Science.gov

Sample records for hilbert-palatini second-class constraints

  1. Predictions on the second-class current decays τ-→π-η(')ντ

    NASA Astrophysics Data System (ADS)

    Escribano, R.; Gonzàlez-Solís, S.; Roig, P.

    2016-08-01

    We analyze the second-class current decays τ-→π-η(')ντ in the framework of chiral perturbation theory with resonances. Taking into account π0-η -η' mixing, the π-η(') vector form factor is extracted, in a model-independent way, using existing data on the π-π0 one. For the participant scalar form factor, we have considered different parametrizations ordered according to their increasing fulfillment of analyticity and unitarity constraints. We start with a Breit-Wigner parametrization dominated by the a0(980 ) scalar resonance and after we include its excited state, the a0(1450 ). We follow by an elastic dispersion relation representation through the Omnès integral. Then, we illustrate a method to derive a closed-form expression for the π-η , π-η' (and K-K0) scalar form factors in a coupled-channels treatment. Finally, predictions for the branching ratios and spectra are discussed emphasizing the error analysis. An interesting result of this study is that both τ-→π-η(')ντ decay channels are promising for the soon discovery of second-class currents at Belle-II. We also predict the relevant observables for the partner ηℓ3(') decays, which are extremely suppressed in the Standard Model.

  2. Search for Second-Class Currents in τ-→ωπ-ντ

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Tico, J. Garra; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, R. J.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.; Bernard, D.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Bard, D. J.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Schram, M.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Soffer, A.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2009-07-01

    We report an analysis of τ- decaying into ωπ-ντ with ω→π+π-π0 using a data sample containing nearly 320×106τ pairs collected with the BABAR detector at the PEP-II B-Factory. We find no evidence for second-class currents, and we set an upper limit of 0.69% at 90% confidence level for the fraction of second-class currents in this decay mode.

  3. Search for second-class currents in tau;{-} --> omegapi;{-}nu_{tau}.

    PubMed

    Aubert, B; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Tico, J Garra; Grauges, E; Martinelli, M; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Battaglia, M; Brown, D N; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Randle-Conde, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Atmacan, H; Gary, J W; Liu, F; Long, O; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Wilson, R J; Feltresi, E; Hauke, A; Jasper, H; Karbach, T M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Nogowski, R; Schubert, K R; Schwierz, R; Volk, A; Bernard, D; Latour, E; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Fioravanti, E; Franchini, P; Luppi, E; Munerato, M; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Guido, E; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Tosi, S; Chaisanguanthum, K S; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Bernlochner, F U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Tibbetts, M; Behera, P K; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Derkach, D; da Costa, J Firmino; Grosdidier, G; Le Diberder, F; Lepeltier, V; Lutz, A M; Malaescu, B; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Paramesvaran, S; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Hafner, A; Alwyn, K E; Bailey, D; Barlow, R J; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Henderson, S W; Sciolla, G; Spitznagel, M; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Schram, M; Lazzaro, A; Lombardo, V; Palombo, F; Stracka, S; Bauer, J M; Cremaldi, L; Godang, R; Kroeger, R; Sonnek, P; Summers, D J; Zhao, H W; Simard, M; Taras, P; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Wang, W F; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Del Amo Sanchez, P; Ben-Haim, E; Bonneaud, G R; Briand, H; Chauveau, J; Hamon, O; Leruste, Ph; Marchiori, G; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Pegna, D Lopes; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Esteve, L; de Monchenault, G Hamel; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Allen, M T; Aston, D; Bartoldus, R; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Sevilla, M Franco; Gabareen, A M; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Young, C C; Ziegler, V; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Burchat, P R; Edwards, A J; Miyashita, T S; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Soffer, A; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Wray, B C; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; King, G J; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Puccio, E M T; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Prepost, R; Vuosalo, C O; Wu, S L

    2009-07-24

    We report an analysis of tau;{-} decaying into omegapi;{-}nu_{tau} with omega --> pi;{+}pi;{-}pi;{0} using a data sample containing nearly 320 x 10;{6}tau pairs collected with the BABAR detector at the PEP-II B-Factory. We find no evidence for second-class currents, and we set an upper limit of 0.69% at 90% confidence level for the fraction of second-class currents in this decay mode. PMID:19659341

  4. Search for Second-Class Currents in tau- -> omega.pi-.nu_tau

    SciTech Connect

    Aubert, B.

    2009-04-22

    We report an analysis of {tau}{sup -} decaying into {omega}{pi}{sup -} {nu}{sub {tau}} with {omega} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} using a data sample containing nearly 320 million {tau} pairs collected with the BABAR detector at the PEP-II B-Factory. We find no evidence for second-class currents and we set an upper limit of 0.69% at 90% confidence level for the fraction of second-class currents in this decay mode.

  5. Military Curricula for Vocational & Technical Education. Diver Second Class, 15-3.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This curriculum outline, student guide, and instructor guide for a secondary-postsecondary-level course in scuba diving (diver second class) is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Purpose stated for the 425-hour course is to…

  6. Aviation Structural Mechanic, Second Class, 2-13. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This self-paced, individualized course, adapted from military curriculum materials for use in vocational and technical education, teaches students the skills needed to become aviation structural mechanics (second class). The course materials consist of five pamphlets covering the structural maintenance and repair of aircraft. The first pamphlet…

  7. Second-Class Integration: A Historical Perspective for a Contemporary Agenda

    ERIC Educational Resources Information Center

    Walker, Vanessa Siddle

    2009-01-01

    In this essay, Vanessa Siddle Walker invokes the voices of black educators who challenged the diluted and failed vision for an integrated South after the 1954 "Brown v. Board of Education" decision mandating school desegregation. Through collaboration and activism, these educators fought against the second-class integration implemented in the…

  8. Introduction to classical mechanics of systems with constraints, part 3

    NASA Astrophysics Data System (ADS)

    Razumov, A. V.; Solovev, L. D.

    For systems with second class constraints the reduced phase space is constructed. It is shown that physically equivalent points of the phase space for systems with first class constraints are connected by canonical transformations generated by linear combinations of the first class constraints. For every system with first class constraints a physically equivalent system with second class constraints is constructed. As an illustrative application of the theory the relativistic straightline string is considered.

  9. Search for Second-Class Currents in \\tau^-\\to\\omega\\pi^-\

    SciTech Connect

    Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, Antimo; Pappagallo, M.; Eigen, G.; Stugu, Bjarne; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2008-09-03

    We report on an analysis of {tau}{sup -} decaying into {omega}{pi}{sup -}{nu}{sub {tau}} with {omega} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} using data containing nearly 320 million tau pairs collected with the BABAR detector at the PEP-II asymmetric energy B-Factory. We find no evidence for second-class currents and set an upper limit at 0.69% at a 90% confidence level for the ratio of second- to first-class currents.

  10. Lepton Universality, |V(Us)| and Search for Second Class Current in Tau Decays

    SciTech Connect

    Banerjee, Swagato; /Victoria U.

    2011-11-10

    Several hundred million {tau} decays have been studied with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory. Recent results on Charged Current Lepton Universality and two independent measurements of |V{sub us}| using {tau}{sup -} {yields} e{sup -}{bar {nu}}{sub e}{nu}{sub {tau}}, {mu}{sup -}{bar {nu}}{sub {mu}}{nu}{sub {tau}}, {pi}{sup -}{nu}{sub {tau}}, K{sup -} {nu}{sub {tau}} and K{sub S}{sup 0}{pi}{sup -} {nu}{sub {tau}} decays, and a search for Second Class Current in {tau}{sup -} {yields} {pi}{sup -} {omega}{nu}{sub {tau}} decays are presented, where the charge conjugate decay modes are also implied.

  11. Multi-asset Black-Scholes model as a variable second class constrained dynamical system

    NASA Astrophysics Data System (ADS)

    Bustamante, M.; Contreras, M.

    2016-09-01

    In this paper, we study the multi-asset Black-Scholes model from a structural point of view. For this, we interpret the multi-asset Black-Scholes equation as a multidimensional Schrödinger one particle equation. The analysis of the classical Hamiltonian and Lagrangian mechanics associated with this quantum model implies that, in this system, the canonical momentums cannot always be written in terms of the velocities. This feature is a typical characteristic of the constrained system that appears in the high-energy physics. To study this model in the proper form, one must apply Dirac's method for constrained systems. The results of the Dirac's analysis indicate that in the correlation parameters space of the multi-assets model, there exists a surface (called the Kummer surface ΣK, where the determinant of the correlation matrix is null) on which the constraint number can vary. We study in detail the cases with N = 2 and N = 3 assets. For these cases, we calculate the propagator of the multi-asset Black-Scholes equation and show that inside the Kummer ΣK surface the propagator is well defined, but outside ΣK the propagator diverges and the option price is not well defined. On ΣK the propagator is obtained as a constrained path integral and their form depends on which region of the Kummer surface the correlation parameters lie. Thus, the multi-asset Black-Scholes model is an example of a variable constrained dynamical system, and it is a new and beautiful property that had not been previously observed.

  12. Constraint algebra in bigravity

    SciTech Connect

    Soloviev, V. O.

    2015-07-15

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  13. Constraint algebra in bigravity

    NASA Astrophysics Data System (ADS)

    Soloviev, V. O.

    2015-07-01

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  14. "Second class loss": political culture as a recovery barrier--the families of terrorist casualties' struggle for national honors, recognition, and belonging.

    PubMed

    Lebel, Udi

    2014-01-01

    Israeli families of terrorist victims have undertaken initiatives to include their dearest in the national pantheon. The objections opposed the penetration of "second-class loss" into the symbolic closure of heroic national bereavement. The "hierarchy of bereavement" is examined through the lens of political culture organized around the veneration held for the army fallen and their families, which has symbolic as well as rehabilitative outcomes. Families of civilian terror victims claims for similar status and treatment had to frame their loss as national in the eyes of the social policy. The article claimed linkage between collective memory and rehabilitation. PMID:24521041

  15. "Second class loss": political culture as a recovery barrier--the families of terrorist casualties' struggle for national honors, recognition, and belonging.

    PubMed

    Lebel, Udi

    2014-01-01

    Israeli families of terrorist victims have undertaken initiatives to include their dearest in the national pantheon. The objections opposed the penetration of "second-class loss" into the symbolic closure of heroic national bereavement. The "hierarchy of bereavement" is examined through the lens of political culture organized around the veneration held for the army fallen and their families, which has symbolic as well as rehabilitative outcomes. Families of civilian terror victims claims for similar status and treatment had to frame their loss as national in the eyes of the social policy. The article claimed linkage between collective memory and rehabilitation.

  16. Constraint analysis for variational discrete systems

    SciTech Connect

    Dittrich, Bianca; Höhn, Philipp A.

    2013-09-15

    A canonical formalism and constraint analysis for discrete systems subject to a variational action principle are devised. The formalism is equivalent to the covariant formulation, encompasses global and local discrete time evolution moves and naturally incorporates both constant and evolving phase spaces, the latter of which is necessary for a time varying discretization. The different roles of constraints in the discrete and the conditions under which they are first or second class and/or symmetry generators are clarified. The (non-) preservation of constraints and the symplectic structure is discussed; on evolving phase spaces the number of constraints at a fixed time step depends on the initial and final time step of evolution. Moreover, the definition of observables and a reduced phase space is provided; again, on evolving phase spaces the notion of an observable as a propagating degree of freedom requires specification of an initial and final step and crucially depends on this choice, in contrast to the continuum. However, upon restriction to translation invariant systems, one regains the usual time step independence of canonical concepts. This analysis applies, e.g., to discrete mechanics, lattice field theory, quantum gravity models, and numerical analysis.

  17. Constraint monitoring in TOSCA

    NASA Technical Reports Server (NTRS)

    Beck, Howard

    1992-01-01

    The Job-Shop Scheduling Problem (JSSP) deals with the allocation of resources over time to factory operations. Allocations are subject to various constraints (e.g., production precedence relationships, factory capacity constraints, and limits on the allowable number of machine setups) which must be satisfied for a schedule to be valid. The identification of constraint violations and the monitoring of constraint threats plays a vital role in schedule generation in terms of the following: (1) directing the scheduling process; and (2) informing scheduling decisions. This paper describes a general mechanism for identifying constraint violations and monitoring threats to the satisfaction of constraints throughout schedule generation.

  18. Studies of {tau}{sup -}{yields}{eta}K{sup -}{nu}{sub {tau}} and {tau}{sup -}{yields}{eta}{pi}{sup -}{nu}{sub {tau}} at BABAR and a search for a second-class current

    SciTech Connect

    Amo Sanchez, P. del; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.

    2011-02-01

    We report on analyses of tau lepton decays {tau}{sup -}{yields}{eta}K{sup -}{nu}{sub {tau}} and {tau}{sup -}{yields}{eta}{pi}{sup -}{nu}{sub {tau}}, with {eta}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}, using 470 fb{sup -1} of data from the BABAR experiment at PEP-II, collected at center-of-mass energies at and near the {Upsilon}(4S) resonance. We measure the branching fraction for the {tau}{sup -}{yields}{eta}K{sup -}{nu}{sub {tau}} decay mode, B({tau}{sup -}{yields}{eta}K{sup -}{nu}{sub {tau}})=(1.42{+-}0.11(stat){+-}0.07(syst))x10{sup -4}, and report a 95% confidence level upper limit for the second-class current process {tau}{sup -}{yields}{eta}{pi}{sup -}{nu}{sub {tau}}, B({tau}{sup -}{yields}{eta}{pi}{sup -}{nu}{sub {tau}})<9.9x10{sup -5}.

  19. Measurement of the Tau- to F1(1285) Pi- Nu/Tau Branching Fraction And a Search for Second-Class Currents in Tau to Eta-Prime(958) Pi- Nu/Tau

    SciTech Connect

    Alwyn, K.E.; /Manchester U.

    2011-12-01

    The {tau}{sup -} {yields} {eta}{pi}{sup -}{pi}+{pi}{sup -}{nu}{tau} decay with the {eta} {yields} {gamma}{gamma} mode is studied using 384 fb{sup -1} of data collected by the BaBar detector. The branching fraction is measured to be (1.60 {+-} 0.05 {+-} 0.11) x 10{sup -4}. It is found that {tau}{sup -} {yields} f1(1285){pi}{sup -}{nu}{tau} {yields} {eta}{pi}{sup -}{pi}+{pi}{sup -}{nu}{tau} is the dominant decay mode with a branching fraction of (1.11 {+-} 0.06 {+-} 0.05) x 10{sup -4}. The first error is statistical and the second systematic. In addition, a 90% confidence level upper limit on the branching fraction of the {tau}{sup -} {yields} {eta}{prime}(958){pi}{sup -}{nu}{tau} decay is measured to be 7.2 x 10{sup -6}. This last decay proceeds through a second-class current and is expected to be forbidden in the limit of isospin symmetry.

  20. Measurement of the tau- to eta pi-pi+pi-nu tau Branching Fraction and a Search for a Second-Class Current in the tau- to eta'(958)pi-nu tau Decay

    SciTech Connect

    Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, David Nathan; Button-Shafer, J.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /Frascati /Genoa U. /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /Pisa U. /Princeton U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2008-03-24

    The {tau}{sup -} {yields} {eta}{pi}{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}} decay with the {eta} {yields} {gamma}{gamma} mode is studied using 384 fb{sup -1} of data collected by the BABAR detector. The branching fraction is measured to be (1.60 {+-} 0.05 {+-} 0.11) x 10{sup -4}. It is found that {tau}{sup -} {yields} f{sub 1}(1285){pi}{sup -} {nu}{sub {tau}} {yields} {eta}{pi}{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}} is the dominant decay mode with a branching fraction of (1.11 {+-} 0.06 {+-} 0.05) x 10{sup -4}. The first error on the branching fractions is statistical and the second systematic. In addition, a 90% confidence level upper limit on the branching fraction of the {tau}{sup -} {yields} {eta}{prime}(958){pi}{sup -}{nu}{sub {tau}} decay is measured to be 7.2 x 10{sup -6}. This last decay proceeds through a second-class current and is expected to be forbidden in the limit of isospin symmetry.

  1. Creating Positive Task Constraints

    ERIC Educational Resources Information Center

    Mally, Kristi K.

    2006-01-01

    Constraints are characteristics of the individual, the task, or the environment that mold and shape movement choices and performances. Constraints can be positive--encouraging proficient movements or negative--discouraging movement or promoting ineffective movements. Physical educators must analyze, evaluate, and determine the effect various…

  2. Constraint Reasoning Over Strings

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin

    2003-01-01

    This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.

  3. Credit Constraints in Education

    ERIC Educational Resources Information Center

    Lochner, Lance; Monge-Naranjo, Alexander

    2012-01-01

    We review studies of the impact of credit constraints on the accumulation of human capital. Evidence suggests that credit constraints have recently become important for schooling and other aspects of households' behavior. We highlight the importance of early childhood investments, as their response largely determines the impact of credit…

  4. Constraints in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    1996-01-01

    Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.

  5. The photogrammetric inner constraints

    NASA Astrophysics Data System (ADS)

    Dermanis, Athanasios

    A derivation of the complete inner constraints, which are required for obtaining "free network" solutions in close-range photogrammetry, is presented. The inner constraints are derived analytically for the bundle method, by exploiting the fact that the rows of their coefficient matrix from a basis for the null subspace of the design matrix used in the linearized observation equations. The derivation is independent of any particular choice of rotational parameters and examples are given for three types of rotation angles used in photogrammetry, as well as for the Rodriguez elements. A convenient algorithm based on the use of the S-transformation is presented, for the computation of free solutions with either inner or partial inner constraints. This approach is finally compared with alternative approaches to free network solutions.

  6. Dynamical Constraints on Exoplanets

    NASA Astrophysics Data System (ADS)

    Horner, Jonti; Wittenmyer, Robert A.; Tinney, Chris; Hinse, Tobias C.; Marshall, Jonathan P.

    2014-01-01

    Dynamical studies of new exoplanet systems are a critical component of the discovery and characterisation process. Such studies can provide firmer constraints on the parameters of the newly discovered planets, and may even reveal that the proposed planets do not stand up to dynamical scrutiny. Here, we demonstrate how dynamical studies can assist the characterisation of such systems through two examples: QS Virginis and HD 73526.

  7. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  8. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  9. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1993-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  10. The enigma of nonholonomic constraints

    NASA Astrophysics Data System (ADS)

    Flannery, M. R.

    2005-03-01

    The problems associated with the modification of Hamilton's principle to cover nonholonomic constraints by the application of the multiplier theorem of variational calculus are discussed. The reason for the problems is subtle and is discussed, together with the reason why the proper account of nonholonomic constraints is outside the scope of Hamilton's variational principle. However, linear velocity constraints remain within the scope of D'Alembert's principle. A careful and comprehensive analysis facilitates the resolution of the puzzling features of nonholonomic constraints.

  11. Structure Constraints in a Constraint-Based Planner

    NASA Technical Reports Server (NTRS)

    Pang, Wan-Lin; Golden, Keith

    2004-01-01

    In this paper we report our work on a new constraint domain, where variables can take structured values. Earth-science data processing (ESDP) is a planning domain that requires the ability to represent and reason about complex constraints over structured data, such as satellite images. This paper reports on a constraint-based planner for ESDP and similar domains. We discuss our approach for translating a planning problem into a constraint satisfaction problem (CSP) and for representing and reasoning about structured objects and constraints over structures.

  12. Asteroseismic constraints for Gaia

    NASA Astrophysics Data System (ADS)

    Creevey, O. L.; Thévenin, F.

    2012-12-01

    Distances from the Gaia mission will no doubt improve our understanding of stellar physics by providing an excellent constraint on the luminosity of the star. However, it is also clear that high precision stellar properties from, for example, asteroseismology, will also provide a needed input constraint in order to calibrate the methods that Gaia will use, e.g. stellar models or GSP_Phot. For solar-like stars (F, G, K IV/V), asteroseismic data delivers at the least two very important quantities: (1) the average large frequency separation < Δ ν > and (2) the frequency corresponding to the maximum of the modulated-amplitude spectrum ν_{max}. Both of these quantities are related directly to stellar parameters (radius and mass) and in particular their combination (gravity and density). We show how the precision in < Δ ν >, ν_{max}, and atmospheric parameters T_{eff} and [Fe/H] affect the determination of gravity (log g) for a sample of well-known stars. We find that log g can be determined within less than 0.02 dex accuracy for our sample while considering precisions in the data expected for V˜12 stars from Kepler data. We also derive masses and radii which are accurate to within 1σ of the accepted values. This study validates the subsequent use of all of the available asteroseismic data on solar-like stars from the Kepler field (>500 IV/V stars) in order to provide a very important constraint for Gaia calibration of GSP_Phot} through the use of log g. We note that while we concentrate on IV/V stars, both the CoRoT and Kepler fields contain asteroseismic data on thousands of giant stars which will also provide useful calibration measures.

  13. Superresolution via sparsity constraints

    NASA Technical Reports Server (NTRS)

    Donoho, David L.

    1992-01-01

    The problem of recovering a measure mu supported on a lattice of span Delta is considered under the condition that measurements are only available concerning the Fourier Transform at frequencies of Omega or less. If Omega is much smaller than the Nyquist frequency pi/Delta and the measurements are noisy, then stable recovery of mu is generally impossible. It is shown here that if, in addition, it is known that mu satisfies certain sparsity constraints, then stable recovery is possible. This finding validates practical efforts in spectroscopy, seismic prospecting, and astronomy to provide superresolution by imposing support limitations in reconstruction.

  14. Performance constraints in decathletes.

    PubMed

    Van Damme, Raoul; Wilson, Robbie S; Vanhooydonck, Bieke; Aerts, Peter

    2002-02-14

    Physical performance by vertebrates is thought to be constrained by trade-offs between antagonistic pairs of ecologically relevant traits and between conflicting specialist and generalist phenotypes, but there is surprisingly little evidence to support this reasoning. Here we analyse the performance of world-class athletes in standardized decathlon events and find that it is subject to both types of trade-off, after correction has been made for differences between athletes in general ability across all 10 events. These trade-offs may have imposed important constraints on the evolution of physical performance in humans and other vertebrates. PMID:11845199

  15. On heterotic model constraints

    NASA Astrophysics Data System (ADS)

    Bouchard, Vincent; Donagi, Ron

    2008-08-01

    The constraints imposed on heterotic compactifications by global consistency and phenomenology seem to be very finely balanced. We show that weakening these constraints, as was proposed in some recent works, is likely to lead to frivolous results. In particular, we construct an infinite set of such frivolous models having precisely the massless spectrum of the MSSM and other quasi-realistic features. Only one model in this infinite collection (the one constructed in [8]) is globally consistent and supersymmetric. The others might be interpreted as being anomalous, or as non-supersymmetric models, or as local models that cannot be embedded in a global one. We also show that the strongly coupled model of [8] can be modified to a perturbative solution with stable SU(4) or SU(5) bundles in the hidden sector. We finally propose a detailed exploration of heterotic vacua involving bundles on Calabi-Yau threefolds with Bbb Z6 Wilson lines; we obtain many more frivolous solutions, but none that are globally consistent and supersymmetric at the string scale.

  16. Symbolic Constraint Maintenance Grid

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.

  17. Relative constraints and evolution

    NASA Astrophysics Data System (ADS)

    Ochoa, Juan G. Diaz

    2014-03-01

    Several mathematical models of evolving systems assume that changes in the micro-states are constrained to the search of an optimal value in a local or global objective function. However, the concept of evolution requires a continuous change in the environment and species, making difficult the definition of absolute optimal values in objective functions. In this paper, we define constraints that are not absolute but relative to local micro-states, introducing a rupture in the invariance of the phase space of the system. This conceptual basis is useful to define alternative mathematical models for biological (or in general complex) evolving systems. We illustrate this concept with a modified Ising model, which can be useful to understand and model problems like the somatic evolution of cancer.

  18. Evolutionary constraints or opportunities?

    PubMed

    Sharov, Alexei A

    2014-04-22

    Natural selection is traditionally viewed as a leading factor of evolution, whereas variation is assumed to be random and non-directional. Any order in variation is attributed to epigenetic or developmental constraints that can hinder the action of natural selection. In contrast I consider the positive role of epigenetic mechanisms in evolution because they provide organisms with opportunities for rapid adaptive change. Because the term "constraint" has negative connotations, I use the term "regulated variation" to emphasize the adaptive nature of phenotypic variation, which helps populations and species to survive and evolve in changing environments. The capacity to produce regulated variation is a phenotypic property, which is not described in the genome. Instead, the genome acts as a switchboard, where mostly random mutations switch "on" or "off" preexisting functional capacities of organism components. Thus, there are two channels of heredity: informational (genomic) and structure-functional (phenotypic). Functional capacities of organisms most likely emerged in a chain of modifications and combinations of more simple ancestral functions. The role of DNA has been to keep records of these changes (without describing the result) so that they can be reproduced in the following generations. Evolutionary opportunities include adjustments of individual functions, multitasking, connection between various components of an organism, and interaction between organisms. The adaptive nature of regulated variation can be explained by the differential success of lineages in macro-evolution. Lineages with more advantageous patterns of regulated variation are likely to produce more species and secure more resources (i.e., long-term lineage selection).

  19. Evolutionary constraints or opportunities?

    PubMed

    Sharov, Alexei A

    2014-09-01

    Natural selection is traditionally viewed as a leading factor of evolution, whereas variation is assumed to be random and non-directional. Any order in variation is attributed to epigenetic or developmental constraints that can hinder the action of natural selection. In contrast I consider the positive role of epigenetic mechanisms in evolution because they provide organisms with opportunities for rapid adaptive change. Because the term "constraint" has negative connotations, I use the term "regulated variation" to emphasize the adaptive nature of phenotypic variation, which helps populations and species to survive and evolve in changing environments. The capacity to produce regulated variation is a phenotypic property, which is not described in the genome. Instead, the genome acts as a switchboard, where mostly random mutations switch "on" or "off" preexisting functional capacities of organism components. Thus, there are two channels of heredity: informational (genomic) and structure-functional (phenotypic). Functional capacities of organisms most likely emerged in a chain of modifications and combinations of more simple ancestral functions. The role of DNA has been to keep records of these changes (without describing the result) so that they can be reproduced in the following generations. Evolutionary opportunities include adjustments of individual functions, multitasking, connection between various components of an organism, and interaction between organisms. The adaptive nature of regulated variation can be explained by the differential success of lineages in macro-evolution. Lineages with more advantageous patterns of regulated variation are likely to produce more species and secure more resources (i.e., long-term lineage selection).

  20. Neural constraints on learning

    PubMed Central

    Sadtler, Patrick T.; Quick, Kristin M.; Golub, Matthew D.; Chase, Steven M.; Ryu, Stephen I.; Tyler-Kabara, Elizabeth C.; Yu, Byron M.; Batista, Aaron P.

    2014-01-01

    Motor, sensory, and cognitive learning require networks of neurons to generate new activity patterns. Because some behaviors are easier to learn than others1,2, we wondered if some neural activity patterns are easier to generate than others. We asked whether the existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define the constraint. We employed a closed-loop intracortical brain-computer interface (BCI) learning paradigm in which Rhesus monkeys controlled a computer cursor by modulating neural activity patterns in primary motor cortex. Using the BCI paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. These patterns comprise a low-dimensional space (termed the intrinsic manifold, or IM) within the high-dimensional neural firing rate space. They presumably reflect constraints imposed by the underlying neural circuitry. We found that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the IM. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the IM. This result suggests that the existing structure of a network can shape learning. On the timescale of hours, it appears to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already possess3,4. PMID:25164754

  1. On Constraints in Assembly Planning

    SciTech Connect

    Calton, T.L.; Jones, R.E.; Wilson, R.H.

    1998-12-17

    Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. Assembly costs and other measures to optimize vary just as widely. To be effective, computer-aided assembly planning systems must allow users to express the plan selection criteria that appIy to their products and production environments. We begin this article by surveying the types of user criteria, both constraints and quality measures, that have been accepted by assembly planning systems to date. The survey is organized along several dimensions, including strategic vs. tactical criteria; manufacturing requirements VS. requirements of the automated planning process itself and the information needed to assess compliance with each criterion. The latter strongly influences the efficiency of planning. We then focus on constraints. We describe a framework to support a wide variety of user constraints for intuitive and efficient assembly planning. Our framework expresses all constraints on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Constraints are implemented as simple procedures that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to a number of complex assemblies, including one with 472 parts.

  2. Credit Constraints for Higher Education

    ERIC Educational Resources Information Center

    Solis, Alex

    2012-01-01

    This paper exploits a natural experiment that produces exogenous variation on credit access to determine the effect on college enrollment. The paper assess how important are credit constraints to explain the gap in college enrollment by family income, and what would be the gap if credit constraints are eliminated. Progress in college and dropout…

  3. Fixed Costs and Hours Constraints

    ERIC Educational Resources Information Center

    Johnson, William R.

    2011-01-01

    Hours constraints are typically identified by worker responses to questions asking whether they would prefer a job with more hours and more pay or fewer hours and less pay. Because jobs with different hours but the same rate of pay may be infeasible when there are fixed costs of employment or mandatory overtime premia, the constraint in those…

  4. Generalizing Atoms in Constraint Logic

    NASA Technical Reports Server (NTRS)

    Page, C. David, Jr.; Frisch, Alan M.

    1991-01-01

    This paper studies the generalization of atomic formulas, or atoms, that are augmented with constraints on or among their terms. The atoms may also be viewed as definite clauses whose antecedents express the constraints. Atoms are generalized relative to a body of background information about the constraints. This paper first examines generalization of atoms with only monadic constraints. The paper develops an algorithm for the generalization task and discusses algorithm complexity. It then extends the algorithm to apply to atoms with constraints of arbitrary arity. The paper also presents semantic properties of the generalizations computed by the algorithms, making the algorithms applicable to such problems as abduction, induction, and knowledge base verification. The paper emphasizes the application to induction and presents a pac-learning result for constrained atoms.

  5. Algorithms for reactions of nonholonomic constraints and servo-constraints

    NASA Astrophysics Data System (ADS)

    Slawianowski, J. J.

    Various procedures for deriving equations of motion of constrained mechanical systems are discussed and compared. A geometric interpretation of the procedures is given, stressing both linear and nonlinear nonholonomic constraints. Certain qualitative differences are analyzed between models of nonholonomic dynamics based on different procedures. Two algorithms of particular interest are: (1) the d'Alembert principle and its Appell-Tshetajev generalization, and (2) the variational Hamiltonian principle with subsidiary conditions. It is argued that the Hamiltonian principle, although not accepted in traditional technical applications, is more promising in generalizations concerning systems with higher differential constraints, or the more general functional constraints appearing in feedback and control systems.

  6. Evolutionary constraints or opportunities?

    PubMed Central

    Sharov, Alexei A.

    2014-01-01

    Natural selection is traditionally viewed as a leading factor of evolution, whereas variation is assumed to be random and non-directional. Any order in variation is attributed to epigenetic or developmental constraints that can hinder the action of natural selection. In contrast I consider the positive role of epigenetic mechanisms in evolution because they provide organisms with opportunities for rapid adaptive change. Because the term “constraint” has negative connotations, I use the term “regulated variation” to emphasize the adaptive nature of phenotypic variation, which helps populations and species to survive and evolve in changing environments. The capacity to produce regulated variation is a phenotypic property, which is not described in the genome. Instead, the genome acts as a switchboard, where mostly random mutations switch “on” or “off” preexisting functional capacities of organism components. Thus, there are two channels of heredity: informational (genomic) and structure-functional (phenotypic). Functional capacities of organisms most likely emerged in a chain of modifications and combinations of more simple ancestral functions. The role of DNA has been to keep records of these changes (without describing the result) so that they can be reproduced in the following generations. Evolutionary opportunities include adjustments of individual functions, multitasking, connection between various components of an organism, and interaction between organisms. The adaptive nature of regulated variation can be explained by the differential success of lineages in macro-evolution. Lineages with more advantageous patterns of regulated variation are likely to produce more species and secure more resources (i.e., long-term lineage selection). PMID:24769155

  7. Federal constraints: earned or unearned?

    PubMed

    Chalkley, D T

    1977-08-01

    The author discusses the evolution of federal constraints on medical, behavioral, and social science research. There has been only one court decision related to behavioral research and none in medical research. The burden of consent procedures can be lightened somewhat by careful consideration of the potential risks and nature of the research; questions are presented that can be used to determine whether constraints apply. The author notes that although there are good reasons for regulations in both behavioral and medical research, the appropriateness of current and proposed constraints is still a matter of debate.

  8. Resource allocation using constraint propagation

    NASA Technical Reports Server (NTRS)

    Rogers, John S.

    1990-01-01

    The concept of constraint propagation was discussed. Performance increases are possible with careful application of these constraint mechanisms. The degree of performance increase is related to the interdependence of the different activities resource usage. Although this method of applying constraints to activities and resources is often beneficial, it is obvious that this is no panacea cure for the computational woes that are experienced by dynamic resource allocation and scheduling problems. A combined effort for execution optimization in all areas of the system during development and the selection of the appropriate development environment is still the best method of producing an efficient system.

  9. Weighted constraints in generative linguistics.

    PubMed

    Pater, Joe

    2009-08-01

    Harmonic Grammar (HG) and Optimality Theory (OT) are closely related formal frameworks for the study of language. In both, the structure of a given language is determined by the relative strengths of a set of constraints. They differ in how these strengths are represented: as numerical weights (HG) or as ranks (OT). Weighted constraints have advantages for the construction of accounts of language learning and other cognitive processes, partly because they allow for the adaptation of connectionist and statistical models. HG has been little studied in generative linguistics, however, largely due to influential claims that weighted constraints make incorrect predictions about the typology of natural languages, predictions that are not shared by the more popular OT. This paper makes the case that HG is in fact a promising framework for typological research, and reviews and extends the existing arguments for weighted over ranked constraints.

  10. Fluid convection, constraint and causation

    PubMed Central

    Bishop, Robert C.

    2012-01-01

    Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955

  11. Developmental constraints on behavioural flexibility

    PubMed Central

    Holekamp, Kay E.; Swanson, Eli M.; Van Meter, Page E.

    2013-01-01

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility. PMID:23569298

  12. Developmental constraints on behavioural flexibility.

    PubMed

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility. PMID:23569298

  13. Developmental constraints on behavioural flexibility.

    PubMed

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  14. Data assimilation with inequality constraints

    NASA Astrophysics Data System (ADS)

    Thacker, W. C.

    If values of variables in a numerical model are limited to specified ranges, these restrictions should be enforced when data are assimilated. The simplest option is to assimilate without regard for constraints and then to correct any violations without worrying about additional corrections implied by correlated errors. This paper addresses the incorporation of inequality constraints into the standard variational framework of optimal interpolation with emphasis on our limited knowledge of the underlying probability distributions. Simple examples involving only two or three variables are used to illustrate graphically how active constraints can be treated as error-free data when background errors obey a truncated multi-normal distribution. Using Lagrange multipliers, the formalism is expanded to encompass the active constraints. Two algorithms are presented, both relying on a solution ignoring the inequality constraints to discover violations to be enforced. While explicitly enforcing a subset can, via correlations, correct the others, pragmatism based on our poor knowledge of the underlying probability distributions suggests the expedient of enforcing them all explicitly to avoid the computationally expensive task of determining the minimum active set. If additional violations are encountered with these solutions, the process can be repeated. Simple examples are used to illustrate the algorithms and to examine the nature of the corrections implied by correlated errors.

  15. Genetic map construction with constraints

    SciTech Connect

    Clark, D.A.; Rawlings, C.J.; Soursenot, S.

    1994-12-31

    A pilot program, CME, is described for generating a physical genetic map from hybridization fingerprinting data. CME is implemented in the parallel constraint logic programming language ElipSys. The features of constraint logic programming are used to enable the integration of preexisting mapping information (partial probe orders from cytogenetic maps and local physical maps) into the global map generation process, while parallelism enables the search space to be traversed more efficiently. CME was tested using data from chromosome 2 of Schizosaccharomyces pombe and was found able to generate maps as well as (and sometimes better than) a more traditional method. This paper illustrates the practical benefits of using a symbolic logic programming language and shows that the features of constraint handling and parallel execution bring the development of practical systems based on Al programming technologies nearer to being a reality.

  16. Symmetry constraint for foreground extraction.

    PubMed

    Fu, Huazhu; Cao, Xiaochun; Tu, Zhuowen; Lin, Dongdai

    2014-05-01

    Symmetry as an intrinsic shape property is often observed in natural objects. In this paper, we discuss how explicitly taking into account the symmetry constraint can enhance the quality of foreground object extraction. In our method, a symmetry foreground map is used to represent the symmetry structure of the image, which includes the symmetry matching magnitude and the foreground location prior. Then, the symmetry constraint model is built by introducing this symmetry structure into the graph-based segmentation function. Finally, the segmentation result is obtained via graph cuts. Our method encourages objects with symmetric parts to be consistently extracted. Moreover, our symmetry constraint model is applicable to weak symmetric objects under the part-based framework. Quantitative and qualitative experimental results on benchmark datasets demonstrate the advantages of our approach in extracting the foreground. Our method also shows improved results in segmenting objects with weak, complex symmetry properties.

  17. Magnetotail dynamics under isobaric constraints

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael

    1994-01-01

    Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.

  18. Evolutionary Constraints to Viroid Evolution

    PubMed Central

    Elena, Santiago F.; Gómez, Gustavo; Daròs, José-Antonio

    2009-01-01

    We suggest that viroids are trapped into adaptive peaks as the result of adaptive constraints. The first one is imposed by the necessity to fold into packed structures to escape from RNA silencing. This creates antagonistic epistases, which make future adaptive trajectories contingent upon the first mutation and slow down the rate of adaptation. This second constraint can only be surpassed by increasing genetic redundancy or by recombination. Eigen’s paradox imposes a limit to the increase in genome complexity in the absence of mechanisms reducing mutation rate. Therefore, recombination appears as the only possible route to evolutionary innovation in viroids. PMID:21994548

  19. The constraint model of attrition

    SciTech Connect

    Hartley, D.S. III.

    1989-01-01

    Helmbold demonstrated a relationship between a ratio containing initial force sizes and casualties, herein called the Helmbold ratio, and the initial force ratio in a large number of historical battles. This paper examines some of the complexity of the Helmbold ratio using analytical and simulation techniques and demonstrates that a constraint model of attrition captures some aspects of historical data. The effect that the constraint model would have on warfare modeling is uncertain. However, some speculation has been attempted concerning its use in large scale simulations. 9 refs., 7 figs., 2 tabs.

  20. Greenstone belt tectonics: Thermal constraints

    NASA Technical Reports Server (NTRS)

    Bickle, M. J.; Nisbet, E. G.

    1986-01-01

    Archaean rocks provide a record of the early stages of planetary evolution. The interpretation is frustrated by the probable unrepresentative nature of the preserved crust and by the well known ambiguities of tectonic geological synthesis. Broad constraints can be placed on the tectonic processes in the early Earth from global scale modeling of thermal and chemical evolution of the Earth and its hydrosphere and atmosphere. The Archean record is the main test of such models. Available general model constraints are outlined based on the global tectonic setting within which Archaean crust evolved and on the direct evidence the Archaean record provides, particularly the thermal state of the early Earth.

  1. Contextual Constraints on Adolescents' Leisure.

    ERIC Educational Resources Information Center

    Silbereisen, Rainer K.

    2003-01-01

    Interlinks crucial cultural themes emerging from preceding chapters, highlighting the contextual constraints in adolescents' use of free time. Draws parallels across the nations discussed on issues related to how school molds leisure time, the balance of passive versus active leisure, timing of leisure pursuits, and the cumulative effect of…

  2. Perceptual Constraints in Phonotactic Learning

    ERIC Educational Resources Information Center

    Endress, Ansgar D.; Mehler, Jacques

    2010-01-01

    Structural regularities in language have often been attributed to symbolic or statistical general purpose computations, whereas perceptual factors influencing such generalizations have received less interest. Here, we use phonotactic-like constraints as a case study to ask whether the structural properties of specific perceptual and memory…

  3. Temporal Constraint Reasoning With Preferences

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Morris, Paul; Morris, Robert; Rossi, Francesca

    2001-01-01

    A number of reasoning problems involving the manipulation of temporal information can naturally be viewed as implicitly inducing an ordering of potential local decisions involving time (specifically, associated with durations or orderings of events) on the basis of preferences. For example. a pair of events might be constrained to occur in a certain order, and, in addition. it might be preferable that the delay between them be as large, or as small, as possible. This paper explores problems in which a set of temporal constraints is specified, where each constraint is associated with preference criteria for making local decisions about the events involved in the constraint, and a reasoner must infer a complete solution to the problem such that, to the extent possible, these local preferences are met in the best way. A constraint framework for reasoning about time is generalized to allow for preferences over event distances and durations, and we study the complexity of solving problems in the resulting formalism. It is shown that while in general such problems are NP-hard, some restrictions on the shape of the preference functions, and on the structure of the preference set, can be enforced to achieve tractability. In these cases, a simple generalization of a single-source shortest path algorithm can be used to compute a globally preferred solution in polynomial time.

  4. Constraints on galaxy formation theories

    NASA Technical Reports Server (NTRS)

    Szalay, A. S.

    1986-01-01

    The present theories of galaxy formation are reviewed. The relation between peculiar velocities, temperature fluctuations of the microwave background and the correlation function of galaxies point to the possibility that galaxies do not form uniformly everywhere. The velocity data provide strong constraints on the theories even in the case when light does not follow mass of the universe.

  5. Stress constraints in optimality criteria design

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1982-01-01

    Procedures described emphasize the processing of stress constraints within optimality criteria designs for low structural weight with stress and compliance constraints. Prescreening criteria are used to partition stress constraints into either potentially active primary sets or passive secondary sets that require minimal processing. Side constraint boundaries for passive constraints are derived by projections from design histories to modify conventional stress-ratio boundaries. Other procedures described apply partial structural modification reanalysis to design variable groups to correct stress constraint violations of unfeasible designs. Sample problem results show effective design convergence and, in particular, advantages for reanalysis in obtaining lower feasible design weights.

  6. Unitarity constraints on trimaximal mixing

    SciTech Connect

    Kumar, Sanjeev

    2010-07-01

    When the neutrino mass eigenstate {nu}{sub 2} is trimaximally mixed, the mixing matrix is called trimaximal. The middle column of the trimaximal mixing matrix is identical to tribimaximal mixing and the other two columns are subject to unitarity constraints. This corresponds to a mixing matrix with four independent parameters in the most general case. Apart from the two Majorana phases, the mixing matrix has only one free parameter in the CP conserving limit. Trimaximality results in interesting interplay between mixing angles and CP violation. A notion of maximal CP violation naturally emerges here: CP violation is maximal for maximal 2-3 mixing. Similarly, there is a natural constraint on the deviation from maximal 2-3 mixing which takes its maximal value in the CP conserving limit.

  7. Managing Restaurant Tables using Constraints

    NASA Astrophysics Data System (ADS)

    Vidotto, Alfio; Brown, Kenneth N.; Beck, J. Christopher

    Restaurant table management can have significant impact on both profitability and the customer experience. The core of the issue is a complex dynamic combinatorial problem. We show how to model the problem as constraint satisfaction, with extensions which generate flexible seating plans and which maintain stability when changes occur. We describe an implemented system which provides advice to users in real time. The system is currently being evaluated in a restaurant environment.

  8. Macroscopic constraints on string unification

    SciTech Connect

    Taylor, T.R.

    1989-03-01

    The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs.

  9. Updating neutrino magnetic moment constraints

    NASA Astrophysics Data System (ADS)

    Cañas, B. C.; Miranda, O. G.; Parada, A.; Tórtola, M.; Valle, J. W. F.

    2016-02-01

    In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Λi and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 ×10-11μB at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Λ1 | ≤ 5.6 ×10-11μB, |Λ2 | ≤ 4.0 ×10-11μB, and |Λ3 | ≤ 3.1 ×10-11μB (90% C.L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.

  10. Constraint Based Modeling Going Multicellular

    PubMed Central

    Martins Conde, Patricia do Rosario; Sauter, Thomas; Pfau, Thomas

    2016-01-01

    Constraint based modeling has seen applications in many microorganisms. For example, there are now established methods to determine potential genetic modifications and external interventions to increase the efficiency of microbial strains in chemical production pipelines. In addition, multiple models of multicellular organisms have been created including plants and humans. While initially the focus here was on modeling individual cell types of the multicellular organism, this focus recently started to switch. Models of microbial communities, as well as multi-tissue models of higher organisms have been constructed. These models thereby can include different parts of a plant, like root, stem, or different tissue types in the same organ. Such models can elucidate details of the interplay between symbiotic organisms, as well as the concerted efforts of multiple tissues and can be applied to analyse the effects of drugs or mutations on a more systemic level. In this review we give an overview of the recent development of multi-tissue models using constraint based techniques and the methods employed when investigating these models. We further highlight advances in combining constraint based models with dynamic and regulatory information and give an overview of these types of hybrid or multi-level approaches. PMID:26904548

  11. Infrared Constraint on Ultraviolet Theories

    SciTech Connect

    Tsai, Yuhsin

    2012-08-01

    While our current paradigm of particle physics, the Standard Model (SM), has been extremely successful at explaining experiments, it is theoretically incomplete and must be embedded into a larger framework. In this thesis, we review the main motivations for theories beyond the SM (BSM) and the ways such theories can be constrained using low energy physics. The hierarchy problem, neutrino mass and the existence of dark matter (DM) are the main reasons why the SM is incomplete . Two of the most plausible theories that may solve the hierarchy problem are the Randall-Sundrum (RS) models and supersymmetry (SUSY). RS models usually suffer from strong flavor constraints, while SUSY models produce extra degrees of freedom that need to be hidden from current experiments. To show the importance of infrared (IR) physics constraints, we discuss the flavor bounds on the anarchic RS model in both the lepton and quark sectors. For SUSY models, we discuss the difficulties in obtaining a phenomenologically allowed gaugino mass, its relation to R-symmetry breaking, and how to build a model that avoids this problem. For the neutrino mass problem, we discuss the idea of generating small neutrino masses using compositeness. By requiring successful leptogenesis and the existence of warm dark matter (WDM), we can set various constraints on the hidden composite sector. Finally, to give an example of model independent bounds from collider experiments, we show how to constrain the DM–SM particle interactions using collider results with an effective coupling description.

  12. Isocurvature constraints on portal couplings

    NASA Astrophysics Data System (ADS)

    Kainulainen, Kimmo; Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo; Vaskonen, Ville

    2016-06-01

    We consider portal models which are ultraweakly coupled with the Standard Model, and confront them with observational constraints on dark matter abundance and isocurvature perturbations. We assume the hidden sector to contain a real singlet scalar s and a sterile neutrino ψ coupled to s via a pseudoscalar Yukawa term. During inflation, a primordial condensate consisting of the singlet scalar s is generated, and its contribution to the isocurvature perturbations is imprinted onto the dark matter abundance. We compute the total dark matter abundance including the contributions from condensate decay and nonthermal production from the Standard Model sector. We then use the Planck limit on isocurvature perturbations to derive a novel constraint connecting dark matter mass and the singlet self coupling with the scale of inflation: mDM/GeV lesssim 0.2λs3/8 (H*/1011 GeV)‑3/2. This constraint is relevant in most portal models ultraweakly coupled with the Standard Model and containing light singlet scalar fields.

