in these variables in Chinese aged from 50 to 74 years, as well as explored the relationship among the variables in a cross-sectional sample of 2006 individuals. The data exhibited high quality with a low missing rate of under 5% in any age groups for each variable. Effects of age and sex on the changes in the four health variables were assessed using multiple regression models with age and sex interactions included. Upon the highly significant effects of age on all four measurements, we observed substantially higher grip strength for men who, however, exhibited a faster age-related decline than for women. No sex difference or age-sex interaction was found in the number of teeth lost. Near visual acuity displayed a faster age-related decline in women than in men but neither the overall sex difference nor age-sex interaction reached statistical significance. For hearing function, while no sex difference was found at middle frequency, women had better sensitivity at high frequency and men were more sensitive at low frequency. Multivariate analysis did not support an age-related common mechanism underlying the four health variables. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Regional Patterns of Stress Transfer in the Ablation Zone of the Western Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Andrews, L. C.; Hoffman, M. J.; Neumann, T.; Catania, G. A.; Luethi, M. P.; Hawley, R. L.
2016-12-01
Current understanding of the subglacial system indicates that the seasonal evolution of ice flow is strongly controlled by the gradual upstream progression of an inefficient - efficient transition within the subglacial hydrologic system followed by the reduction of melt and a downstream collapse of the efficient system. Using a spatiotemporally dense network of GPS-derived surface velocities from the Pâkitsoq Region of the western Greenland Ice Sheet, we find that this pattern of subglacial development is complicated by heterogeneous bed topography, resulting in complex patterns of ice flow. Following low elevation melt onset, early melt season strain rate anomalies are dominated by regional extension, which then gives way to spatially expansive compression. However, once daily minimum ice velocities fall below the observed winter background velocities, an alternating spatial pattern of extension and compression prevails. This pattern of strain rate anomalies is correlated with changing basal topography and differences in the magnitude of diurnal surface ice speeds. Along subglacial ridges, diurnal variability in ice speed is large, suggestive of a mature, efficient subglacial system. In regions of subglacial lows, diurnal variability in ice velocity is relatively low, likely associated with a less developed efficient subglacial system. The observed pattern suggests that borehole observations and modeling results demonstrating the importance of longitudinal stress transfer at a single field location are likely widely applicable in our study area and other regions of the Greenland Ice Sheet with highly variable bed topography. Further, the complex pattern of ice flow and evidence of spatially extensive longitudinal stress transfer add to the body of work indicating that the bed character plays an important role in the development of the subglacial system; closely matching diurnal ice velocity patterns with subglacial models may be difficult without coupling these models to high order ice flow models.
Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge
NASA Astrophysics Data System (ADS)
Tecklenburg, Christina; Blume, Theresa
2017-10-01
Lacustrine groundwater discharge (LGD) can significantly affect lake water balances and lake water quality. However, quantifying LGD and its spatial patterns is challenging because of the large spatial extent of the aquifer-lake interface and pronounced spatial variability. This is the first experimental study to specifically study these larger-scale patterns with sufficient spatial resolution to systematically investigate how landscape and local characteristics affect the spatial variability in LGD. We measured vertical temperature profiles around a 0.49 km2 lake in northeastern Germany with a needle thermistor, which has the advantage of allowing for rapid (manual) measurements and thus, when used in a survey, high spatial coverage and resolution. Groundwater inflow rates were then estimated using the heat transport equation. These near-shore temperature profiles were complemented with sediment temperature measurements with a fibre-optic cable along six transects from shoreline to shoreline and radon measurements of lake water samples to qualitatively identify LGD patterns in the offshore part of the lake. As the hydrogeology of the catchment is sufficiently homogeneous (sandy sediments of a glacial outwash plain; no bedrock control) to avoid patterns being dominated by geological discontinuities, we were able to test the common assumptions that spatial patterns of LGD are mainly controlled by sediment characteristics and the groundwater flow field. We also tested the assumption that topographic gradients can be used as a proxy for gradients of the groundwater flow field. Thanks to the extensive data set, these tests could be carried out in a nested design, considering both small- and large-scale variability in LGD. We found that LGD was concentrated in the near-shore area, but alongshore variability was high, with specific regions of higher rates and higher spatial variability. Median inflow rates were 44 L m-2 d-1 with maximum rates in certain locations going up to 169 L m-2 d-1. Offshore LGD was negligible except for two local hotspots on steep steps in the lake bed topography. Large-scale groundwater inflow patterns were correlated with topography and the groundwater flow field, whereas small-scale patterns correlated with grain size distributions of the lake sediment. These findings confirm results and assumptions of theoretical and modelling studies more systematically than was previously possible with coarser sampling designs. However, we also found that a significant fraction of the variance in LGD could not be explained by these controls alone and that additional processes need to be considered. While regression models using these controls as explanatory variables had limited power to predict LGD rates, the results nevertheless encourage the use of topographic indices and sediment heterogeneity as an aid for targeted campaigns in future studies of groundwater discharge to lakes.
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires. PMID:24465492
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires.
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.; Delworth, Thomas
1995-01-01
Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of processes may be responsible for the choice of the decadal and multidecadal timescales. Finally, it must be emphasized that the GFDL coupled ocean-atmosphere model generates the decadal and multidecadal timescale variability without any externally applied force, solar or lunar, at those timescales.
Rissler, Jenny; Gudmundsson, Anders; Nicklasson, Hanna; Swietlicki, Erik; Wollmer, Per; Löndahl, Jakob
2017-04-08
Exposure to airborne particles has a major impact on global health. The probability of these particles to deposit in the respiratory tract during breathing is essential for their toxic effects. Observations have shown that there is a substantial variability in deposition between subjects, not only due to respiratory diseases, but also among individuals with healthy lungs. The factors determining this variability are, however, not fully understood. In this study we experimentally investigate factors that determine individual differences in the respiratory tract depositions of inhaled particles for healthy subjects at relaxed breathing. The study covers particles of diameters 15-5000 nm and includes 67 subjects aged 7-70 years. A comprehensive examination of lung function was performed for all subjects. Principal component analyses and multiple regression analyses were used to explore the relationships between subject characteristics and particle deposition. A large individual variability in respiratory tract deposition efficiency was found. Individuals with high deposition of a certain particle size generally had high deposition for all particles <3500 nm. The individual variability was explained by two factors: breathing pattern, and lung structural and functional properties. The most important predictors were found to be breathing frequency and anatomical airway dead space. We also present a linear regression model describing the deposition based on four variables: tidal volume, breathing frequency, anatomical dead space and resistance of the respiratory system (the latter measured with impulse oscillometry). To understand why some individuals are more susceptible to airborne particles we must understand, and take into account, the individual variability in the probability of particles to deposit in the respiratory tract by considering not only breathing patterns but also adequate measures of relevant structural and functional properties.
Zhang, Chunlan; Quan, Qing; Wu, Yongjie; Chen, Youhua; He, Peng; Qu, Yanhua; Lei, Fumin
2017-04-01
Large-scale patterns of species richness have gained much attention in recent years; however, the factors that drive high species richness are still controversial in local regions, especially in highly diversified montane regions. The Qinghai-Tibetan Plateau (QTP) and the surrounding mountains are biodiversity hot spots due to a high number of endemic montane species. Here, we explored the factors underlying this high level of diversity by studying the relationship between species richness and environmental variables. The richness patterns of 758 resident bird species were summarized at the scale of 1°×1° grid cell at different taxonomic levels (order, family, genus, and species) and in different taxonomic groups (Passeriformes, Galliformes, Falconiformes, and Columbiformes). These richness patterns were subsequently analyzed against habitat heterogeneity (topographical heterogeneity and land cover), temperature amplitude (annual temperature, annual precipitation, precipitation seasonality, and temperature seasonality) and a vegetation index (net primary productivity). Our results showed that the highest richness was found in the southeastern part of the QTP, the eastern Himalayas. The lowest richness was observed in the central plateau of the QTP. Topographical heterogeneity and temperature amplitude are the primary factors that explain overall patterns of species richness in the QTP, although the specific effect of each environmental variable varies between the different taxonomic groups depending on their own evolutionary histories and ecological requirements. High species richness in the southeastern QTP is mostly due to highly diversified habitat types and temperature zones along elevation gradients, whereas the low species richness in the central plateau of the QTP may be due to environmental and energetic constraints, as the central plateau is harsh environment.
Structure and dynamics of mixed-species flocks in a Hawaiian rain forest
Hart, P.J.; Freed, L.A.
2003-01-01
Mixed-species flocks of native and introduced birds were studied for four years in an upper elevation Hawaiian rain forest. Those flocks were characterized by strong seasonality, large size, low species richness, high intraspecific abundance, a lack of migrants, and a general lack of territoriality or any sort of dominance hierarchy. There was high variability among years in patterns of occurrence at the species level, and high variability within years at the individual level. These flocks are loosely structured social groupings with apparently open membership. The fluid, unstable movement patterns, high degree of variability in size and composition, and lack of positive interspecific associations are not consistent with the “foraging enhancement” hypothesis for flocking. Two resident, endangered insectivores, the Akepa (Loxops coccineus) and Hawaii Creeper (Oreomystis mana) served as “nuclear” species. Flock composition was compared between two study sites that differed significantly in density of these two nuclear species. Flock size was similar at the two sites, primarily because the nuclear species were over-represented relative to their density. This observation suggests that birds are attempting to achieve a more optimal flock size at the lower density site.
Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...
Summer temperature patterns in the headwater streams of the Oregon coast range
Liz Dent; Danielle Vick; Kyle Abraham; Stephen Schoenholtz; Sherri Johnson
2008-01-01
Cool summertime stream temperature is an important component of high-quality aquatic habitat in Oregon coastal streams. Within the Oregon Coast Range, small headwater streams make up a majority of the stream network, yet little information is available on temperature patterns and the longitudinal variability for these streams. In this paper we describe preharvest...
Predictors of Student Enrollment Patterns in High School Career Academies
ERIC Educational Resources Information Center
Cox, E. Daniel
2013-01-01
The purpose of this study was to describe participation patterns at the district level of students enrolled in career academies and determine whether participation in career academies is a function of demographic and/or prior learning experience and prior performance variables. Ex-post facto data was used to determine six-year enrollment trends.…
Pattern statistics on Markov chains and sensitivity to parameter estimation
Nuel, Grégory
2006-01-01
Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). Results: In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation. PMID:17044916
Pattern statistics on Markov chains and sensitivity to parameter estimation.
Nuel, Grégory
2006-10-17
In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of sigma, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.
NASA Astrophysics Data System (ADS)
Jiménez, Pedro A.; González-Rouco, J. Fidel; Montávez, Juan P.; García-Bustamante, E.; Navarro, J.; Dudhia, J.
2013-04-01
This work uses a WRF numerical simulation from 1960 to 2005 performed at a high horizontal resolution (2 km) to analyze the surface wind variability over a complex terrain region located in northern Iberia. A shorter slice of this simulation has been used in a previous study to demonstrate the ability of the WRF model in reproducing the observed wind variability during the period 1992-2005. Learning from that validation exercise, the extended simulation is herein used to inspect the wind behavior where and when observations are not available and to determine the main synoptic mechanisms responsible for the surface wind variability. A principal component analysis was applied to the daily mean wind. Two principal modes of variation accumulate a large percentage of the wind variability (83.7%). The first mode reflects the channeling of the flow between the large mountain systems in northern Iberia modulated by the smaller topographic features of the region. The second mode further contributes to stress the differentiated wind behavior over the mountains and valleys. Both modes show significant contributions at the higher frequencies during the whole analyzed period, with different contributions at lower frequencies during the different decades. A strong relationship was found between these two modes and the zonal and meridional large scale pressure gradients over the area. This relationship is described in the context of the influence of standard circulation modes relevant in the European region like the North Atlantic Oscillation, the East Atlantic pattern, East Atlantic/Western Russia pattern, and the Scandinavian pattern.
Moeckel, Claudia; Macleod, Matthew; Hungerbühler, Konrad; Jones, Kevin C
2008-05-01
Short-term variability of concentrations of polybrominated diphenyl ethers (PBDEs) and chlordanes in air at a semirural site in England over a 5 day period is reported. Four-hour air samples were collected during a period dominated by a high pressure system that produced stable diel (24-h) patterns of meteorological conditions such as temperature and atmospheric boundary layer height. PBDE and chlordane concentrations showed clear diel variability with concentrations in the afternoon and evening being 1.9 - 2.7 times higher than in the early morning. The measurements are interpreted using a multimedia mass balance model parametrized with forcing functions representing local temperature, atmospheric boundary layer height, wind speed and hydroxyl radical concentrations. Model results indicate that reversible, temperature-controlled air-surface exchange is the primary driver of the diel concentration pattern observed for chlordanes and PBDE 28. For higher brominated PBDE congeners (47, 99 and 100), the effect of variable atmospheric mixing height in combination with irreversible deposition on aerosol particles is dominant and explains the diel patterns almost entirely. Higher concentrations of chlordanes and PBDEs in air observed at the end of the study period could be related to likely source areas using back trajectory analysis. This is the first study to clearly document diel variability in concentrations of PBDEs in air over a period of several days. Our model analysis indicates that high daytime and low nighttime concentrations of semivolatile organic chemicals can arise from different underlying driving processes, and are not necessarily evidence of reversible air-surface exchange on a 24-h time scale.
Kalkhan, M.A.; Stohlgren, T.J.
2000-01-01
Land managers need better techniques to assess exoticplant invasions. We used the cross-correlationstatistic, IYZ, to test for the presence ofspatial cross-correlation between pair-wisecombinations of soil characteristics, topographicvariables, plant species richness, and cover ofvascular plants in a 754 ha study site in RockyMountain National Park, Colorado, U.S.A. Using 25 largeplots (1000 m2) in five vegetation types, 8 of 12variables showed significant spatial cross-correlationwith at least one other variable, while 6 of 12variables showed significant spatial auto-correlation. Elevation and slope showed significant spatialcross-correlation with all variables except percentcover of native and exotic species. Percent cover ofnative species had significant spatialcross-correlations with soil variables, but not withexotic species. This was probably because of thepatchy distributions of vegetation types in the studyarea. At a finer resolution, using data from ten1 m2 subplots within each of the 1000 m2 plots, allvariables showed significant spatial auto- andcross-correlation. Large-plot sampling was moreaffected by topographic factors than speciesdistribution patterns, while with finer resolutionsampling, the opposite was true. However, thestatistically and biologically significant spatialcorrelation of native and exotic species could only bedetected with finer resolution sampling. We foundexotic plant species invading areas with high nativeplant richness and cover, and in fertile soils high innitrogen, silt, and clay. Spatial auto- andcross-correlation statistics, along with theintegration of remotely sensed data and geographicinformation systems, are powerful new tools forevaluating the patterns and distribution of native andexotic plant species in relation to landscape structure.
ERIC Educational Resources Information Center
Ferrari, Pier Francesco; Paukner, Annika; Ruggiero, Angela; Darcey, Lisa; Unbehagen, Sarah; Suomi, Stephen J.
2009-01-01
The capacity to imitate facial gestures is highly variable in rhesus macaques and this variability may be related to differences in specific neurobehavioral patterns of development. This study evaluated the differential neonatal imitative response of 41 macaques in relation to the development of sensory, motor, and cognitive skills throughout the…
Range expansion through fragmented landscapes under a variable climate
Bennie, Jonathan; Hodgson, Jenny A; Lawson, Callum R; Holloway, Crispin TR; Roy, David B; Brereton, Tom; Thomas, Chris D; Wilson, Robert J
2013-01-01
Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high-resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an exemplar species, the butterfly Hesperia comma. Using fine-resolution (5 m) models of vegetation surface microclimate, we estimate the thermal suitability of 906 habitat patches at the species' range margin for 27 years. Population and metapopulation models that incorporate this dynamic microclimate surface improve predictions of observed annual changes to population density and patch occupancy dynamics during the species' range expansion from 1982 to 2009. Our findings reveal how fine-scale, short-term environmental variability drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at spatial and temporal scales relevant to conservation interventions. PMID:23701124
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; ...
2016-10-04
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
NASA Astrophysics Data System (ADS)
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; Hu, Aixue; Hamlington, Benjamin; Kenigson, Jessica; Palanisamy, Hindumathi; Thompson, Philip
2017-01-01
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth's climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.
Religiousness as a Predictor of Alcohol Use in High School Students.
ERIC Educational Resources Information Center
Park, Hae-Seong; Bauer, Scott; Oescher, Jeffrey
2001-01-01
Examines the relationship between religiousness and alcohol use of adolescents based on a sample of high school seniors. Results provide support for examining religiousness variables as predictors of alcohol use patterns of adolescents. (Contains 16 references and 4 tables.) (GCP)
Quantifying natural delta variability using a multiple-point geostatistics prior uncertainty model
NASA Astrophysics Data System (ADS)
Scheidt, Céline; Fernandes, Anjali M.; Paola, Chris; Caers, Jef
2016-10-01
We address the question of quantifying uncertainty associated with autogenic pattern variability in a channelized transport system by means of a modern geostatistical method. This question has considerable relevance for practical subsurface applications as well, particularly those related to uncertainty quantification relying on Bayesian approaches. Specifically, we show how the autogenic variability in a laboratory experiment can be represented and reproduced by a multiple-point geostatistical prior uncertainty model. The latter geostatistical method requires selection of a limited set of training images from which a possibly infinite set of geostatistical model realizations, mimicking the training image patterns, can be generated. To that end, we investigate two methods to determine how many training images and what training images should be provided to reproduce natural autogenic variability. The first method relies on distance-based clustering of overhead snapshots of the experiment; the second method relies on a rate of change quantification by means of a computer vision algorithm termed the demon algorithm. We show quantitatively that with either training image selection method, we can statistically reproduce the natural variability of the delta formed in the experiment. In addition, we study the nature of the patterns represented in the set of training images as a representation of the "eigenpatterns" of the natural system. The eigenpattern in the training image sets display patterns consistent with previous physical interpretations of the fundamental modes of this type of delta system: a highly channelized, incisional mode; a poorly channelized, depositional mode; and an intermediate mode between the two.
Ehsani, Behnaz; Moslehi, Nazanin; Mirmiran, Parvin; Ramezani Tehrani, Fahimeh; Tahmasebinejad, Zhale; Azizi, Fereidoun
2016-10-01
Visceral adiposity index (VAI), an indicator of visceral adiposity, has been found to be associated with cardiometabolic disturbances in women with polycystic ovary syndrome (PCOS). The association of dietary intakes with VAI, and subsequently cardiometabolic variables is still unclear. The aims of this study were to identify a dietary pattern associated with VAI and to investigate whether this pattern is associated with cardiometabolic variables in PCOS women. The study was conducted on 53 PCOS women, aged 18-45 years, diagnosed according to National Institutes of Health (NIH) criteria, and 167 age-matched normo-ovulatory women who were recruited from the Tehran Lipid and Glucose Study. Reduced rank regression was applied to determine a dietary pattern that explains the maximum variation of the VAI. Associations between the dietary pattern and cardiometabolic profiles were investigated using linear and logistic regression, adjusted for age and BMI. A VAI dietary pattern was identified characterized by high consumption of fried vegetables, vegetable oils (except olive oil), salty snacks, legumes, eggs, fast foods and low consumption of traditional sweets, high and low fat dairy, cruciferous vegetables, sugars and honey. A one standard deviation (SD) increase in dietary pattern score was significantly associated with higher triglycerides (TGs) (βcontrol = 0.22, p = 0.003; βcase = 0.48, p = 0.001) and TGs/HDL-C ratio (βcontrol = 0.23, p = 0.002; βcase = 0.52, p = 0.001) in both groups. After adjusting for age and BMI, a 1-SD increase in dietary pattern score was associated with increased risk of VAD in PCOS (OR 2.77; 95% CI 1.15, 6.66) and control groups (OR 2.41; 95% CI 1.41-4.12). In the control group, the risk of hypercholesterolemia, hypertriglyceridemia, high LDL-C, low HDL-C, hyperglycemia and IGT + IFG increased significantly per 1-SD increase in dietary pattern score, which all remained significant after adjusting for age and BMI, except for the risk of high LDL-C. Among the cardiometabolic abnormalities, only the risk of hypertriglyceridemia was significantly associated with dietary pattern score in women with PCOS, which lost its significance after adjusting for age and BMI. The VAI dietary pattern affects most cardiometabolic variables in controls, but to a lesser extent in PCOS women. Our study suggests that relationships between diet and cardiometabolic risk profiles may be modified by PCOS status. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
NASA Astrophysics Data System (ADS)
Corbineau, A.; Rouyer, T.; Fromentin, J.-M.; Cazelles, B.; Fonteneau, A.; Ménard, F.
2010-07-01
Catch data of large pelagic fish such as tuna, swordfish and billfish are highly variable ranging from short to long term. Based on fisheries data, these time series are noisy and reflect mixed information on exploitation (targeting, strategy, fishing power), population dynamics (recruitment, growth, mortality, migration, etc.), and environmental forcing (local conditions or dominant climate patterns). In this work, we investigated patterns of variation of large pelagic fish (i.e. yellowfin tuna, bigeye tuna, swordfish and blue marlin) in Japanese longliners catch data from 1960 to 2004. We performed wavelet analyses on the yearly time series of each fish species in each biogeographic province of the tropical Indian and Atlantic Oceans. In addition, we carried out cross-wavelet analyses between these biological time series and a large-scale climatic index, i.e. the Southern Oscillation Index (SOI). Results showed that the biogeographic province was the most important factor structuring the patterns of variability of Japanese catch time series. Relationships between the SOI and the fish catches in the Indian and Atlantic Oceans also pointed out the role of climatic variability for structuring patterns of variation of catch time series. This work finally confirmed that Japanese longline CPUE data poorly reflect the underlying population dynamics of tunas.
Lutz, Antoine; Lachaux, Jean-Philippe; Martinerie, Jacques; Varela, Francisco J.
2002-01-01
Even during well-calibrated cognitive tasks, successive brain responses to repeated identical stimulations are highly variable. The source of this variability is believed to reside mainly in fluctuations of the subject's cognitive “context” defined by his/her attentive state, spontaneous thought process, strategy to carry out the task, and so on … As these factors are hard to manipulate precisely, they are usually not controlled, and the variability is discarded by averaging techniques. We combined first-person data and the analysis of neural processes to reduce such noise. We presented the subjects with a three-dimensional illusion and recorded their electrical brain activity and their own report about their cognitive context. Trials were clustered according to these first-person data, and separate dynamical analyses were conducted for each cluster. We found that (i) characteristic patterns of endogenous synchrony appeared in frontal electrodes before stimulation. These patterns depended on the degree of preparation and the immediacy of perception as verbally reported. (ii) These patterns were stable for several recordings. (iii) Preparatory states modulate both the behavioral performance and the evoked and induced synchronous patterns that follow. (iv) These results indicated that first-person data can be used to detect and interpret neural processes. PMID:11805299
Levels, trends and health concerns of atmospheric PAHs in Europe
NASA Astrophysics Data System (ADS)
Garrido, Adrián; Jiménez-Guerrero, Pedro; Ratola, Nuno
2014-12-01
Changes in climate can affect the concentration patterns of polycyclic aromatic hydrocarbons (PAHs) by altering the dispersion (wind speed, mixing layer height, convective fronts), deposition by precipitation, dry deposition, photochemistry, natural emissions and background concentrations. This means the evolution trends of these pollutants have to be studied under a multi-scale perspective, allowing the establishment of transport patterns and distribution of PAHs. In this sense, this work tries to unveil the atmospheric behaviour of these pollutants using temporal data series collected in different stations from the European Monitoring and Evaluation Programme (EMEP) air sampling network. These sites are thought to avoid the direct influence of emitting areas (background stations), allowing the study of long-range transport effects, intra- and trans-annual variability, relationships between concentrations patterns and meteorological variables and latitudinal gradients of PAH levels in Europe. Overall, a typical high concentration pattern was found for the colder months (and an opposite behaviour is found for summertime). Negative trends were detected over high latitudes, for instance, in Svalbard (Norway), whereas for the United Kingdom the pattern is the inverse. Also, negative latitudinal gradients were observed in 4 of the 15 PAHs studied. Finally, air quality parameters revealed concern over human health issues, given the recent increase of BaP levels in Europe.
Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2
NASA Astrophysics Data System (ADS)
Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark
2003-12-01
Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.
The Role of Rainfall Patterns in Seasonal Malaria Transmission
NASA Astrophysics Data System (ADS)
Bomblies, A.
2010-12-01
Seasonal total precipitation is well known to affect malaria transmission because Anopheles mosquitoes depend on standing water for breeding habitat. However, the within-season temporal pattern of the rainfall influences persistence of standing water and thus rainfall patterns also affect mosquito population dynamics. In this talk, I show that intraseasonal rainfall pattern describes 40% of the variance in simulated mosquito abundance in a Niger Sahel village where malaria is endemic but highly seasonal, demonstrating the necessity for detailed distributed hydrology modeling to explain the variance from this important effect. I apply a field validated, high spatial- and temporal-resolution hydrology model coupled with an entomology model. Using synthetic rainfall time series generated using a stationary first-order Markov Chain model, I hold all variables except hourly rainfall constant, thus isolating the contribution of rainfall pattern to variance in mosquito abundance. I further show the utility of hydrology modeling to assess precipitation effects by analyzing collected water. Time-integrated surface area of pools explains 70% of the variance in mosquito abundance, and time-integrated surface area of pools persisting longer than seven days explains 82% of the variance, showing an improved predictive ability when pool persistence is explicitly modeled at high spatio-temporal resolution. I extend this analysis to investigate the impacts of this effect on malaria vector mosquito populations under climate shift scenarios, holding all climate variables except precipitation constant. In these scenarios, rainfall mean and variance change with climatic change, and the modeling approach evaluates the impact of non-stationarity in rainfall and the associated rainfall patterns on expected mosquito activity.
NASA Astrophysics Data System (ADS)
Sutton, A.; Sabine, C. L.; Feely, R. A.
2016-02-01
One of the major challenges to assessing the impact of ocean acidification on marine life is the need to better understand the magnitude of long-term change in the context of natural variability. High-frequency moored observations can be highly effective in defining interannual, seasonal, and subseasonal variability at key locations. Here we present monthly aragonite saturation state (Ωaragonite) climatology for 15 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater pCO2 and pH collected together since as early as 2009. We then use these present day surface mooring observations to estimate pre-industrial variability at each location and compare these results to previous modeling studies addressing global-scale variability and change. Our observations suggest that open oceans sites, especially in the subtropics, are experiencing Ωaragonite values throughout much of the year which are outside the range of pre-industrial values. In coastal and coral reef ecosystems, which have higher natural variability, seasonal patterns where present day Ωaragonite values exceeding pre-industrial bounds are emerging with some sites exhibiting subseasonal conditions approaching Ωaragonite = 1. Linking these seasonal patterns in carbonate chemistry to biological processes in these regions is critical to identify when and where marine life may encounter Ωaragonite values outside the conditions to which they have adapted.
NASA Astrophysics Data System (ADS)
Swami, D.; Parthasarathy, D.; Dave, P.
2016-12-01
A key objective of the ongoing research is to understand the risk and vulnerability of agriculture and farming communities with respect to multiple climate change attributes, particularly monsoon variability and hydrology such as ground water availability. Climate Variability has always been a feature affecting Indian agriculture but the nature and characteristics of this variability is not well understood. Indian monsoon patterns are highly variable and most of the studies focus on larger domain such as Central India or Western coast (Ghosh et al., 2009) but district level analysis is missing i.e. the linkage between agriculture and climate variables at finer scale has not been investigated comprehensively. For example, Eastern Vidarbha region in Maharashtra is considered as one of the most agriculturally sensitive region in India, where every year a large number of farmers commit suicide. The main reasons for large number of suicides are climate related stressors such as droughts, hail storms, and monsoon variability aggravated with poor socio-economic conditions. Present study has tried to explore the areas in Vidarbha region of Maharashtra where famers and crop productivity, specifically cotton, sorghum, is highly vulnerable to monsoon variability, hydrological and socio-economic variables which are further modelled to determine the maximal contributing factor towards crops and farmers' vulnerability. After analysis using primary and secondary data, it will aid in decision making regarding field operations such as time of sowing, harvesting and irrigation requirements by optimizing the cropping pattern with climatic, hydrological and socio-economic variables. It also suggests the adaptation strategies to farmers regarding different types of cropping and water harvesting practices, optimized dates and timings for harvesting, sowing, water and nutrient requirements of particular crops according to the specific region. Primarily along with secondary analysis captured here can be highly beneficial for the farmers and policy makers while formulating agricultural policies related to climate change.
Chahine, Teresa; Schultz, Bradley D.; Zartarian, Valerie G.; Xue, Jianping; Subramanian, SV; Levy, Jonathan I.
2011-01-01
Community-based cumulative risk assessment requires characterization of exposures to multiple chemical and non-chemical stressors, with consideration of how the non-chemical stressors may influence risks from chemical stressors. Residential radon provides an interesting case example, given its large attributable risk, effect modification due to smoking, and significant variability in radon concentrations and smoking patterns. In spite of this fact, no study to date has estimated geographic and sociodemographic patterns of both radon and smoking in a manner that would allow for inclusion of radon in community-based cumulative risk assessment. In this study, we apply multi-level regression models to explain variability in radon based on housing characteristics and geological variables, and construct a regression model predicting housing characteristics using U.S. Census data. Multi-level regression models of smoking based on predictors common to the housing model allow us to link the exposures. We estimate county-average lifetime lung cancer risks from radon ranging from 0.15 to 1.8 in 100, with high-risk clusters in areas and for subpopulations with high predicted radon and smoking rates. Our findings demonstrate the viability of screening-level assessment to characterize patterns of lung cancer risk from radon, with an approach that can be generalized to multiple chemical and non-chemical stressors. PMID:22016710
Partial Least Squares for Discrimination in fMRI Data
Andersen, Anders H.; Rayens, William S.; Liu, Yushu; Smith, Charles D.
2011-01-01
Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using either principal component analysis (PCA), partial least squares (PLS), or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contains more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using fMRI as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk. PMID:22227352
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seel, Joachim; Mills, Andrew D.; Wiser, Ryan H.
Increasing penetrations of variable renewable energy (VRE) can affect wholesale electricity price patterns and make them meaningfully different from past, traditional price patterns. Many long-lasting decisions for supply- and demand-side electricity infrastructure and programs are based on historical observations or assume a business-as-usual future with low shares of VRE. Our motivating question is whether certain electric-sector decisions that are made based on assumptions reflecting low VRE levels will still achieve their intended objective in a high VRE future. We qualitatively describe how various decisions may change with higher shares of VRE and outline an analytical framework for quantitatively evaluating themore » impacts of VRE on long-lasting decisions. We then present results from detailed electricity market simulations with capacity expansion and unit commitment models for multiple regions of the U.S. for low and high VRE futures. We find a general decrease in average annual hourly wholesale energy prices with more VRE penetration, increased price volatility and frequency of very low-priced hours, and changing diurnal price patterns. Ancillary service prices rise substantially and peak net-load hours with high capacity value are shifted increasingly into the evening, particularly for high solar futures. While in this report we only highlight qualitatively the possible impact of these altered price patterns on other demand- and supply-side electric sector decisions, the core set of electricity market prices derived here provides a foundation for later planned quantitative evaluations of these decisions in low and high VRE futures.« less
ERIC Educational Resources Information Center
Aßmann, Christian; Würbach, Ariane; Goßmann, Solange; Geissler, Ferdinand; Bela, Anika
2017-01-01
Large-scale surveys typically exhibit data structures characterized by rich mutual dependencies between surveyed variables and individual-specific skip patterns. Despite high efforts in fieldwork and questionnaire design, missing values inevitably occur. One approach for handling missing values is to provide multiply imputed data sets, thus…
Temporal patterns in species flowering in Sky Islands of the Sonoran Desert ecoregion
Theresa M. Crimmins; Michael A. Crimmins; C. David Bertelsen
2013-01-01
Highly variable moisture conditions in the Sonoran Desert play a significant role in shaping the composition and phenology of plants in this water-limited region. The flowering patterns of plants of the Finger Rock trail, located in the Santa Catalina Mountains of southern Arizona, have been very carefully documented on approximately a weekly basis for nearly three...
Effects of situational conditions on students' views of business ethics.
Matsui, Tamao; Kakuyama, Takashi; Tsuzuki, Yukie
2003-12-01
This study investigated undergraduates' responses regarding selected ethical issues facing managers and employees of today's businesses. The focus of the study lies in the influences of two situational variables (organizational roles and prospects) on students' response pattern. Japanese students (306 men and 81 women, M = 20.1 yr., SD = 2.2) imagined that they were managers or operative employees of a middle-sized manufacturing company and that their company had high or low prospects. The response pattern tended to be more ethical for "managers," whereas the response pattern tended to be less ethical for "employees" in a "low prospect" than in a "high prospect" company.
NASA Astrophysics Data System (ADS)
Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger
2018-03-01
This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.
NATURAL AND ATHROPOGENIC FACTORS AFFECTING GLOBAL AND REGIONAL CLIMATE
New England weather is highly variable for a number of
reasons. Our regional climate is also quite variable. The
winters of the past decade are milder than they were in the
1960s and 1970s but as the ice-out and snowfall data show
(Figs 2.5 and 2.6), the patterns of c...
Divergent phenological response to hydroclimate variability in forested mountain watersheds.
Hwang, Taehee; Band, Lawrence E; Miniat, Chelcy F; Song, Conghe; Bolstad, Paul V; Vose, James M; Love, Jason P
2014-08-01
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change. © 2014 John Wiley & Sons Ltd.
Electromyography variables during the golf swing: a literature review.
Marta, Sérgio; Silva, Luís; Castro, Maria António; Pezarat-Correia, Pedro; Cabri, Jan
2012-12-01
The aim of the study was to review systematically the literature available on electromyographic (EMG) variables of the golf swing. From the 19 studies found, a high variety of EMG methodologies were reported. With respect to EMG intensity, the right erector spinae seems to be highly activated, especially during the acceleration phase, whereas the oblique abdominal muscles showed moderate to low levels of activation. The pectoralis major, subscapularis and latissimus dorsi muscles of both sides showed their peak activity during the acceleration phase. High muscle activity was found in the forearm muscles, especially in the wrist flexor muscles demonstrating activity levels above the maximal voluntary contraction. In the lower limb higher muscle activity of the trail side was found. There is no consensus on the influence of the golf club used on the neuromuscular patterns described. Furthermore, there is a lack of studies on average golf players, since most studies were executed on professional or low handicap golfers. Further EMG studies are needed, especially on lower limb muscles, to describe golf swing muscle activation patterns and to evaluate timing parameters to characterize neuromuscular patterns responsible for an efficient movement with lowest risk for injury. Copyright © 2012 Elsevier Ltd. All rights reserved.
Monitoring of oceanographic properties of Glacier Bay, Alaska 2004
Madison, Erica N.; Etherington, Lisa L.
2005-01-01
Glacier Bay is a recently (300 years ago) deglaciated fjord estuarine system that has multiple sills, very deep basins, tidewater glaciers, and many streams. Glacier Bay experiences a large amount of runoff, high sedimentation, and large tidal variations. High freshwater discharge due to snow and ice melt and the presence of the tidewater glaciers makes the bay extremely cold. There are many small- and large-scale mixing and upwelling zones at sills, glacial faces, and streams. The complex topography and strong currents lead to highly variable salinity, temperature, sediment, primary productivity, light penetration, stratification levels, and current patterns within a small area. The oceanographic patterns within Glacier Bay drive a large portion of the spatial and temporal variability of the ecosystem. It has been widely recognized by scientists and resource managers in Glacier Bay that a program to monitor oceanographic patterns is essential for understanding the marine ecosystem and to differentiate between anthropogenic disturbance and natural variation. This year’s sampling marks the 12th continuous year of monitoring the oceanographic conditions at 23 stations along the primary axes within Glacier Bay, AK, making this a very unique and valuable data set in terms of its spatial and temporal coverage.
Sources of variability of evapotranspiration in California
Hidalgo, H.G.; Cayan, D.R.; Dettinger, M.D.
2005-01-01
The variability (1990-2002) of potential evapotranspiration estimates (ETo) and related meteorological variables from a set of stations from the California Irrigation Management System (CIMIS) is studied. Data from the National Climatic Data Center (NCDC) and from the Department of Energy from 1950 to 2001 were used to validate the results. The objective is to determine the characteristics of climatological ETo and to identify factors controlling its variability (including associated atmospheric circulations). Daily ETo anomalies are strongly correlated with net radiation (Rn) anomalies, relative humidity (RH), and cloud cover, and less with average daily temperature (Tavg). The highest intraseasonal variability of ETo daily anomalies occurs during the spring, mainly caused by anomalies below the high ETo seasonal values during cloudy days. A characteristic circulation pattern is associated with anomalies of ETo and its driving meteorological inputs, Rn, RH, and Tavg, at daily to seasonal time scales. This circulation pattern is dominated by 700-hPa geopotential height (Z700) anomalies over a region off the west coast of North America, approximately between 32?? and 44?? latitude, referred to as the California Pressure Anomaly (CPA). High cloudiness and lower than normal ETo are associated with the lowheight (pressure) phase of the CPA pattern. Higher than normal ETo anomalies are associated with clear skies maintained through anomalously high Z700 anomalies offshore of the North American coast. Spring CPA, cloudiness, maximum temperature (Tmax), pan evaporation (Epan), and ETo conditions have not trended significantly or consistently during the second half of the twentieth century in California. Because it is not known how cloud cover and humidity will respond to climate change, the response of ETo in California to increased greenhouse-gas concentrations is essentially unknown; however, to retain the levels of ETo in the current climate, a decline of Rn by about 6% would be required to compensate for a warming of +3??C. ?? 2005 American Meteorological Society.
NASA Astrophysics Data System (ADS)
Ekdahl, E. J.; Fritz, S. C.; Baker, P. A.; Burns, S. J.; Coley, K.; Rigsby, C. A.
2005-12-01
Numerous sites in the Northern Hemisphere show multi-decadal to millennial scale climate variation during the Holocene, many of which have been correlated with changes in atmospheric radiocarbon production or with changes in North Atlantic oceanic circulation. The manifestation of such climate variability in the hydrology of the Southern Hemisphere tropics of South America is unclear, because of the limited number of records at suitably high resolution. In the Lake Titicaca drainage basin of Bolivia and Peru, high-resolution lacustrine records reveal the overall pattern of Holocene lake-level change, the influence of precessional forcing of the South American Summer Monsoon, and the effects of high-frequency climate variability in records of lake productivity and lake ecology. Precessional forcing of regional precipitation is evident in the Lake Titicaca basin as a massive (ca. 85 m) mid-Holocene decline in lake level beginning about 7800 cal yr BP and a subsequent rise in lake level after 4000 cal yr BP. Here we show that multi-decadal to millennial-scale climate variability, superimposed upon the envelope of change at orbital time scales, is similar in timing and pattern to the ice-rafted debris record of Holocene Bond events in the North Atlantic. A high-resolution carbon isotopic record from Lake Titicaca that spans the entire Holocene suggests that cold intervals of Holocene Bond events are periods of increased precipitation, thus indicating an anti-phasing of precipitation variation on the Altiplano relative to the Northern Hemisphere tropics. A similar pattern of variation is also evident in high-resolution (2-30 yr spacing) diatom and geochemical records that span the last 7000 yr from two smaller lakes, Lagos Umayo and Lagunillas, in the Lake Titicaca drainage basin.
Hassan, M Manzurul; Atkins, Peter J
2011-01-01
This article seeks to explore the spatial variability of groundwater arsenic (As) concentrations in Southwestern Bangladesh. Facts about spatial pattern of As are important to understand the complex processes of As concentrations and its spatial predictions in the unsampled areas of the study site. The relevant As data for this study were collected from Southwest Bangladesh and were analyzed with Flow Injection Hydride Generation Atomic Absorption Spectrometry (FI-HG-AAS). A geostatistical analysis with Indicator Kriging (IK) was employed to investigate the regionalized variation of As concentration. The IK prediction map shows a highly uneven spatial pattern of arsenic concentrations. The safe zones are mainly concentrated in the north, central and south part of the study area in a scattered manner, while the contamination zones are found to be concentrated in the west and northeast parts of the study area. The southwest part of the study area is contaminated with a highly irregular pattern. A Generalized Linear Model (GLM) was also used to investigate the relationship between As concentrations and aquifer depths. A negligible negative correlation between aquifer depth and arsenic concentrations was found in the study area. The fitted value with 95 % confidence interval shows a decreasing tendency of arsenic concentrations with the increase of aquifer depth. The adjusted mean smoothed lowess curve with a bandwidth of 0.8 shows an increasing trend of arsenic concentration up to a depth of 75 m, with some erratic fluctuations and regional variations at the depth between 30 m and 60 m. The borehole lithology was considered to analyze and map the pattern of As variability with aquifer depths. The study has performed an investigation of spatial pattern and variation of As concentrations.
Passot, Sixtine; Moreno-Ortega, Beatriz; Moukouanga, Daniel; Balsera, Crispulo; Guyomarc'h, Soazig; Lucas, Mikael; Lobet, Guillaume; Laplaze, Laurent; Muller, Bertrand; Guédon, Yann
2018-05-11
Recent progress in root phenotyping has focused mainly on increasing throughput for genetic studies while identifying root developmental patterns has been comparatively underexplored. We introduce a new phenotyping pipeline for producing high-quality spatio-temporal root system development data and identifying developmental patterns within these data. The SmartRoot image analysis system and temporal and spatial statistical models were applied to two cereals, pearl millet (Pennisetum glaucum) and maize (Zea mays). Semi-Markov switching linear models were used to cluster lateral roots based on their growth rate profiles. These models revealed three types of lateral roots with similar characteristics in both species. The first type corresponds to fast and accelerating roots, the second to rapidly arrested roots, and the third to an intermediate type where roots cease elongation after a few days. These types of lateral roots were retrieved in different proportions in a maize mutant affected in auxin signaling, while the first most vigorous type was absent in maize plants exposed to severe shading. Moreover, the classification of growth rate profiles was mirrored by a ranking of anatomical traits in pearl millet. Potential dependencies in the succession of lateral root types along the primary root were then analyzed using variable-order Markov chains. The lateral root type was not influenced by the shootward neighbor root type or by the distance from this root. This random branching pattern of primary roots was remarkably conserved, despite the high variability of root systems in both species. Our phenotyping pipeline opens the door to exploring the genetic variability of lateral root developmental patterns. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
A Linkage of Recent Arctic Summer Sea Ice and Snowfall Variability of Japan
NASA Astrophysics Data System (ADS)
Iwamoto, K.; Honda, M.; Ukita, J.
2014-12-01
In spite of its mid-latitude location, Japan has a markedly high amount of snowfall, which owes much to the presence of cold air-break from Siberia and thus depends on the strength of the Siberian high and the Aleutian low. With this background this study examines the relationship between interannual variability and spatial patterns of snowfall in Japan with large-scale atmospheric and sea ice variations. The lag regression map of the winter snowfall in Japan on the time series of the Arctic SIE from the preceding summer shows a seesaw pattern in the snowfall, suggesting an Arctic teleconnection to regional weather. From the EOF analyses conducted on the snowfall distribution in Japan, we identify two modes with physical significance. The NH SIC and SLP regressed on PC1 show a sea ice reduction in the Barents and Kara Seas and anomalous strength of the Siberia high as discussed in Honda et al. (2009) and other studies, which support the above notion that the snowfall variability of Japan is influenced by Arctic sea ice conditions. Another mode is related to the AO/NAO and the hemispheric scale double sea-ice seesaw centered over the sub-Arctic region: one between the Labrador and Nordic Seas in the Atlantic and the other between the Okhotsk and Bering Seas from the Pacific as discussed in Ukita et al. (2007). Together, observations point to a significant role of the sea-ice in determining mid-latitude regional climate and weather patterns.
NASA Astrophysics Data System (ADS)
Yi, Xing; Hünicke, Birgit; Tim, Nele; Zorita, Eduardo
2018-01-01
Studies based on sediment records, sea-surface temperature and wind suggest that upwelling along the western coast of Arabian Sea is strongly affected by the Indian summer Monsoon. We examine this relationship directly in an eddy-resolving global ocean simulation STORM driven by atmospheric reanalysis over the last 61 years. With its very high spatial resolution (10 km), STORM allows us to identify characteristics of the upwelling system. We analyse the co-variability between upwelling and meteorological and oceanic variables from 1950 to 2010. The analysis reveals high interannual correlations between coastal upwelling and along-shore wind-stress (r = 0.73) as well as with sea-surface temperature (r = -0.83). However, the correlation between the upwelling and the Monsoon is small. We find an atmospheric circulation pattern different from the one that drives the Monsoon as the main modulator of the upwelling variability. In spite of this, the patterns of temperature anomalies that are either linked to Arabian Sea upwelling or to the Monsoon are spatially quite similar, although the physical mechanisms of these links are different. In addition, no long-term trend is detected in our modelled upwelling in the Arabian Sea.
Vermeulen, Esther; Stronks, Karien; Snijder, Marieke B; Schene, Aart H; Lok, Anja; de Vries, Jeanne H; Visser, Marjolein; Brouwer, Ingeborg A; Nicolaou, Mary
2017-09-01
To identify a high-sugar (HS) dietary pattern, a high-saturated-fat (HF) dietary pattern and a combined high-sugar and high-saturated-fat (HSHF) dietary pattern and to explore if these dietary patterns are associated with depressive symptoms. We used data from the HELIUS (Healthy Life in an Urban Setting) study and included 4969 individuals aged 18-70 years. Diet was assessed using four ethnic-specific FFQ. Dietary patterns were derived using reduced rank regression with mono- and disaccharides, saturated fat and total fat as response variables. The nine-item Patient Health Questionnaire (PHQ-9) was used to assess depressive symptoms by using continuous scores and depressed mood (identified using the cut-off point: PHQ-9 sum score ≥10). The Netherlands. Three dietary patterns were identified; an HSHF dietary pattern (including chocolates, red meat, added sugars, high-fat dairy products, fried foods, creamy sauces), an HS dietary pattern (including sugar-sweetened beverages, added sugars, fruit (juices)) and an HF dietary pattern (including high-fat dairy products, butter). When comparing extreme quartiles, consumption of an HSHF dietary pattern was associated with more depressive symptoms (Q1 v. Q4: β=0·18, 95 % CI 0·07, 0·30, P=0·001) and with higher odds of depressed mood (Q1 v. Q4: OR=2·36, 95 % CI 1·19, 4·66, P=0·014). No associations were found between consumption of the remaining dietary patterns and depressive symptoms. Higher consumption of an HSHF dietary pattern is associated with more depressive symptoms and with depressed mood. Our findings reinforce the idea that the focus should be on dietary patterns that are high in both sugar and saturated fat.
NASA Astrophysics Data System (ADS)
Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.
2015-07-01
An improved understanding of present-day climate variability and change relies on high-quality data sets from the past two millennia. Global efforts to reconstruct regional climate modes are in the process of validating and integrating paleo-proxies. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to its unknown spatial and temporal coverage. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last two millennia. We identify the pollen records with the required temporal characteristics for PAGES-2 ka climate modelling and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local scale responses to climate modes, thus it is necessary to understand how vegetation-climate interactions might diverge under variable settings. Additionally, pollen is an excellent indicator of human impact through time. Evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. The LOTRED-SA-2 k initiative provides the ideal framework for the integration of the various paleoclimatic sub-disciplines and paleo-science, thereby jumpstarting and fostering multi-disciplinary research into environmental change on centennial and millennial time scales.
Hosking, Diane E; Nettelbeck, Ted; Wilson, Carlene; Danthiir, Vanessa
2014-07-28
Dietary intake is a modifiable exposure that may have an impact on cognitive outcomes in older age. The long-term aetiology of cognitive decline and dementia, however, suggests that the relevance of dietary intake extends across the lifetime. In the present study, we tested whether retrospective dietary patterns from the life periods of childhood, early adulthood, adulthood and middle age predicted cognitive performance in a cognitively healthy sample of 352 older Australian adults >65 years. Participants completed the Lifetime Diet Questionnaire and a battery of cognitive tests designed to comprehensively assess multiple cognitive domains. In separate regression models, lifetime dietary patterns were the predictors of cognitive factor scores representing ten constructs derived by confirmatory factor analysis of the cognitive test battery. All regression models were progressively adjusted for the potential confounders of current diet, age, sex, years of education, English as native language, smoking history, income level, apoE ɛ4 status, physical activity, other past dietary patterns and health-related variables. In the adjusted models, lifetime dietary patterns predicted cognitive performance in this sample of older adults. In models additionally adjusted for intake from the other life periods and mechanistic health-related variables, dietary patterns from the childhood period alone reached significance. Higher consumption of the 'coffee and high-sugar, high-fat extras' pattern predicted poorer performance on simple/choice reaction time, working memory, retrieval fluency, short-term memory and reasoning. The 'vegetable and non-processed' pattern negatively predicted simple/choice reaction time, and the 'traditional Australian' pattern positively predicted perceptual speed and retrieval fluency. Identifying early-life dietary antecedents of older-age cognitive performance contributes to formulating strategies for delaying or preventing cognitive decline.
El Bilbeisi, Abdel Hamid; Hosseini, Saeed; Djafarian, Kurosh
2017-11-15
The prevalence of diabetes mellitus is rising worldwide. When diabetes is uncontrolled, it has dire consequences for health and well-being. However, the role of diet in the origin of diabetes complications is not understood well. This study identifies major dietary patterns among type 2 diabetes patients and its association with diabetes complications in Gaza Strip, Palestine. This cross sectional study was conducted among 1200 previously diagnosed type 2 diabetes mellitus (both genders, aged 20-64 years), patients receiving care in primary healthcare centers in Gaza Strip, Palestine. Dietary patterns were evaluated using a validated semi-quantitative food frequency questionnaire. Additional information regarding demographic and medical history variables was obtained with an interview-based questionnaire. Statistical analysis was performed using SPSS version 20. Two major dietary patterns were identified by factor analysis: Asian-like pattern and sweet-soft drinks-snacks pattern. After adjustment for confounding variables, patients in the lowest tertile of the Asian-like pattern characterized by a high intake of whole grains, potatoes, beans, legumes, vegetables, tomatoes and fruit had a lower odds for (High BP, kidney problems, heart problems, extremities problems and neurological problems), (OR 0.710 CI 95% (.506-.997)), (OR 0.834 CI 95% (.700-.994)), (OR 0.730 CI 95% (.596-.895)), (OR 0.763 CI 95% (.667-.871)) and (OR 0.773 CI 95% (.602-.991)) respectively, (P value <0.05 for all). No significant association was found between the sweet-soft drinks snacks pattern with diabetes complications. The Asian-like pattern may be associated with a lower prevalence of diabetes complications among type 2 diabetes patients.
Cara, Nicolás; Marfil, Carlos F; Masuelli, Ricardo W
2013-01-01
Interspecific hybridization is known for triggering genetic and epigenetic changes, such as modifications on DNA methylation patterns and impact on phenotypic plasticity and ecological adaptation. Wild potatoes (Solanum, section Petota) are adapted to multiple habitats along the Andes, and natural hybridizations have proven to be a common feature among species of this group. Solanum × rechei, a recently formed hybrid that grows sympatrically with the parental species S. kurtzianum and S. microdontum, represents an ideal model for studying the ecologically and evolutionary importance of hybridization in generating of epigenetic variability. Genetic and epigenetic variability and their correlation with morphological variation were investigated in wild and ex situ conserved populations of these three wild potato species using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques. We observed that novel methylation patterns doubled the number of novel genetic patterns in the hybrid and that the morphological variability measured on 30 characters had a higher correlation with the epigenetic than with the genetic variability. Statistical comparison of methylation levels suggested that the interspecific hybridization induces genome demethylation in the hybrids. A Bayesian analysis of the genetic data reveled the hybrid nature of S. × rechei, with genotypes displaying high levels of admixture with the parental species, while the epigenetic information assigned S. × rechei to its own cluster with low admixture. These findings suggested that after the hybridization event, a novel epigenetic pattern was rapidly established, which might influence the phenotypic plasticity and adaptation of the hybrid to new environments. PMID:24198938
Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.
2017-01-01
The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.
Potter, Thomas L; Truman, Clint C; Strickland, Timothy C; Bosch, David D; Webster, Theodore M; Franklin, Dorcas H; Bednarz, Craig W
2006-01-01
Pesticide runoff research relies heavily on rainfall simulation experiments. Most are conducted at a constant intensity, i.e., at a fixed rainfall rate; however, large differences in natural rainfall intensity is common. To assess implications we quantified runoff of two herbicides, fluometuron and pendimethalin, and applied preemergence after planting cotton on Tifton loamy sand. Rainfall at constant and variable intensity patterns representative of late spring thunderstorms in the Atlantic Coastal Plain region of Georgia (USA) were simulated on 6-m2 plots under strip- (ST) and conventional-tillage (CT) management. The variable pattern produced significantly higher runoff rates of both compounds from CT but not ST plots. However, on an event-basis, runoff totals (% applied) were not significantly different, with one exception: fluometuron runoff from CT plots. There was about 25% more fluometuron runoff with the variable versus the constant intensity pattern (P = 0.10). Study results suggest that conduct of simulations using variable intensity storm patterns may provide more representative rainfall simulation-based estimates of pesticide runoff and that the greatest impacts will be observed with CT. The study also found significantly more fluometuron in runoff from ST than CT plots. Further work is needed to determine whether this behavior may be generalized to other active ingredients with similar properties [low K(oc) (organic carbon partition coefficient) approximately 100 mL g(-1); high water solubility approximately 100 mg L(-1)]. If so, it should be considered when making tillage-specific herbicide recommendations to reduce runoff potential.
