Science.gov

Sample records for hilbertian gravitational repulsion

  1. Gravitational Repulsion of Photons

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2012-03-01

    Plasma redshift explains the cosmological redshift, the redshift of stars and galaxies, the cosmic microwave background, the cosmic X-ray background, the observed redshift relation for magnitude and surface-brightness for supernovae, the solar redshift, the transition zone for the solar corona, the high temperatures of the solar corona. Plasma redshift makes it clear that the optical solar lines are not gravitationally redshifted when observed on Earth. Instead their gravitational redshifts in the Sun are reversed, as the photons travel from the Sun to the Earth. This means that the photons are repelled and not attracted by the gravitational field. There is, therefore, no need for Einstein's Lambda for explaining the static Universe. When the matter concentrates and falls towards the center of galaxies, it becomes so hot that it disintegrates matter to reform primordial like matter. In this way the universe can renew itself forever. This is all based on conventional physics, using only more accurate physics and calculations than those usually used. There is no need for Dark Energy, Dark Matter, Accelerated Expansion, nor Black Holes for explaining the everlasting Universe.

  2. Gravitational Repulsion and Dirac Antimatter

    NASA Astrophysics Data System (ADS)

    Kowitt, Mark E.

    1996-03-01

    Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related “antigravity” issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.

  3. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    NASA Astrophysics Data System (ADS)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-10-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  4. Einstein's Equations for Spin 2 Mass 0 from Noether's Converse Hilbertian Assertion

    NASA Astrophysics Data System (ADS)

    Pitts, J. Brian

    2016-11-01

    An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether's 1918 paper developed Hilbert's and Klein's reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a 'curl' term with identically zero divergence. Noether proved a converse "Hilbertian assertion": such "improper" conservation laws imply a generally covariant action.

  5. Hilbertian sine as an absolute measure of Bayesian inference in ISR, homeland security, medicine, and defense

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Wang, Wenjian; Hodelin, Juan; Forrester, Thomas; Romanov, Volodymyr; Kostrzewski, Andrew

    2016-05-01

    In this paper, Bayesian Binary Sensing (BBS) is discussed as an effective tool for Bayesian Inference (BI) evaluation in interdisciplinary areas such as ISR (and, C3I), Homeland Security, QC, medicine, defense, and many others. In particular, Hilbertian Sine (HS) as an absolute measure of BI, is introduced, while avoiding relativity of decision threshold identification, as in the case of traditional measures of BI, related to false positives and false negatives.

  6. Clustering of the human skeletal muscle fibers using linear programming and angular Hilbertian metrics.

    PubMed

    Neji, Radhouène; Besbes, Ahmed; Komodakis, Nikos; Deux, Jean-François; Maatouk, Mezri; Rahmouni, Alain; Bassez, Guillaume; Fleury, Gilles; Paragios, Nikos

    2009-01-01

    In this paper, we present a manifold clustering method fo the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. Using a linear programming formulation of prototype-based clustering, we propose a novel fiber classification algorithm over manifolds that circumvents the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. Furthermore, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers. These metrics are used to approximate the geodesic distances over the fiber manifold. We also discuss the case where only geodesic distances to a reduced set of landmark fibers are available. The experimental validation of the method is done using a manually annotated significant dataset of DTI of the calf muscle for healthy and diseased subjects.

  7. Repulsive-SVDD Classification

    DTIC Science & Technology

    2015-05-22

    Canberra, ACT 2601, Australia dat.tran@canberra.edu.au Abstract. Support vector data description (SVDD) is a well-known ker- nel method that constructs a...for the proposed method . Keywords: Repulsive SVDD · Support vector data description · Sup- port vector machine · Classification 1 Introduction...estimate the support of a high-dimensional distribution. Although this method uses a maximal-margin hyperplane instead of a hypersphere to separate the

  8. Magnetic Repulsion: An Introductory Experiment

    ERIC Educational Resources Information Center

    Romer, Alfred

    1973-01-01

    Discusses the use of a balance assembled from standard laboratory components to conduct an experiment on the repulsion between two bar magnets. Includes an analysis of data on the two-pole and four-pole models. (CC)

  9. Indians Repulse British With Rocket

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During the early introduction of rockets to Europe, they were used only as weapons. Enemy troops in India repulsed the British with rockets. Later, in Britain, Sir William Congreve developed a rocket that could fire to about 9,000 feet. The British fired Congreve rockets against the United States in the War of 1812.