  13. Steric constraints as folding coadjuvant

    NASA Astrophysics Data System (ADS)

    Tarragó, M. E.; Rocha, Luiz F.; Dasilva, R. A.; Caliri, A.

    2003-03-01

    Through the analyses of the Miyazawa-Jernigan matrix it has been shown that the hydrophobic effect generates the dominant driving force for protein folding. By using both lattice and off-lattice models, it is shown that hydrophobic-type potentials are indeed efficient in inducing the chain through nativelike configurations, but they fail to provide sufficient stability so as to keep the chain in the native state. However, through comparative Monte Carlo simulations, it is shown that hydrophobic potentials and steric constraints are two basic ingredients for the folding process. Specifically, it is shown that suitable pairwise steric constraints introduce strong changes on the configurational activity, whose main consequence is a huge increase in the overall stability condition of the native state; detailed analysis of the effects of steric constraints on the heat capacity and configurational activity are provided. The present results support the view that the folding problem of globular proteins can be approached as a process in which the mechanism to reach the native conformation and the requirements for the globule stability are uncoupled.

  14. Constraint Based Modeling Going Multicellular.

    PubMed

    Martins Conde, Patricia do Rosario; Sauter, Thomas; Pfau, Thomas

    2016-01-01

    Constraint based modeling has seen applications in many microorganisms. For example, there are now established methods to determine potential genetic modifications and external interventions to increase the efficiency of microbial strains in chemical production pipelines. In addition, multiple models of multicellular organisms have been created including plants and humans. While initially the focus here was on modeling individual cell types of the multicellular organism, this focus recently started to switch. Models of microbial communities, as well as multi-tissue models of higher organisms have been constructed. These models thereby can include different parts of a plant, like root, stem, or different tissue types in the same organ. Such models can elucidate details of the interplay between symbiotic organisms, as well as the concerted efforts of multiple tissues and can be applied to analyse the effects of drugs or mutations on a more systemic level. In this review we give an overview of the recent development of multi-tissue models using constraint based techniques and the methods employed when investigating these models. We further highlight advances in combining constraint based models with dynamic and regulatory information and give an overview of these types of hybrid or multi-level approaches.

  15. Constraint Based Modeling Going Multicellular.

    PubMed

    Martins Conde, Patricia do Rosario; Sauter, Thomas; Pfau, Thomas

    2016-01-01

    Constraint based modeling has seen applications in many microorganisms. For example, there are now established methods to determine potential genetic modifications and external interventions to increase the efficiency of microbial strains in chemical production pipelines. In addition, multiple models of multicellular organisms have been created including plants and humans. While initially the focus here was on modeling individual cell types of the multicellular organism, this focus recently started to switch. Models of microbial communities, as well as multi-tissue models of higher organisms have been constructed. These models thereby can include different parts of a plant, like root, stem, or different tissue types in the same organ. Such models can elucidate details of the interplay between symbiotic organisms, as well as the concerted efforts of multiple tissues and can be applied to analyse the effects of drugs or mutations on a more systemic level. In this review we give an overview of the recent development of multi-tissue models using constraint based techniques and the methods employed when investigating these models. We further highlight advances in combining constraint based models with dynamic and regulatory information and give an overview of these types of hybrid or multi-level approaches. PMID:26904548

  16. Constraint programming based biomarker optimization.

    PubMed

    Zhou, Manli; Luo, Youxi; Sun, Guoquan; Mai, Guoqin; Zhou, Fengfeng

    2015-01-01

    Efficient and intuitive characterization of biological big data is becoming a major challenge for modern bio-OMIC based scientists. Interactive visualization and exploration of big data is proven to be one of the successful solutions. Most of the existing feature selection algorithms do not allow the interactive inputs from users in the optimizing process of feature selection. This study investigates this question as fixing a few user-input features in the finally selected feature subset and formulates these user-input features as constraints for a programming model. The proposed algorithm, fsCoP (feature selection based on constrained programming), performs well similar to or much better than the existing feature selection algorithms, even with the constraints from both literature and the existing algorithms. An fsCoP biomarker may be intriguing for further wet lab validation, since it satisfies both the classification optimization function and the biomedical knowledge. fsCoP may also be used for the interactive exploration of bio-OMIC big data by interactively adding user-defined constraints for modeling.

  17. A Hybrid Constraint Representation and Reasoning Framework

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wanlin

    2004-01-01

    In this paper, we introduce JNET, a novel constraint representation and reasoning framework that supports procedural constraints and constraint attachments, providing a flexible way of integrating the constraint system with a runtime software environment and improving its applicability. We describe how JNET is applied to a real-world problem - NASA's Earth-science data processing domain, and demonstrate how JNET can be extended, without any knowledge of how it is implemented, to meet the growing demands of real-world applications.

  18. Learning and Parallelization Boost Constraint Search

    ERIC Educational Resources Information Center

    Yun, Xi

    2013-01-01

    Constraint satisfaction problems are a powerful way to abstract and represent academic and real-world problems from both artificial intelligence and operations research. A constraint satisfaction problem is typically addressed by a sequential constraint solver running on a single processor. Rather than construct a new, parallel solver, this work…

  19. Cultural and Social Constraints on Portability.

    ERIC Educational Resources Information Center

    Murray-Lasso, Marco

    1990-01-01

    Describes 12 constraints imposed by culture on educational software portability. Nielsen's seven-level virtual protocol model of human-computer interaction is discussed as a framework for considering the constraints, a hypothetical example of adapting software for Mexico is included, and suggestions for overcoming constraints and making software…

  20. Swimming constraints and arm coordination.

    PubMed

    Seifert, Ludovic; Chollet, Didier; Rouard, Annie

    2007-02-01

    Following Newell's concept of constraint (1986), we sought to identify the constraints (organismic, environmental and task) on front crawl performance, focusing on arm coordination adaptations over increasing race paces. Forty-two swimmers (15 elite men, 15 mid-level men and 12 elite women) performed seven self-paced swim trials (race paces: as if competitively swimming 1500m, 800m, 400m, 200m, 100m, 50m, and maximal velocity, respectively) using the front crawl stroke. The paces were race simulations over 25m to avoid fatigue effects. Swim velocity, stroke rate, stroke length, and various arm stroke phases were calculated from video analysis. Arm coordination was quantified in terms of an index of coordination (IdC) based on the lag time between the propulsive phases of each arm. This measure quantified three possible coordination modes in the front crawl: opposition (continuity between the two arm propulsions), catch-up (a time gap between the two arm propulsions) and superposition (an overlap of the two arm propulsions). With increasing race paces, swim velocity, stroke rate, and stroke length, the three groups showed a similar transition in arm coordination mode at the critical 200m pace, which separated the long- and mid-pace pattern from the sprint pace pattern. The 200m pace was also characterized by a stroke rate close to 40strokemin(-1). The finding that all three groups showed a similar adaptation of arm coordination suggested that race paces, swim velocity, stroke rate and stroke length reflect task constraints that can be manipulated as control parameters, with race paces (R(2)=.28) and stroke rate (R(2)=.36) being the best predictors of IdC changes. On the other hand, only the elite men reached a velocity greater than 1.8ms(-1) and a stroke rate of 50strokemin(-1). They did so using superposition of the propulsion phases of the two arms, which occurred because of the great forward resistance created when these swimmers achieved high velocity, i.e., an

  1. Optical mechanical analogy and nonlinear nonholonomic constraints

    NASA Astrophysics Data System (ADS)

    Bloch, Anthony M.; Rojo, Alberto G.

    2016-02-01

    In this paper we establish a connection between particle trajectories subject to a nonholonomic constraint and light ray trajectories in a variable index of refraction. In particular, we extend the analysis of systems with linear nonholonomic constraints to the dynamics of particles in a potential subject to nonlinear velocity constraints. We contrast the long time behavior of particles subject to a constant kinetic energy constraint (a thermostat) to particles with the constraint of parallel velocities. We show that, while in the former case the velocities of each particle equalize in the limit, in the latter case all the kinetic energies of each particle remain the same.

  2. Trajectory constraints in qualitative simulation

    SciTech Connect

    Brajnik, G.; Clancy, D.J.

    1996-12-31

    We present a method for specifying temporal constraints on trajectories of dynamical systems and enforcing them during qualitative simulation. This capability can be used to focus a simulation, simulate non-autonomous and piecewise-continuous systems, reason about boundary condition problems and incorporate observations into the simulation. The method has been implemented in TeQSIM, a qualitative simulator that combines the expressive power of qualitative differential equations with temporal logic. It interleaves temporal logic model checking with the simulation to constrain and refine the resulting predicted behaviors and to inject discontinuous changes into the simulation.

  3. QPO Constraints on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman

    2005-01-01

    The kilohertz frequencies of QPOs from accreting neutron star systems imply that they are generated in regions of strong gravity, close to the star. This suggests that observations of the QPOs can be used to constrain the properties of neutron stars themselves, and in particular to inform us about the properties of cold matter beyond nuclear densities. Here we discuss some relatively model-insensitive constraints that emerge from the kilohertz QPOs, as well as recent developments that may hint at phenomena related to unstable circular orbits outside neutron stars.

  4. Causality constraints in conformal field theory

    NASA Astrophysics Data System (ADS)

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan

    2016-05-01

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ ϕ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.

  5. Symmetric scalar constraint for loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Lewandowski, Jerzy; Sahlmann, Hanno

    2015-02-01

    In the framework of loop quantum gravity, we define a new Hilbert space of states which are solutions of a large number of components of the diffeomorphism constraint. On this Hilbert space, using the methods of Thiemann, we obtain a family of gravitational scalar constraints. They preserve the Hilbert space for every choice of lapse function. Thus adjointness and commutator properties of the constraint can be investigated in a straightforward manner. We show how the space of solutions of the symmetrized constraint can be defined by spectral decomposition, and the Hilbert space of physical states by subsequently fully implementing the diffeomorphism constraint. The relationship of the solutions to those resulting from a proposal for a symmetric constraint operator by Thiemann remains to be elucidated.

  6. Constraint-based interactive assembly planning

    SciTech Connect

    Jones, R.E.; Wilson, R.H.; Calton, T.L.

    1997-03-01

    The constraints on assembly plans vary depending on the product, assembly facility, assembly volume, and many other factors. This paper describes the principles and implementation of a framework that supports a wide variety of user-specified constraints for interactive assembly planning. Constraints from many sources can be expressed on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. All constraints are implemented as filters that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner`s algorithms. Replanning is fast enough to enable a natural plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to several complex assemblies. 12 refs., 2 figs., 3 tabs.

  7. Constraint Embedding for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan

    2009-01-01

    This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.

  8. Thermodynamic constraints on fluctuation phenomena

    NASA Astrophysics Data System (ADS)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  9. Physical constraints for pathogen movement.

    PubMed

    Schwarz, Ulrich S

    2015-10-01

    In this pedagogical review, we discuss the physical constraints that pathogens experience when they move in their host environment. Due to their small size, pathogens are living in a low Reynolds number world dominated by viscosity. For swimming pathogens, the so-called scallop theorem determines which kinds of shape changes can lead to productive motility. For crawling or gliding cells, the main resistance to movement comes from protein friction at the cell-environment interface. Viruses and pathogenic bacteria can also exploit intracellular host processes such as actin polymerization and motor-based transport, if they present the appropriate factors on their surfaces. Similar to cancer cells that also tend to cross various barriers, pathogens often combine several of these strategies in order to increase their motility and therefore their chances to replicate and spread.

  10. Thermodynamic constraints on fluctuation phenomena.

    PubMed

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  11. Atom mapping with constraint programming.

    PubMed

    Mann, Martin; Nahar, Feras; Schnorr, Norah; Backofen, Rolf; Stadler, Peter F; Flamm, Christoph

    2014-01-01

    Chemical reactions are rearrangements of chemical bonds. Each atom in an educt molecule thus appears again in a specific position of one of the reaction products. This bijection between educt and product atoms is not reported by chemical reaction databases, however, so that the "Atom Mapping Problem" of finding this bijection is left as an important computational task for many practical applications in computational chemistry and systems biology. Elementary chemical reactions feature a cyclic imaginary transition state (ITS) that imposes additional restrictions on the bijection between educt and product atoms that are not taken into account by previous approaches. We demonstrate that Constraint Programming is well-suited to solving the Atom Mapping Problem in this setting. The performance of our approach is evaluated for a manually curated subset of chemical reactions from the KEGG database featuring various ITS cycle layouts and reaction mechanisms.

  12. Geomagnetic main field modeling using magnetohydrodynamic constraints

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1985-01-01

    The influence of physical constraints are investigated which may be approximately satisfied by the Earth's liquid core on models of the geomagnetic main field and its secular variation. A previous report describes the methodology used to incorporate nonlinear equations of constraint into the main field model. The application of that methodology to the GSFC 12/83 field model to test the frozen-flux hypothesis and the usefulness of incorporating magnetohydrodynamic constraints for obtaining improved geomagnetic field models is described.

  13. Optimality criteria design and stress constraint processing

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1982-01-01

    Methods for pre-screening stress constraints into either primary or side-constraint categories are reviewed; a projection method, which is developed from prior cycle stress resultant history, is introduced as an additional screening parameter. Stress resultant projections are also employed to modify the traditional stress-ratio, side-constraint boundary. A special application of structural modification reanalysis is applied to the critical stress constraints to provide feasible designs that are preferable to those obtained by conventional scaling. Sample problem executions show relatively short run times and fewer design cycle iterations to achieve low structural weights; those attained are comparable to the minimum values developed elsewhere.

  14. Phonological Constraint Induction in a Connectionist Network: Learning OCP-Place Constraints from Data

    ERIC Educational Resources Information Center

    Alderete, John; Tupper, Paul; Frisch, Stefan A.

    2013-01-01

    A significant problem in computational language learning is that of inferring the content of well-formedness constraints from input data. In this article, we approach the constraint induction problem as the gradual adjustment of subsymbolic constraints in a connectionist network. In particular, we develop a multi-layer feed-forward network that…

  15. Gaining Algorithmic Insight through Simplifying Constraints.

    ERIC Educational Resources Information Center

    Ginat, David

    2002-01-01

    Discusses algorithmic problem solving in computer science education, particularly algorithmic insight, and focuses on the relevance and effectiveness of the heuristic simplifying constraints which involves simplification of a given problem to a problem in which constraints are imposed on the input data. Presents three examples involving…

  16. Domain General Constraints on Statistical Learning

    ERIC Educational Resources Information Center

    Thiessen, Erik D.

    2011-01-01

    All theories of language development suggest that learning is constrained. However, theories differ on whether these constraints arise from language-specific processes or have domain-general origins such as the characteristics of human perception and information processing. The current experiments explored constraints on statistical learning of…

  17. Constraints on Noun Incorporation in Korean.

    ERIC Educational Resources Information Center

    Khym, Hangyoo

    1997-01-01

    A study of the noun incorporation phenomenon in Korean suggests that noun incorporation occurs at D-structure and obeys the Head Movement Constraint syntactically, and the Theme-Only Constraint semantically. First, the structure of "sunrise"-type words is identified, showing that before derivation through nominalization of the affix "-i,"…

  18. Trimodal interpretation of constraints for planning

    NASA Technical Reports Server (NTRS)

    Krieger, David; Brown, Richard

    1987-01-01

    Constraints are used in the CAMPS knowledge based planning system to represent those propositions that must be true for a plan to be acceptable. CAMPS introduces the make-mode for interpreting a constraint. Given an unsatisfied constraint, make evaluation mode suggests planning actions which, if taken, would result in a modified plan in which the constraint in question may be satisfied. These suggested planning actions, termed delta-tuples, are the raw material of intelligent plan repair. They are used both in debugging an almost-right plan and in replanning due to changing situations. Given a defective plan in which some set of constraints are violated, a problem solving strategy selects one or more constraints as a focus of attention. These selected constraints are evaluated in the make-mode to produce delta-tuples. The problem solving strategy then reviews the delta-tuples according to its application and problem-specific criteria to find the most acceptable change in terms of success likelihood and plan disruption. Finally, the problem solving strategy makes the suggested alteration to the plan and then rechecks constraints to find any unexpected consequences.

  19. The "No Crossing Constraint" in Autosegmental Phonology.

    ERIC Educational Resources Information Center

    Coleman, John; Local, John

    A discussion of autosegmental phonology (AP), a theory of phonological representation that uses graphs rather than strings as the central data structure, considers its principal constraint, the "No Crossing Constraint" (NCC). The NCC is the statement that in a well-formed autosegmental diagram, lines of association may not cross. After an…

  20. Hanford's Cleanup Constraints and Challenges

    SciTech Connect

    Reichmuth, Barbara A.; Lesperance, Ann M.; Adams, J. F.; Schlender, Michael H.

    2002-08-02

    The framework for the environmental cleanup decisions made at the Hanford is complex and multi-faceted. There are numerous interfaces and decision pathways. In recent years, the complexities and inter-relatedness of the various interfaces have fostered an environment of frustration and distrust amongst the decision makers. The major stakeholders for the Hanford Cleanup are The U.S. Department of Energy (DOE), the Washington State Department of Ecology (Ecology), and The Environmental Protection Agency (EPA) Region 10. DOE has two field offices at Hanford, the Richland Operations Office (RL) and the Office of River Protection (ORP). Each party has a legitimate jurisdiction over the cleanup and none of the parties can make key decision independent of the other parties. In 1989, DOE entered into a compliance agreement with the regulators (the Hanford Federal Facility Agreement and Consent Order), which established a regulatory framework and compliance milestones for cleanup of the Hanford Site. The purpose of this paper will be to articulate: 1) The process used to collect and analyze the information on cleanup constraints, 2) The technical analysis provided to Hanford decision makers, 3) The principles used to enhance decision making among the decision makers and stakeholders, and 4)How this process is leading to outcomes and eliminating barriers to Hanford cleanup.

  1. Optimal Stopping with Information Constraint

    SciTech Connect

    Lempa, Jukka

    2012-10-15

    We study the optimal stopping problem proposed by Dupuis and Wang (Adv. Appl. Probab. 34:141-157, 2002). In this maximization problem of the expected present value of the exercise payoff, the underlying dynamics follow a linear diffusion. The decision maker is not allowed to stop at any time she chooses but rather on the jump times of an independent Poisson process. Dupuis and Wang (Adv. Appl. Probab. 34:141-157, 2002), solve this problem in the case where the underlying is a geometric Brownian motion and the payoff function is of American call option type. In the current study, we propose a mild set of conditions (covering the setup of Dupuis and Wang in Adv. Appl. Probab. 34:141-157, 2002) on both the underlying and the payoff and build and use a Markovian apparatus based on the Bellman principle of optimality to solve the problem under these conditions. We also discuss the interpretation of this model as optimal timing of an irreversible investment decision under an exogenous information constraint.

  2. Volcanological constraints of Archaean tectonics

    NASA Technical Reports Server (NTRS)

    Thurston, P. C.; Ayres, L. D.

    1986-01-01

    Volcanological and trace element geochemical data can be integrated to place some constraints upon the size, character and evolutionary history of Archean volcanic plumbing, and hence indirectly, Archean tectonics. The earliest volcanism in any greenhouse belt is almost universally tholeitic basalt. Archean mafic magma chambers were usually the site of low pressure fractionation of olivine, plagioclase and later Cpx + or - an oxide phase during evolution of tholeitic liquids. Several models suggest basalt becoming more contaminated by sial with time. Data in the Uchi Subprovince shows early felsic volcanics to have fractionated REE patterns followed by flat REE pattern rhyolites. This is interpreted as initial felsic liquids produced by melting of a garnetiferous mafic source followed by large scale melting of LIL-rich sial. Rare andesites in the Uchi Subprovince are produced by basalt fractionation, direct mantle melts and mixing of basaltic and tonalitic liquids. Composite dikes in the Abitibi Subprovince have a basaltic edge with a chill margin, a rhyolitic interior with no basalt-rhyolite chill margin and partially melted sialic inclusions. Ignimbrites in the Uchi and Abitibi Subprovinces have mafic pumice toward the top. Integration of these data suggest initial mantle-derived basaltic liquids pond in a sialic crust, fractionate and melt sial. The inirial melts low in heavy REE are melts of mafic material, subsequently melting of adjacent sial produces a chamber with a felsic upper part underlain by mafic magma.

  3. Solar system constraints on disformal gravity theories

    NASA Astrophysics Data System (ADS)

    Ip, Hiu Yan; Sakstein, Jeremy; Schmidt, Fabian

    2015-10-01

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ gtrsim 100 eV. These constraints render all disformal effects irrelevant for cosmology.

  4. Solar system constraints on disformal gravity theories

    SciTech Connect

    Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy E-mail: jeremy.sakstein@port.ac.uk

    2015-10-01

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology.

  5. Natural Constraints to Species Diversification.

    PubMed

    Lewitus, Eric; Morlon, Hélène

    2016-08-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  6. Hydrogeologic Constraints on Yucatan's Development.

    PubMed

    Doehring, D O; Butler, J H

    1974-11-15

    The Republic of Mexico has an ambitious and effective national water program. The Secretaria de Recursos Hidraulicos (SRH), whose director has cabinet rank in the federal government, is one of the most professionally distinguished government agencies of its kind in the Americas. Resources for the Future, Inc., has been assisting the World Bank with a water planning study which the Bank is undertaking jointly with the Mexican government. The study is intended to provide guidelines for the development of government policies and projects designed to bring about the most efficient use of Mexico's water resources. However, to date, their study has not been directed toward the growing problems of the northern Yucatáan Peninsula which are discussed here. LeGrand (13) suggested that man has inherited a harsh environment in carbonate terranes. In the case of the northern Yucatán Peninsula, the physical environment creates a set of hydrogeologic constraints to future economic and social development. Planning for intermediate and long-range land use on the peninsula must be related directly to the limited and fragile groundwater source. Continued contamination will make future aquifer management a difficult challenge for federal, state, and territorial agencies. We conclude that any strategy for long-range land use in the study area should include establishment of a regional aquifermonitoring network for long-term measurements of key hydrogeologic parameters, including precipitation, evapotranspiration, water table elevations, and water quality. Information from this network would flow into a central facility for storage, interpretation, and analysis. At present the SRH is collecting some of these data. Expansion of the existing program to provide sound information for regional planning will greatly benefit present as well as future generations. If such a program is implemented, it will represent a model for regional planning in other tropical and subtropical karstic

  7. Natural Constraints to Species Diversification

    PubMed Central

    Lewitus, Eric; Morlon, Hélène

    2016-01-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  8. Natural Constraints to Species Diversification.

    PubMed

    Lewitus, Eric; Morlon, Hélène

    2016-08-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  9. Lagrangian systems with higher order constraints

    NASA Astrophysics Data System (ADS)

    Cendra, H.; Grillo, S. D.

    2007-05-01

    A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems (GNHSs), whose constraints only involve the velocities of the system (i.e., first order derivatives in the position of the system). One of the features of this kind of systems is that D'Alembert's principle (or its nonlinear higher order generalization, the Chetaev's principle) is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard's model [Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L'instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954)] of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles.

  10. QCD unitarity constraints on Reggeon Field Theory

    NASA Astrophysics Data System (ADS)

    Kovner, Alex; Levin, Eugene; Lublinsky, Michael

    2016-08-01

    We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.

  11. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  12. Black hole thermodynamics from Euclidean horizon constraints.

    PubMed

    Carlip, S

    2007-07-13

    To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints. PMID:17678209

  13. CONSTRAINT EFFECT IN FRACTURE WHAT IS IT

    SciTech Connect

    Lam, P; Prof. Yuh J. Chao, P

    2008-10-29

    The meaning of the phrase 'constraint effect in fracture' has changed in the past two decades from 'contained plasticity' to a broader description of 'dependence of fracture toughness value on geometry of test specimen or structure'. This paper will first elucidate the fundamental mechanics reasons for the apparent 'constraint effects in fracture', followed by outlining a straightforward approach to overcoming this problem in both brittle (elastic) and ductile (elastic-plastic) fracture. It is concluded by discussing the major difference in constraint effect on fracture event in elastic and elastic-plastic materials.

  14. Black hole thermodynamics from Euclidean horizon constraints.

    PubMed

    Carlip, S

    2007-07-13

    To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints.

  15. Planck 2015 constraints on neutrino physics

    NASA Astrophysics Data System (ADS)

    Lattanzi, Massimiliano

    2016-05-01

    Anisotropies of the cosmic microwave background radiation represent a powerful probe of neutrino physics, complementary to laboratory experiments. Here I review constraints on neutrino properties from the recent 2015 data from the Planck satellite.

  16. Constraint-based Attribute and Interval Planning

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari; Frank, Jeremy

    2013-01-01

    In this paper we describe Constraint-based Attribute and Interval Planning (CAIP), a paradigm for representing and reasoning about plans. The paradigm enables the description of planning domains with time, resources, concurrent activities, mutual exclusions among sets of activities, disjunctive preconditions and conditional effects. We provide a theoretical foundation for the paradigm, based on temporal intervals and attributes. We then show how the plans are naturally expressed by networks of constraints, and show that the process of planning maps directly to dynamic constraint reasoning. In addition, we de ne compatibilities, a compact mechanism for describing planning domains. We describe how this framework can incorporate the use of constraint reasoning technology to improve planning. Finally, we describe EUROPA, an implementation of the CAIP framework.

  17. New cosmological constraints on primordial black holes

    SciTech Connect

    Carr, B. J.; Kohri, Kazunori; Sendouda, Yuuiti; Yokoyama, Jun'ichi

    2010-05-15

    We update the constraints on the fraction of the Universe going into primordial black holes in the mass range 10{sup 9}-10{sup 17} g associated with the effects of their evaporations on big bang nucleosynthesis and the extragalactic photon background. We include for the first time all the effects of quark and gluon emission by black holes on these constraints and account for the latest observational developments. We then discuss the other constraints in this mass range and show that these are weaker than the nucleosynthesis and photon background limits, apart from a small range 10{sup 13}-10{sup 14} g, where the damping of cosmic microwave background anisotropies dominates. Finally we review the gravitational and astrophysical effects of nonevaporating primordial black holes, updating constraints over the broader mass range 1-10{sup 50} g.

  18. Biological constraints do not entail cognitive closure.

    PubMed

    Vlerick, Michael

    2014-12-01

    From the premise that our biology imposes cognitive constraints on our epistemic activities, a series of prominent authors--most notably Fodor, Chomsky and McGinn--have argued that we are cognitively closed to certain aspects and properties of the world. Cognitive constraints, they argue, entail cognitive closure. I argue that this is not the case. More precisely, I detect two unwarranted conflations at the core of arguments deriving closure from constraints. The first is a conflation of what I will refer to as 'representation' and 'object of representation'. The second confuses the cognitive scope of the assisted mind for that of the unassisted mind. Cognitive closure, I conclude, cannot be established from pointing out the (uncontroversial) existence of cognitive constraints.

  19. Astronomical Insights into Dark Matter Particle Constraints

    NASA Astrophysics Data System (ADS)

    Dawson, William; Simon, Joshua D.; Read, Justin; Bullock, James; Keeton, Charles R.; Treu, Tommaso

    2016-01-01

    Intriguing constraints on key dark matter properties have been made through diverse astronomical measurements and experiments, not limited to the clustering of Lyman-alpha forest observations, the structure and energetics of the Bullet Cluster, the kinematics and dynamics of dwarf galaxies, statistics of strong gravitational lensing systems, and so on. We present a synthesis of the diversity of such observations, and discuss the relationship between the types of dark matter particle constraints they achieve.

  20. Causality constraints in conformal field theory

    DOE PAGESBeta

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well knownmore » sign constraint on the (Φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. As a result, our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators« less

  1. Constraint-Muse: A Soft-Constraint Based System for Music Therapy

    NASA Astrophysics Data System (ADS)

    Hölzl, Matthias; Denker, Grit; Meier, Max; Wirsing, Martin

    Monoidal soft constraints are a versatile formalism for specifying and solving multi-criteria optimization problems with dynamically changing user preferences. We have developed a prototype tool for interactive music creation, called Constraint Muse, that uses monoidal soft constraints to ensure that a dynamically generated melody harmonizes with input from other sources. Constraint Muse provides an easy to use interface based on Nintendo Wii controllers and is intended to be used in music therapy for people with Parkinson’s disease and for children with high-functioning autism or Asperger’s syndrome.

  2. Imposing Constraints from the Source Tree on ITG Constraints for SMT

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hirofumi; Okuma, Hideo; Sumita, Eiichiro

    In the current statistical machine translation (SMT), erroneous word reordering is one of the most serious problems. To resolve this problem, many word-reordering constraint techniques have been proposed. Inversion transduction grammar (ITG) is one of these constraints. In ITG constraints, target-side word order is obtained by rotating nodes of the source-side binary tree. In these node rotations, the source binary tree instance is not considered. Therefore, stronger constraints for word reordering can be obtained by imposing further constraints derived from the source tree on the ITG constraints. For example, for the source word sequence { a b c d }, ITG constraints allow a total of twenty-two target word orderings. However, when the source binary tree instance ((a b) (c d)) is given, our proposed “imposing source tree on ITG” (IST-ITG) constraints allow only eight word orderings. The reduction in the number of word-order permutations by our proposed stronger constraints efficiently suppresses erroneous word orderings. In our experiments with IST-ITG using the NIST MT08 English-to-Chinese translation track's data, the proposed method resulted in a 1.8-points improvement in character BLEU-4 (35.2 to 37.0) and a 6.2% lower CER (74.1 to 67.9%) compared with our baseline condition.

  3. Forces Associated with Nonlinear Nonholonomic Constraint Equations

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Hodges, Dewey H.

    2010-01-01

    A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by nonholonomic equations that are inherently nonlinear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known nonholonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as nonholonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor to form the former, larger set first and subsequently perform matrix multiplications.

  4. Diffusion Processes Satisfying a Conservation Law Constraint

    DOE PAGESBeta

    Bakosi, J.; Ristorcelli, J. R.

    2014-03-04

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less

  5. Diffusion Processes Satisfying a Conservation Law Constraint

    SciTech Connect

    Bakosi, J.; Ristorcelli, J. R.

    2014-03-04

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequences of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.

  6. Reliable biological communication with realistic constraints.

    PubMed

    de Polavieja, Gonzalo G

    2004-12-01

    Communication in biological systems must deal with noise and metabolic or temporal constraints. We include these constraints into information theory to obtain the distributions of signal usage corresponding to a maximal rate of information transfer given any noise structure and any constraints. Generalized versions of the Boltzmann, Gaussian, or Poisson distributions are obtained for linear, quadratic and temporal constraints, respectively. These distributions are shown to imply that biological transformations must dedicate a larger output range to the more probable inputs and less to the outputs with higher noise and higher participation in the constraint. To show the general theory of reliable communication at work, we apply these results to biochemical and neuronal signaling. Noncooperative enzyme kinetics is shown to be suited for transfer of a high signal quality when the input distribution has a maximum at low concentrations while cooperative kinetics for near-Gaussian input statistics. Neuronal codes based on spike rates, spike times or bursts have to balance signal quality and cost-efficiency and at the network level imply sparseness and uncorrelation within the limits of noise, cost, and processing operations. PMID:15697405

  7. Two new constraints for the cumulant matrix

    SciTech Connect

    Ramos-Cordoba, Eloy; Salvador, Pedro; Matito, Eduard; Piris, Mario

    2014-12-21

    We suggest new strict constraints that the two-particle cumulant matrix should fulfill. The constraints are obtained from the decomposition of 〈S-^{sup 2}〉, previously developed in our laboratory, and the vanishing number of electrons shared by two non-interacting fragments. The conditions impose stringent constraints into the cumulant structure without any need to perform an orbital optimization procedure thus carrying very small or no computational effort. These constraints are tested on the series of Piris natural orbital functionals (PNOF), which are among the most accurate ones available in the literature. Interestingly, even though all PNOF cumulants ensure correct overall 〈S{sup ^2}〉 values, none of them is consistent with the local spin structure of systems that dissociate more than one pair of electrons. A careful analysis of the local spin components reveals the most important missing contributions in the cumulant expression thus suggesting a means to improve PNOF5. The constraints provide an inexpensive tool for the construction and testing of cumulant structures that complement previously known conditions such as the N-representability or the square of the total spin angular momentum, 〈S{sup ^2}〉.

  8. Pair Production Constraints on Superluminal Neutrinos Revisited

    SciTech Connect

    Brodsky, Stanley J.; Gardner, Susan; /Kentucky U.

    2012-02-16

    We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p{sup 2} can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainly makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.

  9. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints.

    PubMed

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-07-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint.

  10. The Role of Motivation, Perceived Constraints, and Constraint Negotiation Strategies in Students' Internship Selection Experience

    ERIC Educational Resources Information Center

    Batty, Kimberly A.

    2011-01-01

    The purpose of this study was to document the factors (i.e., motivation and perceived constraints) and processes (i.e., constraint negotiation) that influence students' selection of and satisfaction with their internship choice. The study was conducted using a quantitative approach, which included a focus group, a pilot study, and a…

  11. Straightness error evaluation of additional constraints

    NASA Astrophysics Data System (ADS)

    Pei, Ling; Wang, Shenghuai; Liu, Yong

    2011-05-01

    A new generation of Dimensional and Geometrical Product Specifications (GPS) and Verification standard system is based on both the Mathematical structure and the Metrology. To determine the eligibility of the product should be adapt to modern digital measuring instruments. But in mathematizating measurement when the geometric tolerance specifications has additional constraints requirement, such as straightness with an additional constraint, required to qualify the additional form requirements of the feature within the tolerance zone. Knowing how to close the geometrical specification to the functional specification will result in the correctness of measurement results. Adopting the methodology to evaluate by analyzing various forms including the ideal features and the extracted features and their combinations in an additional form constraint of the straightness in tolerance zone had been found correctly acceptance decision for products. The results show that different combinations of the various forms had affected acceptance on the product qualification and the appropriate forms matching can meet the additional form requirements for product features.

  12. Straightness error evaluation of additional constraints

    NASA Astrophysics Data System (ADS)

    Pei, Ling; Wang, Shenghuai; Liu, Yong

    2010-12-01

    A new generation of Dimensional and Geometrical Product Specifications (GPS) and Verification standard system is based on both the Mathematical structure and the Metrology. To determine the eligibility of the product should be adapt to modern digital measuring instruments. But in mathematizating measurement when the geometric tolerance specifications has additional constraints requirement, such as straightness with an additional constraint, required to qualify the additional form requirements of the feature within the tolerance zone. Knowing how to close the geometrical specification to the functional specification will result in the correctness of measurement results. Adopting the methodology to evaluate by analyzing various forms including the ideal features and the extracted features and their combinations in an additional form constraint of the straightness in tolerance zone had been found correctly acceptance decision for products. The results show that different combinations of the various forms had affected acceptance on the product qualification and the appropriate forms matching can meet the additional form requirements for product features.

  13. General constraints on the Viking biology investigation

    NASA Technical Reports Server (NTRS)

    Klein, H. P.

    1976-01-01

    The paper discusses some of the constraints pertaining to the Viking mission for detection of life on Mars, within which the Viking experiments were conceived, designed, and developed. The most important limitation to the entire study is the complete information about the nature of Mars, such as the chemical composition of the surface material of Mars and the exact identification of the constituents of that planet. Ways in which celestial mechanics places severe limitations on the Viking biology investigation are discussed. Major engineering constraints are examined relative to the accomodation of biology instrument inside the Viking lander and to the design of the instrument itself. Other constraints discussed concern the operational aspects of the mission and the testing program.

  14. Cognitive dissonance reduction as constraint satisfaction.

    PubMed

    Shultz, T R; Lepper, M R

    1996-04-01

    A constraint satisfaction neural network model (the consonance model) simulated data from the two major cognitive dissonance paradigms of insufficient justification and free choice. In several cases, the model fit the human data better than did cognitive dissonance theory. Superior fits were due to the inclusion of constraints that were not part of dissonance theory and to the increased precision inherent to this computational approach. Predictions generated by the model for a free choice between undesirable alternatives were confirmed in a new psychological experiment. The success of the consonance model underscores important, unforeseen similarities between what had been formerly regarded as the rather exotic process of dissonance reduction and a variety of other, more mundane psychological processes. Many of these processes can be understood as the progressive application of constraints supplied by beliefs and attitudes.

  15. Biological organisation as closure of constraints.

    PubMed

    Montévil, Maël; Mossio, Matteo

    2015-05-01

    We propose a conceptual and formal characterisation of biological organisation as a closure of constraints. We first establish a distinction between two causal regimes at work in biological systems: processes, which refer to the whole set of changes occurring in non-equilibrium open thermodynamic conditions; and constraints, those entities which, while acting upon the processes, exhibit some form of conservation (symmetry) at the relevant time scales. We then argue that, in biological systems, constraints realise closure, i.e. mutual dependence such that they both depend on and contribute to maintaining each other. With this characterisation in hand, we discuss how organisational closure can provide an operational tool for marking the boundaries between interacting biological systems. We conclude by focusing on the original conception of the relationship between stability and variation which emerges from this framework.

  16. Optimization of EB plant by constraint control

    SciTech Connect

    Hummel, H.K.; de Wit, G.B.C.; Maarleveld, A. )

    1991-03-01

    Optimum plant operation can often be achieved by means of constraint control instead of model- based on-line optimization. This is because optimum operation is seldom at the top of the hill but usually at the intersection of constraints. This article describes the development of a constraint control system for a plant producing ethylbenzene (EB) by the Mobil/Badger Ethylbenzene Process. Plant optimization can be defined as the maximization of a profit function describing the economics of the plant. This function contains terms with product values, feedstock prices and operational costs. Maximization of the profit function can be obtained by varying relevant degrees of freedom in the plant, such as a column operating pressure or a reactor temperature. These degrees of freedom can be varied within the available operating margins of the plant.

  17. Restricting query relaxation through user constraints

    SciTech Connect

    Gaasterland, T.

    1993-07-01

    This paper describes techniques to restrict and to heuristically control relaxation of deductive database queries. The process of query relaxation provides a user with a means to automatically identify new queries that are related to the user`s original query. However, for large databases, many relaxations may be possible. The methods to control and restrict the relaxation process introduced in this paper focus the relaxation process and make it more efficient. User restrictions over the data base domain may be expressed as user constraints. This paper describes how user constraints can restrict relaxed queries. Also, a set of heuristics based on cooperative answering techniques are presented for controlling the relaxation process. Finally, the interaction of the methods for relaxing queries, processing user constraints, and applying the heuristic rules is described.

  18. Inference-based constraint satisfaction supports explanation

    SciTech Connect

    Sqalli, M.H.; Freuder, E.C.

    1996-12-31

    Constraint satisfaction problems are typically solved using search, augmented by general purpose consistency inference methods. This paper proposes a paradigm shift in which inference is used as the primary problem solving method, and attention is focused on special purpose, domain specific inference methods. While we expect this approach to have computational advantages, we emphasize here the advantages of a solution method that is more congenial to human thought processes. Specifically we use inference-based constraint satisfaction to support explanations of the problem solving behavior that are considerably more meaningful than a trace of a search process would be. Logic puzzles are used as a case study. Inference-based constraint satisfaction proves surprisingly powerful and easily extensible in this domain. Problems drawn from commercial logic puzzle booklets are used for evaluation. Explanations are produced that compare well with the explanations provided by these booklets.

  19. Propagating Resource Constraints Using Mutual Exclusion Reasoning

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Sanchez, Romeo; Do, Minh B.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    One of the most recent techniques for propagating resource constraints in Constraint Based scheduling is Energy Constraint. This technique focuses in precedence based scheduling, where precedence relations are taken into account rather than the absolute position of activities. Although, this particular technique proved to be efficient on discrete unary resources, it provides only loose bounds for jobs using discrete multi-capacity resources. In this paper we show how mutual exclusion reasoning can be used to propagate time bounds for activities using discrete resources. We show that our technique based on critical path analysis and mutex reasoning is just as effective on unary resources, and also shows that it is more effective on multi-capacity resources, through both examples and empirical study.

  20. Astrophysical Constraints of Dark Matter Properties

    NASA Astrophysics Data System (ADS)

    Moustakas, Leonidas A.; Abel, Tom; Brooks, Alyson; Buckley, Matthew; Bullock, James; Collins, Michelle; Cyr-Racine, Francis-Yan; Dawson, William; Drlica-Wagner, Alex; Gaskins, Jennifer; Kaplinghat, Manoj; Keeton, Charles R.; Kim, Stacy; Peter, Annika; Read, Justin; Simon, Joshua D.; Somerville, Rachel S.; Tollerud, Erik Jon; Treu, Tommaso; Wechsler, Risa H.

    2016-01-01

    The nature of the dark matter that fills the universe remains a profound puzzle in physics and astrophysics. Modern astronomical observations have the potential to produce constraints or measurements on properties of dark matter that may have real power for insights into its particle nature. The key lies with understanding what those constraints may be in a way that is interpretable for both the astronomical and particle physics communities, and establishing a community consensus of how diverse astronomical paths can use a common language. The AAS Special Session on the "Astrophysical constraints of dark matter properties" focuses on framing these questions with concrete proposals for astronomical dark matter metrics and potentially figures of merit, and through a series of presentations that serve as points of departure for discussion, ultimately to reach a community consensus that will be useful for current and future pursuits on this topic.

  1. The transmission interface constraint problem. Revision

    SciTech Connect

    Baldick, R.; Kahn, E.

    1994-10-01

    Electric power transmission systems exhibit a number of complex constraints on their operation and usage. When a network is subject to a constraint that limits the amount of power that can be moved from one region to another, there is said to be an interface limit. The power systems literature gives no general treatment of the engineering-economics of this ubiquitous phenomenon. Particular aspects of interface limits are typically discussed in sophisticated technical detail, but the general engineering-economic trade-offs involved in relieving interface constraints have not been systematically addressed. We approach this problem in the spirit of a heuristic model. Such models are quite valuable under current industry conditions because they delineate technical opportunities and choices in situations where there may be conflicting views among competing parties and regulatory authorities. We organize and enumerate the choices, clarify the practical conditions that dictate the optimum in particular cases, and help to motivate the final choices made by planners.

  2. Constraint algebra for interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Fubini, S.; Roncadelli, M.

    1988-04-01

    We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.

  3. On Reformulating Planning as Dynamic Constraint Satisfaction

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari K.; Morris, Paul; Koga, Dennis (Technical Monitor)

    2000-01-01

    In recent years, researchers have reformulated STRIPS planning problems as SAT problems or CSPs. In this paper, we discuss the Constraint-Based Interval Planning (CBIP) paradigm, which can represent planning problems incorporating interval time and resources. We describe how to reformulate mutual exclusion constraints for a CBIP-based system, the Extendible Uniform Remote Operations Planner Architecture (EUROPA). We show that reformulations involving dynamic variable domains restrict the algorithms which can be used to solve the resulting DCSP. We present an alternative formulation which does not employ dynamic domains, and describe the relative merits of the different reformulations.

  4. Covariant constraints in ghost free massive gravity

    SciTech Connect

    Deffayet, C.; Mourad, J.; Zahariade, G. E-mail: mourad@apc.univ-paris7.fr

    2013-01-01

    We show that the reformulation of the de Rham-Gabadadze-Tolley massive gravity theory using vielbeins leads to a very simple and covariant way to count constraints, and hence degrees of freedom. Our method singles out a subset of theories, in the de Rham-Gabadadze-Tolley family, where an extra constraint, needed to eliminate the Boulware Deser ghost, is easily seen to appear. As a side result, we also introduce a new method, different from the Stuckelberg trick, to extract kinetic terms for the polarizations propagating in addition to those of the massless graviton.

  5. Updated galactic radio constraints on Dark Matter

    NASA Astrophysics Data System (ADS)

    Cirelli, Marco; Taoso, Marco

    2016-07-01

    We perform a detailed analysis of the synchrotron signals produced by dark matter annihilations and decays. We consider different set-ups for the propagation of electrons and positrons, the galactic magnetic field and dark matter properties. We then confront these signals with radio and microwave maps, including Planck measurements, from a frequency of 22 MHz up to 70 GHz. We derive two sets of constraints: conservative and progressive, the latter based on a modeling of the astrophysical emission. Radio and microwave constraints are complementary to those obtained with other indirect detection methods, especially for dark matter annihilating into leptonic channels.

  6. On the evolutionary constraint surface of hydra

    NASA Technical Reports Server (NTRS)

    Slobodkin, L. B.; Dunn, K.

    1983-01-01

    Food consumption, body size, and budding rate were measured simultaneously in isolated individual hydra of six strains. For each individual hydra the three measurements define a point in the three dimensional space with axes: food consumption, budding rate, and body size. These points lie on a single surface, regardless of species. Floating rate and incidence of sexuality map onto this surface. It is suggested that this surface is an example of a general class of evolutionary constraint surfaces derived from the conjunction of evolutinary theory and the theory of ecological resource budgets. These constraint surfaces correspond to microevolutionary domains.

  7. Quantum bit commitment under Gaussian constraints

    NASA Astrophysics Data System (ADS)

    Mandilara, Aikaterini; Cerf, Nicolas J.

    2012-06-01

    Quantum bit commitment has long been known to be impossible. Nevertheless, just as in the classical case, imposing certain constraints on the power of the parties may enable the construction of asymptotically secure protocols. Here, we introduce a quantum bit commitment protocol and prove that it is asymptotically secure if cheating is restricted to Gaussian operations. This protocol exploits continuous-variable quantum optical carriers, for which such a Gaussian constraint is experimentally relevant as the high optical nonlinearity needed to effect deterministic non-Gaussian cheating is inaccessible.

  8. Lagrange's principle in extremum problems with constraints

    NASA Astrophysics Data System (ADS)

    Avakov, E. R.; Magaril-Il'yaev, G. G.; Tikhomirov, V. M.

    2013-06-01

    In this paper a general result concerning Lagrange's principle for so-called smoothly approximately convex problems is proved which encompasses necessary extremum conditions for mathematical and convex programming, the calculus of variations, Lyapunov problems, and optimal control problems with phase constraints. The problem of local controllability for a dynamical system with phase constraints is also considered. In an appendix, results are presented that relate to the development of a 'Lagrangian approach' to problems where regularity is absent and classical approaches are meaningless. Bibliography: 33 titles.

  9. New constraints in dynamical torsion theory

    SciTech Connect

    Katanaev, M.O. )

    1993-04-01

    The most general Lagrangian for dynamical torsion theory quadratic in curvature and torsion is considered. The authors impose two simple and physically reasonable constraints on the solution of the equations of motion (i) there must be solutions with zero curvature and nontrivial torsion and (ii) there must be solutions with torsion and non covariantly constant curvature. The constraints reduce the number of independent coupling constants from ten to five. The resulting theory contains Einstein's general relativity and Weitzenboeck's absolute parallelism theory as the two sectors. 32 refs.

  10. Reduction of Constraints: Applicability of the Homogeneity Constraint for Macrobatch 3

    SciTech Connect

    Peeler, D.K.