Examining shifts in zooplankton community as a response of environmental change in Lakes
NASA Astrophysics Data System (ADS)
Ghadouani, Anas; Mines, Conor; Legendre, Pierre; Yan, Norman
2014-05-01
We examined 20 years of zooplankton samples from Harp Lake for shifts in zooplankton variability following invasion by zooplankton predator Bythotrephes longimanus, using organism body size—as measured at high resolution by Laser Optical Plankton Counter (LOPC)—as the primary metric of investigation. A period of transitory high variability in the 2yr post-invasion was observed for both body size compositional variability and aggregate variability metrics, with both measures of variability shifting from low or intermediate to high variability immediately following invasion, before shifting again to intermediate variability, 2 yr post-invasion. Aggregate and compositional variability dynamics were also considered in combination over the study period, revealing that the period of transitory high variability coincided with a shift from a community-wide stasis variability pattern to one of asynchrony, before a shift back to stasis 2 yr post-invasion. These dynamics were related to changes in the significant zooplankton species within the Harp Lake community over the pre- and post- invasion periods, and are likely to be indicative of changes in the stability in the zooplankton community following invasion by Bythotrephes. The dual consideration of aggregate and compositional variability as measured by LOPC was found to provide a valuable means to assess the ecological effects of biological invasion on zooplankton communities as a whole, extending our knowledge of the effects of invasion beyond that already revealed through more traditional taxonomic investigation.
Michael J. Clifford; Patrick D. Royer; Neil S. Cobb; David D. Breshears; Paulette L. Ford
2013-01-01
Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed....
Bi, Zedong; Zhou, Changsong
2016-01-01
Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations) influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP) and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded), by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy). PMID:27555816
USDA-ARS?s Scientific Manuscript database
The Mediterranean island of Sardinia is well known for high levels of vascular plant diversity and endemism, but little is known about its microbial diversity. Under the hypothesis that Fusarium species would show similar patterns, we estimated variability in Fusarium species composition among ten ...
Observations of CO above Venus cloud top near 4.53 μm
NASA Astrophysics Data System (ADS)
Marcq, E.; Encrenaz, T.; Widemann, T.; Bertaux, J. L.
2013-09-01
Venus' cloud top region exhibits a higher level of variability both in space and time than previously thought. The interplay between photochemistry, dynamics and cloud microphysics requires more observational constraints in order to be fully grasped. Recent observations of sulfur dioxide (SO2) variability [2, 8, 7, 9] have evidenced both short-term, longterm and latitudinal variability whose origin remains mysterious (volcanogenic emissions? dynamic variability?). A better knowledge of the variability of other minor species would be highly welcome in this context. Carbon monoxide (CO), whose pattern of sinks and sources is opposite to SO2, is a prime candidate.
Antarctic Sea Ice-Atmosphere Interactions: A Self-organizing Map-based Perspective
NASA Astrophysics Data System (ADS)
Reusch, D. B.
2005-12-01
Interactions between the ocean, sea ice and the atmosphere are a significant component of the dynamic nature of the Earth's climate system. Self-organizing maps (SOMs), an analysis tool from the field of artificial neural networks, have been used to study variability in Antarctic sea ice extent and the West Antarctic atmospheric circulation, plus the relationship and interactions between these two systems. Self-organizing maps enable unsupervised classification of large, multivariate/multidimensional data sets, e.g., time series of the atmospheric circulation or sea-ice extent, into a fixed number of distinct generalized states or modes, organized spatially as a two-dimensional grid, that are representative of the input data. When applied to atmospheric data, the analysis yields a nonlinear classification of the continuum of atmospheric conditions. In contrast to principal component analysis, SOMs do not force orthogonality or require subjective rotations to produce interpretable patterns. Twenty four years (1973-96) of monthly sea ice extent data (10 deg longitude bands; Simmonds and Jacka, 1995) were analyzed with a 30-node SOM. The resulting set of generalized patterns concisely captures the spatial and temporal variability in this data. An example of the former is variability in the longitudinal region of greatest extent. The SOM patterns readily show that there are multiple spatial patterns corresponding to "greatest extent conditions". Temporal variability is examined by creating frequency maps (i.e., which patterns occur most often) by month. With the annual cycle still in the data, the monthly frequency maps show a cycle moving from least extent, through expansion to greatest extent and back through retreat. When plotted in "SOM space", month-to-month transitions occur at different rates of change, suggesting that there is variability in the rate of change in extent at different times of the year, e.g., retreat in January is faster than November. Twenty five years (1977-2001) of monthly 500 mb temperature and pressure data (from the ECMWF 40-year reanalysis, ERA-40) from a region centered on the Antarctic Peninsula were analyzed independently for a separate SOMs-based study. Dominant SOM temperature patterns include the expected summer warmth and winter cold, plus "dipoles" of warm Atlantic (Pacific) and cold Pacific (Atlantic) sectors (with corresponding pressure patterns). Temporally, there is the expected annual progression from warmth, through cooling and back to warmth, with no particularly predominant patterns in many of the monthly frequency maps when the full record is used. Stratifying by high/low values of the Southern Oscillation Index (SOI) suggests that the spatial patterns of cooling and warming may be related to conditions in the tropical Pacific: in a low SOI year (1987), cooling and warming both begin in the Atlantic sector, with the opposite true in a high SOI year (1989). Further study of this aspect is planned. In addition to direct comparisons of the SOM analysis results from each study, a joint SOM analysis will be done on the combined data sets, exploiting the flexibility and power of this technique. We anticipate additional useful insights into the joint variability and relationships between Antarctic sea ice and the overlying atmosphere through this expanded analysis.
NASA Astrophysics Data System (ADS)
Suriano, Zachary J.
2018-02-01
Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.
[Voluntary alpha-power increasing training impact on the heart rate variability].
Bazanova, O M; Balioz, N V; Muravleva, K B; Skoraia, M V
2013-01-01
In order to study the effect of the alpha EEG power increasing training at heart rate variability (HRV) as the index of the autonomic regulation of cognitive functions there were follow tasks: (1) to figure out the impact of biofeedback in the voluntary increasing the power in the individual high-frequency alpha-band effect on heart rate variability and related characteristics of cognitive and emotional spheres, (2) to determine the nature of the relationship between alpha activity indices and heart rate variability, depending on the alpha-frequency EEG pattern at rest (3) to examine how the individual alpha frequency EEG pattern is reflected in changes HRV as a result of biofeedback training. Psychometric indicators of cognitive performance, the characteristics of the alpha-EEG activity and heart rate variability (HRV) as LF/HF and pNN50 were recorded in 27 healthy men aged 18-34 years, before, during, and after 10 sessions of training of voluntary increase in alpha power in the individual high-frequency alpha band with eyes closed. To determine the biofeedback effect on the alpha power increasing training, data subjects are compared in 2 groups: experimental (14) with the real and the control group (13 people)--with mock biofeedback. The follow up effect of trainings was studied through month over the 10 training sessions. Results showed that alpha biofeedback training enhanced the fluency and accuracy in cognitive performance, decreased anxiety and frontal EMG, increased resting frequency, width and power in individual upper alpha range only in participants with low baseline alpha frequency. While mock biofeedback increased resting alpha power only in participants with high baseline resting alpha frequency and did change neither cognitive performance, nor HRV indices. Biofeedback training eliminated the alpha power decrease in response to arithmetic task in both with high and low alpha frequency participants and this effect was followed up over the month. Mock biofeedback training has no such effect. The positive correlation between the alpha-peak frequency and pNN50 in patients with initially low, but negative--those with high baseline alpha frequency explains the multidirectional biofeedback effects on HRV in low and high alpha frequency subjects. The individual alpha-frequency EEG pattern determines the effectiveness of the alpha EEG biofeedback training in changing heart rate variability, which provides a basis for predicting the results and develop individual approaches to the biofeedback technology implementation that can be used in clinical practice for treatment and rehabilitation of psychosomatic syndromes and in educational training.
Jäger, Jörg M; Schöllhorn, Wolfgang I
2012-04-01
Offensive and defensive systems of play represent important aspects of team sports. They include the players' positions at certain situations during a match, i.e., when players have to be on specific positions on the court. Patterns of play emerge based on the formations of the players on the court. Recognition of these patterns is important to react adequately and to adjust own strategies to the opponent. Furthermore, the ability to apply variable patterns of play seems to be promising since they make it harder for the opponent to adjust. The purpose of this study is to identify different team tactical patterns in volleyball and to analyze differences in variability. Overall 120 standard situations of six national teams in women's volleyball are analyzed during a world championship tournament. Twenty situations from each national team are chosen, including the base defence position (start configuration) and the two players block with middle back deep (end configuration). The shapes of the defence formations at the start and end configurations during the defence of each national team as well as the variability of these defence formations are statistically analyzed. Furthermore these shapes data are used to train multilayer perceptrons in order to test whether artificial neural networks can recognize the teams by their tactical patterns. Results show significant differences between the national teams in both the base defence position at the start and the two players block with middle back deep at the end of the standard defence situation. Furthermore, the national teams show significant differences in variability of the defence systems and start-positions are more variable than the end-positions. Multilayer perceptrons are able to recognize the teams at an average of 98.5%. It is concluded that defence systems in team sports are highly individual at a competitive level and variable even in standard situations. Artificial neural networks can be used to recognize teams by the shapes of the players' configurations. These findings support the concept that tactics and strategy have to be adapted for the team and need to be flexible in order to be successful. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reusch, D. B.
2016-12-01
Any analysis that wants to use a GCM-based scenario of future climate benefits from knowing how much uncertainty the GCM's inherent variability adds to the development of climate change predictions. This is extra relevant in the polar regions due to the potential of global impacts (e.g., sea level rise) from local (ice sheet) climate changes such as more frequent/intense surface melting. High-resolution, regional-scale models using GCMs for boundary/initial conditions in future scenarios inherit a measure of GCM-derived externally-driven uncertainty. We investigate these uncertainties for the Greenland ice sheet using the 30-member CESM1.0-CAM5-BGC Large Ensemble (CESMLE) for recent (1981-2000) and future (2081-2100, RCP 8.5) decades. Recent simulations are skill-tested against the ERA-Interim reanalysis and AWS observations with results informing future scenarios. We focus on key variables influencing surface melting through decadal climatologies, nonlinear analysis of variability with self-organizing maps (SOMs), regional-scale modeling (Polar WRF), and simple melt models. Relative to the ensemble average, spatially averaged climatological July temperature anomalies over a Greenland ice-sheet/ocean domain are mostly between +/- 0.2 °C. The spatial average hides larger local anomalies of up to +/- 2 °C. The ensemble average itself is 2 °C cooler than ERA-Interim. SOMs extend our diagnostics by providing a concise, objective summary of model variability as a set of generalized patterns. For CESMLE, the SOM patterns summarize the variability of multiple realizations of climate. Changes in pattern frequency by ensemble member show the influence of initial conditions. For example, basic statistical analysis of pattern frequency yields interquartile ranges of 2-4% for individual patterns across the ensemble. In climate terms, this tells us about climate state variability through the range of the ensemble, a potentially significant source of melt-prediction uncertainty. SOMs can also capture the different trajectories of climate due to intramodel variability over time. Polar WRF provides higher resolution regional modeling with improved, polar-centric model physics. Simple melt models allow us to characterize impacts of the upstream uncertainties on estimates of surface melting.
Steele, James; Bruce-Low, Stewart; Smith, Dave; Jessop, David; Osborne, Neil
2014-12-01
Chronic low back pain is a multifactorial condition with many dysfunctions including gait variability. The lumbar spine and its musculature are involved during gait and in chronic low back pain the lumbar extensors are often deconditioned. It was therefore of interest to examine relationships between lumbar kinematic variability during gait, with pain, disability and isolated lumbar extension strength in participants with chronic low back pain. Twenty four participants with chronic low back pain were assessed for lumbar kinematics during gait, isolated lumbar extension strength, pain, and disability. Angular displacement and kinematic waveform pattern and offset variability were examined. Angular displacement and kinematic waveform pattern and offset variability differed across movement planes; displacement was highest and similar in frontal and transverse planes, and pattern variability and offset variability higher in the sagittal plane compared to frontal and transverse planes which were similar. Spearman's correlations showed significant correlations between transverse plane pattern variability and isolated lumbar extension strength (r=-.411) and disability (r=.401). However, pain was not correlated with pattern variability in any plane. The r(2) values suggested 80.5% to 86.3% of variance was accounted for by other variables. Considering the lumbar extensors role in gait, the relationship between both isolated lumbar extension strength and disability with transverse plane pattern variability suggests that gait variability may result in consequence of lumbar extensor deconditioning or disability accompanying chronic low back pain. However, further study should examine the temporality of these relationships and other variables might account for the unexplained variance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Campbell, Julia; Sharma, Anu
2016-01-01
Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5-7, 8-10, and 11-15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance.
Lanham, Holly Jordan; Sittig, Dean F; Leykum, Luci K; Parchman, Michael L; Pugh, Jacqueline A; McDaniel, Reuben R
2014-01-01
Electronic health records (EHR) hold great promise for managing patient information in ways that improve healthcare delivery. Physicians differ, however, in their use of this health information technology (IT), and these differences are not well understood. The authors study the differences in individual physicians' EHR use patterns and identify perceptions of uncertainty as an important new variable in understanding EHR use. Qualitative study using semi-structured interviews and direct observation of physicians (n=28) working in a multispecialty outpatient care organization. We identified physicians' perceptions of uncertainty as an important variable in understanding differences in EHR use patterns. Drawing on theories from the medical and organizational literatures, we identified three categories of perceptions of uncertainty: reduction, absorption, and hybrid. We used an existing model of EHR use to categorize physician EHR use patterns as high, medium, and low based on degree of feature use, level of EHR-enabled communication, and frequency that EHR use patterns change. Physicians' perceptions of uncertainty were distinctly associated with their EHR use patterns. Uncertainty reductionists tended to exhibit high levels of EHR use, uncertainty absorbers tended to exhibit low levels of EHR use, and physicians demonstrating both perspectives of uncertainty (hybrids) tended to exhibit medium levels of EHR use. We find evidence linking physicians' perceptions of uncertainty with EHR use patterns. Study findings have implications for health IT research, practice, and policy, particularly in terms of impacting health IT design and implementation efforts in ways that consider differences in physicians' perceptions of uncertainty.
Campbell, Julia; Sharma, Anu
2016-01-01
Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5–7, 8–10, and 11–15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance. PMID:27445738
Potential Impact of North Atlantic Climate Variability on Ocean Biogeochemical Processes
NASA Astrophysics Data System (ADS)
Liu, Y.; Muhling, B.; Lee, S. K.; Muller-Karger, F. E.; Enfield, D. B.; Lamkin, J. T.; Roffer, M. A.
2016-02-01
Previous studies have shown that upper ocean circulations largely determine primary production in the euphotic layers, here the global ocean model with biogeochemistry (GFDL's Modular Ocean Model with TOPAZ biogeochemistry) forced with the ERA-Interim is used to simulate the natural variability of biogeochemical processes in global ocean during 1979-present. Preliminary results show that the surface chlorophyll is overall underestimated in MOM-TOPAZ, but its spatial pattern is fairly realistic. Relatively high chlorophyll variability is shown in the subpolar North Atlantic, northeastern tropical Atlantic, and equatorial Atlantic. Further analysis suggests that the chlorophyll variability in the North Atlantic Ocean is affected by long-term climate variability. For the subpolar North Atlantic region, the chlorophyll variability is light-limited and is significantly correlated with North Atlantic Oscillation. A dipole pattern of chlorophyll variability is found between the northeastern tropical Atlantic and equatorial Atlantic. For the northeastern North Atlantic, the chlorophyll variability is significantly correlated with Atlantic Meridional Mode (AMM) and Atlantic Multidecadal Oscillation (AMO). During the negative phase of AMM and AMO, the increased trade wind in the northeast North Atlantic can lead to increased upwelling of nutrients. In the equatorial Atlantic region, the chlorophyll variability is largely link to Atlantic-Niño and associated equatorial upwelling of nutrients. The potential impact of climate variability on the distribution of pelagic fishes (i.e. yellowfin tuna) are discussed.
Roberts, P A
1979-07-01
The high variability of chromomeric patterns in near-terminal regions of polytene chromosome arms has been explored in a number of races, strains and hybrids of Drosophila melanogaster. Traditional explanations for tip differences between strains (differential compaction of chromatin, somatic or germinal deletion) are examined and, in the light of the reported observations, rejected. The range of polytene tip variability and rates of change in wild races are greater than has been supposed: strains formerly considered to be terminally deleted appear to gain terminal bands; others, formerly considered normal, appear to have lost them. Strains with high cell-to-cell tip variability are also described. Cell-to-cell variations, as well as much of the observed rapid changes in tip appearance, are probably due to heritable differences in the location of an abrupt transition zone between polytene and nonpolytene chromatin. A quantitative relationship between the amount of certain subterminal bands present and the frequency of tip association of nonhomologous chromosomes is shown and its possible significance for chromosome is shown and its possible for chromosome pairing discussed.
Output variability across animals and levels in a motor system
Norris, Brian J; Günay, Cengiz; Kueh, Daniel
2018-01-01
Rhythmic behaviors vary across individuals. We investigated the sources of this output variability across a motor system, from the central pattern generator (CPG) to the motor plant. In the bilaterally symmetric leech heartbeat system, the CPG orchestrates two coordinations in the bilateral hearts with different intersegmental phase relations (Δϕ) and periodic side-to-side switches. Population variability is large. We show that the system is precise within a coordination, that differences in repetitions of a coordination contribute little to population output variability, but that differences between bilaterally homologous cells may contribute to some of this variability. Nevertheless, much output variability is likely associated with genetic and life history differences among individuals. Variability of Δϕ were coordination-specific: similar at all levels in one, but significantly lower for the motor pattern than the CPG pattern in the other. Mechanisms that transform CPG output to motor neurons may limit output variability in the motor pattern. PMID:29345614
The Effect of Visual Variability on the Learning of Academic Concepts.
Bourgoyne, Ashley; Alt, Mary
2017-06-10
The purpose of this study was to identify effects of variability of visual input on development of conceptual representations of academic concepts for college-age students with normal language (NL) and those with language-learning disabilities (LLD). Students with NL (n = 11) and LLD (n = 11) participated in a computer-based training for introductory biology course concepts. Participants were trained on half the concepts under a low-variability condition and half under a high-variability condition. Participants completed a posttest in which they were asked to identify and rate the accuracy of novel and trained visual representations of the concepts. We performed separate repeated measures analyses of variance to examine the accuracy of identification and ratings. Participants were equally accurate on trained and novel items in the high-variability condition, but were less accurate on novel items only in the low-variability condition. The LLD group showed the same pattern as the NL group; they were just less accurate. Results indicated that high-variability visual input may facilitate the acquisition of academic concepts in college students with NL and LLD. High-variability visual input may be especially beneficial for generalization to novel representations of concepts. Implicit learning methods may be harnessed by college courses to provide students with basic conceptual knowledge when they are entering courses or beginning new units.
NASA Astrophysics Data System (ADS)
Markelov, Oleg; Nguyen Duc, Viet; Bogachev, Mikhail
2017-11-01
Recently we have suggested a universal superstatistical model of user access patterns and aggregated network traffic. The model takes into account the irregular character of end user access patterns on the web via the non-exponential distributions of the local access rates, but neglects the long-term correlations between these rates. While the model is accurate for quasi-stationary traffic records, its performance under highly variable and especially non-stationary access dynamics remains questionable. In this paper, using an example of the traffic patterns from a highly loaded network cluster hosting the website of the 1998 FIFA World Cup, we suggest a generalization of the previously suggested superstatistical model by introducing long-term correlations between access rates. Using queueing system simulations, we show explicitly that this generalization is essential for modeling network nodes with highly non-stationary access patterns, where neglecting long-term correlations leads to the underestimation of the empirical average sojourn time by several decades under high throughput utilization.
Shen, Lu; Mickley, Loretta J
2017-03-07
We develop a statistical model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean-atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean-atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region.
Mickley, Loretta J.
2017-01-01
We develop a statistical model to predict June–July–August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean–atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean–atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region. PMID:28223483
NASA Astrophysics Data System (ADS)
Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.
2016-02-01
An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation-climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America - 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.
Changes in the neural control of a complex motor sequence during learning
Otchy, Timothy M.; Goldberg, Jesse H.; Aronov, Dmitriy; Fee, Michale S.
2011-01-01
The acquisition of complex motor sequences often proceeds through trial-and-error learning, requiring the deliberate exploration of motor actions and the concomitant evaluation of the resulting performance. Songbirds learn their song in this manner, producing highly variable vocalizations as juveniles. As the song improves, vocal variability is gradually reduced until it is all but eliminated in adult birds. In the present study we examine how the motor program underlying such a complex motor behavior evolves during learning by recording from the robust nucleus of the arcopallium (RA), a motor cortex analog brain region. In young birds, neurons in RA exhibited highly variable firing patterns that throughout development became more precise, sparse, and bursty. We further explored how the developing motor program in RA is shaped by its two main inputs: LMAN, the output nucleus of a basal ganglia-forebrain circuit, and HVC, a premotor nucleus. Pharmacological inactivation of LMAN during singing made the song-aligned firing patterns of RA neurons adultlike in their stereotypy without dramatically affecting the spike statistics or the overall firing patterns. Removing the input from HVC, on the other hand, resulted in a complete loss of stereotypy of both the song and the underlying motor program. Thus our results show that a basal ganglia-forebrain circuit drives motor exploration required for trial-and-error learning by adding variability to the developing motor program. As learning proceeds and the motor circuits mature, the relative contribution of LMAN is reduced, allowing the premotor input from HVC to drive an increasingly stereotyped song. PMID:21543758
Zang, Christian; Hartl-Meier, Claudia; Dittmar, Christoph; Rothe, Andreas; Menzel, Annette
2014-12-01
The future performance of native tree species under climate change conditions is frequently discussed, since increasingly severe and more frequent drought events are expected to become a major risk for forest ecosystems. To improve our understanding of the drought tolerance of the three common European temperate forest tree species Norway spruce, silver fir and common beech, we tested the influence of climate and tree-specific traits on the inter and intrasite variability in drought responses of these species. Basal area increment data from a large tree-ring network in Southern Germany and Alpine Austria along a climatic cline from warm-dry to cool-wet conditions were used to calculate indices of tolerance to drought events and their variability at the level of individual trees and populations. General patterns of tolerance indicated a high vulnerability of Norway spruce in comparison to fir and beech and a strong influence of bioclimatic conditions on drought response for all species. On the level of individual trees, low-growth rates prior to drought events, high competitive status and low age favored resilience in growth response to drought. Consequently, drought events led to heterogeneous and variable response patterns in forests stands. These findings may support the idea of deliberately using spontaneous selection and adaption effects as a passive strategy of forest management under climate change conditions, especially a strong directional selection for more tolerant individuals when frequency and intensity of summer droughts will increase in the course of global climate change. © 2014 John Wiley & Sons Ltd.
Cisternas, D; Scheerens, C; Omari, T; Monrroy, H; Hani, A; Leguizamo, A; Bilder, C; Ditaranto, A; Ruiz de León, A; Pérez de la Serna, J; Valdovinos, M A; Coello, R; Abrahao, L; Remes-Troche, J; Meixueiro, A; Zavala, M A; Marin, I; Serra, J
2017-09-01
Previous studies have not been able to correlate manometry findings with bolus perception. The aim of this study was to evaluate correlation of different variables, including traditional manometric variables (at diagnostic and extreme thresholds), esophageal shortening, bolus transit, automated impedance manometry (AIM) metrics and mood with bolus passage perception in a large cohort of asymptomatic individuals. High resolution manometry (HRM) was performed in healthy individuals from nine centers. Perception was evaluated using a 5-point Likert scale. Anxiety was evaluated using Hospitalized Anxiety and Depression scale (HAD). Subgroup analysis was also performed classifying studies into normal, hypotensive, vigorous, and obstructive patterns. One hundred fifteen studies were analyzed (69 using HRM and 46 using high resolution impedance manometry (HRIM); 3.5% swallows in 9.6% of volunteers were perceived. There was no correlation of any of the traditional HRM variables, esophageal shortening, AIM metrics nor bolus transit with perception scores. There was no HRM variable showing difference in perception when comparing normal vs extreme values (percentile 1 or 99). Anxiety but not depression was correlated with perception. Among hypotensive pattern, anxiety was a strong predictor of variance in perception (R 2 up to .70). Bolus perception is less common than abnormal motility among healthy individuals. Neither esophageal motor function nor bolus dynamics evaluated with several techniques seems to explain differences in bolus perception. Different mechanisms seem to be relevant in different manometric patterns. Anxiety is a significant predictor of bolus perception in the context of hypotensive motility. © 2017 John Wiley & Sons Ltd.
DNA fingerprinting of Brassica juncea cultivars using microsatellite probes.
Bhatia, S; Das, S; Jain, A; Lakshmikumaran, M
1995-09-01
The genetic variability in the Brassica juncea cultivars was detected by employing in-gel hybridization of restricted DNA to simple repetitive sequences such as (GATA)4, (GACA)4 and (CAC)5. The most informative probe/enzyme combination was (GATA)4/EcoRI, yielding highly polymorphic fingerprint patterns for the B. juncea cultivars. This technique was found to be dependable for establishing the variety specific patterns for most of the cultivars studied, a prerequisite for germplasm preservation. The results of the present study were compared with those reported in our earlier study in which random amplification of polymorphic DNA (RAPD) was used for assessing the genetic variability in the B. juncea cultivars.
Development for 2D pattern quantification method on mask and wafer
NASA Astrophysics Data System (ADS)
Matsuoka, Ryoichi; Mito, Hiroaki; Toyoda, Yasutaka; Wang, Zhigang
2010-03-01
We have developed the effective method of mask and silicon 2-dimensional metrology. The aim of this method is evaluating the performance of the silicon corresponding to Hotspot on a mask. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and mask manufacture, and this has a big impact on the semiconductor market that centers on the mask business. 2-dimensional Shape quantification is important as optimal solution over these problems. Although 1-dimensional shape measurement has been performed by the conventional technique, 2-dimensional shape management is needed in the mass production line under the influence of RET. We developed the technique of analyzing distribution of shape edge performance as the shape management technique. On the other hand, there is roughness in the silicon shape made from a mass-production line. Moreover, there is variation in the silicon shape. For this reason, quantification of silicon shape is important, in order to estimate the performance of a pattern. In order to quantify, the same shape is equalized in two dimensions. And the method of evaluating based on the shape is popular. In this study, we conducted experiments for averaging method of the pattern (Measurement Based Contouring) as two-dimensional mask and silicon evaluation technique. That is, observation of the identical position of a mask and a silicon was considered. It is possible to analyze variability of the edge of the same position with high precision. The result proved its detection accuracy and reliability of variability on two-dimensional pattern (mask and silicon) and is adaptable to following fields of mask quality management. - Estimate of the correlativity of shape variability and a process margin. - Determination of two-dimensional variability of pattern. - Verification of the performance of the pattern of various kinds of Hotspots. In this report, we introduce the experimental results and the application. We expect that the mask measurement and the shape control on mask production will make a huge contribution to mask yield-enhancement and that the DFM solution for mask quality control process will become much more important technology than ever. It is very important to observe the shape of the same location of Design, Mask, and Silicon in such a viewpoint.
1987-12-01
assessment of data collection techniques *quantification of temporal and spatial patterns of variables *assessment of end point variability...nutrient variables are also being examined as covarlates. Development of a model to test for differences in growth patterns is continuing. At each of...condition. These variables are recorded at the end of each growing season. For evaluation of height growth patterns , a subsample of 100 seedlings per
Shifting patterns of ENSO variability from a 492-year South Pacific coral core
NASA Astrophysics Data System (ADS)
Tangri, N.; Linsley, B. K.; Mucciarone, D.; Dunbar, R. B.
2017-12-01
Anticipating the impacts of ENSO in a changing climate requires detailed reconstructions of changes in its timing, amplitude, and spatial pattern, as well as attempts to attribute those changes to external forcing or internal variability. A continuous coral δ18O record from American Samoa, in the tropical South Pacific, sheds light on almost five centuries of these changes. We find evidence of internally-driven 50-100 year cycles with broad peaks of high variability punctuated by short transitions of low variability. We see a long, slow trend towards more frequent ENSO events, punctuated by sharp decreases in frequency; the 20th century in particular shows a strong trend towards higher-frequency ENSO. Due to the unique location of American Samoa with respect to ENSO sea surface temperature (SST) anomalies, we infer changes in the spatial pattern of ENSO. American Samoa currently lies on the ENSO 3.4 nodal line - the boomerang shape that separates waters warmed by El Niño from those that cool. Closer examination reveals that SST around American Samoa displays opposing responses to Eastern and Central Pacific ENSO events. However, this has not always been the case; in the late 19th and early 20th century, SST responded similarly to both flavors of ENSO. We interpret this to mean a geographic narrowing towards the equator of the eastern Pacific El Niño SST anomaly pattern in the first half of the 20th century.
The Nature of Antarctic Temperature Change
NASA Astrophysics Data System (ADS)
Markle, B. R.; Steig, E. J.
2017-12-01
The Antarctic is an important component of global climate. While the Arctic has warmed significantly in the last century, the Antarctic as a whole has shown considerably less variability. There is, however, a pronounced spatial pattern to modern Antarctic temperature change. The high East Antarctic Ice Sheet shows little to no warming over recent decades while West Antarctica and the Peninsula shows some of the largest rates of warming on the globe. Examining past climate variability can help reveal the physical processes governing this spatial pattern of Antarctic temperature change. Modern Antarctic temperature variability is known from satellite and weather station observations. Understanding changes in the past, however, requires paleoclimate-proxies such as ice-core water-isotope records. Here we assess the spatial pattern of Antarctic temperature changes across a range of timescales, from modern decadal changes to millennial and orbital-scale variability. We reconstruct past changes in absolute temperatures from a suite of deep ice core records and an improved isotope-temperature reconstruction method. We use δ18O and deuterium excess records to reconstruct both evaporation source and condensation site temperatures. In contrast to previous studies we use a novel method that accounts for nonlinearities in the water-isotope distillation process. We quantify past temperature changes over the Southern Ocean and Antarctic Continent and the magnitude of polar amplification. We identify patterns of Antarctic temperature change that are common across a wide range of timescales and independent of the source of forcing. We examine the nature of these changes and their relationship to atmospheric thermodynamics.
NASA Astrophysics Data System (ADS)
Gomez, Fabian A.; Spitz, Yvette H.; Batchelder, Harold P.; Correa-Ramirez, Marco A.
2017-10-01
Subseasonal (5-130 days) environmental variability can strongly affect plankton dynamics, but is often overlooked in marine ecology studies. We documented the main subseasonal patterns of plankton biomass in the coastal upwelling system off central Chile, the southern part of the Humboldt System. Subseasonal variability was extracted from temporal patterns in satellite data of wind stress, sea surface temperature, and chlorophyll from the period 2003-2011, and from a realistically forced eddy-resolving physical-biochemical model from 2003 to 2008. Although most of the wind variability occurs at submonthly frequencies (< 30 days), we found that the dominant subseasonal pattern of phytoplankton biomass is within the intraseasonal band (30-90 days). The strongest intraseasonal coupling between wind and plankton is in spring-summer, when increased solar radiation enhances the phytoplankton response to upwelling. Biochemical model outputs show intraseasonal shifts in plankton community structure, mainly associated with the large fluctuations in diatom biomass. Diatom biomass peaks near surface during strong upwelling, whereas small phytoplankton biomass peaks at subsurface depths during relaxation or downwelling periods. Strong intraseasonally forced changes in biomass and species composition could strongly impact trophodynamics connections in the ecosystem, including the recruitment of commercially important fish species such as common sardine and anchovy. The wind-driven variability of chlorophyll concentration was connected to mid- and high-latitude atmospheric anomalies, which resemble disturbances with frequencies similar to the tropical Madden-Julian Oscillation.
NASA Astrophysics Data System (ADS)
Utama, M. Iqbal Bakti; Lu, Xin; Zhan, Da; Ha, Son Tung; Yuan, Yanwen; Shen, Zexiang; Xiong, Qihua
2014-10-01
Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures.Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures. Electronic supplementary information (ESI) available: Further experiments on patterning and additional electrical characterizations data. See DOI: 10.1039/c4nr03817g
Engeset, Dagrun; Hofoss, Dag; Nilsson, Lena M; Olsen, Anja; Tjønneland, Anne; Skeie, Guri
2015-04-01
To identify dietary patterns with whole grains as a main focus to see if there is a similar whole grain pattern in the three Scandinavian countries; Denmark, Sweden and Norway. Another objective is to see if items suggested for a Nordic Food Index will form a typical Nordic pattern when using factor analysis. The HELGA study population is based on samples of existing cohorts: the Norwegian Women and Cancer Study, the Swedish Västerbotten cohort and the Danish Diet, Cancer and Health study. The HELGA study aims to generate knowledge about the health effects of whole grain foods. The study included a total of 119 913 participants. The associations among food variables from FFQ were investigated by principal component analysis. Only food groups common for all three cohorts were included. High factor loading of a food item shows high correlation of the item to the specific diet pattern. The main whole grain for Denmark and Sweden was rye, while Norway had highest consumption of wheat. Three similar patterns were found: a cereal pattern, a meat pattern and a bread pattern. However, even if the patterns look similar, the food items belonging to the patterns differ between countries. High loadings on breakfast cereals and whole grain oat were common in the cereal patterns for all three countries. Thus, the cereal pattern may be considered a common Scandinavian whole grain pattern. Food items belonging to a Nordic Food Index were distributed between different patterns.
NASA Astrophysics Data System (ADS)
Richar, Jonathan I.; Kruse, Gordon H.; Curchitser, Enrique; Hermann, Albert J.
2015-11-01
The eastern Bering Sea (EBS) population of Tanner crab (Chionoecetes bairdi) has exhibited high variability in recruitment to the commercially exploited stock since the late 1970s. Concurrently, apparent shifts in crab distribution have also been observed. Larval advection patterns and associated local retention offer a potential mechanism for these observations. The Regional Ocean Modeling System (ROMS) was used to simulate larval Tanner crab advection patterns over 1978-2004 based on larval hatching sites inferred from the distributions of reproductive females sampled during annual National Marine Fisheries Service trawl surveys. Connectivity among EBS subregions was examined by comparing start and end float locations after 60 days of simulated drift. High levels of retention (>50% of floats) were observed in the majority of source subregions, and contributed significantly to the total number of endpoints in each region. Patterns in advection and resultant interregional connectivity were variable, with strongest sustained connectivity occurring along shelf, within individual domains. Increased settlement potential in the outer domain and southern middle domain after 1990 is consistent with an observed geographic shift in fishery productivity. Apparent reliance of Bristol Bay on local larval retention validates recent spatial fishery management to conserve this area as a subpopulation.
A DEFINITION OF CURIOSITY, A FACTOR ANALYSIS STUDY.
ERIC Educational Resources Information Center
MAW, WALLACE H.
AN INVESTIGATION WAS CONDUCTED TO DETERMINE A DEFINITION OF CURIOSITY THAT WOULD HELP IDENTIFY PERSONALITY PATTERNS OF CHILDREN WHO ARE MOST LIKELY TO BE EITHER HIGH OR LOW IN CURIOSITY. DATA COLLECTED IN EARLIER STUDIES WERE FACTOR ANALYZED TO IDENTIFY THE PERSONAL AND SOCIAL VARIABLES THAT DIFFERENTIATE CHILDREN HIGH IN CURIOSITY FROM THOSE LOW…
Sloot, Rosa; Borgdorff, Martien W.; de Beer, Jessica L.; van Ingen, Jakko; Supply, Philip
2013-01-01
The population structure of 3,776 Mycobacterium tuberculosis isolates was determined using variable-number tandem-repeat (VNTR) typing. The degree of clonality was so high that a more relaxed definition of clustering cannot be applied. Among recent immigrants with non-Euro-American isolates, transmission is overestimated if based on identical VNTR patterns. PMID:23658260
Schaefer, Andrew; O'dwyer, Nicholas; Ferdinands, René E D; Edwards, Suzi
2018-03-01
Due to the high incidence of lumbar spine injury in fast bowlers, international cricket organisations advocate limits on workload for bowlers under 19 years of age in training/matches. The purpose of this study was to determine whether significant changes in either fast bowling technique or movement variability could be detected throughout a 10-over bowling spell that exceeded the recommended limit. Twenty-five junior male fast bowlers bowled at competition pace while three-dimensional kinematic and kinetic data were collected for the leading leg, trunk and bowling arm. Separate analyses for the mean and within-participant standard deviation of each variable were performed using repeated measures factorial analyses of variance and computation of effect sizes. No substantial changes were observed in mean values or variability of any kinematic, kinetic or performance variables, which instead revealed a high degree of consistency in kinematic and kinetic patterns. Therefore, the suggestion that exceeding the workload limit per spell causes technique- and loading-related changes associated with lumbar injury risk is not valid and cannot be used to justify the restriction of bowling workload. For injury prevention, the focus instead should be on the long-term effect of repeated spells and on the fast bowling technique itself.
ERIC Educational Resources Information Center
Mazawi, Andre Elias
1998-01-01
Examines the effects of regional, locality, and high school characteristics on access opportunities to educational credentials of Palestinian Arab students in Israel. Reveals that while tracking patterns are affected by high school variables at the community level, access to educational credentials is determined by community-level, socioeconomic…
Phytoplankton pigment patterns and wind forcing off central California
NASA Technical Reports Server (NTRS)
Abbott, Mark R.; Barksdale, Brett
1991-01-01
Mesoscale variability in phytoplankton pigment distributions of central California during the spring-summer upwelling season are studied via a 4-yr time series of high-resolution coastal zone color scanner imagery. Empirical orthogonal functions are used to decompose the time series of spatial images into its dominant modes of variability. The coupling between wind forcing of the upper ocean and phytoplankton distribution on mesoscales is investigated. Wind forcing, in particular the curl of the wind stress, was found to play an important role in the distribution of phytoplankton pigment in the California Current. The spring transition varies in timing and intensity from year to year but appears to be a recurrent feature associated with the rapid onset of the upwelling-favorable winds. Although the underlying dynamics may be dominated by processes other than forcing by wind stress curl, it appears that curl may force the variability of the filaments and hence the pigment patterns.
NASA Astrophysics Data System (ADS)
Fiechter, Jerome; Edwards, Christopher A.; Moore, Andrew M.
2018-04-01
A physical-biogeochemical model is used to produce a retrospective analysis at 3-km resolution of alongshore phytoplankton variability in the California Current during 1988-2010. The simulation benefits from downscaling a regional circulation reanalysis, which provides improved physical ocean state estimates in the high-resolution domain. The emerging pattern is one of local upwelling intensification in response to increased alongshore wind stress in the lee of capes, modulated by alongshore meanders in the geostrophic circulation. While stronger upwelling occurs near most major topographic features, substantial increases in phytoplankton biomass only ensue where local circulation patterns are conducive to on-shelf retention of upwelled nutrients. Locations of peak nutrient delivery and chlorophyll accumulation also exhibit interannual variability and trends noticeably larger than the surrounding shelf regions, thereby suggesting that long-term planktonic ecosystem response in the California Current exhibits a significant local scale (O(100 km)) alongshore component.
NASA Astrophysics Data System (ADS)
Ruttenberg, Kathleen C.; Dyhrman, Sonya T.
2005-10-01
High-frequency temporal and spatial shifts in the various dissolved P pools (total, inorganic, and organic) are linked to upwelling/relaxation events and to phytoplankton bloom dynamics in the upwelling-dominated Oregon coastal system. The presence and regulation of alkaline phosphatase activity (APA) is apparent in the bulk phytoplankton population and in studies of cell-specific APA using Enzyme Labeled Fluorescence (ELF®). Spatial and temporal variability are also evident in phytoplankton community composition and in APA. The spatial pattern of dissolved phosphorus and APA variability can be explained by bottom-controlled patterns of upwelling, and flushing times of different regions within the study area. The presence of APA in eukaryotic taxa indicates that dissolved organic phosphorus (DOP) may contribute to phytoplankton P nutrition in this system, highlighting the need for a more complete understanding of P cycling and bioavailability in the coastal ocean.
NASA Astrophysics Data System (ADS)
Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.; Barcala, E.; Hegazi, M. I.; Quispe, J.
2007-10-01
To detect changes in ecosystems due to human impact, experimental designs must include replicates at the appropriate scale to avoid pseudoreplication. Although coastal lagoons, with their highly variable environmental factors and biological assemblages, are relatively well-studied systems, very little is known about their natural scales of variation. In this study, we investigate the spatio-temporal scales of variability in the Mar Menor coastal lagoon (SE Spain) using structured hierarchical sampling designs, mixed and permutational multi-variate analyses of variance, and ordination multi-variate analyses applied to hydrographical parameters, nutrients, chlorophyll a and ichthyoplankton in the water column, and to macrophyte and fish benthic assemblages. Lagoon processes in the Mar Menor show heterogeneous patterns at different temporal and spatial scales. The water column characteristics (including nutrient concentration) showed small-scale spatio-temporal variability, from 10 0 to 10 1 km and from fortnightly to seasonally. Biological features (chlorophyll a concentration and ichthyoplankton assemblage descriptors) showed monthly changes and spatial patterns at the scale of 10 0 (chlorophyll a) - 10 1 km (ichthyoplankton). Benthic assemblages (macrophytes and fishes) showed significant differences between types of substrates in the same locality and between localities, according to horizontal gradients related with confinement in the lagoon, at the scale of 10 0-10 1 km. The vertical zonation of macrophyte assemblages (at scales of 10 1-10 2 cm) overlaps changes in substrata and horizontal gradients. Seasonal patterns in vegetation biomass were not significant, but the significant interaction between Locality and Season indicated that the seasons of maximum and minimum biomass depend on local environmental conditions. Benthic fish assemblages showed no significant patterns at the monthly scale but did show seasonal patterns.
Rai, Kedar N; Jain, Subodh K
1982-06-01
Pollen and seed dispersal patterns were analyzed in both natural and experimental populations of Avena barbata. Localized estimates of gene flow rates and plant densities gave estimates of neighborhood size in the range of 40 to 400 plants; the estimates of mean rate and distance of gene flow seemed to vary widely due to variable wind direction, rodent activity, microsite heterogeneity, etc. The relative sizes of neighborhoods in several populations were correlated with the patchy distribution of different genotypes (scored for lemma color and leaf sheath hairiness) within short distances, but patch sizes had a wide range among different sites. Highly localized gene flow patterns seemed to account for the observed pattern of highly patchy variation even when the dispersal curves for both pollen and seed were platykurtic in many cases. Measures of the stability of patches in terms of their size, dispersion in space and genetic structure in time are needed in order to sort out the relative roles of founder effects, random drift (due to small neighborhood size), and highly localized selection. However, our observations suggest that many variables and stochastic processes are involved in such studies so as to allow only weak inference about the underlying role of natural selection, drift and factors of population regulatien.
Geographic patterns of networks derived from extreme precipitation over the Indian subcontinent
NASA Astrophysics Data System (ADS)
Stolbova, Veronika; Bookhagen, Bodo; Marwan, Norbert; Kurths, Juergen
2014-05-01
Complex networks (CN) and event synchronization (ES) methods have been applied to study a number of climate phenomena such as Indian Summer Monsoon (ISM), South-American Monsoon, and African Monsoon. These methods proved to be powerful tools to infer interdependencies in climate dynamics between geographical sites, spatial structures, and key regions of the considered climate phenomenon. Here, we use these methods to study the spatial temporal variability of the extreme rainfall over the Indian subcontinent, in order to filter the data by coarse-graining the network, and to identify geographic patterns that are signature features (spatial signatures) of the ISM. We find four main geographic patterns of networks derived from extreme precipitation over the Indian subcontinent using up-to-date satellite-derived, and high temporal and spatial resolution rain-gauge interpolated daily rainfall datasets. In order to prove that our results are also relevant for other climatic variables like pressure and temperature, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). We find that two of the patterns revealed from the CN extreme rainfall analysis coincide with those obtained for the pressure and temperature fields, and all four above mentioned patterns can be explained by topography, winds, and monsoon circulation. CN and ES enable to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to infer geographic pattern that are spatial signatures of the ISM. These patterns deserve a special attention for the meteorologists and can be used as markers of the ISM variability.
Xu, Haigen; Cao, Yun; Cao, Mingchang; Wu, Jun; Wu, Yi; Le, Zhifang; Cui, Peng; Li, Jiaqi; Ma, Fangzhou; Liu, Li; Hu, Feilong; Chen, Mengmeng; Tong, Wenjun
2017-11-01
Proxies are adopted to represent biodiversity patterns due to inadequate information for all taxa. Despite the wide use of proxies, their efficacy remains unclear. Previous analyses focused on overall species richness for fewer groups, affecting the generality and depth of inference. Biological taxa often exhibit very different habitat preferences. Habitat groupings may be an appropriate approach to advancing the study of richness patterns. Diverse geographical patterns of species richness and their potential mechanisms were then examined for habitat groups. We used a database of the spatial distribution of 32,824 species of mammals, birds, reptiles, amphibians and plants from 2,376 counties across China, divided the five taxa into 30 habitat groups, calculated Spearman correlations of species richness among taxa and habitat groups, and tested five hypotheses about richness patterns using multivariate models. We identified one major group [i.e., forest- and shrub-dependent (FS) groups], and some minor groups such as grassland-dependent vertebrates and desert-dependent vertebrates. There were mostly high or moderate correlations among FS groups, but mostly low or moderate correlations among other habitat groups. The prominent variables differed among habitat groups of the same taxon, such as birds and reptiles. The sets of predictors were also different within the same habitat, such as forests, grasslands, and deserts. Average correlations among the same habitat groups of vertebrates and among habitat groups of a single taxon were low or moderate, except correlations among FS groups. The sets of prominent variables of species richness differed strongly among habitat groups, although elevation range was the most important variable for most FS groups. The ecological and evolutionary processes that underpin richness patterns might be disparate among different habitat groups. Appropriate groupings based on habitats could reveal important patterns of richness gradients and valuable biodiversity components.
Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A
2015-01-06
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.
Crawford, John T.; Loken, Luke C.; Casson, Nora J.; Smith, Collin; Stone, Amanda G.; Winslow, Luke A.
2015-01-01
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h–1) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial–aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.
Metzler, Marina; Govindan, Rathinaswamy; Al-Shargabi, Tareq; Vezina, Gilbert; Andescavage, Nickie; Wang, Yunfei; du Plessis, Adre; Massaro, An N
2017-09-01
BackgroundDecreased heart rate variability (HRV) is a measure of autonomic dysfunction and brain injury in newborns with hypoxic ischemic encephalopathy (HIE). This study aimed to characterize the relationship between HRV and brain injury pattern using magnetic resonance imaging (MRI) in newborns with HIE undergoing therapeutic hypothermia.MethodsHRV metrics were quantified in the time domain (α S , α L , and root mean square at short (RMS S ) and long (RMS L ) timescales) and frequency domain (relative low-(LF) and high-frequency (HF) power) over 24-27 h of life. The brain injury pattern shown by MRI was classified as no injury, pure cortical/white matter injury, mixed watershed/mild basal ganglia injury, predominant basal ganglia or global injury, and death. HRV metrics were compared across brain injury pattern groups using a random-effects mixed model.ResultsData from 74 infants were analyzed. Brain injury pattern was significantly associated with the degree of HRV suppression. Specifically, negative associations were observed between the pattern of brain injury and RMS S (estimate -0.224, SE 0.082, P=0.006), RMS L (estimate -0.189, SE 0.082, P=0.021), and LF power (estimate -0.044, SE 0.016, P=0.006).ConclusionDegree of HRV depression is related to the pattern of brain injury. HRV monitoring may provide insights into the pattern of brain injury at the bedside.
Metzler, Marina; Govindan, Rathinaswamy; Al-Shargabi, Tareq; Vezina, Gilbert; Andescavage, Nickie; Wang, Yunfei; du Plessis, Adre; Massaro, An N
2017-01-01
Background Decreased heart rate variability (HRV) is a measure of autonomic dysfunction and brain injury in newborns with hypoxic ischemic encephalopathy (HIE). This study aimed to characterize the relationship between HRV and brain injury pattern by MRI in newborns with HIE undergoing therapeutic hypothermia. Methods HRV metrics were quantified in the time domain (αS, αL, and root mean square at short [RMSS] and long [RMSL] time scales) and frequency domain (relative low-[LF] and high-frequency [HF] power) during the time period 24–27 hours of life. Brain injury pattern by MRI was classified as no injury, pure cortical/white matter injury, mixed watershed/mild basal nuclei injury, predominant basal nuclei or global injury, and died. HRV metrics were compared across brain injury pattern groups using a random effects mixed model. Results Data from 74 infants were analyzed. Brain injury pattern was significantly associated with degree of HRV suppression. Specifically, negative associations were observed between pattern of brain injury and RMSS (estimate −0.224, SE 0.082, p=0.006), RMSL (estimate −0.189, SE 0.082, p=0.021), and LF power (estimate −0.044, SE 0.016, p=0.006). Conclusion Degree of HRV depression is related to pattern of brain injury. HRV monitoring may provide insights into pattern of brain injury at the bedside. PMID:28376079
Noh, Hwayoung; Freisling, Heinz; Assi, Nada; Zamora-Ros, Raul; Achaintre, David; Affret, Aurélie; Mancini, Francesca; Boutron-Ruault, Marie-Christine; Flögel, Anna; Boeing, Heiner; Kühn, Tilman; Schübel, Ruth; Trichopoulou, Antonia; Naska, Androniki; Kritikou, Maria; Palli, Domenico; Pala, Valeria; Tumino, Rosario; Ricceri, Fulvio; Santucci de Magistris, Maria; Cross, Amanda; Slimani, Nadia; Scalbert, Augustin; Ferrari, Pietro
2017-07-25
We identified urinary polyphenol metabolite patterns by a novel algorithm that combines dimension reduction and variable selection methods to explain polyphenol-rich food intake, and compared their respective performance with that of single biomarkers in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. The study included 475 adults from four European countries (Germany, France, Italy, and Greece). Dietary intakes were assessed with 24-h dietary recalls (24-HDR) and dietary questionnaires (DQ). Thirty-four polyphenols were measured by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS-MS) in 24-h urine. Reduced rank regression-based variable importance in projection (RRR-VIP) and least absolute shrinkage and selection operator (LASSO) methods were used to select polyphenol metabolites. Reduced rank regression (RRR) was then used to identify patterns in these metabolites, maximizing the explained variability in intake of pre-selected polyphenol-rich foods. The performance of RRR models was evaluated using internal cross-validation to control for over-optimistic findings from over-fitting. High performance was observed for explaining recent intake (24-HDR) of red wine ( r = 0.65; AUC = 89.1%), coffee ( r = 0.51; AUC = 89.1%), and olives ( r = 0.35; AUC = 82.2%). These metabolite patterns performed better or equally well compared to single polyphenol biomarkers. Neither metabolite patterns nor single biomarkers performed well in explaining habitual intake (as reported in the DQ) of polyphenol-rich foods. This proposed strategy of biomarker pattern identification has the potential of expanding the currently still limited list of available dietary intake biomarkers.
Sanchez, Margaux; Bousquet, Jean; Le Moual, Nicole; Jacquemin, Bénédicte; Clavel-Chapelon, Françoise; Humbert, Marc; Kauffmann, Francine; Tubert-Bitter, Pascale; Varraso, Raphaëlle
2013-01-01
Variable expression is one aspect of the heterogeneity of asthma. We aimed to define a variable pattern, which is relevant in general health epidemiological cohorts. Our objectives were to assess whether: 1) asthma patterns defined using simple asthma questions through repeated measurements could reflect disease variability 2) these patterns may further be classified according to asthma severity/control. Among 70,428 French women, we used seven questionnaires (1992–2005) and a comprehensive reimbursement database (2004–2009) to define three reliable asthma patterns based on repeated positive answers to the ever asthma attack question: “never asthma” (n = 64,061); “inconsistent” (“yes” followed by “no”, n = 3,514); “consistent” (fully consistent positive answers, n = 2,853). The “Inconsistent” pattern was related to both long-term (childhood-onset asthma with remission in adulthood) and short-term (reported asthma attack in the last 12 months, associated with asthma medication) asthma variability, showing that repeated questions are relevant markers of the variable expression of asthma. Furthermore, in this pattern, the number of positive responses (1992–2005) predicted asthma drug consumption in subsequent years, a marker of disease severity. The “Inconsistent” pattern is a phenotype that may capture the variable expression of asthma. Repeated answers, even to a simple question, are too often neglected. PMID:23741466
NASA Astrophysics Data System (ADS)
Sachse, D.; Romero, L.; Kienel, U.; Haug, G. H.