  10. Repulsive force actuated rotary micromirror

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Ben Mrad, Ridha

    2004-09-01

    In this paper, a novel repulsive force based rotary micromirror is proposed. A repulsive force is produced in the rotary micromirror and the mirror plate is pushed up and away from the substrate. Therefore the rotation angle of the micromirror is not limited to the space underneath the mirror plate and thus the "pull-in" effect is completely circumvented. The novel rotary micromirror can achieve a large rotation angle with a large mirror plate. In addition the novel micromirror has a very simple structure and can be fabricated by standard surface micromachining technology. Numerical simulation is used to verify the working principle of the novel micromirror. A prototype of the novel rotary micromirror is fabricated by a commercially available surface microfabrication process called MUMPs. The prototype has a mirror size of 300μm x 300μm. The experimental measurements show that the prototype can achieve a mechanical rotation of 2.25 degrees (an optical angle of 4.5 degrees) at a driving voltage of 170 volts. A conventional surface micromachined attractive force based rotary micromirror of the same size can only achieve an angle of 0.1~0.2 degree.

  11. Equivalent Activities of Repulsive Axon Guidance Receptors

    PubMed Central

    Long, Hong; Yoshikawa, Shingo

    2016-01-01

    Receptors on the growth cone at the leading edge of elongating axons play critical guidance roles by recognizing cues via their extracellular domains and transducing signals via their intracellular domains, resulting in changes in direction of growth. An important concept to have emerged in the axon guidance field is the importance of repulsion as a major guidance mechanism. Given the number and variety of different repulsive receptors, it is generally thought that there are likely to be qualitative differences in the signals they transduce. However, the nature of these possible differences is unknown. By creating chimeras using the extracellular and intracellular domains of three different Drosophila repulsive receptors, Unc5, Roundabout (Robo), and Derailed (Drl) and expressing them in defined cells within the embryonic nervous system, we examined the responses elicited by their intracellular domains systematically. Surprisingly, we found no qualitative differences in growth cone response or axon growth, suggesting that, despite their highly diverged sequences, each intracellular domain elicits repulsion via a common pathway. In terms of the signaling pathway(s) used by the repulsive receptors, mutations in the guanine nucleotide exchange factor Trio strongly enhance the repulsive activity of all three intracellular domains, suggesting that repulsion by Unc5, Robo, and Drl, and perhaps repulsion in general, involves Trio activity. SIGNIFICANCE STATEMENT A prevailing concept that has emerged in the axon guidance field is the importance of repulsion as a guidance mechanism for steering axons to their appropriate targets. Given the number and variety of different repulsive receptors, it is generally thought that there are differences in the signals that they transduce. However, this has never been tested directly. We have used the advanced genetics of Drosophila to compare directly the outputs of different repulsive receptors. Surprisingly, we found no qualitative

  12. Superlubricity using repulsive van der Waals forces.

    PubMed

    Feiler, Adam A; Bergström, Lennart; Rutland, Mark W

    2008-03-18

    Using colloid probe atomic force microscopy, we show that if repulsive van der Waals forces exist between two surfaces prior to their contact then friction is essentially precluded and supersliding is achieved. The friction measurements presented here are of the same order as the lowest ever recorded friction coefficients in liquid, though they are achieved by a completely different approach. A gold sphere attached to an AFM cantilever is forced to interact with a smooth Teflon surface (templated on mica). In cyclohexane, a repulsive van der Waals force is observed that diverges at short separations. The friction coefficient associated with this system is on the order of 0.0003. When the refractive index of the liquid is changed, the force can be tuned from repulsive to attractive and adhesive. The friction coefficient increases as the Hamaker constant becomes more positive and the divergent repulsive force, which prevents solid-solid contact, gets switched off.