    2001-02-15

    The Product Composition Control System (PCCS) is used to determine the acceptability of each batch of Defense Waste Processing Facility (DWPF) melter feed in the Slurry Mix Evaporator (SME). This control system imposes several constraints on the composition of the contents of the SME to define acceptability. These constraints relate process or product properties to composition via prediction models. A SME batch is deemed acceptable if its sample composition measurements lead to acceptable property predictions after accounting for modeling, measurement and analytic uncertainties. The baseline document guiding the use of these data and models is ''SME Acceptability Determination for DWPF Process Control (U)'' by Brown and Postles [1996]. A minimum of three PCCS constraints support the prediction of the glass durability from a given SME batch. The Savannah River Technology Center (SRTC) is reviewing all of the PCCS constraints associated with durability. The purpose of this review is to revisit these constraints in light of the additional knowledge gained since the beginning of radioactive operations at DWPF and to identify any supplemental studies needed to amplify this knowledge so that redundant or overly conservative constraints can be eliminated or replaced by more appropriate constraints.

  11. Constraints on Children's Judgments of Magical Causality

    ERIC Educational Resources Information Center

    Woolley, Jacqueline D.; Browne, Cheryl A.; Boerger, Elizabeth A.

    2006-01-01

    In 3 studies we addressed the operation of constraints on children's causal judgments. Our primary focus was whether children's beliefs about magical causality, specifically wishing, are constrained by features that govern the attribution of ordinary causality. In Experiment 1, children witnessed situations in which a confederate's wish appeared…

  12. CMB constraints on cosmic strings and superstrings

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Avgoustidis, Anastasios; Copeland, Edmund J.; Moss, Adam

    2016-06-01

    We present the first complete Markov chain Monte Carlo analysis of cosmological models with evolving cosmic (super)string networks, using the unconnected segment model in the unequal-time correlator formalism. For ordinary cosmic string networks, we derive joint constraints on Λ cold dark matter (CDM) and string network parameters, namely the string tension G μ , the loop-chopping efficiency cr, and the string wiggliness α . For cosmic superstrings, we obtain joint constraints on the fundamental string tension G μF, the string coupling gs, the self-interaction coefficient cs, and the volume of compact extra dimensions w . This constitutes the most comprehensive CMB analysis of Λ CDM cosmology+strings to date. For ordinary cosmic string networks our updated constraint on the string tension, obtained using Planck2015 temperature and polarization data, is G μ <1.1 ×10-7 in relativistic units, while for cosmic superstrings our constraint on the fundamental string tension after marginalizing over gs, cs, and w is G μF<2.8 ×10-8.

  13. Geochemical constraints on Earth's core composition

    NASA Astrophysics Data System (ADS)

    Siebert, Julien

    2016-04-01

    The density of the core as measured from seismic-wave velocities is lower (by 10-15%) than that of pure iron, and therefore the core must also contain some light elements. Geophysical and cosmochemical constraints indicate that obvious candidates for these light elements include silicon, oxygen, and sulfur. These elements have been studied extensively for the past 30 years but a joint solution fulfilling all the requirements imposed by cosmochemistry and geochemistry, seismology, and models of Earth's accretion and core formation is still a highly controversial subject. Here are presented new experimental data in geochemistry used to place constraints on Earth's core composition. Metal-silicate partitioning experiments were performed at pressures and temperatures directly similar to those that prevailed in a deep magma ocean in the early Earth. The results show that core formation can reconcile the observed concentrations of siderophile elements in the silicate mantle with geophysical constraints on light elements in the core. Partitioning results also lead to a core containing less than 1 wt.% of sulfur, inconsistent with a S-rich layer to account for the observed structure of the outer core. Additionally, isotopic fractionations in core formation experiments are presented. This experimental tool merging the fields of experimental petrology and isotope geochemistry represents a promising approach, providing new independent constraints on the nature of light elements in the core.

  14. Language-Universal Constraints on Speech Segmentation.

    ERIC Educational Resources Information Center

    Norris, Dennis; McQueen, James M.; Cutler, Anne; Butterfield, Sally; Kearns, Ruth

    2001-01-01

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) is a language-specific or language-universal strategy for the segmentation of continuous speech. Examined cases where the residue was either a CVC syllable with a Schwa or a CV syllable with a lax vowel. Showed that the word-spotting results…

  15. Library Environments and Organisations: Opportunities or Constraints?

    ERIC Educational Resources Information Center

    Thomas, Sarah E.

    2003-01-01

    Examines how university libraries are thriving in an era of educational change, exploring ways in which to store print publications, examining how libraries are increasing space for services and activities, addressing new roles and partners for libraries, and offering architectural solutions to spatial constraints. (SM)

  16. Robust Utility Maximization Under Convex Portfolio Constraints

    SciTech Connect

    Matoussi, Anis; Mezghani, Hanen Mnif, Mohamed

    2015-04-15

    We study a robust maximization problem from terminal wealth and consumption under a convex constraints on the portfolio. We state the existence and the uniqueness of the consumption–investment strategy by studying the associated quadratic backward stochastic differential equation. We characterize the optimal control by using the duality method and deriving a dynamic maximum principle.

  17. Adult Metacomprehension: Judgment Processes and Accuracy Constraints

    ERIC Educational Resources Information Center

    Zhao, Qin; Linderholm, Tracy

    2008-01-01

    The objective of this paper is to review and synthesize two interrelated topics in the adult metacomprehension literature: the bases of metacomprehension judgment and the constraints on metacomprehension accuracy. Our review shows that adult readers base their metacomprehension judgments on different types of information, including experiences…

  18. Reinforcement, Behavior Constraint, and the Overjustification Effect.

    ERIC Educational Resources Information Center

    Williams, Bruce W.

    1980-01-01

    Four levels of the behavior constraint-reinforcement variable were manipulated: attractive reward, unattractive reward, request to perform, and a no-reward control. Only the unattractive reward and request groups showed the performance decrements that suggest the overjustification effect. It is concluded that reinforcement does not cause the…

  19. Precision Constraints on Extra Fermion Generations

    SciTech Connect

    Erler, Jens; Langacker, Paul

    2010-07-16

    There has been recent renewed interest in the possibility of additional fermion generations. At the same time there have been significant changes in the relevant electroweak precision constraints, in particular, in the interpretation of several of the low energy experiments. We summarize the various motivations for extra families and analyze them in view of the latest electroweak precision data.

  20. Physical Constraints on the Noachian Deluge.

    ERIC Educational Resources Information Center

    Soroka, Leonard G.; Nelson, Charles L.

    1983-01-01

    To test the literal biblical account of Noah's flood, four sources of possible flood waters were evaluated to determine if a natural (as opposed to supernatural) explanation is possible. Sources include rain, hydrothermal springs, and two types of cometary impact. Thermodynamic constraints preclude a natural means of accounting for the flood.…

  1. Electroweak constraints on flavorful effective theories

    NASA Astrophysics Data System (ADS)

    Efrati, Aielet; Falkowski, Adam; Soreq, Yotam

    2015-07-01

    We derive model-independent constraints arising from the Z and W boson observables on dimension six operators in the effective theory beyond the Standard Model. In particular, we discuss the generic flavor structure for these operators as well as several flavor patterns motivated by simple new physics scenarios.

  2. Constraint Embedding Technique for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with

  3. Importance of parametrizing constraints in quantum-mechanical variational calculations

    NASA Technical Reports Server (NTRS)

    Chung, Kwong T.; Bhatia, A. K.

    1992-01-01

    In variational calculations of quantum mechanics, constraints are sometimes imposed explicitly on the wave function. These constraints, which are deduced by physical arguments, are often not uniquely defined. In this work, the advantage of parametrizing constraints and letting the variational principle determine the best possible constraint for the problem is pointed out. Examples are carried out to show the surprising effectiveness of the variational method if constraints are parameterized. It is also shown that misleading results may be obtained if a constraint is not parameterized.

  4. Optimum vibrating beams with stress and deflection constraints

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.

    1976-01-01

    The fundamental frequency of vibration of an Euler-Bernoulli or a Timoshenko beam of a specified constant volume is maximized subject to the constraint that under a prescribed loading the maximum stress or maximum deflection at any point along the beam axis will not exceed a specified value. In contrast with the inequality constraint which controls the minimum cross-section, the present inequality constraints lead to more meaningful designs. The inequality constraint on stresses is as easily implemented as the minimum cross-section constraint but the inequality constraint on deflection uses a treatment which is an extension of the matrix partitioning technique of prescribing displacements in finite element analysis.

  5. Momentum constraints as integrability conditions for the Hamiltonian constraint in general relativity.

    NASA Technical Reports Server (NTRS)

    Moncrief, V.; Teitelboim, C.

    1972-01-01

    It is shown that if the Hamiltonian constraint of general relativity is imposed as a restriction on the Hamilton principal functional in the classical theory, or on the state functional in the quantum theory, then the momentum constraints are automatically satisfied. This result holds both for closed and open spaces and it means that the full content of the theory is summarized by a single functional equation of the Tomonaga-Schwinger type.

  6. Constraint neighborhood projections for semi-supervised clustering.

    PubMed

    Wang, Hongjun; Li, Tao; Li, Tianrui; Yang, Yan

    2014-05-01

    Semi-supervised clustering aims to incorporate the known prior knowledge into the clustering algorithm. Pairwise constraints and constraint projections are two popular techniques in semi-supervised clustering. However, both of them only consider the given constraints and do not consider the neighbors around the data points constrained by the constraints. This paper presents a new technique by utilizing the constrained pairwise data points and their neighbors, denoted as constraint neighborhood projections that requires fewer labeled data points (constraints) and can naturally deal with constraint conflicts. It includes two steps: 1) the constraint neighbors are chosen according to the pairwise constraints and a given radius so that the pairwise constraint relationships can be extended to their neighbors, and 2) the original data points are projected into a new low-dimensional space learned from the pairwise constraints and their neighbors. A CNP-Kmeans algorithm is developed based on the constraint neighborhood projections. Extensive experiments on University of California Irvine (UCI) datasets demonstrate the effectiveness of the proposed method. Our study also shows that constraint neighborhood projections (CNP) has some favorable features compared with the previous techniques.

  7. Compilation of non-contemporaneous constraints

    SciTech Connect

    Wray, R.E. III; Laird, J.E.; Jones, R.M.

    1996-12-31

    Hierarchical execution of domain knowledge is a useful approach for intelligent, real-time systems in complex domains. In addition, well-known techniques for knowledge compilation allow the reorganization of knowledge hierarchies into more efficient forms. However, these techniques have been developed in the context of systems that work in static domains. Our investigations indicate that it is not straightforward to apply knowledge compilation methods for hierarchical knowledge to systems that generate behavior in dynamic environments. One particular problem involves the compilation of non-contemporaneous constraints. This problem arises when a training instance dynamically changes during execution. After defining the problem, we analyze several theoretical approaches that address non-contemporaneous constraints. We have implemented the most promising of these alternatives within Soar, a software architecture for performance and learning. Our results demonstrate that the proposed solutions eliminate the problem in some situations and suggest that knowledge compilation methods are appropriate for interactive environments.

  8. Observational constraints on K-inflation models

    SciTech Connect

    Li, Sheng; Liddle, Andrew R. E-mail: a.liddle@sussex.ac.uk

    2012-10-01

    We extend the ModeCode software of Mortonson, Peiris and Easther [1] to enable numerical computation of perturbations in K-inflation models, where the scalar field no longer has a canonical kinetic term. Focussing on models where the kinetic and potential terms can be separated into a sum, we compute slow-roll predictions for various models and use these to verify the numerical code. A Markov chain Monte Carlo analysis is then used to impose constraints from WMAP7 data on the addition of a term quadratic in the kinetic energy to the Lagrangian of simple chaotic inflation models. For a quadratic potential, the data do not discriminate against addition of such a term, while for a quartic (λφ{sup 4}) potential inclusion of such a term is actually favoured. Overall, constraints on such a term from present data are found to be extremely weak.

  9. Baryon Spectrum Analysis using Covariant Constraint Dynamics

    NASA Astrophysics Data System (ADS)

    Whitney, Joshua; Crater, Horace

    2012-03-01

    The energy spectrum of the baryons is determined by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically covariant three body equation for the bound state energies. The results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and Monte Carlo method. Results for all well-known baryons are presented and compared to experiment, with good accuracy.

  10. Querying metabolism under different physiological constraints.

    PubMed

    Cakmak, Ali; Ozsoyoglu, Gultekin; Hanson, Richard W

    2010-04-01

    Metabolism is a representation of the biochemical principles that govern the production, consumption, degradation, and biosynthesis of metabolites in living cells. Organisms respond to changes in their physiological conditions or environmental perturbations (i.e. constraints) via cooperative implementation of such principles. Querying inner working principles of metabolism under different constraints provides invaluable insights for both researchers and educators. In this paper, we propose a metabolism query language (MQL) and discuss its query processing. MQL enables researchers to explore the behavior of the metabolism with a wide-range of predicates including dietary and physiological condition specifications. The query results of MQL are enriched with both textual and visual representations, and its query processing is completely tailored based on the underlying metabolic principles. PMID:20401946

  11. Dark matter constraints from stellar evolution

    NASA Astrophysics Data System (ADS)

    Ayala, A.; Domínguez, I.; Straniero, O.

    2016-01-01

    The study of dark matter constraints from its effect on star evolution has been discussed in recent years. We propose a star evolution simulation approach to determine those costraints from properties related to star evolutionary stages and propose globular cluster observables in order to check those constraints. My work in progress (my PhD project research) employs FRANEC code to simulate complete star evolution from pre-main sequence to AGB phase, and regards several DM candidates like axions or WIMPs, motivated by different unsolved physical problems. Detailed energy production or energy loss due to DM particles are included, taking into account the expected interaction between dark matter particles and stellar plasma within different models.

  12. Decoupling Coupled Constraints Through Utility Design

    SciTech Connect

    Li, N; Marden, JR

    2014-08-01

    Several multiagent systems exemplify the need for establishing distributed control laws that ensure the resulting agents' collective behavior satisfies a given coupled constraint. This technical note focuses on the design of such control laws through a game-theoretic framework. In particular, this technical note provides two systematic methodologies for the design of local agent objective functions that guarantee all resulting Nash equilibria optimize the system level objective while also satisfying a given coupled constraint. Furthermore, the designed local agent objective functions fit into the framework of state based potential games. Consequently, one can appeal to existing results in game-theoretic learning to derive a distributed process that guarantees the agents will reach such an equilibrium.

  13. Modeling Regular Replacement for String Constraint Solving

    NASA Technical Reports Server (NTRS)

    Fu, Xiang; Li, Chung-Chih

    2010-01-01

    Bugs in user input sanitation of software systems often lead to vulnerabilities. Among them many are caused by improper use of regular replacement. This paper presents a precise modeling of various semantics of regular substitution, such as the declarative, finite, greedy, and reluctant, using finite state transducers (FST). By projecting an FST to its input/output tapes, we are able to solve atomic string constraints, which can be applied to both the forward and backward image computation in model checking and symbolic execution of text processing programs. We report several interesting discoveries, e.g., certain fragments of the general problem can be handled using less expressive deterministic FST. A compact representation of FST is implemented in SUSHI, a string constraint solver. It is applied to detecting vulnerabilities in web applications

  14. A fast full constraints unmixing method

    NASA Astrophysics Data System (ADS)

    Ye, Zhang; Wei, Ran; Wang, Qing Yan

    2012-10-01

    Mixed pixels are inevitable due to low-spatial resolutions of hyperspectral image (HSI). Linear spectrum mixture model (LSMM) is a classical mathematical model to relate the spectrum of mixing substance to corresponding individual components. The solving of LSMM, namely unmixing, is essentially a linear optimization problem with constraints, which is usually consisting of iterations implemented on decent direction and stopping criterion to terminate algorithms. Such criterion must be properly set in order to balance the accuracy and speed of solution. However, the criterion in existing algorithm is too strict, which maybe lead to convergence rate reducing. In this paper, by broaden constraints in unmixing, a new stopping rule is proposed, which can reduce rate of convergence. The experiments results prove both in runtime and iteration numbers that our method can accelerate convergence processing with only cost of little quality decrease in resulting.

  15. Constraints on modern microscopic equations of state

    NASA Astrophysics Data System (ADS)

    Taranto, G.; Baldo, M.; Burgio, G. F.

    2016-01-01

    We compare a set of equations of state derived within microscopic many-body approaches, and study their predictions as far as phenomenological data on nuclei from heavy ion collisions, and astrophysical observations on neutron stars are concerned. All the data, taken together, put strong constraints not easy to be fulfilled accurately. However the results provide an estimate of the uncertainty on the theoretical prediction at a microscopic level of the nuclear equation of state.

  16. Astrophysical constraints on extended gravity models

    SciTech Connect

    Lambiase, Gaetano; Stabile, Antonio; Sakellariadou, Mairi; Stabile, Arturo E-mail: mairi.sakellariadou@kcl.ac.uk E-mail: arturo.stabile@gmail.com

    2015-07-01

    We investigate the propagation of gravitational waves in the context of fourth order gravity nonminimally coupled to a massive scalar field. Using the damping of the orbital period of coalescing stellar binary systems, we impose constraints on the free parameters of extended gravity models. In particular, we find that the variation of the orbital period is a function of three mass scales which depend on the free parameters of the model under consideration; we can constrain these mass scales from current observational data.

  17. New constraints on gravity-induced birefringence

    NASA Astrophysics Data System (ADS)

    Solanki, Sami K.; Haugan, Mark P.

    1996-01-01

    A wide class of gravitation theories predicts gravity-induced birefringence. For Moffat's NGT, the prototypical theory of this type, Gabriel, Haugan, Mann, and Palmer used the predicted gravitational birefringence and observations of solar polarization to constrain the Sun's nonsymmetric charge lsolar. We improve on this constraint by making use of improved knowledge of the solar source of polarization and of a refined analysis procedure. We obtain l2solar< (305 km)2.

  18. Varying alpha: New constraints from seasonal variations

    SciTech Connect

    Barrow, John D.; Shaw, Douglas J.

    2008-09-15

    We analyze the constraints obtained from new atomic clock data on the possible time variation of the fine structure 'constant' and the electron-proton mass ratio, and show how they are strengthened when the seasonal variation of the Sun's gravitational field at the Earth's surface is taken into account. We compare these bounds with those obtainable from tests of the weak equivalence principle and high redshift observations of quasar absorption spectra.

  19. Constraint-Free Theories of Gravitation

    NASA Technical Reports Server (NTRS)

    Estabrook, Frank B.; Robinson, R. Steve; Wahlquist, Hugo D.

    1998-01-01

    Lovelock actions (more precisely, extended Gauss-Bonnet forms) when varied as Cartan forms on subspaces of higher dimensional flat Riemannian manifolds, generate well set, causal exterior differential systems. In particular, the Einstein- Hilbert action 4-form, varied on a 4 dimensional subspace of E(sub 10) yields a well set generalized theory of gravity having no constraints. Rcci-flat solutions are selected by initial conditions on a bounding 3-space.

  20. Congruent Melting Kinetics: Constraints on Chondrule Formation

    NASA Technical Reports Server (NTRS)

    Greenwood, James P.; Hess, Paul C.

    1995-01-01

    The processes and mechanisms of melting and their applications to chondrule formation are discussed A model for the kinetics of congruent melting is developed and used to place constraints on the duration and maximum temperature experienced by the interiors of relict-bearing chondrules. Specifically, chondrules containing relict forsteritic olivine or enstatitic pyroxene cannot have been heated in excess of 1901 C or 1577 C, respectively, for more than a few seconds.

  1. Stellar properties and nuclear matter constraints

    NASA Astrophysics Data System (ADS)

    Dutra, Mariana; Lourenço, Odilon; Menezes, Débora P.

    2016-02-01

    We analyze the stellar properties of the relativistic mean-field (RMF) parametrizations shown to be consistent with the recently studied constraints related to nuclear matter, pure neutron matter, symmetry energy, and its derivatives [Phys. Rev. C 90, 055203 (2014), 10.1103/PhysRevC.90.055203]. Our results show that only two RMF parametrizations do not allow the emergence of the direct Urca process, important aspect regarding the evolution of a neutron star. Moreover, among all approved RMF models, fourteen of them produce neutron stars with maximum masses inside the range 1.93 ≤M /M⊙≤2.05 , with M⊙ being the solar mass. Only three models yield maximum masses above this range and a discussion on the inclusion of hyperons is presented. Finally, we verified that the models satisfying the neutron star maximum mass constraint do not observe the squared sound velocity bound; namely, vs2<1 /3 , corroborating recent findings. However, the recently proposed σ -cut scheme can make the RMF models consistent with both constraints, depending on the isoscalar-vector interaction of each parametrization.

  2. HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON DARK ENERGY

    SciTech Connect

    Farooq, Omer; Mania, Data; Ratra, Bharat E-mail: mania@phys.ksu.edu

    2013-02-20

    We use 21 Hubble parameter versus redshift data points from Simon et al., Gaztanaga et al., Stern et al., and Moresco et al. to place constraints on model parameters of constant and time-evolving dark energy cosmologies. The inclusion of the eight new measurements results in H(z) constraints more restrictive than those derived by Chen and Ratra. These constraints are now almost as restrictive as those that follow from current Type Ia supernova (SNIa) apparent magnitude versus redshift data, which now more carefully account for systematic uncertainties. This is a remarkable result. We emphasize, however, that SNIa data have been studied for a longer time than the H(z) data, possibly resulting in a better estimate of potential systematic errors in the SNIa case. A joint analysis of the H(z), baryon acoustic oscillation peak length scale, and SNIa data favors a spatially flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude slowly evolving dark energy.

  3. Redshift drift constraints on f( T) gravity

    NASA Astrophysics Data System (ADS)

    Geng, Jia-Jia; Guo, Rui-Yun; He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin

    2015-10-01

    We explore the impact of the Sandage-Loeb (SL) test on the precision of cosmological constraints for f( T) gravity theories. The SL test is an important supplement to current cosmological observations because it measures the redshift drift in the Lyman-α forest in the spectra of distant quasars, covering the "redshift desert" of 2 ≤ z ≤ 5. To avoid data inconsistency, we use the best-fit models based on current combined observational data as fiducial models to simulate 30 mock SL test data. We quantify the impact of these SL test data on parameter estimation for f( T) gravity theories. Two typical f( T) models are considered, the power-law model f( T) PL and the exponential-form model f( T) EXP . The results show that the SL test can effectively break the existing strong degeneracy between the present-day matter density Ω m and the Hubble constant H 0 in other cosmological observations. For the considered f( T) models, a 30-year observation of the SL test can improve the constraint precision of Ω m and H 0 enormously but cannot effectively improve the constraint precision of the model parameters.

  4. Generalized arc consistency for global cardinality constraint

    SciTech Connect

    Regin, J.C.

    1996-12-31

    A global cardinality constraint (gcc) is specified in terms of a set of variables X = (x{sub 1},..., x{sub p}) which take their values in a subset of V = (v{sub 1},...,v{sub d}). It constrains the number of times a value v{sub i} {epsilon} V is assigned to a variable in X to be in an interval [l{sub i}, c{sub i}]. Cardinality constraints have proved very useful in many real-life problems, such as scheduling, timetabling, or resource allocation. A gcc is more general than a constraint of difference, which requires each interval to be. In this paper, we present an efficient way of implementing generalized arc consistency for a gcc. The algorithm we propose is based on a new theorem of flow theory. Its space complexity is O({vert_bar}X{vert_bar} {times} {vert_bar}V{vert_bar}) and its time complexity is O({vert_bar}X{vert_bar}{sup 2} {times} {vert_bar}V{vert_bar}). We also show how this algorithm can efficiently be combined with other filtering techniques.

  5. Breaking evolutionary constraint with a tradeoff ratchet

    PubMed Central

    de Vos, Marjon G. J.; Dawid, Alexandre; Sunderlikova, Vanda; Tans, Sander J.

    2015-01-01

    Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve when essential mutations are only accessible through positive selection if they are fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here, we studied genetic constraints in fixed and fluctuating environments using the Escherichia coli lac operon as a model system for genotype–environment interactions. We found that, in different fixed environments, all trajectories that were reconstructed by applying point mutations within the transcription factor–operator interface became trapped at suboptima, where no additional improvements were possible. Paradoxically, repeated switching between these same environments allows unconstrained adaptation by continuous improvements. This evolutionary mode is explained by pervasive cross-environmental tradeoffs that reposition the peaks in such a way that trapped genotypes can repeatedly climb ascending slopes and hence, escape adaptive stasis. Using a Markov approach, we developed a mathematical framework to quantify the landscape-crossing rates and show that this ratchet-like adaptive mechanism is robust in a wide spectrum of fluctuating environments. Overall, this study shows that genetic constraints can be overcome by environmental change and that cross-environmental tradeoffs do not necessarily impede but also, can facilitate adaptive evolution. Because tradeoffs and environmental variability are ubiquitous in nature, we speculate this evolutionary mode to be of general relevance. PMID:26567153

  6. Constraints based analysis of extended cybernetic models.

    PubMed

    Mandli, Aravinda R; Venkatesh, Kareenhalli V; Modak, Jayant M

    2015-11-01

    The cybernetic modeling framework provides an interesting approach to model the regulatory phenomena occurring in microorganisms. In the present work, we adopt a constraints based approach to analyze the nonlinear behavior of the extended equations of the cybernetic model. We first show that the cybernetic model exhibits linear growth behavior under the constraint of no resource allocation for the induction of the key enzyme. We then quantify the maximum achievable specific growth rate of microorganisms on mixtures of substitutable substrates under various kinds of regulation and show its use in gaining an understanding of the regulatory strategies of microorganisms. Finally, we show that Saccharomyces cerevisiae exhibits suboptimal dynamic growth with a long diauxic lag phase when growing on a mixture of glucose and galactose and discuss on its potential to achieve optimal growth with a significantly reduced diauxic lag period. The analysis carried out in the present study illustrates the utility of adopting a constraints based approach to understand the dynamic growth strategies of microorganisms.

  7. Hard Constraints in Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.

    2008-01-01

    This paper proposes a methodology for the analysis and design of systems subject to parametric uncertainty where design requirements are specified via hard inequality constraints. Hard constraints are those that must be satisfied for all parameter realizations within a given uncertainty model. Uncertainty models given by norm-bounded perturbations from a nominal parameter value, i.e., hyper-spheres, and by sets of independently bounded uncertain variables, i.e., hyper-rectangles, are the focus of this paper. These models, which are also quite practical, allow for a rigorous mathematical treatment within the proposed framework. Hard constraint feasibility is determined by sizing the largest uncertainty set for which the design requirements are satisfied. Analytically verifiable assessments of robustness are attained by comparing this set with the actual uncertainty model. Strategies that enable the comparison of the robustness characteristics of competing design alternatives, the description and approximation of the robust design space, and the systematic search for designs with improved robustness are also proposed. Since the problem formulation is generic and the tools derived only require standard optimization algorithms for their implementation, this methodology is applicable to a broad range of engineering problems.

  8. Do constructional constraints influence cichlid craniofacial diversification?

    PubMed Central

    Hulsey, C.D; Mims, M.C; Streelman, J.T

    2007-01-01

    Constraints on form should determine how organisms diversify. Owing to competition for the limited space within the body, investment in adjacent structures may frequently represent an evolutionary compromise. For example, evolutionary trade-offs between eye size and jaw muscles in cichlid fish of the African great lakes are thought to represent a constructional constraint that influenced the diversification of these assemblages. To test the evolutionary independence of these structures in Lake Malawi cichlid fish, we measured the mass of the three major adductor mandibulae (AM) muscles and determined the eye volume in 41 species. Using both traditional and novel methodologies to control for resolved and unresolved phylogenetic relationships, we tested the evolutionary independence of these four structures. We found that evolutionary change in the AM muscles was positively correlated, suggesting that competition for space in the head has not influenced diversification among these jaw muscles. Furthermore, there was no negative relationship between change in total AM muscle mass and eye volume, indicating that there has been little effect of the evolution of eye size on AM evolution in Lake Malawi cichlids. The comparative approach used here should provide a robust method to test whether constructional constraints frequently limit phenotypic change in adaptive radiations. PMID:17519189

  9. SAT Encoding and CSP Reduction for Interconnected Alldiff Constraints

    NASA Astrophysics Data System (ADS)

    Lardeux, Frederic; Monfroy, Eric; Saubion, Frederic; Crawford, Broderick; Castro, Carlos

    Constraint satisfaction problems (CSP) or Boolean satisfiability problem (SAT) are two well known paradigm to model and solve combinatorial problems. Modeling and resolution of CSP is often strengthened by global constraints (e.g., Alldiff constraint). This paper highlights two different ways of handling specific structural information: a uniform propagation framework to handle (interleaved) Alldiff constraints with some CSP reduction rules; and a SAT encoding of these rules that preserves the reduction properties of CSP.

  10. Universal Quantification in a Constraint-Based Planner

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Frank, Jeremy; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Constraints and universal quantification are both useful in planning, but handling universally quantified constraints presents some novel challenges. We present a general approach to proving the validity of universally quantified constraints. The approach essentially consists of checking that the constraint is not violated for all members of the universe. We show that this approach can sometimes be applied even when variable domains are infinite, and we present some useful special cases where this can be done efficiently.

  11. The Effects of Constraints in a Mathematics Classroom

    ERIC Educational Resources Information Center

    Stokes, Patricia D.

    2013-01-01

    The dictionary definition of constraint is one-sided, solely restrictive. The problem-solving definition is two-sided. Constraints come in pairs. One retains its restrictive function, precluding something specific; the other directs search for its substitute. The paired constraint model is applied to both domain and classroom. I discuss the…

  12. Use of Justified Constraints in Coherent Diffractive Imaging

    SciTech Connect

    Kim, S.; McNulty, I.; Chen, Y. K.; Putkunz, C. T.; Dunand, D. C.

    2011-09-09

    We demonstrate the use of physically justified object constraints in x-ray Fresnel coherent diffractive imaging on a sample of nanoporous gold prepared by dealloying. Use of these constraints in the reconstruction algorithm enabled highly reliable imaging of the sample's shape and quantification of the 23- to 52-nm pore structure within it without use of a tight object support constraint.

  13. A Framework for Parallel Nonlinear Optimization by Partitioning Localized Constraints

    SciTech Connect

    Xu, You; Chen, Yixin

    2008-06-28

    We present a novel parallel framework for solving large-scale continuous nonlinear optimization problems based on constraint partitioning. The framework distributes constraints and variables to parallel processors and uses an existing solver to handle the partitioned subproblems. In contrast to most previous decomposition methods that require either separability or convexity of constraints, our approach is based on a new constraint partitioning theory and can handle nonconvex problems with inseparable global constraints. We also propose a hypergraph partitioning method to recognize the problem structure. Experimental results show that the proposed parallel algorithm can efficiently solve some difficult test cases.

  14. Crystallographic phase retrieval through image processing under constraints

    NASA Astrophysics Data System (ADS)

    Zhang, Kam Y.

    1993-11-01

    The crystallographic image processing techniques of Sayre's equation, molecular averaging, solvent flattening and histogram matching are combined in an integrated procedure for macromolecular phase retrieval. It employs the constraints of the local shape of electron density, equal molecules, solvent flatness and correct electron density distribution. These constraints on electron density image are satisfied simultaneously by solving a system of non- linear equations using fast Fourier transform. The electron density image is further filtered under the constraint of observed diffraction amplitudes. The effect of each constraint on phase retrieval is examined. The constraints are found to work synergistically in phase retrieval. Test results on 2Zn insulin are presented.

  15. Not Second-Class: Title IX, Equity, and Girls' High School Sports

    ERIC Educational Resources Information Center

    Stader, David L.; Surface, Jeanne L.

    2014-01-01

    Title IX is designed to protect students from discrimination based on sex in any educational institution that receives financial assistance. This article focuses on Title IX as it applies to high school athletic programs by considering the trial of a high school district in California. A federal court found considerable inequalities between boys…

  16. A Second Class of Acetylcholinesterase-Deficient Mutants of the Nematode CAENORHABDITIS ELEGANS

    PubMed Central

    Culotti, Joseph G.; Von Ehrenstein, Gunter; Culotti, Marilyn R.; Russell, Richard L.

    1981-01-01

    In Johnson et al. (1981), the Caenorhabditis elegans mutant strain PR1000, homozygous for the ace-1 mutation p1000, is shown to be deficient in the class A subset of acetylcholinesterases, which comprises approximately one-half of the total C. elegans acetylcholinesterase activity. Beginning with this strain, we have isolated 487 new behavioral and morphological mutant strains. Two of these, independently derived, lack approximately 98% of the wild-type acetylcholinesterase activity and share the same specific uncoordinated phenotype; both move forward in a slow and uncoordinated manner, and when mechanically stimulated to induce reversal, both hypercontract and become temporarily paralyzed. In addition to the ace-1 mutation, both strains also harbor recessive mutations in the same newly identified gene, ace-2, which maps to chromosome I and is therefore not linked to ace-1. Gene dosage experiments suggest that ace-2 is a structural gene for the remaining class B acetylcholinesterases, which are not affected by ace-1.—The uncoordinated phenotype of the newly isolated, doubly mutant strains depends on both the ace-1 and ace-2 mutations; homozygosity for either mutation alone produces normally coordinated animals. This result implies functional overlap of the acetylcholinesterases controlled by ace-1 and ace-2, perhaps at common synapses. Consistent with this, light microscopic histochemical staining of permeabilized whole mounts indicates some areas of possible spatial overlap of these acetylcholinesterases (nerve ring, longitudinal nerve cords). In addition, there is at least one area where only ace-2-controlled acetylcholinesterase activity appears (pharyngeo-intestinal valve). PMID:7274655

  17. Second-Class Citizen? Contract Workers' Perceived Status, Dual Commitment and Intent to Quit

    ERIC Educational Resources Information Center

    Boswell, Wendy R.; Watkins, Maria Baskerville; Triana, Maria del Carmen; Zardkoohi, Asghar; Ren, Run; Umphress, Elizabeth E.

    2012-01-01

    Outsourcing of jobs to contract workers who work alongside a client's employees has changed the human resource landscape of many organizations. In this study we examine how a contract worker's perceived employment status similarity to the client's own standard employees influences his/her affective commitment to both the client and the employer…

  18. Subsistence Specialist Second Class, 9-12. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This self-paced, individualized course, adapted from military curriculum materials for use in vocational and technical education, teaches students about nutrition, food preparation, and food service. This student workbook, one of three parts of the course, contains basic information on menu planning and nutrition; food standards and costs; custom…

  19. Marine Science Technician Second Class, 15-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, was designed to provide the theory portion of the Marine Science Technician Program. It includes a review of basic subjects, marine biology, oceanography, as well as meteorologic observations and recording. The course consists of a lesson book…

  20. Multiple Gigabit-per-Second Class Data Link Enabling WFIRST at L2

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Munger, James; Conti, Alberto

    2016-01-01

    NASA's Wide-Field Infrared Survey Telescope (WFIRST) will be the first of a new generation of missions, expected to generate amounts of data unprecedented in astrophysics from space. This trend is driven by the availability of high resolution, large area detectors, commonly generating simultaneously spatial and spectral information, and the desire to have access to data in the least processed form. Although this increase in data volume is new for astrophysics missions, the data volume and associated rates are well within the realm of Earth science and other space missions.While NASA currently plans to launch WFIRST into a geosynchronous orbit, there are many advantages to placing future observatories outside of Earth's orbit at locations such as the Sun-Earth libration point L2. These advantages include a more benign radiation environment due to the absence of trapped electrons, eclipse-free Sun illumination for power generation and a stable thermal environment because of the much more slowly varying Sun angle. More importantly, a Sun-Earth libration point L2 orbit will allow for longer integration times thereby enhancing many of the WFIRST mission science cases. These advantages can be realized, if a cost effective, high capacity downlink solution is available. Here, we outline our approach to providing link capacities from L2 in excess of 3 Gbps (3x10^9 bits/s) based on existing, flight proven components. At these rates, even very large data sets can be transmitted in short data bursts, an approach that allows highly efficient scheduling of ground stations.

  1. Dynamical dark energy: Current constraints and forecasts

    NASA Astrophysics Data System (ADS)

    Upadhye, Amol; Ishak, Mustapha; Steinhardt, Paul J.

    2005-09-01

    We consider how well the dark energy equation of state w as a function of redshift z will be measured using current and anticipated experiments. We use a procedure which takes fair account of the uncertainties in the functional dependence of w on z, as well as the parameter degeneracies, and avoids the use of strong prior constraints. We apply the procedure to current data from the Wilkinson Microwave Anisotropy Probe, Sloan Digital Sky Survey, and the supernova searches, and obtain results that are consistent with other analyses using different combinations of data sets. The effects of systematic experimental errors and variations in the analysis technique are discussed. Next, we use the same procedure to forecast the dark energy constraints achievable by the end of the decade, assuming 8 years of Wilkinson Microwave Anisotropy Probe data and realistic projections for ground-based measurements of supernovae and weak lensing. We find the 2σ constraints on the current value of w to be Δw0(2σ)=0.20, and on dw/dz (between z=0 and z=1) to be Δw1(2σ)=0.37. Finally, we compare these limits to other projections in the literature. Most show only a modest improvement; others show a more substantial improvement, but there are serious concerns about systematics. The remaining uncertainty still allows a significant span of competing dark energy models. Most likely, new kinds of measurements, or experiments more sophisticated than those currently planned, are needed to reveal the true nature of dark energy.

  2. Applying Motion Constraints Based on Test Data

    NASA Technical Reports Server (NTRS)

    Burlone, Michael

    2014-01-01

    MSC ADAMS is a simulation software that is used to analyze multibody dynamics. Using user subroutines, it is possible to apply motion constraints to the rigid bodies so that they match the motion profile collected from test data. This presentation describes the process of taking test data and passing it to ADAMS using user subroutines, and uses the Morpheus free-flight 4 test as an example of motion data used for this purpose. Morpheus is the name of a prototype lander vehicle built by NASA that serves as a test bed for various experimental technologies (see backup slides for details) MSC.ADAMS"TM" is used to play back telemetry data (vehicle orientation and position) from each test as the inputs to a 6-DoF general motion constraint (details in backup slides) The MSC.ADAMS"TM" playback simulations allow engineers to examine and analyze flight trajectory as well as observe vehicle motion from any angle and at any playback speed. This facilitates the development of robust and stable control algorithms, increasing reliability and reducing development costs of this developmental engine The simulation also incorporates a 3D model of the artificial hazard field, allowing engineers to visualize and measure performance of the developmental autonomous landing and hazard avoidance technology ADAMS is a multibody dynamics solver. It uses forces, constraints, and mass properties to numerically integrate equations of motion. The ADAMS solver will ask the motion subroutine for position, velocity, and acceleration values at various time steps. Those values must be continuous over the whole time domain. Each degree of freedom in the telemetry data can be examined separately; however, linear interpolation of the telemetry data is invalid, since there will be discontinuities in velocity and acceleration.

  3. Molecular and cellular constraints on proteins

    NASA Astrophysics Data System (ADS)

    Kortemme, Tanja

    Engineering proteins with new sequences, structures and functions has many exciting practical applications, and provides new ways to dissect design principles for function. Recent successes in computational protein design provide a cause for optimism. Yet many functions are currently too complex to engineer predictively, and successful design of new biological activities also requires an understanding of the functional pressures acting on proteins in the context of cells and organisms. I will present two vignettes describing our progress with dissecting both molecular and cellular constraints on protein function. In the first, we characterized the cost and benefit of protein production upon sequence perturbations in a classic system for gene regulation, the lac operon. Our results were unexpected in light of the common assumption that the dominant fitness costs are due to protein expression. Instead, we discovered a direct linear relationship between cost and lacpermease activity, not protein or mRNA production. The magnitude of the cost of permease activity, relative to protein production, has consequences for regulation. Our model predicts an advantage of direct regulation of protein activity (not just expression), providing a new explanation for the long-known mechanism of ``inducer exclusion'' that inhibits transport through the permease. Similar pressures and cost/benefit tradeoffs may be key to engineering synthetic systems with improved fitness. In the second vignette, I will describe our recent efforts to develop computational approaches that predict protein sequences consistent with multiple functional conformations. We expect such ``multi-constraint'' models to improve predictions of functional sequences determined by deep mutational scanning in bacteria, to provide insights into how the balance between functional conformations shapes sequence space, and to highlight molecular and cellular constraints that cannot be captured by the model.

  4. Constraints on string networks with junctions

    SciTech Connect

    Copeland, E. J.; Kibble, T. W. B.; Steer, D. A.

    2007-03-15

    We consider the constraints on string networks with junctions in which the strings may all be different, as may be found, for example, in a network of (p,q) cosmic superstrings. We concentrate on three aspects of junction dynamics. First we consider the propagation of small-amplitude waves across a static three-string junction. Then, generalizing our earlier work, we determine the kinematic constraints on two colliding strings with different tensions. As before, the important conclusion is that strings do not always reconnect with a third string; they can pass straight through one another (or in the case of non-Abelian strings become stuck in an X configuration), the constraint depending on the angle at which the strings meet, on their relative velocity, and on the ratios of the string tensions. For example, if the two colliding strings have equal tensions, then for ultrarelativistic initial velocities they pass through one another. However, if their tensions are sufficiently different they can reconnect. Finally, we consider the global properties of junctions and strings in a network. Assuming that, in a network, the incoming waves at a junction are independently randomly distributed, we determine the root-mean-square (r.m.s.) velocities of strings and calculate the average speed at which a junction moves along each of the three strings from which it is formed. Our findings suggest that junction dynamics may be such as to preferentially remove the heavy strings from the network leaving a network of predominantly light strings. Furthermore the r.m.s. velocity of strings in a network with junctions is smaller than 1/{radical}(2), the result for conventional Nambu-Goto strings without junctions in Minkowski space-time.

  5. Integrated Analysis of Airport Capacity and Environmental Constraints

    NASA Technical Reports Server (NTRS)

    Hasan, Shahab; Long, Dou; Hart, George; Eckhause, Jeremy; Hemm, Robert; Busick, Andrew; Graham, Michael; Thompson, Terry; Murphy, Charles; Poage, James

    2010-01-01

    LMI conducted an integrated analysis of airport capacity and environmental constraints. identifying and ranking the key factors limiting achievement of NextGen capacity goals. The primary metric used was projected throughput, which was estimated for the years 2015 and 2025 based on the unconstrained demand forecast from the Federal Aviation Administration, and planned improvements including those proposed in the NextGen plan. A set of 310 critical airports was identified.. collectively accounting for more than 99 percent of domestic air traffic volume; a one-off analytical approach was used to isolate the constraint being assessed. The study considered three capacity constraints (runway.. taxiway, and gate) and three environmental constraints (fuel, NO(x) emissions, and noise). For the ten busiest airports, runway and noise are the primary and secondary constraints in both 2015 and 2025. For the OEP 35 airports and overall for the remaining airports, the most binding constraint is noise. Six of the 10 busiest airports, will face runway constraints in 2025, and 95 will face gate constraints. Nearly every airport will be subject to constraints due to emissions and NOx. Runway and taxi constraints are more concentrated in the large airports: environmental constraints are present at almost every airport regardless of size.

  6. Automated Derivation of Complex System Constraints from User Requirements

    NASA Technical Reports Server (NTRS)

    Muery, Kim; Foshee, Mark; Marsh, Angela

    2006-01-01

    International Space Station (ISS) payload developers submit their payload science requirements for the development of on-board execution timelines. The ISS systems required to execute the payload science operations must be represented as constraints for the execution timeline. Payload developers use a software application, User Requirements Collection (URC), to submit their requirements by selecting a simplified representation of ISS system constraints. To fully represent the complex ISS systems, the constraints require a level of detail that is beyond the insight of the payload developer. To provide the complex representation of the ISS system constraints, HOSC operations personnel, specifically the Payload Activity Requirements Coordinators (PARC), manually translate the payload developers simplified constraints into detailed ISS system constraints used for scheduling the payload activities in the Consolidated Planning System (CPS). This paper describes the implementation for a software application, User Requirements Integration (URI), developed to automate the manual ISS constraint translation process.

  7. Cohomological Resolutions for Anomalous Lie Constraints

    NASA Astrophysics Data System (ADS)

    Hasiewicz, Zbigniew; Walczyk, Cezary J.

    2014-06-01

    It is shown that the BRST resolution of the spaces of physical states of the systems with anomalies can be consistently defined. The appropriate anomalous complexes are obtained by canonical restrictions of the ghost extended spaces to the kernel of anomaly operator without any modifications of the 'matter' sector. The cohomologies of the anomalous complex for the case of constraints constituting a centrally extended simple Lie algebra of compact type are calculated and analyzed in details within the framework of Hodge-deRham-Kähler theory: the vanishing theorem of the relative cohomologies is proved and the absolute cohomologies are reconstructed.

  8. Quintessence reconstructed: New constraints and tracker viability

    SciTech Connect

    Sahlen, Martin; Liddle, Andrew R.; Parkinson, David

    2007-01-15

    We update and extend our previous work reconstructing the potential of a quintessence field from current observational data. We extend the cosmological data set to include new supernova data, plus information from the cosmic microwave background and from baryon acoustic oscillations. We extend the modeling by considering Pade approximant expansions as well as Taylor series, and by using observations to assess the viability of the tracker hypothesis. We find that parameter constraints have improved by a factor of 2, with a strengthening of the preference of the cosmological constant over evolving quintessence models. Present data show some signs, though inconclusive, of favoring tracker models over nontracker models under our assumptions.

  9. Parametrized modified gravity constraints after Planck

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Liguori, Michele; Bartolo, Nicola; Matarrese, Sabino

    2013-12-01

    We constrain f(R) and chameleon-type modified gravity in the framework of the Berstchinger-Zukin parametrization using the recently released Planck data, including both the cosmic mircowave background radiation (CMB) temperature power spectrum and the lensing potential power spectrum. Some other external data sets are included, such as baryon acoustic oscillation (BAO) measurements from the 6dFGS, SDSS DR7 and BOSS DR9 surveys; Hubble Space Telescope (HST) H0 measurements, and supernovae from the Union2.1 compilation. We also use WMAP9 data for a consistency check and comparison. For f(R) gravity, WMAP9 results can only give a quite loose constraint on the modified gravity parameter B0, which is related to the present value of the Compton wavelength of the extra scalar degree of freedom, B0<3.37 at 95% C.L. We demonstrate that this constraint mainly comes from the late integrated Sachs-Wolfe effect. With only Planck CMB temperature power-spectrum data, we can improve the WMAP9 result by a factor 3.7 (B0<0.91 at 95% C.L.). If the Planck lensing potential power-spectrum data are also taken into account, the constraint can be further strengthened by a factor 5.1 (B0<0.18 at 95% C.L.). This major improvement mainly comes from the small-scale lensing signal. Furthermore, BAO, HST and supernovae data could slightly improve the B0 bound (B0<0.12 at 95% C.L.). For the chameleon-type model, we find that the data set that we used cannot constrain the Compton wavelength B0 or the potential index s of the chameleon field, but it can give a tight constraint on the parameter β1=1.043-0.104+0.163 at 95% C.L. (β1=1 in general relativity), which accounts for the nonminimal coupling between the chameleon field and the matter component. In addition, we find that both modified gravity models we consider favor a relatively higher Hubble parameter than the concordance ΛCDM model in general relativity.

  10. Scattering in constraint relativistic quantum dynamics

    NASA Astrophysics Data System (ADS)

    Horwitz, L. P.; Rohrlich, F.

    1982-12-01

    A relativistic scattering theory is developed for a covariant constraint dynamics with direct interparticle interactions. Both time-dependent and time-independent formulations are presented, the latter being a generalization of the Lippmann-Schwinger equation. For the two-body problem, we study the simple case of maximal symmetry which, equivalently, admits both single- and two-time formulations. The two-time formalism illustrates the main features of the general case of N>=3 particles. Perturbation expansions are given for the wave function and for the S matrix. Their structure is similar to those in quantum field theory corresponding to skeleton diagrams.