2016-12-01
ENSO is one of the major drivers of inter-annual climate variability and its effects extend far beyond the Tropical Pacific. However, our knowledge about the stability and linearity of ENSO teleconnections is limited due to the short temporal coverage of observational data, in particular of well dated paleo-ENSO records. Here we present a high-resolution record of rainfall variability on the Pacific coast of Mexico, which today is significantly correlated to ENSO variability (NINO 3.4 index), with dryer conditions during an El Niño phase and wetter conditions during a La Niña phase. The lake, situated in a volcanic crater on Isabel Island, is strongly influenced by rainfall intensity, i.e. freshwater and saline sea water input. A halophile bacterial community dominates during dry phases and an algal community dominates in a freshwater lens which develops during the wet season. Specific lipid biomarkers in the sediments indicate the dominant bacterial community (tetrahymanol and long-chain diols, respectively) in an annually laminated sediment core and record the timing and direction of ENSO mean state changes. We find the region was dry before 825 AD, indicating dominant El Niño. Between 825 and 950 AD, wetter conditions provide evidence for a dominating La Niña like pattern. During the early Medieval Climate Anomaly (MCA, 925-1100 AD) we reconstruct a dryer (El Niño like) environment, changing into a La Niña dominated pattern, prevailing until 1700 AD. The late Little Ice Age (LIA, 1700-1850AD) was initially dry and changed into a wetter climate at 1750 AD. Afterwards El Niño dominated in the region. The overall pattern of these changes agrees with other paleoclimate records from the Pacific region. However, our well dated (±20 years) high-resolution record identifies a number of short-lived episodes of deviations from this pattern, in particular during the MCA and the LIA. We also find strong similarities in the timing of these episodes with North Pacific and North Atlantic records, indicating that ENSO-Northern Hemisphere teleconnections existed throughout the last 2000 years. We find that changes in ENSO pattern during the MCA and the LIA predate changes in the Northern Hemisphere, indicating that ENSO changes affected atmospheric circulation patterns and so directly influenced Northern hemispheric climate.
Relationship between major dietary patterns and sarcopenia among menopausal women.
Mohseni, Reza; Aliakbar, Sima; Abdollahi, Afsoun; Yekaninejad, Mir Saeed; Maghbooli, Zhila; Mirzaei, Khadijeh
2017-12-01
Dietary habits have been associated with the prevalence of the sarcopenia and limited data are available in this field for menopausal women. This study focused on the relationship between dietary patterns and prevalence of the sarcopenia in menopausal women. This cross-sectional study was done in 250 menopausal women 45 years old or older. Dietary data were collected using a food-frequency questionnaire and physical activity was assessed by International Physical Activity Questionnaire (IPAQ). Height, weight, skeletal muscle mass, hand grip, and gait speed were measured and sarcopenia was defined based on European Working Group on Sarcopenia in Older People (EWGSOP) guidelines. Using factor analysis, two major dietary patterns were found: a Western pattern (high in commercial beverage, sugar and dessert, snacks, solid fat, potato, high fat dairy, legume, organ meat, fast food, and sweets) and a Mediterranean pattern (high in olive, low-fat dairy, vegetable, fish, nut, and vegetable oil). After adjusting for confounding variables, for the highest vs the lowest tertiles, the Odds Ratio (OR) for sarcopenia was 1.06 [95% confidence interval (CI), 0.47-2.37] in the Western pattern and 0.40 [95% confidence interval (CI), 0.17-0.89] in the Mediterranean pattern. Our findings suggest that Mediterranean dietary pattern has a favorable role in the prevention of sarcopenia.
NASA Astrophysics Data System (ADS)
Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.
2017-12-01
The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.
NASA Technical Reports Server (NTRS)
Furlan, R.; Porta, A.; Costa, F.; Tank, J.; Baker, L.; Schiavi, R.; Robertson, D.; Malliani, A.; Mosqueda-Garcia, R.
2000-01-01
BACKGROUND: We tested the hypothesis that a common oscillatory pattern might characterize the rhythmic discharge of muscle sympathetic nerve activity (MSNA) and the spontaneous variability of heart rate and systolic arterial pressure (SAP) during a physiological increase of sympathetic activity induced by the head-up tilt maneuver. METHODS AND RESULTS: Ten healthy subjects underwent continuous recordings of ECG, intra-arterial pressure, respiratory activity, central venous pressure, and MSNA, both in the recumbent position and during 75 degrees head-up tilt. Venous samplings for catecholamine assessment were obtained at rest and during the fifth minute of tilt. Spectrum and cross-spectrum analyses of R-R interval, SAP, and MSNA variabilities and of respiratory activity provided the low (LF, 0.1 Hz) and high frequency (HF, 0.27 Hz) rhythmic components of each signal and assessed their linear relationships. Compared with the recumbent position, tilt reduced central venous pressure, but blood pressure was unchanged. Heart rate, MSNA, and plasma epinephrine and norepinephrine levels increased, suggesting a marked enhancement of overall sympathetic activity. During tilt, LF(MSNA) increased compared with the level in the supine position; this mirrored similar changes observed in the LF components of R-R interval and SAP variabilities. The increase of LF(MSNA) was proportional to the amount of the sympathetic discharge. The coupling between LF components of MSNA and R-R interval and SAP variabilities was enhanced during tilt compared with rest. CONCLUSIONS: During the sympathetic activation induced by tilt, a similar oscillatory pattern based on an increased LF rhythmicity characterized the spontaneous variability of neural sympathetic discharge, R-R interval, and arterial pressure.
Biological community structure on patch reefs in Biscayne National Park, FL, USA
Kuffner, Ilsa B.; Grober-Dunsmore, Rikki; Brock, John C.; Hickey, T. Don
2010-01-01
Coral reef ecosystem management benefits from continual quantitative assessment of the resources being managed, plus assessment of factors that affect distribution patterns of organisms in the ecosystem. In this study, we investigate the relationships among physical, benthic, and fish variables in an effort to help explain the distribution patterns of organisms on patch reefs within Biscayne National Park, FL, USA. We visited a total of 196 randomly selected sampling stations on 12 shallow (<10 m) patch reefs and measured physical variables (e.g., substratum rugosity, substratum type) and benthic and fish community variables. We also incorporated data on substratum rugosity collected remotely via airborne laser surveying (Experimental Advanced Airborne Research Lidar—EAARL). Across all stations, only weak relationships were found between physical, benthic cover, and fish assemblage variables. Much of the variance was attributable to a “reef effect,” meaning that community structure and organism abundances were more variable at stations among reefs than within reefs. However, when the reef effect was accounted for and removed statistically, patterns were detected. Within reefs, juvenile scarids were most abundant at stations with high coverage of the fleshy macroalgae Dictyota spp., and the calcified alga Halimeda tuna was most abundant at stations with low EAARL rugosity. Explanations for the overwhelming importance of “reef” in explaining variance in our dataset could include the stochastic arrangement of organisms on patch reefs related to variable larval recruitment in space and time and/or strong historical effects due to patchy disturbances (e.g., hurricanes, fishing), as well as legacy effects of prior residents (“priority” effects).
NASA Astrophysics Data System (ADS)
Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia
2016-08-01
Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends.
Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends
NASA Astrophysics Data System (ADS)
Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Evidence for a Time-Invariant Phase Variable in Human Ankle Control
Gregg, Robert D.; Rouse, Elliott J.; Hargrove, Levi J.; Sensinger, Jonathon W.
2014-01-01
Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms). In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control. PMID:24558485
Smith, Maria W.; Herfort, Lydie; Tyrol, Kaitlin; Suciu, Dominic; Campbell, Victoria; Crump, Byron C.; Peterson, Tawnya D.; Zuber, Peter; Baptista, Antonio M.; Simon, Holly M.
2010-01-01
Through their metabolic activities, microbial populations mediate the impact of high gradient regions on ecological function and productivity of the highly dynamic Columbia River coastal margin (CRCM). A 2226-probe oligonucleotide DNA microarray was developed to investigate expression patterns for microbial genes involved in nitrogen and carbon metabolism in the CRCM. Initial experiments with the environmental microarrays were directed toward validation of the platform and yielded high reproducibility in multiple tests. Bioinformatic and experimental validation also indicated that >85% of the microarray probes were specific for their corresponding target genes and for a few homologs within the same microbial family. The validated probe set was used to query gene expression responses by microbial assemblages to environmental variability. Sixty-four samples from the river, estuary, plume, and adjacent ocean were collected in different seasons and analyzed to correlate the measured variability in chemical, physical and biological water parameters to differences in global gene expression profiles. The method produced robust seasonal profiles corresponding to pre-freshet spring (April) and late summer (August). Overall relative gene expression was high in both seasons and was consistent with high microbial abundance measured by total RNA, heterotrophic bacterial production, and chlorophyll a. Both seasonal patterns involved large numbers of genes that were highly expressed relative to background, yet each produced very different gene expression profiles. April patterns revealed high differential gene expression in the coastal margin samples (estuary, plume and adjacent ocean) relative to freshwater, while little differential gene expression was observed along the river-to-ocean transition in August. Microbial gene expression profiles appeared to relate, in part, to seasonal differences in nutrient availability and potential resource competition. Furthermore, our results suggest that highly-active particle-attached microbiota in the Columbia River water column may perform dissimilatory nitrate reduction (both dentrification and DNRA) within anoxic particle microniches. PMID:20967204
Summer U.S. Surface Air Temperature Variability: Controlling Factors and AMIP Simulation Biases
NASA Astrophysics Data System (ADS)
Merrifield, A.; Xie, S. P.
2016-02-01
This study documents and investigates biases in simulating summer surface air temperature (SAT) variability over the continental U.S. in the Coupled Model Intercomparison Project (CMIP5) Atmospheric Model Intercomparison Project (AMIP). Empirical orthogonal function (EOF) and multivariate regression analyses are used to assess the relative importance of circulation and the land surface feedback at setting summer SAT over a 30-year period (1979-2008). In observations, regions of high SAT variability are closely associated with midtropospheric highs and subsidence, consistent with adiabatic theory (Meehl and Tebaldi 2004, Lau and Nath 2012). Preliminary analysis shows the majority of the AMIP models feature high SAT variability over the central U.S., displaced south and/or west of observed centers of action (COAs). SAT COAs in models tend to be concomitant with regions of high sensible heat flux variability, suggesting an excessive land surface feedback in these models modulate U.S. summer SAT. Additionally, tropical sea surface temperatures (SSTs) play a role in forcing the leading EOF mode for summer SAT, in concert with internal atmospheric variability. There is evidence that models respond to different SST patterns than observed. Addressing issues with the bulk land surface feedback and the SST-forced component of atmospheric variability may be key to improving model skill in simulating summer SAT variability over the U.S.
Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...
Differing Roles of Functional Movement Variability as Experience Increases in Gymnastics
Busquets, Albert; Marina, Michel; Davids, Keith; Angulo-Barroso, Rosa
2016-01-01
Current theories, like Ecological Dynamics, propose that inter-trial movement variability is functional when acquiring or refining movement coordination. Here, we examined how age-based experience levels of gymnasts constrained differences in emergent movement pattern variability during task performance. Specifically, we investigated different roles of movement pattern variability when gymnasts in different age groups performed longswings on a high bar, capturing the range of experience from beginner to advanced status. We also investigated the functionality of the relationships between levels of inter-trial variability and longswing amplitude during performance. One-hundred and thirteen male gymnasts in five age groups were observed performing longswings (with three different experience levels: beginners, intermediates and advanced performers). Performance was evaluated by analysis of key events in coordination of longswing focused on the arm-trunk and trunk-thigh segmental relations. Results revealed that 10 of 18 inter-trial variability measures changed significantly as a function of increasing task experience. Four of ten variability measures conformed to a U-shaped function with age implying exploratory strategies amongst beginners and functional adaptive variability amongst advanced performers. Inter-trial variability of arm-trunk coordination variables (6 of 10) conformed to a \\-shaped curve, as values were reduced to complete the longswings. Changes in coordination variability from beginner to intermediate status were largely restrictive, with only one variability measure related to exploration. Data revealed how inter-trial movement variability in gymnastics, relative to performance outcomes, needs careful interpretation, implying different roles as task experience changes. Key points Inter-trial variability while performing longswings on a high bar was assessed in a large sample (113 participants) divided into five age groups (form beginners to advanced gymnasts). Longswing assessment allowed us to evaluate inter-trial variability in representative performance context. Coordination variability presented two different configurations across experience levels depending on the variable of interest: either a U-shaped or a L- or \\-shaped graph. Increased inter-trial variability of the functional phase events offered flexibility to adapt the longswing performance in the advanced gymnasts, while decreasing variability in arm-trunk coordination modes was critical to improve longswing and to achieve the most advanced level. In addition, the relationship between variability measures and the global performance outcome (i.e. the swing amplitude) revealed different functional roles of movement variability (exploratory or restrictive) as a function of changes in experience levels. PMID:27274664
Patterns of Movement in Foster Care: An Optimal Matching Analysis
Havlicek, Judy
2011-01-01
Placement instability remains a vexing problem for child welfare agencies across the country. This study uses child welfare administrative data to retrospectively follow the entire placement histories (birth to age 17.5) of 474 foster youth who reached the age of majority in the state of Illinois and to search for patterns in their movement through the child welfare system. Patterns are identified through optimal matching and hierarchical cluster analyses. Multiple logistic regression is used to analyze administrative and survey data in order to examine covariates related to patterns. Five distinct patterns of movement are differentiated: Late Movers, Settled with Kin, Community Care, Institutionalized, and Early Entry. These patterns suggest high but variable rates of movement. Implications for child welfare policy and service provision are discussed. PMID:20873020
Cocco, S; Monasson, R; Sessak, V
2011-05-01
We consider the problem of inferring the interactions between a set of N binary variables from the knowledge of their frequencies and pairwise correlations. The inference framework is based on the Hopfield model, a special case of the Ising model where the interaction matrix is defined through a set of patterns in the variable space, and is of rank much smaller than N. We show that maximum likelihood inference is deeply related to principal component analysis when the amplitude of the pattern components ξ is negligible compared to √N. Using techniques from statistical mechanics, we calculate the corrections to the patterns to the first order in ξ/√N. We stress the need to generalize the Hopfield model and include both attractive and repulsive patterns in order to correctly infer networks with sparse and strong interactions. We present a simple geometrical criterion to decide how many attractive and repulsive patterns should be considered as a function of the sampling noise. We moreover discuss how many sampled configurations are required for a good inference, as a function of the system size N and of the amplitude ξ. The inference approach is illustrated on synthetic and biological data.
Heino, Jani; Soininen, Janne; Alahuhta, Janne; Lappalainen, Jyrki; Virtanen, Risto
2017-01-01
Metacommunity patterns and underlying processes in aquatic organisms have typically been studied within a drainage basin. We examined variation in the composition of six freshwater organismal groups across various drainage basins in Finland. We first modelled spatial structures within each drainage basin using Moran eigenvector maps. Second, we partitioned variation in community structure among three groups of predictors using constrained ordination: (1) local environmental variables, (2) spatial variables, and (3) dummy variable drainage basin identity. Third, we examined turnover and nestedness components of multiple-site beta diversity, and tested the best fit patterns of our datasets using the "elements of metacommunity structure" analysis. Our results showed that basin identity and local environmental variables were significant predictors of community structure, whereas within-basin spatial effects were typically negligible. In half of the organismal groups (diatoms, bryophytes, zooplankton), basin identity was a slightly better predictor of community structure than local environmental variables, whereas the opposite was true for the remaining three organismal groups (insects, macrophytes, fish). Both pure basin and local environmental fractions were, however, significant after accounting for the effects of the other predictor variable sets. All organismal groups exhibited high levels of beta diversity, which was mostly attributable to the turnover component. Our results showed consistent Clementsian-type metacommunity structures, suggesting that subgroups of species responded similarly to environmental factors or drainage basin limits. We conclude that aquatic communities across large scales are mostly determined by environmental and basin effects, which leads to high beta diversity and prevalence of Clementsian community types.
NASA Astrophysics Data System (ADS)
Webb, R. W.; Williams, M. W.; Erickson, T. A.
2018-02-01
Snowmelt is an important part of the hydrologic cycle and ecosystem dynamics for headwater systems. However, the physical process of water flow through snow is a poorly understood aspect of snow hydrology as meltwater flow paths tend to be highly complex. Meltwater flow paths diverge and converge as percolating meltwater reaches stratigraphic layer interfaces creating high spatial variability. Additionally, a snowpack is temporally heterogeneous due to rapid localized metamorphism that occurs during melt. This study uses a snowmelt lysimeter array at tree line in the Niwot Ridge study area of northern Colorado. The array is designed to address the issue of spatial and temporal variability of basal discharge at 105 locations over an area of 1,300 m2. Observed coefficients of variation ranged from 0 to almost 10 indicating more variability than previously observed, though this variability decreased throughout each melt season. Snowmelt basal discharge also significantly increases as snow depth decreases displaying a cluster pattern that peaks during weeks 3-5 of the snowmelt season. These results are explained by the flow of meltwater along snow layer interfaces. As the snowpack becomes less stratified through the melt season, the pattern transforms from preferential flow paths to uniform matrix flow. Correlation ranges of the observed basal discharge correspond to a mean representative elementary area of 100 m2, or a characteristic length of 10 m. Snowmelt models representing processes at scales less than this will need to explicitly incorporate the spatial variability of snowmelt discharge and meltwater flow paths through snow between model pixels.
Multivariate Analysis of Genotype-Phenotype Association.
Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela
2016-04-01
With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.
Rico Gazal; Michael A. White; Robert Gillies; Eli Rodemakers; Elena Sparrow; Leslie Gordon
2008-01-01
The urban heat island effect, classically associated with high impervious surface area (ISA), low vegetation fractional cover (Fr), and high land surface temperature (LST), has been linked to changing patterns of vegetation phenology, especially spring growth. In this study, a collaboration with the Global Learning and Observations to Benefit the Environment (GLOBE)...
Modeling the demand-price relations in a high-frequency foreign exchange market
NASA Astrophysics Data System (ADS)
Schmidt, Anatoly B.
1999-09-01
A stochastic nonlinear dynamics model is introduced in terms of observable variables (price and excess demand assumed to be proportional to the number of buyers) to describe a high-frequency foreign exchange market. It is shown how the fundamentalist and chartist patterns of the trader behavior affect the correlation between excess demand and exchange rates.
Amini, Massoud; Esmaillzadeh, Ahmad; Shafaeizadeh, Shila; Behrooz, Jhila; Zare, Maryam
2010-10-01
Dietary habits have been associated with the prevalence of the metabolic syndrome and limited data are available in this field for individuals with impaired glucose tolerance. This study focused on the association between major dietary patterns and prevalence of the metabolic syndrome in individuals with impaired glucose tolerance. This cross-sectional study was done in 425 subjects 35 to 55 y of age. Dietary data were collected using a food-frequency questionnaire. Blood pressure, waist circumference, glucose, triacylglycerols, and high-density lipoprotein cholesterol were measured and metabolic syndrome was defined based on Adult Treatment Panel III guidelines. Five major dietary patterns were found: a western pattern (high in sweets, butter, soda, mayonnaise, sugar, cookies, tail of a lamb, hydrogenated fat, and eggs), a prudent pattern (high in fish, peas, honey, nuts, juice, dry fruits, vegetable oil, liver and organic meat, and coconuts and low in hydrogenated fat and non-leafy vegetables), a vegetarian pattern (high in potatoes, legumes, fruits rich in vitamin C, rice, green leafy vegetables, and fruits rich in vitamin A), a high-fat dairy pattern (high in high-fat yogurt and high-fat milk and low in low-fat yogurt, peas, and bread), and a chicken and plant pattern (high in chicken, fruits rich in vitamin A, green leafy vegetables, and mayonnaise and low in beef, liver, and organic meat). After adjusting for confounding variables, the western pattern was associated with greater odds of having increased triacylglycerol (odds ratio 1.76, 95% confidence interval 1.01-3.07) and blood pressure (odds ratio 2.62, 95% confidence interval 1.32-5.23). The prudent pattern was positively associated with a prevalence of low high-density lipoprotein cholesterol levels (odds ratio 0.55, 95% confidence interval 0.31-0.96). The vegetarian dietary pattern was inversely associated with a risk of an abnormal fasting blood glucose level (odds ratio 2.26, 95% confidence interval 1.25-4.06). Major dietary patterns were significantly associated with the risk of metabolic syndrome. Copyright © 2010 Elsevier Inc. All rights reserved.
Farkas, Dávid; Denham, Susan L.; Bendixen, Alexandra; Tóth, Dénes; Kondo, Hirohito M.; Winkler, István
2016-01-01
Multi-stability refers to the phenomenon of perception stochastically switching between possible interpretations of an unchanging stimulus. Despite considerable variability, individuals show stable idiosyncratic patterns of switching between alternative perceptions in the auditory streaming paradigm. We explored correlates of the individual switching patterns with executive functions, personality traits, and creativity. The main dimensions on which individual switching patterns differed from each other were identified using multidimensional scaling. Individuals with high scores on the dimension explaining the largest portion of the inter-individual variance switched more often between the alternative perceptions than those with low scores. They also perceived the most unusual interpretation more often, and experienced all perceptual alternatives with a shorter delay from stimulus onset. The ego-resiliency personality trait, which reflects a tendency for adaptive flexibility and experience seeking, was significantly positively related to this dimension. Taking these results together we suggest that this dimension may reflect the individual’s tendency for exploring the auditory environment. Executive functions were significantly related to some of the variables describing global properties of the switching patterns, such as the average number of switches. Thus individual patterns of perceptual switching in the auditory streaming paradigm are related to some personality traits and executive functions. PMID:27135945
Seifert, L; De Jesus, K; Komar, J; Ribeiro, J; Abraldes, J A; Figueiredo, P; Vilas-Boas, J P; Fernandes, R J
2016-06-01
The aim was to examine behavioural variability within and between individuals, especially in a swimming task, to explore how swimmers with various specialty (competitive short distance swimming vs. triathlon) adapt to repetitive events of sub-maximal intensity, controlled in speed but of various distances. Five swimmers and five triathletes randomly performed three variants (with steps of 200, 300 and 400m distances) of a front crawl incremental step test until exhaustion. Multi-camera system was used to collect and analyse eight kinematical and swimming efficiency parameters. Analysis of variance showed significant differences between swimmers and triathletes, with significant individual effect. Cluster analysis put these parameters together to investigate whether each individual used the same pattern(s) and one or several patterns to achieve the task goal. Results exhibited ten patterns for the whole population, with only two behavioural patterns shared between swimmers and triathletes. Swimmers tended to use higher hand velocity and index of coordination than triathletes. Mono-stability occurred in swimmers whatever the task constraint showing high stability, while triathletes revealed bi-stability because they switched to another pattern at mid-distance of the task. Finally, our analysis helped to explain and understand effect of specialty and more broadly individual adaptation to task constraint. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of tropical atmospheric variability on Weddell Sea deep water convection
NASA Astrophysics Data System (ADS)
Kleppin, H.
2016-02-01
Climate reconstructions from ice core records in Greenland and Antarctica have revealed a series of abrupt climate transitions, showing a distinct relationship between northern and southern hemisphere climate during the last glacial period. The recent ice core records from West Antarctica (WAIS) point towards an atmospheric teleconnection as a possible trigger for the interhemispheric climate variability (Markle et al., 2015). An unforced simulation of the Community Climate System Model, version 4 (CCSM4) reveals Greenland warming and cooling events, caused by stochastic atmospheric forcing, that resemble Dansgaard-Oeschger cycles in pattern and magnitude (Kleppin et al., 2015). Anti-phased temperature changes in the Southern Hemisphere are small in magnitude and have a spatially varying pattern. We argue that both north and south high latitude climate variability is triggered by changes in tropical atmospheric deep convection in the western tropical Pacific. The atmospheric wave guide provides a fast communication pathway connecting the deep tropics and the polar regions. In the Southern Hemisphere this is manifested as a distinct pressure pattern over West Antarctica. These altered atmospheric surface conditions over the convective region can lead to destabilization of the water column and thus to convective overturning in the Weddell Sea. However, opposed to what is seen in the Northern Hemisphere no centennial scale variability can establish, due to the absence of a strong feedback mechanism between ocean, atmosphere and sea ice. Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., & Yeager, S. (2015). Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions. Journal of Climate, (2015). Markle, B. and Coauthors (2015, April). Atmospheric teleconnections between the tropics and high southern latitudes during millennial climate change. In EGU General Assembly Conference Abstracts (Vol. 17, p. 2569).
Li, Yan; Chamberlain, Winston; Tan, Ou; Brass, Robert; Weiss, Jack L.; Huang, David
2016-01-01
PURPOSE To screen for subclinical keratoconus by analyzing corneal, epithelial, and stromal thickness map patterns with Fourier-domain optical coherence tomography (OCT). SETTING Four centers in the United States. DESIGN Cross-sectional observational study. METHODS Eyes of normal subjects, subclinical keratoconus eyes, and the topographically normal eye of a unilateral keratoconus patient were studied. Corneas were scanned using a 26 000 Hz Fourier-domain OCT system (RTVue). Normal subjects were divided into training and evaluation groups. Corneal, epithelial, and stromal thickness maps and derived diagnostic indices, including pattern standard deviation (PSD) variables and pachymetric map–based keratoconus risk scores were calculated from the OCT data. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the diagnostic accuracy of the indices. RESULTS The study comprised 150 eyes of 83 normal subjects, 50 subclinical keratoconus eyes of 32 patients, and 1 topographically normal eye of a unilateral keratoconus patient. Subclinical keratoconus was characterized by inferotemporal thinning of the cornea, epithelium, and stroma. The PSD values for corneal (P < .001), epithelial (P < .001), and stromal (P = .049) thickness maps were all significantly higher in subclinical keratoconic eyes than in the normal group. The diagnostic accuracy was significantly higher for PSD variables (pachymetric PSD, AUC = 0.941; epithelial PSD, AUC = 0.985; stromal PSD, AUC = 0.924) than for the pachymetric map–based keratoconus risk score (AUC = 0.735). CONCLUSIONS High-resolution Fourier-domain OCT could map corneal, epithelial, and stromal thicknesses. Corneal and sublayer thickness changes in subclinical keratoconus could be detected with high accuracy using PSD variables. These new diagnostic variables might be useful in the detection of early keratoconus. PMID:27026454
Huttunen, K-L; Mykrä, H; Oksanen, J; Astorga, A; Paavola, R; Muotka, T
2017-05-03
One of the key challenges to understanding patterns of β diversity is to disentangle deterministic patterns from stochastic ones. Stochastic processes may mask the influence of deterministic factors on community dynamics, hindering identification of the mechanisms causing variation in community composition. We studied temporal β diversity (among-year dissimilarity) of macroinvertebrate communities in near-pristine boreal streams across 14 years. To assess whether the observed β diversity deviates from that expected by chance, and to identify processes (deterministic vs. stochastic) through which different explanatory factors affect community variability, we used a null model approach. We observed that at the majority of sites temporal β diversity was low indicating high community stability. When stochastic variation was unaccounted for, connectivity was the only variable explaining temporal β diversity, with weakly connected sites exhibiting higher community variability through time. After accounting for stochastic effects, connectivity lost importance, suggesting that it was related to temporal β diversity via random colonization processes. Instead, β diversity was best explained by in-stream vegetation, community variability decreasing with increasing bryophyte cover. These results highlight the potential of stochastic factors to dampen the influence of deterministic processes, affecting our ability to understand and predict changes in biological communities through time.
Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.
2014-01-01
Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045
Jacobson, Jerry O; Sánchez-Gómez, Amaya; Montoya, Orlando; Soria, Efrain; Tarupi, Wilmer; Chiriboga Urquizo, Marcelo; Champutiz Ortiz, Eliana; Miranda, Sonia Morales; Tobar, Rodrigo; Gómez, Bertha; Riera, Celia
2014-01-01
This study characterized the HIV epidemic among men who have sex with men (MSM) in Quito, Ecuador and contrasted risk patterns with other STI's. 416 MSM ages 15 years and older were recruited using respondent-driven sampling in 2010-2011. Biological testing and a self-interview survey assessed HIV and STI infections and risk behaviors. Analysis incorporated recruiter-level variables and clustering adjustments to control for recruitment patterns. We identify high levels of HIV (11 %), HSV-2 (14 %) and active syphilis (5.5 %) infections, low levels of lifetime HIV testing (57 %), limited knowledge of HIV and STI's (<48 %) and limited consistent condom use independent of partner type (<40 %). Sex work was associated with all infections while associations with residential location, how casual partners are met and other variables, varied. Scale-up of behavioral prevention and HIV testing is urgently needed. Interventions should target male sex workers and exploit differential patterns of HIV-STI risk to stay ahead of the epidemic.
Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management.
Lane, Belize A; Sandoval-Solis, Samuel; Stein, Eric D; Yarnell, Sarah M; Pasternack, Gregory B; Dahlke, Helen E
2018-06-22
Balancing ecological and human water needs often requires characterizing key aspects of the natural flow regime and then predicting ecological response to flow alterations. Flow metrics are generally relied upon to characterize long-term average statistical properties of the natural flow regime (hydrologic baseline conditions). However, some key aspects of hydrologic baseline conditions may be better understood through more complete consideration of continuous patterns of daily, seasonal, and inter-annual variability than through summary metrics. Here we propose the additional use of high-resolution dimensionless archetypes of regional stream classes to improve understanding of baseline hydrologic conditions and inform regional environmental flows assessments. In an application to California, we describe the development and analysis of hydrologic baseline archetypes to characterize patterns of flow variability within and between stream classes. We then assess the utility of archetypes to provide context for common flow metrics and improve understanding of linkages between aquatic patterns and processes and their hydrologic controls. Results indicate that these archetypes may offer a distinct and complementary tool for researching mechanistic flow-ecology relationships, assessing regional patterns for streamflow management, or understanding impacts of changing climate.
Bonebrake, Timothy C; Mastrandrea, Michael D
2010-07-13
Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.
Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques
NASA Astrophysics Data System (ADS)
Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos
2013-02-01
Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.
Messai, Habib; Farman, Muhammad; Sarraj-Laabidi, Abir; Hammami-Semmar, Asma; Semmar, Nabil
2016-11-17
Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends' preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors.
NASA Astrophysics Data System (ADS)
Wang, Yuxuan; Jia, Beixi; Wang, Sing-Chun; Estes, Mark; Shen, Lu; Xie, Yuanyu
2016-12-01
The Bermuda High (BH) quasi-permanent pressure system is the key large-scale circulation pattern influencing summertime weather over the eastern and southern US. Here we developed a multiple linear regression (MLR) model to characterize the effect of the BH on year-to-year changes in monthly-mean maximum daily 8 h average (MDA8) ozone in the Houston-Galveston-Brazoria (HGB) metropolitan region during June, July, and August (JJA). The BH indicators include the longitude of the BH western edge (BH-Lon) and the BH intensity index (BHI) defined as the pressure gradient along its western edge. Both BH-Lon and BHI are selected by MLR as significant predictors (p < 0.05) of the interannual (1990-2015) variability of the HGB-mean ozone throughout JJA, while local-scale meridional wind speed is selected as an additional predictor for August only. Local-scale temperature and zonal wind speed are not identified as important factors for any summer month. The best-fit MLR model can explain 61-72 % of the interannual variability of the HGB-mean summertime ozone over 1990-2015 and shows good performance in cross-validation (R2 higher than 0.48). The BH-Lon is the most important factor, which alone explains 38-48 % of such variability. The location and strength of the Bermuda High appears to control whether or not low-ozone maritime air from the Gulf of Mexico can enter southeastern Texas and affect air quality. This mechanism also applies to other coastal urban regions along the Gulf Coast (e.g., New Orleans, LA, Mobile, AL, and Pensacola, FL), suggesting that the BH circulation pattern can affect surface ozone variability through a large portion of the Gulf Coast.
Rainfall pattern variability as climate change impact in The Wallacea Region
NASA Astrophysics Data System (ADS)
Pujiastuti, I.; Nurjani, E.
2018-04-01
The objective of the study is to observe the characteristic variability of rainfall pattern in the city located in every rainfall type, local (Kendari), monsoon (Manado), and equatorial (Palu). The result will be compared to determine which has the most significantly precipitation changing due to climate change impact. Rainfall variability in Indonesia illustrates precipitation variation thus the important variability is the variability of monthly rainfall. Monthly precipitation data for the period of 1961-2010 are collected from Indonesian Agency for Meteorological, Climatological, and Geophysical Agency. This data is calculated with the normal test statistical method to analyze rainfall variability. The result showed the pattern of trend and variability of rainfall in every city with the own characteristic which determines the rainfall type. Moreover, there is comparison of rainfall pattern changing between every rainfall type. This information is useful for climate change mitigation and adaptation strategies especially in water resource management form precipitation as well as the occurrence of meteorological disasters.
Burke, Ariane; Levavasseur, Guillaume; James, Patrick M A; Guiducci, Dario; Izquierdo, Manuel Arturo; Bourgeon, Lauriane; Kageyama, Masa; Ramstein, Gilles; Vrac, Mathieu
2014-08-01
The Last Glacial Maximum (LGM) was a global climate event, which had significant repercussions for the spatial distribution and demographic history of prehistoric populations. In Eurasia, the LGM coincides with a potential bottleneck for modern humans and may mark the divergence date for Asian and European populations (Keinan et al., 2007). In this research, the impact of climate variability on human populations in the Iberian Peninsula during the Last Glacial Maximum (LGM) is examined with the aid of downscaled high-resolution (16 × 16 km) numerical climate experiments. Human sensitivity to short time-scale (inter-annual) climate variability during this key time period, which follows the initial modern human colonisation of Eurasia and the extinction of the Neanderthals, is tested using the spatial distribution of archaeological sites. Results indicate that anatomically modern human populations responded to small-scale spatial patterning in climate variability, specifically inter-annual variability in precipitation levels as measured by the standard precipitation index. Climate variability at less than millennial scale, therefore, is shown to be an important component of ecological risk, one that played a role in regulating the spatial behaviour of prehistoric human populations and consequently affected their social networks. Copyright © 2014 Elsevier Ltd. All rights reserved.
Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation.
Dueck, Hannah; Khaladkar, Mugdha; Kim, Tae Kyung; Spaethling, Jennifer M; Francis, Chantal; Suresh, Sangita; Fisher, Stephen A; Seale, Patrick; Beck, Sheryl G; Bartfai, Tamas; Kuhn, Bernhard; Eberwine, James; Kim, Junhyong
2015-06-09
Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.
Pounds, Stan; Cheng, Cheng; Cao, Xueyuan; Crews, Kristine R; Plunkett, William; Gandhi, Varsha; Rubnitz, Jeffrey; Ribeiro, Raul C; Downing, James R; Lamba, Jatinder
2009-08-15
In some applications, prior biological knowledge can be used to define a specific pattern of association of multiple endpoint variables with a genomic variable that is biologically most interesting. However, to our knowledge, there is no statistical procedure designed to detect specific patterns of association with multiple endpoint variables. Projection onto the most interesting statistical evidence (PROMISE) is proposed as a general procedure to identify genomic variables that exhibit a specific biologically interesting pattern of association with multiple endpoint variables. Biological knowledge of the endpoint variables is used to define a vector that represents the biologically most interesting values for statistics that characterize the associations of the endpoint variables with a genomic variable. A test statistic is defined as the dot-product of the vector of the observed association statistics and the vector of the most interesting values of the association statistics. By definition, this test statistic is proportional to the length of the projection of the observed vector of correlations onto the vector of most interesting associations. Statistical significance is determined via permutation. In simulation studies and an example application, PROMISE shows greater statistical power to identify genes with the interesting pattern of associations than classical multivariate procedures, individual endpoint analyses or listing genes that have the pattern of interest and are significant in more than one individual endpoint analysis. Documented R routines are freely available from www.stjuderesearch.org/depts/biostats and will soon be available as a Bioconductor package from www.bioconductor.org.
Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches
Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D.; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel
2016-01-01
Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for adding value to existing observational data in agriculture by allowing embedded knowledge to be quickly leveraged. It generates site-specific information on cultivar response to climatic factors and supports on-farm management decisions for adaptation to climate variability. PMID:27560980
Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches.
Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel
2016-01-01
Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for adding value to existing observational data in agriculture by allowing embedded knowledge to be quickly leveraged. It generates site-specific information on cultivar response to climatic factors and supports on-farm management decisions for adaptation to climate variability.
Analysis of Trends in Fish Assemblages in Narragansett Bay, RI/MA
Estuarine fish are highly valued resources that are affected by several factors, including climate, landscape, pollution, and fishing pressure. Here, we examine patterns of variability in estuarine fish assemblages in Narragansett Bay, an estuary located in Rhode Island and Mass...
Co-optimization of lithographic and patterning processes for improved EPE performance
NASA Astrophysics Data System (ADS)
Maslow, Mark J.; Timoshkov, Vadim; Kiers, Ton; Jee, Tae Kwon; de Loijer, Peter; Morikita, Shinya; Demand, Marc; Metz, Andrew W.; Okada, Soichiro; Kumar, Kaushik A.; Biesemans, Serge; Yaegashi, Hidetami; Di Lorenzo, Paolo; Bekaert, Joost P.; Mao, Ming; Beral, Christophe; Larivière, Stephane
2017-03-01
Complimentary lithography is already being used for advanced logic patterns. The tight pitches for 1D Metal layers are expected to be created using spacer based multiple patterning ArF-i exposures and the more complex cut/block patterns are made using EUV exposures. At the same time, control requirements of CDU, pattern shift and pitch-walk are approaching sub-nanometer levels to meet edge placement error (EPE) requirements. Local variability, such as Line Edge Roughness (LER), Local CDU, and Local Placement Error (LPE), are dominant factors in the total Edge Placement error budget. In the lithography process, improving the imaging contrast when printing the core pattern has been shown to improve the local variability. In the etch process, it has been shown that the fusion of atomic level etching and deposition can also improve these local variations. Co-optimization of lithography and etch processing is expected to further improve the performance over individual optimizations alone. To meet the scaling requirements and keep process complexity to a minimum, EUV is increasingly seen as the platform for delivering the exposures for both the grating and the cut/block patterns beyond N7. In this work, we evaluated the overlay and pattern fidelity of an EUV block printed in a negative tone resist on an ArF-i SAQP grating. High-order Overlay modeling and corrections during the exposure can reduce overlay error after development, a significant component of the total EPE. During etch, additional degrees of freedom are available to improve the pattern placement error in single layer processes. Process control of advanced pitch nanoscale-multi-patterning techniques as described above is exceedingly complicated in a high volume manufacturing environment. Incorporating potential patterning optimizations into both design and HVM controls for the lithography process is expected to bring a combined benefit over individual optimizations. In this work we will show the EPE performance improvement for a 32nm pitch SAQP + block patterned Metal 2 layer by cooptimizing the lithography and etch processes. Recommendations for further improvements and alternative processes will be given.
SWH trends and links to large scale teleconnection patterns in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Lionello, P.; Pino, C.; Galati, M. B.
2010-09-01
This study analyzes the SWH field in the Mediterranean Sea using a multidecadal simulations (1958-2001) carried out using the WAM (WAve Model) forced by the REMO-HIPOCAS wind fields. The simulations are validated against satellite altimeter data. Several mid-latitude patterns are linked to the SWH field in the Mediterranean. Considering the mean monthly SWH values, EA (Eastern Atlantic pattern) exerts the largest influence, while NAO and other patterns have a smaller but comparable effect. Severe SWH conditions have been characterized using the 95percentile of daily SWH maxima. NAO is important mainly for high SWH conditions in winter with significant correlation in December, January and March, but also EA, SCA (SCAndinavian) and EA-WR (Eastern Atlantic-Western Russia) play an important role. In general, both SWH high and mean values are modulated by several patterns, with an important variability in space and at monthly level so that no single pattern can be attributed a dominant role along the whole annual cycle and all the mentioned patterns are important for at least few months in the year. Significant trends of SWH are present only in sparse areas and suggest mostly a minor decrease of storm intensity, The statistics of extremes and high SWH values is substantially steady during the second half of the 20th century.
Sugar consumption pattern of 13-year-old school children in Belgaum city, Karnataka.
Hegde, P P; Ashok Kumar, B R; Ankola, A
2005-01-01
To determine the sugar consumption pattern of the school children in Belgaum city and to organize for a diet-counseling program. Easy availability of sugar containing food and high consumption of these sweets if continued unabated, the dental caries among children would become a major public health problem. In this instance, Dietary counseling can be just appropriate to inhibit the carious process. 342 school children aged 13 years, from four schools in Belgaum city participated in the study. The pattern of sugar consumption was assessed using a 4-day diet diary. Analysis was done according to the method described by Nizel and Papas (Nutrition in clinical dentistry, 1989, 277) and the variables were: the sweet score, At meal sugar exposure (AMSE), Between meal sugar exposure (BMSE) and Total sugar exposure (TSE). The mean, standard deviation and/or frequency were calculated for all variables. Student's t-test was used to statistically analyze the gender difference. The mean ± SD of the recorded variables were: sweet score 31 ± 12.78/day, AMSE 0.88 ± 0.33/day, BMSE 3.95 ± 0.87/day, and TSE 4.83 ± 0.96/day. No statistical significant gender difference with respect to the variables was observed. 'Tell Show And Do' Diet counseling session will perhaps have a greater impact as compared to the most common strategy of simply exhorting the children to eat less sugar.
Female Pattern Hair Loss: a clinical and pathophysiological review*
Ramos, Paulo Müller; Miot, Hélio Amante
2015-01-01
Female Pattern Hair Loss or female androgenetic alopecia is the main cause of hair loss in adult women and has a major impact on patients' quality of life. It evolves from the progressive miniaturization of follicles that lead to a subsequent decrease of the hair density, leading to a non-scarring diffuse alopecia, with characteristic clinical, dermoscopic and histological patterns. In spite of the high frequency of the disease and the relevance of its psychological impact, its pathogenesis is not yet fully understood, being influenced by genetic, hormonal and environmental factors. In addition, response to treatment is variable. In this article, authors discuss the main clinical, epidemiological and pathophysiological aspects of female pattern hair loss. PMID:26375223
HSP70 production patterns in coastal and estuarine organisms facing increasing temperatures
NASA Astrophysics Data System (ADS)
Madeira, D.; Narciso, L.; Cabral, H. N.; Vinagre, C.; Diniz, M. S.
2012-10-01
Heat shock proteins are important components in the cellular defense against proteotoxic stress. This work aimed to reveal HSP70 (hsc70 plus hsp70) expression patterns in several marine species (fish, crabs and shrimps) within a community along a temperature gradient and at the upper thermal limit. The organisms were collected in the Tagus estuary and adjacent shore (in Cabo Raso), Portugal. Exposure trials were performed using the critical thermal maximum (CTMax) method in order to recreate a stress gradient of ecological relevance. Protein analysis was performed using an enzyme linked immunosorbent assay (ELISA). Organisms within each community (estuary, coast; subtidal, intertidal, supratidal) responded in several different ways: no change in HSP70 levels, an increase in HSP70 levels, or increases and decreases in HSP70 levels. These patterns of response occurred independently of taxa, CTMax and habitat type. Magnitude of expression relates to the habitat's thermal conditions. Species from highly variable and hot habitats i.e. intertidal/supratidal zone, and living in greater shore heights produce higher amounts of HSP70. Demersal and subtidal species inhabit colder and more stable waters thus they seem to have a slower heat shock response. No clear pattern was observed for species of the same group (fish, crabs and shrimps) or congeneric species. HSP70 expression showed high intraspecific variability potentially due to genetic traits, environmental traits and condition status.
NASA Astrophysics Data System (ADS)
Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin
2017-04-01
Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.
Behavioral variability in an evolutionary theory of behavior dynamics.
Popa, Andrei; McDowell, J J
2016-03-01
McDowell's evolutionary theory of behavior dynamics (McDowell, 2004) instantiates populations of behaviors (abstractly represented by integers) that evolve under the selection pressure of the environment in the form of positive reinforcement. Each generation gives rise to the next via low-level Darwinian processes of selection, recombination, and mutation. The emergent patterns can be analyzed and compared to those produced by biological organisms. The purpose of this project was to explore the effects of high mutation rates on behavioral variability in environments that arranged different reinforcer rates and magnitudes. Behavioral variability increased with the rate of mutation. High reinforcer rates and magnitudes reduced these effects; low reinforcer rates and magnitudes augmented them. These results are in agreement with live-organism research on behavioral variability. Various combinations of mutation rates, reinforcer rates, and reinforcer magnitudes produced similar high-level outcomes (equifinality). These findings suggest that the independent variables that describe an experimental condition interact; that is, they do not influence behavior independently. These conclusions have implications for the interpretation of high levels of variability, mathematical undermatching, and the matching theory. The last part of the discussion centers on a potential biological counterpart for the rate of mutation, namely spontaneous fluctuations in the brain's default mode network. © 2016 Society for the Experimental Analysis of Behavior.
Factors associated with the deposition of Cladophora on Lake Michigan beaches in 2012
Riley, Stephen C.; Tucker, Taaja R.; Adams, Jean V.; Fogarty, Lisa R.; Lafrancois, Brenda Moraska
2015-01-01
Deposition of the macroalgae Cladophora spp. was monitored on 18 beaches around Lake Michigan during 2012 at a high temporal frequency. We observed a high degree of spatial variability in Cladophora deposition among beaches on Lake Michigan, even within local regions, with no clear regional pattern in the intensity of Cladophora deposition. A strong seasonal pattern in Cladophora deposition was observed, with the heaviest deposition occurring during mid-summer. Several beaches exhibited high temporal variability in Cladophora deposition over short time scales, suggesting that drifting algal mats may be extremely dynamic in nearshore environments of the Great Lakes. Cladophora deposition on Lake Michigan beaches was primarily related to the presence of nearshore structures, local population density, and nearshore bathymetry. There was relatively little evidence that waves, winds, or currents were associated with Cladophora deposition on beaches, but this may be due to the relatively poor resolution of existing nearshore hydrodynamic data. Developing a predictive understanding of beach-cast Cladophora dynamics in Great Lakes environments may require both intensive Cladophora monitoring and fine-scale local hydrodynamic modeling efforts.
Occurrence of oral deformities in larval anurans
Drake, D.L.; Altig, R.; Grace, J.B.; Walls, S.C.
2007-01-01
We quantified deformities in the marginal papillae, tooth rows, and jaw sheaths of tadpoles from 13 population samples representing three families and 11 sites in the southeastern United States. Oral deformities were observed in all samples and in 13.5-98% of the specimens per sample. Batrachochytrium dendrobatidis (chytrid) infections were detected in three samples. There was high variability among samples in the pattern and number of discovered deformities. Pairwise associations between oral structures containing deformities were nonrandom for several populations, especially those with B. dendrobatidis infections or high total numbers of deformities. Comparisons of deformities among samples using multivariate analyses revealed that tadpole samples grouped together by family. Analyses of ordination indicated that three variables, the number of deformities, the number of significant associations among deformity types within populations, and whether populations were infected with B. dendrobatidis, were significantly correlated with the pattern of deformities. Our data indicate that the incidence of oral deformities can be high in natural populations and that phylogeny and B. dendrobatidis infection exert a strong influence on the occurrence and type of oral deformities in tadpoles. ?? by the American Society of Ichthyologists and Herperologists.
NASA Astrophysics Data System (ADS)
Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry
2018-05-01
Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.
Determinants of birth intervals in Kerala: an application of Cox's hazard model.
Nair, S N
1996-01-01
"The present study is an attempt to delineate the differences in the patterns and determinants of birth intervals which appear highly relevant in a transitional population such as Kerala [India]. In this country two comparable surveys, with a period difference of 20 years, were conducted. The study tries to estimate the effects of socio-economic, demographic and proximate variables using Cox's proportional hazard model. For the former data-set, socio-economic variables have [a] significant effect on birth intervals, while for the latter data proximate variables are the significant determinants of birth intervals." (SUMMARY IN ITA AND FRE) excerpt
NASA Astrophysics Data System (ADS)
Roberts, B. J.; Chelsky, A.; Bernhard, A. E.; Giblin, A. E.
2017-12-01
Salt marshes are important sites for retention and transformation of carbon and nutrients. Much of our current marsh biogeochemistry knowledge is based on sampling at times and in locations that are convenient, most often vegetated marsh platforms during low tide. Wetland loss rates are high in many coastal regions including Louisiana which has the highest loss rates in the US. This loss not only reduces total marsh area but also changes the relative allocation of subhabitats in the remaining marsh. Climate and other anthropogenic changes lead to further changes including inundation patterns, redox conditions, salinity regimes, and shifts in vegetation patterns across marsh landscapes. We present results from a series of studies examining biogeochemical rates, microbial communities, and soil properties along multiple edge to interior transects within Spartina alterniflora across the Louisiana coast; between expanding patches of Avicennia germinans and adjacent S. alterniflora marshes; in soils associated with the four most common Louisiana salt marsh plants species; and across six different marsh subhabitats. Spartina alterniflora marsh biogeochemistry and microbial populations display high spatial variability related to variability in soil properties which appear to be, at least in part, regulated by differences in elevation, hydrology, and redox conditions. Differences in rates between soils associated with different vegetation types were also related to soil properties with S. alterniflora soils often yielding the lowest rates. Biogeochemical process rates vary significantly across marsh subhabitats with individual process rates differing in their hotspot habitat(s) across the marsh. Distinct spatial patterns may influence the roles that marshes play in retaining and transforming nutrients in coastal regions and highlight the importance of incorporating spatial sampling when scaling up plot level measurements to landscape or regional scales.
Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons
Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David
2007-01-01
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na+, delayed-rectifier K+, and slowly inactivating d-type K+ conductances. The model is analyzed using nonlinear dynamical system theory. For small Na+ window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, g d, and it is delayed for larger g d. As g d further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na+ window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their g d and in the strength of their Na+ window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction. PMID:17696606
Mechanisms of firing patterns in fast-spiking cortical interneurons.
Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David
2007-08-01
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na(+), delayed-rectifier K(+), and slowly inactivating d-type K(+) conductances. The model is analyzed using nonlinear dynamical system theory. For small Na(+) window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, gd, and it is delayed for larger gd. As gd further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na(+) window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their gd and in the strength of their Na(+) window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction.
Variable-intercept panel model for deformation zoning of a super-high arch dam.
Shi, Zhongwen; Gu, Chongshi; Qin, Dong
2016-01-01
This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.
Paleoecology and high-resolution paleohydrology of a kettle peatland in upper Michigan
NASA Astrophysics Data System (ADS)
Booth, Robert K.; Jackson, Stephen T.; Gray, Catherine E. D.
2004-01-01
We investigated the developmental and hydrological history of a Sphagnum-dominated, kettle peatland in Upper Michigan using testate amoebae, plant macrofossils, and pollen. Our primary objective was to determine if the paleohydrological record of the peatland represents a record of past climate variability at subcentennial to millennial time scales. To assess the role of millennial-scale climate variability on peatland paleohydrology, we compared the timing of peatland and upland vegetation changes. To investigate the role of higher-frequency climate variability on peatland paleohydrology, we used testate amoebae to reconstruct a high-resolution, hydrologic history of the peatland for the past 5100 years, and compared this record to other regional records of paleoclimate and vegetation. Comparisons revealed coherent patterns of hydrological, vegetational, and climatic changes, suggesting that peatland paleohydrology responded to climate variability at millennial to sub-centennial time scales. Although ombrotrophic peatlands have been the focus of most high-resolution peatland paleoclimate research, paleohydrological records from Sphagnum-dominated, closed-basin peatlands record high-frequency and low-magnitude climatic changes and thus represent a significant source of unexplored paleoclimate data.
Chimenti, Ruth L.; Scholtes, Sara A.