  13. Attractive and repulsive magnetic suspension systems overview

    NASA Technical Reports Server (NTRS)

    Cope, David B.; Fontana, Richard R.

    1992-01-01

    Magnetic suspension systems can be used in a wide variety of applications. The decision of whether to use an attractive or repulsive suspension system for a particular application is a fundamental one which must be made during the design process. As an aid to the designer, we compare and contrast attractive and repulsive magnetic suspension systems and indicate whether and under what conditions one or the other system is preferred.

  14. Casimir Repulsion between Metallic Objects in Vacuum

    SciTech Connect

    Levin, Michael; McCauley, Alexander P.; Rodriguez, Alejandro W.; Reid, M. T. Homer; Johnson, Steven G.

    2010-08-27

    We give an example of a geometry in which two metallic objects in vacuum experience a repulsive Casimir force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime using a symmetry argument and confirm it with numerical calculations for both perfect and realistic metals. The system does not support stable levitation, as the particle is unstable to displacements away from the symmetry axis.

  15. Casimir Repulsion between Metallic Objects in Vacuum

    DTIC Science & Technology

    2010-08-27

    levitation , as the particle is unstable to displacements away from the symmetry axis. DOI: 10.1103/PhysRevLett.105.090403 PACS numbers: 03.70.+k, 03.65.w...displacements away from the symmetry axis, so that the system does not support stable levitation , consistent with the theorem of Ref. [1]. We...interaction is unambiguously repulsive.) Repulsive forces also arise for fluid-separated geometries [7] or magnetic [8,9] or magnetoelectric materials

  16. Repulsive gravity induced by a conformally coupled scalar field implies a bouncing radiation-dominated universe

    NASA Astrophysics Data System (ADS)

    Antunes, V.; Novello, M.

    2017-04-01

    In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity (Novello in Phys Lett 90A:347 1980). When the scalar field vacuum is in a broken symmetry state, an effective gravitational constant emerges which, in certain regimes, can lead to gravitational repulsive effects when only ordinary radiation is coupled to gravity. In this case, a bouncing universe is shown to be the only cosmological solution admissible by the field equations when the scalar field is in such broken symmetry state.

  17. Incompatibility of QED/QCD and repulsive gravity, and implications for some recent approaches to dark energy

    NASA Astrophysics Data System (ADS)

    Cabbolet, Marcoen J. T. F.

    2014-04-01

    The measurement of the gravitational properties of antimatter is currently a hot research area in experimental physics. Using an outcome of QED calculations by Alves et al. (arXiv:0907.4110, 2009), this letter proves that QED and repulsive gravity are incompatible by showing that an extension of QED with the assumption of negative gravitational mass for antimatter yields a concrete prediction that is already falsified by the recent Eöt-Wash experiments: if repulsive gravity, and thus negative gravitational mass, would be observed by any of the upcoming experiments, then QED is thus experimentally falsified; the same goes for QCD. An immediate consequence is that virtual particle-antiparticle pairs from contemporary quantum theory cannot be a model for Hajdukovic's virtual gravitational dipoles, nor for the dipolar medium of Blanchet and Le Tiec. There may be ways to reformulate quantum theory to restore consistency with experiment if repulsive gravity would be observed, but these involve a departure from the framework of four dimensions and four forces of nature: an observation of repulsive gravity would thus provide a reason to reject the quantum paradigm in its entirety and to search for new fundamental physics.