  11. Total-variation regularization with bound constraints

    SciTech Connect

    Chartrand, Rick; Wohlberg, Brendt

    2009-01-01

    We present a new algorithm for bound-constrained total-variation (TV) regularization that in comparison with its predecessors is simple, fast, and flexible. We use a splitting approach to decouple TV minimization from enforcing the constraints. Consequently, existing TV solvers can be employed with minimal alteration. This also makes the approach straightforward to generalize to any situation where TV can be applied. We consider deblurring of images with Gaussian or salt-and-pepper noise, as well as Abel inversion of radiographs with Poisson noise. We incorporate previous iterative reweighting algorithms to solve the TV portion.

  12. Mission Implementation Constraints on Planetary Muon Radiography

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  13. Chemical Constraints on the Early Solar System

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan

    2004-01-01

    Chemical abundances of comets and star-forming regions provide p o w d clues to the conditions which prevailed in the outer solar nebula. Hence comparative spectroscopic studies of cometary and molecular cloud gases provide vital insights into conditions in the solar protoplanetary disk at heliocentric distances beyond 5 AU 4.6 Gyr ago. We proposed a research program which combined optical and sub-millimeter techniques with laboratory spectroscopy, and sought to determine key diagnostic constraints on single-star protoplanetary disk models.

  14. Design of helicopter rotors to noise constraints

    NASA Technical Reports Server (NTRS)

    Schaeffer, E. G.; Sternfeld, H., Jr.

    1978-01-01

    Results of the initial phase of a research project to study the design constraints on helicopter noise are presented. These include the calculation of nonimpulsive rotor harmonic and broadband hover noise spectra, over a wide range of rotor design variables and the sensitivity of perceived noise level (PNL) to changes in rotor design parameters. The prediction methodology used correlated well with measured whirl tower data. Application of the predictions to variations in rotor design showed tip speed and thrust as having the most effect on changing PNL.

  15. Effects of anatomical constraints on tumor growth

    NASA Astrophysics Data System (ADS)

    Capogrosso Sansone, B.; Delsanto, P. P.; Magnano, M.; Scalerandi, M.

    2001-08-01

    Competition for available nutrients and the presence of anatomical barriers are major determinants of tumor growth in vivo. We extend a model recently proposed to simulate the growth of neoplasms in real tissues to include geometrical constraints mimicking pressure effects on the tumor surface induced by the presence of rigid or semirigid structures. Different tissues have different diffusivities for nutrients and cells. Despite the simplicity of the approach, based on a few inherently local mechanisms, the numerical results agree qualitatively with clinical data (computed tomography scans of neoplasms) for the larynx and the oral cavity.

  16. Modular Constraints on Calabi-Yau Compactifications

    NASA Astrophysics Data System (ADS)

    Keller, Christoph A.; Ooguri, Hirosi

    2013-11-01

    We derive global constraints on the non-BPS sector of supersymmetric 2d sigma-models whose target space is a Calabi-Yau manifold. When the total Hodge number of the Calabi-Yau threefold is sufficiently large, we show that there must be non-BPS primary states whose total conformal weights are less than 0.656. Moreover, the number of such primary states grows at least linearly in the total Hodge number. We discuss implications of these results for Calabi-Yau geometry.

  17. Combined constraints on holographic bosonic technicolor

    SciTech Connect

    Carone, Christopher D.; Primulando, Reinard

    2010-07-01

    We consider a model of strong electroweak symmetry breaking in which the expectation value of an additional, possibly composite, scalar field is responsible for the generation of fermion masses. The dynamics of the strongly coupled sector is defined and studied via its holographic dual, and does not correspond to a simple, scaled-up version of QCD. We consider the bounds from perturbative unitarity, the S parameter, and the mass of the Higgs-like scalar. We show that the combination of these constraints leaves a relatively limited region of parameter space viable, and suggests the qualitative features of the model that might be probed at the LHC.

  18. Intelligence Constraints on Terrorist Network Plots

    NASA Astrophysics Data System (ADS)

    Woo, Gordon

    Since 9/11, the western intelligence and law enforcement services have managed to interdict the great majority of planned attacks against their home countries. Network analysis shows that there are important intelligence constraints on the number and complexity of terrorist plots. If two many terrorists are involved in plots at a given time, a tipping point is reached whereby it becomes progressively easier for the dots to be joined and for the conspirators to be arrested, and for the aggregate evidence to secure convictions. Implications of this analysis are presented for the campaign to win hearts and minds.

  19. Regional magnetic anomaly constraints on continental breakup

    SciTech Connect

    von Frese, R.R.B.; Hinze, W.J.; Olivier, R.; Bentley, C.R.

    1986-01-01

    Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.

  20. Energetic Constraints on Species Coexistence in Birds.

    PubMed

    Pigot, Alexander L; Tobias, Joseph A; Jetz, Walter

    2016-03-01

    The association between species richness and ecosystem energy availability is one of the major geographic trends in biodiversity. It is often explained in terms of energetic constraints, such that coexistence among competing species is limited in low productivity environments. However, it has proven challenging to reject alternative views, including the null hypothesis that species richness has simply had more time to accumulate in productive regions, and thus the role of energetic constraints in limiting coexistence remains largely unknown. We use the phylogenetic relationships and geographic ranges of sister species (pairs of lineages who are each other's closest extant relatives) to examine the association between energy availability and coexistence across an entire vertebrate class (Aves). We show that the incidence of coexistence among sister species increases with overall species richness and is elevated in more productive ecosystems, even when accounting for differences in the evolutionary time available for coexistence to occur. Our results indicate that energy availability promotes species coexistence in closely related lineages, providing a key step toward a more mechanistic understanding of the productivity-richness relationship underlying global gradients in biodiversity.

  1. Depth constraint of electric submersible pumps

    SciTech Connect

    Powers, M.L.

    1994-05-01

    This paper summarizes the various factors that limit electric submersible pump (ESP) operation at increasing depth. It explores in detail two parametrically related constraints, pump-shaft horsepower capacity and thrust-bearing load capacity. The former limits the product of head and rate; the latter limits head. Optimum shaft diameter for standard-configuration pumps is shown to be a compromise between these two factors. Head and rate limits resulting from these constraints are mathematically defined and graphically displayed, and means for expanding deep pumping capabilities are discussed. This paper also analyzes the effect of increased pumping depth on motor cooling. It shows that the temperature increase of fluid traversing a motor is proportional to head, independent of rate, and very sensitive to pump and motor efficiencies. This work also demonstrates the effect of elevated fluid temperatures associated with increasing depth on motor heat transfer coefficients. The purpose of this paper is to help resolve a perceived dilemma. Pump manufacturers do not develop pumps with ultradeep capability because there is no market for them. Oil producers might abandon ultradeep discovery wells with low reservoir pressure because there is no way to pump them. This paper is intended to promote the interest of both groups in potential deep pumping capabilities.

  2. Stochastic population dynamics under resource constraints

    NASA Astrophysics Data System (ADS)

    Gavane, Ajinkya S.; Nigam, Rahul

    2016-06-01

    This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations for such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.

  3. Domestication changes innate constraints for birdsong learning.

    PubMed

    Kagawa, Hiroko; Suzuki, Kenta; Takahasi, Miki; Okanoya, Kazuo

    2014-07-01

    Birdsongs are acquired by imitating the sounds produced by conspecifics. Within a species, songs diverge by cultural transmission, but the range of species-specific features is restricted by innate constraints. Bengalese finches (Lonchura striata var. domestica) are a domesticated strain of the wild White-rumped munia (Lonchura striata). The songs of the domesticated strain have more tonal sounds and more variable sequences than those of the wild strain. We compared the features of songs that were produced by normal birds, isolation-reared birds, and cross-fostered birds in both White-rumped munias and Bengalese finches to identify differences in the genetic and environmental factors of their songs. Factor analyses were conducted based on 17 song measurements. We found that isolated songs differed from normal and cross-fostered songs, especially in unstable prosodic features. In addition, there were significant differences in sound property of mean frequency between the two strains regardless of the rearing conditions. Thus, innate constraints that partially determine birdsong phenotypes may be altered through domestication.

  4. Constraint-induced movement therapy after stroke.

    PubMed

    Kwakkel, Gert; Veerbeek, Janne M; van Wegen, Erwin E H; Wolf, Steven L

    2015-02-01

    Constraint-induced movement therapy (CIMT) was developed to overcome upper limb impairments after stroke and is the most investigated intervention for the rehabilitation of patients. Original CIMT includes constraining of the non-paretic arm and task-oriented training. Modified versions also apply constraining of the non-paretic arm, but not as intensive as original CIMT. Behavioural strategies are mostly absent for both modified and original CIMT. With forced use therapy, only constraining of the non-paretic arm is applied. The original and modified types of CIMT have beneficial effects on motor function, arm-hand activities, and self-reported arm-hand functioning in daily life, immediately after treatment and at long-term follow-up, whereas there is no evidence for the efficacy of constraint alone (as used in forced use therapy). The type of CIMT, timing, or intensity of practice do not seem to affect patient outcomes. Although the underlying mechanisms that drive modified and original CIMT are still poorly understood, findings from kinematic studies suggest that improvements are mainly based on adaptations through learning to optimise the use of intact end-effectors in patients with some voluntary motor control of wrist and finger extensors after stroke.

  5. Observational constraints on assisted k-inflation

    SciTech Connect

    Ohashi, Junko; Tsujikawa, Shinji

    2011-05-15

    We study observational constraints on the assisted k-inflation models in which multiple scalar fields join an attractor characterized by an effective single field {phi}. This effective single-field system is described by the Lagrangian P=Xg(Y), where X is the kinetic energy of {phi}, {lambda} is a constant, and g is an arbitrary function in terms of Y=Xe{sup {lambda}{phi}}. Our analysis covers a wide variety of k-inflation models such as dilatonic ghost condensate, Dirac-Born-Infeld field, and tachyon, as well as the canonical field with an exponential potential. We place observational bounds on the parameters of each model from the WMAP 7yr data combined with baryon acoustic oscillations and the Hubble constant measurement. Using the observational constraints of the equilateral non-Gaussianity parameter f{sub NL}{sup equil}, we further restrict the allowed parameter space of dilatonic ghost condensate and Dirac-Born-Infeld models. We extend the analysis to more general models with several different choices of g(Y) and show that the models such as g(Y)=c{sub 0}+c{sub p}Y{sup p} (p{>=}3) are excluded by the joint data analysis of the scalar/tensor spectra and primordial non-Gaussianities.

  6. Developmental constraints versus flexibility in morphological evolution.

    PubMed

    Beldade, Patricia; Koops, Kees; Brakefield, Paul M

    2002-04-25

    Evolutionary developmental biology has encouraged a change of research emphasis from the sorting of phenotypic variation by natural selection to the production of that variation through development. Some morphologies are more readily generated than others, and developmental mechanisms can limit or channel evolutionary change. Such biases determine how readily populations are able to respond to selection, and have been postulated to explain stasis in morphological evolution and unexplored morphologies. There has been much discussion about evolutionary constraints but empirical data testing them directly are sparse. The spectacular diversity in butterfly wing patterns is suggestive of how little constrained morphological evolution can be. However, for wing patterns involving serial repeats of the same element, developmental properties suggest that some directions of evolutionary change might be restricted. Here we show that despite the developmental coupling between different eyespots in the butterfly Bicyclus anynana, there is great potential for independent changes. This flexibility is consistent with the diversity of wing patterns across species and argues for a dominant role of natural selection, rather than internal constraints, in shaping existing variation. PMID:11976682

  7. Sensor Localization from Distance and Orientation Constraints

    PubMed Central

    Porta, Josep M.; Rull, Aleix; Thomas, Federico

    2016-01-01

    The sensor localization problem can be formalized using distance and orientation constraints, typically in 3D. Local methods can be used to refine an initial location estimation, but in many cases such estimation is not available and a method able to determine all the feasible solutions from scratch is necessary. Unfortunately, existing methods able to find all the solutions in distance space can not take into account orientations, or they can only deal with one- or two-dimensional problems and their extension to 3D is troublesome. This paper presents a method that addresses these issues. The proposed approach iteratively projects the problem to decrease its dimension, then reduces the ranges of the variable distances, and back-projects the result to the original dimension, to obtain a tighter approximation of the feasible sensor locations. This paper extends previous works introducing accurate range reduction procedures which effectively integrate the orientation constraints. The mutual localization of a fleet of robots carrying sensors and the position analysis of a sensor moved by a parallel manipulator are used to validate the approach. PMID:27428977

  8. Sensor Localization from Distance and Orientation Constraints.

    PubMed

    Porta, Josep M; Rull, Aleix; Thomas, Federico

    2016-01-01

    The sensor localization problem can be formalized using distance and orientation constraints, typically in 3D. Local methods can be used to refine an initial location estimation, but in many cases such estimation is not available and a method able to determine all the feasible solutions from scratch is necessary. Unfortunately, existing methods able to find all the solutions in distance space can not take into account orientations, or they can only deal with one- or two-dimensional problems and their extension to 3D is troublesome. This paper presents a method that addresses these issues. The proposed approach iteratively projects the problem to decrease its dimension, then reduces the ranges of the variable distances, and back-projects the result to the original dimension, to obtain a tighter approximation of the feasible sensor locations. This paper extends previous works introducing accurate range reduction procedures which effectively integrate the orientation constraints. The mutual localization of a fleet of robots carrying sensors and the position analysis of a sensor moved by a parallel manipulator are used to validate the approach. PMID:27428977

  9. Curvature constraints from large scale structure

    NASA Astrophysics Data System (ADS)

    Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien

    2016-06-01

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.

  10. Constraint-based Temporal Reasoning with Preferences

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Morris, Paul; Morris, Robert; Rossi, Francesca; Sperduti, Alessandro; Venable, K. Brent

    2005-01-01

    Often we need to work in scenarios where events happen over time and preferences are associated to event distances and durations. Soft temporal constraints allow one to describe in a natural way problems arising in such scenarios. In general, solving soft temporal problems require exponential time in the worst case, but there are interesting subclasses of problems which are polynomially solvable. In this paper we identify one of such subclasses giving tractability results. Moreover, we describe two solvers for this class of soft temporal problems, and we show some experimental results. The random generator used to build the problems on which tests are performed is also described. We also compare the two solvers highlighting the tradeoff between performance and robustness. Sometimes, however, temporal local preferences are difficult to set, and it may be easier instead to associate preferences to some complete solutions of the problem. To model everything in a uniform way via local preferences only, and also to take advantage of the existing constraint solvers which exploit only local preferences, we show that machine learning techniques can be useful in this respect. In particular, we present a learning module based on a gradient descent technique which induces local temporal preferences from global ones. We also show the behavior of the learning module on randomly-generated examples.

  11. Domestication changes innate constraints for birdsong learning.

    PubMed

    Kagawa, Hiroko; Suzuki, Kenta; Takahasi, Miki; Okanoya, Kazuo

    2014-07-01

    Birdsongs are acquired by imitating the sounds produced by conspecifics. Within a species, songs diverge by cultural transmission, but the range of species-specific features is restricted by innate constraints. Bengalese finches (Lonchura striata var. domestica) are a domesticated strain of the wild White-rumped munia (Lonchura striata). The songs of the domesticated strain have more tonal sounds and more variable sequences than those of the wild strain. We compared the features of songs that were produced by normal birds, isolation-reared birds, and cross-fostered birds in both White-rumped munias and Bengalese finches to identify differences in the genetic and environmental factors of their songs. Factor analyses were conducted based on 17 song measurements. We found that isolated songs differed from normal and cross-fostered songs, especially in unstable prosodic features. In addition, there were significant differences in sound property of mean frequency between the two strains regardless of the rearing conditions. Thus, innate constraints that partially determine birdsong phenotypes may be altered through domestication. PMID:24793499

  12. Energetic Constraints on Species Coexistence in Birds

    PubMed Central

    Pigot, Alexander L.

    2016-01-01

    The association between species richness and ecosystem energy availability is one of the major geographic trends in biodiversity. It is often explained in terms of energetic constraints, such that coexistence among competing species is limited in low productivity environments. However, it has proven challenging to reject alternative views, including the null hypothesis that species richness has simply had more time to accumulate in productive regions, and thus the role of energetic constraints in limiting coexistence remains largely unknown. We use the phylogenetic relationships and geographic ranges of sister species (pairs of lineages who are each other’s closest extant relatives) to examine the association between energy availability and coexistence across an entire vertebrate class (Aves). We show that the incidence of coexistence among sister species increases with overall species richness and is elevated in more productive ecosystems, even when accounting for differences in the evolutionary time available for coexistence to occur. Our results indicate that energy availability promotes species coexistence in closely related lineages, providing a key step toward a more mechanistic understanding of the productivity–richness relationship underlying global gradients in biodiversity. PMID:26974194

  13. Sensor Localization from Distance and Orientation Constraints.

    PubMed

    Porta, Josep M; Rull, Aleix; Thomas, Federico

    2016-01-01

    The sensor localization problem can be formalized using distance and orientation constraints, typically in 3D. Local methods can be used to refine an initial location estimation, but in many cases such estimation is not available and a method able to determine all the feasible solutions from scratch is necessary. Unfortunately, existing methods able to find all the solutions in distance space can not take into account orientations, or they can only deal with one- or two-dimensional problems and their extension to 3D is troublesome. This paper presents a method that addresses these issues. The proposed approach iteratively projects the problem to decrease its dimension, then reduces the ranges of the variable distances, and back-projects the result to the original dimension, to obtain a tighter approximation of the feasible sensor locations. This paper extends previous works introducing accurate range reduction procedures which effectively integrate the orientation constraints. The mutual localization of a fleet of robots carrying sensors and the position analysis of a sensor moved by a parallel manipulator are used to validate the approach.

  14. Performance constraints and the production of birdsong

    NASA Astrophysics Data System (ADS)

    Suthers, Roderick A.; Vallet, Eric; Zollinger, Sue Anne

    2001-05-01

    The role of physical and physiological constraints in determining the performance limits on the tempo and frequency bandwidth of birdsong was investigated. One series of experiments examined the mechanism by which a vocal mimic, the northern mockingbird (Mimus polygottos), copied the songs of other species with which it was tutored as a juvenile. Other experiments analyzed the motor basis of special canary (Serinus canaria) syllables eliciting sexual responses from females. In each case, the mechanism of vocalization was determined by measuring the respiratory dynamics and sound produced on each side of the songbirds duplex vocal organ, the syrinx. When mockingbirds copied the songs of other species the accuracy of their copy depended on the accuracy with which they reproduced the motor pattern used by the tutor species. Motor difficulty of various acoustic features was assessed by the accuracy of its copy. The high repetition rate, broadband canary syllables preferred by females required especially demanding bilateral motor skills. The results indicate that constraints on the rate of respiratory ventilation and bilateral syringeal coordination can set an upper limit on syllable repetition rate and frequency bandwidth. [Work supported by NIH and NSF.

  15. Developmental constraints versus flexibility in morphological evolution.

    PubMed

    Beldade, Patricia; Koops, Kees; Brakefield, Paul M

    2002-04-25

    Evolutionary developmental biology has encouraged a change of research emphasis from the sorting of phenotypic variation by natural selection to the production of that variation through development. Some morphologies are more readily generated than others, and developmental mechanisms can limit or channel evolutionary change. Such biases determine how readily populations are able to respond to selection, and have been postulated to explain stasis in morphological evolution and unexplored morphologies. There has been much discussion about evolutionary constraints but empirical data testing them directly are sparse. The spectacular diversity in butterfly wing patterns is suggestive of how little constrained morphological evolution can be. However, for wing patterns involving serial repeats of the same element, developmental properties suggest that some directions of evolutionary change might be restricted. Here we show that despite the developmental coupling between different eyespots in the butterfly Bicyclus anynana, there is great potential for independent changes. This flexibility is consistent with the diversity of wing patterns across species and argues for a dominant role of natural selection, rather than internal constraints, in shaping existing variation.

  16. Geologic constraints on Rhea's bombardment mass

    NASA Astrophysics Data System (ADS)

    Leight, Clarissa; Rivera-Valentin, Edgard G.

    2016-10-01

    The mid-sized moons (MSMs) of Saturn display a peculiar set of properties that indicate the system may have been altered early in its history. The MSMs have a large spread in silicate content and diverse inferred thermal and physical histories that, unlike the Galilean satellites, do not demonstrate a trend with semi-major axis or size, which would indicate orbital evolution was a significant driver of their thermal histories. Rather, these features may indicate a significant role for impact-induced thermal and physical evolution. Geophysical properties along with measured crater counts can be used to constrain the bombardment history of the MSMs. Here we apply a fully three-dimensional Monte Carlo cratering model along with Rhea's measured cratering to provide constraints on the cumulative bombardment mass (Mb) experienced by the moon. The classic Nice model estimates Rhea's cumulative bombardment mass (MNice) to be 8.4x10^19 kg; our preliminary results suggest Rhea experienced a bombardment of 0.05 MNice < Mb < 0.06 MNice. Results agree well with similar constraints from Iapetus and provide further support to the Nice II model, which suggests a reduced bombardment for the outer solar system due to the planetesimals having higher kinetic energies. The inferred Mb and typical impact characteristics suggests Rhea may avoid runaway differentiation.

  17. Differing nutritional constraints of consumers across ecosystems.

    PubMed

    Lemoine, Nathan P; Giery, Sean T; Burkepile, Deron E

    2014-04-01

    Stoichiometric mismatches between resources and consumers may drive a number of important ecological interactions, such as predation and herbivory. Such mismatches in nitrogen (N) or phosphorus (P) content between resources and consumers have furthered our understanding of consumer behavior and growth patterns in aquatic systems. However, stoichiometric data for multiple consumers from the same community are lacking in terrestrial systems. Here, we present the results of a study designed to characterize nutritional constraints within a terrestrial arthropod community. In order to place our results in a broader context, we compared our data on resource-consumer stoichiometry to those of stream and lake ecosystems. We found that N and P varied among trophic levels, and that high N:P content of herbivores suggests that herbivores might experience strong N-limitation. However, incredibly low P-content of plant foliage leads to potential P-limitation in herbivores that is nearly as strong as potential N-limitation. Moreover, arthropod predators may also be strongly P-limited. In fact, potential nutrient limitation of terrestrial herbivores in our study is similar to nutrient limitation from streams and lakes, suggesting that similar nutritional constraints may be operating across all three study systems. Importantly, our data suggest that consumers in lakes experience a trade-off between N- and P-limitation, while terrestrial consumers experience simultaneous strengthening or weakening of N- and P-limitation. We suggest that P may be overlooked as an important limiting nutrient in terrestrial ecosystems. PMID:24380968

  18. Gene teams with relaxed proximity constraint.

    PubMed

    Kim, Sun; Choi, Jeong-Hyeon; Yang, Jiong

    2005-01-01

    Functionally related genes co-evolve, probably due to the strong selection pressure in evolution. Thus we expect that they are present in multiple genomes. Physical proximity among genes, known as gene team, is a very useful concept to discover functionally related genes in multiple genomes. However, there are also many gene sets that do not preserve physical proximity. In this paper, we generalized the gene team model, that looks for gene clusters in a physically clustered form, to multiple genome cases with relaxed constraint. We propose a novel hybrid pattern model that combines the set and the sequential pattern models. Our model searches for gene clusters with and/or without physical proximity constraint. This model is implemented and tested with 97 genomes (120 replicons). The result was analyzed to show the usefulness of our model. Especially, analysis of gene clusters that belong to B. subtilis and E. coli demonstrated that our model predicted many experimentally verified operons and functionally related clusters. Our program is fast enough to provide a sevice on the web at http://platcom. informatics.indiana.edu/platcom/. Users can select any combination of 97 genomes to predict gene teams.

  19. Planck constraints on holographic dark energy

    SciTech Connect

    Li, Miao; Zhang, Zhenhui; Li, Xiao-Dong; Ma, Yin-Zhe; Zhang, Xin E-mail: xiaodongli@kias.re.kr E-mail: zhangxin@mail.neu.edu.cn

    2013-09-01

    We perform a detailed investigation on the cosmological constraints on the holographic dark energy (HDE) model by using the Plank data. We find that HDE can provide a good fit to the Plank high-l (l ∼> 40) temperature power spectrum, while the discrepancy at l ≅ 20-40 found in the ΛCDM model remains unsolved in the HDE model. The Plank data alone can lead to strong and reliable constraint on the HDE parameter c. At the 68% confidence level (CL), we obtain c = 0.508 ± 0.207 with Plank+WP+lensing, favoring the present phantom behavior of HDE at the more than 2σ CL. By combining Plank+WP with the external astrophysical data sets, i.e. the BAO measurements from 6dFGS+SDSS DR7(R)+BOSS DR9, the direct Hubble constant measurement result (H{sub 0} = 73.8 ± 2.4 kms{sup −1}Mpc{sup −1}) from the HST, the SNLS3 supernovae data set, and Union2.1 supernovae data set, we get the 68% CL constraint results c = 0.484 ± 0.070, 0.474 ± 0.049, 0.594 ± 0.051, and 0.642 ± 0.066, respectively. The constraints can be improved by 2%-15% if we further add the Plank lensing data into the analysis. Compared with the WMAP-9 results, the Plank results reduce the error by 30%-60%, and prefer a phantom-like HDE at higher significant level. We also investigate the tension between different data sets. We find no evident tension when we combine Plank data with BAO and HST. Especially, we find that the strong correlation between Ω{sub m}h{sup 3} and dark energy parameters is helpful in relieving the tension between the Plank and HST measurements. The residual value of χ{sup 2}{sub Plank+WP+HST}−χ{sup 2}{sub Plank+WP} is 7.8 in the ΛCDM model, and is reduced to 1.0 or 0.3 if we switch the dark energy to w model or the holographic model. When we introduce supernovae data sets into the analysis, some tension appears. We find that the SNLS3 data set is in tension with all other data sets; for example, for the Plank+WP, WMAP-9 and BAO+HST, the corresponding Δχ{sup 2} is equal to 6

  20. Statistical Techniques to Explore the Quality of Constraints in Constraint-Based Modeling Environments

    ERIC Educational Resources Information Center

    Gálvez, Jaime; Conejo, Ricardo; Guzmán, Eduardo

    2013-01-01

    One of the most popular student modeling approaches is Constraint-Based Modeling (CBM). It is an efficient approach that can be easily applied inside an Intelligent Tutoring System (ITS). Even with these characteristics, building new ITSs requires carefully designing the domain model to be taught because different sources of errors could affect…

  1. Hard and Soft Constraints in Reliability-Based Design Optimization

    NASA Technical Reports Server (NTRS)

    Crespo, L.uis G.; Giesy, Daniel P.; Kenny, Sean P.

    2006-01-01

    This paper proposes a framework for the analysis and design optimization of models subject to parametric uncertainty where design requirements in the form of inequality constraints are present. Emphasis is given to uncertainty models prescribed by norm bounded perturbations from a nominal parameter value and by sets of componentwise bounded uncertain variables. These models, which often arise in engineering problems, allow for a sharp mathematical manipulation. Constraints can be implemented in the hard sense, i.e., constraints must be satisfied for all parameter realizations in the uncertainty model, and in the soft sense, i.e., constraints can be violated by some realizations of the uncertain parameter. In regard to hard constraints, this methodology allows (i) to determine if a hard constraint can be satisfied for a given uncertainty model and constraint structure, (ii) to generate conclusive, formally verifiable reliability assessments that allow for unprejudiced comparisons of competing design alternatives and (iii) to identify the critical combination of uncertain parameters leading to constraint violations. In regard to soft constraints, the methodology allows the designer (i) to use probabilistic uncertainty models, (ii) to calculate upper bounds to the probability of constraint violation, and (iii) to efficiently estimate failure probabilities via a hybrid method. This method integrates the upper bounds, for which closed form expressions are derived, along with conditional sampling. In addition, an l(sub infinity) formulation for the efficient manipulation of hyper-rectangular sets is also proposed.

  2. Adaptive laser link reconfiguration using constraint propagation

    NASA Technical Reports Server (NTRS)

    Crone, M. S.; Julich, P. M.; Cook, L. M.

    1993-01-01

    This paper describes Harris AI research performed on the Adaptive Link Reconfiguration (ALR) study for Rome Lab, and focuses on the application of constraint propagation to the problem of link reconfiguration for the proposed space based Strategic Defense System (SDS) Brilliant Pebbles (BP) communications system. According to the concept of operations at the time of the study, laser communications will exist between BP's and to ground entry points. Long-term links typical of RF transmission will not exist. This study addressed an initial implementation of BP's based on the Global Protection Against Limited Strikes (GPALS) SDI mission. The number of satellites and rings studied was representative of this problem. An orbital dynamics program was used to generate line-of-site data for the modeled architecture. This was input into a discrete event simulation implemented in the Harris developed COnstraint Propagation Expert System (COPES) Shell, developed initially on the Rome Lab BM/C3 study. Using a model of the network and several heuristics, the COPES shell was used to develop the Heuristic Adaptive Link Ordering (HALO) Algorithm to rank and order potential laser links according to probability of communication. A reduced set of links based on this ranking would then be used by a routing algorithm to select the next hop. This paper includes an overview of Constraint Propagation as an Artificial Intelligence technique and its embodiment in the COPES shell. It describes the design and implementation of both the simulation of the GPALS BP network and the HALO algorithm in COPES. This is described using a 59 Data Flow Diagram, State Transition Diagrams, and Structured English PDL. It describes a laser communications model and the heuristics involved in rank-ordering the potential communication links. The generation of simulation data is described along with its interface via COPES to the Harris developed View Net graphical tool for visual analysis of communications

  3. Constraints on secret neutrino interactions after Planck

    NASA Astrophysics Data System (ADS)

    Forastieri, Francesco; Lattanzi, Massimiliano; Natoli, Paolo

    2015-07-01

    Neutrino interactions beyond the standard model of particle physics may affect the cosmological evolution and can be constrained through observations. We consider the possibility that neutrinos possess secret scalar or pseudoscalar interactions mediated by the Nambu-Goldstone boson of a still unknown spontaneously broken global U(1) symmetry, as in, e.g., Majoron models. In such scenarios, neutrinos still decouple at Tsimeq 1 MeV, but become tightly coupled again (``recouple'') at later stages of the cosmological evolution. We use available observations of the cosmic microwave background (CMB) anisotropies, including Planck 2013 and the joint BICEP2/Planck 2015 data, to derive constraints on the quantity γνν4, parameterizing the neutrino collision rate due to scalar or pseudoscalar interactions. We consider both a minimal extension of the standard ΛCDM model, and more complicated scenarios with extra relativistic degrees of freedom or non-vanishing tensor amplitude. For a wide range of dataset and model combinations, we find a typical constraint γνν4 lesssim 0.9× 10-27 (95% C.L.), implying an upper limit on the redshift zνrec of neutrino recoupling 0lesssim 850, leaving open the possibility that the latter occured well before hydrogen recombination. In the framework of Majoron models, the upper limit on γνν roughly translates on a constraint g lesssim 8.2× 10-7 on the Majoron-neutrino coupling constant g. In general, the data show a weak (~ 1σ) but intriguing preference for non-zero values of γνν4, with best fits in the range γνν4 = (0.15-0.35)× 10-27, depending on the particular dataset. This is more evident when either high-resolution CMB observations from the ACT and SPT experiments are included, or the possibility of non-vanishing tensor modes is considered. In particular, for the minimal model ΛCDM+γνν and including the Planck 2013, ACT and SPT data, we report γνν4=(0.44+0.17-0.36)×10-27 (0300 lesssim zνrec lesssim 550) at 68

  4. Emergent Constraints for Cloud Feedbacks and Climate Sensitivity

    DOE PAGESBeta

    Klein, Stephen A.; Hall, Alex

    2015-10-26

    Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model errormore » that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.« less

  5. Emergent Constraints for Cloud Feedbacks and Climate Sensitivity

    SciTech Connect

    Klein, Stephen A.; Hall, Alex

    2015-10-26

    Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model error that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.

  6. Evolutionary branching under multi-dimensional evolutionary constraints.

    PubMed

    Ito, Hiroshi; Sasaki, Akira

    2016-10-21

    The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. PMID:27444402

  7. Measuring Constraint-Set Utility for Partitional Clustering Algorithms

    NASA Technical Reports Server (NTRS)

    Davidson, Ian; Wagstaff, Kiri L.; Basu, Sugato

    2006-01-01

    Clustering with constraints is an active area of machine learning and data mining research. Previous empirical work has convincingly shown that adding constraints to clustering improves the performance of a variety of algorithms. However, in most of these experiments, results are averaged over different randomly chosen constraint sets from a given set of labels, thereby masking interesting properties of individual sets. We demonstrate that constraint sets vary significantly in how useful they are for constrained clustering; some constraint sets can actually decrease algorithm performance. We create two quantitative measures, informativeness and coherence, that can be used to identify useful constraint sets. We show that these measures can also help explain differences in performance for four particular constrained clustering algorithms.

  8. Cosmological constraints on coupled dark energy

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Li, Hang; Wu, Yabo; Lu, Jianbo

    2016-10-01

    The coupled dark energy model provides a possible approach to mitigate the coincidence problem of cosmological standard model. Here, the coupling term is assumed as bar Q = 3Hξxbar rhox, which is related to the interaction rate and energy density of dark energy. We derive the background and perturbation evolution equations for several coupled models. Then, we test these models by currently available cosmic observations which include cosmic microwave background radiation from Planck 2015, baryon acoustic oscillation, type Ia supernovae, fσ8(z) data points from redshift-space distortions, and weak gravitational lensing. The constraint results tell us there is no evidence of interaction at 2σ level, it is very hard to distinguish different coupled models from other ones.

  9. Pyrolysis of Precambrian kerogens - Constraints and capabilities

    NASA Technical Reports Server (NTRS)

    Nagy, B.

    1982-01-01

    Precambrian kerogens are currently considered to be the primary candidates for the search of biochemical fossils. Degradation of kerogens by relatively 'mild' pyrolysis techniques, such as under high vacuum, can liberate indicative structural moieties which were incorporated in, and perhaps shielded by, these solid and highly condensed, basically aromatic substances. It is necessary to observe analytical constraints (sample size and shape, temperature, pressure, time, etc.) in order to prevent an overabundant yield of secondary pyrolyzates (inter- and intramolecular rearrangements) which can prevent kerogen characterization. Potential biochemical fossils have been found in Precambrian kerogens. Demonstratable syngenetic biochemical fossils are expected after kerogen diagenesis and catagenesis is understood in sufficient detail, and when pyrolysis is augmented by multiple, improved analytical techniques.

  10. Pyrolysis of Precambrian kerogens: constraints and capabilities.

    PubMed

    Nagy, B

    1982-01-01

    Precambrian kerogens are currently considered to be the primary candidates for the search of biochemical fossils. Degradation of kerogens by relatively "mild" pyrolysis techniques, such as under high vacuum, can liberate indicative structural moieties which were incorporated in, and perhaps shielded by, these solid and highly condensed, basically aromatic substances. It is necessary to observe analytical constraints (sample size and shape, temperature, pressure, time, etc.) in order to prevent an overabundant yield of secondary pyrolyzates (inter- and intramolecular rearrangements) which can prevent kerogen characterization. Potential biochemical fossils have been found in Precambrian kerogens. Demonstratable syngenetic biochemical fossils are expected after kerogen diagenesis and catagenesis is understood in sufficient detail, and when pyrolysis is augmented by multiple, improved analytical techniques.

  11. Astrophysical constraints on Planck scale dissipative phenomena.

    PubMed

    Liberati, Stefano; Maccione, Luca

    2014-04-18

    The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles.

  12. Constraints on parton distribution from CDF

    SciTech Connect

    Bodek, A.; CDF Collaboration

    1995-10-01

    The asymmetry in W{sup -} - W{sup +} production in p{bar p} collisions and Drell-Yan data place tight constraints on parton distributions functions. The W asymmetry data constrain the slope of the quark distribution ratio d(x)/u(x) in the x range 0.007-0.27. The published W asymmetry results from the CDF 1992.3 data ({approx} 20 pb{sup -1}) greatly reduce the systematic error originating from the choice of PDF`s in the W mass measurement at CDF. These published results have also been included in the CTEQ3, MRSA, and GRV94 parton distribution fits. These modern parton distribution functions axe still in good agreement with the new 1993-94 CDF data({approx} 108 pb{sup -1} combined). Preliminary results from CDF for the Drell-Yan cross section in the mass range 11-350 GeV/c{sup 2} are discussed.

  13. Constraints on topological order in mott insulators.

    PubMed

    Zaletel, Michael P; Vishwanath, Ashvin

    2015-02-20

    We point out certain symmetry induced constraints on topological order in Mott insulators (quantum magnets with an odd number of spin 1/2 moments per unit cell). We show, for example, that the double-semion topological order is incompatible with time reversal and translation symmetry in Mott insulators. This sharpens the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem for 2D quantum magnets, which guarantees that a fully symmetric gapped Mott insulator must be topologically ordered, but is silent about which topological order is permitted. Our result applies to the kagome lattice quantum antiferromagnet, where recent numerical calculations of the entanglement entropy indicate a ground state compatible with either toric code or double-semion topological order. Our result rules out the latter possibility.

  14. Constraints on the wing morphology of pterosaurs

    PubMed Central

    Palmer, Colin; Dyke, Gareth

    2012-01-01

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine—let alone measure—optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability. PMID:21957137

  15. Constraints on the wing morphology of pterosaurs.

    PubMed

    Palmer, Colin; Dyke, Gareth

    2012-03-22

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine-let alone measure-optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability.

  16. Controlling neural network responsiveness: tradeoffs and constraints.

    PubMed

    Keren, Hanna; Marom, Shimon

    2014-01-01

    In recent years much effort is invested in means to control neural population responses at the whole brain level, within the context of developing advanced medical applications. The tradeoffs and constraints involved, however, remain elusive due to obvious complications entailed by studying whole brain dynamics. Here, we present effective control of response features (probability and latency) of cortical networks in vitro over many hours, and offer this approach as an experimental toy for studying controllability of neural networks in the wider context. Exercising this approach we show that enforcement of stable high activity rates by means of closed loop control may enhance alteration of underlying global input-output relations and activity dependent dispersion of neuronal pair-wise correlations across the network. PMID:24808860

  17. Nonthermal axion dark radiation and constraints

    NASA Astrophysics Data System (ADS)

    Mazumdar, Anupam; Qutub, Saleh; Saikawa, Ken'ichi

    2016-09-01

    The Peccei-Quinn mechanism presents a neat solution to the strong C P problem. As a by-product, it provides an ideal dark matter candidate, "the axion", albeit with a tiny mass. Axions therefore can act as dark radiation if excited with large momenta after the end of inflation. Nevertheless, the recent measurement of relativistic degrees of freedom from cosmic microwave background radiation strictly constrains the abundance of such extra relativistic species. We show that ultrarelativistic axions can be abundantly produced if the Peccei-Quinn field was initially displaced from the minimum of the potential. This in lieu places an interesting constraint on the axion dark matter window with large decay constant which is expected to be probed by future experiments. Moreover, an upper bound on the reheating temperature can be placed, which further constrains the thermal history of our Universe.

  18. Constraints on topological order in mott insulators.

    PubMed

    Zaletel, Michael P; Vishwanath, Ashvin

    2015-02-20

    We point out certain symmetry induced constraints on topological order in Mott insulators (quantum magnets with an odd number of spin 1/2 moments per unit cell). We show, for example, that the double-semion topological order is incompatible with time reversal and translation symmetry in Mott insulators. This sharpens the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem for 2D quantum magnets, which guarantees that a fully symmetric gapped Mott insulator must be topologically ordered, but is silent about which topological order is permitted. Our result applies to the kagome lattice quantum antiferromagnet, where recent numerical calculations of the entanglement entropy indicate a ground state compatible with either toric code or double-semion topological order. Our result rules out the latter possibility. PMID:25763971

  19. Constraints on grip-selection: minimizing awkwardness.

    PubMed

    Fischman, M G

    1998-02-01

    In picking up and manipulating an object, the selection of an initial grip (overhand versus underhand) often depends on how comfortable the hand and arm will be at the end of the movement. This effect has been called "end-state comfort" and seems to be an important constraint in grip-selection. The present experiment further explored this effect by selecting a task that would ensure a comfortable ending position regardless of the initial choice of grip. 206 undergraduates picked up a cardboard paper-towel roll from a horizontal position and placed one end down on a table. Analysis showed a clear preference for the overhand grip, as 78% of the participants chose this grip. In addition, more women preferred the overhand grip than men. The findings indicate that people may be sensitive to minimizing awkwardness in both terminal and initial positions. PMID:9530757

  20. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  1. Autonomy, moral constraints, and markets in kidneys.

    PubMed

    Kerstein, Samuel J

    2009-12-01

    This article concerns the morality of establishing regulated kidney markets in an effort to reduce the chronic shortage of kidneys for transplant. The article tries to rebut the view, recently defended by James Taylor, that if we hold autonomy to be intrinsically valuable, then we should be in favor of such markets. The article then argues that, under current conditions, the buying and selling of organs in regulated markets would sometimes violate two Kantian principles that are seen as moral constraints. One principle forbids expressing disrespect for the dignity of humanity; the other forbids treating others merely as means. In light of the moral danger posed by regulated markets, the article advocates an alternative way of diminishing the current organ shortage, namely opt-out systems of cadaveric organ donation. PMID:19846479

  2. Quantum gravity constraints from unitarity and analyticity

    NASA Astrophysics Data System (ADS)

    Bellazzini, Brando; Cheung, Clifford; Remmen, Grant N.

    2016-03-01

    We derive rigorous bounds on corrections to Einstein gravity using unitarity and analyticity of graviton scattering amplitudes. In D ≥4 spacetime dimensions, these consistency conditions mandate positive coefficients for certain quartic curvature operators. We systematically enumerate all such positivity bounds in D =4 and D =5 before extending to D ≥6 . Afterwards, we derive positivity bounds for supersymmetric operators and verify that all of our constraints are satisfied by weakly coupled string theories. Among quadratic curvature operators, we find that the Gauss-Bonnet term in D ≥5 is inconsistent unless new degrees of freedom enter at the natural cutoff scale defined by the effective theory. Our bounds apply to perturbative ultraviolet completions of gravity.

  3. Observational constraints on monomial warm inflation

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca

    2016-07-01

    Warm inflation is, as of today, one of the best motivated mechanisms for explaining an early inflationary period. In this paper, we derive and analyze the current bounds on warm inflation with a monomial potential U propto phip, using the constraints from the PLANCK mission. In particular, we discuss the parameter space of the tensor-to-scalar ratio r and the potential coupling λ of the monomial warm inflation in terms of the number of e-folds. We obtain that the theoretical tensor-to-scalar ratio r ~ 10‑8 is much smaller than the current observational constrain r lesssim 0.12, despite a relatively large value of the field excursion Δ phi ~ 0.1MPl. Warm inflation thus eludes the Lyth bound set on the tensor-to-scalar ratio by the field excursion.

  4. Observational Constraints on Stellar Flares and Prominences

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia

    2016-07-01

    Multi-wavelength surveys have catalogued a wealth of stellar flare data for stars representing a broad range of masses and ages. Young solar analogs inform our understanding of the Sun's evolution and the influence of its activity on early solar system formation, while field star observations allow us to place its current activity into context within a statistical ensemble of main-sequence G-type stars. At the same time, stellar observations probe a variety of interior and coronal conditions, providing constraints on models of equilibrium (and loss thereof!) for magnetic structures. In this review, I will focus on our current understanding of stellar flares, prominences, and coronal mass ejections as a function of stellar parameters. As our interpretation of stellar data relies heavily on solar-stellar analogy, I will explore how far into extreme stellar parameter spaces this comparison can be invoked.

  5. Regional magnetic anomaly constraints on continental rifting

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  6. Continental magnetic anomaly constraints on continental reconstruction

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Crustal magnetic anomalies mapped by the MAGSAT satellite for North and South America, Europe, Africa, India, Australia and Antarctica and adjacent marine areas were adjusted to a common elevation of 400 km and differentially reduced to the radial pole of intensity 60,000 nT. These radially polarized anomalies are normalized for differential inclination, declination and intensity effects of the geomagnetic field, so that in principle they directly reflected the geometric and magnetic polarization attributes of sources which include regional petrologic variations of the crust and upper mantle, and crustal thickness and thermal perturbations. Continental anomalies demonstrate remarkably detailed correlation of regional magnetic sources across rifted margins when plotted on a reconstruction of Pangea. Accordingly, they suggest further fundamental constraints on the geologic evolution of the continents and their reconstructions.

  7. Constraints on gauge field production during inflation

    SciTech Connect

    Nurmi, Sami; Sloth, Martin S. E-mail: sloth@cp3.dias.sdu.dk

    2014-07-01

    In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton and the magnetic field defined by the gauge field. We then demonstrate that in a very general class of models, the bispectrum induced by the cross correlation between the inflaton and the magnetic field can be dominating compared with the non-Gaussianity induced by magnetic fields when the cross correlation between the magnetic field and the inflaton is ignored.

  8. REvolver: modeling sequence evolution under domain constraints.

    PubMed

    Koestler, Tina; von Haeseler, Arndt; Ebersberger, Ingo

    2012-09-01

    Simulating the change of protein sequences over time in a biologically realistic way is fundamental for a broad range of studies with a focus on evolution. It is, thus, problematic that typically simulators evolve individual sites of a sequence identically and independently. More realistic simulations are possible; however, they are often prohibited by limited knowledge concerning site-specific evolutionary constraints or functional dependencies between amino acids. As a consequence, a protein's functional and structural characteristics are rapidly lost in the course of simulated evolution. Here, we present REvolver (www.cibiv.at/software/revolver), a program that simulates protein sequence alteration such that evolutionarily stable sequence characteristics, like functional domains, are maintained. For this purpose, REvolver recruits profile hidden Markov models (pHMMs) for parameterizing site-specific models of sequence evolution in an automated fashion. pHMMs derived from alignments of homologous proteins or protein domains capture information regarding which sequence sites remained conserved over time and where in a sequence insertions or deletions are more likely to occur. Thus, they describe constraints on the evolutionary process acting on these sequences. To demonstrate the performance of REvolver as well as its applicability in large-scale simulation studies, we evolved the entire human proteome up to 1.5 expected substitutions per site. Simultaneously, we analyzed the preservation of Pfam and SMART domains in the simulated sequences over time. REvolver preserved 92% of the Pfam domains originally present in the human sequences. This value drops to 15% when traditional models of amino acid sequence evolution are used. Thus, REvolver represents a significant advance toward a realistic simulation of protein sequence evolution on a proteome-wide scale. Further, REvolver facilitates the simulation of a protein family with a user-defined domain architecture at

  9. Input and output constraints affecting irrigation development

    NASA Astrophysics Data System (ADS)

    Schramm, G.