2013-01-01
Many risk factors have been identified as contributing to the development or persistence of low back pain (LBP). However, the juxtaposition of both high and low levels of physical activity being associated with LBP reflects the complexity of the relationship between a risk factor and LBP. Moreover, not everyone with an identified risk factor, such as a movement pattern of increased lumbopelvic rotation, has LBP. Objective The purpose of this study was to examine differences in activity level and movement patterns between people with and people without chronic or recurrent LBP who participate in rotation-related sports. Design Case Case-control study. Setting University laboratory environment. Participants 52 people with chronic or recurrent LBP and 25 people without LBP who all play a rotation-related sport. Main Outcome Measures Participants completed self-report measures including the Baecke Habitual Activity Questionnaire and a questionnaire on rotation-related sports. A 3-dimensional motion-capture system was used to collect movement-pattern variables during 2 lower-limb-movement tests. Results Compared with people without LBP, people with LBP reported a greater difference between the sport subscore and an average work and leisure composite subscore on the Baecke Habitual Activity Questionnaire (F = 6.55, P = .01). There were no differences between groups in either rotation-related-sport participation or movement-pattern variables demonstrated during 2 lower-limb movement tests (P > .05 for all comparisons). Conclusions People with and people without LBP who regularly play a rotation-related sport differed in the amount and nature of activity participation but not in movement pattern variables. An imbalance between level of activity during sport and daily functions may contribute to the development or persistence of LBP in people who play a rotation-related sport. PMID:23295458
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Fu-Ting; Fu, Congbin; Qian, Yun
Two measures of intra-seasonal variability, indicated respectively by standard deviations (SD) and day-to-day (DTD) fluctuations denoted by absolute differences between adjacent 2-day periods, as well as their relationships with large-scale circulation patterns were investigated in China during 1962–2008 on the basis of homogenized daily temperature records from 549 local stations and reanalysis data. Our results show that both the SD and DTD of daily minimum temperatures (Tmin) in summer as well as the minimum and maximum temperatures in winter have been decreasing, while the daily maximum temperature (Tmax) variability in summer is fluctuating more, especially over southern China. In summer,more » an attribution analysis indicates that the intensity of the Western Pacific Subtropical High (WPSH) and high-level East Asian Subtropical Jet stream (EASJ) are positively correlated with both SD and DTD, but the correlation coefficients are generally greater with the SD than with the DTD of the daily maximum temperature, Tmax. In contrast, the location of the EASJ shows the opposite correlation pattern, with intensity regarding the correlation with both SD and DTD. In winter, the Arctic Oscillation (AO) is negatively correlated with both the SD and DTD of the daily minimum temperature, but its intra-seasonal variability exhibits good agreement with the SD of the Tmin. The Siberian High acts differently with respect to the SD and DTD of the Tmin, demonstrating a regionally consistent positive correlation with the SD. Overall, the large-scale circulation can well explain the intra-seasonal SD, but DTD fluctuations may be more local and impacted by local conditions, such as changes in the temperature itself, the land surface, and so on.« less
Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management
NASA Astrophysics Data System (ADS)
Beck, Scott M.; McHale, Melissa R.; Hess, George R.
2016-07-01
Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.
Gabriel, Florence C.; Szücs, Dénes
2014-01-01
Recent studies have indicated that people have a strong tendency to compare fractions based on constituent numerators or denominators. This is called componential processing. This study explored whether componential processing was preferred in tasks involving high stimuli variability and high contextual interference, when fractions could be compared based either on the holistic values of fractions or on their denominators. Here, stimuli variability referred to the fact that fractions were not monotonous but diversiform. Contextual interference referred to the fact that the processing of fractions was interfered by other stimuli. To our ends, three tasks were used. In Task 1, participants compared a standard fraction 1/5 to unit fractions. This task was used as a low stimuli variability and low contextual interference task. In Task 2 stimuli variability was increased by mixing unit and non-unit fractions. In Task 3, high contextual interference was created by incorporating decimals into fractions. The RT results showed that the processing patterns of fractions were very similar for adults and children. In task 1 and task 3, only componential processing was utilzied. In contrast, both holistic processing and componential processing were utilized in task 2. These results suggest that, if individuals are presented with the opportunity to perform componential processing, both adults and children will tend to do so, even if they are faced with high variability of fractions or high contextual interference. PMID:25249995
Zhang, Li; Fang, Qiaochu; Gabriel, Florence C; Szücs, Dénes
2014-01-01
Recent studies have indicated that people have a strong tendency to compare fractions based on constituent numerators or denominators. This is called componential processing. This study explored whether componential processing was preferred in tasks involving high stimuli variability and high contextual interference, when fractions could be compared based either on the holistic values of fractions or on their denominators. Here, stimuli variability referred to the fact that fractions were not monotonous but diversiform. Contextual interference referred to the fact that the processing of fractions was interfered by other stimuli. To our ends, three tasks were used. In Task 1, participants compared a standard fraction 1/5 to unit fractions. This task was used as a low stimuli variability and low contextual interference task. In Task 2 stimuli variability was increased by mixing unit and non-unit fractions. In Task 3, high contextual interference was created by incorporating decimals into fractions. The RT results showed that the processing patterns of fractions were very similar for adults and children. In task 1 and task 3, only componential processing was utilzied. In contrast, both holistic processing and componential processing were utilized in task 2. These results suggest that, if individuals are presented with the opportunity to perform componential processing, both adults and children will tend to do so, even if they are faced with high variability of fractions or high contextual interference.
Dynamics of forest herbivory: quest for pattern and principle.
William J. Mattson; Pekka Niemila; Matti Rossi
1996-01-01
Herbivory on woody plants is highly variable in both space and time. This proceedings addresses one of its root causes, the highly intricate and dynamic relationships that exist between most herbivores and their host plants. It emphasizes that the consequences of herbivory both to the consumer and to the producer plant often balance on a razor`s edge--depending on...
Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models
NASA Astrophysics Data System (ADS)
Schroeter, Serena; Hobbs, Will; Bindoff, Nathaniel L.
2017-03-01
The response of Antarctic sea ice to large-scale patterns of atmospheric variability varies according to sea ice sector and season. In this study, interannual atmosphere-sea ice interactions were explored using observations and reanalysis data, and compared with simulated interactions by models in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Simulated relationships between atmospheric variability and sea ice variability generally reproduced the observed relationships, though more closely during the season of sea ice advance than the season of sea ice retreat. Atmospheric influence on sea ice is known to be strongest during advance, and it appears that models are able to capture the dominance of the atmosphere during advance. Simulations of ocean-atmosphere-sea ice interactions during retreat, however, require further investigation. A large proportion of model ensemble members overestimated the relative importance of the Southern Annular Mode (SAM) compared with other modes of high southern latitude climate, while the influence of tropical forcing was underestimated. This result emerged particularly strongly during the season of sea ice retreat. The zonal patterns of the SAM in many models and its exaggerated influence on sea ice overwhelm the comparatively underestimated meridional influence, suggesting that simulated sea ice variability would become more zonally symmetric as a result. Across the seasons of sea ice advance and retreat, three of the five sectors did not reveal a strong relationship with a pattern of large-scale atmospheric variability in one or both seasons, indicating that sea ice in these sectors may be influenced more strongly by atmospheric variability unexplained by the major atmospheric modes, or by heat exchange in the ocean.
Bode, Antonio; Estévez, M Graciela; Varela, Manuel; Vilar, José A
2015-09-01
Phytoplankton is a sentinel of marine ecosystem change. Composed by many species with different life-history strategies, it rapidly responds to environment changes. An analysis of the abundance of 54 phytoplankton species in Galicia (NW Spain) between 1989 and 2008 to determine the main components of temporal variability in relation to climate and upwelling showed that most of this variability was stochastic, as seasonality and long term trends contributed to relatively small fractions of the series. In general, trends appeared as non linear, and species clustered in 4 groups according to the trend pattern but there was no defined pattern for diatoms, dinoflagellates or other groups. While, in general, total abundance increased, no clear trend was found for 23 species, 14 species decreased, 4 species increased during the early 1990s, and only 13 species showed a general increase through the series. In contrast, series of local environmental conditions (temperature, stratification, nutrients) and climate-related variables (atmospheric pressure indices, upwelling winds) showed a high fraction of their variability in deterministic seasonality and trends. As a result, each species responded independently to environmental and climate variability, measured by generalized additive models. Most species showed a positive relationship with nutrient concentrations but only a few showed a direct relationship with stratification and upwelling. Climate variables had only measurable effects on some species but no common response emerged. Because its adaptation to frequent disturbances, phytoplankton communities in upwelling ecosystems appear less sensitive to changes in regional climate than other communities characterized by short and well defined productive periods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Barn, Ruth; Rafferty, Daniel; Turner, Deborah E.; Woodburn, James
2012-01-01
Objective To determine within- and between-day reliability characteristics of electromyographic (EMG) activity patterns of selected lower leg muscles and kinematic variables in patients with rheumatoid arthritis (RA) and pes planovalgus. Methods Five patients with RA underwent gait analysis barefoot and shod on two occasions 1 week apart. Fine-wire (tibialis posterior [TP]) and surface EMG for selected muscles and 3D kinematics using a multi-segmented foot model was undertaken barefoot and shod. Reliability of pre-determined variables including EMG activity patterns and inter-segment kinematics were analysed using coefficients of multiple correlation, intraclass correlation coefficients (ICC) and the standard error of the measurement (SEM). Results Muscle activation patterns within- and between-day ranged from fair-to-good to excellent in both conditions. Discrete temporal and amplitude variables were highly variable across all muscle groups in both conditions but particularly poor for TP and peroneus longus. SEMs ranged from 1% to 9% of stance and 4% to 27% of maximum voluntary contraction; in most cases the 95% confidence interval crossed zero. Excellent within-day reliability was found for the inter-segment kinematics in both conditions. Between-day reliability ranged from fair-to-good to excellent for kinematic variables and all ICCs were excellent; the SEM ranged from 0.60° to 1.99°. Conclusion Multi-segmented foot kinematics can be reliably measured in RA patients with pes planovalgus. Serial measurement of discrete variables for TP and other selected leg muscles via EMG is not supported from the findings in this cohort of RA patients. Caution should be exercised when EMG measurements are considered to study disease progression or intervention effects. PMID:22721819
Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns
NASA Astrophysics Data System (ADS)
Kapsch, Marie-Luise; Skific, Natasa; Graversen, Rune G.; Tjernström, Michael; Francis, Jennifer A.
2018-05-01
The declining trend of Arctic September sea ice constitutes a significant change in the Arctic climate system. Large year-to-year variations are superimposed on this sea-ice trend, with the largest variability observed in the eastern Arctic Ocean. Knowledge of the processes important for this variability may lead to an improved understanding of seasonal and long-term changes. Previous studies suggest that transport of heat and moisture into the Arctic during spring enhances downward surface longwave radiation, thereby controlling the annual melt onset, setting the stage for the September ice minimum. In agreement with these studies, we find that years with a low September sea-ice concentration (SIC) are characterized by more persistent periods in spring with enhanced energy flux to the surface in forms of net longwave radiation plus turbulent fluxes, compared to years with a high SIC. Two main atmospheric circulation patterns related to these episodes are identified: one resembles the so-called Arctic dipole anomaly that promotes transport of heat and moisture from the North Pacific, whereas the other is characterized by negative geopotential height anomalies over the Arctic, favoring cyclonic flow from Siberia and the Kara Sea into the eastern Arctic Ocean. However, differences between years with low and high September SIC appear not to be due to different spring circulation patterns; instead it is the persistence and intensity of processes associated with these patterns that distinguish the two groups of anomalous years: Years with low September SIC feature episodes that are consistently stronger and more persistent than years with high SIC.
NASA Astrophysics Data System (ADS)
Silva, Carlos Batista; Silva, Maria Elisa Siqueira; Ambrizzi, Tércio
2017-07-01
This paper investigates possible linear relationships between climate, hydrology, and oceanic surface variability in the Pantanal region (in South America's central area), over interannual and interdecadal time ranges. In order to verify the mentioned relations, lagged correlation analysis and linear adjustment between river discharge at the Pantanal region and sea surface temperature were used. Composite analysis for atmospheric fields, air humidity flux divergence, and atmospheric circulation at low and high levels, for the period between 1970 and 2003, was analyzed. Results suggest that the river discharge in the Pantanal region is linearly associated with interdecadal and interannual oscillations in the Pacific and Atlantic oceans, making them good predictors to continental hydrological variables. Considering oceanic areas, 51 % of the annual discharge in the Pantanal region can be linearly explained by mean sea surface temperature (SST) in the Subtropical North Pacific, Tropical North Pacific, Extratropical South Pacific, and Extratropical North Atlantic over the period. Considering a forecast approach in seasonal scale, 66 % of the monthly discharge variance in Pantanal, 3 months ahead of SST, is explained by the oceanic variables, providing accuracy around 65 %. Annual discharge values in the Pantanal region are strongly related to the Pacific Decadal Oscillation (PDO) variability (with 52 % of linear correlation), making it possible to consider an interdecadal variability and a consequent subdivision of the whole period in three parts: 1st (1970-1977), 2nd (1978-1996), and 3rd (1997-2003) subperiods. The three subperiods coincide with distinct PDO phases: negative, positive, and negative, respectively. Convergence of humidity flux at low levels and the circulation pattern at high levels help to explain the drier and wetter subperiods. During the wetter 2nd subperiod, the air humidity convergence at low levels is much more evident than during the other two drier subperiods, which mostly show air humidity divergence. While the drier periods are particularly characterized by the strengthening of northerly wind over the center of South America, including the Pantanal region, the wetter period is characterized by its weakening. The circulation pattern at 850 hPa levels during the drier subperiods shows anticyclonic anomalies centered over east central South America. Also, the drier subperiods (1st and 3rd) are characterized by negative stream function anomalies over southeastern South America and adjacent South Atlantic, and the wetter subperiod is characterized by positive stream function anomalies. In the three subperiods, one can see mean atmospheric patterns associated with Rossby wave propagation coming from the South Pacific basin—similar to the Pacific South America pattern, but with reverse signals between the wetter and the drier periods. This result suggests a possible relationship between climatic patterns over southeastern South America regions and the Pacific conditions in a decadal scale.
Artes, Paul H; Hutchison, Donna M; Nicolela, Marcelo T; LeBlanc, Raymond P; Chauhan, Balwantray C
2005-07-01
To compare test results from second-generation Frequency-Doubling Technology perimetry (FDT2, Humphrey Matrix; Carl-Zeiss Meditec, Dublin, CA) and standard automated perimetry (SAP) in patients with glaucoma. Specifically, to examine the relationship between visual field sensitivity and test-retest variability and to compare total and pattern deviation probability maps between both techniques. Fifteen patients with glaucoma who had early to moderately advanced visual field loss with SAP (mean MD, -4.0 dB; range, +0.2 to -16.1) were enrolled in the study. Patients attended three sessions. During each session, one eye was examined twice with FDT2 (24-2 threshold test) and twice with SAP (Swedish Interactive Threshold Algorithm [SITA] Standard 24-2 test), in random order. We compared threshold values between FDT2 and SAP at test locations with similar visual field coordinates. Test-retest variability, established in terms of test-retest intervals and standard deviations (SDs), was investigated as a function of visual field sensitivity (estimated by baseline threshold and mean threshold, respectively). The magnitude of visual field defects apparent in total and pattern deviation probability maps were compared between both techniques by ordinal scoring. The global visual field indices mean deviation (MD) and pattern standard deviation (PSD) of FDT2 and SAP correlated highly (r > 0.8; P < 0.001). At test locations with high sensitivity (>25 dB with SAP), threshold estimates from FDT2 and SAP exhibited a close, linear relationship, with a slope of approximately 2.0. However, at test locations with lower sensitivity, the relationship was much weaker and ceased to be linear. In comparison with FDT2, SAP showed a slightly larger proportion of test locations with absolute defects (3.0% vs. 2.2% with SAP and FDT2, respectively, P < 0.001). Whereas SAP showed a significant increase in test-retest variability at test locations with lower sensitivity (P < 0.001), there was no relationship between variability and sensitivity with FDT2 (P = 0.46). In comparison with SAP, FDT2 exhibited narrower test-retest intervals at test locations with lower sensitivity (SAP thresholds <25 dB). A comparison of the total and pattern deviation maps between both techniques showed that the total deviation analyses of FDT2 may slightly underestimate the visual field loss apparent with SAP. However, the pattern-deviation maps of both instruments agreed well with each other. The test-retest variability of FDT2 is uniform over the measurement range of the instrument. These properties may provide advantages for the monitoring of patients with glaucoma that should be investigated in longitudinal studies.
Patterns of change in high frequency precipitation variability over North America.
Roque-Malo, Susana; Kumar, Praveen
2017-09-18
Precipitation variability encompasses attributes associated with the sequencing and duration of events of the full range of magnitudes. However, climate change studies have largely focused on extreme events. Using analyses of long-term weather station data, we show that high frequency events, such as fraction of wet days in a year and average duration of wet and dry periods, are undergoing significant changes across North America. Further, these changes are more prevalent and larger than those associated with extremes. Such trends also exist for events of a range of magnitudes. Existence of localized clusters with opposing trend to that of broader geographic variation illustrates the role of microclimate and other drivers of trends. Such hitherto unknown patterns over the entire North American continent have the potential to significantly inform our characterization of the resilience and vulnerability of a broad range of ecosystems and agricultural and socio-economic systems. They can also set new benchmarks for climate model assessments.
Spatial Variability of Dissolved Organic Carbon in Headwater Wetlands in Central Pennsylvania
NASA Astrophysics Data System (ADS)
Reichert-Eberhardt, A. J.; Wardrop, D.; Boyer, E. W.
2011-12-01
Dissolved organic carbon (DOC) is known to be of an important factor in many microbially mediated biochemical processes, such as denitrification, that occur in wetlands. The spatial variability of DOC within a wetland could impact the microbes that fuel these processes, which in turn can affect the ecosystem services provided by wetlands. However, the amount of spatial variability of DOC in wetlands is generally unknown. Furthermore, it is unknown how disturbance to wetlands can affect spatial variability of DOC. Previous research in central Pennsylvania headwater wetland soils has shown that wetlands with increased human disturbance had decreased heterogeneity in soil biochemistry. To address groundwater chemical variability 20 monitoring wells were installed in a random pattern in a 400 meter squared plot in a low-disturbance headwater wetland and a high-disturbance headwater wetland in central Pennsylvania. Water samples from these wells will be analyzed for DOC, dissolved inorganic carbon, nitrate, ammonia, and sulfate concentrations, as well as pH, conductivity, and temperature on a seasonal basis. It is hypothesized that there will be greater spatial variability of groundwater chemistry in the low disturbance wetland than the high disturbance wetland. This poster will present the initial data concerning DOC spatial variability in both the low and high impact headwater wetlands.
Do we really use rainfall observations consistent with reality in hydrological modelling?
NASA Astrophysics Data System (ADS)
Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves
2017-04-01
Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.
Inter-individual cognitive variability in children with Asperger's syndrome
Gonzalez-Gadea, Maria Luz; Tripicchio, Paula; Rattazzi, Alexia; Baez, Sandra; Marino, Julian; Roca, Maria; Manes, Facundo; Ibanez, Agustin
2014-01-01
Multiple studies have tried to establish the distinctive profile of individuals with Asperger's syndrome (AS). However, recent reports suggest that adults with AS feature heterogeneous cognitive profiles. The present study explores inter-individual variability in children with AS through group comparison and multiple case series analysis. All participants completed an extended battery including measures of fluid and crystallized intelligence, executive functions, theory of mind, and classical neuropsychological tests. Significant group differences were found in theory of mind and other domains related to global information processing. However, the AS group showed high inter-individual variability (both sub- and supra-normal performance) on most cognitive tasks. Furthermore, high fluid intelligence correlated with less general cognitive impairment, high cognitive flexibility, and speed of motor processing. In light of these findings, we propose that children with AS are characterized by a distinct, uneven pattern of cognitive strengths and weaknesses. PMID:25132817
Poulos, Helen M; Camp, Ann E
2010-04-01
The abundance and distribution of species reflect how the niche requirements of species and the dynamics of populations interact with spatial and temporal variation in the environment. This study investigated the influence of geographical variation in environmental site conditions on tree dominance and diversity patterns in three topographically dissected mountain ranges in west Texas, USA, and northern Mexico. We measured tree abundance and basal area using a systematic sampling design across the forested areas of three mountain ranges and related these data to a suite of environmental parameters derived from field and digital elevation model data. We employed cluster analysis, classification and regression trees (CART), and rarefaction to identify (1) the dominant forest cover types across the three study sites and (2) environmental influences on tree distribution and diversity patterns. Elevation, topographic position, and incident solar radiation were the major influences on tree dominance and diversity. Mesic valley bottoms hosted high-diversity vegetation types, while hotter and drier mid-slopes and ridgetops supported lower tree diversity. Valley bottoms and other topographic positions shared few species, indicating high species turnover at the landscape scale. Mountain ranges with high topographic complexity also had higher species richness, suggesting that geographical variability in environmental conditions was a major influence on tree diversity. This study stressed the importance of landscape- and regional-scale topographic variability as a key factor controlling vegetation pattern and diversity in southwestern North America.
Grace, Miriam; Hütt, Marc-Thorsten
2015-01-01
Spatiotemporal patterns often emerge from local interactions in a self-organizing fashion. In biology, the resulting patterns are also subject to the influence of the systematic differences between the system’s constituents (biological variability). This regulation of spatiotemporal patterns by biological variability is the topic of our review. We discuss several examples of correlations between cell properties and the self-organized spatiotemporal patterns, together with their relevance for biology. Our guiding, illustrative example will be spiral waves of cAMP in a colony of Dictyostelium discoideum cells. Analogous processes take place in diverse situations (such as cardiac tissue, where spiral waves occur in potentially fatal ventricular fibrillation) so a deeper understanding of this additional layer of self-organized pattern formation would be beneficial to a wide range of applications. One of the most striking differences between pattern-forming systems in physics or chemistry and those in biology is the potential importance of variability. In the former, system components are essentially identical with random fluctuations determining the details of the self-organization process and the resulting patterns. In biology, due to variability, the properties of potentially very few cells can have a driving influence on the resulting asymptotic collective state of the colony. Variability is one means of implementing a few-element control on the collective mode. Regulatory architectures, parameters of signaling cascades, and properties of structure formation processes can be "reverse-engineered" from observed spatiotemporal patterns, as different types of regulation and forms of interactions between the constituents can lead to markedly different correlations. The power of this biology-inspired view of pattern formation lies in building a bridge between two scales: the patterns as a collective state of a very large number of cells on the one hand, and the internal parameters of the single cells on the other. PMID:26562406
Liang, Jia Xin; Li, Xin Ju
2018-02-01
With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.
Pounds, Stan; Cheng, Cheng; Cao, Xueyuan; Crews, Kristine R.; Plunkett, William; Gandhi, Varsha; Rubnitz, Jeffrey; Ribeiro, Raul C.; Downing, James R.; Lamba, Jatinder
2009-01-01
Motivation: In some applications, prior biological knowledge can be used to define a specific pattern of association of multiple endpoint variables with a genomic variable that is biologically most interesting. However, to our knowledge, there is no statistical procedure designed to detect specific patterns of association with multiple endpoint variables. Results: Projection onto the most interesting statistical evidence (PROMISE) is proposed as a general procedure to identify genomic variables that exhibit a specific biologically interesting pattern of association with multiple endpoint variables. Biological knowledge of the endpoint variables is used to define a vector that represents the biologically most interesting values for statistics that characterize the associations of the endpoint variables with a genomic variable. A test statistic is defined as the dot-product of the vector of the observed association statistics and the vector of the most interesting values of the association statistics. By definition, this test statistic is proportional to the length of the projection of the observed vector of correlations onto the vector of most interesting associations. Statistical significance is determined via permutation. In simulation studies and an example application, PROMISE shows greater statistical power to identify genes with the interesting pattern of associations than classical multivariate procedures, individual endpoint analyses or listing genes that have the pattern of interest and are significant in more than one individual endpoint analysis. Availability: Documented R routines are freely available from www.stjuderesearch.org/depts/biostats and will soon be available as a Bioconductor package from www.bioconductor.org. Contact: stanley.pounds@stjude.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19528086
Ambulatory blood pressure profiles in familial dysautonomia.
Goldberg, Lior; Bar-Aluma, Bat-El; Krauthammer, Alex; Efrati, Ori; Sharabi, Yehonatan
2018-02-12
Familial dysautonomia (FD) is a rare genetic disease that involves extreme blood pressure fluctuations secondary to afferent baroreflex failure. The diurnal blood pressure profile, including the average, variability, and day-night difference, may have implications for long-term end organ damage. The purpose of this study was to describe the circadian pattern of blood pressure in the FD population and relationships with renal and pulmonary function, use of medications, and overall disability. We analyzed 24-h ambulatory blood pressure monitoring recordings in 22 patients with FD. Information about medications, disease severity, renal function (estimated glomerular filtration, eGFR), pulmonary function (forced expiratory volume in 1 s, FEV1) and an index of blood pressure variability (standard deviation of systolic pressure) were analyzed. The mean (± SEM) 24-h blood pressure was 115 ± 5.6/72 ± 2.0 mmHg. The diurnal blood pressure variability was high (daytime systolic pressure standard deviation 22.4 ± 1.5 mmHg, nighttime 17.2 ± 1.6), with a high frequency of a non-dipping pattern (16 patients, 73%). eGFR, use of medications, FEV1, and disability scores were unrelated to the degree of blood pressure variability or to dipping status. This FD cohort had normal average 24-h blood pressure, fluctuating blood pressure, and a high frequency of non-dippers. Although there was evidence of renal dysfunction based on eGFR and proteinuria, the ABPM profile was unrelated to the measures of end organ dysfunction or to reported disability.
Disturbance History,Spatial Variability, and Patterns of Biodiversity
NASA Astrophysics Data System (ADS)
Bendix, J.; Wiley, J. J.; Commons, M.
2012-12-01
The intermediate disturbance hypothesis predicts that species diversity will be maximized in environments experiencing intermediate intensity disturbance, after an intermediate timespan. Because many landscapes comprise mosaics with complex disturbance histories, the theory implies that each patch in those mosaics should have a distinct level of diversity reflecting combined impact of the magnitude of disturbance and the time since it occurred. We modeled the changing patterns of species richness across a landscape experiencing varied scenarios of simulated disturbance. Model outputs show that individual landscape patches have highly variable species richness through time, with the details reflecting the timing, intensity and sequence of their disturbance history. When the results are mapped across the landscape, the resulting temporal and spatial complexity illustrates both the contingent nature of diversity and the danger of generalizing about the impacts of disturbance.
Can Geostatistical Models Represent Nature's Variability? An Analysis Using Flume Experiments
NASA Astrophysics Data System (ADS)
Scheidt, C.; Fernandes, A. M.; Paola, C.; Caers, J.
2015-12-01
The lack of understanding in the Earth's geological and physical processes governing sediment deposition render subsurface modeling subject to large uncertainty. Geostatistics is often used to model uncertainty because of its capability to stochastically generate spatially varying realizations of the subsurface. These methods can generate a range of realizations of a given pattern - but how representative are these of the full natural variability? And how can we identify the minimum set of images that represent this natural variability? Here we use this minimum set to define the geostatistical prior model: a set of training images that represent the range of patterns generated by autogenic variability in the sedimentary environment under study. The proper definition of the prior model is essential in capturing the variability of the depositional patterns. This work starts with a set of overhead images from an experimental basin that showed ongoing autogenic variability. We use the images to analyze the essential characteristics of this suite of patterns. In particular, our goal is to define a prior model (a minimal set of selected training images) such that geostatistical algorithms, when applied to this set, can reproduce the full measured variability. A necessary prerequisite is to define a measure of variability. In this study, we measure variability using a dissimilarity distance between the images. The distance indicates whether two snapshots contain similar depositional patterns. To reproduce the variability in the images, we apply an MPS algorithm to the set of selected snapshots of the sedimentary basin that serve as training images. The training images are chosen from among the initial set by using the distance measure to ensure that only dissimilar images are chosen. Preliminary investigations show that MPS can reproduce fairly accurately the natural variability of the experimental depositional system. Furthermore, the selected training images provide process information. They fall into three basic patterns: a channelized end member, a sheet flow end member, and one intermediate case. These represent the continuum between autogenic bypass or erosion, and net deposition.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2011-01-01
Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.
Effects of Topography-driven Micro-climatology on Evaporation
NASA Astrophysics Data System (ADS)
Adams, D. D.; Boll, J.; Wagenbrenner, N. S.
2017-12-01
The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.
NASA Astrophysics Data System (ADS)
Rice, Joshua S.; Emanuel, Ryan E.; Vose, James M.
2016-09-01
As human activity and climate variability alter the movement of water through the environment the need to better understand hydrologic cycle responses to these changes has grown. A reasonable starting point for gaining such insight is studying changes in streamflow given the importance of streamflow as a source of renewable freshwater. Using a wavelet assisted method we analyzed trends in the magnitude of annual scale streamflow variability from 967 watersheds in the continental U.S. (CONUS) over a 70 year period (1940-2009). Decreased annual variability was the dominant pattern at the CONUS scale. Ecoregion scale results agreed with the CONUS pattern with the exception of two ecoregions closely divided between increases and decreases and one where increases dominated. A comparison of trends in reference and non-reference watersheds indicated that trend magnitudes in non-reference watersheds were significantly larger than those in reference watersheds. Boosted regression tree (BRT) models were used to study the relationship between watershed characteristics and the magnitude of trends in streamflow. At the CONUS scale, the balance between precipitation and evaporative demand, and measures of geographic location were of high relative importance. Relationships between the magnitude of trends and watershed characteristics at the ecoregion scale exhibited differences from the CONUS results and substantial variability was observed among ecoregions. Additionally, the methodology used here has the potential to serve as a robust framework for top-down, data driven analyses of the relationships between changes in the hydrologic cycle and the spatial context within which those changes occur.
Predictive model for CO2 generation and decay in building envelopes
NASA Astrophysics Data System (ADS)
Aglan, Heshmat A.
2003-01-01
Understanding carbon dioxide generation and decay patterns in buildings with high occupancy levels is useful to identify their indoor air quality, air change rates, percent fresh air makeup, occupancy pattern, and how a variable air volume system to off-set undesirable CO2 level can be modulated. A mathematical model governing the generation and decay of CO2 in building envelopes with forced ventilation due to high occupancy is developed. The model has been verified experimentally in a newly constructed energy efficient healthy house. It was shown that the model accurately predicts the CO2 concentration at any time during the generation and decay processes.
Geometrical E-beam proximity correction for raster scan systems
NASA Astrophysics Data System (ADS)
Belic, Nikola; Eisenmann, Hans; Hartmann, Hans; Waas, Thomas
1999-04-01
High pattern fidelity is a basic requirement for the generation of masks containing sub micro structures and for direct writing. Increasing needs mainly emerging from OPC at mask level and x-ray lithography require a correction of the e-beam proximity effect. The most part of e-beam writers are raster scan system. This paper describes a new method for geometrical pattern correction in order to provide a correction solution for e-beam system that are not able to apply variable doses.
Wind effect on salt transport variability in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Sandeep, K. K.; Pant, V.
2017-12-01
The Bay of Bengal (BoB) exhibits large spatial variability in sea surface salinity (SSS) pattern caused by its unique hydrological, meteorological and oceanographical characteristics. This SSS variability is largely controlled by the seasonally reversing monsoon winds and the associated currents. Further, the BoB receives substantial freshwater inputs through excess precipitation over evaporation and river discharge. Rivers like Ganges, Brahmaputra, Mahanadi, Krishna, Godavari, and Irawwady discharge annually a freshwater volume in range between 1.5 x 1012 and 1.83 x 1013 m3 into the bay. A major volume of this freshwater input to the bay occurs during the southwest monsoon (June-September) period. In the present study, a relative role of winds in the SSS variability in the bay is investigated by using an eddy-resolving three dimensional Regional Ocean Modeling System (ROMS) numerical model. The model is configured with realistic bathymetry, coastline of study region and forced with daily climatology of atmospheric variables. River discharges from the major rivers are distributed in the model grid points representing their respective geographic locations. Salt transport estimate from the model simulation for realistic case are compared with the standard reference datasets. Further, different experiments were carried out with idealized surface wind forcing representing the normal, low, high, and very high wind speed conditions in the bay while retaining the realistic daily varying directions for all the cases. The experimental simulations exhibit distinct dispersal patterns of the freshwater plume and SSS in different experiments in response to the idealized winds. Comparison of the meridional and zonal surface salt transport estimated for each experiment showed strong seasonality with varying magnitude in the bay with a maximum spatial and temporal variability in the western and northern parts of the BoB.
400 Years of summer hydroclimate from stable isotopes in Iberian trees
NASA Astrophysics Data System (ADS)
Andreu-Hayles, Laia; Ummenhofer, Caroline C.; Barriendos, Mariano; Schleser, Gerhard H.; Helle, Gerhard; Leuenberger, Markus; Gutiérrez, Emilia; Cook, Edward R.
2017-07-01
Tree rings are natural archives that annually record distinct types of past climate variability depending on the parameters measured. Here, we use ring-width and stable isotopes in cellulose of trees from the northwestern Iberian Peninsula (IP) to understand regional summer hydroclimate over the last 400 years and the associated atmospheric patterns. Correlations between tree rings and climate data demonstrate that isotope signatures in the targeted Iberian pine forests are very sensitive to water availability during the summer period, and are mainly controlled by stomatal conductance. Non-linear methods based on extreme events analysis allow for capturing distinct seasonal climatic variability recorded by tree-ring parameters and asymmetric signals of the associated atmospheric features. Moreover, years with extreme high (low) values in the tree-ring records were characterised by coherent large-scale atmospheric circulation patterns with reduced (enhanced) moisture transport onto the northwestern IP. These analyses of extremes revealed that high/low proxy values do not necessarily correspond to mirror images in the atmospheric anomaly patterns, suggesting different drivers of these patterns and the corresponding signature recorded in the proxies. Regional hydroclimate features across the broader IP and western Europe during extreme wet/dry summers detected by the northwestern IP trees compare favourably to independent multicentury sea level pressure and drought reconstructions for Europe. Historical records also validate our findings that attribute non-linear moisture signals recorded by extreme tree-ring values to distinct large-scale atmospheric patterns and allow for 400-year reconstructions of the frequency of occurrence of extreme conditions in late spring and summer hydroclimate.
400 years of summer hydroclimate from stable isotopes in Iberian trees
NASA Astrophysics Data System (ADS)
Andreu-Hayles, Laia; Ummenhofer, Caroline C.; Barriendos, Mariano; Schleser, Gerhard H.; Helle, Gerhard; Leuenberger, Markus; Gutierrez, Emilia; Cook, Edward R.
2017-04-01
Tree rings are natural archives that annually record distinct types of past climate variability depending on the parameters measured. Here, we use ring-width and stable isotopes in cellulose of trees from the northwestern Iberian Peninsula (IP) to understand regional summer hydroclimate over the last 400 years and the associated atmospheric patterns. Correlations between tree rings and climate data demonstrate that isotope signatures in the targeted Iberian pine forests are very sensitive to water availability during the summer period, and are mainly controlled by stomatal conductance. Non-linear methods based on extreme events analysis allow for capturing distinct seasonal climatic variability recorded by tree-ring parameters and asymmetric signals of the associated atmospheric features. Moreover, years with extreme high (low) values in the tree-ring records were characterised by coherent large-scale atmospheric circulation patterns with reduced (enhanced) moisture transport onto the northwestern IP. These analyses of extremes revealed that high/low proxy values do not necessarily correspond to mirror images in the atmospheric anomaly patterns, suggesting different drivers of these patterns and the corresponding signature recorded in the proxies. Regional hydroclimate features across the broader IP and western Europe during extreme wet/dry summers detected by the northwestern IP trees compare favourably to an independent multicentury sea level pressure and drought reconstruction for Europe. Historical records also validate our findings that attribute non-linear moisture signals recorded by extreme tree-ring values to distinct large-scale atmospheric patterns and allow for 400-yr reconstructions of the frequency of occurrence of extreme conditions in summer hydroclimate. We will discuss how the results for Lillo compare with other records.
NASA Astrophysics Data System (ADS)
Jordanić, Mislav; Rojas-Martínez, Mónica; Mañanas, Miguel Angel; Francesc Alonso, Joan
2016-08-01
Objective. The development of modern assistive and rehabilitation devices requires reliable and easy-to-use methods to extract neural information for control of devices. Group-specific pattern recognition identifiers are influenced by inter-subject variability. Based on high-density EMG (HD-EMG) maps, our research group has already shown that inter-subject muscle activation patterns exist in a population of healthy subjects. The aim of this paper is to analyze muscle activation patterns associated with four tasks (flexion/extension of the elbow, and supination/pronation of the forearm) at three different effort levels in a group of patients with incomplete Spinal Cord Injury (iSCI). Approach. Muscle activation patterns were evaluated by the automatic identification of these four isometric tasks along with the identification of levels of voluntary contractions. Two types of classifiers were considered in the identification: linear discriminant analysis and support vector machine. Main results. Results show that performance of classification increases when combining features extracted from intensity and spatial information of HD-EMG maps (accuracy = 97.5%). Moreover, when compared to a population with injuries at different levels, a lower variability between activation maps was obtained within a group of patients with similar injury suggesting stronger task-specific and effort-level-specific co-activation patterns, which enable better prediction results. Significance. Despite the challenge of identifying both the four tasks and the three effort levels in patients with iSCI, promising results were obtained which support the use of HD-EMG features for providing useful information regarding motion and force intention.
New insight on intergenerational attachment from a relationship-based analysis.
Bailey, Heidi N; Tarabulsy, George M; Moran, Greg; Pederson, David R; Bento, Sandi
2017-05-01
Research on attachment transmission has focused on variable-centered analyses, where hypotheses are tested by examining linear associations between variables. The purpose of this study was to apply a relationship-centered approach to data analysis, where adult states of mind, maternal sensitivity, and infant attachment were conceived as being three components of a single, intergenerational relationship. These variables were assessed in 90 adolescent and 99 adult mother-infant dyads when infants were 12 months old. Initial variable-centered analyses replicated the frequently observed associations between these three core attachment variables. Relationship-based, latent class analyses then revealed that the most common pattern among young mother dyads featured maternal unresolved trauma, insensitive interactive behavior, and disorganized infant attachment (61%), whereas the most prevalent adult mother dyad relationship pattern involved maternal autonomy, sensitive maternal behavior, and secure infant attachment (59%). Three less prevalent relationship patterns were also observed. Moderation analyses revealed that the adolescent-adult mother distinction differentiated between secure and disorganized intergenerational relationship patterns, whereas experience of traumatic events distinguished between disorganized and avoidant patterns. Finally, socioeconomic status distinguished between avoidant and secure patterns. Results emphasize the value of a relationship-based approach, adding an angle of understanding to the study of attachment transmission.
Dyslipidemia patterns are differentially associated with dietary factors.
Song, SuJin; Paik, Hee Young; Park, Minseon; Song, YoonJu
2016-08-01
Dyslipidemia, a strong predictor of cardiovascular diseases, is prevalent among Korean adults, but little is known about the associations between overall lipid profiles and dietary factors. We identified dyslipidemia patterns among lipid indicators and examined dietary factors associated with dyslipidemia patterns in Korean adults. Subjects in this cross-sectional study were recruited from the Family Medicine Division or the Health Examination Center of the general hospital in Seoul between 2010 and 2012. Measurements of biochemical and dietary variables repeated three times were collected from a total of 138 subjects at 3- to 4-month intervals when the subjects visited the hospital. Dietary intake data were obtained using 24-h recalls. In order to estimate typical values for biochemical and dietary variables, the averages of repeated measures for each subject were calculated. To identify dyslipidemia patterns, factor analysis was used based on total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), triglycerides (TG), and high-density lipoprotein cholesterol (HDLC). Two dyslipidemia patterns, (1) TC & LDLC and (2) TG & HDLC, were identified. Dietary fat and cholesterol intakes were positively associated with the TC & LDLC pattern score, but not associated with the TG & HDLC pattern score. The TG & HDLC pattern was significantly associated with low intakes of calcium, potassium, milk and dairy products. Two dyslipidemia patterns were associated with dietary factors in Korean adults. Further studies should investigate specific dietary recommendations according to lipid profiles in the prevention and management of dyslipidemia in Korea. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Regular Patterns in Cerebellar Purkinje Cell Simple Spike Trains
Shin, Soon-Lim; Hoebeek, Freek E.; Schonewille, Martijn; De Zeeuw, Chris I.; Aertsen, Ad; De Schutter, Erik
2007-01-01
Background Cerebellar Purkinje cells (PC) in vivo are commonly reported to generate irregular spike trains, documented by high coefficients of variation of interspike-intervals (ISI). In strong contrast, they fire very regularly in the in vitro slice preparation. We studied the nature of this difference in firing properties by focusing on short-term variability and its dependence on behavioral state. Methodology/Principal Findings Using an analysis based on CV2 values, we could isolate precise regular spiking patterns, lasting up to hundreds of milliseconds, in PC simple spike trains recorded in both anesthetized and awake rodents. Regular spike patterns, defined by low variability of successive ISIs, comprised over half of the spikes, showed a wide range of mean ISIs, and were affected by behavioral state and tactile stimulation. Interestingly, regular patterns often coincided in nearby Purkinje cells without precise synchronization of individual spikes. Regular patterns exclusively appeared during the up state of the PC membrane potential, while single ISIs occurred both during up and down states. Possible functional consequences of regular spike patterns were investigated by modeling the synaptic conductance in neurons of the deep cerebellar nuclei (DCN). Simulations showed that these regular patterns caused epochs of relatively constant synaptic conductance in DCN neurons. Conclusions/Significance Our findings indicate that the apparent irregularity in cerebellar PC simple spike trains in vivo is most likely caused by mixing of different regular spike patterns, separated by single long intervals, over time. We propose that PCs may signal information, at least in part, in regular spike patterns to downstream DCN neurons. PMID:17534435
Bousquet, J; Devillier, P; Anto, J M; Bewick, M; Haahtela, T; Arnavielhe, S; Bedbrook, A; Murray, R; van Eerd, M; Fonseca, J A; Morais Almeida, M; Todo Bom, A; Menditto, E; Passalacqua, G; Stellato, C; Triggiani, M; Ventura, M T; Vezzani, G; Annesi-Maesano, I; Bourret, R; Bosse, I; Caimmi, D; Cartier, C; Demoly, P; Just, J; Portejoie, F; Siroux, V; Viart, F; Bergmann, K C; Keil, T; Klimek, L; Mösges, R; Pfaar, O; Shamai, S; Zuberbier, T; Mullol, J; Valero, A; Spranger, O; Tomazic, P V; Kowalski, M L; Kuna, P; Kupczyk, M; Raciborski, F; Samolinski, B; Toppila-Salmi, S K; Valovirta, E; Cruz, A A; Sarquis-Serpa, F; da Silva, J; Stelmach, R; Larenas-Linnemann, D; Rodriguez Gonzalez, M; Burguete Cabañas, M T; Kvedariene, V; Valiulis, A; Chavannes, N H; Fokkens, W J; Ryan, D; Sheikh, A; Bachert, C; Hellings, P W; VandenPlas, O; Ballardini, N; Kull, I; Melén, E; Westman, M; Wickman, M; Bindslev-Jensen, C; Eller, E; Bosnic-Anticevich, S; O'Hehir, R E; Agache, I; Bieber, T; Casale, T; Gemicioğlu, B; Ivancevich, J C; De Vries, G; Sorensen, M; Yorgancioglu, A; Laune, D
2018-03-22
Multimorbidity in allergic airway diseases is well known, but no data exist about the daily dynamics of symptoms and their impact on work. To better understand this, we aimed to assess the presence and control of daily allergic multimorbidity (asthma, conjunctivitis, rhinitis) and its impact on work productivity using a mobile technology, the Allergy Diary. We undertook a 1-year prospective observational study in which 4 210 users and 32 585 days were monitored in 19 countries. Five visual analogue scales (VAS) assessed the daily burden of the disease (i.e., global evaluation, nose, eyes, asthma and work). Visual analogue scale levels <20/100 were categorized as "Low" burden and VAS levels ≥50/100 as "High" burden. Visual analogue scales global measured levels assessing the global control of the allergic disease were significantly associated with allergic multimorbidity. Eight hypothesis-driven patterns were defined based on "Low" and "High" VAS levels. There were <0.2% days of Rhinitis Low and Asthma High or Conjunctivitis High patterns. There were 5.9% days with a Rhinitis High-Asthma Low pattern. There were 1.7% days with a Rhinitis High-Asthma High-Conjunctivitis Low pattern. A novel Rhinitis High-Asthma High-Conjunctivitis High pattern was identified in 2.9% days and had the greatest impact on uncontrolled VAS global measured and impaired work productivity. Work productivity was significantly correlated with VAS global measured levels. In a novel approach examining daily symptoms with mobile technology, we found considerable intra-individual variability of allergic multimorbidity including a previously unrecognized extreme pattern of uncontrolled multimorbidity. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
Arnold, Megan A; Newland, M Christopher
2018-06-16
Behavioral inflexibility is often assessed using reversal learning tasks, which require a relatively low degree of response variability. No studies have assessed sensitivity to reinforcement contingencies that specifically select highly variable response patterns in mice, let alone in models of neurodevelopmental disorders involving limited response variation. Operant variability and incremental repeated acquisition (IRA) were used to assess unique aspects of behavioral variability of two mouse strains: BALB/c, a model of some deficits in ASD, and C57Bl/6. On the operant variability task, BALB/c mice responded more repetitively during adolescence than C57Bl/6 mice when reinforcement did not require variability but responded more variably when reinforcement required variability. During IRA testing in adulthood, both strains acquired an unchanging, performance sequence equally well. Strain differences emerged, however, after novel learning sequences began alternating with the performance sequence: BALB/c mice substantially outperformed C57Bl/6 mice. Using litter-mate controls, it was found that adolescent experience with variability did not affect either learning or performance on the IRA task in adulthood. These findings constrain the use of BALB/c mice as a model of ASD, but once again reveal this strain is highly sensitive to reinforcement contingencies and they are fast and robust learners. Copyright © 2018. Published by Elsevier B.V.
Global linkages between teleconnection patterns and the terrestrial biosphere
NASA Astrophysics Data System (ADS)
Dahlin, Kyla M.; Ault, Toby R.
2018-07-01
Interannual variability in the global carbon cycle is largely due to variations in carbon uptake by terrestrial ecosystems, yet linkages between climate variability and variability in the terrestrial carbon cycle are not well understood at the global scale. Using a 30-year satellite record of semi-monthly leaf area index (LAI), we show that four modes of climate variability - El Niño/Southern Oscillation, the North Atlantic Oscillation, the Atlantic Meridional Mode, and the Indian Ocean Dipole Mode - strongly impact interannual vegetation growth patterns, with 68% of the land surface impacted by at least one of these teleconnection patterns, yet the spatial distribution of these impacts is heterogeneous. Considering the patterns' impacts by biome, none has an exclusively positive or negative relationship with LAI. Our findings imply that future changes in the frequency and/or magnitude of teleconnection patterns will lead to diverse changes to the terrestrial biosphere and the global carbon cycle.
Patterns of streamflow variability are likely to be a major organizing feature of the habitat template for stream fishes. Functional organization of stream communities has been linked to streamflow, especially to patterns of flow variability that describe the physical disturbanc...
Patterns of streamflow variability are likely to be a major organizing feature of the habitat template for stream fishes. Ecological organization of stream communities has been linked to streamflow, especially to patterns of flow variability that describe the physical disturbanc...
EPA has identified respirable particulate matter (PM) as a significant threat to human health, particularly in the elderly, in children, and in persons with respiratory disease. However, deposition of PM in the respiratory system is highly variable, depending upon particle chara...
Concurrent temporal stability of the apparent electrical conductivity and soil water content
USDA-ARS?s Scientific Manuscript database
Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...
Lake Superior: Nearshore Variability and a Landscape Driver Concept
High spatial variation is well known to exist in water quality parameters of the Great Lakes nearshore, however strong patterns for extended reaches are also observed and found to be robust across a seasonal time frame. Less is known about robustness of inter-annual variation wi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.
2014-02-15
We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.
Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard
2014-02-01
We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.
Dhingra, R. R.; Jacono, F. J.; Fishman, M.; Loparo, K. A.; Rybak, I. A.
2011-01-01
Physiological rhythms, including respiration, exhibit endogenous variability associated with health, and deviations from this are associated with disease. Specific changes in the linear and nonlinear sources of breathing variability have not been investigated. In this study, we used information theory-based techniques, combined with surrogate data testing, to quantify and characterize the vagal-dependent nonlinear pattern variability in urethane-anesthetized, spontaneously breathing adult rats. Surrogate data sets preserved the amplitude distribution and linear correlations of the original data set, but nonlinear correlation structure in the data was removed. Differences in mutual information and sample entropy between original and surrogate data sets indicated the presence of deterministic nonlinear or stochastic non-Gaussian variability. With vagi intact (n = 11), the respiratory cycle exhibited significant nonlinear behavior in templates of points separated by time delays ranging from one sample to one cycle length. After vagotomy (n = 6), even though nonlinear variability was reduced significantly, nonlinear properties were still evident at various time delays. Nonlinear deterministic variability did not change further after subsequent bilateral microinjection of MK-801, an N-methyl-d-aspartate receptor antagonist, in the Kölliker-Fuse nuclei. Reversing the sequence (n = 5), blocking N-methyl-d-aspartate receptors bilaterally in the dorsolateral pons significantly decreased nonlinear variability in the respiratory pattern, even with the vagi intact, and subsequent vagotomy did not change nonlinear variability. Thus both vagal and dorsolateral pontine influences contribute to nonlinear respiratory pattern variability. Furthermore, breathing dynamics of the intact system are mutually dependent on vagal and pontine sources of nonlinear complexity. Understanding the structure and modulation of variability provides insight into disease effects on respiratory patterning. PMID:21527661
Typology of emergent eating patterns in early childhood.
Hittner, James B; Faith, Myles S
2011-12-01
The stability of eating patterns from infancy through childhood is largely unknown. This study identified subgroups of children based on emergent eating patterns from ages 1 to 3 years and examined differences between groups in demographic, anthropometric and temperamental variables. We conducted secondary analyses of 262 boys and 225 girls from the Colorado Adoption Project. Three eating styles (Reactivity to Food, Predictable Appetite, Distractibility at Mealtime) and five temperaments were assessed at ages 1 and 3 years. Weight and height (length) were assessed on children and mothers. Correlations examined the stability of eating patterns, cluster analysis identified subgroups of emergent eating styles, and analysis of variance identified variables differentiating the derived subgroups. Eating styles were moderately stable over time, although all increased on average. Four subgroups were identified: Diet Expanding and Preference Establishing Eaters (37%), Emerging Reactive Tendency Eaters (23%), Emerging Food-Indifferent and Non-Fussy Eaters (31%), and Emerging High-Reactive and Fussy Eaters (9%). The subgroups differed in year 1 Wt/L and Reaction to Food, and year 1-to-3 changes in Emotionality and Reaction to Food. Four emergent eating patterns were identified. How these subgroups of children differ in later weight and health trajectories warrants research. Copyright © 2011 Elsevier Ltd. All rights reserved.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high–low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. PMID:25146374
Latorre-Román, P Á; García Pinillos, F; Bujalance-Moreno, P; Soto-Hermoso, V M
2017-07-01
The main purpose of this study was to evaluate running kinematic characteristics and foot strike patterns (FSP) during early and late stages of actual and common high-intensity intermittent training (HIIT): 5 × 2000 m with 120-s recovery between runs. Thirteen healthy, elite, highly trained male endurance runners participated in this study. They each had a personal record in the half-marathon of 70 ± 2.24 min, and each had a minimum experience of 4 years of training and competition. Heart rate (HR) and rate of perceived exertion (RPE) were monitored during HIIT. High levels of exhaustion were reached by the athletes during HIIT (HRpeak: 174.30 bpm; RPE: 17.23). There was a significant increase of HRpeak and RPE during HIIT; nevertheless, time for each run remained unchanged. A within-protocol paired t-test (first vs. last run) revealed no significant changes (P ≥ 0.05) in kinematics variables and FSP variables during HIIT. There were no substantial changes on kinematics and FSP characteristics in endurance runners after fatigue induced by a HIIT. Only the minimum ankle alignment showed a significant change. The author suggests that these results might be due to both the high athletic level of participants and their experience in HIIT.
Tappan, G. Gray; Wood, Lynette; Moore, Donald G.
1993-01-01
Seasonal herbaceous vegetation production on Senegal's native rangelands exhibits high spatial and temporal variability. This variability can be monitored using normalized difference vegetation index (NDVI) data computed from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) image data. Although annual fluctuations in rainfall account for some of the variability, numerous long-term production patterns are evident in the AVHRR time-series data. Different n productivity reflect variations in the region's climate, topography, soils, and land use. Areas of overgrazing and intensive cultivation have caused long-term soil and vegetation degradation. Rangelands of high and low productivity, and degraded rangelands were identified using NDVI. Time-series image data from 1987 though 1992 were used to map relative rangeland productivity. The results were compared to detailed resource maps on soils, vegetation and land use. Much of the variation in rangeland productivity correlated well to the known distribution of resources. The study developed an approach that identified a number of areas of degraded soils and low vegetation production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Mather, Barry A
A library of load variability classes is created to produce scalable synthetic data sets using historical high-speed raw data. These data are collected from distribution monitoring units connected at the secondary side of a distribution transformer. Because of the irregular patterns and large volume of historical high-speed data sets, the utilization of current load characterization and modeling techniques are challenging. Multi-resolution analysis techniques are applied to extract the necessary components and eliminate the unnecessary components from the historical high-speed raw data to create the library of classes, which are then utilized to create new synthetic load data sets. A validationmore » is performed to ensure that the synthesized data sets contain the same variability characteristics as the training data sets. The synthesized data sets are intended to be utilized in quasi-static time-series studies for distribution system planning studies on a granular scale, such as detailed PV interconnection studies.« less
Ishida, Sachiko; Matsu-ura, Toru; Fukami, Kiyoko; Michikawa, Takayuki; Mikoshiba, Katsuhiko
2014-01-01
A uniform extracellular stimulus triggers cell-specific patterns of Ca2+ signals, even in genetically identical cell populations. However, the underlying mechanism that generates the cell-to-cell variability remains unknown. We monitored cytosolic inositol 1,4,5-trisphosphate (IP3) concentration changes using a fluorescent IP3 sensor in single HeLa cells showing different patterns of histamine-induced Ca2+ oscillations in terms of the time constant of Ca2+ spike amplitude decay and the Ca2+ oscillation frequency. HeLa cells stimulated with histamine exhibited a considerable variation in the temporal pattern of Ca2+ signals and we found that there were cell-specific IP3 dynamics depending on the patterns of Ca2+ signals. RT-PCR and western blot analyses showed that phospholipase C (PLC)-β1, -β3, -β4, -γ1, -δ3 and -ε were expressed at relatively high levels in HeLa cells. Small interfering RNA-mediated silencing of PLC isozymes revealed that PLC-β1 and PLC-β4 were specifically involved in the histamine-induced IP3 increases in HeLa cells. Modulation of IP3 dynamics by knockdown or overexpression of the isozymes PLC-β1 and PLC-β4 resulted in specific changes in the characteristics of Ca2+ oscillations, such as the time constant of the temporal changes in the Ca2+ spike amplitude and the Ca2+ oscillation frequency, within the range of the cell-to-cell variability found in wild-type cell populations. These findings indicate that the heterogeneity in the process of IP3 production, rather than IP3-induced Ca2+ release, can cause cell-to-cell variability in the patterns of Ca2+ signals and that PLC-β1 and PLC-β4 contribute to generate cell-specific Ca2+ signals evoked by G protein-coupled receptor stimulation. PMID:24475116
Scaling Linguistic Characterization of Precipitation Variability
NASA Astrophysics Data System (ADS)
Primo, C.; Gutierrez, J. M.