  18. Ultralight repulsive dark matter and BEC

    NASA Astrophysics Data System (ADS)

    Fan, JiJi

    2016-12-01

    Ultralight scalar dark matter with mass at or below the eV scale and pressure from repulsive self-interaction could form a Bose-Einstein condensate in the early Universe and maybe in galaxies as well. It has been suggested to be a possible solution to the cusp/core problem or even to explain MOND phenomenology. In this paper, I initiate a study of possible self-interactions of ultralight scalar dark matter from the particle physics point of view. To protect its mass, the scalar dark matter is identified as a pseudo Nambu-Goldstone boson (pNGB). Quite a few pNGB models with different potentials such as the QCD axion and the dilaton lead to attractive self-interactions. Yet if an axion is a remnant of a 5D gauged U(1) symmetry, its self-interactions could be repulsive provided the masses and charges of the 5D matter contributing to its potential satisfy certain constraints. Collective symmetry breaking could also lead to a repulsive self-interaction yet with too large a strength that is ruled out by Bullet Cluster constraints. I also discuss cosmological and astrophysical constraints on ultralight repulsive dark matter in terms of a parametrization motivated by particle physics considerations.

  19. Gravitational lensing of gravitational wave

    NASA Astrophysics Data System (ADS)

    Kei Wong, Wang; Ng, Kwan Yeung

    2017-01-01

    Gravitational lensing phenomena are widespread in electromagnetic astrophysics, and in principle may also be uncovered with gravitational waves. We examine gravitational wave events lensed by elliptical galaxies in the limit of geometric optics, where we expect to see multiple signals from the same event with different arrival times and amplitudes. By using mass functions for compact binaries from population-synthesis simulations and a lensing probability calculated from Planck data, we estimate the rate of lensed signals for future gravitational wave missions.

  20. Electron attraction mediated by Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.

    2016-07-01

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  1. Electron attraction mediated by Coulomb repulsion.

    PubMed

    Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S

    2016-07-21

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  2. Global Solutions to Repulsive Hookean Elastodynamics

    NASA Astrophysics Data System (ADS)

    Hu, Xianpeng; Masmoudi, Nader

    2017-01-01

    The global existence of classical solutions to the three dimensional repulsive Hookean elastodynamics around an equilibrium is considered. By linearization and Hodge's decomposition, the compressible part of the velocity, the density, and the compressible part of the transpose of the deformation gradient satisfy Klein-Gordon equations with speed {√{2}}, while the incompressible parts of the velocity and of the transpose of the deformation gradient satisfy wave equations with speed one. The space-time resonance method combined with the vector field method is used in a novel way to obtain the decay of the solution and hence global existence.

  3. Gravitation research

    NASA Technical Reports Server (NTRS)

    Weiss, R.; Muehlner, D. J.; Benford, R. L.; Owens, D. K.; Pierre, N. A.; Rosenbluh, M.

    1972-01-01

    Balloon measurements were made of the far infrared background radiation. The radiometer used and its calibration are discussed. An electromagnetically coupled broadband gravitational antenna is also considered. The proposed antenna design and noise sources in the antenna are reviewed. A comparison is made between interferometric broadband and resonant bar antennas for the detection of gravitational wave pulses.

  4. Gravitational vacuum

    NASA Astrophysics Data System (ADS)

    Grigoryan, L. S.; Saakyan, G. S.

    1984-09-01

    The existence of a special gravitational vacuum is considered in this paper. A phenomenological method differing from the traditional Einsteinian formalization is utilized. Vacuum, metric and matter form a complex determined by field equations and at great distances from gravitational masses vacuum effects are small but could be large in powerful fields. Singularities and black holes justify the approach as well as the Ambartsmyan theory concerning the existence of supermassive and superdense prestallar bodies that then disintegrate. A theory for these superdense bodies is developed involving gravitational field equations that describe the vacuum by an energy momentum tensor and define the field and mass distribution. Computations based on the theory for gravitational radii with incompressible liquid models adequately reflecting real conditions indicate that a gravitational vacuum could have considerable effects on superdense stars and could have radical effects for very large masses.