    1981-05-01

    In many of the developing countries the expansion of irrigated agriculture is used as a major development tool for bringing about increases in agricultural output, rural economic growth and income distribution. Apart from constraints imposed by water availability, the major limitations considered to any acceleration of such programs are usually thought to be those of costs and financial resources. However, as is shown on the basis of empirical data drawn from Mexico, in reality the feasibility and effectiveness of such development programs is even more constrained by the lack of specialized physical and human factors on the input and market limitations on the output side. On the input side, the limited availability of complementary factors such as, for example, truly functioning credit systems for small-scale farmers or effective agricultural extension services impose long-term constraints on development. On the output side the limited availability, high risk, and relatively slow growth of markets for high-value crops sharply reduce the usually hoped-for and projected profitable crop mix that would warrant the frequently high costs of irrigation investments. Three conclusions are drawn: (1) Factors in limited supply have to be shadow-priced to reflect their high opportunity costs in alternative uses. (2) Re-allocation of financial resources from immediate construction of projects to longer-term increase in the supply of scarce, highly-trained manpower resources are necessary in order to optimize development over time. (3) Inclusion of high-value, high-income producing crops in the benefit-cost analysis of new projects is inappropriate if these crops could potentially be grown in already existing projects.

  10. Constraints on planetesimal formation from asteroid compositions

    NASA Astrophysics Data System (ADS)

    Vernazza, Pierre; Zanda, B.; Binzel, R.; Hiroi, T.; DeMeo, F.; Birlan, M.; Hewins, R.; Ricci, L.; Barge, P.; Lockhart, M.

    2013-10-01

    Ordinary chondrite meteorites (OCs) are by far the most abundant meteorites (80% of all falls). Their study along with that of other chondrite classes has provided numerous constraints on the formation and early evolution of the solar system, including a) the migration processes that occurred in the protoplanetary disk prior to primary accretion (i.e. planetesimal formation) and their associated timescales, b) the post- (and syn-) accretional heating events, and c) the collisional events that occurred since 4.6 Gyrs. Although petrologic, chemical and isotopic studies of OCs and meteorites in general have largely helped establish a chronology of the earliest events of planetesimal formation, there are several questions that cannot be resolved via laboratory measurements and/or experiments only. These include the formation location of the different classes of ordinary chondrites (and meteorites in general); the initial average size of their parent bodies; the amplitude of the bias in our collections with respect to the compositional distribution of OC-like material in the Asteroid Belt; the number of parent bodies for a given meteorite class (it is typically proposed that each meteorite class has only one parent body); the level of radial mixing experienced by parent bodies after their formation; and their accretion timescale. To investigate answers to these questions, we conducted an extensive spectroscopic survey of 83 main belt S-type asteroids and 5 S-type families as it was recently established unambiguously that these asteroids encompass the parent bodies of OCs. In parallel, we also obtained for the first time spectral measurements for a representative number (53) of unequilibrated ordinary chondrites (UOCs) as those were lacking in current databases (e.g. RELAB; http://www.planetary.brown.edu/relab/). We will present evidence for establishing several new constraints on the planetesimal formation process from our broadened spectral survey.

  11. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  12. Tidal constraints on the interior of Venus

    NASA Astrophysics Data System (ADS)

    Dumoulin, Caroline; Tobie, Gabriel; Verhoeven, Olivier; Rosenblatt, Pascal; Rambaux, Nicolas

    2016-10-01

    As a prospective study for a future exploration of Venus, we propose to systematically investigate the signature of the internal structure in the gravity field and the rotation state of Venus, through the determination of the moment of inertia and the tidal Love number.We test various mantle compositions, core size and density as well as temperature profiles representative of different scenarios for formation and evolution of Venus. The mantle density ρ and seismic vP and vS wavespeeds are computed in a consistent manner from given temperature and composition using the Perple X program. This method computes phase equilibria and uses the thermodynamics of mantle minerals developped by Stixrude and Lithgow-Bertelloni (2011).The viscoelastic deformation of the planet interior under the action of periodic tidal forces are computed following the method of Tobie et al. (2005).For a variety of interior models of Venus, the Love number, k2, and the moment of inertia factor are computed following the method described above. The objective is to determine the sensitivity of these synthetic results to the internal structure. These synthetic data are then used to infer the measurement accuracies required on the time-varying gravitational field and the rotation state (precession rate, nutation and length of day variations) to provide useful constraints on the internal structure.We show that a better determination of k2, together with an estimation of the moment of inertia, the radial displacement, and of the time lag, if possible, will refine our knowledge on the present-day interior of Venus (size of the core, mantle temperature, composition and viscosity). Inferring these quantities from a future ex- ploration mission will provide essential constraints on the formation and evolution scenarios of Venus.

  13. Safety and environmental constraints on space applications of fusion energy

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece

    1990-01-01

    Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.

  14. A Consideration of Constraints on Aircraft Departure Operations

    NASA Technical Reports Server (NTRS)

    Darr, Stephen T.; Morello, Samuel A.; Shay, Richard F.; Lemos, Katherine A.; Jacobsen, Robert

    2009-01-01

    This paper presents a system-level perspective on the operational issues and constraints that limit departure capacity at large metropolitan airports in today's air transportation system. It examines the influence of constraints evident in en route airspace, in metroplex operations, and at individual airports from today's perspective and with a view toward future gate-to-cruise operations. Cross cutting organizational and technological challenges are discussed in relation to their importance in addressing the constraints.

  15. A Constraint-based Attribute and Interval Planning

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In this paper we introduce Constraint-based Attribute and Interval Planning (CAIP), a new paradigm for representing and reasoning about plans. The paradigm enables the description of planning domains with time, resources, concurrent activities, mutual exclusions among sets of activities, disjunctive preconditions and conditional effects. We provide a theoretical foundation for the paradigm using a mapping to first order logic. We also show that CAIP plans are naturally expressed by networks of constraints, and that planning maps directly to dynamic constraint reasoning. In addition, we show how constraint templates are used to provide a compact mechanism for describing planning domains.

  16. The "Myth" of the Minimum SAR Antenna Area Constraint

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Johnson, W. T. K.; Huneycutt, B.; Jordan, R.; Hensley, S.; Siqueira, P.; Curlander, J.

    1998-01-01

    A design constraint traceable ot the early days of spaceborne Synthetic Aperture Radar (SAR) is known as the minimum antenna area constraint for SAR. In this paper, it is confirmed that this constraint strictly applies only to the case where both the best possible resolution and the widest possible swath are the design goals. SAR antennas with area smaller than the constraint allows are shown to be possible, have been used on spaceborne SAR missions in the past, and should permit further, lower-cost SAR mission in the future.

  17. Verification of Pointing Constraints for the Dawn Spacecraft

    NASA Technical Reports Server (NTRS)

    Vanelli, C. Anthony; Swenka, Edward; Smith, Brett

    2008-01-01

    NASA's Dawn spacecraft, an ion-thrust science mission to Vesta and Ceres, has numerous pointing constraints critical for safe operation. Onboard software automatically chooses target attitudes but enforces only a simplified constraint set at slew endpoints. Onboard fault-protection also uses simplified constraints, and violations can result in safing events that dramatically consume mission margins for missed thrust. Lastly, for funding reasons the operations team is lean, forcing the development of month-long command sequences. These factors place a premium on reliable maneuver design, prediction, and verification against pointing constraints. This paper presents Slewth, a ground tool built to address these concerns.

  18. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is

  19. Updated constraints on the cosmic string tension

    SciTech Connect

    Battye, Richard; Moss, Adam

    2010-07-15

    We reexamine the constraints on the cosmic string tension from cosmic microwave background (CMB) and matter power spectra, and also from limits on a stochastic background of gravitational waves provided by pulsar timing. We discuss the different approaches to modeling string evolution and radiation. In particular, we show that the unconnected segment model can describe CMB spectra expected from thin string (Nambu) and field theory (Abelian-Higgs) simulations using the computed values for the correlation length, rms string velocity and small-scale structure relevant to each variety of simulation. Applying the computed spectra in a fit to CMB and SDSS data we find that G{mu}/c{sup 2}<2.6x10{sup -7} (2{sigma}) if the Nambu simulations are correct and G{mu}/c{sup 2}<6.4x10{sup -7} in the Abelian-Higgs case. The degeneracy between G{mu}/c{sup 2} and the power spectrum slope n{sub S} is substantially reduced from previous work. Inclusion of constraints on the baryon density from big bang nucleosynthesis (BBN) imply that n{sub S}<1 at around the 4{sigma} level for both the Nambu and Abelian-Higgs cases. As a by-product of our results, we find there is ''moderate-to-strong'' Bayesian evidence that the Harrison-Zel'dovich spectrum is excluded (odds ratio of {approx}100 ratio 1) by the combination of CMB, SDSS, and BBN when compared to the standard 6 parameter fit. Using the contribution to the gravitational wave background from radiation era loops as a conservative lower bound on the signal for specific values of G{mu}/c{sup 2} and loop production size, {alpha}, we find that G{mu}/c{sup 2}<7x10{sup -7} for {alpha}c{sup 2}/({Gamma}G{mu})<<1 and G{mu}/c{sup 2}<5x10{sup -11}/{alpha} for {alpha}c{sup 2}/({Gamma}G{mu})>>1.

  20. Structure Formation Cosmic Rays: Identifying Observational Constraints

    NASA Astrophysics Data System (ADS)

    Prodanovic, T.; Fields, B. D.

    2005-06-01

    Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs) would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be 6Li. The rare isotope 6Li is produced only by cosmic rays, dominantly in alpha alpha rightarrow 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is 6Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metal-poor halo stars. Given the already existing problem of establishing the concordance between 7Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model- independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1) we establish the connection between gamma-ray and 6Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB); 2) we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs), which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using

  1. Balancing Flexible Constraints and Measurement Precision in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Moyer, Eric L.; Galindo, Jennifer L.; Dodd, Barbara G.

    2012-01-01

    Managing test specifications--both multiple nonstatistical constraints and flexibly defined constraints--has become an important part of designing item selection procedures for computerized adaptive tests (CATs) in achievement testing. This study compared the effectiveness of three procedures: constrained CAT, flexible modified constrained CAT,…

  2. A Monte Carlo Approach for Adaptive Testing with Content Constraints

    ERIC Educational Resources Information Center

    Belov, Dmitry I.; Armstrong, Ronald D.; Weissman, Alexander

    2008-01-01

    This article presents a new algorithm for computerized adaptive testing (CAT) when content constraints are present. The algorithm is based on shadow CAT methodology to meet content constraints but applies Monte Carlo methods and provides the following advantages over shadow CAT: (a) lower maximum item exposure rates, (b) higher utilization of the…

  3. a Constraint on the Anomalous GREEN’S Function

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Jihn

    It is shown that the physical constraint of the Anomalous Green’s function gives a natural pairing condition. The resulting self-consistency equation is directly related to the BCS gap equation. Both inhomogeneous and homogeneous systems are considered to illustrate the importance of the constraint. Especially we find weak localization correction to the phonon-mediated interaction.

  4. Teaching Political Science Without Bureaucratic Constraints: The Governor's School Experience.

    ERIC Educational Resources Information Center

    Tannenbaum, Aron G.

    Development of political science courses on the college level is discussed in light of bureaucratic and disciplinary constraints. Bureaucratic constraints are interpreted to include clearance from institutional superiors, adequate student enrollment, adequate personnel and research resources, and relevance to undergraduate political science study.…

  5. 21 CFR 888.6 - Degree of constraint.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ORTHOPEDIC DEVICES General Provisions § 888.6 Degree of constraint. Certain joint prostheses provide more... affecting the safety and effectiveness of orthopedic prostheses. FDA is defining the following standard terms for categorizing the degree of constraint. (a) A “constrained” joint prosthesis is used for...

  6. Constraint on sqrt{E} and Excitation Number

    NASA Astrophysics Data System (ADS)

    Tsukamoto, T.; Honda, T.; Matsuzaki, H.; Ishii, C.

    1986-06-01

    It is shown that the constraint on sqrt{E} introduced by Alhassid, Levine, Karp and Steadman in their information-theoretical analysis of heavy ion collision data reflects the constraint on the excitation number n_x. Arguments are based on Williams' state density formula for exciton model. Ericson's formula is also considered.

  7. Motivating Constraints of a Pedagogy-Embedded Computer Algebra System

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry

    2007-01-01

    The constraints of a computer algebra system (CAS) generally induce limitations on its usage. Via the pedagogical features implemented in such a system, "motivating constraints" can appear, encouraging advanced theoretical learning, providing a broader mathematical knowledge and more profound mathematical understanding. We discuss this issue,…

  8. Credit Constraints in Education. NBER Working Paper No. 17435

    ERIC Educational Resources Information Center

    Lochner, Lance; Monge-Naranjo, Alexander

    2011-01-01

    We review studies of the impact of credit constraints on the accumulation of human capital. Evidence suggests that credit constraints are increasingly important for schooling and other aspects of households' behavior. We highlight the importance of early childhood investments, since their response largely determines the impact of credit…

  9. Teaching Australian Football in Physical Education: Constraints Theory in Practice

    ERIC Educational Resources Information Center

    Pill, Shane

    2013-01-01

    This article outlines a constraints-led process of exploring, modifying, experimenting, adapting, and developing game appreciation known as Game Sense (Australian Sports Commission, 1997; den Duyn, 1996, 1997) for the teaching of Australian football. The game acts as teacher in this constraints-led process. Rather than a linear system that…

  10. Unitarity Constraints on Asymmetric Freeze-In

    SciTech Connect

    Hook, Anson; /SLAC

    2011-08-15

    This paper considers unitarity and CPT constraints on asymmetric freeze-in, the use of freeze-in to store baryon number in a dark sector. In this scenario, Sakharov's out of equilibrium condition is satisfied by placing the visible and hidden sectors at different temperatures while a net visible baryon number is produced by storing negative baryon number in a dark sector. It is shown that unitarity and CPT lead to unexpected cancellations. In particular, the transfer of baryon number cancels completely at leading order. This note has shown that if two sectors are in thermal equilibrium with themselves, but not with each other, then the leading effect transferring conserved quantities between the two sectors is of order the the weak coupling connecting them to the third power. When freeze-in is used to produce a net baryon number density, the leading order effect comes from {Omicron}({lambda}{sup 3}) diagrams where the intermediate state that goes on-shell has a different visible baryon number than the final state visible baryon number. Models in which the correct baryon number is generated with freeze-in as the dominant source of abundance, typically require {lambda} {approx}> 10{sup -6} and m{sub bath} {approx}> TeV. m{sub bath} is the mass of the visible particle which communicates with the hidden sector. The lower window is potentially observable at the LHC.

  11. New constraints on neutrino masses from cosmology

    SciTech Connect

    Melchiorri, A.; Serra, P.; Dodelson, S.; Slosar, A.; /Ljubljana U.

    2006-01-01

    By combining data from cosmic microwave background (CMB) experiments (including the recent WMAP third year results), large scale structure (LSS) and Lyman-{alpha} forest observations, we derive upper limits on the sum of neutrino masses of {summation}m{sub v} < 0.17eV at 95% c.l.. We then constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless + 1 massive neutrino case we bound the mass of the sterile neutrino to m{sub s} < 0.26eV at 95% c.l.. These results exclude at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We then generalize the analysis to account for active neutrino masses which tightens the limit to m{sub s} < 0.23eV and the possibility that the sterile abundance is not thermal. In the latter case, the constraints in the (mass, density) plane are nontrivial. For a mass of > 1eV or < 0.05eV the cosmological energy density in sterile neutrinos is always constrained to be {omega}{sub v} < 0.003 at 95% c.l.. However, for a sterile neutrino mass of {omega}{sub v} 0.25eV, {omega}{sub v} can be as large as 0.01.

  12. Optimal reactive planning with security constraints

    SciTech Connect

    Thomas, W.R.; Cheng, D.T.Y.; Dixon, A.M.; Thorp, J.D.; Dunnett, R.M.; Schaff, G.

    1995-12-31

    The National Grid Company (NGC) of England and Wales has developed a computer program, SCORPION, to help system planners optimize the location and size of new reactive compensation plant on the transmission system. The reactive power requirements of the NGC system have risen as a result of increased power flows and the shorter timescale on which power stations are commissioned and withdrawn from service. In view of the high costs involved, it is important that reactive compensation be installed as economically as possible, without compromising security. Traditional methods based on iterative use of a load flow program are labor intensive and subjective. SCORPION determines a near-optimal pattern of new reactive sources which are required to satisfy voltage constraints for normal and contingent states of operation of the transmission system. The algorithm processes the system states sequentially, instead of optimizing all of them simultaneously. This allows a large number of system states to be considered with an acceptable run time and computer memory requirement. Installed reactive sources are treated as continuous, rather than discrete, variables. However, the program has a restart facility which enables the user to add realistically sized reactive sources explicitly and thereby work towards a realizable solution to the planning problem.

  13. Search times with arbitrary detection constraints

    NASA Astrophysics Data System (ADS)

    Campos, Daniel; Bartumeus, Frederic; Méndez, Vicenç

    2013-08-01

    Random encounters in space are central to describing diffusion-limited reactions, animal foraging, search processes, and many other situations in nature. These encounters, however, are often constrained by the capacity of the searcher to detect and/or recognize its target. This can be due to limited binding and perception abilities of the searcher or hiding and avoiding mechanisms used by the target. Hence detection failure upon passage over the target location turns the process into an n-passage problem, with n being random. Here we provide a general description of this detection problem for arbitrary dimensions and arbitrary detection constraints. The mean detection time (MDT) for a random searcher embedded in a sea of homogeneously distributed targets is obtained as a function of the target density ρ, the size domain L, and the effective detection distance a. While the scaling with ρ and L is found to be universal and equivalent to that found for the corresponding first-passage problem, the scaling of the MDT on a depends on the specific detection mechanism considered.

  14. Weighting climate model projections using observational constraints.

    PubMed

    Gillett, Nathan P

    2015-11-13

    Projected climate change integrates the net response to multiple climate feedbacks. Whereas existing long-term climate change projections are typically based on unweighted individual climate model simulations, as observed climate change intensifies it is increasingly becoming possible to constrain the net response to feedbacks and hence projected warming directly from observed climate change. One approach scales simulated future warming based on a fit to observations over the historical period, but this approach is only accurate for near-term projections and for scenarios of continuously increasing radiative forcing. For this reason, the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) included such observationally constrained projections in its assessment of warming to 2035, but used raw model projections of longer term warming to 2100. Here a simple approach to weighting model projections based on an observational constraint is proposed which does not assume a linear relationship between past and future changes. This approach is used to weight model projections of warming in 2081-2100 relative to 1986-2005 under the Representative Concentration Pathway 4.5 forcing scenario, based on an observationally constrained estimate of the Transient Climate Response derived from a detection and attribution analysis. The resulting observationally constrained 5-95% warming range of 0.8-2.5 K is somewhat lower than the unweighted range of 1.1-2.6 K reported in the IPCC AR5.

  15. Composable communication constraint-based control

    NASA Astrophysics Data System (ADS)

    Hsieh, Mong-ying A.; Srivastava, Pranav; Kumar, Vijay; Taylor, Camillo J.

    2004-12-01

    We describe a framework for multi-vehicle control which explicitly incorporates the state of the communication network and the constraints imposed by specifications on the quality of the communications links available to each robot. In a multi-robot adhoc setting, the need for guaranteed communications is essential for cooperative behavior. We propose a control methodology that ensures local connectivity in multi-robot navigation. Specifically, given an initial and final configuration of robots in which the quality of each communication link is above some specified threshold, we synthesize controllers that guarantee each robot goes to its goal destination while maintaining the quality of the communication links above the given threshold. For the sake of simplicity, we assume each robot has a pre-assigned "base unit" with which the robot tries to maintain connectivity while performing the assigned task. The proposed control methodology allows the robot's velocity to align with the tangent of a critical communication surface such that it might be possible for the robot to move on the surface. No assumptions are made regarding the critical surface, which might be arbitrarily complex for cluttered urban environments. The stability of such technique is shown and three-dimensional simulations with a small team of robots are presented. The paper demonstrates the performance of the control scheme in various three-dimensional settings with proofs of guarantees in simple scenarios.

  16. Cluster and constraint analysis in tetrahedron packings.

    PubMed

    Jin, Weiwei; Lu, Peng; Liu, Lufeng; Li, Shuixiang

    2015-04-01

    The disordered packings of tetrahedra often show no obvious macroscopic orientational or positional order for a wide range of packing densities, and it has been found that the local order in particle clusters is the main order form of tetrahedron packings. Therefore, a cluster analysis is carried out to investigate the local structures and properties of tetrahedron packings in this work. We obtain a cluster distribution of differently sized clusters, and peaks are observed at two special clusters, i.e., dimer and wagon wheel. We then calculate the amounts of dimers and wagon wheels, which are observed to have linear or approximate linear correlations with packing density. Following our previous work, the amount of particles participating in dimers is used as an order metric to evaluate the order degree of the hierarchical packing structure of tetrahedra, and an order map is consequently depicted. Furthermore, a constraint analysis is performed to determine the isostatic or hyperstatic region in the order map. We employ a Monte Carlo algorithm to test jamming and then suggest a new maximally random jammed packing of hard tetrahedra from the order map with a packing density of 0.6337.

  17. Constraints on neutrinos and axions from cosmology

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1981-01-01

    A review is made of the astrophysical arguments with regard to neutrino properties. It is shown that the best fit to the present baryon density and He-4 abundance is obtained with three neutrino species. It is also shown that astrophysical constraints on neutrino and axion lifetime-mass combinations rule out weakly interacting particles with lifetimes between 1/1000 to 10 to the 23rd sec for M up to 10 MeV. There is an allowed astrophysical window for neutrinos with M up to 10 MeV and tau less than 1000 sec. The possible role of massive neutrinos in the dark mass of galaxies is discussed. It is shown that the baryon density in the universe is comparable to the density obtained from the dynamics of binary galaxies. Therefore, massive neutrinos are only required if the cosmological mass density is greater than that implied by binaries and small groups of galaxies. The only objects which might imply such high densities are large clusters. For neutrinos to cluster with these large clusters requires a neutrino mass of at least 3 eV.

  18. The Time Course of Anticipatory Constraint Integration

    PubMed Central

    Kukona, Anuenue; Fang, Shin-Yi; Aicher, Karen A.; Chen, Helen; Magnuson, James S.

    2011-01-01

    Several studies have demonstrated that as listeners hear sentences describing events in a scene, their eye movements anticipate upcoming linguistic items predicted by the unfolding relationship between scene and sentence. While this may reflect active prediction based on structural or contextual expectations, the influence of local thematic priming between words has not been fully examined. In Experiment 1, we presented verbs (e.g., arrest) in active (Subject-Verb-Object) sentences with displays containing verb-related patients (e.g., crook) and agents (e.g., policeman). We examined patient and agent fixations following the verb, after the agent role had been filled by another entity, but prior to bottom-up specification of the object. Participants were nearly as likely to fixate agents “anticipatorily” as patients, even though the agent role was already filled. However, the slight patient advantage suggested simultaneous influences of both local priming and active prediction. In Experiment 2, using passives (Object-Verb-Subject), we found stronger, but still graded influences of role prediction when more time elapsed between verb and target, and more syntactic cues were available. We interpret anticipatory fixations as emerging from constraint-based processes that involve both non-predictive thematic priming and active prediction. PMID:21237450

  19. Global constraints on heavy neutrino mixing

    NASA Astrophysics Data System (ADS)

    Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo

    2016-08-01

    We derive general constraints on the mixing of heavy Seesaw neutrinos with the SM fields from a global fit to present flavour and electroweak precision data. We explore and compare both a completely general scenario, where the heavy neutrinos are integrated out without any further assumption, and the more constrained case were only 3 additional heavy states are considered. The latter assumption implies non-trivial correlations in order to reproduce the correct neutrino masses and mixings as observed by oscillation data and thus some qualitative differences can be found with the more general scenario. The relevant processes analyzed in the global fit include searches for Lepton Flavour Violating (LFV) decays, probes of the universality of weak interactions, CKM unitarity bounds and electroweak precision data. In particular, a comparative and detailed study of the present and future sensitivity of the different LFV experiments is performed. We find a mild 1-2σ preference for non-zero heavy neutrino mixing of order 0.03-0.04 in the electron and tau sectors. At the 2σ level we derive bounds on all mixings ranging from 0.1 to 0.01 with the notable exception of the e - μ sector with a more stringent bound of 0.005 from the μ → eγ process.

  20. Constraints and Opportunities in GCM Model Development

    NASA Astrophysics Data System (ADS)

    Schmidt, G. A.; Clune, T.

    2010-12-01

    Over the past 30 years climate models have evolved from relatively simple representations of a few atmospheric processes to complex multi-disciplinary system models which incorporate physics from bottom of the ocean to the mesopause and are used for seasonal to multi-million year timescales. Computer infrastructure over that period has gone from punchcard mainframes to modern parallel clusters. Constraints of working within an ever evolving research code mean that most software changes must be incremental so as not to disrupt scientific throughput. Unfortunately, programming methodologies have generally not kept pace with these challenges, and existing implementations now present a heavy and growing burden on further model development as well as limiting flexibility and reliability. Opportunely, advances in software engineering from other disciplines (e.g. the commercial software industry) as well as new generations of powerful development tools can be incorporated by the model developers to incrementally and systematically improve underlying implementations and reverse the long term trend of increasing development overhead. However, these methodologies cannot be applied blindly, but rather must be carefully tailored to the unique characteristics of scientific software development. We will discuss the need for close integration of software engineers and climate scientists to find the optimal processes for climate modeling.

  1. Solving Potential Games With Dynamical Constraint.

    PubMed

    Ye, Maojiao; Hu, Guoqiang

    2016-05-01

    We solve N -player potential games with dynamical constraint in this paper. Potential games with stable dynamics are first considered followed by one type of potential games without inherently stable dynamics. Different from most of the existing Nash seeking methods, we provide an extremum seeking-based method that does not require explicit information on the game dynamics or the payoff functions. Only measurements of the payoff functions are needed in the game strategy synthesis. Lie bracket approximation is used for the analysis of the proposed Nash seeking scheme. A singularly semi-globally practically uniformly asymptotically stable result is presented for potential games with stable dynamics and an ultimately bounded result is provided for potential games without inherently stable dynamics. For first-order perturbed integrator-type dynamics, we employ an extended-state observer to deal with the disturbance such that better convergence is achievable. Stability of the closed-loop system is proven and the ultimate bound is quantified. Numerical examples are presented to verify the effectiveness of the proposed methods.

  2. Multiprocessor scheduling problem with machine constraints

    NASA Astrophysics Data System (ADS)

    He, Yong; Tan, Zhiyi

    2001-09-01

    This paper investigates multiprocessor scheduling with machine constraints, which has many applications in the flexible manufacturing systems and in VLSI chip design. Machines have different starting times and each machine can schedule at most k jobs in a period. The objective is to minimizing the makespan. For this strogly NP-hard problem, it is important to design near-optimal approximation algorithms. It is known that Modified LPT algorithm has a worst-case ratio of 3/2-1/(2m) for kequals2 where m is the number of machines. For k>2, no good algorithm has been got in the literature. In this paper, we prove the worst-case ratio of Modified LPT is less than 2. We further present an approximation algorithm Matching and show it has a worst-case ratio 2-1/m for every k>2. By introducing parameters, we get two better worst-case ratios which show the Matching algorithm is near optimal for two special cases.

  3. Observational constraints to a unified cosmological model

    NASA Astrophysics Data System (ADS)

    Cuzinatto, Rodrigo R.; de Morais, Eduardo M.; Medeiros, Leo G.

    2016-01-01

    We propose a phenomenological unified model (UM) for dark matter and dark energy based on an equation of state parameter w that scales with the arctan of the redshift. The free parameters of the model are three constants: Ωb0, α and β. Parameter α dictates the transition rate between the matter dominated era and the accelerated expansion period. The ratio β/α gives the redshift of the equivalence between both regimes. Cosmological parameters are fixed by observational data from primordial nucleosynthesis (PN), supernovae of the type Ia (SNIa), gamma-ray bursts (GRBs) and baryon acoustic oscillations (BAOs). The calibration of the 138 GRB events is performed using the 580 SNIa of the Union2.1 data set and a new set of 79 high-redshift GRB is obtained. The various sets of data are used in different combinations to constraint the parameters through statistical analysis. The UM is compared to the ΛCDM model and their differences are emphasized.

  4. Exploring soft constraints on effective actions

    NASA Astrophysics Data System (ADS)

    Bianchi, Massimo; Guerrieri, Andrea L.; Huang, Yu-tin; Lee, Chao-Jung; Wen, Congkao

    2016-10-01

    We study effective actions for simultaneous breaking of space-time and internal symmetries. Novel features arise due to the mixing of Goldstone modes under the broken symmetries which, in contrast to the usual Adler's zero, leads to non-vanishing soft limits. Such scenarios are common for spontaneously broken SCFT's. We explicitly test these soft theorems for N=4 sYM in the Coulomb branch both perturbatively and non-perturbatively. We explore the soft constraints systematically utilizing recursion relations. In the pure dilaton sector of a general CFT, we show that all amplitudes up to order s n ˜ ∂2 n are completely determined in terms of the k-point amplitudes at order s k with k ≤ n. Terms with at most one derivative acting on each dilaton insertion are completely fixed and coincide with those appearing in the conformal DBI, i.e. DBI in AdS. With maximal supersymmetry, the effective actions are further constrained, leading to new non-renormalization theorems. In particular, the effective action is fixed up to eight derivatives in terms of just one unknown four-point coefficient and one more coefficient for ten-derivative terms. Finally, we also study the interplay between scale and conformal invariance in this context.

  5. Aquaculture and food crisis: opportunities and constraints.

    PubMed

    Liao, I Chiu; Chao, Nai-Hsien

    2009-01-01

    Fish farming, now well known as aquaculture, has been well recognized since the ancient era. The first written document on fish culture was published in China in 475 BC, and the first koi pond was constructed at the Japanese Imperial Palace grounds during 71-130 AD. In recent years, aquaculture has progressively played an important role in the provision of: animal protein and gourmet cuisines, job opportunities, and foreign currency for developing countries. Asian countries produce around 91 percent of the world's total aquaculture production. Among the top ten aquaculture-producing countries, nine are from Asia. The current global population consist of more than 6.5 billion individuals; over one billion of which face hunger problem. In the highly populated Asia-Pacific region with moderately high-productivity, 642 million people are still facing hunger. Being a proficient and potential source of animal protein, aquaculture will play an increasing and important role in solving the world food problem in the future. This paper discusses both the opportunities and constraints in the aquaculture industry, specifically in the Asia-Pacific region, and its possible role in solving the current global food crisis. Strategies including promotion and adoption of traceability and HACCP systems for food safety, and marketing management for aquaculture products are also suggested. It is hoped that traditional administration of aquaculture management for survival, profit, as well as food safety will successfully match sustainability management to meet the urgent global need for food.

  6. Cosmological constraints on extended Galileon models

    SciTech Connect

    Felice, Antonio De; Tsujikawa, Shinji E-mail: shinji@rs.kagu.tus.ac.jp

    2012-03-01

    The extended Galileon models possess tracker solutions with de Sitter attractors along which the dark energy equation of state is constant during the matter-dominated epoch, i.e. w{sub DE} = −1−s, where s is a positive constant. Even with this phantom equation of state there are viable parameter spaces in which the ghosts and Laplacian instabilities are absent. Using the observational data of the supernovae type Ia, the cosmic microwave background (CMB), and baryon acoustic oscillations, we place constraints on the tracker solutions at the background level and find that the parameter s is constrained to be s = 0.034{sub −0.034}{sup +0.327} (95 % CL) in the flat Universe. In order to break the degeneracy between the models we also study the evolution of cosmological density perturbations relevant to the large-scale structure (LSS) and the Integrated-Sachs-Wolfe (ISW) effect in CMB. We show that, depending on the model parameters, the LSS and the ISW effect is either positively or negatively correlated. It is then possible to constrain viable parameter spaces further from the observational data of the ISW-LSS cross-correlation as well as from the matter power spectrum.

  7. Reionization constraints on primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Pandey, Kanhaiya L.; Choudhury, T. Roy; Sethi, Shiv K.; Ferrara, Andrea

    2015-08-01

    We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: 6 < z < 10. We perform a comprehensive Markov chain Monte Carlo (MCMC) physical analysis allowing the variation of parameters related to primordial magnetic fields (strength, B0, and power-spectrum index n_{B}), reionization and Λ cold dark matter cosmological model. We find that magnetic field strengths in the range: B0 ≃ 0.05-0.3 nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the Wilkinson Microwave Anisotropy Probe and quasar absorption spectra data. Our analysis puts upper limits on the magnetic field strength B0 < 0.358, 0.120 and 0.059 nG (95 per cent c.l.) for n_{B} = -2.95, -2.9 and -2.85, respectively. These represent the strongest magnetic field constraints among those available from other cosmological observables.

  8. Robustness and constraints of ambient noise inversion.

    PubMed

    Arvelo, Juan I

    2008-02-01

    One of the most dominant sources of error in the estimation of sonar performance in shallow water is the geoacoustic description of the sea floor. As reviewed in this paper, various investigators have studied the possible use of ambient noise to infer some key parameters such as the critical angle, geoacoustic properties, or bottom loss. A simple measurement approach to infer the bottom loss from ambient noise measurement on a vertical line array (VLA) is very attractive from environmental and operational perspectives. This paper presents a sensitivity study conducted with simulations and measurements that demonstrates mitigating factors to maximize the accuracy of estimated bottom loss. This paper quantifies the robustness and operational constraints of this measurement approach using an ambient noise model that accounts for wind, shipping, and thermal noise. Also demonstrated are the effects of unaccounted water absorption, array tilt, nearby ship interference, flow noise, calibration error, and array deformation on sonar performance estimation. VLA measurements collected during the Asian Seas International Acoustics Experiment in May-June 2001 were also processed to validate the approach via comparisons with measured bottom loss and transmission loss.

  9. Constraints on single-field inflation

    NASA Astrophysics Data System (ADS)

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico

    2016-06-01

    Many alternatives to canonical slow-roll inflation have been proposed over the years, one of the main motivations being to have a model, capable of generating observable values of non-Gaussianity. In this work, we (re-)explore the physical implications of a great majority of such models within a single, effective field theory framework (including novel models with large non-Gaussianity discussed for the first time below). The constraints we apply—both theoretical and experimental—are found to be rather robust, determined to a great extent by just three parameters: the coefficients of the quadratic EFT operators (δN)2 and δNδE, and the slow-roll parameter ε. This allows to significantly limit the majority of single-field alternatives to canonical slow-roll inflation. While the existing data still leaves some room for most of the considered models, the situation would change dramatically if the current upper limit on the tensor-to-scalar ratio decreased down to r < 10‑2. Apart from inflationary models driven by plateau-like potentials, the single-field model that would have a chance of surviving this bound is the recently proposed slow-roll inflation with weakly-broken galileon symmetry. In contrast to canonical slow-roll inflation, the latter model can support r < 10‑2 even if driven by a convex potential, as well as generate observable values for the amplitude of non-Gaussianity.

  10. Magneto-reheating constraints from curvature perturbations

    SciTech Connect

    Ringeval, Christophe; Suyama, Teruaki; Yokoyama, Jun'ichi E-mail: suyama@resceu.s.u-tokyo.ac.jp

    2013-09-01

    As additional perturbative degrees of freedom, it is known that magnetic fields of inflationary origin can source curvature perturbations on super-Hubble scales. By requiring the magnetic generated curvature to remain smaller than its inflationary adiabatic counterpart during inflation and reheating, we derive new constraints on the maximal field value today, the reheating energy scale and its equation of state parameter. These bounds end up being stronger by a few order of magnitude than those associated with a possible backreaction of the magnetic field onto the background. Our results are readily applicable to any slow-roll single field inflationary models and any magnetic field having its energy density scaling as a{sup γ} during inflation. As an illustrative example, massive inflation is found to remain compatible with a magnetic field today B{sub 0} = 5 × 10{sup −15} G for some values of γ only if a matter dominated reheating takes place at energies larger than 10{sup 5} GeV. Conversely, assuming γ = −1, massive inflation followed by a matter dominated reheating cannot explain large scale magnetic fields larger than 10{sup −20} G today.

  11. Curvature constraints from the causal entropic principle

    SciTech Connect

    Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel

    2009-07-15

    Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than {rho}{sub k}=40{rho}{sub m} are disfavored by more than 99.99% peak value at {rho}{sub {lambda}}=7.9x10{sup -123} and {rho}{sub k}=4.3{rho}{sub m} for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.

  12. Constraint-Induced Movement Therapy after Stroke

    PubMed Central

    Kwakkel, Gert; Veerbeek, Janne M.; van Wegen, Erwin E.H.; Wolf, Steven L.

    2015-01-01

    Constraint-induced movement therapy (CIMT) was developed to overcome upper limb impairments after stroke and is the most investigated intervention for treating stroke patients in the previous decades. This review describes the current evidence regarding: original CIMT and modified versions of CIMT (mCIMT). Meta-analysis showed strong evidence favoring both types of CIMT in terms of motor function, arm-hand activities and self-reported arm-hand functioning in daily life, immediately after treatment and at long-term follow-up, whereas no evidence was found for constraining alone (Forced Use (FU) therapy). No evidence was found that type of CIMT, intensity of practice or timing did affect outcome. Although the underlying mechanism that drive (m)CIMT is still poorly understood, recent kinematic conducted studies suggests that improvements introduced by original CIMT or mCIMT are mainly based on adaptation by learning to optimize the use of intact end-effectors by selecting patients with some voluntary motor control of wrist and finger extensors post stroke. PMID:25772900

  13. Constraints on the evolution of asexual reproduction.

    PubMed

    Engelstädter, Jan

    2008-11-01

    Sexual reproduction is almost ubiquitous among multicellular organisms even though it entails severe fitness costs. To resolve this apparent paradox, an extensive body of research has been devoted to identifying the selective advantages of recombination that counteract these costs. Yet, how easy is it to make the transition to asexual reproduction once sexual reproduction has been established for a long time? The present review approaches this question by considering factors that impede the evolution of parthenogenesis in animals. Most importantly, eggs need a diploid chromosome set in most species in order to develop normally. Next, eggs may need to be activated by sperm, and sperm may also contribute centrioles and other paternal factors to the zygote. Depending on how diploidy is achieved mechanistically, further problems may arise in offspring that stem from 'inbreeding depression' or inappropriate sex determination systems. Finally, genomic imprinting is another well-known barrier to the evolution of asexuality in mammals. Studies on species with occasional, deficient parthenogenesis indicate that the relative importance of these constraints may vary widely. The intimate evolutionary relations between haplodiploidy and parthenogenesis as well as implications for the clade selection hypothesis of the maintenance of sexual reproduction are also discussed.

  14. Financial constraints lead to innovation by IPPF.

    PubMed

    1998-07-01

    In this interview, the International Planned Parenthood Federation's (IPPF) Secretary General, Director of Resource and Program Development, and Special Advisor to the Secretary General commented on IPPF programming innovations being adopted in response to financial constraints. Factors that have led to a reduction in core funding for the IPPF include the fact that other nongovernmental organizations (NGOs) have become more active, that many donor countries have decentralized their funding mechanisms to the country level, and that overall overseas development assistance is being decreased, despite promises made at the 1994 International Conference on Population and Development (ICPD). New funding can be sought from foundations, from the private sector, and by successfully competing with other organizations for funds available from donor countries. Transferring skills to local Family Planning Associations (FPAs) also helps these groups develop their own resource base. The ICPD marked the first time that NGOs were considered a legitimate part of the process of creating a program of action. It will be important for NGOs to demonstrate their ability to translate the goals of the ICPD into action. The IPPF and other NGOs have been successful in helping FPAs expand FP programs to cover reproductive health needs, in dealing with adolescent sexuality, and in enhancing women's empowerment. The IPPF wishes to create stronger alliances between its FPAs and other NGOs dealing with complementary issues and foster a synthesis among the recommendations of the 5 major UN conferences of the 1990s.

  15. Discrete Constrained Lagrangian Systems and Geometric Constraint Stabilization

    NASA Astrophysics Data System (ADS)

    Yoshimura, Hiroaki; Yoshida, Azumi

    2010-09-01

    We develop discrete Lagrangian systems with holonomic constraints by employing the discrete Lagrange-d'Alembert principle, which was originally proposed by [5, 6]. Especially, we focus on the class of discrete holonomic Lagrangian systems in the context of the index 2 model, i.e., discrete Lagrange-d'Alembert equations with velocity-level constraints, while the lower index formulation may induce constraint violations called drift-off phenomena. So we incorporate geometric constraint stabilization proposed by [7, 8] into the discrete holonomic Lagrangian systems in order to avoid the constraint violations. We demonstrate numerical validity in making use of discrete Lagrange-d'Alembert equations for the index 2 model of holonomic mechanical systems with an illustrative example of linkage mechanisms.

  16. Atmospheric Constraints on Landing Site Selection

    NASA Astrophysics Data System (ADS)

    Kass, David M.; Schofield, J. T.

    2001-01-01

    The Martian atmosphere is a significant part of the environment that the Mars Exploration Rovers (MER) will encounter. As such, it imposes important constraints on where the rovers can and cannot land. Unfortunately, as there are no meteorological instruments on the rovers, there is little atmospheric science that can be accomplished, and no scientific preference for landing sites. The atmosphere constrains landing site selection in two main areas, the entry descent and landing (EDL) process and the survivability of the rovers on the surface. EDL is influenced by the density profile and boundary layer winds (up to altitudes of 5 to 10 km). Surface survivability involves atmospheric dust, temperatures and winds. During EDL, the atmosphere is used to slow the lander down, both ballistically and on the parachute. This limits the maximum elevation of the landing site to -1.3 km below the MOLA reference aeroid. The landers need to encounter a sufficiently dense atmosphere to be able to stop, and the deeper the landing site, the more column integrated atmosphere the lander can pass through before reaching the surface. The current limit was determined both by a desire to be able to reach the hematite region and by a set of atmosphere models we developed for EDL simulations. These are based on Thermal Emission Spectrometer (TES) atmospheric profile measurements, Ames Mars General Circulation Model (MGCM) results, and the 1-D Ames GCM radiative/convective model by J. Murphy. The latter is used for the near surface diurnal cycle. The current version of our model encompasses representative latitude bands, but we intend to make specific models for the final candidate landing sites to insure that they fall within the general envelope. The second constraint imposed on potential landing sites through the EDL process is the near surface wind. The wind in the lower approximately 5 km determines the horizontal velocity that the landers have when they land. Due to the mechanics of

  17. Planck 2015 results. XX. Constraints on inflation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Handley, W.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Münchmeyer, M.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shiraishi, M.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.

    2016-09-01

    We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/ dlnk = -0.003 ± 0.007 when combined with the Planck lensing likelihood. When the Planck high-ℓ polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(φ) ∝ φ2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth PR(k) over the range of scales 0.008 Mpc-1 ≲ k ≲ 0.1 Mpc-1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles ℓ ≈ 20-40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non

  18. Updated Kinematic Constraints on a Dark Disk

    NASA Astrophysics Data System (ADS)

    Kramer, Eric David; Randall, Lisa

    2016-06-01

    We update the method of the Holmberg & Flynn study, including an updated model of the Milky Way’s interstellar gas, radial velocities, an updated reddening map, and a careful statistical analysis, to bound the allowed surface density and scale height of a dark disk. We pay careful attention to the self-consistency of the model, including the gravitational influence of the dark disk on other disk components, and to the net velocity of the tracer stars. We find that the data set exhibits a non-zero bulk velocity in the vertical direction as well as a displacement from the expected location at the Galactic midplane. If not properly accounted for, these features would bias the bound toward low dark disk mass. We therefore perform our analysis two ways. In the first, using the traditional method, we subtract the mean velocity and displacement from the tracers’ phase space distributions. In the second method, we perform a non-equilibrium version of the HF method to derive a bound on the dark disk parameters for an oscillating tracer distribution. Despite updates in the mass model and reddening map, the traditional method results remain consistent with those of HF2000. The second, non-equilibrium technique, however, allows a surface density as large as 14 {M}⊙ {{{pc}}}-2 (and as small as 0 {M}⊙ {{{pc}}}-2), demonstrating much weaker constraints. For both techniques, the bound on surface density is weaker for larger scale height. In future analyses of Gaia data it will be important to verify whether the tracer populations are in equilibrium.

  19. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. PMID:23886651

  20. Design Constraints on a Synthetic Metabolism

    PubMed Central

    Bilgin, Tugce; Wagner, Andreas

    2012-01-01

    A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we identify prescribe broad boundary conditions that can help to guide synthetic metabolism design. PMID:22768162

  1. Spatial constraints of stereopsis in video displays

    NASA Technical Reports Server (NTRS)

    Schor, Clifton

    1989-01-01

    Recent development in video technology, such as the liquid crystal displays and shutters, have made it feasible to incorporate stereoscopic depth into the 3-D representations on 2-D displays. However, depth has already been vividly portrayed in video displays without stereopsis using the classical artists' depth cues described by Helmholtz (1866) and the dynamic depth cues described in detail by Ittleson (1952). Successful static depth cues include overlap, size, linear perspective, texture gradients, and shading. Effective dynamic cues include looming (Regan and Beverly, 1979) and motion parallax (Rogers and Graham, 1982). Stereoscopic depth is superior to the monocular distance cues under certain circumstances. It is most useful at portraying depth intervals as small as 5 to 10 arc secs. For this reason it is extremely useful in user-video interactions such as telepresence. Objects can be manipulated in 3-D space, for example, while a person who controls the operations views a virtual image of the manipulated object on a remote 2-D video display. Stereopsis also provides structure and form information in camouflaged surfaces such as tree foliage. Motion parallax also reveals form; however, without other monocular cues such as overlap, motion parallax can yield an ambiguous perception. For example, a turning sphere, portrayed as solid by parallax can appear to rotate either leftward or rightward. However, only one direction of rotation is perceived when stereo-depth is included. If the scene is static, then stereopsis is the principal cue for revealing the camouflaged surface structure. Finally, dynamic stereopsis provides information about the direction of motion in depth (Regan and Beverly, 1979). Clearly there are many spatial constraints, including spatial frequency content, retinal eccentricity, exposure duration, target spacing, and disparity gradient, which - when properly adjusted - can greatly enhance stereodepth in video displays.

  2. Carbon Constraints and the Electric Power Industry

    SciTech Connect

    2007-11-15

    The report is designed to provide a thorough understanding of the type of carbon constraints that are likely to be imposed, when they are likely to take effect, and how they will impact the electric power industry. The main objective of the report is to provide industry participants with the knowledge they need to plan for and react to a future in which carbon emissions are restricted. The main goal of the report is to ensure an understanding of the likely restrictions that will be placed on carbon emissions, the methods available for reducing their carbon emissions, and the impact that carbon reductions will have on the electric power industry. A secondary goal of the report is to provide information on key carbon programs and market participants to enable companies to begin participating in the international carbon marketplace. Topics covered in the report include: overview of what climate change and the Kyoto Protocol are; analysis of the impacts of climate change on the U.S. and domestic efforts to mandate carbon reductions; description of carbon reduction mechanisms and the types of carbon credits that can be created; evaluation of the benefits of carbon trading and the rules for participation under Kyoto; Description of the methods for reducing carbon emissions available to the U.S. electric power industry; analysis of the impact of carbon restrictions on the U.S. electric power industry in terms of both prices and revenues; evaluation of the impact of carbon restrictions on renewable energy; overview of the current state of the global carbon market including descriptions of the three major marketplaces; descriptions of the industry and government programs already underway to reduce carbon emissions in the U.S. electric power industry; and, profiles of the major international carbon exchanges and brokers.