2003-04-01
Rainfall variability is influenced by changes in the aggregation of daily rainfall. This problem is of great importance for hydrological, agricultural and ecological applications. Rainfall averages, or accumulations, are widely used as standard climatic parameters. However different aggregation schemes may lead to the same average or accumulated values. In this paper we present a fractal method to characterize different aggregation schemes. The method provides scaling exponents characterizing weekly or monthly rainfall patterns for a given station. To this aim, we establish an analogy with linguistic analysis, considering precipitation as a discrete variable (e.g., rain, no rain). Each weekly, or monthly, symbolic precipitation sequence of observed precipitation is then considered as a "word" (in this case, a binary word) which defines a specific weekly rainfall pattern. Thus, each site defines a "language" characterized by the words observed in that site during a period representative of the climatology. Then, the more variable the observed weekly precipitation sequences, the more complex the obtained language. To characterize these languages, we first applied the Zipf's method obtaining scaling histograms of rank ordered frequencies. However, to obtain significant exponents, the scaling must be maintained some orders of magnitude, requiring long sequences of daily precipitation which are not available at particular stations. Thus this analysis is not suitable for applications involving particular stations (such as regionalization). Then, we introduce an alternative fractal method applicable to data from local stations. The so-called Chaos-Game method uses Iterated Function Systems (IFS) for graphically representing rainfall languages, in a way that complex languages define complex graphical patterns. The box-counting dimension and the entropy of the resulting patterns are used as linguistic parameters to quantitatively characterize the complexity of the patterns. We illustrate the high climatological discrimination power of the linguistic parameters in the Iberian peninsula, when compared with other standard techniques (such as seasonal mean accumulated precipitation). As an example, standard and linguistic parameters are used as inputs for a clustering regionalization method, comparing the resulting clusters.
Phenotypic integration of the cervical vertebrae in the Hominoidea (Primates).
Villamil, Catalina I
2018-03-01
Phenotypic integration and modularity represent important factors influencing evolutionary change. The mammalian cervical vertebral column is particularly interesting in regards to integration and modularity because it is highly constrained to seven elements, despite widely variable morphology. Previous research has found a common pattern of integration among quadrupedal mammals, but integration patterns also evolve in response to locomotor selective pressures like those associated with hominin bipedalism. Here, I test patterns of covariation in the cervical vertebrae of three hominoid primates (Hylobates, Pan, Homo) who engage in upright postures and locomotion. Patterns of integration in the hominoid cervical vertebrae correspond generally to those previously found in other mammals, suggesting that integration in this region is highly conserved, even among taxa that engage in novel positional behaviors. These integration patterns reflect underlying developmental as well as functional modules. The strong integration between vertebrae suggests that the functional morphology of the cervical vertebral column should be considered as a whole, rather than in individual vertebrae. Taxa that display highly derived morphologies in the cervical vertebrae are likely exploiting these integration patterns, rather than reorganizing them. Future work on vertebrates without cervical vertebral number constraints will further clarify the evolution of integration in this region. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Peixoto, Roberta B.; Machado-Silva, Fausto; Marotta, Humberto; Enrich-Prast, Alex; Bastviken, David
2015-01-01
Inland waters (lakes, rivers and reservoirs) are now understood to contribute large amounts of methane (CH4) to the atmosphere. However, fluxes are poorly constrained and there is a need for improved knowledge on spatiotemporal variability and on ways of optimizing sampling efforts to yield representative emission estimates for different types of aquatic ecosystems. Low-latitude floodplain lakes and wetlands are among the most high-emitting environments, and here we provide a detailed investigation of spatial and day-to-day variability in a shallow floodplain lake in the Pantanal in Brazil over a five-day period. CH4 flux was dominated by frequent and ubiquitous ebullition. A strong but predictable spatial variability (decreasing flux with increasing distance to the shore or to littoral vegetation) was found, and this pattern can be addressed by sampling along transects from the shore to the center. Although no distinct day-to-day variability were found, a significant increase in flux was identified from measurement day 1 to measurement day 5, which was likely attributable to a simultaneous increase in temperature. Our study demonstrates that representative emission assessments requires consideration of spatial variability, but also that spatial variability patterns are predictable for lakes of this type and may therefore be addressed through limited sampling efforts if designed properly (e.g., fewer chambers may be used if organized along transects). Such optimized assessments of spatial variability are beneficial by allowing more of the available sampling resources to focus on assessing temporal variability, thereby improving overall flux assessments. PMID:25860229
Van der Giessen, Daniёlle; Branje, Susan J T; Frijns, Tom; Meeus, Wim H J
2013-01-01
Dyadic variability is considered to be a key mechanism in the development of mother-adolescent relationships, and low levels of dyadic flexibility are thought to be associated with behavior and relationship problems. The present observational study examined heterogeneity in the development of dyadic variability in mother-adolescent interactions and associations with psychosocial functioning. Dyadic variability refers to the range of emotional states during interactions of mother-adolescent dyads. During five annual home visits, 92 mother-adolescent dyads (M age T1 = 13; 65.2 % boys) were videotaped while discussing a conflict, and they completed several questionnaires on adolescents' aggressive behavior and adolescents' and mothers' perceived relationship quality. Two types of dyads were distinguished: low variability dyads (52 %) and high decreasing variability dyads (48 %). Over time, high decreasing variability dyads were characterized by a broader emotional repertoire than low variability dyads. Moreover, these two dyad types had distinct developmental patterns of psychosocial adjustment. Over time, high decreasing variability dyads showed lower levels of adolescents' aggressive behavior, and higher levels of perceived relationship quality than low variability dyads. These findings suggest that over time more dyadic variability is associated with less adjustment problems and a more constructive development of the mother-adolescent relationship. Adaptive interactions seem to be characterized by a wider range of emotional states and mothers should guide adolescents during interactions to express both positive and negative affect. Observing the dyadic variability during mother-adolescent interactions can help clinicians to distinguish adaptive from maladaptive mother-adolescent dyads.
Asem, Alireza; Sun, Shi-Chun
2014-12-01
The cysts of nine Chinese populations of parthenogenetic Artemia were studied by scanning electron microscope. In the 270 cysts examined, 15 different morphological patterns were recognized with most of them not recorded in previous studies and the "tubercled shell surface" being the most common pattern. Results also displayed high intrapopulation variability, with the maximum of 11 patterns (in 30 cysts) recorded from the Barkol population. No positive correlation between the diversity of cyst shell patterns and ploidy compositions was found. Principal components analysis suggests higher similarity among coastal populations than among inland populations, which may be attributed to the identity of physicochemical conditions among coastal salterns and dissimilarity among inland saline lakes. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Johnson, Adriel D.
1992-01-01
Conditions simulating low- and high-gravity, reveal changes in macroscopic pattern formation in selected microorganisms, but whether these structures are gravity dependent is not clear. Two theories have been identified in the fluid dynamics community which support macroscopic pattern formation. The first one is gravity dependent (fluid density models) where small concentrated regions of organisms sink unstably, and the second is gravity independent (wave reinforcement theory) where organisms align their movements in concert, such that either their swimming strokes beat in phase or their vortices entrain neighbors to follow parallel paths. Studies have shown that macroscopic pattern formation is consistent with the fluid density models for protozoa and algae and wave reinforcement hypothesis for caprine spermatozoa.
Characterization of geostationary particle signatures based on the 'injection boundary' model
NASA Technical Reports Server (NTRS)
Mauk, B. H.; Meng, C.-I.
1983-01-01
A simplified analytical procedure is used to characterize the details of geostationary particle signatures, in order to lend support to the 'injection boundary' concept. The signatures are generated by the time-of-flight effects evolving from an initial sharply defined, double spiraled boundary configuration. Complex and highly variable dispersion patterns often observed by geostationary satellites are successfully reproduced through the exclusive use of the most fundamental convection configuration characteristics. Many of the details of the patterns have not been previously presented. It is concluded that most of the dynamical dispersion features can be mapped to the double spiral boundary without further ad hoc assumptions, and that predicted and observed dispersion patterns exhibit symmetries distinct from those associated with the quasi-stationary particle convection patterns.
Moskal, Aurelie; Pisa, Pedro T; Ferrari, Pietro; Byrnes, Graham; Freisling, Heinz; Boutron-Ruault, Marie-Christine; Cadeau, Claire; Nailler, Laura; Wendt, Andrea; Kühn, Tilman; Boeing, Heiner; Buijsse, Brian; Tjønneland, Anne; Halkjær, Jytte; Dahm, Christina C; Chiuve, Stephanie E; Quirós, Jose R; Buckland, Genevieve; Molina-Montes, Esther; Amiano, Pilar; Huerta Castaño, José M; Gurrea, Aurelio Barricarte; Khaw, Kay-Tee; Lentjes, Marleen A; Key, Timothy J; Romaguera, Dora; Vergnaud, Anne-Claire; Trichopoulou, Antonia; Bamia, Christina; Orfanos, Philippos; Palli, Domenico; Pala, Valeria; Tumino, Rosario; Sacerdote, Carlotta; de Magistris, Maria Santucci; Bueno-de-Mesquita, H Bas; Ocké, Marga C; Beulens, Joline W J; Ericson, Ulrika; Drake, Isabel; Nilsson, Lena M; Winkvist, Anna; Weiderpass, Elisabete; Hjartåker, Anette; Riboli, Elio; Slimani, Nadia
2014-01-01
Compared to food patterns, nutrient patterns have been rarely used particularly at international level. We studied, in the context of a multi-center study with heterogeneous data, the methodological challenges regarding pattern analyses. We identified nutrient patterns from food frequency questionnaires (FFQ) in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study and used 24-hour dietary recall (24-HDR) data to validate and describe the nutrient patterns and their related food sources. Associations between lifestyle factors and the nutrient patterns were also examined. Principal component analysis (PCA) was applied on 23 nutrients derived from country-specific FFQ combining data from all EPIC centers (N = 477,312). Harmonized 24-HDRs available for a representative sample of the EPIC populations (N = 34,436) provided accurate mean group estimates of nutrients and foods by quintiles of pattern scores, presented graphically. An overall PCA combining all data captured a good proportion of the variance explained in each EPIC center. Four nutrient patterns were identified explaining 67% of the total variance: Principle component (PC) 1 was characterized by a high contribution of nutrients from plant food sources and a low contribution of nutrients from animal food sources; PC2 by a high contribution of micro-nutrients and proteins; PC3 was characterized by polyunsaturated fatty acids and vitamin D; PC4 was characterized by calcium, proteins, riboflavin, and phosphorus. The nutrients with high loadings on a particular pattern as derived from country-specific FFQ also showed high deviations in their mean EPIC intakes by quintiles of pattern scores when estimated from 24-HDR. Center and energy intake explained most of the variability in pattern scores. The use of 24-HDR enabled internal validation and facilitated the interpretation of the nutrient patterns derived from FFQs in term of food sources. These outcomes open research opportunities and perspectives of using nutrient patterns in future studies particularly at international level.
NASA Astrophysics Data System (ADS)
Rueda, A.; Alvarez Antolinez, J. A.; Hegermiller, C.; Serafin, K.; Anderson, D. L.; Ruggiero, P.; Barnard, P.; Erikson, L. H.; Vitousek, S.; Camus, P.; Tomas, A.; Gonzalez, M.; Mendez, F. J.
2016-02-01
Long-term coastal evolution and coastal flooding hazards are the result of the non-linear interaction of multiple oceanographic, hydrological, geological and meteorological forcings (e.g., astronomical tide, monthly mean sea level, large-scale storm surge, dynamic wave set-up, shoreline evolution, backshore erosion). Additionally, interannual variability and trends in storminess and sea level rise are climate drivers that must be considered. Moreover, the chronology of the hydraulic boundary conditions plays an important role since a collection of consecutive minor storm events can have more impact than the 100-yr return level event. Therefore, proper modeling of shoreline erosion, beach recovery and coastal flooding should consider the sequence of storms, the multivariate nature of the hydrodynamic forcings, and the different time scales of interest (seasonality, interannual and decadal variability). To address this `beautiful problem', we propose a hybrid approach that combines: (a) numerical hydrodynamic and morphodynamic models (SWAN for wave transformation, a shoreline change model, X-Beach for modeling infragravity waves and erosion of the backshore during extreme events and RFSM-EDA (Jamieson et al, 2012) for high resolution flooding of the coastal hinterland); (b) long-term data bases (observational and hindcast) of sea state parameters, astronomical tides and non-tidal residuals; and (c) statistical downscaling techniques, non-linear data mining, and extreme value models. The statistical downscaling approaches for multivariate variables are based on circulation patterns (Espejo et al., 2014), the chronology of the circulation patterns (Guanche et al, 2013) and the event hydrographs of multivariate extremes, resulting in a time-dependent climate emulator of hydraulic boundary conditions for coupled simulations of the coastal change and flooding models. ReferencesEspejo et al (2014) Spectral ocean wave climate variability based on circulation patterns, J Phys Oc, doi: 10.1175/JPO-D-13-0276.1 Guanche et al (2013) Autoregressive logistic regression applied to atmospheric circulation patterns, Clim Dyn, doi: 10.1007/s00382-013-1690-3 Jamieson et al (2012) A highly efficient 2D flood model with sub-element topography, Proc. Of the Inst Civil Eng., 165(10), 581-595
NASA Astrophysics Data System (ADS)
Franke, Jasper G.; Werner, Johannes; Donner, Reik V.
2017-04-01
The increasing availability of high-resolution North Atlantic paleoclimate proxies allows to not only study local climate variations in time, but also temporal changes in spatial variability patterns across the entire region possibly controlled by large-scale coherent variability modes such as the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation. In this study, we use functional paleoclimate network analysis [1,2] to investigate changes in the statistical similarity patterns among an ensemble of high-resolution terrestrial paleoclimate records from Northern Europe included in the Arctic 2k data base. Specifically, we construct complex networks capturing the mutual statistical similarity of inter-annual temperature variability recorded in tree ring records, ice cores and lake sediments for multidecadal time windows covering the last two millenia. The observed patterns of co-variability are ultimately connected to the North Atlantic atmospheric circulation and most prominently to multidecadal variations of the NAO. Based on the inferred networks, we study the dynamical similarity between regional clusters of archives defined according to present-day inter-annual temperature variations across the study region. This analysis identifies those time-dependent inter-regional linkages that are most informative about the leading-order North Atlantic climate variability according to a recent NAO reconstruction for the last millenium [3]. Based on these linkages, we extend the existing reconstruction to obtain qualitative information on multidecadal to centennial scale North Atlantic climate variability over the last two millenia. In general, we find a tendency towards a dominating positive NAO phase interrupted by pronounced and extended intervals of negative NAO. Relatively rapid transitions between both types of behaviour are present during distinct periods including the Little Ice Age, the Medieval Climate Anomaly and for the Dark Ages Little Ice Age. [1] K. Rehfeld, N. Marwan, S.F.M. Breitenbach, J. Kurths: Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data. Climate Dynamics 41, 3-19, 2013 [2] J.L. Oster, N.P. Kelley: Tracking regional and global teleconnections recorded by western North American speleothem records. Quaternary Science Reviews 149, 18-33, 2016 [3] P. Ortega, F. Lehner, D. Swingedouw, V. Masson-Delmotte, C.C. Raible, M. Casado, P. Yiou: A model-tested North Atlantic Oscillation reconstruction for the past millenium. Nature 523, 71-74, 2015
NASA Astrophysics Data System (ADS)
Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel
2014-12-01
The males of the Brimstone butterfly ( Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.
A method for analyzing temporal patterns of variability of a time series from Poincare plots.
Fishman, Mikkel; Jacono, Frank J; Park, Soojin; Jamasebi, Reza; Thungtong, Anurak; Loparo, Kenneth A; Dick, Thomas E
2012-07-01
The Poincaré plot is a popular two-dimensional, time series analysis tool because of its intuitive display of dynamic system behavior. Poincaré plots have been used to visualize heart rate and respiratory pattern variabilities. However, conventional quantitative analysis relies primarily on statistical measurements of the cumulative distribution of points, making it difficult to interpret irregular or complex plots. Moreover, the plots are constructed to reflect highly correlated regions of the time series, reducing the amount of nonlinear information that is presented and thereby hiding potentially relevant features. We propose temporal Poincaré variability (TPV), a novel analysis methodology that uses standard techniques to quantify the temporal distribution of points and to detect nonlinear sources responsible for physiological variability. In addition, the analysis is applied across multiple time delays, yielding a richer insight into system dynamics than the traditional circle return plot. The method is applied to data sets of R-R intervals and to synthetic point process data extracted from the Lorenz time series. The results demonstrate that TPV complements the traditional analysis and can be applied more generally, including Poincaré plots with multiple clusters, and more consistently than the conventional measures and can address questions regarding potential structure underlying the variability of a data set.
Profiles of drug addicts in relation to personality variables and disorders.
Carou, María; Romero, Estrella; Luengo, Mª Ángeles
2016-10-07
In recent decades, research has identified a set of impulsive/disinhibited personality variables closely associated with drug addiction. As well as this, disorders linked with these variables, such as ADHD and personality disorders, are being closely studied in the field of drug addiction. Although much knowledge has been accumulated about the relation of these variables and disorders taken separately, less is known about how these constructs allow identify-specific profiles within the drug dependent population to be identified. This work, on the basis of data collected on a sample of drug addicts in treatment, analyzes how impulsiveness, sensation seeking, self-control, ADHD and personality disorders contribute to identifying specific profiles of addicts. Cluster analysis allowed two profiles to be outlined according to these personality and psychopathology characteristics. Self-control, impulsiveness, impulsive and antisocial personality disorders, as well as scores in ADHD, emerge as the variables that contribute more to profile differentiation. One of these profiles (56.1% of participants) with a high disinhibition pattern, is associated with severe indicators of consumption and criminal career patterns. These results allow us to emphasize the role of personality and impulsiveness-related disorders in the identification of distinctive profiles within the addict population, and suggest the need to generate treatment strategies adapted to personal/psychopathology configurations of drug addicts.
Verma, Sushant Kumar; Murmu, Thakur Das
2015-01-01
Gradient pattern analysis was used to investigate the impact of environmental and disturbance variables on species richness, species diversity, abundance and seasonal variation of birds in and around Jamshedpur, which is one of the fastest growing cities of India. It was observed that avian community structure is highly influenced by the vegetation habitat variables, food availability and human-related disturbance variables. A total of 61 species belonging to 33 families were recorded from the suburban area. 55 species belonging to 32 families were observed in nearby wildland habitat consisting of natural vegetation whereas only 26 species belonging to 18 families were observed in urban area. Results indicated that the suburban habitat had more complex bird community structure in terms of higher species richness, higher species diversity and higher evenness in comparison to urban and wildland habitat. Bird species richness and diversity varied across seasons. Maximum species richness and diversity was observed during spring season in all type of habitat. Most of the birds observed in urban areas were found to belong to either rare or irregular category on the basis of their abundance. The observed pattern of avian community structure is due to combined effect of both environmental and human related disturbance variables. PMID:26218583
Large-Scale Effects of Timber Harvesting on Stream Systems in the Ouachita Mountains, Arkansas, USA
NASA Astrophysics Data System (ADS)
Williams, Lance R.; Taylor, Christopher M.; Warren, Melvin L., Jr.; Clingenpeel, J. Alan
2002-01-01
Using Basin Area Stream Survey (BASS) data from the United States Forest Service, we evaluated how timber harvesting influenced patterns of variation in physical stream features and regional fish and macroinvertebrate assemblages. Data were collected for three years (1990-1992) from six hydrologically variable streams in the Ouachita Mountains, Arkansas, USA that were paired by management regime within three drainage basins. Specifically, we used multivariate techniques to partition variability in assemblage structure (taxonomic and trophic) that could be explained by timber harvesting, drainage basin differences, year-to-year variability, and their shared variance components. Most of the variation in fish assemblages was explained by drainage basin differences, and both basin and year-of-sampling influenced macroinvertebrate assemblages. All three factors modeled, including interactions between drainage basins and timber harvesting, influenced variability in physical stream features. Interactions between timber harvesting and drainage basins indicated that differences in physical stream features were important in determining the effects of logging within a basin. The lack of a logging effect on the biota contradicts predictions for these small, hydrologically variable streams. We believe this pattern is related to the large scale of this study and the high levels of natural variability in the streams. Alternatively, there may be time-specific effects we were unable to detect with our sampling design and analyses.
NASA Astrophysics Data System (ADS)
KIM, J.; Bastidas, L. A.
2011-12-01
We evaluate, calibrate and diagnose the performance of National Weather Service RDHM distributed model over the Durango River Basin in Colorado using simultaneously in situ and remotely sensed information from different discharge gaging stations (USGS), information about snow cover (SCV) and snow water equivalent (SWE) in situ from several SNOTEL sites and snow information distributed over the catchment from remotely sensed information (NOAA-NASA). In the process of evaluation we attempt to establish the optimal degree of parameter distribution over the catchment by calibration. A multi-criteria approach based on traditional measures (RMSE) and similarity based pattern comparisons using the Hausdorff and Earth Movers Distance approaches is used for the overall evaluation of the model performance. These pattern based approaches (shape matching) are found to be extremely relevant to account for the relatively large degree of inaccuracy in the remotely sensed SWE (judged inaccurate in terms of the value but reliable in terms of the distribution pattern) and the high reliability of the SCV (yes/no situation) while at the same time allow for an evaluation that quantifies the accuracy of the model over the entire catchment considering the different types of observations. The Hausdorff norm, due to its intrinsically multi-dimensional nature, allows for the incorporation of variables such as the terrain elevation as one of the variables for evaluation. The EMD, because of its extremely high computational overburden, requires the mapping of the set of evaluation variables into a two dimensional matrix for computation.
Automated image based prominent nucleoli detection
Yap, Choon K.; Kalaw, Emarene M.; Singh, Malay; Chong, Kian T.; Giron, Danilo M.; Huang, Chao-Hui; Cheng, Li; Law, Yan N.; Lee, Hwee Kuan
2015-01-01
Introduction: Nucleolar changes in cancer cells are one of the cytologic features important to the tumor pathologist in cancer assessments of tissue biopsies. However, inter-observer variability and the manual approach to this work hamper the accuracy of the assessment by pathologists. In this paper, we propose a computational method for prominent nucleoli pattern detection. Materials and Methods: Thirty-five hematoxylin and eosin stained images were acquired from prostate cancer, breast cancer, renal clear cell cancer and renal papillary cell cancer tissues. Prostate cancer images were used for the development of a computer-based automated prominent nucleoli pattern detector built on a cascade farm. An ensemble of approximately 1000 cascades was constructed by permuting different combinations of classifiers such as support vector machines, eXclusive component analysis, boosting, and logistic regression. The output of cascades was then combined using the RankBoost algorithm. The output of our prominent nucleoli pattern detector is a ranked set of detected image patches of patterns of prominent nucleoli. Results: The mean number of detected prominent nucleoli patterns in the top 100 ranked detected objects was 58 in the prostate cancer dataset, 68 in the breast cancer dataset, 86 in the renal clear cell cancer dataset, and 76 in the renal papillary cell cancer dataset. The proposed cascade farm performs twice as good as the use of a single cascade proposed in the seminal paper by Viola and Jones. For comparison, a naive algorithm that randomly chooses a pixel as a nucleoli pattern would detect five correct patterns in the first 100 ranked objects. Conclusions: Detection of sparse nucleoli patterns in a large background of highly variable tissue patterns is a difficult challenge our method has overcome. This study developed an accurate prominent nucleoli pattern detector with the potential to be used in the clinical settings. PMID:26167383
Automated image based prominent nucleoli detection.
Yap, Choon K; Kalaw, Emarene M; Singh, Malay; Chong, Kian T; Giron, Danilo M; Huang, Chao-Hui; Cheng, Li; Law, Yan N; Lee, Hwee Kuan
2015-01-01
Nucleolar changes in cancer cells are one of the cytologic features important to the tumor pathologist in cancer assessments of tissue biopsies. However, inter-observer variability and the manual approach to this work hamper the accuracy of the assessment by pathologists. In this paper, we propose a computational method for prominent nucleoli pattern detection. Thirty-five hematoxylin and eosin stained images were acquired from prostate cancer, breast cancer, renal clear cell cancer and renal papillary cell cancer tissues. Prostate cancer images were used for the development of a computer-based automated prominent nucleoli pattern detector built on a cascade farm. An ensemble of approximately 1000 cascades was constructed by permuting different combinations of classifiers such as support vector machines, eXclusive component analysis, boosting, and logistic regression. The output of cascades was then combined using the RankBoost algorithm. The output of our prominent nucleoli pattern detector is a ranked set of detected image patches of patterns of prominent nucleoli. The mean number of detected prominent nucleoli patterns in the top 100 ranked detected objects was 58 in the prostate cancer dataset, 68 in the breast cancer dataset, 86 in the renal clear cell cancer dataset, and 76 in the renal papillary cell cancer dataset. The proposed cascade farm performs twice as good as the use of a single cascade proposed in the seminal paper by Viola and Jones. For comparison, a naive algorithm that randomly chooses a pixel as a nucleoli pattern would detect five correct patterns in the first 100 ranked objects. Detection of sparse nucleoli patterns in a large background of highly variable tissue patterns is a difficult challenge our method has overcome. This study developed an accurate prominent nucleoli pattern detector with the potential to be used in the clinical settings.
Sarrami-Foroushani, Ali; Lassila, Toni; Gooya, Ali; Geers, Arjan J; Frangi, Alejandro F
2016-12-08
Adverse wall shear stress (WSS) patterns are known to play a key role in the localisation, formation, and progression of intracranial aneurysms (IAs). Complex region-specific and time-varying aneurysmal WSS patterns depend both on vascular morphology as well as on variable systemic flow conditions. Computational fluid dynamics (CFD) has been proposed for characterising WSS patterns in IAs; however, CFD simulations often rely on deterministic boundary conditions that are not representative of the actual variations in blood flow. We develop a data-driven statistical model of internal carotid artery (ICA) flow, which is used to generate a virtual population of waveforms used as inlet boundary conditions in CFD simulations. This allows the statistics of the resulting aneurysmal WSS distributions to be computed. It is observed that ICA waveform variations have limited influence on the time-averaged WSS (TAWSS) on the IA surface. In contrast, in regions where the flow is locally highly multidirectional, WSS directionality and harmonic content are strongly affected by the ICA flow waveform. As a consequence, we argue that the effect of blood flow variability should be explicitly considered in CFD-based IA rupture assessment to prevent confounding the conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biological communities in San Francisco Bay track large-scale climate forcing over the North Pacific
NASA Astrophysics Data System (ADS)
Cloern, James E.; Hieb, Kathryn A.; Jacobson, Teresa; Sansó, Bruno; Di Lorenzo, Emanuele; Stacey, Mark T.; Largier, John L.; Meiring, Wendy; Peterson, William T.; Powell, Thomas M.; Winder, Monika; Jassby, Alan D.
2010-11-01
Long-term observations show that fish and plankton populations in the ocean fluctuate in synchrony with large-scale climate patterns, but similar evidence is lacking for estuaries because of shorter observational records. Marine fish and invertebrates have been sampled in San Francisco Bay since 1980 and exhibit large, unexplained population changes including record-high abundances of common species after 1999. Our analysis shows that populations of demersal fish, crabs and shrimp covary with the Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO), both of which reversed signs in 1999. A time series model forced by the atmospheric driver of NPGO accounts for two-thirds of the variability in the first principal component of species abundances, and generalized linear models forced by PDO and NPGO account for most of the annual variability of individual species. We infer that synchronous shifts in climate patterns and community variability in San Francisco Bay are related to changes in oceanic wind forcing that modify coastal currents, upwelling intensity, surface temperature, and their influence on recruitment of marine species that utilize estuaries as nursery habitat. Ecological forecasts of estuarine responses to climate change must therefore consider how altered patterns of atmospheric forcing across ocean basins influence coastal oceanography as well as watershed hydrology.
Saito, Kazuyuki; Kishida, Takushi; Takahashi, Katsu; Bessho, Kazuhisa
2016-01-01
Carnivora is a successful taxon in terms of dietary diversity. We investigated the dietary adaptations of carnivoran dentition and the developmental background of their dental diversity, which may have contributed to the success of the lineage. A developmental model was tested and extended to explain the unique variability and exceptional phenotypes observed in carnivoran dentition. Carnivorous mammalian orders exhibited two distinct patterns of dietary adaptation in molars and only Carnivora evolved novel variability, exhibiting a high correlation between relative molar size and the shape of the first molar. Studies of Bmp7-hetero-deficient mice, which may exhibit lower Bmp7 expression, suggested that Bmp7 has pleiotropic effects on these two dental traits. Its effects are consistent with the pattern of dietary adaptation observed in Carnivora, but not that observed in other carnivorous mammals. A molecular evolutionary analysis revealed that Bmp7 sequence evolved by natural selection during ursid evolution, suggesting that it plays an evolutionary role in the variation of carnivoran dentition. Using mouse experiments and a molecular evolutionary analysis, we extrapolated the causal mechanism of the hitherto enigmatic ursid dentition (larger M2 than M1 and M3). Our results demonstrate how carnivorans acquired novel dental variability that benefits their dietary divergence.
Urinary hCG patterns during the week following implantation
Nepomnaschy, PA; Weinberg, CR; Wilcox, AJ; Baird, DD
2013-01-01
BACKGROUND Human chorionic gonadotropin (hCG) is used to monitor pregnancy status. Yet the pattern of hCG excretion in the first week following implantation has not been adequately described. OBJECTIVE To describe hCG's average profile and its variability during the 7 days following estimated implantation in a population of naturally-conceived pregnancies. METHODS We measured daily hCG concentrations in first-morning urine for 142 clinical pregnancies from women with no known fertility problems. Mixed-effects regression models were used to estimate the hCG trajectory and its variability in relation to pregnancy outcomes. RESULTS HCG rose three-fold between the day of detection and the next day (95% CI = 2.7–3.4). The relative rate of rise decreased thereafter, reaching 1.6-fold (95% CI = 1.5–1.8) between days 6 and 7. HCG levels followed a log-quadratic trajectory, and the patterns of rise were unrelated to number of fetuses, risk of miscarriage, or sex of the baby. Later implantations (after 10 luteal days) produced slower rates of increase. CONCLUSIONS While mean hCG follows a log-quadratic trajectory during the first week of detectability, there is high variability across pregnancies. Later implantation may reflect characteristics of the uterus or conceptus that slow hCG production. PMID:18083748
Lin, Frank Po-Yen; Pokorny, Adrian; Teng, Christina; Epstein, Richard J
2017-07-31
Vast amounts of clinically relevant text-based variables lie undiscovered and unexploited in electronic medical records (EMR). To exploit this untapped resource, and thus facilitate the discovery of informative covariates from unstructured clinical narratives, we have built a novel computational pipeline termed Text-based Exploratory Pattern Analyser for Prognosticator and Associator discovery (TEPAPA). This pipeline combines semantic-free natural language processing (NLP), regular expression induction, and statistical association testing to identify conserved text patterns associated with outcome variables of clinical interest. When we applied TEPAPA to a cohort of head and neck squamous cell carcinoma patients, plausible concepts known to be correlated with human papilloma virus (HPV) status were identified from the EMR text, including site of primary disease, tumour stage, pathologic characteristics, and treatment modalities. Similarly, correlates of other variables (including gender, nodal status, recurrent disease, smoking and alcohol status) were also reliably recovered. Using highly-associated patterns as covariates, a patient's HPV status was classifiable using a bootstrap analysis with a mean area under the ROC curve of 0.861, suggesting its predictive utility in supporting EMR-based phenotyping tasks. These data support using this integrative approach to efficiently identify disease-associated factors from unstructured EMR narratives, and thus to efficiently generate testable hypotheses.
Messai, Habib; Farman, Muhammad; Sarraj-Laabidi, Abir; Hammami-Semmar, Asma; Semmar, Nabil
2016-01-01
Background. Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends’ preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis. Methods. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. Results. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Conclusion. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors. PMID:28231172
Examining solutions to missing data in longitudinal nursing research.
Roberts, Mary B; Sullivan, Mary C; Winchester, Suzy B
2017-04-01
Longitudinal studies are highly valuable in pediatrics because they provide useful data about developmental patterns of child health and behavior over time. When data are missing, the value of the research is impacted. The study's purpose was to (1) introduce a three-step approach to assess and address missing data and (2) illustrate this approach using categorical and continuous-level variables from a longitudinal study of premature infants. A three-step approach with simulations was followed to assess the amount and pattern of missing data and to determine the most appropriate imputation method for the missing data. Patterns of missingness were Missing Completely at Random, Missing at Random, and Not Missing at Random. Missing continuous-level data were imputed using mean replacement, stochastic regression, multiple imputation, and fully conditional specification (FCS). Missing categorical-level data were imputed using last value carried forward, hot-decking, stochastic regression, and FCS. Simulations were used to evaluate these imputation methods under different patterns of missingness at different levels of missing data. The rate of missingness was 16-23% for continuous variables and 1-28% for categorical variables. FCS imputation provided the least difference in mean and standard deviation estimates for continuous measures. FCS imputation was acceptable for categorical measures. Results obtained through simulation reinforced and confirmed these findings. Significant investments are made in the collection of longitudinal data. The prudent handling of missing data can protect these investments and potentially improve the scientific information contained in pediatric longitudinal studies. © 2017 Wiley Periodicals, Inc.
Worldwide patterns of fish biodiversity in estuaries: Effect of global vs. local factors
NASA Astrophysics Data System (ADS)
Pasquaud, Stéphanie; Vasconcelos, Rita P.; França, Susana; Henriques, Sofia; Costa, Maria José; Cabral, Henrique
2015-03-01
The main ecological patterns and the functioning of estuarine ecosystems are difficult to evaluate due to natural and human induced complexity and variability. Broad geographical approaches appear particularly useful. This study tested, at a worldwide scale, the influence of global and local variables in fish species richness in estuaries, aiming to determine the latitudinal pattern of species richness, and patterns which could be driven by local features such as estuary area, estuary mouth width, river flow and intertidal area. Seventy one estuarine systems were considered with data obtained from the literature and geographical information system. Correlation tests and generalized linear models (GLM) were used in data analyses. Species richness varied from 23 to 153 fish species. GLM results showed that estuary area was the most important factor explaining species richness, followed by latitude and mouth width. Species richness increased towards the equator, and higher values were found in larger estuaries and with a wide mouth. All these trends showed a high variability. A larger estuary area probably reflects a higher diversity of habitats and/or productivity, which are key features for estuarine ecosystem functioning and biota. The mouth width effect is particularly notorious for marine and diadromous fish species, enhancing connectivity between marine and freshwater realms. The effects of river flow and intertidal area on the fish species richness appear to be less evident. These two factors may have a marked influence in the trophic structure of fish assemblages.
Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh
2009-01-01
This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.
Ng, Elizabeth L.; Fredericks, Jim P.; Quist, Michael C.
2016-01-01
Non-native piscivores can alter food web dynamics; therefore, evaluating interspecific relationships is vital for conservation and management of ecosystems with introduced fishes. Priest Lake, Idaho, supports a number of introduced species, including lake troutSalvelinus namaycush, brook trout S. fontinalis and opossum shrimp Mysis diluviana. In this study, we used stable isotopes (δ13C and δ15N) to describe the food web structure of Priest Lake and to test hypotheses about apparent patterns in lake trout growth. We found that isotopic niches of species using pelagic-origin carbon did not overlap with those using more littoral-origin carbon. Species using more littoral-origin carbon, such as brook trout and westslope cutthroat trout Oncorhynchus clarki lewisi, exhibited a high degree of isotopic niche overlap and high intrapopulation variability in resource use. Although we hypothesised that lake trout would experience an ontogenetic diet shift, no such patterns were apparent in isotopic signatures. Lake trout growth rates were not associated with patterns in δ15N, indicating that variation in adult body composition may not be related to adult diet. Understanding trophic relationships at both the individual and species levels provides a more complete understanding of food webs altered by non-native species.
NASA Astrophysics Data System (ADS)
Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio
2017-04-01
Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.
Flint, Paul L.; Reed, John; Deborah Lacroix,; Richard Lanctot,
2016-01-01
From mid-July through September, 10 000 to 30 000 Long-tailed Ducks (Clangula hyemalis) use the lagoon systems of the central Beaufort Sea for remigial molt. Little is known about their foraging behavior and patterns of habitat use during this flightless period. We used radio transmitters to track male Long-tailed Ducks through the molt period from 2000 to 2002 in three lagoons: one adjacent to industrial oil field development and activity and two in areas without industrial activity. We found that an index to time spent foraging generally increased through the molt period. Foraging, habitat use, and home range size showed similar patterns, but those patterns were highly variable among lagoons and across years. Even with continuous daylight during the study period, birds tended to use offshore areas during the day for feeding and roosted in protected nearshore waters at night. We suspect that variability in behaviors associated with foraging, habitat use, and home range size are likely influenced by availability of invertebrate prey. Proximity to oil field activity did not appear to affect foraging behaviors of molting Long-tailed Ducks.
Patterns and Predictors of Tic Suppressibility in Youth With Tic Disorders
Conelea, Christine A.; Wellen, Brianna; Woods, Douglas W.; Greene, Deanna J.; Black, Kevin J.; Specht, Matthew; Himle, Michael B.; Lee, Han-Joo; Capriotti, Matthew
2018-01-01
Tic suppression is the primary target of tic disorder treatment, but factors that influence voluntary tic inhibition are not well understood. Several studies using the Tic Suppression Task have demonstrated significant inter-individual variability in tic suppressibility but have individually been underpowered to address correlates of tic suppression. The present study explored patterns and clinical correlates of reward-enhanced tic suppression in youth with tic disorders using a large, pooled dataset. Individual-level data from nine studies using the Tic Suppression Task were pooled, yielding a sample of 99 youth with tic disorders. Analyses examined patterns of tic suppressibility and the relationship between tic suppressibility and demographic and clinical characteristics. A large majority of youth demonstrated a high degree of tic suppression, but heterogeneous patterns of tic suppressibility were also observed. Better tic suppressibility was related to older age and more frequent tics but unrelated to other clinical variables, including presence of psychiatric comorbidity, psychotropic medication status, tic and premonitory urge severity, and self-rated tic suppressibility. The mechanisms underlying the observed heterogeneity in reward-enhanced tic suppressibility warrant further investigation. The Tic Suppression Task is a promising method for testing mechanistic hypotheses related to tic suppression. PMID:29875706
Patterns and Predictors of Tic Suppressibility in Youth With Tic Disorders.
Conelea, Christine A; Wellen, Brianna; Woods, Douglas W; Greene, Deanna J; Black, Kevin J; Specht, Matthew; Himle, Michael B; Lee, Han-Joo; Capriotti, Matthew
2018-01-01
Tic suppression is the primary target of tic disorder treatment, but factors that influence voluntary tic inhibition are not well understood. Several studies using the Tic Suppression Task have demonstrated significant inter-individual variability in tic suppressibility but have individually been underpowered to address correlates of tic suppression. The present study explored patterns and clinical correlates of reward-enhanced tic suppression in youth with tic disorders using a large, pooled dataset. Individual-level data from nine studies using the Tic Suppression Task were pooled, yielding a sample of 99 youth with tic disorders. Analyses examined patterns of tic suppressibility and the relationship between tic suppressibility and demographic and clinical characteristics. A large majority of youth demonstrated a high degree of tic suppression, but heterogeneous patterns of tic suppressibility were also observed. Better tic suppressibility was related to older age and more frequent tics but unrelated to other clinical variables, including presence of psychiatric comorbidity, psychotropic medication status, tic and premonitory urge severity, and self-rated tic suppressibility. The mechanisms underlying the observed heterogeneity in reward-enhanced tic suppressibility warrant further investigation. The Tic Suppression Task is a promising method for testing mechanistic hypotheses related to tic suppression.
Losing dexterity: patterns of impaired coordination of finger movements in musician’s dystonia
Furuya, Shinichi; Tominaga, Kenta; Miyazaki, Fumio; Altenmüller, Eckart
2015-01-01
Extensive training can bring about highly-skilled action, but may also impair motor dexterity by producing involuntary movements and muscular cramping, as seen in focal dystonia (FD) and tremor. To elucidate the underlying neuroplastic mechanisms of FD, the present study addressed the organization of finger movements during piano performance in pianists suffering from the condition. Principal component (PC) analysis identified three patterns of fundamental joint coordination constituting finger movements in both patients and controls. The first two coordination patterns described less individuated movements between the “dystonic” finger and key-striking fingers for patients compared to controls. The third coordination pattern, representing the individuation of movements between the middle and ring fingers, was evident during a sequence of strikes with these fingers in controls, which was absent in the patients. Consequently, rhythmic variability of keystrokes was more pronounced during this sequence of strikes for the patients. A stepwise multiple-regression analysis further identified greater variability of keystrokes for individuals displaying less individuated movements between the affected and striking fingers. The findings suggest that FD alters dexterous joint coordination so as to lower independent control of finger movements, and thereby degrades fine motor control. PMID:26289433
Huh, S.; Dickey, D.A.; Meador, M.R.; Ruhl, K.E.
2005-01-01
A temporal analysis of the number and duration of exceedences of high- and low-flow thresholds was conducted to determine the number of years required to detect a level shift using data from Virginia, North Carolina, and South Carolina. Two methods were used - ordinary least squares assuming a known error variance and generalized least squares without a known error variance. Using ordinary least squares, the mean number of years required to detect a one standard deviation level shift in measures of low-flow variability was 57.2 (28.6 on either side of the break), compared to 40.0 years for measures of high-flow variability. These means become 57.6 and 41.6 when generalized least squares is used. No significant relations between years and elevation or drainage area were detected (P>0.05). Cluster analysis did not suggest geographic patterns in years related to physiography or major hydrologic regions. Referring to the number of observations required to detect a one standard deviation shift as 'characterizing' the variability, it appears that at least 20 years of record on either side of a shift may be necessary to adequately characterize high-flow variability. A longer streamflow record (about 30 years on either side) may be required to characterize low-flow variability. ?? 2005 Elsevier B.V. All rights reserved.
Evaluation of common bean lines for adaptation to high temperatures in Honduras
USDA-ARS?s Scientific Manuscript database
As in other regions worldwide, common bean (Phaseolus vulgaris L.) production in Central America and the Caribbean (CA/C) region is threatened by effects of climate change including increasing temperatures and drought due to variable rainfall patterns. One of the main alternatives for increasing ada...
Integrating space and time: A case for phenological context in grazing studies and management
USDA-ARS?s Scientific Manuscript database
In water-limited landscapes, patterns in primary production are highly variable across space and time. Livestock grazing is a common agricultural practice worldwide and a concern is localized overuse of specific pasture resources that can exacerbate grass losses and soil erosion. On a research ranch...
Learning a Novel Pattern through Balanced and Skewed Input
ERIC Educational Resources Information Center
McDonough, Kim; Trofimovich, Pavel
2013-01-01
This study compared the effectiveness of balanced and skewed input at facilitating the acquisition of the transitive construction in Esperanto, characterized by the accusative suffix "-n" and variable word order (SVO, OVS). Thai university students (N = 98) listened to 24 sentences under skewed (one noun with high token frequency) or…
Spatial and Temporal Lingual Coarticulation and Motor Control in Preadolescents
ERIC Educational Resources Information Center
Zharkova, Natalia; Hewlett, Nigel; Hardcastle, William J.; Lickley, Robin J.
2014-01-01
Purpose: In this study, the authors compared coarticulation and lingual kinematics in preadolescents and adults in order to establish whether preadolescents had a greater degree of random variability in tongue posture and whether their patterns of lingual coarticulation differed from those of adults. Method: High-speed ultrasound tongue contour…
Risk Profiles of Children Entering Residential Care: A Cluster Analysis
ERIC Educational Resources Information Center
Hagaman, Jessica L.; Trout, Alexandra L.; Chmelka, M. Beth; Thompson, Ronald W.; Reid, Robert
2010-01-01
Children in residential care are a heterogeneous population, presenting various combinations of risks. Existing studies on these children suggest high variability across multiple domains (e.g., academics, behavior). Given this heterogeneity, it is important to begin to identify the combinations and patterns of multiple risks, or risk profiles,…
Inter-individual variability of stone marten behavioral responses to a highway.
Ascensão, Fernando; Grilo, Clara; LaPoint, Scott; Tracey, Jeff; Clevenger, Anthony P; Santos-Reis, Margarida
2014-01-01
Efforts to reduce the negative impacts of roads on wildlife may be hindered if individuals within the population vary widely in their responses to roads and mitigation strategies ignore this variability. This knowledge is particularly important for medium-sized carnivores as they are vulnerable to road mortality, while also known to use available road passages (e.g., drainage culverts) for safely crossing highways. Our goal in this study was to assess whether this apparently contradictory pattern of high road-kill numbers associated with a regular use of road passages is attributable to the variation in behavioral responses toward the highway between individuals. We investigated the responses of seven radio-tracked stone martens (Martes foina) to a highway by measuring their utilization distribution, response turning angles and highway crossing patterns. We compared the observed responses to simulated movement parameterized by the observed space use and movement characteristics of each individual, but naïve to the presence of the highway. Our results suggested that martens demonstrate a diversity of responses to the highway, including attraction, indifference, or avoidance. Martens also varied in their highway crossing patterns, with some crossing repeatedly at the same location (often coincident with highway passages). We suspect that the response variability derives from the individual's familiarity of the landscape, including their awareness of highway passage locations. Because of these variable yet potentially attributable responses, we support the use of exclusionary fencing to guide transient (e.g., dispersers) individuals to existing passages to reduce the road-kill risk.
Inter-Individual Variability of Stone Marten Behavioral Responses to a Highway
Ascensão, Fernando; Grilo, Clara; LaPoint, Scott; Tracey, Jeff; Clevenger, Anthony P.; Santos-Reis, Margarida
2014-01-01
Efforts to reduce the negative impacts of roads on wildlife may be hindered if individuals within the population vary widely in their responses to roads and mitigation strategies ignore this variability. This knowledge is particularly important for medium-sized carnivores as they are vulnerable to road mortality, while also known to use available road passages (e.g., drainage culverts) for safely crossing highways. Our goal in this study was to assess whether this apparently contradictory pattern of high road-kill numbers associated with a regular use of road passages is attributable to the variation in behavioral responses toward the highway between individuals. We investigated the responses of seven radio-tracked stone martens (Martes foina) to a highway by measuring their utilization distribution, response turning angles and highway crossing patterns. We compared the observed responses to simulated movement parameterized by the observed space use and movement characteristics of each individual, but naïve to the presence of the highway. Our results suggested that martens demonstrate a diversity of responses to the highway, including attraction, indifference, or avoidance. Martens also varied in their highway crossing patterns, with some crossing repeatedly at the same location (often coincident with highway passages). We suspect that the response variability derives from the individual's familiarity of the landscape, including their awareness of highway passage locations. Because of these variable yet potentially attributable responses, we support the use of exclusionary fencing to guide transient (e.g., dispersers) individuals to existing passages to reduce the road-kill risk. PMID:25072639
Palmer, Cara A; Clementi, Michelle A; Meers, Jessica M; Alfano, Candice A
2018-01-05
Little is known about the co-sleeping behaviors of school-aged children, particularly among anxious youth who commonly present for the treatment of sleep problems. The current study examined the occurrence of co-sleeping in both healthy and clinically anxious children and its associated sleep patterns. A total of 113 children (ages 6-12), 75 with primary generalized anxiety disorder and 38 healthy controls, participated along with their primary caregiver. Families completed structured diagnostic assessments, and parents reported on their child's co-sleeping behaviors and anxiety severity. Children provided reports of anxiety severity and completed one week of wrist-based actigraphy to assess objective sleep patterns. A significantly greater proportion of anxious youth compared to healthy children co-slept, and greater anxiety severity was related to more frequent co-sleeping. Co-sleeping in anxious youth was associated with a delay in sleep timing and with greater sleep variability (i.e., more variable nightly sleep duration). All analyses controlled for child age, race/ethnicity, family income, and parental marital status. Co-sleeping is highly common in anxious school-aged children, with more than 1 in 3 found to co-sleep at least sometimes (2-4 times a week). Co-sleeping was even more common for youth with greater anxiety severity. Increased dependence on others to initiate and maintain sleep may contribute to poorer sleep in this population via shifted schedules and more variable sleep patterns.
Jonas, Jayne L.; Buhl, Deborah A.; Symstad, Amy J.
2015-01-01
Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess 1) the portion of interannual variability of richness and diversity explained by weather, 2) how relationships between these metrics and weather vary among plant assemblages, and 3) which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six datasets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.Read More: http://www.esajournals.org/doi/abs/10.1890/14-1989.1
Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J
2015-09-01
Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.
Evaluation of a pilot workload metric for simulated VTOL landing tasks
NASA Technical Reports Server (NTRS)
North, R. A.; Graffunder, K.
1979-01-01
A methodological approach to measuring workload was investigated for evaluation of new concepts in VTOL aircraft displays. Multivariate discriminant functions were formed from conventional flight performance and/or visual response variables to maximize detection of experimental differences. The flight performance variable discriminant showed maximum differentiation between crosswind conditions. The visual response measure discriminant maximized differences between fixed vs. motion base conditions and experimental displays. Physiological variables were used to attempt to predict the discriminant function values for each subject/condition/trial. The weights of the physiological variables in these equations showed agreement with previous studies. High muscle tension, light but irregular breathing patterns, and higher heart rate with low amplitude all produced higher scores on this scale and thus, represented higher workload levels.
NASA Astrophysics Data System (ADS)
Karabelchtchikova, Olga; Rivero, Iris V.
2005-02-01
The distribution of residual stresses (RS) and surface integrity generated in heat treatment and subsequent multipass grinding was investigated in this experimental study to examine the source of variability and the nature of the interactions of the experimental factors. A nested experimental design was implemented to (a) compare the sources of the RS variability, (b) to examine RS distribution and tensile peak location due to experimental factors, and (c) to analyze the superposition relationship in the RS distribution due to multipass grinding technique. To characterize the material responses, several techniques were used, including microstructural analysis, hardness-toughness and roughness examinations, and retained austenite and RS measurements using x-ray diffraction. The causality of the RS was explained through the strong correlation of the surface integrity characteristics and RS patterns. The main sources of variation were the depth of the RS distribution and the multipass grinding technique. The grinding effect on the RS was statistically significant; however, it was mostly predetermined by the preexisting RS induced in heat treatment. Regardless of the preceding treatments, the effect of the multipass grinding technique exhibited similar RS patterns, which suggests the existence of the superposition relationship and orthogonal memory between the passes of the grinding operation.
The periodicity of Plasmodium vivax and Plasmodium falciparum in Venezuela.
Grillet, María-Eugenia; El Souki, Mayida; Laguna, Francisco; León, José Rafael
2014-01-01
We investigated the periodicity of Plasmodium vivax and P. falciparum incidence in time-series of malaria data (1990-2010) from three endemic regions in Venezuela. In particular, we determined whether disease epidemics were related to local climate variability and regional climate anomalies such as the El Niño Southern Oscillation (ENSO). Malaria periodicity was found to exhibit unique features in each studied region. Significant multi-annual cycles of 2- to about 6-year periods were identified. The inter-annual variability of malaria cases was coherent with that of SSTs (ENSO), mainly at temporal scales within the 3-6 year periods. Additionally, malaria cases were intensified approximately 1 year after an El Niño event, a pattern that highlights the role of climate inter-annual variability in the epidemic patterns. Rainfall mediated the effect of ENSO on malaria locally. Particularly, rains from the last phase of the season had a critical role in the temporal dynamics of Plasmodium. The malaria-climate relationship was complex and transient, varying in strength with the region and species. By identifying temporal cycles of malaria we have made a first step in predicting high-risk years in Venezuela. Our findings emphasize the importance of analyzing high-resolution spatial-temporal data to better understand malaria transmission dynamics. Copyright © 2013 Elsevier B.V. All rights reserved.
Insight in paranoia: The role of experiential avoidance and internalized stigma.
Valiente, Carmen; Provencio, Maria; Espinosa, Regina; Duque, Almudena; Everts, Franziska
2015-05-01
Evidence suggests that insight in psychosis has been related to treatment adherence, recovery and good prognosis, but also to depression, low self-esteem, and diminished quality of life. Thus, insight might not be advantageous under all circumstances. Internalized-stigma (i.e. self-acceptance of stigmatizing images of illness) and experiential avoidance (i.e. unwillingness to experience negative private events) have been proposed as moderating variables between insight, and psychological health variables and/or distress. We investigated the patterns of association of insight with satisfaction with life, self-esteem, depression, anxiety and psychotic psychopathology as moderated by self-stigmatizing beliefs and experiential avoidance, in a sample of 47 participants with persecutory beliefs and diagnosed with schizophrenia or other psychotic disorder. Moderation analyses confirm the importance of internalized-stigma and experiential avoidance. The presence of insight was associated with more depression when there were high levels of self-stigma. Whereas, the absence of insight was associated with a greater life satisfaction when there were high levels of experiential avoidance. To summarize, our results help understand the complex relationship between insight, psychological health variables and emotional distress, pointing to a differential pattern of moderation for negative and positive outcomes. We discuss the implications of these results for research and treatment of paranoia. Copyright © 2015 Elsevier B.V. All rights reserved.
Pathak, Amey; Ghosh, Subimal; Kumar, Praveen; Murtugudde, Raghu
2017-10-06
Summer Monsoon Rainfall over the Indian subcontinent displays a prominent variability at intraseasonal timescales with 10-60 day periods of high and low rainfall, known as active and break periods, respectively. Here, we study moisture transport from the oceanic and terrestrial sources to the Indian landmass at intraseasonal timescales using a dynamic recycling model, based on a Lagrangian trajectory approach applied to the ECMWF-ERA-interim reanalysis data. Intraseasonal variation of monsoon rainfall is associated with both a north-south pattern from the Indian landmass to the Indian Ocean and an east-west pattern from the Core Monsoon Zone (CMZ) to eastern India. We find that the oceanic sources of moisture, namely western and central Indian Oceans (WIO and CIO) contribute to the former, while the major terrestrial source, Ganga basin (GB) contributes to the latter. The formation of the monsoon trough over Indo-Gangetic plain during the active periods results in a high moisture transport from the Bay of Bengal and GB into the CMZ in addition to the existing southwesterly jet from WIO and CIO. Our results indicate the need for the correct representation of both oceanic and terrestrial sources of moisture in models for simulating the intraseasonal variability of the monsoon.
NASA Astrophysics Data System (ADS)
Reddy, P. J.; Barbarick, D. E.; Osterburg, R. D.
1995-03-01
In 1990, the State of Colorado implemented a visibility standard of 0.076 km1 of beta extinction for the Denver metropolitan area. Meteorologists with Colorado's Air Pollution Control Division forecast high pollution days associated with visibility impairment as well as those due to high levels of the federal criteria pollutants. Visibility forecasts are made from a few hours up to about 26 h in advance of the period of interest. Here we discuss the key microscale, mesoscale, and synoptic-scale features associated with episodes of visibility impairment. Data from special studies, case studies, and the 22 NOAA Program for Regional Observing and Forecasting Services mesonet sites have been invaluable in identifying patterns associated with extremes in visibility conditions. A preliminary statistical forecast model has been developed using variables that represent many of these patterns. Six variables were selected from an initial pool of 27 to be used in a model based on linear logistic regression. These six variables include forecast measures of snow cover, surface pressures and a surface pressure gradient in eastern Colorado, relative humidity, and 500-mb ridge position. The initial testing of the model has been encouraging. The model correctly predicted 76% of the good visibility days and 67% of the poor visibility days for a test set of 171 days.
Vaz, Juliana dos Santos; Kac, Gilberto; Emmett, Pauline; Davis, John M.; Golding, Jean; Hibbeln, Joseph R.
2013-01-01
Background Little is known about relationships between dietary patterns, n-3 polyunsaturated fatty acids (PUFA) intake and excessive anxiety during pregnancy. Objective To examine whether dietary patterns and n-3 PUFA intake from seafood are associated with high levels of anxiety during pregnancy. Design Pregnant women enrolled from 1991–1992 in ALSPAC (n 9,530). Dietary patterns were established from a food frequency questionnaire using principal component analysis. Total intake of n-3 PUFA (grams/week) from seafood was also examined. Symptoms of anxiety were measured at 32 weeks of gestation with the Crown-Crisp Experiential Index; scores ≥9 corresponding to the 85th percentile was defined as high anxiety symptoms. Multivariate logistic regression models were used to estimate the OR and 95% CI, adjusted by socioeconomic and lifestyle variables. Results Multivariate results showed that women in the highest tertile of the health-conscious (OR 0.77; 0.65–0.93) and the traditional (OR 0.84; 0.73–0.97) pattern scores were less likely to report high levels of anxiety symptoms. Women in the highest tertile of the vegetarian pattern score (OR 1.25; 1.08–1.44) were more likely to have high levels of anxiety, as well as those with no n-3 PUFA intake from seafood (OR 1.53; 1.25–1.87) when compared with those with intake of >1.5 grams/week. Conclusions The present study provides evidence of a relationship between dietary patterns, fish intake or n-3 PUFA intake from seafood and symptoms of anxiety in pregnancy, and suggests that dietary interventions could be used to reduce high anxiety symptoms during pregnancy. PMID:23874437
Scene Context Dependency of Pattern Constancy of Time Series Imagery
NASA Technical Reports Server (NTRS)
Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur
2008-01-01
A fundamental element of future generic pattern recognition technology is the ability to extract similar patterns for the same scene despite wide ranging extraneous variables, including lighting, turbidity, sensor exposure variations, and signal noise. In the process of demonstrating pattern constancy of this kind for retinex/visual servo (RVS) image enhancement processing, we found that the pattern constancy performance depended somewhat on scene content. Most notably, the scene topography and, in particular, the scale and extent of the topography in an image, affects the pattern constancy the most. This paper will explore these effects in more depth and present experimental data from several time series tests. These results further quantify the impact of topography on pattern constancy. Despite this residual inconstancy, the results of overall pattern constancy testing support the idea that RVS image processing can be a universal front-end for generic visual pattern recognition. While the effects on pattern constancy were significant, the RVS processing still does achieve a high degree of pattern constancy over a wide spectrum of scene content diversity, and wide ranging extraneousness variations in lighting, turbidity, and sensor exposure.
Lancia, Leonardo; Fuchs, Susanne; Tiede, Mark
2014-06-01
The aim of this article was to introduce an important tool, cross-recurrence analysis, to speech production applications by showing how it can be adapted to evaluate the similarity of multivariate patterns of articulatory motion. The method differs from classical applications of cross-recurrence analysis because no phase space reconstruction is conducted, and a cleaning algorithm removes the artifacts from the recurrence plot. The main features of the proposed approach are robustness to nonstationarity and efficient separation of amplitude variability from temporal variability. The authors tested these claims by applying their method to synthetic stimuli whose variability had been carefully controlled. The proposed method was also demonstrated in a practical application: It was used to investigate the role of biomechanical constraints in articulatory reorganization as a consequence of speeded repetition of CVCV utterances containing a labial and a coronal consonant. Overall, the proposed approach provided more reliable results than other methods, particularly in the presence of high variability. The proposed method is a useful and appropriate tool for quantifying similarity and dissimilarity in patterns of speech articulator movement, especially in such research areas as speech errors and pathologies, where unpredictable divergent behavior is expected.
Lerma, Claudia; Wessel, Niels; Schirdewan, Alexander; Kurths, Jürgen; Glass, Leon
2008-07-01
The objective was to determine the characteristics of heart rate variability and ventricular arrhythmias prior to the onset of ventricular tachycardia (VT) in patients with an implantable cardioverter defibrillator (ICD). Sixty-eight beat-to-beat time series from 13 patients with an ICD were analyzed to quantify heart rate variability and ventricular arrhythmias. The episodes of VT were classified in one of two groups depending on whether the sinus rate in the 1 min preceding the VT was greater or less than 90 beats per minute. In a subset of patients, increased heart rate and reduced heart rate variability was often observed up to 20 min prior to the VT. There was a non-significant trend to higher incidence of premature ventricular complexes (PVCs) before VT compared to control recordings. The patterns of the ventricular arrhythmias were highly heterogeneous among different patients and even within the same patient. Analysis of the changes of heart rate and heart rate variability may have predictive value about the onset of VT in selected patients. The patterns of ventricular arrhythmia could not be used to predict onset of VT in this group of patients.
Global patterns in the poleward expansion of mangrove forests
NASA Astrophysics Data System (ADS)
Cavanaugh, K. C.; Feller, I. C.
2016-12-01
Understanding the processes that limit the geographic ranges of species is one of the central goals of ecology and biogeography. This issue is particularly relevant for coastal wetlands given that climate change is expected to lead to a `tropicalization' of temperate coastal and marine ecosystems. In coastal wetlands around the world, there have already been observations of mangroves expanding into salt marshes near the current poleward range limits of mangroves. However, there is still uncertainty regarding regional variability in the factors that control mangrove range limits. Here we used time series of Landsat satellite imagery to characterize patterns of mangrove abundance near their poleward range limits around the world. We tested the commonly held assumption that temporal variation in abundance should increase towards the edge of the range. We also compared variability in mangrove abundance to climate factors thought to set mangrove range limits (air temperature, water temperature, and aridity). In general, variability in mangrove abundance at range edges was high relative to range centers and this variability was correlated to one or more climate factors. However, the strength of these relationships varied among poleward range limits, suggesting that some mangrove range limits are control by processes other than climate, such as dispersal limitation.
Undifferentiated connective tissue disease and interstitial lung disease: Trying to define patterns.
Alberti, María Laura; Paulin, Francisco; Toledo, Heidegger Mateos; Fernández, Martín Eduardo; Caro, Fabián Matías; Rojas-Serrano, Jorge; Mejía, Mayra Edith
To identify clinical or immunological features in patients with undifferentiated connective tissue disease (UCTD) associated interstitial lung disease (ILD), in order to group them and recognize different functional and high resolution computed tomography (HRCT) behavior. Retrospective cohort study. Patients meeting Kinder criteria for UCTD were included. We defined the following predictive variables: 'highly specific' connective tissue disease (CTD) manifestations (Raynaud's phenomenon, dry eyes or arthritis), high antinuclear antibody (ANA) titer (above 1: 320), and 'specific' ANA staining patterns (centromere, cytoplasmic and nucleolar patterns). We evaluated the following outcomes: change in the percentage of the predicted forced vital capacity (FVC%) during the follow-up period, and HRCT pattern. Sixty-six patients were included. Twenty-nine (43.94%) showed at least one 'highly specific' CTD manifestation, 16 (28.57%) had a 'specific' ANA staining pattern and 29 (43.94%) high ANA titer. Patients with 'highly specific' CTD manifestations were younger (mean [SD] 52 years [14.58] vs 62.08 years [9.46], P<.001), were more likely men (10.34% vs 48.65%, P<.001) and showed a smaller decline of the FVC% (median [interquartile range] 1% [-1 to 10] vs -6% [-16 to -4], P<.006). In the multivariate analysis, the presence of highly specific manifestations was associated with improvement in the FVC% (B coefficient of 13.25 [95% confidence interval, 2.41 to 24.09]). No association was observed in relation to the HRCT pattern. The presence of 'highly specific' CTD manifestations was associated with female sex, younger age and better functional behavior. These findings highlight the impact of the clinical features in the outcome of patients with UCTD ILD. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
Maternal Dietary Patterns and Gestational Diabetes Risk: A Case-Control Study.
Sedaghat, Fatemeh; Akhoondan, Mahdieh; Ehteshami, Mehdi; Aghamohammadi, Vahideh; Ghanei, Nila; Mirmiran, Parvin; Rashidkhani, Bahram
2017-01-01
Maternal dietary patterns play an important role in the progress of gestational diabetes mellitus (GDM). The aim of the present study was to explore this association. A total of 388 pregnant women (122 case and 266 control) were included. Dietary intake were collected using a food frequency questionnaire (FFQ). GDM was diagnosed using a 100-gram, 3-hour oral glucose tolerance test. Dietary pattern was identified by factor analysis. To investigate the relation between each of the independent variables with gestational diabetes, the odds ratio (OR) was calculated. Western dietary pattern was high in sweets, jams, mayonnaise, soft drinks, salty snacks, solid fat, high-fat dairy products, potatoes, organ meat, eggs, red meat, processed foods, tea, and coffee. The prudent dietary pattern was characterized by higher intake of liquid oils, legumes, nuts and seeds, fruits and dried fruits, fish and poultry whole, and refined grains. Western dietary pattern was associated with increased risk of gestational diabetes mellitus before and after adjustment for confounders (OR = 1.97, 95% CI: 1.27-3.04, OR = 1.68, 95% CI: 1.04-2.27). However, no significant association was found for a prudent pattern. These findings suggest that the Western dietary pattern was associated with an increased risk of GDM.
Color pattern evolution in Vanessa butterflies (Nymphalidae: Nymphalini): non-eyespot characters.
Abbasi, Roohollah; Marcus, Jeffrey M
2015-01-01
A phylogenetic approach was used to study color pattern evolution in Vanessa butterflies. Twenty-four color pattern elements from the Nymphalid ground plan were identified on the dorsal and ventral surfaces of the fore- and hind wings. Eyespot characters were excluded and will be examined elsewhere. The evolution of each character was traced over a Bayesian phylogeny of Vanessa reconstructed from 7750 DNA base pairs from 10 genes. Generally, the correspondence between character states on the same surface of the two wings is stronger on the ventral side compared to the dorsal side. The evolution of character states on both sides of a wing correspond with each other in most extant species, but the correspondence between dorsal and ventral character states is much stronger in the forewing than in the hindwing. The dorsal hindwing of many species of Vanessa is covered with an extended Basal Symmetry System and the Discalis I pattern element is highly variable between species, making this wing surface dissimilar to the other wing surfaces. The Basal Symmetry System and Discalis I may contribute to behavioral thermoregulation in Vanessa. Overall, interspecific directional character state evolution of non-eyespot color patterns is relatively rare in Vanessa, with a majority of color pattern elements showing non-variable, non-directional, or ambiguous character state evolution. The ease with which the development of color patterns can be modified, including character state reversals, has likely made important contributions to the production of color pattern diversity in Vanessa and other butterfly groups. © 2014 Wiley Periodicals, Inc.
Coswig, Victor S; Gentil, Paulo; Bueno, João C A; Follmer, Bruno; Marques, Vitor A; Del Vecchio, Fabrício B
2018-01-01
Among combat sports, Judo and Brazilian Jiu-Jitsu (BJJ) present elevated physical fitness demands from the high-intensity intermittent efforts. However, information regarding how metabolic and neuromuscular physical fitness is associated with technical-tactical performance in Judo and BJJ fights is not available. This study aimed to relate indicators of physical fitness with combat performance variables in Judo and BJJ. The sample consisted of Judo ( n = 16) and BJJ ( n = 24) male athletes. At the first meeting, the physical tests were applied and, in the second, simulated fights were performed for later notational analysis. The main findings indicate: (i) high reproducibility of the proposed instrument and protocol used for notational analysis in a mobile device; (ii) differences in the technical-tactical and time-motion patterns between modalities; (iii) performance-related variables are different in Judo and BJJ; and (iv) regression models based on metabolic fitness variables may account for up to 53% of the variances in technical-tactical and/or time-motion variables in Judo and up to 31% in BJJ, whereas neuromuscular fitness models can reach values up to 44 and 73% of prediction in Judo and BJJ, respectively. When all components are combined, they can explain up to 90% of high intensity actions in Judo. In conclusion, performance prediction models in simulated combat indicate that anaerobic, aerobic and neuromuscular fitness variables contribute to explain time-motion variables associated with high intensity and technical-tactical variables in Judo and BJJ fights.
Wildfire patterns and landscape changes in Mediterranean oak woodlands.
Guiomar, N; Godinho, S; Fernandes, P M; Machado, R; Neves, N; Fernandes, J P
2015-12-01
Fire is infrequent in the oak woodlands of southern Portugal (montado) but large and severe fires affected these agro-forestry systems in 2003-2005. We hypothesised transition from forest to shrubland as a fire-driven process and investigated the links between fire incidence and montado change to other land cover types, particularly those related with the presence of pioneer communities (generically designed in this context as "transitions to early-successional communities"). We present a landscape-scale framework for assessing the probability of transition from montado to pioneer communities, considering three sets of explanatory variables: montado patterns in 1990 and prior changes from montado to early-successional communities (occurred between 1960 and 1990), fire patterns, and spatial factors. These three sets of factors captured 78.2% of the observed variability in the transitions from montado to pioneer vegetation. The contributions of fire patterns and spatial factors were high, respectively 60.6% and 43.4%, the influence of montado patterns and former changes in montado being lower (34.4%). The highest amount of explained variation in the occurrence of transitions from montado to early-successional communities was related to the pure effect of fire patterns (19.9%). Low spatial connectedness in montado landscape can increase vulnerability to changes, namely to pioneer vegetation, but the observed changes were mostly explained by fire characteristics and spatial factors. Among all metrics used to characterize fire patterns and extent, effective mesh size provided the best modelling results. Transitions from montado to pioneer communities are more likely in the presence of high values of the effective mesh size of total burned area. This cross-boundary metric is an indicator of the influence of large fires in the distribution of the identified transitions and, therefore, we conclude that the occurrence of large fires in montado increases its probability of transition to shrubland. Copyright © 2015 Elsevier B.V. All rights reserved.
Gaburro, Stefano; Stiedl, Oliver; Giusti, Pietro; Sartori, Simone B; Landgraf, Rainer; Singewald, Nicolas
2011-11-01
Increasing evidence suggests that specific physiological measures may serve as biomarkers for successful treatment to alleviate symptoms of pathological anxiety. Studies of autonomic function investigating parameters such as heart rate (HR), HR variability and blood pressure (BP) indicated that HR variability is consistently reduced in anxious patients, whereas HR and BP data show inconsistent results. Therefore, HR and HR variability were measured under various emotionally challenging conditions in a mouse model of high innate anxiety (high anxiety behaviour; HAB) vs. control normal anxiety-like behaviour (NAB) mice. Baseline HR, HR variability and activity did not differ between mouse lines. However, after cued Pavlovian fear conditioning, both elevated tachycardia and increased fear responses were observed in HAB mice compared to NAB mice upon re-exposure to the conditioning stimulus serving as the emotional stressor. When retention of conditioned fear was tested in the home cage, HAB mice again displayed higher fear responses than NAB mice, while the HR responses were similar. Conversely, in both experimental settings HAB mice consistently exhibited reduced HR variability. Repeated administration of the anxiolytic NK1 receptor antagonist L-822429 lowered the conditioned fear response and shifted HR dynamics in HAB mice to a more regular pattern, similar to that in NAB mice. Additional receiver-operating characteristic (ROC) analysis demonstrated the high specificity and sensitivity of HR variability to distinguish between normal and high anxiety trait. These findings indicate that assessment of autonomic response in addition to freezing might be a useful indicator of the efficacy of novel anxiolytic treatments.
Unveiling the physics of AGN through X-ray variability
NASA Astrophysics Data System (ADS)
Hernández-García, L.; González-Martín, O.; Masegosa, J.; Márquez, I.
2017-03-01
Although variability is a general property characterizing active galactic nuclei (AGN), it is not well established whether the changes occur in the same way in every nuclei. The main purpose of this work is to study the X-ray variability pattern(s) in AGN selected at optical wavelengths in a large sample, including low ionization nuclear emission line regions (LINERs) and type 1.8, 1.9, and 2 Seyferts, using the public archives in Chandra and/or XMM-Newton. Spectra of the same source gathered at different epochs were simultaneously fitted to study long term variations; the variability patterns were studied allowing different parameters to vary during the spectral fit. Whenever possible, short term variations from the analysis of the light curves and long term UV flux variability were studied. Variations at X-rays in timescales of months/years are very common in all AGN families but short term variations are only found in type 1.8 and 1.9 Seyferts. The main driver of the long term X-ray variations seems to be related to changes in the nuclear power. Other variability patterns cannot be discarded in a few cases. We discuss the geometry and physics of AGN through the X-ray variability analysis.
Nisenbaum, Rosane; Links, Paul S; Eynan, Rahel; Heisel, Marnin J
2010-05-01
Variability in mood swings is a characteristic of borderline personality disorder (BPD) and is associated with suicidal behavior. This study investigated patterns of mood variability and whether such patterns could be predicted from demographic and suicide-related psychological risk factors. Eighty-two adults with BPD and histories of recurrent suicidal behavior were recruited from 3 outpatient psychiatric programs in Canada. Experience sampling methodology (ESM) was used to assess negative mood intensity ratings on a visual analogue scale, 6 random times daily, for 21 days. Three-level models estimated variability between times (52.8%), days (22.2%), and patients (25.1%) and supported a quadratic pattern of daily mood variability. Depression scores predicted variability between patients' initial rating of the day. Average daily mood patterns depended on levels of hopelessness, suicide ideation, and sexual abuse history. Patients reporting moderate to severe sexual abuse and elevated suicide ideation were characterized by worsening moods from early morning up through evening, with little or no relief; patients reporting mild sexual abuse and low suicide ideation reported improved mood throughout the day. These patterns, if replicated in larger ESM studies, may potentially assist the clinician in determining which patients require close monitoring.
Rosenbloom, Tova; Sapir-Lavid, Yael; Perlman, Amotz
2016-08-01
This research examines the Health Promotion Behavior (HPB) models regarding elderly pedestrians' behaviors and attitudes. We studied cognitive-psychological variables, such as risk estimation, self-efficacy and demographic variables and compared elderly pedestrians' attitudes and behaviors in a city with higher socio-economic level (Tel Aviv) versus a city with low socio-economic level (Beer Sheva). We expected to find more problematic behaviors among elderly pedestrians in the low socio-economic city compared to the high socio-economic city, and also less feeling of self-efficacy, and lessened awareness of the risks, that leads to lessened willingness to adopt preventive behaviors. The research was conducted in two studies. The first study was based on observations on 2591 pedestrians in six similar crosswalks in both cities. It revealed that pedestrians in the high socio-economic city demonstrated safer road crossing patterns than in the low socio-economic city and that elderly pedestrians reveal safer crossing patterns than younger pedestrians. We found an interaction of location and age due to greater gap of safe behaviors of elderly and young pedestrians in the high socio-economic city than in the low socio-economic city. In Tel Aviv elderly adhere to the crossing rules much more than the young while in Beer Sheva elderly and young people are almost similar in their crossing patterns. The second study used questionnaires that have been completed by 143 elderly in both cities. The questionnaires referred to (a) demographic variables such as gender, age, marital status, education, socio-economic level, (b) variables related to the affiliation to the main culture such as migration, date of migration, knowledge in Hebrew (local language) and connectivity to media and (c) cognitive as well as psychological variables related to the decline to adopt healthy behaviors based on Schwarzer and Fuchs (1995). This part also indicated that elderly in Tel Aviv have higher awareness of risk factors on the road and their limitations as elderly pedestrians. The HPB (Pender, 1996) emphasizes the role of risk perception as a predictor of willingness to adopt preventive strategies. Moreover, elderly pedestrians in Beer Sheva compared to those in Tel Aviv estimated their ability to cross safely the streets as higher. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McDonald, S. E.; Sassi, F.; Tate, J.; McCormack, J.; Kuhl, D. D.; Drob, D. P.; Metzler, C.; Mannucci, A. J.
2018-06-01
The lower atmosphere contributes significantly to the day-to-day variability of the ionosphere, especially during solar minimum conditions. Ionosphere/atmosphere model simulations that incorporate meteorology from data assimilation analysis products can be critically important for elucidating the physical processes that have substantial impact on ionospheric weather. In this study, the NCAR Whole Atmosphere Community Climate Model, extended version with specified dynamics (SD-WACCM-X) is coupled with an ionospheric model (Sami3 is Another Model of the Ionosphere) to study day-to-day variability in the ionosphere during January 2010. Lower atmospheric weather patterns are introduced into the SAMI3/SD-WACCM-X simulations using the 6-h Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) data assimilation products. The same time period is simulated using the new atmospheric forecast model, the High Altitude Navy Global Environmental Model (HA-NAVGEM), a hybrid 4D-Var prototype data assimilation with the ability to produce meteorological fields at a 3-h cadence. Our study shows that forcing SD-WACCM-X with HA-NAVGEM better resolves the semidiurnal tides and introduces more day-to-day variability into the ionosphere than forcing with NOGAPS-ALPHA. The SAMI3/SD-WACCM-X/HA-NAVGEM simulation also more accurately captures the longitudinal variability associated with non-migrating tides in the equatorial ionization anomaly (EIA) region as compared to total electron content (TEC) maps derived from GPS data. Both the TEC maps and the SAMI3/SD-WACCM-X/HA-NAVGEM simulation show an enhancement in TEC over South America during 17-21 January 2010, which coincides with the commencement of a stratospheric warming event on 19 January 2010. Analysis of the SAMI3/SD-WACCM-X/HA-NAVGEM simulations indicates non-migrating tides (including DW4, DE2 and SW5) played a role during 17-21 January in shifting the phase of the wave-3 pattern in the ionosphere on these days. Constructive interference of wave-3 and wave-4 patterns in the E × B drifts contributed to the enhanced TEC in the South American longitude sector. The results of the study highlight the importance of high fidelity meteorology in understanding the day-to-day variability of the ionosphere.
Kreibig, Sylvia D; Wilhelm, Frank H; Roth, Walton T; Gross, James J
2007-09-01
Responses to fear- and sadness-inducing films were assessed using a broad range of cardiovascular (heart rate, T-wave amplitude, low- and high-frequency heart rate variability, stroke volume, preejection period, left-ventricular ejection time, Heather index, blood pressure, pulse amplitude and transit time, and finger temperature), electrodermal (level, response rate, and response amplitude), and respiratory (rate, tidal volume and its variability, inspiratory flow rate, duty cycle, and end-tidal pCO(2)) measures. Subjective emotional experience and facial behavior (Corrugator Supercilii and Zygomaticus Major EMG) served as control measures. Results indicated robust differential physiological response patterns for fear, sadness, and neutral (mean classification accuracy 85%). Findings are discussed in terms of the fight-flight and conservation-withdrawal responses and possible limitations of a valence-arousal categorization of emotion in affective space.
Heath, Daniel J; Mills, Ben; Feinaeugle, Matthias; Eason, Robert W
2015-06-01
A digital micromirror device has been used to project variable-period grating patterns at high values of demagnification for direct laser ablation on planar surfaces. Femtosecond laser pulses of ∼1 mJ pulse energy at 800 nm wavelength from a Ti:sapphire laser were used to machine complex patterns with areas of up to ∼1 cm2 on thin films of bismuth telluride by dynamically modifying the grating period as the sample was translated beneath the imaged laser pulses. Individual ∼30 by 30 μm gratings were stitched together to form contiguous structures, which had diffractive effects clearly visible to the naked eye. This technique may have applications in marking, coding, and security features.
Sampling of the Diurnal Cycle of Precipitation using TRMM
NASA Technical Reports Server (NTRS)
Negri, Andrew J.; Bell, Thomas L.; Xu, Li-Ming; Starr, David OC. (Technical Monitor)
2001-01-01
We examine the temporal sampling of tropical regions using observations from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR). We conclude that PR estimates at any one hour, even using three years of data, are inadequate to describe the diurnal cycle of precipitation over regions smaller than 12 degrees, due to high spatial variability in sampling. We show that the optimum period of accumulation is four hours. Diurnal signatures display half as much sampling error when averaged over four hours of local time. A similar pattern of sampling variability is found in the TMI data, despite the TMI's wider swath and increased sampling. These results are verified using an orbital model. The sensitivity of the sampling to satellite altitude is presented, as well as sampling patterns at the new TRMM altitude of 402.5 km.
Origin of seasonal predictability for summer climate over the Northwestern Pacific
Kosaka, Yu; Xie, Shang-Ping; Lau, Ngar-Cheung; Vecchi, Gabriel A.
2013-01-01
Summer climate in the Northwestern Pacific (NWP) displays large year-to-year variability, affecting densely populated Southeast and East Asia by impacting precipitation, temperature, and tropical cyclones. The Pacific–Japan (PJ) teleconnection pattern provides a crucial link of high predictability from the tropics to East Asia. Using coupled climate model experiments, we show that the PJ pattern is the atmospheric manifestation of an air–sea coupled mode spanning the Indo-NWP warm pool. The PJ pattern forces the Indian Ocean (IO) via a westward propagating atmospheric Rossby wave. In response, IO sea surface temperature feeds back and reinforces the PJ pattern via a tropospheric Kelvin wave. Ocean coupling increases both the amplitude and temporal persistence of the PJ pattern. Cross-correlation of ocean–atmospheric anomalies confirms the coupled nature of this PJIO mode. The ocean–atmosphere feedback explains why the last echoes of El Niño–Southern Oscillation are found in the IO-NWP in the form of the PJIO mode. We demonstrate that the PJIO mode is indeed highly predictable; a characteristic that can enable benefits to society. PMID:23610388
Variability in Phonetics. York Papers in Linguistics, No. 6.
ERIC Educational Resources Information Center
Tatham, M. A. A.
Variability is a term used to cover several types of phenomena in language sound patterns and in phonetic realization of those patterns. Variability refers to the fact that every repetition of an utterance is different, in amplitude, rate of delivery, formant frequencies, fundamental frequency or minor phase relationship changes across the sound…
A self-learning camera for the validation of highly variable and pseudorandom patterns
NASA Astrophysics Data System (ADS)
Kelley, Michael
2004-05-01
Reliable and productive manufacturing operations have depended on people to quickly detect and solve problems whenever they appear. Over the last 20 years, more and more manufacturing operations have embraced machine vision systems to increase productivity, reliability and cost-effectiveness, including reducing the number of human operators required. Although machine vision technology has long been capable of solving simple problems, it has still not been broadly implemented. The reason is that until now, no machine vision system has been designed to meet the unique demands of complicated pattern recognition. The ZiCAM family was specifically developed to be the first practical hardware to meet these needs. To be able to address non-traditional applications, the machine vision industry must include smart camera technology that meets its users" demands for lower costs, better performance and the ability to address applications of irregular lighting, patterns and color. The next-generation smart cameras will need to evolve as a fundamentally different kind of sensor, with new technology that behaves like a human but performs like a computer. Neural network based systems, coupled with self-taught, n-space, non-linear modeling, promises to be the enabler of the next generation of machine vision equipment. Image processing technology is now available that enables a system to match an operator"s subjectivity. A Zero-Instruction-Set-Computer (ZISC) powered smart camera allows high-speed fuzzy-logic processing, without the need for computer programming. This can address applications of validating highly variable and pseudo-random patterns. A hardware-based implementation of a neural network, Zero-Instruction-Set-Computer, enables a vision system to "think" and "inspect" like a human, with the speed and reliability of a machine.
Carvajal-Quintero, Juan D; Escobar, Federico; Alvarado, Fredy; Villa-Navarro, Francisco A; Jaramillo-Villa, Úrsula; Maldonado-Ocampo, Javier A
2015-01-01
Studies on elevation diversity gradients have covered a large number of taxa and regions throughout the world; however, studies of freshwater fish are scarce and restricted to examining their changes along a specific gradient. These studies have reported a monotonic decrease in species richness with increasing elevation, but ignore the high taxonomic differentiation of each headwater assemblage that may generate high β-diversity among them. Here, we analyzed how fish assemblages vary with elevation among regional elevation bands, and how these changes are related to four environmental clines and to changes in the distribution, habitat use, and the morphology of fish species. Using a standardized field sampling technique, we assessed three different diversity and two structural assemblage measures across six regional elevation bands located in the northern Andes (Colombia). Each species was assigned to a functional group based on its body shape, habitat use, morphological, and/or behavioral adaptations. Additionally, at each sampling site, we measured four environmental variables. Our analyses showed: (1) After a monotonic decrease in species richness, we detected an increase in richness in the upper part of the gradient; (2) diversity patterns vary depending on the diversity measure used; (3) diversity patterns can be attributed to changes in species distribution and in the richness and proportions of functional groups along the regional elevation gradient; and (4) diversity patterns and changes in functional groups are highly correlated with variations in environmental variables, which also vary with elevation. These results suggest a novel pattern of variation in species richness with elevation: Species richness increases at the headwaters of the northern Andes owing to the cumulative number of endemic species there. This highlights the need for large-scale studies and has important implications for the aquatic conservation of the region. PMID:26257874
Seasonal and temporal patterns of NDMA formation potentials in surface waters.
Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju
2015-02-01
The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (<100 ng/L). In most sources, NDMA FP showed more variability in spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) < 0.27). Multiple linear regression analysis using DOC and log [sucralose] yielded a better correlation with NDMA FP (R(2) = 0.53). Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of a Low-Dose Contraceptive Patch on Efficacy, Bleeding Pattern, and Safety
Wiegratz, Inka; Bassol, Susana; Weisberg, Edith; Mellinger, Uwe
2014-01-01
This Phase III, uncontrolled, open-label, multicenter study was conducted to investigate the contraceptive efficacy, bleeding pattern, and cycle control of a novel once-a-week contraceptive patch, delivering low-dose ethinyl estradiol (EE) and gestodene (GSD) at the same systemic exposure seen after oral administration of a combined oral contraceptive containing 0.02 mg EE/0.06 mg GSD. Participants were women aged 18 to 35 years, all of whom received the EE/GSD patch for 13 cycles each of 21 treatment days (one patch per week for 3 weeks) followed by a 7-day, patch-free interval. The primary efficacy variable was the occurrence of unintended pregnancies during the study period as assessed by life table analysis and the Pearl Index. Secondary efficacy variables were days with bleeding during four 90-day reference periods and during 1 treatment year, bleeding pattern, and cycle control. The Kaplan-Meier probability of contraceptive protection after 364 treatment days was 98.8% and the adjusted Pearl Index was 0.81. The percentage of participants with intracyclic bleeding/spotting decreased over time, from 11.4% to 6.8% in cycles 1 and 12, respectively. Almost all participants (range: 90.8%-97.6%) experienced withdrawal bleeding across the study period. Compliance was very high (mean: 97.9%; median: 100%). The most frequent adverse events were headache (9.5%) and application site reaction (8.5%); no clinically significant safety concerns were observed. Results suggest the EE/GSD patch is highly effective in preventing pregnancy. Menstrual bleeding pattern was favorable and within the ranges expected of a healthy female population. The patch was well tolerated and treatment compliance was high. PMID:24784719
Dynamic Patterns of Modern Epidemics
NASA Astrophysics Data System (ADS)
Brockmann, Dirk; Hufnagel, Lars; Geisel, Theo
2004-03-01
We investigate the effects of scale-free travelling of humans and their inhomogeneous geographic distribution on the dynamic patterns of spreading epidemics. Our approach combines the susceptible/infected/recovered paradigm for the infection dynamics with superdiffusive dispersion of individuals and their inhomogeneous spatial distribution. We show that scale-free motion of individuals and their variable spatial distribution leads to the absence of wavefronts in dynamic epidemic patterns which are typical for the limiting cases of ordinary diffusion and spatially homogeneous populations. Instead, patterns emerge with isolated hotspots on highly populated areas from which regional epidemic outbursts are triggered. Hotspot sizes are independent of the correlation length in the spatial distribution of individuals and occur on all scales. Our theory predicts that highly populated areas are reached by an epidemic in advance and must receive special attention in control measure strategies. Furthermore, our analysis predicts strong fluctuations in the time course of the total infection which cannot be accounted for by ordinary reaction-diffusion models for epidemics.
NASA Technical Reports Server (NTRS)
Goward, S. N.; Tucker, C. J.; Dye, D. G.
1985-01-01
Spectral vegetation index measurements derived from remotely sensed observations show great promise as a means to improve knowledge of land vegetation patterns. The daily, global observations acquired by the advanced very high resolution radiometer, a sensor on the current series of U.S. National Oceanic and Atmospheric Administration meteorological satellites, may be particularly well suited for global studies of vegetation. Preliminary results from analysis of North American observations, extending from April to November 1982, show that the vegetation index patterns observed correspond to the known seasonality of North American natural and cultivated vegetation. Integration of the observations over the growing season produced measurements that are related to net primary productivity patterns of the major North American natural vegetation formations. Regions of intense cultivation were observed as anomalous areas in the integrated growing season measurements. Significant information on seasonality, annual extent and interannual variability of vegetation photosynthetic activity at continental and global scales can be derived from these satellite observations.
Williams, Alex H.; Kwiatkowski, Molly A.; Mortimer, Adam L.; Marder, Eve; Zeeman, Mary Lou
2013-01-01
The cardiac ganglion (CG) of Homarus americanus is a central pattern generator that consists of two oscillatory groups of neurons: “small cells” (SCs) and “large cells” (LCs). We have shown that SCs and LCs begin their bursts nearly simultaneously but end their bursts at variable phases. This variability contrasts with many other central pattern generator systems in which phase is well maintained. To determine both the consequences of this variability and how CG phasing is controlled, we modeled the CG as a pair of Morris-Lecar oscillators coupled by electrical and excitatory synapses and constructed a database of 15,000 simulated networks using random parameter sets. These simulations, like our experimental results, displayed variable phase relationships, with the bursts beginning together but ending at variable phases. The model suggests that the variable phasing of the pattern has important implications for the functional role of the excitatory synapses. In networks in which the two oscillators had similar duty cycles, the excitatory coupling functioned to increase cycle frequency. In networks with disparate duty cycles, it functioned to decrease network frequency. Overall, we suggest that the phasing of the CG may vary without compromising appropriate motor output and that this variability may critically determine how the network behaves in response to manipulations. PMID:23446690
NASA Astrophysics Data System (ADS)
Wettstein, J. J.; Li, C.; Bradshaw, S.
2016-12-01
Canonical tropospheric climate variability patterns and their corresponding indices are ubiquitous, yet a firm dynamical interpretation has remained elusive for many of even the leading extratropical patterns. Part of the lingering difficulty in understanding and predicting atmospheric low frequency variability is the fact that the identification itself of the different patterns is indistinct. This study characterizes three-dimensional structures in the low frequency variability of the extratropical zonal wind field within the entire period of record of the ERA-Interim reanalysis and suggests the foundations for a new paradigm in identifying and predicting extratropical atmospheric low-frequency variability. In concert with previous results, there is a surprisingly rich three-dimensional structure to the variance of the zonal wind field that is not (cannot be) captured by traditional identification protocols that explore covariance of pressure in the lower troposphere, flow variability in the zonal mean or, for that matter, in any variable on any planar surface. Correspondingly, many of the pressure-based canonical indices of low frequency atmospheric variability exhibit inconsistent relationships to physically intuitive reorganizations of the subtropical and polar front jets and with other forcing mechanisms. Different patterns exhibit these inconsistencies to a greater or lesser extent. The three-dimensional variance of the zonal wind field is, by contrast, naturally organized around dynamically intuitive atmospheric redistributions that have a surprisingly large amount of physically intuitive information in the vertical. These conclusions are robust in a variety of seasons and also in intra-seasonal and inter-annual explorations. Similar results and conclusions are also derived using detrended data, other reanalyses, and state-of-the-art coupled climate model output. In addition to providing a clearer perspective on the distinct three-dimensional patterns of atmospheric low frequency variability, the time evolution and potential predictability of the resultant patterns can be explored with much greater clarity because of an intrinsic link between the patterns and the requisite conservation of momentum (i.e. to the primitive equations and candidate forcing mechanisms).
A Latent Class Approach to Examining Forms of Peer Victimization
Bradshaw, Catherine P.; Waasdorp, Tracy E.; O’Brennan, Lindsey M.
2014-01-01
There is growing interest in gender differences in the experience of various forms of peer victimization; however, much of the work to date has used traditional variable-centered approaches by focusing on scales or individual forms of victimization in isolation. The current study explored whether there were discrete groups of adolescents who experience distinct forms of peer victimization by bullying (e.g., physical, verbal, relational) among middle and high school-age youth, and whether membership in a particular victimization group was associated with internalizing problems and aggression. Latent class analyses examining 10 different forms of victimization were conducted on a diverse sample of middle school (n = 11,408) and high school (n = 5,790) students. All forms of victimization were less common among high school students, except cyberbullying and sexual comments/gestures. The analyses revealed that there were 4 distinct victimization patterns for middle school students (Verbal and Physical; Verbal and Relational; High Verbal, Physical, and Relational; and Low Victimization/Normative), whereas high school students fell into a similar pattern with the exception of a Verbal and Physical class. These patterns of victimization were functionally associated with co-occurring internalizing problems and aggression. There were also some notable gender and developmental differences in the pattern of victimization and its relation with adjustment problems. These findings enhance our understanding of the complex patterns of peer victimization that are experienced by middle and high school students. Implications for educational researchers and school-based bullying interventions are discussed. PMID:25414522
Exploitation dynamics of small fish stocks like Arctic cisco
Nielsen, Jennifer L.
2004-01-01
Potential impacts to the Arctic cisco population fall into both demographic and behavioral categories. Possible demographic impacts include stock recruitment effects, limited escapement into marine habitats, and variable age-class reproductive success. Potential behavioral impacts involve migratory patterns, variable life histories, and strategies for seasonal feeding. Arctic cisco stocks are highly susceptible to over-exploitation due to our limited basic knowledge of the highly variable Arctic environment and the role they play in this dynamic ecosystem.Our knowledge of potential demographic changes is very limited, and it is necessary to determine the abundance and recruitment of the hypothesized Mackenzie River source population, the extent of the coastal migratory corridor, growth patterns, and coastal upwelling and mixing effects on population dynamics for this species. Information needed to answer some of the demographic questions includes basic evolutionary history and molecular genetics of Arctic cisco (for instance, are there contributions to the Arctic cisco stock from the Yukon?), what is the effective population size (i.e., breeding population size), and potential links to changes in climate. The basic behavioral questions include migratory and variable life history questions. For instance, the extent of movement back and forth between freshwater and the sea, age-specific differences in food web dynamics, and nearshore brackish and high salinity habitats are topics that should be studied. Life history data should be gathered to understand the variation in age at reproduction, salinity tolerance, scale and duration of the freshwater stage, survival, and adult migration. Both molecular and ecological tools should be integrated to manage the Arctic cisco stock(s), such as understanding global climate changes on patterns of harvest and recruitment, and the genetics of population structure and colonization. Perhaps other populations are contributing to the population within the Colville River other than only the Mackenzie River population. This needs further exploration. By examining otolith microchemistry, unique transitions from freshwater to sea can be identified for these stocks. This may shed light on why some fish arrive at the mouth of the Colville River, while others don’t.
The annual cycles of phytoplankton biomass
Winder, M.; Cloern, J.E.
2010-01-01
Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine-coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chloro-phyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six-or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to signal ratio is high. ?? 2010 The Royal Society.
Evaluation of a Mesoscale Convective System in Variable-Resolution CESM
NASA Astrophysics Data System (ADS)
Payne, A. E.; Jablonowski, C.
2017-12-01
Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.
Investigating broadband variability of the TeV blazar 1ES 1959+650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliu, E.; Archambault, S.; Arlen, T.
We summarize broadband observations of the TeV-emitting blazar 1ES 1959 650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters requiredmore » to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less
INVESTIGATING BROADBAND VARIABILITY OF THE TeV BLAZAR 1ES 1959+650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliu, E.; Archambault, S.; Arlen, T.
We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that themore » parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less
INVESTIGATING BROADBAND VARIABILITY OF THE TeV BLAZAR 1ES 1959+650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliu, E.; Archambault, S.; Arlen, T.
We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that themore » parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less
Investigating broadband variability of the TeV blazar 1ES 1959+650
Aliu, E.; Archambault, S.; Arlen, T.; ...
2014-12-03
We summarize broadband observations of the TeV-emitting blazar 1ES 1959 650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters requiredmore » to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less
Usual interstitial pneumonia: typical, possible, and “inconsistent” patterns
Torres, Pedro Paulo Teixeira e Silva; Rabahi, Marcelo Fouad; Moreira, Maria Auxiliadora Carmo; Meirelles, Gustavo de Souza Portes; Marchiori, Edson
2017-01-01
ABSTRACT Idiopathic pulmonary fibrosis is a severe and progressive chronic fibrosing interstitial lung disease, a definitive diagnosis being established by specific combinations of clinical, radiological, and pathological findings. According to current international guidelines, HRCT plays a key role in establishing a diagnosis of usual interstitial pneumonia (UIP). Current guidelines describe three UIP patterns based on HRCT findings: a typical UIP pattern; a pattern designated “possible UIP”; and a pattern designated “inconsistent with UIP”, each pattern having important diagnostic implications. A typical UIP pattern on HRCT is highly accurate for the presence of histopathological UIP, being currently considered to be diagnostic of UIP. The remaining patterns require further diagnostic investigation. Other known causes of a UIP pattern include drug-induced interstitial lung disease, chronic hypersensitivity pneumonitis, occupational diseases (e.g., asbestosis), and connective tissue diseases, all of which should be included in the clinical differential diagnosis. Given the importance of CT studies in establishing a diagnosis and the possibility of interobserver variability, the objective of this pictorial essay was to illustrate all three UIP patterns on HRCT. PMID:29160385
Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis
2013-02-01
Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.
Inter-individual variability in response to non-invasive brain stimulation paradigms.
López-Alonso, Virginia; Cheeran, Binith; Río-Rodríguez, Dan; Fernández-Del-Olmo, Miguel
2014-01-01
Non-invasive Brain Stimulation (NIBS) paradigms are unique in their ability to safely modulate cortical plasticity for experimental or therapeutic applications. However, increasingly, there is concern regarding inter-individual variability in the efficacy and reliability of these paradigms. Inter-individual variability in response to NIBS paradigms would be better explained if a multimodal distribution was assumed. In three different sessions for each subject (n = 56), we studied the Paired Associative Stimulation (PAS25), Anodal transcranial DC stimulation (AtDCS) and intermittent theta burst stimulation (iTBS) protocols. We applied cluster analysis to detect distinct patterns of response between individuals. Furthermore, we tested whether baseline TMS measures (such as short intracortical inhibition (SICI), resting motor threshold (RMT)) or factors such as time of day could predict each individual's response pattern. All three paradigms show similar efficacy over the first hour post stimulation--there is no significant effect on excitatory or inhibitory circuits for the whole sample, and AtDCS fares no better than iTBS or PAS25. Cluster analysis reveals a bimodal response pattern--but only 39%, 45% and 43% of subjects responded as expected to PAS25, AtDCS, and iTBS respectively. Pre-stimulation SICI accounted for 10% of the variability in response to PAS25, but no other baseline measures were predictive of response. Finally, we report implications for sample size calculation and the remarkable effect of sample enrichment. The implications of the high rate of 'dose-failure' for experimental and therapeutic applications of NIBS lead us to conclude that addressing inter-individual variability is a key area of concern for the field. Copyright © 2014 Elsevier Inc. All rights reserved.
Association between Western diet pattern and adult asthma: a focused review
Brigham, Emily P.; Kolahdooz, Fariba; Hansel, Nadia; Breysse, Patrick N.; Davis, Meghan; Sharma, Sangita; Matsui, Elizabeth C.; Diette, Gregory; McCormack, Meredith C.
2016-01-01
Objective Radical changes in diet have paralleled the increase in asthma with shifts toward a “Western” diet pattern, characterized by the high intake of processed meats and refined grains, high-fat dairy products, and sugary desserts and drinks. Because diet represents a modifiable risk factor in numerous chronic diseases, the authors examined the association between consumption of a Western diet pattern and asthma incidence, prevalence, and morbidity in adults. Data Sources PubMed, Cochrane, Web of Science, and Scopus were searched for peer-reviewed publications published from January 1980 to April 2014. Study Selection Studies retrieved for inclusion assessed dietary patterns representative of a Western diet and asthma incidence, prevalence, respiratory symptoms, and lung function. Results Ten observational studies conducted in North American, European, and Asian countries, ranging from 153 to more than 70,000 individuals, did not provide evidence to support an association between a Western dietary pattern and asthma incidence and prevalence. Five of these studies also investigated asthma morbidity, with variable findings. Conclusion Current evidence does not support an association between a Western diet and incident or prevalent adult asthma but does suggest a possible link between a Western diet pattern and adult asthma morbidity. PMID:25524748
NASA Astrophysics Data System (ADS)
Blume, T.; Zehe, E.; Bronstert, A.
2007-08-01
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
NASA Astrophysics Data System (ADS)
Blume, T.; Zehe, E.; Bronstert, A.
2009-07-01
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
1984-09-01
are: I. Pursue a highly conservative policy toward alterations in the quantity of freshwater inflow, recognizing the high biological value of Chesapeake...particular area. Regional development policies could be implemented to control growth patterns and associated water uses. Or, regulations could...changes in other relevant variables such as technology, consumer behavior, unanticipated shifts in agricultural irrigation policy or demands for water
Improving fire season definition by optimized temporal modelling of daily human-caused ignitions.
Costafreda-Aumedes, S; Vega-Garcia, C; Comas, C
2018-07-01
Wildfire suppression management is usually based on fast control of all ignitions, especially in highly populated countries with pervasive values-at-risk. To minimize values-at-risk loss by improving response time of suppression resources it is necessary to anticipate ignitions, which are mainly caused by people. Previous studies have found that human-ignition patterns change spatially and temporally depending on socio-economic activities, hence, the deployment of suppression resources along the year should consider these patterns. However, full suppression capacity is operational only within legally established fire seasons, driven by past events and budgets, which limits response capacity and increases damages out of them. The aim of this study was to assess the temporal definition of fire seasons from the perspective of human-ignition patterns for the case study of Spain, where people cause over 95% of fires. Humans engage in activities that use fire as a tool in certain periods within a year, and in locations linked to specific spatial factors. Geographic variables (population, infrastructures, physiography and land uses) were used as explanatory variables for human-ignition patterns. The changing influence of these geographic variables on occurrence along the year was analysed with day-by-day logistic regression models. Daily models were built for all the municipal units in the two climatic regions in Spain (Atlantic and Mediterranean Spain) from 2002 to 2014, and similar models were grouped within continuous periods, designated as ignition-based seasons. We found three ignition-based seasons in the Mediterranean region and five in the Atlantic zones, not coincidental with calendar seasons, but with a high degree of agreement with current legally designated operational fire seasons. Our results suggest that an additional late-winter-early-spring fire season in the Mediterranean area and the extension of this same season in the Atlantic zone should be re-considered for operational purposes in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
Patterns of shading tolerance determined from experimental ...
An extensive review of the experimental literature on seagrass shading evaluated the relationship between experimental light reductions, duration of experiment and seagrass response metrics to determine whether there were consistent statistical patterns. There were highly significant linear relationships of both percent biomass and percent shoot density reduction versus percent light reduction (versus controls), although unexplained variation in the data were high. Duration of exposure affected extent of response for both metrics, but was more clearly a factor in biomass response. Both biomass and shoot density showed linear responses to duration of light reduction for treatments 60%. Unexplained variation was again high, and greater for shoot density than biomass. With few exceptions, regressions of both biomass and shoot density on light reduction for individual species and for genera were statistically significant, but also tended to show high degrees of variability in data. Multivariate regressions that included both percent light reduction and duration of reduction as dependent variables increased the percentage of variation explained in almost every case. Analysis of response data by seagrass life history category (Colonizing, Opportunistic, Persistent) did not yield clearly separate response relationships in most cases. Biomass tended to show somewhat less variation in response to light reduction than shoot density, and of the two, may be the prefe
Spatial correlations of interdecadal variation in global surface temperatures
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1993-01-01
We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.