  3. Flexible formation configuration for terrain following flight: Formation keeping constraints

    NASA Astrophysics Data System (ADS)

    Latyshev, Simon

    This work suggests a control method for the terrain-following formation motion of a group of communicating autonomous agents. The presented approach centers on defining a suitable set of constraints for formation keeping task that shall be fulfilled while agents are negotiating an unknown terrain toward the predefined goal location. It allows agents to maintain a general geometric formation shape, while allowing each individual formation member freedom of maneuver, required for terrain collision free motion. Formation structure is defined with the use of virtual leader. Formation keeping constraints are defined with plane surfaces, specified relative to position and navigation vector of the virtual leader. Formation navigation and guidance constraints are defined using navigation vectors of formation members and the virtual leader. Alternative designs for the constraints derived with parabolic, cone, and cylindrical surfaces are considered. Formation control is derived using the Udwadia-Kalaba equation, following corresponding approach to the development of control methods for constraint based dynamical systems, including leader-follower systems defined using geometric constraints. Approach to terrain following motion requiring agents to stay within bounds of cylindrical corridor volumes built around their respective navigation vectors is assumed. Individual formation primitives and multi-level, hierarchical, formation structures are considered. Simulations, based on three degrees of freedom nonlinear model of an agent, performed using Mathematica and specifically developed combined Maya-Mathematica modeling and simulation system, demonstrate that a flexible terrain following formation motion is achieved with the presented sets of constraints.

  4. Handling inequality constraints in continuous nonlinear global optimization

    SciTech Connect

    Wang, Tao; Wah, B.W.

    1996-12-31

    In this paper, we present a new method to handle inequality constraints and apply it in NOVEL (Nonlinear Optimization via External Lead), a system we have developed for solving constrained continuous nonlinear optimization problems. In general, in applying Lagrange-multiplier methods to solve these problems, inequality constraints are first converted into equivalent equality constraints. One such conversion method adds a slack variable to each inequality constraint in order to convert it into an equality constraint. The disadvantage of this conversion is that when the search is inside a feasible region, some satisfied constraints may still pose a non-zero weight in the Lagrangian function, leading to possible oscillations and divergence when a local optimum lies on the boundary of a feasible region. We propose a new conversion method called the MaxQ method such that all satisfied constraints in a feasible region always carry zero weight in the Lagrange function; hence, minimizing the Lagrange function in a feasible region always leads to local minima of the objective function. We demonstrate that oscillations do not happen in our method. We also propose methods to speed up convergence when a local optimum lies on the boundary of a feasible region. Finally, we show improved experimental results in applying our proposed method in NOVEL on some existing benchmark problems and compare them to those obtained by applying the method based on slack variables.

  5. GPU-enabled projectile guidance for impact area constraints

    NASA Astrophysics Data System (ADS)

    Rogers, Jonathan

    2013-05-01

    Guided projectile engagement scenarios often involve impact area constraints, in which it may be less desirable to incur miss distance on one side of a target or within a specified boundary near the target area. Current projectile guidance schemes such as impact point predictors cannot handle these constraints within the guidance loop, and may produce dispersion patterns that are insensitive to these constraints. In this paper, a new projectile guidance law is proposed that leverages real-time Monte Carlo impact point prediction to continually evaluate the probability of violating impact area constraints. The desired aim point is then adjusted accordingly. Real-time Monte Carlo simulation is enabled within the feedback loop through use of graphics processing units (GPU's), which provide parallel pipelines through which a dispersion pattern can routinely be predicted. The result is a guidance law that can achieve minimum miss distance while avoiding impact area constraints. The new guidance law is described and formulated as a nonlinear optimization problem which is solved in real-time through massively-parallel Monte Carlo simulation. An example simulation is shown in which impact area constraints are enforced and the methodology of stochastic guidance is demonstrated. Finally, Monte Carlo simulations are shown which demonstrate the ability of the stochastic guidance scheme to avoid an arbitrary set of impact area constraints, generating an impact probability density function that optimally trades miss distance within the restricted impact area. The proposed guidance scheme has applications beyond smart weapons to include missiles, UAV's, and other autonomous systems.

  6. Deformation invariant bounding spheres for dynamic active constraints in surgery.

    PubMed

    Bowyer, Stuart A; Rodriguez Y Baena, Ferdinando

    2014-04-01

    Active constraints are collaborative robot control strategies, which can be used to guide a surgeon or protect delicate tissue structures during robot-assisted surgery. Tissue structures of interest often move and deform throughout a surgical intervention, and therefore, dynamic active constraints, which adapt and conform to these changes, are required. A fundamental element of an active constraint controller is the computation of the geometric relationship between the constraint geometry and the surgical instrument. For a static active constraint, there are a variety of computationally efficient methods for computing this relative configuration; however, for a dynamic active constraint, it becomes significantly more challenging. Deformation invariant bounding spheres are a novel bounding volume formulation, which can be used within a hierarchy to allow efficient proximity queries within dynamic active constraints. These bounding spheres are constructed in such a way that as the surface deforms, they do not require time-consuming rebuilds or updates, rather they are implicitly updated and continue to represent the underlying geometry as it changes. Experimental results show that performing proximity queries with deformation invariant bounding sphere hierarchies is faster than common methods from the literature when the deformation rate is within the range expected from conventional imaging systems. PMID:24622983

  7. Phonotactic Constraints Are Activated across Languages in Bilinguals

    PubMed Central

    Freeman, Max R.; Blumenfeld, Henrike K.; Marian, Viorica

    2016-01-01

    During spoken language comprehension, auditory input activates a bilingual’s two languages in parallel based on phonological representations that are shared across languages. However, it is unclear whether bilinguals access phonotactic constraints from the non-target language during target language processing. For example, in Spanish, words with s+ consonant onsets cannot exist, and phonotactic constraints call for epenthesis (addition of a vowel, e.g., stable/estable). Native Spanish speakers may produce English words such as estudy (“study”) with epenthesis, suggesting that these bilinguals apply Spanish phonotactic constraints when speaking English. The present study is the first to examine whether bilinguals access Spanish phonotactic constraints during English comprehension. In an English cross-modal priming lexical decision task, Spanish–English bilinguals and English monolinguals heard English cognate and non-cognate primes containing s+ consonant onsets or controls without s+ onsets, followed by a lexical decision on visual targets with the /e/ phonotactic constraint or controls without /e/. Results revealed that bilinguals were faster to respond to /es/ non-word targets preceded by s+ cognate primes and /es/ and /e/ non-word targets preceded by s+ non-cognate primes, confirming that English primes containing s+ onsets activated Spanish phonotactic constraints. These findings are discussed within current accounts of parallel activation of two languages during bilingual spoken language comprehension, which may be expanded to include activation of phonotactic constraints from the irrelevant language. PMID:27242615

  8. Kalman Filtering with Inequality Constraints for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops two analytic methods of incorporating state variable inequality constraints in the Kalman filter. The first method is a general technique of using hard constraints to enforce inequalities on the state variable estimates. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The second method uses soft constraints to estimate state variables that are known to vary slowly with time. (Soft constraints are constraints that are required to be approximately satisfied rather than exactly satisfied.) The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results. The use of the algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate health parameters. The turbofan engine model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  9. Phonotactic Constraints Are Activated across Languages in Bilinguals.

    PubMed

    Freeman, Max R; Blumenfeld, Henrike K; Marian, Viorica

    2016-01-01

    During spoken language comprehension, auditory input activates a bilingual's two languages in parallel based on phonological representations that are shared across languages. However, it is unclear whether bilinguals access phonotactic constraints from the non-target language during target language processing. For example, in Spanish, words with s+ consonant onsets cannot exist, and phonotactic constraints call for epenthesis (addition of a vowel, e.g., stable/estable). Native Spanish speakers may produce English words such as estudy ("study") with epenthesis, suggesting that these bilinguals apply Spanish phonotactic constraints when speaking English. The present study is the first to examine whether bilinguals access Spanish phonotactic constraints during English comprehension. In an English cross-modal priming lexical decision task, Spanish-English bilinguals and English monolinguals heard English cognate and non-cognate primes containing s+ consonant onsets or controls without s+ onsets, followed by a lexical decision on visual targets with the /e/ phonotactic constraint or controls without /e/. Results revealed that bilinguals were faster to respond to /es/ non-word targets preceded by s+ cognate primes and /es/ and /e/ non-word targets preceded by s+ non-cognate primes, confirming that English primes containing s+ onsets activated Spanish phonotactic constraints. These findings are discussed within current accounts of parallel activation of two languages during bilingual spoken language comprehension, which may be expanded to include activation of phonotactic constraints from the irrelevant language. PMID:27242615

  10. GEODYN Orbit Determination of Dawn at Vesta using Image Constraints

    NASA Astrophysics Data System (ADS)

    Centinello, F. J., III; Mazarico, E.; Zuber, M. T.

    2012-12-01

    The Dawn spacecraft has completed the orbital phase of its mapping mission of the asteroid 4 Vesta. We utilized radiometric measurements and image constraints to compute the spacecraft orbit using the GEODYN II orbit determination software. Image constraints are computed control point vectors which point from the spacecraft to landmarks observed in two images of the same region of Vesta, and are a newly developed measurement type for GEODYN. This capability was added because image constraints can provide supplemental information on the spacecraft trajectory especially in a weak gravity environment. Due to the geometric nature of image constraints, they can reduce the orbital errors in the along- and cross-track directions, which have typically carried higher uncertainty in previous interplanetary missions. Image constraints are also useful during times of absence of radiometric tracking data. Improvements to orbit determination can provide improved gravity field estimation and knowledge of the interior structure of Vesta. The NASA Deep Space Network (DSN) provides X-band tracking measurements for Dawn. Radiometric and image constraints were processed for the High Altitude Mapping Orbit (HAMO) I and II, and the Low Altitude Mapping Orbit (LAMO), from 23 Sept 2011 to 26 July 2012. The spacecraft altitude was roughly 685 km during HAMO and 200 km during LAMO. Doppler and range residual RMS were under 1 mm/s and 10 m, respectively. Improvement in orbital knowledge from image constraints is typically greatest in the cross-track direction and in our analysis these residuals were typically better than 500 m.

  11. Powered Descent Guidance with General Thrust-Pointing Constraints

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  12. Geometric derivations of minimal sets of sufficient multiview constraints

    USGS Publications Warehouse

    Thomas, Orrin H.; Oshel, Edward R.

    2012-01-01

    Geometric interpretations of four of the most common determinant formulations of multiview constraints are given, showing that they all enforce the same geometry and that all of the forms commonly in use in the machine vision community are a subset of a more general form. Generalising the work of Yi Ma yields a new general 2 x 2 determinant trilinear and 3 x 3 determinant quadlinear. Geometric descriptions of degenerate multiview constraints are given, showing that it is necessary, but insufficient, that the determinant equals zero. Understanding the degeneracies leads naturally into proofs for minimum sufficient sets of bilinear, trilinear and quadlinear constraints for arbitrary numbers of conjugate observations.

  13. Constraints imposed by cosmic evolution towards the development of life

    NASA Technical Reports Server (NTRS)

    Oro, J.

    1988-01-01

    The probability of terrestrial-type life emerging in any other place of the universe will depend on the constraints imposed by cosmic evolution on that particular place. A systematic examination of cosmic constraints, which must have provided the necessary and sufficient conditions for the origin and evolution of life on earth, shows that they are concerned with the nature of the central star, the planetary system, and the specific life-bearing planet, as well as with the chemical and biological evolution processes involved. These constraints or universal requirements for life are briefly described.

  14. Boninites: Characteristics and tectonic constraints, northeastern Appalachians

    USGS Publications Warehouse

    Kim, J.; Jacobi, R.D.

    2002-01-01

    Boninites are high Mg andesites that are thought to form in suprasubduction zone tectonic environments as primary melts from refractory mantle. Boninites provide a potential constraint on tectonic models for ancient terranes that contain boninites because the only unequivocal tectonic setting in which "modern" boninites have been recognized is a fore-arc setting. Tectonic models for "modern" boninite genesis include subduction initiation ("infant arc"), fore-arc spreading, and the forearc side of intra-arc rifting (spreading). These models can be differentiated by the relative age of the boninites and to a lesser degree, geochemistry. The distinctive geochemistry of boninites promotes their recognition in ancient terranes. As detailed in this report, several mafic terranes in the northeastern Appalachians contain boninites; these terranes were situated on both sides of Iapetus. The characteristics of these boninites can be used to constrain tectonic models of the evolution of the northeastern Appalachians. On the Laurentian side of Iapetus, "infant arc" boninites were not produced ubiquitously during the Cambrian subduction initiation, unless sampling problems or minimum age dates obscure a more widespread boninite "infant arc". The Cambrian subduction initiation on the Laurentian side was probably characterized by both "infant arc" boninitic arc construction (perhaps the >496 Ma Hawley Formation and the >488 Ma Betts Cove Ophiolite) and "normal" arc construction (Mt. Orford). This duality is consistent with the suggestion that the pre-collisional geometry of the Laurentian margin was complex. The Bay of Islands Complex and Thetford Mines ophiolite boninites are likely associated with forearc/intra-arc spreading during the protracted evolution of the Cambrian arc system. The relatively young boninites in the Bronson Hill Arc suggest that the Taconic continuous eastward subduction tectonic model is less tenable than other models. On the Gondwana side of Iapetus, the

  15. Cometary constraints on the planet forming environment.

    PubMed

    Wyckoff, S

    1992-01-01

    Molecular elemental and isotopic abundances of comets provide sensitive diagnostics for models of the primitive solar nebula. New measurements of the N2, NH and NH2 abundances in comets together with the in situ Giotto mass spectrometer and dust analyzer data provide new constraints for models of the comet forming environment in the solar nebula. An inventory of nitrogen-containing species in comet Halley indicates that NH3 and CN are the dominant N carriers observed in the coma gas. The elemental nitrogen abundance in the gas component of the coma is found to be depleted by a factor approximately 75 relative to the solar photosphere. Combined with the Giotto dust analyzer results for the coma dust component, we find for comet Halley Ngas + dust approximately 1/6 the solar value. The measurement of the CN carbon isotope ratio from the bulk coma gas and dust in comet Halley indicates a significantly lower value, 12C/13C = 65 +/- 9 than the solar system value of 89 +/- 2. Because the dominant CN carrier species in comets remains unidentified, it is not yet possible to attribute the low isotope ratio predominantly to the bulk gas or dust components. The large chemical and isotopic inhomogeneities discovered in the Halley dust particles on 1 mu scales are indicative of preserved circumstellar grains which survived processing in the interstellar clouds, and may be related to the presolar silicon carbide, diamond and graphite grains recently discovered in carbonaceous chondrites. Less than 0.1% of the bulk mass in the primitive meteorites studied consists of these cosmically important grains. A larger mass fraction (approximately 5%) of chemically heterogeneous organic grains is found in the nucleus of comet Halley. The isotopic anomalies discovered in the PUMA 1 Giotto data in comet Halley are probably also attributable to preserved circumstellar grains. Thus the extent of grain processing in the interstellar environment is much less than predicted by interstellar grain

  16. Galactic constraints on supernova progenitor models

    NASA Astrophysics Data System (ADS)

    Acharova, I. A.; Gibson, B. K.; Mishurov, Yu. N.; Kovtyukh, V. V.

    2013-09-01

    Aims: To estimate the mean masses of oxygen and iron ejected per each type of supernovae (SNe) event from observations of the elemental abundance patterns in the Galactic disk and constrain the relevant SNe progenitor models. Methods: We undertake a statistical analysis of the radial abundance distributions in the Galactic disk within a theoretical framework for Galactic chemical evolution which incorporates the influence of spiral arms. This framework has been shown to recover the non-linear behaviour in radial gradients, the mean masses of oxygen and iron ejected during SNe explosions to be estimated, and constraints to be placed on SNe progenitor models. Results: (i) The mean mass of oxygen ejected per core-collapse SNe (CC SNe) event (which are concentrated within spiral arms) is ~0.27 M⊙; (ii) the mean mass of iron ejected by tardy Type Ia SNe (SNeIa, whose progenitors are older/longer-lived stars with ages ≳100 Myr and up to several Gyr, which do not concentrate within spiral arms) is ~0.58 M⊙; (iii) the upper mass of iron ejected by prompt SNeIa (SNe whose progenitors are younger/shorter-lived stars with ages ≲100 Myr, which are concentrated within spiral arms) is ≤0.23 M⊙ per event; (iv) the corresponding mean mass of iron produced by CC SNe is ≤0.04 M⊙ per event; (v) short-lived SNe (core-collapse or prompt SNeIa) supply ~85% of the Galactic disk's iron. Conclusions: The inferred low mean mass of oxygen ejected per CC SNe event implies a low upper mass limit for the corresponding progenitors of ~23 M⊙, otherwise the Galactic disk would be overabundant in oxygen. This inference is the consequence of the non-linear dependence between the upper limit of the progenitor initial mass and the mean mass of oxygen ejected per CC SNe explosion. The low mean mass of iron ejected by prompt SNeIa, relative to the mass produced by tardy SNeIa (~2.5 times lower), prejudices the idea that both sub-populations of SNeIa have the same physical nature. We

  17. Water Infrastructure Adaptation in New Urban Design: Possibilities and Constraints

    EPA Science Inventory

    Natural constraints, including climate change and dynamic socioeconomic development, can significantly impact the way we plan, design, and operate water infrastructure, thus its sustainability to deliver reliable quality water supplies and comply with environmental regulations. ...

  18. Genetic constraints predict evolutionary divergence in Dalechampia blossoms

    PubMed Central

    Bolstad, Geir H.; Hansen, Thomas F.; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W. Scott

    2014-01-01

    If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance. PMID:25002700

  19. Three-Particle Relativistic Harmonic Dynamics in the Constraint Formalism

    NASA Astrophysics Data System (ADS)

    Maheshwari, A.

    1982-05-01

    Three-particle relativistic harmonic dynamics in the constraint formalism has been studied in two different schemes for the reduction of the 24-dimensional covariant phase space to an 18-dimensional minimum phase space. Three-body potential for the harmonic problem has been determined from the Bidikov-Todorov equation. It is found that the classical equations of motion are separable in a single time formalism in the case when the phase space is reduced by a set of first class kinematic constraints and the Hamiltonian is introduced as an independent dynamic constraint. For this case in the centre of mass frame the Hamiltonian constraint leads to a time-independent Schrödinger equation which is separable as two independent harmonic oscillators as a special case.

  20. Sensitivity of Lumped Constraints Using the Adjoint Method

    NASA Technical Reports Server (NTRS)

    Akgun, Mehmet A.; Haftka, Raphael T.; Wu, K. Chauncey; Walsh, Joanne L.

    1999-01-01

    Adjoint sensitivity calculation of stress, buckling and displacement constraints may be much less expensive than direct sensitivity calculation when the number of load cases is large. Adjoint stress and displacement sensitivities are available in the literature. Expressions for local buckling sensitivity of isotropic plate elements are derived in this study. Computational efficiency of the adjoint method is sensitive to the number of constraints and, therefore, the method benefits from constraint lumping. A continuum version of the Kreisselmeier-Steinhauser (KS) function is chosen to lump constraints. The adjoint and direct methods are compared for three examples: a truss structure, a simple HSCT wing model, and a large HSCT model. These sensitivity derivatives are then used in optimization.

  1. A Critical Reevaluation of Radio Constraints on Annihilating Dark Matter

    SciTech Connect

    Cholis, Ilias; Hooper, Dan; Linden, Tim

    2015-04-03

    A number of groups have employed radio observations of the Galactic center to derive stringent constraints on the annihilation cross section of weakly interacting dark matter. In this paper, we show that electron energy losses in this region are likely to be dominated by inverse Compton scattering on the interstellar radiation field, rather than by synchrotron, considerably relaxing the constraints on the dark matter annihilation cross section compared to previous works. Strong convective winds, which are well motivated by recent observations, may also significantly weaken synchrotron constraints. After taking these factors into account, we find that radio constraints on annihilating dark matter are orders of magnitude less stringent than previously reported, and are generally weaker than those derived from current gamma-ray observations.

  2. Proficiency and sentence constraint effects on second language word learning.

    PubMed

    Ma, Tengfei; Chen, Baoguo; Lu, Chunming; Dunlap, Susan

    2015-07-01

    This paper presents an experiment that investigated the effects of L2 proficiency and sentence constraint on semantic processing of unknown L2 words (pseudowords). All participants were Chinese native speakers who learned English as a second language. In the experiment, we used a whole sentence presentation paradigm with a delayed semantic relatedness judgment task. Both higher and lower-proficiency L2 learners could make use of the high-constraint sentence context to judge the meaning of novel pseudowords, and higher-proficiency L2 learners outperformed lower-proficiency L2 learners in all conditions. These results demonstrate that both L2 proficiency and sentence constraint affect subsequent word learning among second language learners. We extended L2 word learning into a sentence context, replicated the sentence constraint effects previously found among native speakers, and found proficiency effects in L2 word learning.

  3. Performance constraints and compensation for teleoperation with delay

    NASA Technical Reports Server (NTRS)

    Mclaughlin, J. S.; Staunton, B. D.

    1989-01-01

    A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs.

  4. Genetic constraints predict evolutionary divergence in Dalechampia blossoms.

    PubMed

    Bolstad, Geir H; Hansen, Thomas F; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W Scott

    2014-08-19

    If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance. PMID:25002700

  5. Higher derivative theories with constraints: exorcising Ostrogradski's ghost

    SciTech Connect

    Chen, Tai-jun; Lim, Eugene A.; Fasiello, Matteo; Tolley, Andrew J. E-mail: matte@case.edu E-mail: andrew.j.tolley@case.edu

    2013-02-01

    We prove that the linear instability in a non-degenerate higher derivative theory, the Ostrogradski instability, can only be removed by the addition of constraints if the original theory's phase space is reduced.

  6. Modeling Multibody Stage Separation Dynamics Using Constraint Force Equation Methodology

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Roithmayr, Carlos M.; Toniolo, Matthew D.; Karlgaard, Christopher D.; Pamadi, Bandu N.

    2011-01-01

    This paper discusses the application of the constraint force equation methodology and its implementation for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint, the second case involves two rigid bodies connected with a universal joint, and the third test case is that of Mach 7 separation of the X-43A vehicle. For the first two cases, the solutions obtained using the constraint force equation method compare well with those obtained using industry- standard benchmark codes. For the X-43A case, the constraint force equation solutions show reasonable agreement with the flight-test data. Use of the constraint force equation method facilitates the analysis of stage separation in end-to-end simulations of launch vehicle trajectories

  7. Unravelling the structural plasticity of stretched DNA under torsional constraint

    NASA Astrophysics Data System (ADS)

    King, Graeme A.; Peterman, Erwin J. G.; Wuite, Gijs J. L.

    2016-06-01

    Regions of the genome are often held under torsional constraint. Nevertheless, the influence of such constraint on DNA-protein interactions during genome metabolism is still poorly understood. Here using a combined optical tweezers and fluorescence microscope, we quantify and explain how torsional constraint influences the structural stability of DNA under applied tension. We provide direct evidence that concomitant basepair melting and helical unwinding can occur in torsionally constrained DNA at forces >~50 pN. This striking result indicates that local changes in linking number can be absorbed by the rest of the DNA duplex. We also present compelling new evidence that an overwound DNA structure (likely P-DNA) is created (alongside underwound structures) at forces >~110 pN. These findings substantiate previous theoretical predictions and highlight a remarkable structural plasticity of torsionally constrained DNA. Such plasticity may be required in vivo to absorb local changes in linking number in DNA held under torsional constraint.

  8. Constraints and stability in vector theories with spontaneous Lorentz violation

    SciTech Connect

    Bluhm, Robert; Gagne, Nolan L.; Potting, Robertus; Vrublevskis, Arturs

    2008-06-15

    Vector theories with spontaneous Lorentz violation, known as bumblebee models, are examined in flat spacetime using a Hamiltonian constraint analysis. In some of these models, Nambu-Goldstone modes appear with properties similar to photons in electromagnetism. However, depending on the form of the theory, additional modes and constraints can appear that have no counterparts in electromagnetism. An examination of these constraints and additional degrees of freedom, including their nonlinear effects, is made for a variety of models with different kinetic and potential terms, and the results are compared with electromagnetism. The Hamiltonian constraint analysis also permits an investigation of the stability of these models. For certain bumblebee theories with a timelike vector, suitable restrictions of the initial-value solutions are identified that yield ghost-free models with a positive Hamiltonian. In each case, the restricted phase space is found to match that of electromagnetism in a nonlinear gauge.

  9. Mars Rover Sample Return aerocapture configuration design and packaging constraints

    NASA Technical Reports Server (NTRS)

    Lawson, Shelby J.

    1989-01-01

    This paper discusses the aerodynamics requirements, volume and mass constraints that lead to a biconic aeroshell vehicle design that protects the Mars Rover Sample Return (MRSR) mission elements from launch to Mars landing. The aerodynamic requirements for Mars aerocapture and entry and packaging constraints for the MRSR elements result in a symmetric biconic aeroshell that develops a L/D of 1.0 at 27.0 deg angle of attack. A significant problem in the study is obtaining a cg that provides adequate aerodynamic stability and performance within the mission imposed constraints. Packaging methods that relieve the cg problems include forward placement of aeroshell propellant tanks and incorporating aeroshell structure as lander structure. The MRSR missions developed during the pre-phase A study are discussed with dimensional and mass data included. Further study is needed for some missions to minimize MRSR element volume so that launch mass constraints can be met.

  10. Dynamic active constraints for hyper-redundant flexible robots.

    PubMed

    Kwok, Ka-Wai; Mylonas, George P; Sun, Loi Wah; Lerotic, Mirna; Clark, James; Athanasiou, Thanos; Darzi, Ara; Yang, Guang-Zhong

    2009-01-01

    In robot-assisted procedures, the surgeon's ability can be enhanced by navigation guidance through the use of virtual fixtures or active constraints. This paper presents a real-time modeling scheme for dynamic active constraints with fast and simple mesh adaptation under cardiac deformation and changes in anatomic structure. A smooth tubular pathway is constructed which provides assistance for a flexible hyper-redundant robot to circumnavigate the heart with the aim of undertaking bilateral pulmonary vein isolation as part of a modified maze procedure for the treatment of debilitating arrhythmia and atrial fibrillation. In contrast to existing approaches, the method incorporates detailed geometrical constraints with explicit manipulation margins of the forbidden region for an entire articulated surgical instrument, rather than just the end-effector itself. Detailed experimental validation is conducted to demonstrate the speed and accuracy of the instrument navigation with and without the use of the proposed dynamic constraints.

  11. Linear equality constraints in the general linear mixed model.

    PubMed

    Edwards, L J; Stewart, P W; Muller, K E; Helms, R W

    2001-12-01

    Scientists may wish to analyze correlated outcome data with constraints among the responses. For example, piecewise linear regression in a longitudinal data analysis can require use of a general linear mixed model combined with linear parameter constraints. Although well developed for standard univariate models, there are no general results that allow a data analyst to specify a mixed model equation in conjunction with a set of constraints on the parameters. We resolve the difficulty by precisely describing conditions that allow specifying linear parameter constraints that insure the validity of estimates and tests in a general linear mixed model. The recommended approach requires only straightforward and noniterative calculations to implement. We illustrate the convenience and advantages of the methods with a comparison of cognitive developmental patterns in a study of individuals from infancy to early adulthood for children from low-income families.

  12. Cosmological constraints on the properties of weakly interacting massive particles

    SciTech Connect

    Steigman, G.; Turner, M.S.

    1984-10-01

    Considerations of the age and density of, as well as the evolution of structure in, the Universe lead to constraints on the masses and lifetimes of weakly interacting massive particles (WIMPs). 26 references.

  13. Spin glasses and nonlinear constraints in portfolio optimization

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    2014-01-01

    We discuss the portfolio optimization problem with the obligatory deposits constraint. Recently it has been shown that as a consequence of this nonlinear constraint, the solution consists of an exponentially large number of optimal portfolios, completely different from each other, and extremely sensitive to any changes in the input parameters of the problem, making the concept of rational decision making questionable. Here we reformulate the problem using a quadratic obligatory deposits constraint, and we show that from the physics point of view, finding an optimal portfolio amounts to calculating the mean-field magnetizations of a random Ising model with the constraint of a constant magnetization norm. We show that the model reduces to an eigenproblem, with 2N solutions, where N is the number of assets defining the portfolio. Also, in order to illustrate our results, we present a detailed numerical example of a portfolio of several risky common stocks traded on the Nasdaq Market.

  14. Level-Set Topology Optimization with Aeroelastic Constraints

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  15. Optimization technique for problems with an inequality constraint

    NASA Technical Reports Server (NTRS)

    Russell, K. J.

    1972-01-01

    General technique uses a modified version of an existing technique termed the pattern search technique. New procedure called the parallel move strategy permits pattern search technique to be used with problems involving a constraint.

  16. Constraint identification and algorithm stabilization for degenerate nonlinear programs.

    SciTech Connect

    Wright, S. J.; Mathematics and Computer Science

    2003-01-01

    In the vicinity of a solution of a nonlinear programming problem at which both strict complementarity and linear independence of the active constraints may fail to hold, we describe a technique for distinguishing weakly active from strongly active constraints. We show that this information can be used to modify the sequential quadratic programming algorithm so that it exhibits superlinear convergence to the solution under assumptions weaker than those made in previous analyses.

  17. Propagating orientation constraints for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Bose, Ashim; Gerb, Andy

    1994-01-01

    An observing program on the Hubble Space Telescope (HST) is described in terms of exposures that are obtained by one or more of the instruments onboard the HST. Many requested exposures might specify orientation requirements and accompanying ranges. Orientation refers to the amount of roll (in degrees) about the line of sight. The range give the permissible tolerance (also in degrees). These requirements may be (1) absolute (in relation to the celestial coordinate system), (2) relative to the nominal roll angle for HST during that exposure, or (3) relative (in relation to other exposures in the observing program). The TRANSformation expert system converts proposals for astronomical observations with HST into detailed observing plans. Part of the conversion involves grouping exposures into higher level structures based on exposure characteristics. Exposures constrained to be at different orientations cannot be grouped together. Because relative orientation requirements cause implicit constraints, orientation constraints have to be propagated. TRANS must also identify any inconsistencies that may exist so they can be corrected. We have designed and implemented an orientation constraint propagator as part of TRANS. The propagator is based on an informal algebra that facilitates the setting up and propagation of the orientation constraints. The constraint propagator generates constraints between directly related exposures, and propagates derived constraints between exposures that are related indirectly. It provides facilities for path-consistency checking, identification of unsatisfiable constraints, and querying of orientation relationships. The system has been successfully operational as part of TRANS for over seven months. The solution has particular significance to space applications in which satellite/telescope pointing and attitude are constrained and relationships exist between multiple configurations.

  18. Constraints on primordial density perturbations from induced gravitational waves

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David

    2010-01-15

    We consider the stochastic background of gravitational waves produced during the radiation-dominated hot big bang as a constraint on the primordial density perturbation on comoving length scales much smaller than those directly probed by the cosmic microwave background or large-scale structure. We place weak upper bounds on the primordial density perturbation from current data. Future detectors such as BBO and DECIGO will place much stronger constraints on the primordial density perturbation on small scales.

  19. Advanced evolutionary phases in globular clusters. . Empirical and theoretical constraints

    NASA Astrophysics Data System (ADS)

    Bono, G.

    We present empirical and theoretical constraints for advanced evolutionary phases in Globular Clusters. In particular, we focus our attention on the central helium burning phases (Horizontal Branch) and on the white dwarf cooling sequence. We introduce the canonical evolutionary scenario and discuss new possible routes which can provide firm constraints on several open problems. Finally, we briefly outline new predicted near-infrared evolutionary features of the white dwarf cooling sequences which can be adopted to constrain their evolutionary properties.

  20. Constraint-Based Modeling and Scheduling of Clinical Pathways

    NASA Astrophysics Data System (ADS)

    Wolf, Armin

    In this article a constraint-based modeling of clinical pathways, in particular of surgical pathways, is introduced and used for an optimized scheduling of their tasks. The addressed optimization criteria are based on practical experiences in the area of Constraint Programming applications in medical work flow management. Objective functions having empirical evidence for their adequacy in the considered use cases are formally presented. It is shown how they are respected while scheduling clinical pathways.

  1. Atmospheric constraint statistics for the Space Shuttle mission planning

    NASA Technical Reports Server (NTRS)

    Smith, O. E.

    1983-01-01

    The procedures used to establish statistics of atmospheric constraints of interest to the Space Shuttle mission planning are presented. The statistics considered are for the frequency of occurrence, runs, and time conditional probabilities of several atmospheric constraints for each of the Space Shuttle mission phases. The mission phases considered are (1) prelaunch, (2) launch operations, (3) return to launch site, (4) abort once around landing, and (5) end of mission landing. Previously announced in STAR as N82-33417

  2. New scalar constraint operator for loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Assanioussi, Mehdi; Lewandowski, Jerzy; Mäkinen, Ilkka

    2015-08-01

    We present a concrete and explicit construction of a new scalar constraint operator for loop quantum gravity. The operator is defined on the recently introduced space of partially diffeomorphism invariant states, and this space is preserved by the action of the operator. To define the Euclidean part of the scalar constraint operator, we propose a specific regularization based on the idea of so-called "special" loops. The Lorentzian part of the quantum scalar constraint is merely the curvature operator that has been introduced in an earlier work. Due to the properties of the special loops assignment, the adjoint operator of the nonsymmetric constraint operator is densely defined on the partially diffeomorphism invariant Hilbert space. This fact opens up the possibility of defining a symmetric scalar constraint operator as a suitable combination of the original operator and its adjoint. We also show that the algebra of the scalar constraint operators is anomaly free, and describe the structure of the kernel of these operators on a general level.

  3. Constraints influencing sports wheelchair propulsion performance and injury risk

    PubMed Central

    2013-01-01

    The Paralympic Games are the pinnacle of sport for many athletes with a disability. A potential issue for many wheelchair athletes is how to train hard to maximise performance while also reducing the risk of injuries, particularly to the shoulder due to the accumulation of stress placed on this joint during activities of daily living, training and competition. The overall purpose of this narrative review was to use the constraints-led approach of dynamical systems theory to examine how various constraints acting upon the wheelchair-user interface may alter hand rim wheelchair performance during sporting activities, and to a lesser extent, their injury risk. As we found no studies involving Paralympic athletes that have directly utilised the dynamical systems approach to interpret their data, we have used this approach to select some potential constraints and discussed how they may alter wheelchair performance and/or injury risk. Organism constraints examined included player classifications, wheelchair setup, training and intrinsic injury risk factors. Task constraints examined the influence of velocity and types of locomotion (court sports vs racing) in wheelchair propulsion, while environmental constraints focused on forces that tend to oppose motion such as friction and surface inclination. Finally, the ecological validity of the research studies assessing wheelchair propulsion was critiqued prior to recommendations for practice and future research being given. PMID:23557065

  4. Non-technical constraints to eradication: the Italian experience.

    PubMed

    Moda, Giuliana

    2006-02-25

    Although technical constraints to eradication of bovine tuberculosis are well-recognised, non-technical constraints can also delay progress towards eradication, leading to inefficiency and increased programme costs. This paper seeks to analyse the main non-technical constraints that can interfere with the successful implementation of tuberculosis eradication plans, based on experiences from an area of high tuberculosis prevalence in Regione Piemonte, Italy. The main social and economic constraints faced in the past 20 years are reviewed, including a social reluctance to recognise the importance of seeking eradication as the goal of disease control, effective communication of technical issues, the training and the organization of veterinary services, the relationship between the regional authority and farmers and their representatives, and data management and epidemiological reporting. The paper analyses and discusses the solutions that were applied in Regione Piemonte and the benefits that were obtained. Tuberculosis eradication plans are one of the most difficult tasks of the Veterinary Animal Health Services, and non-technical constraints must be considered when progress towards eradication is less than expected. Organizational and managerial resources can help to overcome social or economic obstacles, provided the veterinary profession is willing to address technical, but also non-technical, constraints to eradication.

  5. On classical mechanical systems with non-linear constraints

    NASA Astrophysics Data System (ADS)

    Terra, Gláucio; Kobayashi, Marcelo H.

    2004-03-01

    In the present work, we analyze classical mechanical systems with non-linear constraints in the velocities. We prove that the d'Alembert-Chetaev trajectories of a constrained mechanical system satisfy both Gauss' principle of least constraint and Hölder's principle. In the case of a free mechanics, they also satisfy Hertz's principle of least curvature if the constraint manifold is a cone. We show that the Gibbs-Maggi-Appell (GMA) vector field (i.e. the second-order vector field which defines the d'Alembert-Chetaev trajectories) conserves energy for any potential energy if, and only if, the constraint is homogeneous (i.e. if the Liouville vector field is tangent to the constraint manifold). We introduce the Jacobi-Carathéodory metric tensor and prove Jacobi-Carathéodory's theorem assuming that the constraint manifold is a cone. Finally, we present a version of Liouville's theorem on the conservation of volume for the flow of the GMA vector field.

  6. Constraints on Tidal Heating in Enceladus

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    2008-12-01

    Two constraints for Enceladus seem difficult to dispute: First, that it is emitting more heat than allowed by equilibrium tidal heating models (defined as those in which the tidal heat production and orbital eccentricity are constant with time, cf. Meyer and Wisdom, 2007). Second, the maximum possible instantaneous tidal heat generation is over two orders of magnitude larger than what is observed. (This can be shown independent of any particular rheological model.) There is nothing mysterious about the simultaneous correctness of these two statements since one pertains to the orbital evolution aspect of the problem and the other pertains to the actual mechanism of dissipation. In reality, the maximum heat dissipation would never be approached since it would quench the eccentricity in a short timescale (ten to a hundred thousand years). However, this high upper bound assures us that there is no fundamental difficulty with the tidal heating mechanism, only with its constancy over long periods of time. This suggests that one should seek a model in which the eccentricity fluctuates, possibly mediated by the bounds imposed at the high end by the stress limits for ice fracture and at the low end by the stress at which motion on faults (lubricated or dry) ceases to be possible. I will describe models of this kind that are capable, at least in principle, of producing the desired heat flow in instantaneous equilibrium (i.e., without the need to store heat in the interior). This is a stress-mediated model rather than a thermally mediated model (like that advocated for Io, which has a similar disequilibrium problem). Such a model must (in analogy with successful models for Io and Europa) simultaneously provide the right environment for the desired straining of the outer part of the ice shell and a deeper environment that is sufficiently deformable so that a large tidal Love number (of order a hundred times the elastic value) can be achieved. It is argued that solid water ice

  7. A simple motion differential game with different constraints on controls and under phase constraint on the state of the evader

    NASA Astrophysics Data System (ADS)

    Rakhmanov, Askar; Ibragimov, Gafurjan

    2016-06-01

    We consider a simple motion pursuit differential game of one pursuer and one evader. Control of the pursuer is subjected to integral constraint, and that of the evader is subjected to geometric constraint. More precisely, value of control parameter of the evader belongs to a given convex subset of ℝn. Pursuit is completed if the evader becomes in l vicinity of the pursuer. Sufficient conditions of completion of pursuit are obtained.

  8. Chance-Constrained Guidance With Non-Convex Constraints

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro

    2011-01-01

    Missions to small bodies, such as comets or asteroids, require autonomous guidance for descent to these small bodies. Such guidance is made challenging by uncertainty in the position and velocity of the spacecraft, as well as the uncertainty in the gravitational field around the small body. In addition, the requirement to avoid collision with the asteroid represents a non-convex constraint that means finding the optimal guidance trajectory, in general, is intractable. In this innovation, a new approach is proposed for chance-constrained optimal guidance with non-convex constraints. Chance-constrained guidance takes into account uncertainty so that the probability of collision is below a specified threshold. In this approach, a new bounding method has been developed to obtain a set of decomposed chance constraints that is a sufficient condition of the original chance constraint. The decomposition of the chance constraint enables its efficient evaluation, as well as the application of the branch and bound method. Branch and bound enables non-convex problems to be solved efficiently to global optimality. Considering the problem of finite-horizon robust optimal control of dynamic systems under Gaussian-distributed stochastic uncertainty, with state and control constraints, a discrete-time, continuous-state linear dynamics model is assumed. Gaussian-distributed stochastic uncertainty is a more natural model for exogenous disturbances such as wind gusts and turbulence than the previously studied set-bounded models. However, with stochastic uncertainty, it is often impossible to guarantee that state constraints are satisfied, because there is typically a non-zero probability of having a disturbance that is large enough to push the state out of the feasible region. An effective framework to address robustness with stochastic uncertainty is optimization with chance constraints. These require that the probability of violating the state constraints (i.e., the probability of

  9. Linear patterning of mesenchymal condensations is modulated by geometric constraints

    PubMed Central

    Klumpers, Darinka D.; Mao, Angelo S.; Smit, Theo H.; Mooney, David J.

    2014-01-01

    The development of the vertebral column starts with the formation of a linear array of mesenchymal condensations, forming the blueprint for the eventual alternating pattern of bone and cartilage. Despite growing insight into the molecular mechanisms of morphogenesis, the impact of the physical aspects of the environment is not well understood. We hypothesized that geometric boundary conditions may play a pivotal role in the linear patterning of condensations, as neighbouring tissues provide physical constraints to the cell population. To study the process of condensation and the patterning thereof under tightly controlled geometric constraints, we developed a novel in vitro model that combines micropatterning with the established micromass assay. The spacing and alignment of condensations changed with the width of the cell adhesive patterns, a phenomenon that could not be explained by cell availability alone. Moreover, the extent of chondrogenic commitment was increased on substrates with tighter geometric constraints. When the in vivo pattern of condensations was investigated in the developing vertebral column of chicken embryos, the measurements closely fit into the quantitative relation between geometric constraints and inter-condensation distance found in vitro. Together, these findings suggest a potential role of geometric constraints in skeletal patterning in a cellular process of self-organization. PMID:24718453

  10. Searching for quantum optimal controls under severe constraints

    NASA Astrophysics Data System (ADS)

    Riviello, Gregory; Tibbetts, Katharine Moore; Brif, Constantin; Long, Ruixing; Wu, Re-Bing; Ho, Tak-San; Rabitz, Herschel

    2015-04-01

    The success of quantum optimal control for both experimental and theoretical objectives is connected to the topology of the corresponding control landscapes, which are free from local traps if three conditions are met: (1) the quantum system is controllable, (2) the Jacobian of the map from the control field to the evolution operator is of full rank, and (3) there are no constraints on the control field. This paper investigates how the violation of assumption (3) affects gradient searches for globally optimal control fields. The satisfaction of assumptions (1) and (2) ensures that the control landscape lacks fundamental traps, but certain control constraints can still introduce artificial traps. Proper management of these constraints is an issue of great practical importance for numerical simulations as well as optimization in the laboratory. Using optimal control simulations, we show that constraints on quantities such as the number of control variables, the control duration, and the field strength are potentially severe enough to prevent successful optimization of the objective. For each such constraint, we show that exceeding quantifiable limits can prevent gradient searches from reaching a globally optimal solution. These results demonstrate that careful choice of relevant control parameters helps to eliminate artificial traps and facilitates successful optimization.

  11. Brain evolution and development: adaptation, allometry and constraint.

    PubMed

    Montgomery, Stephen H; Mundy, Nicholas I; Barton, Robert A

    2016-09-14

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns.

  12. Integrity Constraint Monitoring in Software Development: Proposed Architectures

    NASA Technical Reports Server (NTRS)

    Fernandez, Francisco G.

    1997-01-01

    In the development of complex software systems, designers are required to obtain from many sources and manage vast amounts of knowledge of the system being built and communicate this information to personnel with a variety of backgrounds. Knowledge concerning the properties of the system, including the structure of, relationships between and limitations of the data objects in the system, becomes increasingly more vital as the complexity of the system and the number of knowledge sources increases. Ensuring that violations of these properties do not occur becomes steadily more challenging. One approach toward managing the enforcement or system properties, called context monitoring, uses a centralized repository of integrity constraints and a constraint satisfiability mechanism for dynamic verification of property enforcement during program execution. The focus of this paper is to describe possible software architectures that define a mechanism for dynamically checking the satisfiability of a set of constraints on a program. The next section describes the context monitoring approach in general. Section 3 gives an overview of the work currently being done toward the addition of an integrity constraint satisfiability mechanism to a high-level program language, SequenceL, and demonstrates how this model is being examined to develop a general software architecture. Section 4 describes possible architectures for a general constraint satisfiability mechanism, as well as an alternative approach that, uses embedded database queries in lieu of an external monitor. The paper concludes with a brief summary outlining the, current state of the research and future work.

  13. Brain evolution and development: adaptation, allometry and constraint

    PubMed Central

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  14. Processing negation and disjunction in logic programs through integrity constraints.

    SciTech Connect

    Gaasterland, T.; Lobo, J.; Mathematics and Computer Science; Univ. of Illinois at Chicago

    1993-01-01

    Integrity constraints were initially defined to verify the correctness of the data that is stored in a database. They were used to restrict the modifications that can be applied to a database. However, there are many other applications in which integrity constraints can play an important role. For example, the semantic query optimization method developed by Chakravarthy, Grant, and Minker for definite deductive databases uses integrity constraints during query processing to prevent the exploration of search space that is bound to fail. In this paper, we generalize the semantic query optimization method to apply to negated atoms. The generalized method is referred to as semantic compilation. This exploration has led to two significant results. First, semantic compilation provides an alternative search space for negative query literals. The alternative search space can find answers in cases for which negation-as-finite-failure and constructive negation cannot. Second, we show how semantic compilation can be used to transform a disjunctive database with or without functions and denial constraints without negation into a new disjunctive database that complies with the integrity constraints.

  15. Airborne Management of Traffic Conflicts in Descent With Arrival Constraints

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.

  16. Constraints, Trade-offs and the Currency of Fitness.

    PubMed

    Acerenza, Luis

    2016-03-01

    Understanding evolutionary trajectories remains a difficult task. This is because natural evolutionary processes are simultaneously affected by various types of constraints acting at the different levels of biological organization. Of particular importance are constraints where correlated changes occur in opposite directions, called trade-offs. Here we review and classify the main evolutionary constraints and trade-offs, operating at all levels of trait hierarchy. Special attention is given to life history trade-offs and the conflict between the survival and reproduction components of fitness. Cellular mechanisms underlying fitness trade-offs are described. At the metabolic level, a linear trade-off between growth and flux variability was found, employing bacterial genome-scale metabolic reconstructions. Its analysis indicates that flux variability can be considered as the currency of fitness. This currency is used for fitness transfer between fitness components during adaptations. Finally, a discussion is made regarding the constraints which limit the increase in the amount of fitness currency during evolution, suggesting that occupancy constraints are probably the main restrictions.