Wang, Mei-Yeh; Chiu, Chen-Huan; Lee, Hsin-Chien; Su, Chien-Tien; Tsai, Pei-Shan
2016-03-01
Depression increases the risk of adverse cardiac events. Cardiovascular reactivity is defined as the pattern of cardiovascular responses to mental stress. An altered pattern of cardiovascular reactivity is an indicator of subsequent cardiovascular disease. Because depression and adverse cardiac events may have a dose-dependent association, this study examined the differences in cardiovascular reactivity to mental stress between patients with major depressive disorder (MDD) with high depression levels and those with low depression levels. Moreover, autonomic nervous system regulation is a highly plausible biological mechanism for the pattern of cardiovascular reactivity to mental stress. The association between cardiovascular reactivity and parameters of heart rate variability (HRV), an index for quantifying autonomic nervous system activity modulation, was thus examined. This study included 88 patients with MDD. HRV was measured before stress induction. The Stroop Color and Word Test and mirror star-tracing task were used to induce mental stress. We observed no significant association between depressive symptom level and any of the cardiovascular reactivity parameters. Cardiovascular reactivity to mental stress was comparable between patients with MDD with high-level depressive symptoms and those with low-level depressive symptoms. After adjusting for confounding variables, the high-frequency domain of HRV was found to be an independent predictor of the magnitude of heart rate reactivity (β = -.33, p = .002). In conclusion, the magnitude of cardiovascular reactivity may be independent of depression severity in patients with MDD. The autonomic regulation of cardiovascular responses to mental stress primarily influences heart rate reactivity in patients with MDD. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Liu, Chen; Chen, Haishan
2018-02-01
The northernmost margin of East Asian summer monsoon (EASM) could well reflect wet/dry climate variability in the EASM marginal zone (northern China). The study shows that EASM occurs in northern China from Meiyu period to midsummer, and it is also the advancing period of the northern margin of EASM (NMEASM) before the 43rd pentad. NMEASM activity exhibits multi-scale variability, at cycles of 2-3-yr, 4-6-yr and 9-12-yr, which respond not only to EASM intensity but also to westerly circulation anomaly, exhibiting the mid-latitude Eurasian waves and the high-latitude Eurasian teleconnection (EU) patterns. The positive anomalies of Silk Road pattern and EU pattern in recent two decades contribute to the enhanced west-ridge and east-trough anomaly around 120°E over northern China, leading to divergence of moisture flux and north wind anomaly, which is helpful for southward western pacific subtropical high (WPSH) and southward NMEASM. Negative Eurasian pattern along subtropical Jet leads to anticyclone anomaly over south of the Yangtze River, deep trough and north wind anomaly along the west coast of the subtropical Pacific, contributing to southward WPSH and NMEASM at the cycle of 4-6-yr. Remote forcing sources of these anomalous Eurasian waves include North Europe, north of Caspian Sea, Central Asia, Tibetan Plateau and the west of Lake Baikal; the south of Lake Baikal is a local forcing region. The Tibetan Plateau heating and snow cover could modulate Eurasian wave pattern at multi-scale, which could be used as prediction reference of multi-scale NMEASM.
Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V., Oliver C.
2015-01-01
Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov–Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities. PMID:26207997
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong
Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong
2017-11-15
Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less
Oellingrath, Inger M; Svendsen, Martin V; Hestetun, Ingebjørg
2014-11-01
To investigate the association between eating patterns and mental health problems in young Norwegian adolescents (12-13 years of age). Cross-sectional study. Dietary information was reported by parents using a retrospective FFQ. Eating patterns were identified using principal component analysis. The Strengths and Difficulties Questionnaire was used to measure mental health problems. The association between eating patterns and mental health problems was examined using multiple logistic regression analysis. Primary schools, Telemark County, Norway. Children (n 1095) aged 12-13 years and their parents. Children with high scores on a 'varied Norwegian' eating pattern were less likely to have indications of any psychiatric disorders (adjusted OR = 0·5; 95 % CI 0·3, 1·0) and hyperactivity-inattention disorders (adjusted OR = 0·4; 95 % CI 0·2, 0·8) than children with low scores on this pattern. Children with high scores on a 'junk/convenient' eating pattern were more likely to have indications of hyperactivity-inattention disorders (adjusted OR = 3·4; 95 % CI 1·3, 8·6) than children with low scores on this pattern. Children with high scores on a 'snacking' eating pattern were more likely to have indications of conduct/oppositional disorders (adjusted OR = 3·8; 95 % CI 1·2, 11·5) than those with low scores on this eating pattern. We identified a significant association between eating patterns and mental health problems in young adolescents, independently of physical activity, sedentary activity and background variables. A diverse diet rich in unrefined plant foods, fish and regular meals was associated with better mental health, while energy-dense, nutrient-poor diets and irregular meals were associated with poorer mental health.
NASA Astrophysics Data System (ADS)
Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen
2016-04-01
Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under different hydrologic conditions and the factors controlling the temporal variability of the ECa-soil moisture relationship. The approach provided valuable insight into the time-varying contribution of local and nonlocal factors to the characteristic spatial patterns of soil moisture and the transition mechanisms. The spatial organization of soil moisture was controlled by different processes in different soil horizons, and the topsoil's moisture did not mirror processes that take place within the soil profile. Results show that, for the Schäfertal hillslope site which is presumed to be representative for non-intensively managed soils with moderate clay content, local soil properties (e.g., soil texture and porosity) are the major control on the spatial pattern of ECa. In contrast, the ECa-soil moisture relationship is small and varies over time indicating that ECa is not a good proxy for soil moisture estimation at the investigated site.Occasionally observed stronger correlations between ECa and soil moisture may be explained by background dependencies of ECa to other state variables such as pore water electrical conductivity. The results will help to improve conceptual understanding for hydrological model studies at similar or smaller scales, and to transfer observation concepts and process understanding to larger or less instrumented sites, as well as to constrain the use of EMI-based ECa data for hydrological applications.
28nm node process optimization: a lithography centric view
NASA Astrophysics Data System (ADS)
Seltmann, Rolf
2014-10-01
Many experts claim that the 28nm technology node will be the most cost effective technology node forever. This results from primarily from the cost of manufacturing due to the fact that 28nm is the last true Single Patterning (SP) node. It is also affected by the dramatic increase of design costs and the limited shrink factor of the next following nodes. Thus, it is assumed that this technology still will be alive still for many years. To be cost competitive, high yields are mandatory. Meanwhile, leading edge foundries have optimized the yield of the 28nm node to such a level that that it is nearly exclusively defined by random defectivity. However, it was a long way to go to come to that level. In my talk I will concentrate on the contribution of lithography to this yield learning curve. I will choose a critical metal patterning application. I will show what was needed to optimize the process window to a level beyond the usual OPC model work that was common on previous nodes. Reducing the process (in particular focus) variability is a complementary need. It will be shown which improvements were needed in tooling, process control and design-mask-wafer interaction to remove all systematic yield detractors. Over the last couple of years new scanner platforms were introduced that were targeted for both better productivity and better parametric performance. But this was not a clear run-path. It needed some extra affords of the tool suppliers together with the Fab to bring the tool variability down to the necessary level. Another important topic to reduce variability is the interaction of wafer none-planarity and lithography optimization. Having an accurate knowledge of within die topography is essential for optimum patterning. By completing both the variability reduction work and the process window enhancement work we were able to transfer the original marginal process budget to a robust positive budget and thus ensuring high yield and low costs.
NASA Astrophysics Data System (ADS)
Zhao, Zijian; Wang, Yuxuan
2017-12-01
The West Pacific subtropical high (WPSH), as one of the most important components of the East Asian summer monsoon (EASM), is the key synoptic-scale circulation pattern influencing summertime precipitation and atmospheric conditions in China. Here we investigate the impacts of the WPSH on surface ozone daily variability over eastern China, using observations from recently established network of ozone monitors and meteorology reanalysis data during summer (June, July, August; JJA) 2014-2016 with a focus on 2014. An empirical orthogonal function (EOF) analysis of daily ozone variations reveals that the dominating eigenvector (EOF1), which contributes a quarter (25.2%) to the total variances, is a marked north-south contrast. This pattern is temporally well correlated (r = -0.66, p < 0.01) with daily anomalies of a normalized WPSH intensity index (WPSH-I). Spatially, the WPSH-I and ozone correlation is positive in North China (NC) but negative in South China (SC), which well correlates with the ozone EOF1 pattern showing the same north-south contrast (r = -0.86, p < 0.01). These associations suggest the dominant component of surface ozone daily variability in eastern China is linked with the variability of the WPSH intensity in that a stronger WPSH leads to a decrease of surface ozone over SC but an increase over NC and vice versa. This is because a stronger WPSH enhances southwesterly transport of moisture into SC, creating such conditions not conducive for ozone formation as higher RH, more cloudiness and precipitation, less UV radiation, and lower temperature. Meanwhile, as most of the rainfall due to the enhanced southwesterly transport of moisture occurs in SC, water vapor is largely depleted in the air masses transported towards NC, creating dry and sunny conditions over NC under a strong WPSH, thereby promoting ozone formation.
Genetic variability in captive populations of the stingless bee Tetragonisca angustula.
Santiago, Leandro R; Francisco, Flávio O; Jaffé, Rodolfo; Arias, Maria C
2016-08-01
Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.
Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U
2016-06-01
This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Milner, A. M.; Roucoux, K. H.; Collier, R. E. L.; Müller, U. C.; Pross, J.; Tzedakis, P. C.
2016-12-01
The discovery that climate variability during the Last Glacial shifted rapidly between climate states has intensified efforts to understand the distribution, timing and impact of abrupt climate change under a wide range of boundary conditions. In contribution to this, we investigate the nature of abrupt environmental changes in terrestrial settings of the Mediterranean region during the Last Interglacial Complex (Marine Isotope Stage [MIS] 5) and explore the relationships of these changes to high-latitude climate events. We present a new, temporally highly resolved (mean: 170 years) pollen record for the Last Interglacial Complex from Tenaghi Philippon, north-east Greece. The new pollen record, which spans the interval from 130,000 to 65,000 years ago, forms part of an exceptionally long polleniferous sediment archive covering the last 1.35 million years. The pollen data reveal an interglacial followed by alternating forest and steppe phases representing the interstadials and stadials of the Early Glacial. Superimposed on these millennial-scale changes is evidence of persistent sub-millennial-scale variability. We identify ten high-amplitude abrupt events in the pollen record, characterised by rapid contractions of closed forest to open steppe environment and interpreted to indicate major changes in moisture availability and temperature. The contractions in forest cover on millennial timescales appear associated with cooling events in the Mediterranean Sea, North Atlantic and Greenland regions, linked to the Dansgaard-Oeschger (DO) cycles of the Early Glacial. On sub-millennial timescales, the pattern of changes in forest cover at Tenaghi Philippon display a structure similar to the pattern of short-lived precursor and rebound-type events detected in the Greenland ice-core record. Our findings indicate that persistent, high-amplitude environmental variability occurred throughout the Early Glacial, on both millennial and submillennial timescales. Furthermore, the similarity of the pattern of change between Tenaghi Philippon and Greenland on sub-millennial timescales suggests that teleconnections between the high-latitudes and the Mediterranean region operate on sub-millennial timescales and that some terrestrial archives, such as Tenaghi Philippon, are particularly sensitive recorders of these abrupt climate changes.
Simulation of South-Asian Summer Monsoon in a GCM
NASA Astrophysics Data System (ADS)
Ajayamohan, R. S.
2007-10-01
Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.
Dietary Patterns and Metabolic Syndrome among Type 2 Diabetes Patients in Gaza Strip, Palestine.
El Bilbeisi, Abdel Hamid; Hosseini, Saeed; Djafarian, Kurosh
2017-05-01
The prevalence of metabolic syndrome is raising worldwide; however, the role of diet in the origin of metabolic syndrome is not understood well. This study identifies major dietary patterns among type 2 diabetes mellitus patients with and without metabolic syndrome; and its association with metabolic syndrome components in Gaza Strip, Palestine. This cross sectional study was conducted among 1200 previously diagnosed type 2 diabetes mellitus (both genders, aged 20 - 64 years) patients receiving care in primary healthcare centers in Gaza Strip, Palestine. Metabolic syndrome was defined based on the International Diabetes Federation criteria; dietary patterns were evaluated using a validated semi-quantitative food frequency questionnaire. Statistical analysis was performed using SPSS version 20. Two major dietary patterns were identified by factor analysis: Asian-like pattern and sweet-soft drinks-snacks pattern. After adjustment for confounding variables, patients in the highest tertile of the Asian-like pattern characterized by a high intake of whole grains, potatoes, beans, legumes, vegetables, tomatoes and fruithad a lower odds for (Metabolic syndrome, central obesity, high triglycerides, low HDL cholesterol and high blood pressure), (OR 0.766 CI 95% (.642-.914)), (OR 0.797 CI 95% (.652-.974)), (OR 0.791 CI 95% (.687-.911)), (OR 0.853 CI 95% (.743-.978)) and (OR 0.815 CI 95% (.682-.973)) respectively, (P value < 0.05 for all). No significant association was found between the sweet-soft drinks-snacks pattern with metabolic syndrome and its components. The Asian-like pattern may be associated with a lower prevalence of metabolic syndrome and its components among type 2 diabetes patients.
Butler, M G; Pratesi, R; Watson, M S; Breg, W R; Singh, D N
1993-09-01
Anthropometric and craniofacial profile patterns indicating the percent difference from the overall mean were developed on 34 physical parameters with 31 white, mentally retarded males (23 adults and 8 children) with the fra(X) syndrome matched for age with 31 white, mentally retarded males without a known cause of their retardation. The fra(X) syndrome males consistently showed larger dimensions for all anthropometric variables, with significant differences for height, sitting height, arm span, hand length, middle finger length, hand breadth, foot length, foot breadth, and testicular volume. A craniofacial pattern did emerge between the two groups of mentally retarded males, but with overlap of several variables. Significant differences were noted for head circumference, head breadth, lower face height, bizygomatic diameter, inner canthal distance, ear length and ear width, with the fra(X) syndrome males having larger head dimensions (head circumference, head breadth, head length, face height and lower face height), but smaller measurements for minimal frontal diameter, bizygomatic diameter, bigonial diameter, and inner canthal distance. Several significant correlations were found with the variables for both mentally retarded males with and without the fra(X) syndrome. In a combined anthropometric and craniofacial profile of 19 variables comparing 26 white fra(X) syndrome males (13 with high expression (> 30%) and 13 with low expression (< 30%), but matched for age), a relatively flat profile was observed with no significant differences for any of the variables. Generally, fra(X) syndrome males with increased fragile X chromosome expression have larger amplifications of the CGG trinucleotide repeat of the FMR-1 gene. No physical differences were detectable in our study between fra(X) males with high expression and apparently larger amplifications of the CGG trinucleotide repeats compared with those patients with low expression. Our research illustrates the use of anthropometry in identifying differences between mentally retarded males with or without the fra(X) syndrome and offers a comprehensive approach for screening males for the fra(X) syndrome and selecting those individuals for cytogenetic and/or molecular genetic testing.
Butler, Merlin G.; Pratesi, Riccardo; Watson, Michael S.; Breg, W. Roy; Singh, Dharmdeo N.
2017-01-01
Anthropometric and craniofacial profile patterns indicating the percent difference from the overall mean were developed on 34 physical parameters with 31 white, mentally retarded males (23 adults and 8 children) with the fra(X) syndrome matched for age with 31 white, mentally retarded males without a known cause of their retardation. The fra(X) syndrome males consistently showed larger dimensions for all anthropometric variables, with significant differences for height, sitting height, arm span, hand length, middle finger length, hand breadth, foot length, foot breadth, and testicular volume. A craniofacial pattern did emerge between the two groups of mentally retarded males, but with overlap of several variables. Significant differences were noted for head circumference, head breadth, lower face height, bizygomatic diameter, inner canthal distance, ear length and ear width, with the fra(X) syndrome males having larger head dimensions (head circumference, head breadth, head length, face height and lower face height), but smaller measurements for minimal frontal diameter, bizygomatic diameter, bigonial diameter, and inner canthal distance. Several significant correlations were found with the variables for both mentally retarded males with and without the fra(X) syndrome. In a combined anthropometric and craniofacial profile of 19 variables comparing 26 white fra(X) syndrome males (13 with high expression (>30%) and 13 with low expression (< 30%), but matched for age), a relatively flat profile was observed with no significant differences for any of the variables. Generally, fra(X) syndrome males with increased fragile X chromosome expression have larger amplifications of the CGG trinucleotide repeat of the FMR-1 gene. No physical differences were detectable in our study between fra(X) males with high expression and apparently larger amplifications of the CGG trinucleotide repeats compared with those patients with low expression. Our research illustrates the use of anthropometry in identifying differences between mentally retarded males with or without the fra(X) syndrome and offers a comprehensive approach for screening males for the fra(X) syndrome and selecting those individuals for cytogenetic and/or molecular genetic testing. PMID:8275570
Douglas, Pamela Heidi; Hohmann, Gottfried; Murtagh, Róisín; Thiessen-Bock, Robyn; Deschner, Tobias
2016-06-30
The evolution of primate sexual swellings and their influence on mating strategies have captivated the interest of biologists for over a century. Across the primate order, variability in the timing of ovulation with respect to females' sexual swelling patterns differs greatly. Since sexual swellings typically function as signals of female fecundity, the temporal relation between ovulation and sexual swellings can impact the ability of males to pinpoint ovulation and thereby affect male mating strategies. Here, we used endocrine parameters to detect ovulation and examined the temporal relation between the maximum swelling phase (MSP) and ovulation in wild female bonobos (Pan paniscus). Data were collected at the Luikotale field site, Democratic Republic of Congo, spanning 36 months. Observational data from 13 females were used to characterise female swelling cycles (N = 70). Furthermore, we measured urinary oestrone and pregnanediol using liquid chromatography-tandem mass spectrometry, and used pregnanediol to determine the timing of ovulation in 34 cycles (N = 9 females). We found that the duration of females' MSP was highly variable, ranging from 1 to 31 days. Timing of ovulation varied considerably in relation to the onset of the MSP, resulting in a very low day-specific probability of ovulation and fecundity across female cycles. Ovulation occurred during the MSP in only 52.9 % of the analysed swelling cycles, and females showed regular sexual swelling patterns in N = 8 swelling cycles where ovulation did not occur. These findings reveal that sexual swellings of bonobos are less reliable indicators of ovulation compared to other species of primates. Female bonobos show unusual variability in the duration of the MSP and in the timing of ovulation relative to the sexual swelling signal. These data are important for understanding the evolution of sexual signals, how they influence male and female mating strategies, and how decoupling visual signals of fecundity from the periovulatory period may affect intersexual conflict. By prolonging the period during which males would need to mate guard females to ascertain paternity, the temporal variability of this signal may constrain mate-guarding efforts by male bonobos.
Analysis of communication in the standard versus automated aircraft
NASA Technical Reports Server (NTRS)
Veinott, Elizabeth S.; Irwin, Cheryl M.
1993-01-01
Past research has shown crew communication patterns to be associated with overall crew performance, recent flight experience together, low-and high-error crew performance and personality variables. However, differences in communication patterns as a function of aircraft type and level of aircraft automation have not been fully addressed. Crew communications from ten MD-88 and twelve DC-9 crews were obtained during a full-mission simulation. In addition to large differences in overall amount of communication during the normal and abnormal phases of flight (DC-9 crews generating less speech than MD-88 crews), differences in specific speech categories were also found. Log-linear analyses also generated speaker-response patterns related to each aircraft type, although in future analyses these patterns will need to account for variations due to crew performance.
Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals
NASA Technical Reports Server (NTRS)
Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel
2014-01-01
To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.
An Investigation of Individual Variability in Brain Activity During Episodic Encoding and Retrieval
2008-12-01
variability in mnemonic strategy use is, at least in part, related to the extensive variability observed in brain activity patterns. While a number of...1 AN INVESTIGATION OF INDIVIDUAL VARIABILITY IN BRAIN ACTIVITY DURING EPISODIC ENCODING AND RETRIEVAL C.L. Donovan*, and M.B. Miller Department of...strategy measures for predicting differences in brain activity patterns during a learning and memory task and to compare their predictive value to other
Yongqiang Liu
2003-01-01
The relations between monthly-seasonal soil moisture and precipitation variability are investigated by identifying the coupled patterns of the two hydrological fields using singular value decomposition (SVD). SVD is a technique of principal component analysis similar to empirical orthogonal knctions (EOF). However, it is applied to two variables simultaneously and is...
Distillation Column Flooding Predictor
DOE Office of Scientific and Technical Information (OSTI.GOV)
George E. Dzyacky
2010-11-23
The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillationmore » columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.« less
Pierce, C M; Molloy, G N
1990-02-01
A total of 750 teachers from 16 government and non-government schools from areas of contrasted socio-economic status (SES) responded to a questionnaire designed to investigate associations between selected aspects of burnout among teachers working in secondary schools in Victoria, Australia. By comparing high and low burnout groups on biographic, psychological and work pattern variables, differences between teachers experiencing high and low levels of burnout were identified. Multiple regression analyses assessed the relative importance of these variables in accounting for the variance in each of the three burnout subscales. School type was related to perceptions of stress and burnout. Higher levels of burnout were associated with poorer physical health, higher rates of absenteeism, lower self-confidence and more frequent use of regressive coping strategies. Teachers classified as experiencing high levels of burnout attributed most of the stress in their lives to teaching and reported low levels of career commitment and satisfaction. Further, teachers who recorded high levels of burnout were characterised by lower levels of the personality disposition of hardiness, lower levels of social support, higher levels of role stress and more custodial pupil control ideologies than their low-burnout counterparts. Psychological variables were found to be more significant predictors of burnout than biographical variables.
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...
2017-06-18
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Variability and regulation of denitrification in an Upper Mississippi River backwater
Strauss, E.A.; Richardson, W.B.; Cavanaugh, J.C.; Bartsch, L.A.; Kreiling, Rebecca M.; Standorf, A.J.
2006-01-01
Sediments in the backwaters of the Upper Mississippi River (UMR) are highly organic and provide an optimal environment for N removal. We monitored an 8.6-ha UMR backwater site near La Crosse, Wisconsin, for nearly 3 y to assess temporal variability, seasonal trends, and the factors regulating denitrification. We measured rates of unamended denitrification (DEN) and denitrification enzyme activity (DEA) rates at ambient temperature and DEA at 30 degrees C (DEA30). Seasonal mean (+/- 1 SE) DEN rates ranged from 0.041 +/- 0.015 to 0.47 +/- 0.23 mu g N cm(-2) h(-1)and were highest in winter and lowest in autumn. Seasonal rates of DEA exhibited a different pattern with the highest rates in summer (25.6 +/- 3.4 mu g N cm(-2) h(-1)) and the lowest rates in winter (10.6 +/- 2.1 mu g N cm(-2) h(-1)). The overall mean DEA30 rate was 31.0 +/- 1.9 mu g N cm(-2) h(-1) but showed no significant seasonal pattern. Short-term (weekly) and seasonal variability exhibited by rates of DEN and DEA were best explained by water-column NO3- concentration and temperature, respectively. No environmental variables explained a significant amount of variability in DEA30. Our results suggest that nutrient (i.e., NO3-) availability and temperature are both regulators of denitrification, with NO3- concentration being the most important limiting factor in this system. The high DEN rates during winter were in response to elevated NO3- concentrations resulting from a chain reaction beginning with algal blooms creating oxic conditions that stimulated nitrification. Increasing hydrological connectivity in large rivers as a river management tool to reduce N flux to downstream areas may be beneficial.
Gómez-Silván, C; Arévalo, J; Pérez, J; González-López, J; Rodelas, B
2013-01-01
The seasonal variation of the hydrolytic activities acid and alkaline phosphatase, α-glucosidase and protease, was studied in both the aerated and anoxic phases of a full-scale membrane bioreactor (MBR) (total operational volume = 28.2 m(3)), operated in pre-denitrification mode and fed real urban wastewater. Non-metric multidimensional scaling (MDS) and BIO-ENV analysis were used to study the distribution of enzyme activities in different seasons of the year (spring, summer and autumn) and unveil their relationships with changes in variables influencing the system (composition of influent wastewater, activated sludge temperature and biomass concentration in the bioreactors). The activities of all the tested hydrolases were remarkably dynamic, and each enzyme showed complex and diverse patterns of variation. Except in the summer season, the variables included in this study gave a good explanation of those patterns and displayed high and consistent correlations with them; however, markedly different correlation trends were found in each season, indicating dissimilar adaptation responses of the community to the influence of changing conditions. A consistent and highly negative correlation between protease and α-glucosidase was revealed in all the experiments. The variables included in this study showed contrary influences on these activities, suggesting an alternation of the major groups of carbon-degrading hydrolases in connection to changes in temperature and the availability and composition of nutrients in the different seasons. Sampling over a long period of time was required to adequately lay down the links between hydrolytic activities and the variables influencing the MBR system. These results highlight the complexity of the regulation of substrate degradation by the mixed microbial sludge communities under real operating conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Spatio-temporal variation in stream water chemistry in a tropical urban watershed
A. Ramirez; K.G. Rosas; A.E. Lugo; O.M. Ramos-Gonzalez
2014-01-01
Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial...
ERIC Educational Resources Information Center
Greer, Margaret K.; And Others
1989-01-01
This case study illustrates the highly significant language difficulties, marked memory deficits, and propensity for physical aggression following temporal lobe damage brought about by herpes encephalitis, and presents the usefulness of a new diagnostic measure in delineating such a variable cognitive pattern. (Author)
The Ecology of Substance Use: Family Characteristics of High-Risk Teens.
ERIC Educational Resources Information Center
Harkins, Christine M.; And Others
The most recent prescriptions for substance abuse prevention call for parent involvement in all phases of school and community programs, in addition to parent education programs. However, surprisingly little is known about the ways in which family variables influence patterns of adolescent substance use. This study examined a sample of families…
Using EPG Data to Display Articulatory Separation for Phoneme Contrasts
ERIC Educational Resources Information Center
Gibbon, Fiona E.; Lee, Alice
2011-01-01
A recurring difficulty for researchers using electropalatography (EPG) is the wide variation in spatial patterns that occurs between speakers. High inter-speaker variability, combined with small numbers of participants, makes it problematic (1) to identify differences in tongue-palate contact across groups of speakers and (2) to define "normal"…
Influences of Phonological Context on Tense Marking in Spanish-English Dual Language Learners
ERIC Educational Resources Information Center
Combiths, Philip N.; Barlow, Jessica A.; Potapova, Irina; Pruitt-Lord, Sonja
2017-01-01
Purpose: The emergence of tense-morpheme marking during language acquisition is highly variable, which confounds the use of tense marking as a diagnostic indicator of language impairment in linguistically diverse populations. In this study, we seek to better understand tense-marking patterns in young bilingual children by comparing phonological…
The Cultural Context of Infancy. Volume 1: Biology, Culture, and Infant Development.
ERIC Educational Resources Information Center
Nugent, J. Kevin, Ed.; And Others
Noting that patterns of childrearing are highly variable across the human species, this book explores the developmental processes of infancy over a wide range of cultural and social environments. By presenting multiple alternative examples of the context of infant development, the book attempts to stimulate continued discussion on the ways in…
Soltero, Sandra M.; Palacios, Cristina
2012-01-01
Objective Obesity is a public health problem in Puerto Rico. Dietary patterns that include high intakes of energy and sweetened drinks and low consumption of fruits, vegetables and fiber are associated with obesity. The aim of this study is to relate dietary patterns with body composition in obese subjects. Methods Dietary patterns were evaluated using 3-day food records. Body composition was assessed by body weight, hip and waist circumferences and % body fat, and then used to classify subjects by obesity stages using BMI and by low or high risk using WHR or % body fat. The resulting comparison groups were associated with energy, macronutrients, fruits, vegetables, fiber, and sweetened drinks intake and with meal energy density and meal frequency intake. Kruskal Wallis and Mann Whitney tests were used to compare groups and Spearman correlations were used for continuous variables. Results Thirty subjects completed the study. By BMI, 30% were obese type I, 33% type II and 37% type III; by WHR, 43% were low risk and 57% high risk; by % body fat, all were high risk. Dietary patterns were similar between groups. WHR was positively correlated with fiber consumption (r=0.42; p<0.05) and CHO intake (r=0.35; p=0.057). Conclusion In this pilot study, dietary patterns appeared similar between groups and sound with nutritional recommendations; however, we observed a poor quality of the diet due to very low intakes of fruits, vegetables and fiber and high intakes of sweetened drinks. PMID:21449494
Filipowicz, Natalia; Madanecki, Piotr; Gołebiowski, Marek; Stepnowski, Piotr; Ochocka, J Renata
2009-12-01
Juniperus communis var. communis L. is an aromatic plant - typical boreal element of flora. In the extensive literature concerning J. communis, there is much data on the composition and the content of essential oil of needles and coneberries, but a detailed analysis of terpene distribution within and between populations is missing. A representative pool of 74 J. communis individuals originating from ten populations of Northern Poland was investigated in order to evaluate the intra- and interpopulational variability of the terpene pattern. Headspace solid-phase microextraction (HS-SPME) coupled with GC/MS and GC/FID was applied in achiral and enantioselective analysis. The majority of the samples (85%), despite different origin, were similar in the terpene pattern. High diversity of terpenes was observed within the populations and low diversity between them. High variation of enantiomeric composition was in accordance with large variation of individual compounds in general (achiral analysis). J. communis samples from Northern Poland could be distinguished by the alpha-pinene/sabinene ratio, and they were divided into three chemical races.
Movements of Diadromous Fish in Large Unregulated Tropical Rivers Inferred from Geochemical Tracers
Walther, Benjamin D.; Dempster, Tim; Letnic, Mike; McCulloch, Malcolm T.
2011-01-01
Patterns of migration and habitat use in diadromous fishes can be highly variable among individuals. Most investigations into diadromous movement patterns have been restricted to populations in regulated rivers, and little information exists for those in unregulated catchments. We quantified movements of migratory barramundi Lates calcarifer (Bloch) in two large unregulated rivers in northern Australia using both elemental (Sr/Ba) and isotope (87Sr/86Sr) ratios in aragonitic ear stones, or otoliths. Chemical life history profiles indicated significant individual variation in habitat use, particularly among chemically distinct freshwater habitats within a catchment. A global zoning algorithm was used to quantify distinct changes in chemical signatures across profiles. This algorithm identified between 2 and 6 distinct chemical habitats in individual profiles, indicating variable movement among habitats. Profiles of 87Sr/86Sr ratios were notably distinct among individuals, with highly radiogenic values recorded in some otoliths. This variation suggested that fish made full use of habitats across the entire catchment basin. Our results show that unrestricted movement among freshwater habitats is an important component of diadromous life histories for populations in unregulated systems. PMID:21494693
Sequential associative memory with nonuniformity of the layer sizes.
Teramae, Jun-Nosuke; Fukai, Tomoki
2007-01-01
Sequence retrieval has a fundamental importance in information processing by the brain, and has extensively been studied in neural network models. Most of the previous sequential associative memory embedded sequences of memory patterns have nearly equal sizes. It was recently shown that local cortical networks display many diverse yet repeatable precise temporal sequences of neuronal activities, termed "neuronal avalanches." Interestingly, these avalanches displayed size and lifetime distributions that obey power laws. Inspired by these experimental findings, here we consider an associative memory model of binary neurons that stores sequences of memory patterns with highly variable sizes. Our analysis includes the case where the statistics of these size variations obey the above-mentioned power laws. We study the retrieval dynamics of such memory systems by analytically deriving the equations that govern the time evolution of macroscopic order parameters. We calculate the critical sequence length beyond which the network cannot retrieve memory sequences correctly. As an application of the analysis, we show how the present variability in sequential memory patterns degrades the power-law lifetime distribution of retrieved neural activities.
NASA Astrophysics Data System (ADS)
Kobinata, Hideo; Yamashita, Hiroshi; Nomura, Eiichi; Nakajima, Ken; Kuroki, Yukinori
1998-12-01
A new method for proximity effect correction, suitable for large-field electron-beam (EB) projection lithography with high accelerating voltage, such as SCALPEL and PREVAIL in the case where a stencil mask is used, is discussed. In this lithography, a large-field is exposed by the same dose, and thus, the dose modification method, which is used in the variable-shaped beam and the cell projection methods, cannot be used in this case. In this study, we report on development of a new proximity effect correction method which uses a pattern modified stencil mask suitable for high accelerating voltage and large-field EB projection lithography. In order to obtain the mask bias value, we have investigated linewidth reduction, due to the proximity effect, in the peripheral memory cell area, and found that it could be expressed by a simple function and all the correction parameters were easily determined from only the mask pattern data. The proximity effect for the peripheral array pattern could also be corrected by considering the pattern density. Calculated linewidth deviation was 3% or less for a 0.07-µm-L/S memory cell pattern and 5% or less for a 0.14-µm-line and 0.42-µm-space peripheral array pattern, simultaneously.
Lee, Jung Yeon; Brook, Judith S.; Finch, Stephen J.; De La Rosa, Mario; Brook, David W.
2017-01-01
The current study examines the longitudinal patterns of both cigarette smoking and depressive symptoms as predictors of generalized anxiety disorder (GAD) using data from the Harlem Longitudinal Development Study. There were 674 African American (53%) and Puerto Rican (47%) participants. Among the 674 participants, 60% were females. In the logistic regression analyses, the indicator variables of membership in each of the joint trajectories of cigarette smoking and depressive symptoms from the mid 20s to the mid 30s were used as the independent variables, and the diagnosis of GAD in the mid 30s was used as the dependent variable. The high cigarette smoking with high depressive symptoms group and the low cigarette smoking with high depressive symptoms group were associated with an increased likelihood of having GAD as compared to the no cigarette smoking with low depressive symptoms group. The findings shed light on the prevention and treatment of GAD. PMID:28281938
Ikeda, Takashi; Uchida, Kenta; Matsuura, Yukiko; Takahashi, Hiroshi; Yoshida, Tsuyoshi; Kaji, Koichi; Koizumi, Itsuro
2016-01-01
The activity patterns of mammals are generally categorized as nocturnal, diurnal, crepuscular (active at twilight), and cathemeral (active throughout the day). These patterns are highly variable across regions and seasons even within the same species. However, quantitative data is still lacking, particularly for sympatric species. We monitored the seasonal and diel activity patterns of terrestrial mammals in Hokkaido, Japan. Through an intensive camera-trap survey a total of 13,279 capture events were recorded from eight mammals over 20,344 camera-trap days, i.e., two years. Diel activity patterns were clearly divided into four categories: diurnal (Eurasian red squirrels), nocturnal (raccoon dogs and raccoons), crepuscular (sika deer and mountain hares), and cathemeral (Japanese martens, red foxes, and brown bears). Some crepuscular and cathemeral mammals shifted activity peaks across seasons. Particularly, sika deer changed peaks from twilight during spring-autumn to day-time in winter, possibly because of thermal constraints. Japanese martens were cathemeral during winter-summer, but nocturnal in autumn. We found no clear indication of predator-prey and competitive interactions, suggesting that animal densities are not very high or temporal niche partitioning is absent among the target species. This long-term camera-trap survey was highly cost-effective and provided one of the most detailed seasonal and diel activity patterns in multiple sympatric mammals under natural conditions.
NASA Astrophysics Data System (ADS)
Valdez Vasquez, M. C.; Chen, C. F.
2017-12-01
Wildfires are unrestrained fires in an area of flammable vegetation and they are one of the most frequent disasters in Honduras during the dry season. During this period, anthropogenic activity combined with the harsh climatic conditions, dry vegetation and topographical variables, cause a large amount of wildfires. For this reason, there is a need to identify the drivers of wildfires and their susceptibility variations during the wildfire season. In this study, we combined the wildfire points during the 2010-2016 period every 8 days with a series of variables using the random forest (RF) algorithm. In addition to the wildfire points, we randomly generated a similar amount of background points that we use as pseudo-absence data. To represent the human imprint, we included proximity to different types of roads, trails, settlements and agriculture sites. Other variables included are the Moderate Resolution Imaging Spectra-radiometer (MODIS)-derived 8-day composites of land surface temperature (LST) and the normalized multi-band drought index (NMDI), derived from the MODIS surface reflectance data. We also included monthly average precipitation, solar radiation, and topographical variables. The exploratory analysis of the variables reveals that low precipitation combined with the low NMDI and accessibility to non-paved roads were the major drivers of wildfires during the early months of the dry season. During April, which is the peak of the dry season, the explanatory variables of relevance also included elevation and LST in addition to the proximity to paved and non-paved roads. During May, proximity to crops becomes relevant, in addition to the aforesaid variables. The average estimated area with high and very high wildfire susceptibility was 22% of the whole territory located mainly in the central and eastern regions, drifting towards the northeast areas during May. We validated the results using the area under the receiver operating characteristic (ROC) curve (AUC) for each 8-day period, and the average AUC acquired was acceptable using an independent test data. We suggest that the 8-day frequency spatiotemporal mapping of wildfire patterns and the identification of the most relevant drivers can lead to localized prevention and control actions in specific time-frames in areas of high wildfire susceptibility.
Pattern-based, multi-scale segmentation and regionalization of EOSD land cover
NASA Astrophysics Data System (ADS)
Niesterowicz, Jacek; Stepinski, Tomasz F.
2017-10-01
The Earth Observation for Sustainable Development of Forests (EOSD) map is a 25 m resolution thematic map of Canadian forests. Because of its large spatial extent and relatively high resolution the EOSD is difficult to analyze using standard GIS methods. In this paper we propose multi-scale segmentation and regionalization of EOSD as new methods for analyzing EOSD on large spatial scales. Segments, which we refer to as forest land units (FLUs), are delineated as tracts of forest characterized by cohesive patterns of EOSD categories; we delineated from 727 to 91,885 FLUs within the spatial extent of EOSD depending on the selected scale of a pattern. Pattern of EOSD's categories within each FLU is described by 1037 landscape metrics. A shapefile containing boundaries of all FLUs together with an attribute table listing landscape metrics make up an SQL-searchable spatial database providing detailed information on composition and pattern of land cover types in Canadian forest. Shapefile format and extensive attribute table pertaining to the entire legend of EOSD are designed to facilitate broad range of investigations in which assessment of composition and pattern of forest over large areas is needed. We calculated four such databases using different spatial scales of pattern. We illustrate the use of FLU database for producing forest regionalization maps of two Canadian provinces, Quebec and Ontario. Such maps capture the broad scale variability of forest at the spatial scale of the entire province. We also demonstrate how FLU database can be used to map variability of landscape metrics, and thus the character of landscape, over the entire Canada.
Urban primate ranging patterns: GPS-collar deployments for Macaca fascicularis and M. sylvanus.
Klegarth, Amy R; Hollocher, Hope; Jones-Engel, Lisa; Shaw, Eric; Lee, Benjamin P Y-H; Feeney, Tessa; Holmes, Damian; Laguea, Dale; Fuentes, Agustín
2017-05-01
The global increase in urbanization is leading to heavier interface between humans and wildlife. Within these anthropogenic landscapes, little is known about ranging patterns, particularly with regard to urban primates. Here we present the results of the first long-term deployment of multiple GPS collars on two species of macaques to investigate the impacts of urbanization on urban primate ranging patterns in Singapore and Gibraltar. Collars data acquisition were excellent with respect to the amount, quality, and accuracy of data collected; however, remote connectivity and drop-off functionality was poor across all deployments. Analyses highlighted high variability in ranging patterns between individuals within each species that aligned with access to human food resources and patterns of tourism. Individuals from troops with less access to human food had much larger home, core, and day ranges relative to those with regular provisioning or raiding opportunities. Almost no temporal range overlap was observed between any focal individuals at either site and spatial overlap was low for all but two troops at each site. We found no relationship between anthropogenic schedules and changes in ranging patterns. Significant seasonal variation existed for daily path length and day range size for both the Singapore long-tailed and the Gibraltar Barbary macaques, with long-tailed macaques increasing their range during the equatorial monsoon season and Barbary macaques increasing their range during drier, summer months. This study highlights how the behavioral plasticity found within the genus Macaca is reflected in ranging pattern variability within urban environments. © 2017 Wiley Periodicals, Inc.
Modelling larval dispersal dynamics of common sole (Solea solea) along the western Iberian coast
NASA Astrophysics Data System (ADS)
Tanner, Susanne E.; Teles-Machado, Ana; Martinho, Filipe; Peliz, Álvaro; Cabral, Henrique N.
2017-08-01
Individual-based coupled physical-biological models have become the standard tool for studying ichthyoplankton dynamics and assessing fish recruitment. Here, common sole (Solea solea L.), a flatfish of high commercial importance in Europe was used to evaluate transport of eggs and larvae and investigate the connectivity between spawning and nursery areas along the western Iberian coast as spatio-temporal variability in dispersal and recruitment patterns can result in very strong or weak year-classes causing large fluctuations in stock size. A three-dimensional particle tracking model coupled to Regional Ocean Modelling System model was used to investigate variability of sole larvae dispersal along the western Iberian coast over a five-year period (2004-2009). A sensitivity analysis evaluating: (1) the importance of diel vertical migrations of larvae and (2) the size of designated recruitment areas was performed. Results suggested that connectivity patterns of sole larvae dispersal and their spatio-temporal variability are influenced by the configuration of the coast with its topographical structures and thus the suitable recruitment area available as well as the wind-driven mesoscale circulation along the Iberian coast.
NASA Astrophysics Data System (ADS)
Bogena, Heye R.; Huisman, Johan A.; Rosenbaum, Ulrike; Weuthen, Ansgar; Vereecken, Harry
2010-05-01
Soil water content plays a key role in partitioning water and energy fluxes and controlling the pattern of groundwater recharge. Despite the importance of soil water content, it is not yet measured in an operational way at larger scales. The aim of this paper is to present the potential of real-time monitoring for the analysis of soil moisture patterns at the catchment scale using the recently developed wireless sensor network SoilNet [1], [2]. SoilNet is designed to measure soil moisture, salinity and temperature in several depths (e.g. 5, 20 and 50 cm). Recently, a small forest catchment Wüstebach (~27 ha) has been instrumented with 150 sensor nodes and more than 1200 soil sensors in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories). From August to November 2009, more than 6 million soil moisture measurements have been performed. We will present first results from a statistical and geostatistical analysis of the data. The observed spatial variability of soil moisture corresponds well with the 800-m scale variability described in [3]. The very low scattering of the standard deviation versus mean soil moisture plots indicates that sensor network data shows less artificial soil moisture variations than soil moisture data originated from measurement campaigns. The variograms showed more or less the same nugget effect, which indicates that the sum of the sub-scale variability and the measurement error is rather time-invariant. Wet situations showed smaller spatial variability, which is attributed to saturated soil water content, which poses an upper limit and is typically not strongly variable in headwater catchments with relatively homogeneous soil. The spatiotemporal variability in soil moisture at 50 cm depth was significantly lower than at 5 and 20 cm. This finding indicates that the considerable variability of the top soil is buffered deeper in the soil due to lateral and vertical water fluxes. Topographic features showed the strongest correlation with soil moisture during dry periods, indicating that the control of topography on the soil moisture pattern depends on the soil water status. Interpolation using the external drift kriging method demonstrated that the high sampling density allows capturing the key patterns of soil moisture variation in the Wüstebach catchment. References: [1] Bogena, H.R., J.A. Huisman, C. Oberdörster, H. Vereecken (2007): Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology: 344, 32- 42. [2] Rosenbaum, U., Huisman, J.A., Weuthen, A., Vereecken, H. and Bogena, H.R. (2010): Quantification of sensor-to-sensor variability of the ECH2O EC-5, TE and 5TE sensors in dielectric liquids. Accepted for publication in Vadose Zone Journal (09/2009). [3] Famiglietti J.S., D. Ryu, A. A. Berg, M. Rodell and T. J. Jackson (2008), Field observations of soil moisture variability across scales, Water Resour. Res. 44, W01423, doi:10.1029/2006WR005804.
What do we know about Indonesian tropical lakes? Insights from high frequency measurement
NASA Astrophysics Data System (ADS)
Budi Santoso, Arianto; Triwisesa, Endra; Fakhrudin, Muh.; Harsono, Eko; Agita Rustini, Hadiid
2018-02-01
When measuring ecological variables in lakes, sampling frequency is critical in capturing an environmental pattern. Discrete sampling of traditional monitoring programs is likely to result in vital knowledge gaps in understanding any processes particularly those with fine temporal scale characteristics. The development of high frequency measurements offer a sophisticated range of information in recording any events in lakes at a finer time scale. We present physical indices of a tropical deep Lake Maninjau arrayed from OnLine Monitoring System (OLM). It is revealed that Lake Maninjau mostly has a diurnal thermal stratification pattern. The calculated lake stability (Schmidt stability), however, follows a seasonal pattern; low in December-January and around August, and high in May and September. Using a 3D numerical model simulation (ELCOM), we infer how wind and solar radiation intensity control lake’s temperature profiles. In this review, we highlight the needs of high frequency measurement establishment in Indonesian tropical lakes to better understand the unique processes and to support the authorities’ decision making in maximizing the provision of ecosystem services supplied by lakes and reservoirs.
Variations on an Expectancy-Value Model of Motivation in Science.
DeBacker; Nelson
1999-04-01
Relationships among motivational variables from goal theory and expectancy-value theory were investigated in this correlational study of high school students. Self-report surveys of motivation in science were collected during biology classes from 69 males and 80 females. Outcome measures were effort, persistence, and achievement. Gender differences were noted in the pattern of zero-order correlations. Internal motivation variables were related to achievement in males but not females. Regression analyses indicated that the motivation variables explained large proportions of variance in the outcomes. However, the contribution of individual variables differed by gender. Most notable was perceived ability, which contributed significantly to predicting outcome measures for females but not males. Findings suggest that interventions may need to focus on different motivational aspects depending on gender. Copyright 1999 Academic Press.
Spatial regression analysis on 32 years of total column ozone data
NASA Astrophysics Data System (ADS)
Knibbe, J. S.; van der A, R. J.; de Laat, A. T. J.
2014-08-01
Multiple-regression analyses have been performed on 32 years of total ozone column data that was spatially gridded with a 1 × 1.5° resolution. The total ozone data consist of the MSR (Multi Sensor Reanalysis; 1979-2008) and 2 years of assimilated SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) ozone data (2009-2010). The two-dimensionality in this data set allows us to perform the regressions locally and investigate spatial patterns of regression coefficients and their explanatory power. Seasonal dependencies of ozone on regressors are included in the analysis. A new physically oriented model is developed to parameterize stratospheric ozone. Ozone variations on nonseasonal timescales are parameterized by explanatory variables describing the solar cycle, stratospheric aerosols, the quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO) and stratospheric alternative halogens which are parameterized by the effective equivalent stratospheric chlorine (EESC). For several explanatory variables, seasonally adjusted versions of these explanatory variables are constructed to account for the difference in their effect on ozone throughout the year. To account for seasonal variation in ozone, explanatory variables describing the polar vortex, geopotential height, potential vorticity and average day length are included. Results of this regression model are compared to that of a similar analysis based on a more commonly applied statistically oriented model. The physically oriented model provides spatial patterns in the regression results for each explanatory variable. The EESC has a significant depleting effect on ozone at mid- and high latitudes, the solar cycle affects ozone positively mostly in the Southern Hemisphere, stratospheric aerosols affect ozone negatively at high northern latitudes, the effect of QBO is positive and negative in the tropics and mid- to high latitudes, respectively, and ENSO affects ozone negatively between 30° N and 30° S, particularly over the Pacific. The contribution of explanatory variables describing seasonal ozone variation is generally large at mid- to high latitudes. We observe ozone increases with potential vorticity and day length and ozone decreases with geopotential height and variable ozone effects due to the polar vortex in regions to the north and south of the polar vortices. Recovery of ozone is identified globally. However, recovery rates and uncertainties strongly depend on choices that can be made in defining the explanatory variables. The application of several trend models, each with their own pros and cons, yields a large range of recovery rate estimates. Overall these results suggest that care has to be taken in determining ozone recovery rates, in particular for the Antarctic ozone hole.
Samani, Afshin; Srinivasan, Divya; Mathiassen, Svend Erik; Madeleine, Pascal
2017-02-01
The spatio-temporal distribution of muscle activity has been suggested to be a determinant of fatigue development. Pursuing this hypothesis, we investigated the pattern of muscular activity in the shoulder and arm during a repetitive dynamic task performed until participants' rating of perceived exertion reached 8 on Borg's CR-10 scale. We collected high-density surface electromyogram (HD-EMG) over the upper trapezius, as well as bipolar EMG from biceps brachii, triceps brachii, deltoideus anterior, serratus anterior, upper and lower trapezius from 21 healthy women. Root-mean-square (RMS) and mean power frequency (MNF) were calculated for all EMG signals. The barycenter of RMS values over the HD-EMG grid was also determined, as well as normalized mutual information (NMI) for each pair of muscles. Cycle-to-cycle variability of these metrics was also assessed. With time, EMG RMS increased for most of the muscles, and MNF decreased. Trapezius activity became higher on the lateral side than on the medial side of the HD-EMG grid and the barycenter moved in a lateral direction. NMI between muscle pairs increased with time while its variability decreased. The variability of the metrics during the initial 10 % of task performance was not associated with the time to task termination. Our results suggest that the considerable variability in force and posture contained in the dynamic task per se masks any possible effects of differences between subjects in initial motor variability on the rate of fatigue development.
Spatial patterns of throughfall isotopic composition at the event and seasonal timescales
NASA Astrophysics Data System (ADS)
Allen, Scott T.; Keim, Richard F.; McDonnell, Jeffrey J.
2015-03-01
Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability in event-scale samples, (2) to determine if there are persistent controls over the variability and how these affect variability of seasonally accumulated throughfall, and (3) to analyze the distribution of measured throughfall isotopic composition associated with varying sampling regimes. We measured throughfall over two, three-month periods in western Oregon, USA under a Douglas-fir canopy. The mean spatial range of δ18O for each event was 1.6‰ and 1.2‰ through Fall 2009 (11 events) and Spring 2010 (7 events), respectively. However, the spatial pattern of isotopic composition was not temporally stable causing season-total throughfall to be less variable than event throughfall (1.0‰; range of cumulative δ18O for Fall 2009). Isotopic composition was not spatially autocorrelated and not explained by location relative to tree stems. Sampling error analysis for both field measurements and Monte-Carlo simulated datasets representing different sampling schemes revealed the standard deviation of differences from the true mean as high as 0.45‰ (δ18O) and 1.29‰ (d-excess). The magnitude of this isotopic variation suggests that small sample sizes are a source of substantial experimental error.
Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system
NASA Astrophysics Data System (ADS)
Szelepcsényi, Zoltán; Breuer, Hajnalka; Kis, Anna; Pongrácz, Rita; Sümegi, Pál
2018-01-01
In this paper, expected changes in the spatial and altitudinal distribution patterns of Holdridge life zone (HLZ) types are analysed to assess the possible ecological impacts of future climate change for the Carpathian Region, by using 11 bias-corrected regional climate model simulations of temperature and precipitation. The distribution patterns of HLZ types are characterized by the relative extent, the mean centre and the altitudinal range. According to the applied projections, the following conclusions can be drawn: (a) the altitudinal ranges are likely to expand in the future, (b) the lower and upper altitudinal limits as well as the altitudinal midpoints may move to higher altitudes, (c) a northward shift is expected for most HLZ types and (d) the magnitudes of these shifts can even be multiples of those observed in the last century. Related to the northward shifts, the HLZ types warm temperate thorn steppe and subtropical dry forest can also appear in the southern segment of the target area. However, a large uncertainty in the estimated changes of precipitation patterns was indicated by the following: (a) the expected change in the coverage of the HLZ type cool temperate steppe is extremely uncertain because there is no consensus among the projections even in terms of the sign of the change (high inter-model variability) and (b) a significant trend in the westward/eastward shift is simulated just for some HLZ types (high temporal variability). Finally, it is important to emphasize that the uncertainty of our results is further enhanced by the fact that some important aspects (e.g. seasonality of climate variables, direct CO2 effect, etc.) cannot be considered in the estimating process.
Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity?
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Kleypas, J.; Castruccio, F.; Curchitser, E. N.; Pinsky, M. L.; Jönsson, B.; Watson, J. R.
2018-07-01
The global center of marine biodiversity is located in the western tropical Pacific in a region known as the "Coral Triangle" (CT). This region is also considered the most threatened of all coral reef regions, because multiple impacts, including rising temperatures and coral bleaching, have already caused high mortality of reef corals over large portions of the CT. Larval dispersal and recruitment play a critical role in reef recovery after such disturbances, but our understanding of reproductive connectivity between reefs is limited by a paucity of observations. Oceanographic modeling can provide an economical and efficient way to augment our understanding of reef connectivity, particularly over an area as large as the CT, where marine ecosystem management has become a priority. This work combines daily averaged surface current velocity and direction from a Regional Ocean Modeling System developed for the CT region (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of larval transport between reefs for a typical broadcasting coral. A 47-year historical simulation (1960-2006) was used to analyze the potential connectivity, the physical drivers of larval transport, and its variability following bi-annual spawning events in April and September. Potential connectivity between reefs was highly variable from year to year, emphasizing the need for long simulations. The results suggest that although reefs in this region are highly self-seeded, comparatively rare long-distance dispersal events may play a vital role in shaping regional patterns of reef biodiversity and recovery following disturbance. The spatial pattern of coral "subpopulations," which are based on the potential connectivity between reefs, agrees with observed regional-scale patterns of biodiversity, suggesting that the physical barriers to larval dispersal are a first-order driver of coral biodiversity in the CT region. These physical barriers persist through the 21st Century when the model is forced with the Community Earth System Model (CESM) RCP8.5 climate scenario, despite some regional changes in connectivity between reefs.
Variability at the edge: highly accreting objects in Taurus
NASA Astrophysics Data System (ADS)
Abraham, Peter; Kospal, Agnes; Szabo, Robert
2017-04-01
In Kepler K2, Campaign 13, we will obtain 80-days-long optical light curves of seven highly accreting T Tauri stars in the benchmark Taurus star forming region. Here we propose to monitor our sample simultaneously with Kepler and Spitzer, to be able to separate variability patterns related to different physical processes. Monitoring our targets with Spitzer during the final 11 days of the K2 campaign, we will clean the light curves from non-accretion effects (rotating stellar spots, dips due to passing dust structures), and construct, for the first time, a variability curve which reflects the time-dependent accretion only. We will then study and understand how time-dependent mass accretion affects the density and temperature structure of the protoplanetary disk, which sets the initial conditions for planet formation. The proposed work cannot be done without the unparalleled precision of Kepler and Spitzer. This unique and one-time opportunity motivated our DDT proposal.