  17. Brain evolution and development: adaptation, allometry and constraint.

    PubMed

    Montgomery, Stephen H; Mundy, Nicholas I; Barton, Robert A

    2016-09-14

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  18. Effect of spatial constraints on Hardy-Weinberg equilibrium

    PubMed Central

    Chen, Yi-Shin; Su, Yi-Cheng; Pan, Wei

    2016-01-01

    Panmixia is a key issue in maintaining genetic diversity, which facilitates evolutionary potential during environmental changes. Additionally, conservation biologists suggest the importance of avoiding small or subdivided populations, which are prone to losing genetic diversity. In this paper, computer simulations were performed to the genetic drift of neutral alleles in random mating populations with or without spatial constraints by randomly choosing a mate among the closest neighbours. The results demonstrated that the number of generations required for the neutral allele to become homozygous (Th) varied proportionally to the population size and also strongly correlated with spatial constraints. The average Th for populations of the same size with spatial constraints was approximately one-and-a-half times longer than without constraints. With spatial constraints, homozygous population clusters formed, which reduced local diversity but preserved global diversity. Therefore, panmixia might be harmful in preserving the genetic diversity of an entire population. The results also suggested that the gene flow or gene exchange among the subdivided populations must be carefully processed to restrict diseases transmission or death during transportation and to monitor the genetic diversity. The application of this concept to similar systems, such as information transfer among peers, is also discussed. PMID:26771073

  19. Water Constraints in an Electric Sector Capacity Expansion Model

    SciTech Connect

    Macknick, Jordan; Cohen, Stuart; Newmark, Robin; Martinez, Andrew; Sullivan, Patrick; Tidwell, Vince

    2015-07-17

    This analysis provides a description of the first U.S. national electricity capacity expansion model to incorporate water resource availability and costs as a constraint for the future development of the electricity sector. The Regional Energy Deployment System (ReEDS) model was modified to incorporate water resource availability constraints and costs in each of its 134 Balancing Area (BA) regions along with differences in costs and efficiencies of cooling systems. Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013b). Scenarios analyzed include a business-as-usual 3 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. scenario without water constraints as well as four scenarios that include water constraints and allow for different cooling systems and types of water resources to be utilized. This analysis provides insight into where water resource constraints could affect the choice, configuration, or location of new electricity technologies.

  20. Cosmological constraints on pseudo-Nambu-Goldstone bosons

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Jaffe, Andrew H.

    1991-01-01

    Particle physics models with pseudo-Nambu-Goldstone bosons (PNGBs) are characterized by two mass scales: a global spontaneous symmetry breaking scale, f, and a soft (explicit) symmetry breaking scale, Lambda. General model insensitive constraints were studied on this 2-D parameter space arising from the cosmological and astrophysical effects of PNGBs. In particular, constraints were studied arising from vacuum misalignment and thermal production of PNGBs, topological defects, and the cosmological effects of PNGB decay products, as well as astrophysical constraints from stellar PNGB emission. Bounds on the Peccei-Quinn axion scale, 10(exp 10) GeV approx. = or less than f sub pq approx. = or less than 10(exp 10) to 10(exp 12) GeV, emerge as a special case, where the soft breaking scale is fixed at Lambda sub QCD approx. = 100 MeV.

  1. Cosmological constraints on theories with large extra dimensions

    SciTech Connect

    Hall, Lawrence J.; Smith, David

    1999-04-23

    In theories with large extra dimensions, constraints from cosmology lead to non-trivial lower bounds on the gravitational scale M, corresponding to upper bounds on the radii of the compact extra dimensions. These constraints are especially relevant to the case of two extra dimensions, since only if M is 10 TeV or less do deviations from the standard gravitational force law become evident at distances accessible to planned sub-mm gravity experiments. By examining the graviton decay contribution to the cosmic diffuse gamma radiation, we derive, for the case of two extra dimensions, a conservative bound M > 110TeV, corresponding to r{sub 2} < 5.1 x 10{sup -5} mm, well beyond the reach of these experiments. We also consider the constraint coming from graviton overclosure of the universe and derive an independent bound M > 6.5/{radical}h TeV, or r{sub 2} < .015hmm.

  2. Predictive directional compensator for systems with input constraints.

    PubMed

    Haeri, Mohammad; Aalam, Nima

    2006-07-01

    Nonlinearity caused by actuator constraint plays a destructive role in the overall performance of a control system. A model predictive controller can handle the problem by implementing a constrained optimization algorithm. Due to the iterative nature of the solution, however, this requires high computation power. In the present work we propose a new method to approach the problem by separating the constraint handling from the predictive control job. The input constraint effects are dealt with in a newly defined component called a predictive directional compensator, which works based on the directionality and predictive concepts. Through implementation of the proposed method, the computational requirement is greatly reduced with the least degradation of the closed-loop performance. Meanwhile, a new characteristic matrix has been defined by which directionality of SISO as well as nonminimum phase systems can be determined.

  3. Variational stereo imaging of oceanic waves with statistical constraints.

    PubMed

    Gallego, Guillermo; Yezzi, Anthony; Fedele, Francesco; Benetazzo, Alvise

    2013-11-01

    An image processing observational technique for the stereoscopic reconstruction of the waveform of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi-Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired waveform is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained by combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.

  4. Water quality sensor placement in water networks with budget constraints.

    SciTech Connect

    Walski, Thomas M.; Uber, James G.; Hart, William Eugene; Phillips, Cynthia Ann; Berry, Jonathan W.

    2005-02-01

    In recent years, several integer programming models have been proposed to place sensors in municipal water networks in order to detect intentional or accidental contamination. Although these initial models assumed that it is equally costly to place a sensor at any place in the network, there clearly are practical cost constraints that would impact a sensor placement decision. Such constraints include not only labor costs but also the general accessibility of a sensor placement location. In this paper, we extend our integer program to explicitly model the cost of sensor placement. We partition network locations into groups of varying placement cost, and we consider the public health impacts of contamination events under varying budget constraints. Thus our models permit cost/benefit analyses for differing sensor placement designs. As a control for our optimization experiments, we compare the set of sensor locations selected by the optimization models to a set of manually-selected sensor locations.

  5. A Framework for Optimal Control Allocation with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc

    2010-01-01

    Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.

  6. Large scale structure forecast constraints on particle production during inflation

    SciTech Connect

    Chantavat, Teeraparb; Gordon, Christopher; Silk, Joseph

    2011-05-15

    Bursts of particle production during inflation provide a well-motivated mechanism for creating bumplike features in the primordial power spectrum. Current data constrain these features to be less than about 5% the size of the featureless primordial power spectrum at wave numbers of about 0.1h Mpc{sup -1}. We forecast that the Planck cosmic microwave background experiment will be able to strengthen this constraint to the 0.5% level. We also predict that adding data from a square kilometer array galaxy redshift survey would improve the constraint to about the 0.1% level. For features at larger wave numbers, Planck will be limited by Silk damping and foregrounds, while the square kilometer array will be limited by nonlinear effects. We forecast, for a cosmic inflation probe galaxy redshift survey, that similar constraints can be achieved up to about a wave number of 1.0h Mpc{sup -1}.

  7. A constraint consensus memetic algorithm for solving constrained optimization problems

    NASA Astrophysics Data System (ADS)

    Hamza, Noha M.; Sarker, Ruhul A.; Essam, Daryl L.; Deb, Kalyanmoy; Elsayed, Saber M.

    2014-11-01

    Constraint handling is an important aspect of evolutionary constrained optimization. Currently, the mechanism used for constraint handling with evolutionary algorithms mainly assists the selection process, but not the actual search process. In this article, first a genetic algorithm is combined with a class of search methods, known as constraint consensus methods, that assist infeasible individuals to move towards the feasible region. This approach is also integrated with a memetic algorithm. The proposed algorithm is tested and analysed by solving two sets of standard benchmark problems, and the results are compared with other state-of-the-art algorithms. The comparisons show that the proposed algorithm outperforms other similar algorithms. The algorithm has also been applied to solve a practical economic load dispatch problem, where it also shows superior performance over other algorithms.

  8. Enhancement of coupled multichannel images using sparsity constraints.

    PubMed

    Ramakrishnan, Naveen; Ertin, Emre; Moses, Randolph L

    2010-08-01

    We consider the problem of joint enhancement of multichannel images with pixel based constraints on the multichannel data. Previous work by Cetin and Karl introduced nonquadratic regularization methods for SAR image enhancement using sparsity enforcing penalty terms. We formulate an optimization problem that jointly enhances complex-valued multichannel images while preserving the cross-channel information, which we include as constraints tying the multichannel images together. We pose this problem as a joint optimization problem with constraints. We first reformulate it as an equivalent (unconstrained) dual problem and develop a numerically-efficient method for solving it. We develop the Dual Descent method, which has low complexity, for solving the joint optimization problem. The algorithm is applied to both an interferometric synthetic aperture radar (IFSAR) problem, in which the relative phase between two complex-valued images indicate height, and to a synthetic multimodal medical image example. PMID:20236892

  9. Efficient SAT Techniques for Relative Encoding of Permutations with Constraints

    NASA Astrophysics Data System (ADS)

    Velev, Miroslav N.; Gao, Ping

    We present new techniques for relative SAT encoding of permutations with constraints, resulting in improved scalability compared to the previous approach by Prestwich, when applied to searching for Hamiltonian cycles. We observe that half of the ordering variables and two-thirds of the transitivity constraints can be eliminated. We exploit minimal enumeration of transitivity, based on 12 triangulation heuristics, and 11 heuristics for selecting the first node in the Hamiltonian cycle. We propose the use of inverse transitivity constraints. We achieve 3 orders of magnitude average speedup on satisfiable random graphs from the phase transition region, 2 orders of magnitude average speedup on unsatisfiable random graphs, and up to 4 orders of magnitude speedup on satisfiable structured graphs from the DIMACS graph coloring instances.

  10. Environmental Crack Growth Behavior Affected by Thickness/Geometry Constraint

    NASA Astrophysics Data System (ADS)

    Kujawski, Daniel

    2013-03-01

    This article gives a short review on the effects of thickness/constraint and environment on crack growth behavior under cyclic and static loadings. Fatigue crack growth data taken from the literature, corresponding to different environments, ranging from vacuum to air and NaCl solution for a number of alloys and different specimens geometries are presented and analyzed. Reported results indicate that for relatively inert material/environment systems, there is a weak thickness/constraint effect on fatigue crack growth behavior. On the other hand, for corrosive material/environment systems, there is a significant thickness/constraint effect on crack growth rate behavior under both cyclic and static loadings. Some implications related to crack growth modeling are suggested.

  11. Solving and Learning Soft Temporal Constraints: Experimental Scenario and Examples

    NASA Technical Reports Server (NTRS)

    Rossi, F.; Venable, K. B.; Sperduti, A.; Khatib, L.; Morris, P.; Morris, R.; Koga, Dennis (Technical Monitor)

    2001-01-01

    Soft temporal constraint problems allow to describe in a natural way scenarios where events happen over time and preferences are associated to event distances and durations. However, sometimes such local preferences are difficult to set, and it may be easier instead to associate preferences to some complete solutions of the problem. To model everything in a uniform way via local preferences only, and also to take advantage of the existing constraint solvers which exploit only local preference use machine learning techniques which learn the local preferences from the global ones. In this paper we describe the existing framework for both solving and learning preferences in temporal constraint problems, the implemented modules, the experimental scenario, and preliminary results on some examples.

  12. Sequential phenotypic constraints on social information use in wild baboons.

    PubMed

    Carter, Alecia J; Torrents Ticó, Miquel; Cowlishaw, Guy

    2016-04-12

    Social information allows the rapid dissemination of novel information among individuals. However, an individual's ability to use information is likely to be dependent on phenotypic constraints operating at three successive steps: acquisition, application, and exploitation. We tested this novel framework by quantifying the sequential process of social information use with experimental food patches in wild baboons (Papio ursinus). We identified phenotypic constraints at each step of the information use sequence: peripheral individuals in the proximity network were less likely to acquire and apply social information, while subordinate females were less likely to exploit it successfully. Social bonds and personality also played a limiting role along the sequence. As a result of these constraints, the average individual only acquired and exploited social information on.

  13. Minimal cutoff vacuum state constraints from CMB bispectrum statistics

    SciTech Connect

    Meerburg, P. Daniel; Schaar, Jan Pieter van der

    2011-02-15

    In this short note we translate the best available observational bounds on the CMB bispectrum amplitudes into constraints on a specific scale-invariant new physics hypersurface model of vacuum state modifications, as first proposed by Danielsson, in general models of single-field inflation. As compared to the power spectrum the bispectrum constraints are less ambiguous and provide an interesting upper bound on the cutoff scale in general models of single-field inflation with a small speed of sound. This upper bound is incompatible with the power spectrum constraint for most of the parameter domain, leaving very little room for minimal cutoff vacuum state modifications in general single-field models with a small speed of sound.

  14. Constraints on Lorentz violation from gravitational Čerenkov radiation

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan; Tasson, Jay D.

    2015-10-01

    Limits on gravitational Čerenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. Prospects are discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Čerenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Čerenkov radiation by gravitons.

  15. Cosmological and astrophysical constraints on superconducting cosmic strings

    SciTech Connect

    Miyamoto, Koichi; Nakayama, Kazunori E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp

    2013-07-01

    We investigate the cosmological and astrophysical constraints on superconducting cosmic strings (SCSs). SCS loops emit strong bursts of electromagnetic waves, which might affect various cosmological and astrophysical observations. We take into account the effect on the CMB anisotropy, CMB blackbody spectrum, BBN, observational implications on radio wave burst and X-ray or γ-ray events, and stochastic gravitational wave background measured by pulsar timing experiments. We then derive constraints on the parameters of SCS from current observations and estimate prospects for detecting SCS signatures in on-going observations. As a result, we find that these constraints exclude broad parameter regions, and also that on-going radio wave observations can probe large parameter space.

  16. Sequential phenotypic constraints on social information use in wild baboons.

    PubMed

    Carter, Alecia J; Torrents Ticó, Miquel; Cowlishaw, Guy

    2016-01-01

    Social information allows the rapid dissemination of novel information among individuals. However, an individual's ability to use information is likely to be dependent on phenotypic constraints operating at three successive steps: acquisition, application, and exploitation. We tested this novel framework by quantifying the sequential process of social information use with experimental food patches in wild baboons (Papio ursinus). We identified phenotypic constraints at each step of the information use sequence: peripheral individuals in the proximity network were less likely to acquire and apply social information, while subordinate females were less likely to exploit it successfully. Social bonds and personality also played a limiting role along the sequence. As a result of these constraints, the average individual only acquired and exploited social information on. PMID:27067236

  17. Automatic Verification of Timing Constraints for Safety Critical Space Systems

    NASA Astrophysics Data System (ADS)

    Fernandez, Javier; Parra, Pablo; Sanchez Prieto, Sebastian; Polo, Oscar; Bernat, Guillem

    2015-09-01

    In this paper is presented an automatic process of verification. We focus in the verification of scheduling analysis parameter. This proposal is part of process based on Model Driven Engineering to automate a Verification and Validation process of the software on board of satellites. This process is implemented in a software control unit of the energy particle detector which is payload of Solar Orbiter mission. From the design model is generated a scheduling analysis model and its verification model. The verification as defined as constraints in way of Finite Timed Automatas. When the system is deployed on target the verification evidence is extracted as instrumented points. The constraints are fed with the evidence, if any of the constraints is not satisfied for the on target evidence the scheduling analysis is not valid.

  18. Space group constraints on weak indices in topological crystalline insulators

    NASA Astrophysics Data System (ADS)

    Varjas, Daniel; de Juan, Fernando; Lu, Yuan-Ming

    In this work we derive constraints on weak indices of topological insulators and superconductors coming from space group symmetry. Weak indices are topological invariants of lower dimensional slices of the Brillouin zone, notable examples are the Chern numbers in class A and weak ℤ2 indices in class AII in 3D. The components of the weak indices form a momentum space vector that transforms in a simple fashion under space group symmetries, using results of momentum space crystallography we find the allowed values for each Bravais lattice. Nonsymmorphic symmetries, such as screw axes and glide planes pose additional constraints. Accounting for both of these we find that most space groups experience some restriction, to the extent that some cannot support nontrivial weak topological insulators and superconductors at all. This result puts a strong constraint on candidates in the experimental and numerical search for topological materials based on the lattice structure alone.

  19. Directional constraint of endpoint force emerges from hindlimb anatomy.

    PubMed

    Bunderson, Nathan E; McKay, J Lucas; Ting, Lena H; Burkholder, Thomas J

    2010-06-15

    Postural control requires the coordination of force production at the limb endpoints to apply an appropriate force to the body. Subjected to horizontal plane perturbations, quadruped limbs stereotypically produce force constrained along a line that passes near the center of mass. This phenomenon, referred to as the force constraint strategy, may reflect mechanical constraints on the limb or body, a specific neural control strategy or an interaction among neural controls and mechanical constraints. We used a neuromuscular model of the cat hindlimb to test the hypothesis that the anatomical constraints restrict the mechanical action of individual muscles during stance and constrain the response to perturbations to a line independent of perturbation direction. In a linearized neuromuscular model of the cat hindlimb, muscle lengthening directions were highly conserved across 10,000 different muscle activation patterns, each of which produced an identical, stance-like endpoint force. These lengthening directions were closely aligned with the sagittal plane and reveal an anatomical structure for directionally constrained force responses. Each of the 10,000 activation patterns was predicted to produce stable stance based on Lyapunov stability analysis. In forward simulations of the nonlinear, seven degree of freedom model under the action of 200 random muscle activation patterns, displacement of the endpoint from its equilibrium position produced restoring forces, which were also biased toward the sagittal plane. The single exception was an activation pattern based on minimum muscle stress optimization, which produced destabilizing force responses in some perturbation directions. The sagittal force constraint increased during simulations as the system shifted from an inertial response during the acceleration phase to a viscoelastic response as peak velocity was obtained. These results qualitatively match similar experimental observations and suggest that the force

  20. Participatory evaluation of chicken health and production constraints in Ethiopia.

    PubMed

    Sambo, Emmanuel; Bettridge, Judy; Dessie, Tadelle; Amare, Alemayehu; Habte, Tadiose; Wigley, Paul; Christley, Robert M

    2015-01-01

    Chicken production has a major role in the economy of developing countries and backyard production is particularly important to women. Several programmes, in Ethiopia and elsewhere, have attempted to improve chicken production as a means to reduce poverty. A key constraint to chicken production identified by farmers is disease. This study used participatory rural appraisal methods to work with chicken-keepers in order to prioritise chicken diseases, place these within the context of other production constraints, and to explore perceptions of disease risk factors and biosecurity measures. The study, focused on Debre Zeit, Ethiopia, included 71 poultry keepers (41 backyard and 30 semi-intensive chicken producers). Although women played an important role in backyard production systems, semi-intensive farms were more likely to be controlled by men. Participants identified 9 constraints to production: 7 of 8 groups of backyard producers and 15/31 semi-intensive producers ranked diseases as the most important constraint to chicken production. In contrast to previous reports, farmers in both groups had considerable knowledge of diseases and of factors affecting disease risk. Both groups, but particularly semi-intensive producers, highlighted access to feed as a constraint. Many of the challenges faced by both groups were associated with difficulty accessing agricultural and veterinary inputs and expertise. Whilst many of the constraints identified by farmers could be viewed as simply technical issues to be overcome, we believe it is important to recognise the social factors underpinning what are, in reality, relatively modest technical challenges. The low involvement of women in semi-intensive production needs to be recognised by poultry development schemes. Provision needs to be made to allow access to inputs for a wide range of business models, particularly for those, such as women, who have limited access to the capital to allow them to make the jump from backyard to

  1. Participatory evaluation of chicken health and production constraints in Ethiopia

    PubMed Central

    Sambo, Emmanuel; Bettridge, Judy; Dessie, Tadelle; Amare, Alemayehu; Habte, Tadiose; Wigley, Paul; Christley, Robert M.

    2015-01-01

    Chicken production has a major role in the economy of developing countries and backyard production is particularly important to women. Several programmes, in Ethiopia and elsewhere, have attempted to improve chicken production as a means to reduce poverty. A key constraint to chicken production identified by farmers is disease. This study used participatory rural appraisal methods to work with chicken-keepers in order to prioritise chicken diseases, place these within the context of other production constraints, and to explore perceptions of disease risk factors and biosecurity measures. The study, focused on Debre Zeit, Ethiopia, included 71 poultry keepers (41 backyard and 30 semi-intensive chicken producers). Although women played an important role in backyard production systems, semi-intensive farms were more likely to be controlled by men. Participants identified 9 constraints to production: 7 of 8 groups of backyard producers and 15/31 semi-intensive producers ranked diseases as the most important constraint to chicken production. In contrast to previous reports, farmers in both groups had considerable knowledge of diseases and of factors affecting disease risk. Both groups, but particularly semi-intensive producers, highlighted access to feed as a constraint. Many of the challenges faced by both groups were associated with difficulty accessing agricultural and veterinary inputs and expertise. Whilst many of the constraints identified by farmers could be viewed as simply technical issues to be overcome, we believe it is important to recognise the social factors underpinning what are, in reality, relatively modest technical challenges. The low involvement of women in semi-intensive production needs to be recognised by poultry development schemes. Provision needs to be made to allow access to inputs for a wide range of business models, particularly for those, such as women, who have limited access to the capital to allow them to make the jump from backyard to

  2. Participatory evaluation of chicken health and production constraints in Ethiopia.

    PubMed

    Sambo, Emmanuel; Bettridge, Judy; Dessie, Tadelle; Amare, Alemayehu; Habte, Tadiose; Wigley, Paul; Christley, Robert M

    2015-01-01

    Chicken production has a major role in the economy of developing countries and backyard production is particularly important to women. Several programmes, in Ethiopia and elsewhere, have attempted to improve chicken production as a means to reduce poverty. A key constraint to chicken production identified by farmers is disease. This study used participatory rural appraisal methods to work with chicken-keepers in order to prioritise chicken diseases, place these within the context of other production constraints, and to explore perceptions of disease risk factors and biosecurity measures. The study, focused on Debre Zeit, Ethiopia, included 71 poultry keepers (41 backyard and 30 semi-intensive chicken producers). Although women played an important role in backyard production systems, semi-intensive farms were more likely to be controlled by men. Participants identified 9 constraints to production: 7 of 8 groups of backyard producers and 15/31 semi-intensive producers ranked diseases as the most important constraint to chicken production. In contrast to previous reports, farmers in both groups had considerable knowledge of diseases and of factors affecting disease risk. Both groups, but particularly semi-intensive producers, highlighted access to feed as a constraint. Many of the challenges faced by both groups were associated with difficulty accessing agricultural and veterinary inputs and expertise. Whilst many of the constraints identified by farmers could be viewed as simply technical issues to be overcome, we believe it is important to recognise the social factors underpinning what are, in reality, relatively modest technical challenges. The low involvement of women in semi-intensive production needs to be recognised by poultry development schemes. Provision needs to be made to allow access to inputs for a wide range of business models, particularly for those, such as women, who have limited access to the capital to allow them to make the jump from backyard to

  3. Optimality criteria solution strategies in multiple constraint design optimization

    NASA Technical Reports Server (NTRS)

    Levy, R.; Parzynski, W.

    1981-01-01

    Procedures and solution strategies are described to solve the conventional structural optimization problem using the Lagrange multiplier technique. The multipliers, obtained through solution of an auxiliary nonlinear optimization problem, lead to optimality criteria to determine the design variables. It is shown that this procedure is essentially equivalent to an alternative formulation using a dual method Lagrangian function objective. Although mathematical formulations are straight-forward, successful applications and computational efficiency depend upon execution procedure strategies. Strategies examined, with application examples, include selection of active constraints, move limits, line search procedures, and side constraint boundaries.

  4. Determining physical constraints in transcriptional initiationcomplexes using DNA sequence analysis

    SciTech Connect

    Shultzaberger, Ryan K.; Chiang, Derek Y.; Moses, Alan M.; Eisen,Michael B.

    2007-07-01

    Eukaryotic gene expression is often under the control ofcooperatively acting transcription factors whose binding is limited bystructural constraints. By determining these structural constraints, wecan understand the "rules" that define functional cooperativity.Conversely, by understanding the rules of binding, we can inferstructural characteristics. We have developed an information theory basedmethod for approximating the physical limitations of cooperativeinteractions by comparing sequence analysis to microarray expressiondata. When applied to the coordinated binding of the sulfur amino acidregulatory protein Met4 by Cbf1 and Met31, we were able to create acombinatorial model that can correctly identify Met4 regulatedgenes.

  5. New Hamiltonian constraint operator for loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Yang, Jinsong; Ma, Yongge

    2015-12-01

    A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.

  6. Model-independent constraints on possible modifications of Newtonian gravity

    NASA Technical Reports Server (NTRS)

    Talmadge, C.; Berthias, J.-P.; Hellings, R. W.; Standish, E. M.

    1988-01-01

    New model-independent constraints on possible modifications of Newtonian gravity over solar-system distance scales are presented, and their implications discussed. The constraints arise from the analysis of various planetary astrometric data sets. The results of the model-independent analysis are then applied to set limits on a variation in the l/r-squared behavior of gravity, on possible Yukawa-type interactions with ranges of the order of planetary distance scales, and on a deviation from Newtonian gravity of the type discussed by Milgrom (1983).

  7. Indirect Charged Higgs Constraints from BaBar

    SciTech Connect

    Robertson, Steven H.; /McGill U.

    2011-09-14

    The high-statistics data samples from the BABAR and Belle B-Factory experiments provide stringent constraints on charged Higgs bosons within the context of specific New Physics models. These constraints are obtained by comparing Standard Model predictions with experimental observations in rare B decays with potential sensitivity to contributions mediated by a virtual H{sup {+-}} in tree or loop diagrams. Recent experimental results on the decays B{sup +} {yields} {mu}{sup +}{nu}, B{sup +} {yields} {tau}{sup +}{nu} and inclusive B {yields} X{sub s}{gamma} are described and the implications of these measurements for charged Higgs bosons is discussed.

  8. Embedding Temporal Constraints For Coordinated Execution in Habitat Automation

    NASA Technical Reports Server (NTRS)

    Morris, Paul; Schwabacher, Mark; Dalal, Michael; Fry, Charles

    2013-01-01

    Future NASA plans call for long-duration deep space missions with human crews. Because of light-time delay and other considerations, increased autonomy will be needed. This will necessitate integration of tools in such areas as anomaly detection, diagnosis, planning, and execution. In this paper we investigate an approach that integrates planning and execution by embedding planner-derived temporal constraints in an execution procedure. To avoid the need for propagation, we convert the temporal constraints to dispatchable form. We handle some uncertainty in the durations without it affecting the execution; larger variations may cause activities to be skipped.

  9. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  10. Observational Constraints on Planet Nine: Cassini Range Observations

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Payne, Matthew J.

    2016-10-01

    We examine the tidal perturbations induced by a possible additional, distant planet in the solar system on the distance between the Earth and the Cassini spacecraft. We find that measured range residuals alone can significantly constrain the sky position, distance, and mass of the perturbing planet to sections of the sky essentially orthogonal to the orbit of Saturn. When we combine these constraints from tidal perturbations with the dynamical constraints from Batygin & Brown and Brown & Batygin, we further constrain the allowed location of the perturbing planet to a region of the sky approximately centered on (R.A., decl.) = (40°, ‑15°) and extending ∼20° in all directions.

  11. Constraints as a destriping tool for Hires images

    NASA Technical Reports Server (NTRS)

    Cao, YU; Prince, Thomas A.

    1994-01-01

    Images produced from the Maximum Correlation Method sometimes suffer from visible striping artifacts, especially for areas of extended sources. Possible causes are different baseline levels and calibration errors in the detectors. We incorporated these factors into the MCM algorithm, and tested the effects of different constraints on the output image. The result shows significant visual improvement over the standard MCM Method. In some areas the new images show intelligible structures that are otherwise corrupted by striping artifacts, and the removal of these artifacts could enhance performance of object classification algorithms. The constraints were also tested on low surface brightness areas, and were found to be effective in reducing the noise level.

  12. An information-based neural approach to constraint satisfaction.

    PubMed

    Jönsson, H; Söderberg, B

    2001-08-01

    A novel artificial neural network approach to constraint satisfaction problems is presented. Based on information-theoretical considerations, it differs from a conventional mean-field approach in the form of the resulting free energy. The method, implemented as an annealing algorithm, is numerically explored on a testbed of K-SAT problems. The performance shows a dramatic improvement over that of a conventional mean-field approach and is comparable to that of a state-of-the-art dedicated heuristic (GSAT+walk). The real strength of the method, however, lies in its generality. With minor modifications, it is applicable to arbitrary types of discrete constraint satisfaction problems. PMID:11506672

  13. Mechanical contact by constraints and split-based preconditioning

    SciTech Connect

    Dmitry Karpeyev; Derek Gaston; Jason Hales; Steven Novascone

    2014-03-01

    An accurate implementation of glued mechanical contact was developed in MOOSE based on its Constraint system. This approach results in a superior convergence of elastic structure problems, in particular in BISON. Adaptation of this technique to frictionless and frictional contact models is under way. Additionally, the improved convergence of elastic problems results from the application of the split-based preconditioners to constraint-based systems. This yields a substantial increase in the robustness of elastic solvers when the number of nodes in contact is increased and/or the mesh is refined.

  14. Solar electric geocentric transfer with attitude constraints: Analysis

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.; Malchow, H. L.; Delbaum, T. N.

    1975-01-01

    A time optimal or nearly time optimal trajectory program was developed for solar electric geocentric transfer with or without attitude constraints and with an optional initial high thrust stage. The method of averaging reduces computation time. A nonsingular set of orbital elements is used. The constraints, which are those of one of the SERT-C designs, introduce complexities into the analysis and the solution yields possible discontinuous changes in thrust direction. The power degradation due to VanAllen radiation is modeled analytically. A wide range of solar cell characteristics is assumed. Effects such as oblateness and shadowing are included. The analysis and the results of many example runs are included.

  15. CMB constraints on spatial variations of the vacuum energy density

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Canavezes, A.; de Carvalho, J. P. M.; Martins, C. J. A. P.

    2002-06-01

    In a recent article, a simple `spherical bubble' toy model for a spatially varying vacuum energy density was introduced, and type Ia supernovae data was used to constrain it. Here we generalize the model to allow for the fact that we may not necessarily be at the center of a region with a given set of cosmological parameters, and discuss the constraints on these models coming from cosmic microwave background radiation data. We find tight constraints on possible spatial variations of the vacuum energy density for any significant deviations from the center of the bubble and we comment on the relevance of our results.

  16. Testing the bootstrap constraints in the strange sector

    NASA Astrophysics Data System (ADS)

    Semenov-Tian-Shansky, Kirill M.; Vereshagin, Vladimir V.

    2013-04-01

    In this paper the bootstrap conditions that follow from the general postulates of effective scattering theory (EST) are checked in the strange sector. We construct the system of tree level bootstrap constraints for the renormalization prescriptions fixing the physical content of the theory. Then we perform the numerical testing of corresponding sum rules for the parameters of strange resonances. It is shown that, generally, the bootstrap constraints turn out consistent with presently known data on the strange resonance parameters. At the same time we point out few sum rules which cannot be saturated with modern data and discuss the possible reasons for such discrepancies.

  17. Flavor Data Constraints on the SUSY Parameter Space

    SciTech Connect

    Mahmoudi, Farvah

    2008-11-23

    We present an overview of the indirect constraints from flavor physics on supersymmetric models. During the past few years flavor data, and in particular b{yields}s{gamma} transitions, have been extensively used in order to constrain supersymmetric parameter spaces. We will briefly illustrate here the constraints obtained by a collection of low energy observables including FCNC transitions, rare decays, leptonic and semileptonic decays of B mesons, as well as leptonic decays of K mesons. The theoretical predictions can be obtained using the computer program SuperIso.

  18. Dielectric relaxation of polymers: segmental dynamics under structural constraints.

    PubMed

    Alegria, Angel; Colmenero, Juan

    2016-10-01

    In this article we review the recent polymer literature where dielectric spectroscopy has been used to investigate the segmental dynamics of polymers under the constraints produced by self-structuring. Specifically, we consider three cases: (i) semicrystalline polymers, (ii) segregated block-copolymers, and (iii) asymmetric miscible polymer blends. In these three situations the characteristics of the dielectric relaxation associated with the polymer segmental dynamics are markedly affected by the constraints imposed by the corresponding structural features. After reviewing in detail each of the polymer systems, the most common aspects are discussed in the context of the use of dielectric relaxation as a sensitive tool for analyzing structural features in nanostructured polymer systems.

  19. Practicing Radical Pedagogy: Balancing Ideals with Institutional Constraints.

    ERIC Educational Resources Information Center

    Sweet, Stephen

    1998-01-01

    Describes radical pedagogy and observes that an overview of "Teaching Sociology" suggests that few teachers fully practice it. Argues that while professors are free to teach radical theory, radical pedagogy is hindered by institutional constraints. Concludes that radical teachers may benefit from remaining more within the confines imposed by their…

  20. Distance and angular holonomic constraints in molecular simulations

    NASA Astrophysics Data System (ADS)

    Dubbeldam, David; Oxford, Gloria A. E.; Krishna, Rajamani; Broadbelt, Linda J.; Snurr, Randall Q.

    2010-07-01

    Finding the energy minima of systems with constraints is a challenging problem. We develop a minimization method based on the projection operator technique to enforce distance and angle constraints in minimization and reaction-path dynamics. The application of the projection operator alone does not maintain the constraints, i.e., they are slightly violated. Therefore, we use the SHAKE-methodology to enforce the constraints after each minimization step. We have extended θ -SHAKE for bend angles and introduce ϕ -SHAKE and χ -SHAKE to constrain dihedral and out-of-plane angles, respectively. Two case studies are presented: (1) A mode analysis of united-atom n-butane with various internal degrees of freedom kept frozen and (2) the minimization of chromene at a fixed approach toward the catalytic site of a (salen)Mn. The obtained information on energetics can be used to explain why specific enantioselectivity is observed. Previous minimization methods work for the free molecular case, but fail when molecules are tightly confined.

  1. Evaluating the role of reproductive constraints in ant social evolution.

    PubMed

    Khila, Abderrahman; Abouheif, Ehab

    2010-02-27

    The reproductive division of labour is a key feature of eusociality in ants, where queen and worker castes show dramatic differences in the development of their reproductive organs. To understand the developmental and genetic basis underlying this division of labour, we performed a molecular analysis of ovary function and germ cell development in queens and workers. We show that the processes of ovarian development in queens have been highly conserved relative to the fruitfly Drosophila melanogaster. We also identify specific steps during oogenesis and embryogenesis in which ovarian and germ cell development have been evolutionarily modified in the workers. These modifications, which we call 'reproductive constraints', are often assumed to represent neutral degenerations that are a consequence of social evolutionary forces. Based on our developmental and functional analysis of these constraints, however, we propose and discuss the alternative hypothesis that reproductive constraints represent adaptive proximate mechanisms or traits for maintaining social harmony in ants. We apply a multi-level selection framework to help understand the role of these constraints in ant social evolution. A complete understanding of how cooperation, conflict and developmental systems evolve in social groups requires a 'socio-evo-devo' approach that integrates social evolutionary and developmental biology.

  2. Acquiring Constraints on Morphosyntactic Variation: Children's Spanish Subject Pronoun Expression

    ERIC Educational Resources Information Center

    Shin, Naomi Lapidus

    2016-01-01

    Constraints on linguistic variation are consistent across adult speakers, yielding probabilistic and systematic patterns. Yet, little is known about the development of such patterns during childhood. This study investigates Spanish subject pronoun expression in naturalistic data from 154 monolingual children in Mexico, divided into four age…

  3. First experimental constraints on the disformally coupled Galileon model

    NASA Astrophysics Data System (ADS)

    Neveu, J.; Ruhlmann-Kleider, V.; Astier, P.; Besançon, M.; Conley, A.; Guy, J.; Möller, A.; Palanque-Delabrouille, N.; Babichev, E.

    2014-09-01

    Aims: The Galileon model is a modified gravity model that can explain the late-time accelerated expansion of the Universe. In a previous work, we derived experimental constraints on the Galileon model with no explicit coupling to matter and showed that this model agrees with the most recent cosmological data. In the context of braneworld constructions or massive gravity, the Galileon model exhibits a disformal coupling to matter, which we study in this paper. Methods: After comparing our constraints on the uncoupled model with recent studies, we extend the analysis framework to the disformally coupled Galileon model and derive the first experimental constraints on that coupling, using precise measurements of cosmological distances and the growth rate of cosmic structures. Results: In the uncoupled case, with updated data, we still observe a low tension between the constraints set by growth data and those from distances. In the disformally coupled Galileon model, we obtain better agreement with data and favour a non-zero disformal coupling to matter at the 2.5σ level. This gives an interesting hint of the possible braneworld origin of Galileon theory.

  4. Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms.

    PubMed

    Friedrich, Tobias; Neumann, Frank

    2015-01-01

    Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a simple single objective evolutionary algorithm called (1 + 1) EA and a multiobjective evolutionary algorithm called GSEMO until they have obtained a good approximation for submodular functions. For the case of monotone submodular functions and uniform cardinality constraints, we show that the GSEMO achieves a (1 - 1/e)-approximation in expected polynomial time. For the case of monotone functions where the constraints are given by the intersection of K ≥ 2 matroids, we show that the (1 + 1) EA achieves a (1/k + δ)-approximation in expected polynomial time for any constant δ > 0. Turning to nonmonotone symmetric submodular functions with k ≥ 1 matroid intersection constraints, we show that the GSEMO achieves a 1/((k + 2)(1 + ε))-approximation in expected time O(n(k + 6)log(n)/ε.

  5. The Optimization of Multivariate Generalizability Studies with Budget Constraints.

    ERIC Educational Resources Information Center

    Marcoulides, George A.; Goldstein, Zvi

    1992-01-01

    A method is presented for determining the optimal number of conditions to use in multivariate-multifacet generalizability designs when resource constraints are imposed. A decision maker can determine the number of observations needed to obtain the largest possible generalizability coefficient. The procedure easily applies to the univariate case.…

  6. The Optimization of Generalizability Studies with Resource Constraints.

    ERIC Educational Resources Information Center

    Marcoulides, George A.; Goldstein, Zvi

    1990-01-01

    A methodology for determining the optimal number of observations to use in a measurement design when resource constraints are imposed is presented. Two- and three-facet designs are outlined. Parallel closed form formulae can easily be determined for other designs. (TJH)

  7. Specification and Enforcement of Semantic Integrity Constraints in Microsoft Access

    ERIC Educational Resources Information Center

    Dadashzadeh, Mohammad

    2007-01-01

    Semantic integrity constraints are business-specific rules that limit the permissible values in a database. For example, a university rule dictating that an "incomplete" grade cannot be changed to an A constrains the possible states of the database. To maintain database integrity, business rules should be identified in the course of database…

  8. Teaching Database Design with Constraint-Based Tutors

    ERIC Educational Resources Information Center

    Mitrovic, Antonija; Suraweera, Pramuditha

    2016-01-01

    Design tasks are difficult to teach, due to large, unstructured solution spaces, underspecified problems, non-existent problem solving algorithms and stopping criteria. In this paper, we comment on our approach to develop KERMIT, a constraint-based tutor that taught database design. In later work, we re-implemented KERMIT as EER-Tutor, and…

  9. Stories and Scripts as "Cultural Constraints" on Change in Organisations

    ERIC Educational Resources Information Center

    Amundsen, Oscar

    2014-01-01

    This paper explores narratives and scripts as possible "cultural constraints" on change in an organisation. The empirical basis is a study of employee's perceptions of change processes in a Norwegian finance group. "Narrative" and "script" are key theoretical concepts in the paper, including their potential to…

  10. Solving Constraint-Satisfaction Problems In Prolog Language

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.

    1991-01-01

    Technique for solution of constraint-satisfaction problems uses definite-clause grammars of Prolog computer language. Exploits fact that grammar-rule notation viewed as "state-change notation". Facilitates development of dynamic representation performing informed as well as blind searches. Applicable to design, scheduling, and planning problems.

  11. Exploring Constraints on Developing Knowledge: On the Need for Conflict.

    ERIC Educational Resources Information Center

    Beech, Nic; MacIntosh, Robert; MacLean, Donald; Shepherd, Jill; Stokes, John

    2002-01-01

    Explores some of the constraints on knowledge development through a multi-perspective examination of a project in which there was an intention and enacted process to develop knowledge. Engaged with the generic question of what the conditions that facilitate knowledge creation in organizations are, considers data from three theoretical…

  12. Constraint-Induced Movement Therapy (CIMT): Pediatric Applications

    ERIC Educational Resources Information Center

    Brady, Kathleen; Garcia, Teressa

    2009-01-01

    The purpose of this article is to describe theoretical and research bases for constraint-induced movement therapy (CIMT), to discuss key features and variations in protocols currently in use with children, and to review the results of studies of efficacy. CIMT has been found to be an effective intervention for increasing functional use of the…

  13. Policy Burdens, Accountability and Soft Budget Constraint of Chinese HEIs

    ERIC Educational Resources Information Center

    Yu, Jianhai

    2008-01-01

    Policy burdens of HEIs (higher education institutions) lead to the soft budget constraint (SBC) and the excessive loans of HEIs. Since information asymmetry and incentive are incompatible, policy burdens will result in the adverse selection of the president, and the excessive loans and low efficiency of HEIs. When HEIs are with policy burdens, the…

  14. The Secondary School Principalship: The Task and the Constraints.

    ERIC Educational Resources Information Center

    Watts, O. B.

    Inspired by Franz Kafka's predatory leopard anecdote, this speech explores the plight of Canadian secondary school principals trying to meet students' educational needs within the constraints imposed by politics and finance. A cross-country survey of 60 principals disclosed some typical problems. Principals must be reponsive to public opinion…

  15. Cosmological Constraints from the SDSS maxBCG Cluster Catalog

    SciTech Connect

    Rozo, Eduardo; Wechsler, Risa H.; Rykoff, Eli S.; Annis, James T.; Becker, Matthew R.; Evrard, August E.; Frieman, Joshua A.; Hansen, Sarah M.; Hao, Jia; Johnston, David E.; Koester, Benjamin P.; McKay, Timothy A.; Sheldon, Erin S.; Weinberg, David H.; /CCAPP /Ohio State U.

    2009-08-03

    We use the abundance and weak lensing mass measurements of the SDSS maxBCG cluster catalog to simultaneously constrain cosmology and the richness-mass relation of the clusters. Assuming a flat {Lambda}CDM cosmology, we find {sigma}{sub 8}({Omega}{sub m}/0.25){sup 0.41} = 0.832 {+-} 0.033 after marginalization over all systematics. In common with previous studies, our error budget is dominated by systematic uncertainties, the primary two being the absolute mass scale of the weak lensing masses of the maxBCG clusters, and uncertainty in the scatter of the richness-mass relation. Our constraints are fully consistent with the WMAP five-year data, and in a joint analysis we find {sigma}{sub 8} = 0.807 {+-} 0.020 and {Omega}{sub m} = 0.265 {+-} 0.016, an improvement of nearly a factor of two relative to WMAP5 alone. Our results are also in excellent agreement with and comparable in precision to the latest cosmological constraints from X-ray cluster abundances. The remarkable consistency among these results demonstrates that cluster abundance constraints are not only tight but also robust, and highlight the power of optically-selected cluster samples to produce precision constraints on cosmological parameters.

  16. Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints

    NASA Technical Reports Server (NTRS)

    Kangro, Urve; Nicolaides, Roy

    1997-01-01

    The idea of replacing a divergence constraint by a divergence boundary condition is investigated. The connections between the formulations are considered in detail. It is shown that the most common methods of using divergence boundary conditions do not always work properly. Necessary and sufficient conditions for the equivalence of the formulations are given.

  17. On the Nature of Semantic Constraints on Lexical Access

    ERIC Educational Resources Information Center

    Weber, Andrea; Crocker, Matthew W.

    2012-01-01

    We present two eye-tracking experiments that investigate lexical frequency and semantic context constraints in spoken-word recognition in German. In both experiments, the pivotal words were pairs of nouns overlapping at onset but varying in lexical frequency. In Experiment 1, German listeners showed an expected frequency bias towards…

  18. Evolutionary constraints and the maintenance of individual specialization throughout succession.

    PubMed

    Monro, Keyne; Marshall, Dustin J

    2013-12-01

    Constraints on life-history traits, with their close links to fitness, are widely invoked as limits to niche expansion at most organizational levels. Theoretically, such constraints can maintain individual specialization by preventing adaptation to all niches available, but empirical evidence of them remains elusive for natural populations. This problem may be compounded by a tendency to seek constraints involving multiple traits, neglecting their added potential to manifest in trait expression across environments (i.e., within reaction norms). By replicating genotypes of a colonial marine invertebrate across successional stages in its local community, and taking a holistic approach to the analysis of ensuing reaction norms for fitness, we show the potential for individual specialization to be maintained by genetic constraints associated with these norms, which limit the potential for fitness at one successional stage to improve without loss of fitness at others. Our study provides new insight into the evolutionary maintenance of individual specialization in natural populations and reinforces the importance of reaction norms for studying this phenomenon.

  19. How Morphological Constraints Affect Axonal Polarity in Mouse Neurons

    PubMed Central

    Bugnicourt, Ghislain; Saoudi, Yasmina; Andrieux, Annie; Gory-Fauré, Sylvie; Villard, Catherine

    2012-01-01

    Neuronal differentiation is under the tight control of both biochemical and physical information arising from neighboring cells and micro-environment. Here we wished to assay how external geometrical constraints applied to the cell body and/or the neurites of hippocampal neurons may modulate axonal polarization in vitro. Through the use of a panel of non-specific poly-L-lysine micropatterns, we manipulated the neuronal shape. By applying geometrical constraints on the cell body we provided evidence that centrosome location was not predictive of axonal polarization but rather follows axonal fate. When the geometrical constraints were applied to the neurites trajectories we demonstrated that axonal specification was inhibited by curved lines. Altogether these results indicated that intrinsic mechanical tensions occur during neuritic growth and that maximal tension was developed by the axon and expressed on straight trajectories. The strong inhibitory effect of curved lines on axon specification was further demonstrated by their ability to prevent formation of multiple axons normally induced by cytochalasin or taxol treatments. Finally we provided evidence that microtubules were involved in the tension-mediated axonal polarization, acting as curvature sensors during neuronal differentiation. Thus, biomechanics coupled to physical constraints might be the first level of regulation during neuronal development, primary to biochemical and guidance regulations. PMID:22457779

  20. Carbon constraint conference: dealing with the climate change conundrum

    SciTech Connect

    Neville, A.

    2008-07-15

    A report on the carbon constraint conference is given. Papers discussed the US national cap-and-trade program that is on the horizon, managing greenhouse gases, the value of corporate sustainability reporting, balancing the generation portfolio and the use of offsets. 1 fig.

  1. Household Constraints on Schooling by Gender: Empirical Evidence from Ethiopia.

    ERIC Educational Resources Information Center

    Rose, Pauline; Al-Samarrai, Samer

    2001-01-01

    Examines individual and household characteristics that affect the probability of a boy or girl attending and completing primary school in two regions of Ethiopia. Finds that school attendance was related to household wealth, parents' education, and child's nutritional status, while completion was affected more by economic constraints and, for…

  2. 43 CFR 4710.4 - Constraints on management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Management Considerations § 4710.4 Constraints on management. Management of wild horses and burros shall be undertaken with the objective of limiting the...

  3. 43 CFR 4710.4 - Constraints on management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Management Considerations § 4710.4 Constraints on management. Management of wild horses and burros shall be undertaken with the objective of limiting the...

  4. 43 CFR 4710.4 - Constraints on management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Management Considerations § 4710.4 Constraints on management. Management of wild horses and burros shall be undertaken with the objective of limiting the...

  5. 43 CFR 4710.4 - Constraints on management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS Management Considerations § 4710.4 Constraints on management. Management of wild horses and burros shall be undertaken with the objective of limiting the...

  6. The Role of Island Constraints in Second Language Sentence Processing

    ERIC Educational Resources Information Center

    Kim, Eunah; Baek, Soondo; Tremblay, Annie

    2015-01-01

    This study investigates whether adult second language learners' online processing of "wh"-dependencies is constrained by island constraints on movement. Proficiency-matched Spanish and Korean learners of English completed a grammaticality judgment task and a stop-making-sense task designed to examine their knowledge of the relative…

  7. Functional Constraints on Inversion in English and Farsi.

    ERIC Educational Resources Information Center

    Birner, Betty; Mahootian, Shahrzad

    1996-01-01

    Demonstrates the similarities between English and Farsi with respect to discourse-functional constraints on inversion. It is argued that this phenomenon is significant because these two languages exhibit different canonical word order and thus expectations can be raised from some functional-syntactic universals. (15 references) (Author/CK)

  8. Stability constraints in triplet extension of the MSSM

    NASA Astrophysics Data System (ADS)

    Das, Moumita; Di Chiara, Stefano; Roy, Sourov

    2015-03-01

    We study the stability constraints on the parameter space of a triplet extension of the Minimal Supersymmetric Standard Model (MSSM). Existence of unbounded-from-below directions in the potential can spoil successful electroweak (EW) symmetry breaking by making the corresponding minimum unstable, and hence the model should be free from those directions. Avoiding those directions restricts the parameter space of the model. We derive four stability constraints, of which only three are independent from each other. After scanning the parameter space of the model for phenomenologically viable data points, we impose the stability constraints and find that only about a quarter of the data points features a stable EW minimum. At those data points featuring stability, μ and the up Higgs soft mass turn out to be smaller than about a TeV in absolute value, which makes the mass of the lightest chargino and neutralino smaller than about 700 GeV. Two relevant phenomenological consequences of lifting the unbounded-from-below directions are that the lightest Higgs boson decay rate to diphoton predicted by the triplet extension of MSSM generally features larger deviations from MSSM, and fine-tuning is actually higher than what each of the two would be without imposing stability constraints.

  9. Battery-package design provides for cell cooling and constraint

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1968-01-01

    Lightweight battery-package provides for even cooling of individual alkaline cells, constraint against cell expansion, and convenient placement of cells. The battery package also provides for venting of the cells and includes instrumentation to measure cell temperature, pressure, and voltage.

  10. Photogeological constraints on lunar and planetary vulcanism, part 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Central volcanic constructs were studied as constraints on the thermal evolution and regional tectonics of the Moon and terrestrial planets. The origins of sub-kilometer lunar craters were examined with regards to implications for mare basalt petrogenesis. The morphology, distribution, age, and tectonic setting of the volcanic constructs were studied using Viking Orbiter data.

  11. Environmental constraints and call evolution in torrent-dwelling frogs.

    PubMed

    Goutte, Sandra; Dubois, Alain; Howard, Samuel D; Marquez, Rafael; Rowley, Jodi J L; Dehling, J Maximilian; Grandcolas, Philippe; Rongchuan, Xiong; Legendre, Frédéric

    2016-04-01

    Although acoustic signals are important for communication in many taxa, signal propagation is affected by environmental properties. Strong environmental constraints should drive call evolution, favoring signals with greater transmission distance and content integrity in a given calling habitat. Yet, few empirical studies have verified this prediction, possibly due to a shortcoming in habitat characterization, which is often too broad. Here we assess the potential impact of environmental constraints on the evolution of advertisement call in four groups of torrent-dwelling frogs in the family Ranidae. We reconstruct the evolution of calling site preferences, both broadly categorized and at a finer scale, onto a phylogenetic tree for 148 species with five markers (∼3600 bp). We test models of evolution for six call traits for 79 species with regard to the reconstructed history of calling site preferences and estimate their ancestral states. We find that in spite of existing morphological constraints, vocalizations of torrent-dwelling species are most probably constrained by the acoustic specificities of torrent habitats and particularly their high level of ambient noise. We also show that a fine-scale characterization of calling sites allows a better perception of the impact of environmental constraints on call evolution. PMID:26960074

  12. The Overt Pronoun Constraint across Three Dialects of Spanish

    ERIC Educational Resources Information Center

    Gelormini-Lezama, Carlos; Huepe, David; Herrera, Eduar; Melloni, Margherita; Manes, Facundo; García, Adolfo M.; Ibáñez, Agustín

    2016-01-01

    The overt pronoun constraint (OPC) states that, in null subject languages, overt pronoun subjects of embedded clauses cannot be bound by "wh-" or quantifier antecedents. Through the administration of two written questionnaires, we examined the OPC in 246 monolingual native speakers of three dialects of Spanish, spoken in Barranquilla…

  13. Family Background, Financial Constraints and Higher Education Attendance in China

    ERIC Educational Resources Information Center

    Li, Wenli

    2007-01-01

    Using data from the 2004 China College Student Survey, conducted by the author, this paper finds that long-term factors such as scholastic ability and parental education are significantly correlated with higher education attendance. By contrast, short-term financial constraints are also significantly associated with higher education access, but to…

  14. Constraint Maintenance with Preferences and Underlying Flexible Solution

    NASA Technical Reports Server (NTRS)

    Bresina, John; Jonsson, Ari; Morris, Paul; Rajan, Kanna

    2003-01-01

    This paper describes an aspect of the constraint reasoning mechanism. that is part of a ground planning system slated to be used for the Mars Exploration Rovers mission, where two rovers are scheduled to land on Mars in January of 2003. The planning system combines manual planning software from JPL with an automatic planning/scheduling system from NASA Ames Research Center, and is designed to be used in a mixed-initiative mode. Among other things, this means that after a plan has been produced, the human operator can perform extensive modifications under the supervision of the automated. system. For each modification to an activity, the automated system must adjust other activities as needed to ensure that constraints continue to be satisfied. Thus, the system must accommodate change in an interactive setting. Performance is of critical importance for interactive use. This is achieved by maintaining an underlying flexible solution to the temporal constraints, while the system presents a fixed schedule to the user. Adjustments are then a matter of constraint propagation rather than completely re-solving the problem. However, this begs the important question of which fixed schedule (among the ones sanctioned by the underlying flexible solution) should be presented to the user.Our approach uses least-change and other preferences as a prism through which the user views the flexible solution.

  15. Constraints on Subsumption in the Caused-Motion Construction

    ERIC Educational Resources Information Center

    Cervel, M. Sandra Pena

    2009-01-01

    This paper revisits the caused-motion construction from the point of view of the Lexical Constructional Model (LCM). Three main issues are addressed. First, one of Goldberg's semantic constraints on the use of the construction, i.e. the idea that no cognitive decision can mediate between the causing event and the entailed motion, is broadened to…

  16. Performance Constraints in Early Language: The Case of Subjectless Sentences.

    ERIC Educational Resources Information Center

    Gerken, LouAnn

    A discussion of English-speaking children's use of subjectless sentences contrasts the competence and performance explanations for the phenomenon. In particular, it reviews evidence indicating that the phenomenon does not reflect linguistic competence, but rather performance constraints. A tentative model of children's production is presented…

  17. 12 CFR 1805.502 - Severe constraints waiver.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Severe constraints waiver. 1805.502 Section 1805.502 Banks and Banking COMMUNITY DEVELOPMENT FINANCIAL INSTITUTIONS FUND, DEPARTMENT OF THE TREASURY COMMUNITY DEVELOPMENT FINANCIAL INSTITUTIONS PROGRAM Matching Funds Requirements § 1805.502...

  18. Behavioural Constraints on Practices of Auditing in Nigeria (BCPAN)

    ERIC Educational Resources Information Center

    Akpomi, Margaret E.; Amesi, Joy

    2009-01-01

    This research was conducted to determine the behavioural constraints on practices of auditing (BCPAN) in Nigeria and to proffer strategies for making incidence of auditing (internal and external auditors) more effective. Thirty-seven administrators drawn from some public limited liability companies, private companies and tertiary institutions were…

  19. Numerical methods for portfolio selection with bounded constraints

    NASA Astrophysics Data System (ADS)

    Yin, G.; Jin, Hanqing; Jin, Zhuo

    2009-11-01

    This work develops an approximation procedure for portfolio selection with bounded constraints. Based on the Markov chain approximation techniques, numerical procedures are constructed for the utility optimization task. Under simple conditions, the convergence of the approximation sequences to the wealth process and the optimal utility function is established. Numerical examples are provided to illustrate the performance of the algorithms.

  20. Stigma Consciousness, Social Constraints, and Lesbian Well-Being

    ERIC Educational Resources Information Center

    Lewis, Robin J.; Derlega, Valerian J.; Clarke, Eva G.; Kuang, Jenny C.

    2006-01-01

    Stigma consciousness, the expectation of prejudice and discrimination, has been associated with negative psychological outcomes for lesbians. This research examined the moderating role of social constraints or difficulty lesbians experience in talking with others about sexual orientation-related issues. One hundred five, predominantly out,…

  1. Environmental constraints and call evolution in torrent-dwelling frogs.

    PubMed

    Goutte, Sandra; Dubois, Alain; Howard, Samuel D; Marquez, Rafael; Rowley, Jodi J L; Dehling, J Maximilian; Grandcolas, Philippe; Rongchuan, Xiong; Legendre, Frédéric

    2016-04-01

    Although acoustic signals are important for communication in many taxa, signal propagation is affected by environmental properties. Strong environmental constraints should drive call evolution, favoring signals with greater transmission distance and content integrity in a given calling habitat. Yet, few empirical studies have verified this prediction, possibly due to a shortcoming in habitat characterization, which is often too broad. Here we assess the potential impact of environmental constraints on the evolution of advertisement call in four groups of torrent-dwelling frogs in the family Ranidae. We reconstruct the evolution of calling site preferences, both broadly categorized and at a finer scale, onto a phylogenetic tree for 148 species with five markers (∼3600 bp). We test models of evolution for six call traits for 79 species with regard to the reconstructed history of calling site preferences and estimate their ancestral states. We find that in spite of existing morphological constraints, vocalizations of torrent-dwelling species are most probably constrained by the acoustic specificities of torrent habitats and particularly their high level of ambient noise. We also show that a fine-scale characterization of calling sites allows a better perception of the impact of environmental constraints on call evolution.

  2. Large-Scale Constraint-Based Pattern Mining

    ERIC Educational Resources Information Center

    Zhu, Feida

    2009-01-01

    We studied the problem of constraint-based pattern mining for three different data formats, item-set, sequence and graph, and focused on mining patterns of large sizes. Colossal patterns in each data formats are studied to discover pruning properties that are useful for direct mining of these patterns. For item-set data, we observed robustness of…

  3. [Environmental efficiency evaluation under carbon emission constraint in Western China].

    PubMed

    Rong, Jian-bo; Yan, Li-jiao; Huang, Shao-rong; Zhang, Ge

    2015-06-01

    This research used the SBM model based on undesirable outputs to measure the static environmental efficiency of Western China under carbon emission constraint from 2000 to 2012. The researchers also utilized the Malmquist index to further analyze the change tendency of environmental efficiency. Additionally, Tobit regression analysis was used to study the factors relevant to environmental efficiency. Practical solutions to improve environmental quality in Western China were put forward. The study showed that in Western China, environmental efficiency with carbon emission constraint was significantly lower than that without carbon emission constraint, and the difference could be described as an inverse U-shaped curve which increased at first and then decreased. Guang-xi and Inner Mongolia, the two provinces met the effective environmental efficiency levels all the time under carbon emission constraint. However, the five provinces of Guizhou, Gansu, Qinghai, Ningxia and Xinjiang did not. Furthermore, Ningxia had the lowest level of environmental efficiency, with a score between 0.281-0.386. Although the environmental efficiency of most provinces was currently at an ineffective level, the environmental efficiency quality was gradually improving at an average speed of 6.6%. Excessive CO2 emission and a large amount of energy consumption were the primary factors causing environmental inefficiency in Western China, and energy intensity had the most negative impact on the environmental efficiency. The increase of import and export trade reduced the environmental efficiency significantly in Western China, while the increase of foreign direct investment had a positive effect on its environmental efficiency.

  4. Mapping the Developmental Constraints on Working Memory Span Performance

    ERIC Educational Resources Information Center

    Bayliss, Donna M.; Jarrold, Christopher; Baddeley, Alan D.; Gunn, Deborah M.; Leigh, Eleanor

    2004-01-01

    This study investigated the constraints underlying developmental improvements in complex working memory span performance among 120 children of between 6 and 10 years of age. Independent measures of processing efficiency, storage capacity, rehearsal speed, and basic speed of processing were assessed to determine their contribution to age-related…

  5. Sequential phenotypic constraints on social information use in wild baboons

    PubMed Central

    Carter, Alecia J; Torrents Ticó, Miquel; Cowlishaw, Guy

    2016-01-01

    Social information allows the rapid dissemination of novel information among individuals. However, an individual’s ability to use information is likely to be dependent on phenotypic constraints operating at three successive steps: acquisition, application, and exploitation. We tested this novel framework by quantifying the sequential process of social information use with experimental food patches in wild baboons (Papio ursinus). We identified phenotypic constraints at each step of the information use sequence: peripheral individuals in the proximity network were less likely to acquire and apply social information, while subordinate females were less likely to exploit it successfully. Social bonds and personality also played a limiting role along the sequence. As a result of these constraints, the average individual only acquired and exploited social information on <25% and <5% of occasions. Our study highlights the sequential nature of information use and the fundamental importance of phenotypic constraints on this sequence. DOI: http://dx.doi.org/10.7554/eLife.13125.001 PMID:27067236

  6. White dwarfs constraints on dark sector models with light particles

    SciTech Connect

    Ubaldi, Lorenzo

    2014-06-24

    The white dwarf luminosity function is well understood in terms of standard model physics and leaves little room for exotic cooling mechanisms related to the possible existence of new weakly interacting light particles. This puts significant constraints on the parameter space of models that contain a massive dark photon and light dark sector particles.

  7. Syntactic Constraints in the Retrieval of Homophone Orthography

    ERIC Educational Resources Information Center

    White, Katherine K.; Abrams, Lise; McWhite, Cullen B.; Hagler, Heather L.

    2010-01-01

    In this experiment, syntactic constraints on the retrieval of orthography were investigated using homophones embedded in sentence contexts. Participants typed auditorily presented sentences that included a contextually appropriate homophone that either shared part of speech with its homophone competitor (i.e., was syntactically unambiguous) or had…

  8. Self-accelerating massive gravity: Hidden constraints and characteristics

    NASA Astrophysics Data System (ADS)

    Motloch, Pavel; Hu, Wayne; Motohashi, Hayato

    2016-05-01

    Self-accelerating backgrounds in massive gravity provide an arena to explore the Cauchy problem for derivatively coupled fields that obey complex constraints which reduce the phase space degrees of freedom. We present here an algorithm based on the Kronecker form of a matrix pencil that finds all hidden constraints, for example those associated with derivatives of the equations of motion, and characteristic curves for any 1 +1 dimensional system of linear partial differential equations. With the Regge-Wheeler-Zerilli decomposition of metric perturbations into angular momentum and parity states, this technique applies to fully 3 +1 dimensional perturbations of massive gravity around any spherically symmetric self-accelerating background. Five spin modes of the massive graviton propagate once the constraints are imposed: two spin-2 modes with luminal characteristics present in the massless theory as well as two spin-1 modes and one spin-0 mode. Although the new modes all possess the same—typically spacelike—characteristic curves, the spin-1 modes are parabolic while the spin-0 modes are hyperbolic. The joint system, which remains coupled by nonderivative terms, cannot be solved as a simple Cauchy problem from a single noncharacteristic surface. We also illustrate the generality of the algorithm with other cases where derivative constraints reduce the number of propagating degrees of freedom or order of the equations.

  9. Freedom, Constraint, or Both? Readings on Popular Music and Gender

    ERIC Educational Resources Information Center

    Bjorck, Cecilia

    2011-01-01

    This article examines how notions of freedom are linked to popular music practices in previous research literature. The author discusses how two competing discourses depict popular music practices on the one hand as "freedom," and on the other hand as "constraint," and how these ideas relate to gender. She also argues that unproblematized…

  10. Infrared limit of Horava's gravity with the global Hamiltonian constraint

    SciTech Connect

    Kobakhidze, Archil

    2010-09-15

    We show that Horava's theory of gravitation with the global Hamiltonian constraint does not reproduce general relativity in the infrared domain. There is one extra propagating degree of freedom, besides those two associated with the massless graviton, which does not decouple.

  11. Statistical learning of novel graphotactic constraints in children and adults.

    PubMed

    Samara, Anna; Caravolas, Markéta

    2014-05-01

    The current study explored statistical learning processes in the acquisition of orthographic knowledge in school-aged children and skilled adults. Learning of novel graphotactic constraints on the position and context of letter distributions was induced by means of a two-phase learning task adapted from Onishi, Chambers, and Fisher (Cognition, 83 (2002) B13-B23). Following incidental exposure to pattern-embedding stimuli in Phase 1, participants' learning generalization was tested in Phase 2 with legality judgments about novel conforming/nonconforming word-like strings. Test phase performance was above chance, suggesting that both types of constraints were reliably learned even after relatively brief exposure. As hypothesized, signal detection theory d' analyses confirmed that learning permissible letter positions (d'=0.97) was easier than permissible neighboring letter contexts (d'=0.19). Adults were more accurate than children in all but a strict analysis of the contextual constraints condition. Consistent with the statistical learning perspective in literacy, our results suggest that statistical learning mechanisms contribute to children's and adults' acquisition of knowledge about graphotactic constraints similar to those existing in their orthography. PMID:24495840

  12. Natural and Unnatural Constraints in Hungarian Vowel Harmony

    ERIC Educational Resources Information Center

    Hayes, Bruce; Zuraw, Kie; Siptar, Peter; Londe, Zsuzsa

    2009-01-01

    Phonological constraints can, in principle, be classified according to whether they are natural (founded in principles of universal grammar (UG)) or unnatural (arbitrary, learned inductively from the language data). Recent work has used this distinction as the basis for arguments about the role of UG in learning. Some languages have phonological…

  13. Variability, Constraints, and Creativity: Shedding Light on Claude Monet.

    ERIC Educational Resources Information Center

    Stokes, Patricia D.

    2001-01-01

    Discusses how creative individuals maintain high levels of variability, examining how Claude Monet's habitually high level of variability in painting was acquired during his childhood and early apprenticeship and maintained throughout his adult career by a continuous series of task constraints imposed by the artist on his own work. For Monet,…

  14. Statistical learning of novel graphotactic constraints in children and adults.

    PubMed

    Samara, Anna; Caravolas, Markéta

    2014-05-01

    The current study explored statistical learning processes in the acquisition of orthographic knowledge in school-aged children and skilled adults. Learning of novel graphotactic constraints on the position and context of letter distributions was induced by means of a two-phase learning task adapted from Onishi, Chambers, and Fisher (Cognition, 83 (2002) B13-B23). Following incidental exposure to pattern-embedding stimuli in Phase 1, participants' learning generalization was tested in Phase 2 with legality judgments about novel conforming/nonconforming word-like strings. Test phase performance was above chance, suggesting that both types of constraints were reliably learned even after relatively brief exposure. As hypothesized, signal detection theory d' analyses confirmed that learning permissible letter positions (d'=0.97) was easier than permissible neighboring letter contexts (d'=0.19). Adults were more accurate than children in all but a strict analysis of the contextual constraints condition. Consistent with the statistical learning perspective in literacy, our results suggest that statistical learning mechanisms contribute to children's and adults' acquisition of knowledge about graphotactic constraints similar to those existing in their orthography.

  15. Kalman Filter Constraint Tuning for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2005-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints are often neglected because they do not fit easily into the structure of the Kalman filter. Recently published work has shown a new method for incorporating state variable inequality constraints in the Kalman filter, which has been shown to generally improve the filter s estimation accuracy. However, the incorporation of inequality constraints poses some risk to the estimation accuracy as the Kalman filter is theoretically optimal. This paper proposes a way to tune the filter constraints so that the state estimates follow the unconstrained (theoretically optimal) filter when the confidence in the unconstrained filter is high. When confidence in the unconstrained filter is not so high, then we use our heuristic knowledge to constrain the state estimates. The confidence measure is based on the agreement of measurement residuals with their theoretical values. The algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate engine health.

  16. [Delineation of organs at risk and dose constraints].

    PubMed

    Noël, G; Antoni, D; Barillot, I; Chauvet, B

    2016-09-01

    From a review of literature, the objective of this paper is to define limits for delineation of organs at risk and dose constraints in this latter when radiotherapy is delivered with conventional fractionation or with hypofractionation as for stereotactic body radiation therapy. PMID:27516050

  17. Possible-Word Constraints in Cantonese Speech Segmentation

    ERIC Educational Resources Information Center

    Yip, Michael C. W.

    2004-01-01

    A Cantonese syllable-spotting experiment was conducted to examine whether the Possible-Word Constraint (PWC), proposed by Norris, McQueen, Cutler, and Butterfield (1997), can apply in Cantonese speech segmentation. In the experiment, listeners were asked to spot out the target Cantonese syllable from a series of nonsense sound strings. Results…

  18. Evolutionary constraints and the maintenance of individual specialization throughout succession.

    PubMed

    Monro, Keyne; Marshall, Dustin J

    2013-12-01

    Constraints on life-history traits, with their close links to fitness, are widely invoked as limits to niche expansion at most organizational levels. Theoretically, such constraints can maintain individual specialization by preventing adaptation to all niches available, but empirical evidence of them remains elusive for natural populations. This problem may be compounded by a tendency to seek constraints involving multiple traits, neglecting their added potential to manifest in trait expression across environments (i.e., within reaction norms). By replicating genotypes of a colonial marine invertebrate across successional stages in its local community, and taking a holistic approach to the analysis of ensuing reaction norms for fitness, we show the potential for individual specialization to be maintained by genetic constraints associated with these norms, which limit the potential for fitness at one successional stage to improve without loss of fitness at others. Our study provides new insight into the evolutionary maintenance of individual specialization in natural populations and reinforces the importance of reaction norms for studying this phenomenon. PMID:24299414

  19. Unravelling the structural plasticity of stretched DNA under torsional constraint

    PubMed Central

    King, Graeme A.; Peterman, Erwin J. G.; Wuite, Gijs J. L.

    2016-01-01

    Regions of the genome are often held under torsional constraint. Nevertheless, the influence of such constraint on DNA–protein interactions during genome metabolism is still poorly understood. Here using a combined optical tweezers and fluorescence microscope, we quantify and explain how torsional constraint influences the structural stability of DNA under applied tension. We provide direct evidence that concomitant basepair melting and helical unwinding can occur in torsionally constrained DNA at forces >∼50 pN. This striking result indicates that local changes in linking number can be absorbed by the rest of the DNA duplex. We also present compelling new evidence that an overwound DNA structure (likely P-DNA) is created (alongside underwound structures) at forces >∼110 pN. These findings substantiate previous theoretical predictions and highlight a remarkable structural plasticity of torsionally constrained DNA. Such plasticity may be required in vivo to absorb local changes in linking number in DNA held under torsional constraint. PMID:27263853

  20. The Efficacy of Multidimensional Constraint Keys in Database Query Performance

    ERIC Educational Resources Information Center

    Cardwell, Leslie K.

    2012-01-01

    This work is intended to introduce a database design method to resolve the two-dimensional complexities inherent in the relational data model and its resulting performance challenges through abstract multidimensional constructs. A multidimensional constraint is derived and utilized to implement an indexed Multidimensional Key (MK) to abstract a…

  1. Web-Based CALL for Arabic: Constraints and Challenges

    ERIC Educational Resources Information Center

    Corda, Alessandra; van der Stel, Mieke

    2004-01-01

    The first section of this paper gives a brief overview of the experiences with LAN-based CALL programs for Arabic in the past 7 years at Leiden University (The Netherlands). The second section discusses constraints and technical challenges related to the use of Web-based CALL for Arabic, focusing in particular on a new Web-based CALL application,…

  2. Hierarchical clustering using correlation metric and spatial continuity constraint

    DOEpatents

    Stork, Christopher L.; Brewer, Luke N.

    2012-10-02

    Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.

  3. Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg

    PubMed Central

    Sensinger, Jonathon W.

    2014-01-01

    This brief presents a novel control strategy for a powered prosthetic ankle based on a biomimetic virtual constraint. We first derive a kinematic constraint for the “effective shape” of the human ankle-foot complex during locomotion. This shape characterizes ankle motion as a function of the Center of Pressure (COP)–the point on the foot sole where the resultant ground reaction force is imparted. Since the COP moves monotonically from heel to toe during steady walking, we adopt the COP as a mechanical representation of the gait cycle phase in an autonomous feedback controller. We show that our kinematic constraint can be enforced as a virtual constraint by an output linearizing controller that uses only feedback available to sensors onboard a prosthetic leg. Using simulations of a passive walking model with feet, we show that this novel controller exactly enforces the desired effective shape whereas a standard impedance (i.e., proportional-derivative) controller cannot. This work provides a single, biomimetic control law for the entire single-support period during robot-assisted locomotion. PMID:25552894

  4. Bbn Constraints on Neutrino Oscillations Parameters Relaxed or Strengthened

    NASA Astrophysics Data System (ADS)

    Kirilova, Daniela

    Big Bang Nucleosynthesis (BBN) with nonequilibrium νe ↔ νs oscillations, in the more general case of non-zero population of νs before oscillations δNs ≠ 0, is discussed. 4He primordial production Yp(δNs) in the presence of νe ↔ νs oscillations for different initial populations of the sterile neutrino state 0 ≤ δ Ns ≤ 1 and the full range of oscillation parameters is calculated. Non-zero δNs has a two-fold effect on 4He: (i) it enhances the energy density and hence increases the cosmic expansion rate, leading to Yp overproduction, and (ii) it suppresses the kinetic effects of oscillations on BBN, namely, the effects on pre-BBN nucleon kinetics, caused by the νe energy spectrum distortion and the ν e - bar {ν }e asymmetry generation by oscillations, leading to decreased Yp production. Depending on oscillation parameters one or the other effect may dominate, causing, correspondingly, either a relaxation of the cosmological constraints or their strengthening with the increase of δNs. More general BBN constraints on νe ↔ νs oscillation parameters, corresponding to 3% Yp overproduction, for different initial populations of the sterile state are calculated. Previous BBN constraints were derived assuming empty sterile state before oscillations. It is shown that the cosmological constraints strengthen with the increase of δNs value, the change being more considerable for nonresonant oscillations.

  5. Constraint and loneliness in agoraphobia: an empirical investigation.

    PubMed

    Pehlivanidis, A; Koulis, S; Papakostas, Y

    2014-01-01

    While progress in the aetiopathology and treatment of panic disorder is indisputable, research regarding agoraphobia lacks behind. One significant-yet untested- theory by Guidano and Liotti, suggests the existence of inner representations of fear of "constraint" and fear of "loneliness" as two major schemata, important in the pathogenesis and manifestation of agoraphobia. Activation of these schemata may occur in situations in which the patient: (a) feels as in an inescapable trap (constraint) or (b) alone, unprotected and helpless (loneliness). Upon activation, the "constraint" schema elicits such symptoms as asphyxiation, chest pain, difficult breathing, motor agitation and muscular tension, while the "loneliness" schema elicits such symptoms as sensation of tachycardia, weakness of limbs, trembling or fainting. Activation of these schemata by content-compatible stimuli is expected to trigger various, yet distinct, response patterns, both of which are indiscriminately described within the term "agoraphobia". In order to investigate this hypothesis and its possible clinical applications, several mental and physical probes were applied to 20 patients suffering primarily from agoraphobia, and their responses and performance were recorded. Subjects also completed the "10-item Agoraphobia Questionnaire" prepared by our team aiming at assessing cognitions related to Guidano and Liotti's notion of "loneliness" and "constraint". Breath holding (BH) and Hyperventilation (HV) were selected as physical probes. BH was selected as an easily administered hypercapnea - induced clinical procedure, because of its apparent resemblance to the concept of "constraint". Subjects were instructed to hold their breath for as long as they could and stop at will. Similarly, it was hypothesized that HV might represent a physical "loneliness" probe, since it can elicit such symptoms as dizziness, paraesthesias, stiff muscles, cold hands or feet and trembling, reminiscent of a "collapsing

  6. Experimental constraints on the sulfur content in the Earth's core

    NASA Astrophysics Data System (ADS)

    Fei, Y.; Huang, H.; Leng, C.; Hu, X.; Wang, Q.

    2015-12-01

    Any core formation models would lead to the incorporation of sulfur (S) into the Earth's core, based on the cosmochemical/geochemical constraints, sulfur's chemical affinity for iron (Fe), and low eutectic melting temperature in the Fe-FeS system. Preferential partitioning of S into the melt also provides petrologic constraint on the density difference between the liquid outer and solid inner cores. Therefore, the center issue is to constrain the amount of sulfur in the core. Geochemical constraints usually place 2-4 wt.% S in the core after accounting for its volatility, whereas more S is allowed in models based on mineral physics data. Here we re-examine the constraints on the S content in the core by both petrologic and mineral physics data. We have measured S partitioning between solid and liquid iron in the multi-anvil apparatus and the laser-heated diamond anvil cell, evaluating the effect of pressure on melting temperature and partition coefficient. In addition, we have conducted shockwave experiments on Fe-11.8wt%S using a two-stage light gas gun up to 211 GPa. The new shockwave experiments yield Hugoniot densities and the longitudinal sound velocities. The measurements provide the longitudinal sound velocity before melting and the bulk sound velocity of liquid. The measured sound velocities clearly show melting of the Fe-FeS mix with 11.8wt%S at a pressure between 111 and 129 GPa. The sound velocities at pressures above 129GPa represent the bulk sound velocities of Fe-11.8wt%S liquid. The combined data set including density, sound velocity, melting temperature, and S partitioning places a tight constraint on the required sulfur partition coefficient to produce the density and velocity jumps and the bulk sulfur content in the core.

  7. Breaking constraint: axial patterning in Trichechus (Mammalia: Sirenia).

    PubMed

    Buchholtz, Emily A; Wayrynen, Kaisa L; Lin, Iris W

    2014-01-01

    Meristic variation is often limited in serially homologous systems with high internal differentiation and high developmental modularity. The mammalian neck, an extreme example, has a fixed (at seven) count of diversely specialized segments. Imposition of the mammalian cervical constraint has been tentatively linked to the origin of the diaphragm, which is muscularized by cells that migrate from cervical somites during development. With six cervical vertebrae, the genus Trichechus (manatee) has apparently broken this constraint, although the mechanism of constraint escape is unknown. Hypotheses for the developmental origin of Trichechus cervical morphology include cervical rib 7 repatterning, a primaxial/abaxial patterning shift, and local homeosis at the cervical/thoracic boundary. We tested predictions of these hypotheses by documenting vertebral morphology, axial ossification patterns, regionalization of the postcranial skeleton, and the relationship of thoracic ribs to sternal subunits in a large data set of fetal and adult Trichechus and Dugong specimens. These observations forced rejection of all three hypotheses. We propose alternatively that a global slowing of the rate of somitogenesis reduced somite count and disrupted alignment of Hox-generated anatomical markers relative to somite (and vertebral) boundaries throughout the Trichechus column. This hypothesis is consistent with observations of the full range of traditional cervical morphologies in the six cervical vertebrae, conserved postcranial proportions, and column-wide reduction in count relative to its sister taxon, Dugong. It also suggests that the origin of the mammalian cervical constraint lies in patterning, not in count, and that Trichechus and the tree sloths have broken the constraint using different developmental mechanisms.

  8. Constraints to Implementing the Essential Health Package in Malawi

    PubMed Central

    Mueller, Dirk H.; Lungu, Douglas; Acharya, Arnab; Palmer, Natasha

    2011-01-01

    Increasingly seen as a useful tool of health policy, Essential or Minimal Health Packages direct resources to interventions that aim to address the local burden of disease and be cost-effective. Less attention has been paid to the delivery mechanisms for such interventions. This study aimed to assess the degree to which the Essential Health Package (EHP) in Malawi was available to its population and what health system constraints impeded its full implementation. The first phase of this study comprised a survey of all facilities in three districts including interviews with all managers and clinical staff. In the second and third phase, results were discussed with District Health Management Teams and national level stakeholders, respectively, including representatives of the Ministry of Health, Central Medical Stores, donors and NGOs. The EHP in Malawi is focussing on the local burden of disease; however, key constraints to its successful implementation included a widespread shortage of staff due to vacancies but also caused by frequent trainings and meetings (only 48% of expected man days of clinical staff were available; training and meetings represented 57% of all absences in health centres). Despite the training, the percentage of health workers aware of vital diagnostic and therapeutic approaches to EHP conditions was weak. Another major constraint was shortages of vital drugs at all levels of facilities (e.g. Cotrimoxazole was sufficiently available to treat the average number of patients in only 27% of health centres). Although a few health workers noted some improvement in infrastructure and working conditions, they still considered them to be widely inadequate. In Malawi, as in similar resource poor countries, greater attention needs to be given to the health system constraints to delivering health care. Removal of these constraints should receive priority over the considerable focus on the development and implementation of essential packages of

  9. Connectomic constraints on computation in feedforward networks of spiking neurons.

    PubMed

    Ramaswamy, Venkatakrishnan; Banerjee, Arunava

    2014-10-01

    Several efforts are currently underway to decipher the connectome or parts thereof in a variety of organisms. Ascertaining the detailed physiological properties of all the neurons in these connectomes, however, is out of the scope of such projects. It is therefore unclear to what extent knowledge of the connectome alone will advance a mechanistic understanding of computation occurring in these neural circuits, especially when the high-level function of the said circuit is unknown. We consider, here, the question of how the wiring diagram of neurons imposes constraints on what neural circuits can compute, when we cannot assume detailed information on the physiological response properties of the neurons. We call such constraints-that arise by virtue of the connectome-connectomic constraints on computation. For feedforward networks equipped with neurons that obey a deterministic spiking neuron model which satisfies a small number of properties, we ask if just by knowing the architecture of a network, we can rule out computations that it could be doing, no matter what response properties each of its neurons may have. We show results of this form, for certain classes of network architectures. On the other hand, we also prove that with the limited set of properties assumed for our model neurons, there are fundamental limits to the constraints imposed by network structure. Thus, our theory suggests that while connectomic constraints might restrict the computational ability of certain classes of network architectures, we may require more elaborate information on the properties of neurons in the network, before we can discern such results for other classes of networks.

  10. Stochastic Water Quality Optimization Using Imbedded Chance Constraints

    NASA Astrophysics Data System (ADS)

    Ellis, J. Hugh

    1987-12-01

    A chance-constrained stochastic programming model is developed for water quality optimization. It determines the least cost allocation of waste treatment plant biochemical oxygen demand (BOD) removal efficiencies, subject to probabilistic restrictions on maximum allowable instream dissolved oxygen deficit. The new model extends well beyond traditional approaches that assume streamflow is the sole random variable. In addition to streamflow, other random variables in the model are initial in-stream BOD level and dissolved oxygen (DO) deficit; waste outfall flow rates, BOD levels and DO deficits; deoxygenation k1, reaeration k2, and sedimentation-scour rate k3 coefficients of the Streeter-Phelps DO sag model; photosynthetic input-benthic depletion rates Ai, and nonpoint source BOD input rate Pi for the Camp-Dobbins extensions to the Streeter-Phelps model. These random variables appear in more highly aggregated terms which in turn form part of the probabilistic constraints of the water quality optimization model. Stochastic simulation procedures for estimating the probability density functions and covariances of these aggregated terms are discussed. A new chance-constrained programming variant, imbedded chance constraints, is presented along with an example application. In effect, this method imbeds a chance constraint within a chance constraint in a manner which is loosely associated with the distribution-free method of chance-constrained programming. It permits the selection of nonexpected value realizations of the mean and variance estimates employed in the deterministic equivalents of traditional chance-constrained models. As well, it provides a convenient mechanism for generating constraint probability response surfaces. A joint chance-constrained formulation is also presented which illustrates the possibility for prescription of an overall system reliability level, rather than reach-by-reach reliability assignment.

  11. Breaking constraint: axial patterning in Trichechus (Mammalia: Sirenia).

    PubMed

    Buchholtz, Emily A; Wayrynen, Kaisa L; Lin, Iris W

    2014-01-01

    Meristic variation is often limited in serially homologous systems with high internal differentiation and high developmental modularity. The mammalian neck, an extreme example, has a fixed (at seven) count of diversely specialized segments. Imposition of the mammalian cervical constraint has been tentatively linked to the origin of the diaphragm, which is muscularized by cells that migrate from cervical somites during development. With six cervical vertebrae, the genus Trichechus (manatee) has apparently broken this constraint, although the mechanism of constraint escape is unknown. Hypotheses for the developmental origin of Trichechus cervical morphology include cervical rib 7 repatterning, a primaxial/abaxial patterning shift, and local homeosis at the cervical/thoracic boundary. We tested predictions of these hypotheses by documenting vertebral morphology, axial ossification patterns, regionalization of the postcranial skeleton, and the relationship of thoracic ribs to sternal subunits in a large data set of fetal and adult Trichechus and Dugong specimens. These observations forced rejection of all three hypotheses. We propose alternatively that a global slowing of the rate of somitogenesis reduced somite count and disrupted alignment of Hox-generated anatomical markers relative to somite (and vertebral) boundaries throughout the Trichechus column. This hypothesis is consistent with observations of the full range of traditional cervical morphologies in the six cervical vertebrae, conserved postcranial proportions, and column-wide reduction in count relative to its sister taxon, Dugong. It also suggests that the origin of the mammalian cervical constraint lies in patterning, not in count, and that Trichechus and the tree sloths have broken the constraint using different developmental mechanisms. PMID:25339599

  12. Modeling of control forces for kinematical constraints in the dynamics of multibody systems: A new approach

    NASA Technical Reports Server (NTRS)

    Ider, Sitki Kemal

    1989-01-01

    Conventionally kinematical constraints in multibody systems are treated similar to geometrical constraints and are modeled by constraint reaction forces which are perpendicular to constraint surfaces. However, in reality, one may want to achieve the desired kinematical conditions by control forces having different directions in relation to the constraint surfaces. The conventional equations of motion for multibody systems subject to kinematical constraints are generalized by introducing general direction control forces. Conditions for the selections of the control force directions are also discussed. A redundant robotic system subject to prescribed end-effector motion is analyzed to illustrate the methods proposed.

  13. Cosmology and astrophysics from relaxed galaxy clusters - II. Cosmological constraints

    NASA Astrophysics Data System (ADS)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.; Rapetti, D. A.; Applegate, D. E.; Kelly, P. L.; von der Linden, A.; Schmidt, R. W.

    2014-05-01

    This is the second in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. The data set employed here consists of Chandra observations of 40 such clusters, identified in a comprehensive search of the Chandra archive for hot (kT ≳ 5 keV), massive, morphologically relaxed systems, as well as high-quality weak gravitational lensing data for a subset of these clusters. Here we present cosmological constraints from measurements of the gas mass fraction, fgas, for this cluster sample. By incorporating a robust gravitational lensing calibration of the X-ray mass estimates, and restricting our measurements to the most self-similar and accurately measured regions of clusters, we significantly reduce systematic uncertainties compared to previous work. Our data for the first time constrain the intrinsic scatter in fgas, 7.4 ± 2.3 per cent in a spherical shell at radii 0.8-1.2 r2500 (˜1/4 of the virial radius), consistent with the expected level of variation in gas depletion and non-thermal pressure for relaxed clusters. From the lowest redshift data in our sample, five clusters at z < 0.16, we obtain a constraint on a combination of the Hubble parameter and cosmic baryon fraction, h3/2 Ωb/Ωm = 0.089 ± 0.012, that is insensitive to the nature of dark energy. Combining this with standard priors on h and Ωbh2 provides a tight constraint on the cosmic matter density, Ωm = 0.27 ± 0.04, which is similarly insensitive to dark energy. Using the entire cluster sample, extending to z > 1, we obtain consistent results for Ωm and interesting constraints on dark energy: Ω _{{Λ }}=0.65^{+0.17}_{-0.22}> for non-flat ΛCDM (cosmological constant) models, and w = -0.98 ± 0.26 for flat models with a constant dark energy equation of state. Our results are both competitive and consistent with those from recent cosmic microwave background, Type Ia supernova and baryon acoustic oscillation data. We present constraints on more

  14. A Theology of Inferiority: Is Christianity the Source of Kinesiology's Second-Class Status in the Academy?

    ERIC Educational Resources Information Center

    Twietmeyer, Gregg

    2008-01-01

    What influence has Christianity had on kinesiology and physical education's status in the Academy? Conventional wisdom within kinesiology often seems to argue that the influence has been quite negative. These critics allege that Christianity is a fundamentally dualistic religion. They allege that, at its best, Christianity is suspicious of the…

  15. Second Class Education in the Third World: Gail P. Kelly's Perspectives on the Miseducation of Women. Essay Review.

    ERIC Educational Resources Information Center

    Biraimah, Karen

    1997-01-01

    Gail Kelly's research on women's education in developing nations enriched scholarship on improving women's quality of life through education. Main strands of inquiry examined how school processes and curricula affect women's educational outcomes (versus men's), the false bifurcation of private and public spheres of women's lives, and how women's…

  16. A Second Class of Nuclear Receptors for Oxysterols: Regulation of RORα and RORγ activity by 24S-Hydroxycholesterol (Cerebrosterol)

    PubMed Central

    Wang, Yongjun; Kumar, Naresh; Crumbley, Christine; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    The retinoic acid receptor-related orphan receptor α and γ (RORα [NR1F1] and RORγ [NR1F3]) are members of the nuclear hormone receptor superfamily. These 2 receptors regulate many physiological processes including development, metabolism and immunity. We recently found that certain oxysterols, namely the 7-substituted oxysterols, bound to the ligand binding domains (LBDs) of RORα and RORγ with high affinity, altered the LBD conformation and reduced coactivator binding resulting in suppression of the constitutive transcriptional activity of these two receptors. Here, we show that another oxysterol, 24S-hydroxycholesterol (24S-OHC), is also a high affinity ligand for RORα and RORγ (Ki ∼ 25 nM). 24S-OHC is also known as cerebrosterol due to its high level in the brain where it plays an essential role as an intermediate in cholesterol elimination from the CNS. 24S-OHC functions as a RORα/γ inverse agonist suppressing the constitutive transcriptional activity of these receptors in cotransfection assays. Additionally, 24S-OHC suppressed the expression of several RORα target genes including BMAL1 and REV-ERBα in a ROR-dependent manner. We also demonstrate that 24S-OHC decreases the ability of RORα to recruit the coactivator SRC-2 when bound to the BMAL1 promoter. We also noted that 24(S), 25-epoxycholesterol selectively suppressed the activity of RORγ. These data indicate that RORα and RORγ may serve as sensors of oxsterols. Thus, RORα and RORγ display an overlapping ligand preference with another class of oxysterol nuclear receptors, the liver X receptors (LXRα [NR1H3] and LXRβ [NR1H2]). PMID:20211758

  17. Multiplexing image detector method for digital sun sensors with arc-second class accuracy and large FOV.

    PubMed

    Wei, Minsong; Xing, Fei; You, Zheng; Wang, Geng

    2014-09-22

    To improve the accuracy of digital sun sensors (DSS) to the level of arc-second while maintaining a large field of view (FOV), a multiplexing image detector method was proposed. Based on a single multiplexing detector, a dedicated mask with different groups of encoding apertures was utilized to divide the whole FOV into several sub-FOVs, every of which would cover the whole detector. In this paper, we present a novel method to analyze and optimize the diffraction effect and the parameters of the aperture patterns in the dedicated mask, including the aperture size, focal length, FOV, as well as the clearance between adjacent apertures. Based on the simulation, a dedicated mask with 13 × 13 various groups of apertures was designed and fabricated; furthermore a prototype of DSS with a single multiplexing detector and 13 × 13 sub-FOVs was built and test. The results indicated that the DSS prototype could reach the accuracy of 5 arc-second (3σ) within a 105° × 105° FOV. Using this method, the sun sensor still keeps the original features of low power consumption, small size and high dynamic range when it realizes both high accuracy and large FOV. PMID:25321780

  18. New CMB constraints for Abelian Higgs cosmic strings

    NASA Astrophysics Data System (ADS)

    Lizarraga, Joanes; Urrestilla, Jon; Daverio, David; Hindmarsh, Mark; Kunz, Martin

    2016-10-01

    We present cosmic microwave background (CMB) power spectra from recent numerical simulations of cosmic strings in the Abelian Higgs model and compare them to CMB power spectra measured by Planck. We obtain revised constraints on the cosmic string tension parameter Gμ. For example, in the ΛCDM model with the addition of strings and no primordial tensor perturbations, we find Gμ < 2.0 × 10‑7 at 95% confidence, about 20% lower than the value obtained from previous simulations, which had 1/64 of the spatial volume. The increased computational volume also makes it possible to simulate fully the physical equations of motion, in which the string cores shrink in comoving coordinates. We find however that this, and the larger dynamic range, changes the amplitude of the power spectra by only about 10%. The main cause of the stronger constraints on Gμ is instead an improved treatment of the string evolution across the radiation-matter transition.

  19. Stealth Dark Matter: Model, lattice calculations, and constraints

    NASA Astrophysics Data System (ADS)

    Schaich, David; Lattice Strong Dynamics Collaboration

    2016-03-01

    A new strongly coupled dark sector can produce a well-motivated and phenomenologically interesting composite dark matter candidate. I will review a model recently proposed by the Lattice Strong Dynamics Collaboration in which the composite dark matter is naturally ``stealthy'': Although its constituents are charged the composite particle itself is electroweak neutral with vanishing magnetic moment and charge radius. This results in an extraordinarily small direct detection cross section dominated by the dimension-7 electromagnetic polarizability interaction. I will present direct detection constraints on the model that rely on our non-perturbative lattice calculations of the polarizability, as well as complementary constraints from collider experiments. Collider bounds require the stealth dark matter mass to be m > 300 GeV, while its cross section for spin-independent scattering with xenon is smaller than the coherent neutrino scattering background for m > 700 GeV.

  20. The double pulsar: evolutionary constraints from the system geometry

    NASA Astrophysics Data System (ADS)

    Ferdman, R. D.; Stairs, I. H.; Kramer, M.; Manchester, R. N.; Lyne, A. G.; Breton, R. P.; McLaughlin, M. A.; Possenti, A.; Burgay, M.

    2008-02-01

    The double pulsar system PSR J0737-3039A/B is a highly relativistic double neutron star (DNS) binary, with a 2.4-hour orbital period. The low mass of the second-formed NS, as well the low system eccentricity and proper motion, point to a different evolutionary scenario compared to other known DNS systems. We describe analysis of the pulse profile shape over 6 years of observations, and present the resulting constraints on the system geometry. We find the recycled pulsar in this system, PSR 0737-3039A, to have a low misalignment between its spin and orbital angular momentum axes, with a 68.3% upper limit of 6.1°, assuming emission from both magnetic poles. This tight constraint lends credence to the idea that the supernova that formed the second pulsar was relatively symmetric, possibly involving electron-capture onto an O-Ne-Mg core.