North Atlantic climate variability: The role of the North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Hurrell, James W.; Deser, Clara
2009-08-01
Marine ecosystems are undergoing rapid change at local and global scales. To understand these changes, including the relative roles of natural variability and anthropogenic effects, and to predict the future state of marine ecosystems requires quantitative understanding of the physics, biogeochemistry and ecology of oceanic systems at mechanistic levels. Central to this understanding is the role played by dominant patterns or "modes" of atmospheric and oceanic variability, which orchestrate coherent variations in climate over large regions with profound impacts on ecosystems. We review the spatial structure of extratropical climate variability over the Northern Hemisphere and, specifically, focus on modes of climate variability over the extratropical North Atlantic. A leading pattern of weather and climate variability over the Northern Hemisphere is the North Atlantic Oscillation (NAO). The NAO refers to a redistribution of atmospheric mass between the Arctic and the subtropical Atlantic, and swings from one phase to another producing large changes in surface air temperature, winds, storminess and precipitation over the Atlantic as well as the adjacent continents. The NAO also affects the ocean through changes in heat content, gyre circulations, mixed layer depth, salinity, high latitude deep water formation and sea ice cover. Thus, indices of the NAO have become widely used to document and understand how this mode of variability alters the structure and functioning of marine ecosystems. There is no unique way, however, to define the NAO. Several approaches are discussed including both linear (e.g., principal component analysis) and nonlinear (e.g., cluster analysis) techniques. The former, which have been most widely used, assume preferred atmospheric circulation states come in pairs, in which anomalies of opposite polarity have the same spatial structure. In contrast, nonlinear techniques search for recurrent patterns of a specific amplitude and sign. They reveal, for instance, spatial asymmetries between different phases of the NAO that are likely important for ecological studies. It also follows that there is no universally accepted index to describe the temporal evolution of the NAO. Several of the most common measures are presented and compared. All reveal that there is no preferred time scale of variability for the NAO: large changes occur from one winter to the next and from one decade to the next. There is also a large amount of within-season variability in the patterns of atmospheric circulation of the North Atlantic, so that most winters cannot be characterized solely by a canonical NAO structure. A better understanding of how the NAO responds to external forcing, including sea surface temperature changes in the tropics, stratospheric influences, and increasing greenhouse gas concentrations, is crucial to the current debate on climate variability and change.
North Atlantic climate variability: The role of the North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Hurrell, James W.; Deser, Clara
2010-02-01
Marine ecosystems are undergoing rapid change at local and global scales. To understand these changes, including the relative roles of natural variability and anthropogenic effects, and to predict the future state of marine ecosystems requires quantitative understanding of the physics, biogeochemistry and ecology of oceanic systems at mechanistic levels. Central to this understanding is the role played by dominant patterns or "modes" of atmospheric and oceanic variability, which orchestrate coherent variations in climate over large regions with profound impacts on ecosystems. We review the spatial structure of extratropical climate variability over the Northern Hemisphere and, specifically, focus on modes of climate variability over the extratropical North Atlantic. A leading pattern of weather and climate variability over the Northern Hemisphere is the North Atlantic Oscillation (NAO). The NAO refers to a redistribution of atmospheric mass between the Arctic and the subtropical Atlantic, and swings from one phase to another producing large changes in surface air temperature, winds, storminess and precipitation over the Atlantic as well as the adjacent continents. The NAO also affects the ocean through changes in heat content, gyre circulations, mixed layer depth, salinity, high latitude deep water formation and sea ice cover. Thus, indices of the NAO have become widely used to document and understand how this mode of variability alters the structure and functioning of marine ecosystems. There is no unique way, however, to define the NAO. Several approaches are discussed including both linear (e.g., principal component analysis) and nonlinear (e.g., cluster analysis) techniques. The former, which have been most widely used, assume preferred atmospheric circulation states come in pairs, in which anomalies of opposite polarity have the same spatial structure. In contrast, nonlinear techniques search for recurrent patterns of a specific amplitude and sign. They reveal, for instance, spatial asymmetries between different phases of the NAO that are likely important for ecological studies. It also follows that there is no universally accepted index to describe the temporal evolution of the NAO. Several of the most common measures are presented and compared. All reveal that there is no preferred time scale of variability for the NAO: large changes occur from one winter to the next and from one decade to the next. There is also a large amount of within-season variability in the patterns of atmospheric circulation of the North Atlantic, so that most winters cannot be characterized solely by a canonical NAO structure. A better understanding of how the NAO responds to external forcing, including sea surface temperature changes in the tropics, stratospheric influences, and increasing greenhouse gas concentrations, is crucial to the current debate on climate variability and change.
NASA Astrophysics Data System (ADS)
Steinschneider, S.; Ho, M.; Cook, E. R.; Lall, U.
2017-12-01
This work explores how extreme cold-season precipitation dynamics along the west coast of the United States have varied in the past under natural climate variability through an analysis of the moisture anomalies recorded by tree-ring chronologies across the coast and interior of the western U.S. Winters with high total precipitation amounts in the coastal regions are marked by a small number of extreme storms that exhibit distinct spatial patterns of precipitation across the coast and further inland. Building from this observation, this work develops a novel application of dendroclimatic evidence to explore the following questions: a) how is extreme precipitation variability expressed in a network of tree-ring chronologies; b) can this information provide insight on the space-time variability of storm tracks that cause these extreme events; and c) how can the joint variability of extreme precipitation and storm tracks be modeled to develop consistent, multi-centennial reconstructions of both? We use gridded, tree-ring based reconstructions of the summer Palmer Drought Severity Index (PDSI) extending back 500 years within the western U.S. to build and test a novel statistical framework for reconstructing the space-time variability of coastal extreme precipitation and the associated wintertime storm tracks. Within this framework, we (1) identify joint modes of variability of extreme precipitation fields and tree-ring based PDSI reconstructions; (2) relate these modes to previously identified, unique storm track patterns associated with atmospheric rivers (ARs), which are the dominant type of storm that is responsible for extreme precipitation in the region; and (3) determine latitudinal variations of landfalling ARs across the west coast and their relationship to the these joint modes. To our knowledge, this work is the first attempt to leverage information on storm track patterns stored in a network of paleoclimate proxies to improve reconstruction fidelity.
Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol
NASA Astrophysics Data System (ADS)
Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva
2013-04-01
Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.
NASA Astrophysics Data System (ADS)
Steinschneider, S.; Ho, M.; Cook, E. R.; Lall, U.
2016-12-01
This work explores how extreme cold-season precipitation dynamics along the west coast of the United States have varied in the past under natural climate variability through an analysis of the moisture anomalies recorded by tree-ring chronologies across the coast and interior of the western U.S. Winters with high total precipitation amounts in the coastal regions are marked by a small number of extreme storms that exhibit distinct spatial patterns of precipitation across the coast and further inland. Building from this observation, this work develops a novel application of dendroclimatic evidence to explore the following questions: a) how is extreme precipitation variability expressed in a network of tree-ring chronologies; b) can this information provide insight on the space-time variability of storm tracks that cause these extreme events; and c) how can the joint variability of extreme precipitation and storm tracks be modeled to develop consistent, multi-centennial reconstructions of both? We use gridded, tree-ring based reconstructions of the summer Palmer Drought Severity Index (PDSI) extending back 500 years within the western U.S. to build and test a novel statistical framework for reconstructing the space-time variability of coastal extreme precipitation and the associated wintertime storm tracks. Within this framework, we (1) identify joint modes of variability of extreme precipitation fields and tree-ring based PDSI reconstructions; (2) relate these modes to previously identified, unique storm track patterns associated with atmospheric rivers (ARs), which are the dominant type of storm that is responsible for extreme precipitation in the region; and (3) determine latitudinal variations of landfalling ARs across the west coast and their relationship to the these joint modes. To our knowledge, this work is the first attempt to leverage information on storm track patterns stored in a network of paleoclimate proxies to improve reconstruction fidelity.
Structural Brain Connectivity Constrains within-a-Day Variability of Direct Functional Connectivity
Park, Bumhee; Eo, Jinseok; Park, Hae-Jeong
2017-01-01
The idea that structural white matter connectivity constrains functional connectivity (interactions among brain regions) has widely been explored in studies of brain networks; studies have mostly focused on the “average” strength of functional connectivity. The question of how structural connectivity constrains the “variability” of functional connectivity remains unresolved. In this study, we investigated the variability of resting state functional connectivity that was acquired every 3 h within a single day from 12 participants (eight time sessions within a 24-h period, 165 scans per session). Three different types of functional connectivity (functional connectivity based on Pearson correlation, direct functional connectivity based on partial correlation, and the pseudo functional connectivity produced by their difference) were estimated from resting state functional magnetic resonance imaging data along with structural connectivity defined using fiber tractography of diffusion tensor imaging. Those types of functional connectivity were evaluated with regard to properties of structural connectivity (fiber streamline counts and lengths) and types of structural connectivity such as intra-/inter-hemispheric edges and topological edge types in the rich club organization. We observed that the structural connectivity constrained the variability of direct functional connectivity more than pseudo-functional connectivity and that the constraints depended strongly on structural connectivity types. The structural constraints were greater for intra-hemispheric and heterologous inter-hemispheric edges than homologous inter-hemispheric edges, and feeder and local edges than rich club edges in the rich club architecture. While each edge was highly variable, the multivariate patterns of edge involvement, especially the direct functional connectivity patterns among the rich club brain regions, showed low variability over time. This study suggests that structural connectivity not only constrains the strength of functional connectivity, but also the within-a-day variability of functional connectivity and connectivity patterns, particularly the direct functional connectivity among brain regions. PMID:28848416
de Pablo, M A; Ramos, M; Molina, A; Prieto, M
2018-02-15
A new Circumpolar Active Layer Monitoring (CALM) site was established in 2009 at the Limnopolar Lake watershed in Byers Peninsula, Livingston Island, Antarctica, to provide a node in the western Antarctic Peninsula, one of the regions that recorded the highest air temperature increase in the planet during the last decades. The first detailed analysis of the temporal and spatial evolution of the thaw depth at the Limnopolar Lake CALM-S site is presented here, after eight years of monitoring. The average values range between 48 and 29cm, decreasing at a ratio of 16cm/decade. The annual thaw depth observations in the 100×100 m CALM grid are variable (Variability Index of 34 to 51%), although both the Variance Coefficient and the Climate Matrix Analysis Residual point to the internal consistency of the data. Those differences could be explained then by the terrain complexity and node-specific variability due to the ground properties. The interannual variability was about 60% during 2009-2012, increasing to 124% due to the presence of snow in 2013, 2015 and 2016. The snow has been proposed here as one of the most important factors controlling the spatial variability of ground thaw depth, since its values correlate with the snow thickness but also with the ground surface temperature and unconfined compression resistance, as measured in 2010. The topography explains the thaw depth spatial distribution pattern, being related to snowmelt water and its accumulation in low-elevation areas (downslope-flow). Patterned grounds and other surface features correlate well with high thaw depth patterns as well. The edaphic factor (E=0.05842m 2 /°C·day; R 2 =0.63) is in agreement with other permafrost environments, since frozen index (F>0.67) and MAAT (<-2°C) denote a continuous permafrost existence in the area. All these characteristics provided the basis for further comparative analyses between others nearby CALM sites. Copyright © 2017 Elsevier B.V. All rights reserved.
Examining Solutions to Missing Data in Longitudinal Nursing Research
Roberts, Mary B.; Sullivan, Mary C.; Winchester, Suzy B.
2017-01-01
Purpose Longitudinal studies are highly valuable in pediatrics because they provide useful data about developmental patterns of child health and behavior over time. When data are missing, the value of the research is impacted. The study’s purpose was to: (1) introduce a 3-step approach to assess and address missing data; (2) illustrate this approach using categorical and continuous level variables from a longitudinal study of premature infants. Methods A three-step approach with simulations was followed to assess the amount and pattern of missing data and to determine the most appropriate imputation method for the missing data. Patterns of missingness were Missing Completely at Random, Missing at Random, and Not Missing at Random. Missing continuous-level data were imputed using mean replacement, stochastic regression, multiple imputation, and fully conditional specification. Missing categorical-level data were imputed using last value carried forward, hot-decking, stochastic regression, and fully conditional specification. Simulations were used to evaluate these imputation methods under different patterns of missingness at different levels of missing data. Results The rate of missingness was 16–23% for continuous variables and 1–28% for categorical variables. Fully conditional specification imputation provided the least difference in mean and standard deviation estimates for continuous measures. Fully conditional specification imputation was acceptable for categorical measures. Results obtained through simulation reinforced and confirmed these findings. Practice Implications Significant investments are made in the collection of longitudinal data. The prudent handling of missing data can protect these investments and potentially improve the scientific information contained in pediatric longitudinal studies. PMID:28425202
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
Leonardi, Nora; Shirer, William R; Greicius, Michael D; Van De Ville, Dimitri
2014-12-01
Resting-state functional connectivity (FC) is highly variable across the duration of a scan. Groups of coevolving connections, or reproducible patterns of dynamic FC (dFC), have been revealed in fluctuating FC by applying unsupervised learning techniques. Based on results from k-means clustering and sliding-window correlations, it has recently been hypothesized that dFC may cycle through several discrete FC states. Alternatively, it has been proposed to represent dFC as a linear combination of multiple FC patterns using principal component analysis. As it is unclear whether sparse or nonsparse combinations of FC patterns are most appropriate, and as this affects their interpretation and use as markers of cognitive processing, the goal of our study was to evaluate the impact of sparsity by performing an empirical evaluation of simulated, task-based, and resting-state dFC. To this aim, we applied matrix factorizations subject to variable constraints in the temporal domain and studied both the reproducibility of ensuing representations of dFC and the expression of FC patterns over time. During subject-driven tasks, dFC was well described by alternating FC states in accordance with the nature of the data. The estimated FC patterns showed a rich structure with combinations of known functional networks enabling accurate identification of three different tasks. During rest, dFC was better described by multiple FC patterns that overlap. The executive control networks, which are critical for working memory, appeared grouped alternately with externally or internally oriented networks. These results suggest that combinations of FC patterns can provide a meaningful way to disentangle resting-state dFC. © 2014 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
Predictability of Sleep in Patients with Insomnia
Vallières, Annie; Ivers, Hans; Beaulieu-Bonneau, Simon; Morin, Charles M.
2011-01-01
Study Objectives: To evaluate whether the night-to-night variability in insomnia follows specific predictable patterns and to characterize sleep patterns using objective sleep and clinical variables. Design: Prospective observational study. Setting: University-affiliated sleep disorders center. Participants: 146 participants suffering from chronic and primary insomnia. Measurements and Results: Daily sleep diaries were completed for an average of 48 days and self-reported questionnaires once. Three nights were spent in the sleep laboratory for polysomnographic (PSG) assessment. Sleep efficiency, sleep onset latency, wake after sleep onset, and total sleep time were derived from sleep diaries and PSG. Time-series diary data were used to compute conditional probabilities of having an insomnia night after 1, 2, or 3 consecutive insomnia night(s). Conditional probabilities were submitted to a k-means cluster analysis. A 3-cluster solution was retained. One cluster included 38 participants exhibiting an unpredictable insomnia pattern. Another included 30 participants with a low and decreasing probability to have an insomnia night. The last cluster included 49 participants exhibiting a high probability to have insomnia every night. Clusters differed on age, insomnia severity, and mental fatigue, and on subjective sleep variables, but not on PSG sleep variables. Conclusion: These findings replicate our previous study and provide additional evidence that unpredictability is a less prevalent feature of insomnia than suggested previously in the literature. The presence of the 3 clusters is discussed in term of sleep perception and sleep homeostasis dysregulation. Citation: Vallières A; Ivers H; Beaulieu-Bonneau S; Morin CM. Predictability of sleep in patients with insomnia. SLEEP 2011;34(5):609-617. PMID:21532954
Reliability of fMRI for Studies of Language in Post-Stroke Aphasia Subjects
Eaton, Kenneth P.; Szaflarski, Jerzy P.; Altaye, Mekibib; Ball, Angel L.; Kissela, Brett M.; Banks, Christi; Holland, Scott K.
2008-01-01
Quantifying change in brain activation patterns associated with post-stroke recovery and reorganization of language function over time requires accurate understanding of inter-scan and inter-subject variability. Here we report inter-scan variability measures for fMRI activation patterns associated with verb generation (VG) and semantic decision/tone decision (SDTD) tasks in 4 healthy controls and 4 aphasic left middle cerebral artery (LMCA) stroke subjects. A series of 10 fMRI scans was completed on a 4T Varian scanner for each task for each subject, except for one stroke subject who completed 5 and 6 scans for SDTD and VG, thus yielding 35 and 36 total stroke subject scans for SDTD and VG, respectively. Group composite and intraclass correlation coefficient (ICC) maps were computed across all subjects and trials for each task. The patterns of reliable activation for the VG and SDTD tasks correspond well to those regions typically activated by these tasks in healthy and aphasic subjects. ICCs for activation were consistently high (R0.05 ≈ 0.8) for individual tasks among both control and aphasic subjects. These voxel-wise measures of reliability highlight regions of low inter-scan variability within language circuitry for control and post-recovery stroke subjects. ICCs computed from the combination of the SDTD/VG data were markedly reduced for both control and aphasic subjects as compared with the ICCs for the individual tasks. These quantitative measures of inter-scan variability support the proposed use of these fMRI paradigms for longitudinal mapping of neural reorganization of language processing following left hemispheric insult. PMID:18411061
NASA Astrophysics Data System (ADS)
Diffenbaugh, N. S.; Horton, D. E.; Singh, D.; Swain, D. L.; Touma, D. E.; Mankin, J. S.
2015-12-01
Because of the high cost of extreme events and the growing evidence that global warming is likely to alter the statistical distribution of climate variables, detection and attribution of changes in the probability of extreme climate events has become a pressing topic for the scientific community, elected officials, and the public. While most of the emphasis has thus far focused on analyzing the climate variable of interest (most often temperature or precipitation, but also flooding and drought), there is an emerging emphasis on applying detection and attribution analysis techniques to the underlying physical causes of individual extreme events. This approach is promising in part because the underlying physical causes (such as atmospheric circulation patterns) can in some cases be more accurately represented in climate models than the more proximal climate variable (such as precipitation). In addition, and more scientifically critical, is the fact that the most extreme events result from a rare combination of interacting causes, often referred to as "ingredients". Rare events will therefore always have a strong influence of "natural" variability. Analyzing the underlying physical mechanisms can therefore help to test whether there have been changes in the probability of the constituent conditions of an individual event, or whether the co-occurrence of causal conditions cannot be distinguished from random chance. This presentation will review approaches to applying detection/attribution analysis to the underlying physical causes of extreme events (including both "thermodynamic" and "dynamic" causes), and provide a number of case studies, including the role of frequency of atmospheric circulation patterns in the probability of hot, cold, wet and dry events.
NASA Astrophysics Data System (ADS)
François, Baptiste; Raynaud, Damien; Hingray, Benoit; Creutin, Jean-Dominique
2017-04-01
Integration of Variable Renewable Energy (VRE) sources in the electricity system is a challenge because of temporal and spatial fluctuations of their power generation resulting from their driving weather variables (i.e. solar radiation wind speed, precipitation, and temperature). Very few attention was paid to low frequency variability (i.e. from annual to decades) even though it may have significant impact on energy system and energy market Following the current increase in electricity supplied by VRE generation, one could ask the question about the risk of ending up in a situation in which the level of production of one or more VRE is exceptionally low or exceptionally high for a long period of time and/or over a large area. What would be the risk for an investor if the return on investment has been calculated on a high energy production period? What would be the cost in term of carbon emission whether the system manager needs to turn on coal power plant to satisfy the demand? Such dramatic events would definitely impact future stakeholder decision to invest in a particular energy source or another. Weather low frequency variability is mainly governed by large-scale teleconnection patterns impacting the climate at global scale such as El Niño - Southern Oscillation (ENSO) in the tropics and in North America or the North Atlantic Oscillation (hereafter, NAO) in North America and Europe. Teleconnection pattern's influence on weather variability cascades to VRE variability and ends up by impacting electricity system. The aim of this study is to analysis the impact of the NAO on VRE generation in Europe during the winter season. The analysis is carried out over the twentieth century (i.e. from 1900 to 2010), in order to take into account climate low frequency variability, and for a set of 12 regions covering a large range of climates in Europe. Weather variable time series are obtained by using the ERA20C reanalysis and the SCAMP model (Sequential Constructive Atmospheric Analogues for Multivariate weather Predictions, Raynaud et al. 2016). The analysis is performed for solar, wind and run-of-the river energy sources taken individually. For NAO sensitive regions, results shown important deviations between power generation distributions obtained either for strongly positive or strongly negative NAO events. We also used the optimal VRE combination provided by the 100 % solution project (http://thesolutionsproject.org/). We then discuss over the 12 considered regions the vulnerability to NAO events for the energy mix suggested by the 100 % solution project. Reference: Raynaud, D., Hingray, B., Zin, I., Anquetin, S., Debionne, S., Vautard, R., 2016. Atmospheric analogues for physically consistent scenarios of surface weather in Europe and Maghreb. Int. J. Climatol. doi:10.1002/joc.4844
Gentil, Paulo; Bueno, João C.A.; Follmer, Bruno; Marques, Vitor A.; Del Vecchio, Fabrício B.
2018-01-01
Background Among combat sports, Judo and Brazilian Jiu-Jitsu (BJJ) present elevated physical fitness demands from the high-intensity intermittent efforts. However, information regarding how metabolic and neuromuscular physical fitness is associated with technical-tactical performance in Judo and BJJ fights is not available. This study aimed to relate indicators of physical fitness with combat performance variables in Judo and BJJ. Methods The sample consisted of Judo (n = 16) and BJJ (n = 24) male athletes. At the first meeting, the physical tests were applied and, in the second, simulated fights were performed for later notational analysis. Results The main findings indicate: (i) high reproducibility of the proposed instrument and protocol used for notational analysis in a mobile device; (ii) differences in the technical-tactical and time-motion patterns between modalities; (iii) performance-related variables are different in Judo and BJJ; and (iv) regression models based on metabolic fitness variables may account for up to 53% of the variances in technical-tactical and/or time-motion variables in Judo and up to 31% in BJJ, whereas neuromuscular fitness models can reach values up to 44 and 73% of prediction in Judo and BJJ, respectively. When all components are combined, they can explain up to 90% of high intensity actions in Judo. Discussion In conclusion, performance prediction models in simulated combat indicate that anaerobic, aerobic and neuromuscular fitness variables contribute to explain time-motion variables associated with high intensity and technical-tactical variables in Judo and BJJ fights. PMID:29844991
Lippke, Sonia; Plotnikoff, Ronald C
2009-05-01
Two different theories of health behaviour have been chosen with the aim of theory integration: a continuous theory (protection motivation theory, PMT) and a stage model (transtheoretical model, TTM). This is the first study to test whether the stages of the TTM moderate the interrelation of PMT-variables and the mediation of motivation, as well as PMT-variables' interactions in predicting stage transitions. Hypotheses were tested regarding (1) mean patterns, stage pair-comparisons and nonlinear trends using ANOVAs; (2) prediction-patterns for the different stage groups employing multi-group structural equation modelling (MSEM) and nested model analyses; and (3) stage transitions using binary logistic regression analyses. Adults (N=1,602) were assessed over a 6 month period on their physical activity stages, PMT-variables and subsequent behaviour. (1) Particular mean differences and nonlinear trends in all test variables were found. (2) The PMT adequately fitted the five stage groups. The MSEM revealed that covariances within threat appraisal and coping appraisal were invariant and all other constrains were stage-specific, i.e. stage was a moderator. Except for self-efficacy, motivation fully mediated the relationship between the social-cognitive variables and behaviour. (3) Predicting stage transitions with the PMT-variables underscored the importance of self-efficacy. Only when threat appraisal and coping appraisal were high, stage movement was more likely in the preparation stage. Results emphasize stage-specific differences of the PMT mechanisms, and hence, support the stage construct. The findings may guide further theory building and research integrating different theoretical approaches.
D'Suze, Gina; Sandoval, Moisés; Sevcik, Carlos
2015-12-15
A characteristic of venom elution patterns, shared with many other complex systems, is that many their features cannot be properly described with statistical or euclidean concepts. The understanding of such systems became possible with Mandelbrot's fractal analysis. Venom elution patterns were produced using the reversed phase high performance liquid chromatography (HPLC) with 1 mg of venom. One reason for the lack of quantitative analyses of the sources of venom variability is parametrizing the venom chromatograms' complexity. We quantize this complexity by means of an algorithm which estimates the contortedness (Q) of a waveform. Fractal analysis was used to compare venoms and to measure inter- and intra-specific venom variability. We studied variations in venom complexity derived from gender, seasonal and environmental factors, duration of captivity in the laboratory, technique used to milk venom. Copyright © 2015 Elsevier Ltd. All rights reserved.
Haas, Jessica R.; Thompson, Matthew P.; Tillery, Anne C.; Scott, Joe H.
2017-01-01
Wildfires can increase the frequency and magnitude of catastrophic debris flows. Integrated, proactive natural hazard assessment would therefore characterize landscapes based on the potential for the occurrence and interactions of wildfires and postwildfire debris flows. This chapter presents a new modeling effort that can quantify the variability surrounding a key input to postwildfire debris-flow modeling, the amount of watershed burned at moderate to high severity, in a prewildfire context. The use of stochastic wildfire simulation captures variability surrounding the timing and location of ignitions, fire weather patterns, and ultimately the spatial patterns of watershed area burned. Model results provide for enhanced estimates of postwildfire debris-flow hazard in a prewildfire context, and multiple hazard metrics are generated to characterize and contrast hazards across watersheds. Results can guide mitigation efforts by allowing planners to identify which factors may be contributing the most to the hazard rankings of watersheds.
EFFECT OF RICE CULTIVATION PATTERNS ON MALARIA VECTOR ABUNDANCE IN RICE-GROWING VILLAGES IN MALI
DIUK-WASSER, MARIA A.; TOURÉ, MAHAMOUDOU B.; DOLO, GUIMOGO; BAGAYOKO, MAGARAN; SOGOBA, NAFOMAN; SISSOKO, IBRAHIM; TRAORÉ, SÉKOU F.; TAYLOR, CHARLES E.
2007-01-01
Irrigation for rice cultivation increases the production of Anopheles gambiae, the main vector of malaria in Mali. Mosquito abundance is highly variable across villages and seasons. We examined whether rice cultivation patterns mapped using remotely sensed imagery can account for some of this variance. We collected entomologic data and mapped land use around 18 villages in the two cropping seasons during two years. Land use classification accuracy ranged between 70% and 86%. The area of young rice explained 86% of the inter-village variability in An. gambiae abundance in August before the peak in malaria transmission. Estimating rice in a 900-meter buffer area around the villages resulted in the best correlation with mosquito abundance, larger buffer areas were optimum in the October and dry season models. The quantification of the relationship between An. gambiae abundance and rice cultivation could have management applications that merit further study. PMID:17488907
NASA Astrophysics Data System (ADS)
Vanwalleghem, T.; Román, A.; Giraldez, J. V.
2016-12-01
There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.
Progressing from Light Experimentation to Heavy Episodic Drinking in Early and Middle Adolescence
Guilamo-Ramos, Vincent; Turrisi, Rob; Jaccard, James; Wood, Elizabeth; Gonzalez, Bernardo
2010-01-01
Objective Few studies have examined psychological variables related to changes in drinking patterns from light experimentation with alcohol to heavy episodic drinking in early and middle adolescence. The present study examined parental and peer influences, gender and grade level as predictors of such changes in adolescent alcohol consumption. Method Approximately 1,420 light drinkers were analyzed from Wave 1 of the National Longitudinal Study of Adolescent Health (Add Health). Heavy episodic drinking activity was assessed 1 year later. Results Gender differences in transitions to heavy episodic drinking were observed, with males being more likely than females to make a transition. Parent parameter setting and communication variables, as well as peer variables at different grade levels, buffered these gender differences. Conclusions Adolescents who are light experimenters represent a high-risk group as a consequence of their initial consumption tendencies. Some of these adolescents graduated beyond simple experimentation and moved into patterns of consumption that could be considered dangerous. Our analyses implicated an array of parental-based buffers: parent involvement in the adolescent’s life, development of good communication patterns and expressions of warmth and affection. Minimizing associations with peers who consume alcohol may also have a buffering effect. There was evidence that these buffers may dampen gender differences not so much by affecting female drinking tendencies as by keeping males at reduced levels of alcohol consumption comparable to those of females. PMID:15376824
Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory
NASA Astrophysics Data System (ADS)
Deyi, Feng; Ichikawa, M.
1989-11-01
In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.
Space and time variability of the surface color field in the northern Adriatic Sea
NASA Technical Reports Server (NTRS)
Barale, Vittorio; Mcclain, Charles R.; Malanotte-Rizzoli, Paola
1986-01-01
A time series of coastal zone color scanner images for the years 1979 and 1980 was used to observe the spatial and temporal variability of bio-optical processes and circulation patterns of the northern Adriatic Sea on monthly, seasonal, and interannual scales. The chlorophyll-like pigment concentrations derived from satellite data exhibited a high correlation with sea truth measurements performed during seven surveys in the summer of both years. Comparison of the mean pigment fields indicates a general increase in concentration values and larger scales of coastal features from 1979 to 1980. This variability may be linked to the different patterns of nutrient influx due to coastal runoff in the 2 years. The distribution of surface features is consistent with the general cyclonic circulation pattern. The pigment heterogeneity appears to be governed by fluctuations of freshwater discharge, while the dominant wind fields do not appear to have important direct effects. The Po River presents a plume spreading predominantly in a southeastern direction, with scales positively correlated with its outflow. The spatial scales of the western coastal layer, in contrast, are negatively correlated with this outflow and the plume scales. Both results are consistent with, and may be rationalized by, recent theoretical and experimental results involving a dynamical balance between nonlinear advection and bottom friction, with alternate predominance of one of the two effects.
NASA Astrophysics Data System (ADS)
Saha, Saurav; Chakraborty, Debasish; Paul, Ranjit Kumar; Samanta, Sandipan; Singh, S. B.
2017-10-01
Rainfall anomaly during crop-growing season can have large impact on the agricultural output of a country, especially like India, where two-thirds of the crop land is rain-fed. In such situation, decreased agricultural production not only challenges food security of the country but directly and immediately hits the livelihood of its farming community. In a vast country like India, rainfall or its anomalies hardly follow a specific pattern, rather it is having high variability in spatial domain. This study focused on the trends of national and regional rainfall anomalies (wetness/dryness) along with their interrelationship using time series data of past 158 years. The significant reducing wetness trend (p < 0.05) over north mountainous India was prominent with an increasing trend over southern peninsular India (p < 0.10). However, long-term annual wetness was increasing over entire peninsular India. The results of change point tests indicate that major abrupt changes occurred between early to mid-twentieth century having regional variations. The regional interrelationship was studied using principal component, hierarchical clustering, and pair-wise difference test, which clearly indicated a significantly different pattern in rainfall anomalies for north east India (p = 0.022), north central India (p = 0.022), and north mountainous India (p = 0.011) from that of the all India. Result of this study affirmed high spatial variability in rainfall anomaly and most importantly established the unalike pattern in trends of regional rainfall vis-à-vis national level, ushering towards paradigm shift in rainfall forecast from country scale to regional scale for pragmatic planning.
Residency patterns of migrating sandpipers at a midcontinental stopover
Skagen, Susan K.; Knopf, Fritz L.
1994-01-01
Arctic-nesting shorebirds require several refueling stops during their long migrations between breeding grounds and Central and South American wintering areas. The protection of stopover habitats for transcontinental migrants depends on whether birds fly long distances between a few select sites or fly short distances and stop at several wetlands. Although the Great Plains historically provided a vast array of wetlands for use by migrants, wetland loss and conversion have reduced the availability of stopover sites in recent decades. In this study, we examined (1) residency periods, (2) fat dynamics, and (3) migration chronology of two shorebird species, the Semipalmated Sandpiper (Calidris pusilla) and White-rumped Sandpiper (C. fuscicollis) at Quivira National Wildlife Refuge (NWR), Kansas. Semipalmated Sandpipers had prolonged periods of species residency with overlapping arrivals and departures. Individual residency periods were highly variable and were unrelated to lipid reserves upon arrival. In contrast, White-rumped Sandpipers arrived and departed more synchronously. Birds that arrived in poor condition stayed longer than those with more body fat in 1991, but not in 1992. Wind direction did not influence patterns of departures of either species. We hypothesize that Semipalmated Sandpipers are ecologically eurytopic when migrating across the Great Plains in the spring. Highly variable patterns in arrival, residency, and lipid levels indicate that spring migration of this species is relaxed and opportunistic. White-rumped Sandpipers showed a pattern of reduced flexibility. Flight range estimates suggest that most birds require intermediate stopovers before reaching the breeding grounds. Interior wetlands appear to function as migration stopovers rather than staging areas for shorebirds.
Ollague Sierra, Jose E; Ollague Torres, Jose M
2013-04-01
Histoplasmosis has attained increasing relevance in the past 3 decades because of the appearance of the human immunodeficiency virus (HIV). In most immunocompetent persons, the infection is asymptomatic or can produce a respiratory condition with symptoms and radiological images similar to those observed in pulmonary tuberculosis; in non-HIV+ immunocompromised patients, it can cause respiratory symptoms or evolve into a disseminated infection. The same can occur in acquired immunodeficiency syndrome (AIDS) patients. We have observed a series of HIV+ patients with AIDS who presented with cutaneous histoplasmosis and in whom the clinical and histopathological features were highly unusual, including variable mucocutaneous lesions that were difficult to diagnose clinically. These patients displayed unusual, previously undescribed, histological patterns, including lichenoid pattern, nodular pseudomyxoid pattern, pyogenic granuloma-like pattern, perifollicular pattern, and superficial (S), mid (M), and deep perivascular dermatitis; and more commonly encountered patterns, such as histiocytic lobular panniculitis and focal nodular dermatitis. The novel histopathological patterns of cutaneous involvement by histoplasmosis seen in these patients resembled other common inflammatory and infectious conditions and required a high level of suspicion and the application of special stains for organisms for confirmation. These new, clinical, and histological findings do not seem to be commonly encountered in HIV- patients infected with the fungus but seem to be displayed most prominently in HIV+ patients with AIDS.
NASA Astrophysics Data System (ADS)
Ruohoniemi, J. M.; Greenwald, R. A.; Oksavik, K.; Baker, J. B.
2007-12-01
The electric fields at high latitudes are often modeled as a static pattern in the absence of variation in solar wind parameters or geomagnetic disturbance. However, temporal variability in the local electric fields on time scales of minutes for stable conditions has been reported and characterized statistically as an intrinsic property amounting to turbulence. We describe the results of applying a new technique to SuperDARN HF radar observations of ionospheric plasma convection at middle and high latitudes that gives views of the variability of the electric fields at sub-second time scales. We address the question of whether there is a limit to the temporal scale of the electric field variability and consider whether the turbulence on minute time scales is due to organized but unresolved behavior. The basis of the measurements is the ability to record raw samples from the individual multipulse sequences that are transmitted during the standard 3 or 6-second SuperDARN integration period; a backscattering volume is then effectively sampled at a cadence of 200 ms. The returns from the individual sequences are often sufficiently well-ordered to permit a sequence-by-sequence characterization of the electric field and backscattered power. We attempt a statistical characterization of the variability at these heretofore inaccessible time scales and consider how variability is influenced by solar wind and magentospheric factors.
The unusual suspect: Land use is a key predictor of biodiversity patterns in the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Martins, Inês Santos; Proença, Vânia; Pereira, Henrique Miguel
2014-11-01
Although land use change is a key driver of biodiversity change, related variables such as habitat area and habitat heterogeneity are seldom considered in modeling approaches at larger extents. To address this knowledge gap we tested the contribution of land use related variables to models describing richness patterns of amphibians, reptiles and passerines in the Iberian Peninsula. We analyzed the relationship between species richness and habitat heterogeneity at two spatial resolutions (i.e., 10 km × 10 km and 50 km × 50 km). Using both ordinary least square and simultaneous autoregressive models, we assessed the relative importance of land use variables, climate variables and topographic variables. We also compare the species-area relationship with a multi-habitat model, the countryside species-area relationship, to assess the role of the area of different types of habitats on species diversity across scales. The association between habitat heterogeneity and species richness varied with the taxa and spatial resolution. A positive relationship was detected for all taxa at a grain size of 10 km × 10 km, but only passerines responded at a grain size of 50 km × 50 km. Species richness patterns were well described by abiotic predictors, but habitat predictors also explained a considerable portion of the variation. Moreover, species richness patterns were better described by a multi-habitat species-area model, incorporating land use variables, than by the classic power model, which only includes area as the single explanatory variable. Our results suggest that the role of land use in shaping species richness patterns goes beyond the local scale and persists at larger spatial scales. These findings call for the need of integrating land use variables in models designed to assess species richness response to large scale environmental changes.
Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.
2014-01-01
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364
NASA Astrophysics Data System (ADS)
Schoof, J. T.; Pryor, S. C.; Barthelmie, R. J.
2013-12-01
Previous research has indicated that large-scale modes of climate variability, such as El Niño - Southern Oscillation (ENSO), the Arctic Oscillation (AO) and the Pacific-North American pattern (PNA), influence the inter-annual and intra-annual variability of near-surface and upper-level wind speeds over the United States. For example, we have shown that rawinsonde derived wind speeds indicate that 90th percentile of wind speeds at 700 hPa over the Pacific Northwest and Southwestern USA are significantly higher under the negative phase of the PNA, and the Central Plains experiences higher wind speeds at 850 hPa under positive phase Southern Oscillation index while the Northeast exhibits higher wind speeds at 850 hPa under positive phase NAO. Here, we extend this research by further investigating these relationships using both reanalysis products and output from coupled atmosphere-ocean general circulation models (AOGCMs) developed for the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). The research presented has two specific goals. First, we evaluate the AOGCM simulations in terms of their ability to represent the temporal and spatial representations of ENSO, the AO, and the PNA pattern relative to historical observations. The diagnostics used include calculation of the power spectra (and thus representation of the fundamental frequencies of variability) and Taylor diagrams (for comparative assessment of the spatial patterns and their intensities). Our initial results indicate that most AOGCMs produce modes that are qualitatively similar to those observed, but that differ slightly in terms of the spatial pattern, intensity of specific centers of action, and variance explained. Figure 1 illustrates an example of the analysis of the frequencies of variability of two climate modes for the NCEP-NCAR reanalysis (NNR) and a single AOGCM (BCC CSM1). The results show a high degree of similarity in the power spectra but for this AOGCM the variance of the PNA associated with high frequencies are amplified relative to those in NNR. Second, we quantify the observed and AOGCM-simulated relationships between ENSO, AO, and PNA indices and zonal and meridional wind components at multiple levels for the contiguous United States. The results are presented in form of maps displaying the strength of the relationship at different timescales, from daily to annual, and at multiple atmospheric levels, from 10m to 500 mb. The results of the analysis are used to provide context for regional wind climate projections based on 21st century AOGCM simulations.
Year-class formation of upper St. Lawrence River northern pike
Smith, B.M.; Farrell, J.M.; Underwood, H.B.; Smith, S.J.
2007-01-01
Variables associated with year-class formation in upper St. Lawrence River northern pike Esox lucius were examined to explore population trends. A partial least-squares (PLS) regression model (PLS 1) was used to relate a year-class strength index (YCSI; 1974-1997) to explanatory variables associated with spawning and nursery areas (seasonal water level and temperature and their variability, number of ice days, and last day of ice presence). A second model (PLS 2) incorporated four additional ecological variables: potential predators (abundance of double-crested cormorants Phalacrocorax auritus and yellow perch Perca flavescens), female northern pike biomass (as a measure of stock-recruitment effects), and total phosphorus (productivity). Trends in adult northern pike catch revealed a decline (1981-2005), and year-class strength was positively related to catch per unit effort (CPUE; R2 = 0.58). The YCSI exceeded the 23-year mean in only 2 of the last 10 years. Cyclic patterns in the YCSI time series (along with strong year-classes every 4-6 years) were apparent, as was a dampening effect of amplitude beginning around 1990. The PLS 1 model explained over 50% of variation in both explanatory variables and the dependent variable, YCSI first-order moving-average residuals. Variables retained (N = 10; Wold's statistic ??? 0.8) included negative YCSI associations with high summer water levels, high variability in spring and fall water levels, and variability in fall water temperature. The YCSI exhibited positive associations with high spring, summer, and fall water temperature, variability in spring temperature, and high winter and spring water level. The PLS 2 model led to positive YCSI associations with phosphorus and yellow perch CPUE and a negative correlation with double-crested cormorant abundance. Environmental variables (water level and temperature) are hypothesized to regulate northern pike YCSI cycles, and dampening in YCSI magnitude may be related to a combination of factors, including wetland habitat changes, reduced nutrient loading, and increased predation by double-crested cormorants. ?? Copyright by the American Fisheries Society 2007.
Utama, M Iqbal Bakti; Lu, Xin; Zhan, Da; Ha, Son Tung; Yuan, Yanwen; Shen, Zexiang; Xiong, Qihua
2014-11-07
Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures.
An application of partial least squares for identifying dietary patterns in bone health.
Yang, Tiffany C; Aucott, Lorna S; Duthie, Garry G; Macdonald, Helen M
2017-12-01
In a large cohort of older women, a mechanism-driven statistical technique for assessing dietary patterns that considers a potential nutrient pathway found two dietary patterns associated with lumbar spine and femoral neck bone mineral density. A "healthy" dietary pattern was observed to be beneficial for bone mineral density. Dietary patterns represent a broader, more realistic representation of how foods are consumed, compared to individual food or nutrient analyses. Partial least-squares (PLS) is a data-reduction technique for identifying dietary patterns that maximizes correlation between foods and nutrients hypothesized to be on the path to disease, is more hypothesis-driven than previous methods, and has not been applied to the study of dietary patterns in relation to bone health. Women from the Aberdeen Prospective Osteoporosis Screening Study (2007-2011, n = 2129, age = 66 years (2.2)) provided dietary intake using a food frequency questionnaire; 37 food groups were created. We applied PLS to the 37 food groups and 9 chosen response variables (calcium, potassium, vitamin C, vitamin D, protein, alcohol, magnesium, phosphorus, zinc) to identify dietary patterns associated with bone mineral density (BMD) cross-sectionally. Multivariable regression was used to assess the relationship between the retained dietary patterns and BMD at the lumbar spine and femoral neck, adjusting for age, body mass index, physical activity level, smoking, and national deprivation category. Five dietary patterns were identified, explaining 25% of the variation in food groups and 77% in the response variables. Two dietary patterns were positively associated with lumbar spine (per unit increase in factor 2: 0.012 g/cm 2 [95% CI: 0.006, 0.01]; factor 4: 0.007 g/cm 2 [95% CI: 0.00001, 0.01]) and femoral neck (factor 2: 0.006 g/cm 2 [95% CI: 0.002, 0.01]; factor 4: 0.008 g/cm 2 [95% CI: 0.003, 0.01)]) BMD. Dietary pattern 2 was characterized by high intakes of milk, vegetables, fruit and vegetable juices, and wine, and low intakes of processed meats, cheese, biscuits, cakes, puddings, confectionary, sweetened fizzy drinks and spirits while dietary pattern 4 was characterized by high intakes of fruits, red and white meats, and wine, and low intakes of vegetables and sweet spreads. Our findings using a robust statistical technique provided important support to initiatives focusing on what constitutes a healthy diet and its implications.
Climate variability drives recent tree mortality in Europe.
Neumann, Mathias; Mues, Volker; Moreno, Adam; Hasenauer, Hubert; Seidl, Rupert
2017-11-01
Tree mortality is an important process in forest ecosystems, frequently hypothesized to be highly climate sensitive. Yet, tree death remains one of the least understood processes of forest dynamics. Recently, changes in tree mortality have been observed in forests around the globe, which could profoundly affect ecosystem functioning and services provisioning to society. We describe continental-scale patterns of recent tree mortality from the only consistent pan-European forest monitoring network, identifying recent mortality hotspots in southern and northern Europe. Analyzing 925,462 annual observations of 235,895 trees between 2000 and 2012, we determine the influence of climate variability and tree age on interannual variation in tree mortality using Cox proportional hazard models. Warm summers as well as high seasonal variability in precipitation increased the likelihood of tree death. However, our data also suggest that reduced cold-induced mortality could compensate increased mortality related to peak temperatures in a warming climate. Besides climate variability, age was an important driver of tree mortality, with individual mortality probability decreasing with age over the first century of a trees life. A considerable portion of the observed variation in tree mortality could be explained by satellite-derived net primary productivity, suggesting that widely available remote sensing products can be used as an early warning indicator of widespread tree mortality. Our findings advance the understanding of patterns of large-scale tree mortality by demonstrating the influence of seasonal and diurnal climate variation, and highlight the potential of state-of-the-art remote sensing to anticipate an increased likelihood of tree mortality in space and time. © 2017 John Wiley & Sons Ltd.
Mesoscale eddies control meridional heat flux variability in the subpolar North Atlantic
NASA Astrophysics Data System (ADS)
Zhao, Jian; Bower, Amy; Yang, Jiayan; Lin, Xiaopei; Zhou, Chun
2017-04-01
The meridional heat flux in the subpolar North Atlantic is vital to the climate of the high-latitude North Atlantic. For the basinwide heat flux across a section between Greenland and Scotland, much of the variability occurs in the Iceland basin, where the North Atlantic Current (NAC) carries relatively warm and salty water northward. As a component of the Overturning in the Subpolar North Atlantic Program (OSNAP), WHOI and OUC are jointly operating gliders in the Iceland Basin to continuously monitor the circulation and corresponding heat flux in this eddy-rich region. Based on one year of observations, two circulation regimes in the Iceland basin have been identified: a mesoscale eddy like circulation pattern and northward NAC circulation pattern. When a mesoscale eddy is generated, the rotational currents associated with the eddy lead to both northward and southward flow in the Iceland basin. This is quite different from the broad northward flow associated with the NAC when there is no eddy. The transition between the two regimes coupled with the strong temperature front in the Iceland basin can modify the meridional heat flux on the order of 0.3PW, which is the dominant source for the heat flux change the Iceland Basin. According to high-resolution numerical model results, the Iceland Basin has the largest contribution to the meridional heat flux variability along the section between Greenland and Scotland. Therefore, mesoscale eddies in the Iceland Basin provide important dynamics to control the meridional heat flux variability in the subpolar North Atlantic.
Animal escapology I: theoretical issues and emerging trends in escape trajectories
Domenici, Paolo; Blagburn, Jonathan M.; Bacon, Jonathan P.
2011-01-01
Summary Escape responses are used by many animal species as their main defence against predator attacks. Escape success is determined by a number of variables; important are the directionality (the percentage of responses directed away from the threat) and the escape trajectories (ETs) measured relative to the threat. Although logic would suggest that animals should always turn away from a predator, work on various species shows that these away responses occur only approximately 50–90% of the time. A small proportion of towards responses may introduce some unpredictability and may be an adaptive feature of the escape system. Similar issues apply to ETs. Theoretically, an optimal ET can be modelled on the geometry of predator–prey encounters. However, unpredictability (and hence high variability) in trajectories may be necessary for preventing predators from learning a simple escape pattern. This review discusses the emerging trends in escape trajectories, as well as the modulating key factors, such as the surroundings and body design. The main ET patterns identified are: (1) high ET variability within a limited angular sector (mainly 90–180 deg away from the threat; this variability is in some cases based on multiple peaks of ETs), (2) ETs that allow sensory tracking of the threat and (3) ETs towards a shelter. These characteristic features are observed across various taxa and, therefore, their expression may be mainly related to taxon-independent animal design features and to the environmental context in which prey live – for example whether the immediate surroundings of the prey provide potential refuges. PMID:21753039
Badel-Mogollón, Jaime; Rodríguez-Figueroa, Laura; Parra-Henao, Gabriel
2017-03-29
Due to the lack of information regarding biophysical and spatio-temporal conditions (hydrometheorologic and vegetal coverage density) in areas with Triatoma dimidiata in the Colombian departments of Santander and Boyacá, there is a need to elucidate the association patterns of these variables to determine the distribution and control of this species. To make a spatio-temporal analysis of biophysical variables related to the distribution of T. dimidiate observed in the northeast region of Colombia. We used the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) data bases registering vector presence and hydrometheorologic data. We studied the variables of environmental temperature, relative humidity, rainfall and vegetal coverage density at regional and local levels, and we conducted spatial geostatistic, descriptive statistical and Fourier temporal series analyses. Temperatures two meters above the ground and on covered surface ranged from 14,5°C to 18,8°C in the areas with the higher density of T. dimidiata. The environmental temperature fluctuated between 30 and 32°C. Vegetal coverage density and rainfall showed patterns of annual and biannual peaks. Relative humidity values fluctuated from 66,8 to 85,1%. Surface temperature and soil coverage were the variables that better explained the life cycle of T. dimidiata in the area. High relative humidity promoted the seek of shelters and an increase of the geographic distribution in the annual and biannual peaks of regional rainfall. The ecologic and anthropic conditions suggest that T. dimidiata is a highly resilient species.
Casini, Annalisa; Clays, Els; Godin, Isabelle; De Backer, Guy; Kornitzer, Marcel; Kittel, France
2010-12-01
To evaluate (1) whether the physical and mental health of male workers differs from that of female workers, and, if so, whether (2) this is affected by the interplay between work and nonwork burden. We pooled two large Belgian databases (BELSTRESS III, SOMSTRESS) comprising data on 4810 (2847 women). Gender-specific logistic regressions were performed using a four-level variable as predictor. This combined two predictors: isolated job strain (isostrain) and home-work interference (HWI). Male workers are at greater risk of chronic fatigue when they experience high isostrain but not high HWI. Although accumulated high isostrain and high HWI affect women mainly via chronic fatigue, the same pattern has a greater impact on men's perceived health. There was no difference for the other patterns. To improve workers' well-being, organizations should develop work and nonwork balance policies specific for men and women.
ERIC Educational Resources Information Center
Bergman, Lars R.; Nurmi, Jari-Erik; von Eye, Alexander A.
2012-01-01
I-states-as-objects-analysis (ISOA) is a person-oriented methodology for studying short-term developmental stability and change in patterns of variable values. ISOA is based on longitudinal data with the same set of variables measured at all measurement occasions. A key concept is the "i-state," defined as a person's pattern of variable…
NASA Astrophysics Data System (ADS)
Fisher, Jeremy Isaac
Important systematic shifts in ecosystem function are often masked by natural variability. The rich legacy of over two decades of continuous satellite observations provides an important database for distinguishing climatological and anthropogenic ecosystem changes. Examples from semi-arid Sudanian West Africa and New England (USA) illustrate the response of vegetation to climate and land-use. In Burkina Faso, West Africa, pastoral and agricultural practices compete for land area, while degradation may follow intensification. The Nouhao Valley is a natural experiment in which pastoral and agricultural land uses were allocated separate, coherent reserves. Trajectories of annual net primary productivity were derived from 18 years of coarse-grain (AVHRR) satellite data. Trends suggested that pastoral lands had responded rigorously to increasing rainfall after the 1980's droughts. A detailed analysis at Landsat resolution (30m) indicated that the increased vegetative cover was concentrated in the river basins of the pastoral region, implying a riparian wood expansion. In comparison, riparian cover was reduced in agricultural regions. We suggest that broad-scale patterns of increasing semi-arid West African greenness may be indicative of climate variability, whereas local losses may be anthropogenic in nature. The contiguous deciduous forests, ocean proximity, topography, and dense urban developments of New England provide an ideal landscape to examine influences of climate variability and the impact of urban development vegetation response. Spatial and temporal patterns of interannual climate variability were examined via green leaf phenology. Phenology, or seasonal growth and senescence, is driven by deficits of light, temperature, and water. In temperate environments, phenology variability is driven by interannual temperature and precipitation shifts. Average and interannual phenology analyses across southern New England were conducted at resolutions of 30m (Landsat) and 500m Moderate Resolution Imaging Spectrometer (MODIS). A robust logistic-growth model of canopy cover was employed to determine phenological characteristics at each forest stand. The duel analyses revealed important findings: (a) local phenological gradients from microclimatic structures are highly influential in broad-scale phenological observations; (b) satellite observed phenology reflects observations of canopy growth from field studies; (c) phenological anomalies in urban areas which were previously attributed to urban heat may be a function of urban-specific land cover (i.e. green lawns); and (d) patterns of interannual variability in phenology at the regional scale have high spatial coherency and appear to be driven by broad-scale climatic change. Satellite-observed phenology may reflect temperatures during spring and provides a proxy of climate variability.
Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner
2013-04-08
In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.