  5. Neighborhood Repulsed Metric Learning for Kinship Verification.

    PubMed

    Lu, Jiwen; Zhou, Xiuzhuang; Tan, Yap-Pen; Shang, Yuanyuan; Zhou, Jie

    2013-07-16

    Kinship verification from facial images is an interesting and challenging problem in computer vision, and there is very limited attempts on tackle this problem in the iterature. In this paper, we propose a new neighborhood repulsed metric learning (NRML) method for kinship verification. Motivated by the fact that interclass samples (without kinship relations) with higher similarity usually lie in a neighborhood and are more easily misclassified than those with lower similarity, we aim to learn a distance metric under which the intraclass samples (with kinship relations) are pulled as close as possible and interclass samples lying in a neighborhood are repulsed and pushed away as far as possible, simultaneously, such that more discriminative information can be exploited for verification. To make better use of multiple feature descriptors to extract complementary information, we further propose a multiview NRML (MNRML) method to seek a common distance metric to perform multiple feature fusion to improve the kinship verification performance. Experimental results are presented to demonstrate the efficacy of our proposed methods. Lastly, we also test human ability in kinship verification from facial images and our experimental results show that our methods are comparable to that of human observers.

  6. Neighborhood repulsed metric learning for kinship verification.

    PubMed

    Lu, Jiwen; Zhou, Xiuzhuang; Tan, Yap-Pen; Shang, Yuanyuan; Zhou, Jie

    2014-02-01

    Kinship verification from facial images is an interesting and challenging problem in computer vision, and there are very limited attempts on tackle this problem in the literature. In this paper, we propose a new neighborhood repulsed metric learning (NRML) method for kinship verification. Motivated by the fact that interclass samples (without a kinship relation) with higher similarity usually lie in a neighborhood and are more easily misclassified than those with lower similarity, we aim to learn a distance metric under which the intraclass samples (with a kinship relation) are pulled as close as possible and interclass samples lying in a neighborhood are repulsed and pushed away as far as possible, simultaneously, such that more discriminative information can be exploited for verification. To make better use of multiple feature descriptors to extract complementary information, we further propose a multiview NRML (MNRML) method to seek a common distance metric to perform multiple feature fusion to improve the kinship verification performance. Experimental results are presented to demonstrate the efficacy of our proposed methods. Finally, we also test human ability in kinship verification from facial images and our experimental results show that our methods are comparable to that of human observers.

  7. Gravitating Hopfions

    SciTech Connect

    Shnir, Ya. M.

    2015-12-15

    We construct solutions of the 3 + 1 dimensional Faddeev–Skyrme model coupled to Einstein gravity. The solutions are static and asymptotically flat. They are characterized by a topological Hopf number. We investigate the dependence of the ADM masses of gravitating Hopfions on the gravitational coupling. When gravity is coupled to flat space solutions, a branch of gravitating Hopfion solutions arises and merges at a maximal value of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead, in the limit of a vanishing coupling constant, it connects to either the Bartnik–McKinnon or a generalized Bartnik–McKinnon solution. We further find that in the strong-coupling limit, there is no difference between the gravitating solitons of the Skyrme model and the Faddeev–Skyrme model.

  8. Asymptotic Dynamics of Attractive-Repulsive Swarms

    NASA Astrophysics Data System (ADS)

    Leverentz, Andrew J.; Topaz, Chad M.; Bernoff, Andrew J.

    2009-01-01

    We classify and predict the asymptotic dynamics of a class of swarming models. The model consists of a conservation equation in one dimension describing the movement of a population density field. The velocity is found by convolving the density with a kernel describing attractive-repulsive social interactions. The kernel's first moment and its limiting behavior at the origin determine whether the population asymptotically spreads, contracts, or reaches steady state. For the spreading case, the dynamics approach those of the porous medium equation. The widening, compactly supported population has edges that behave like traveling waves whose speed, density, and slope we calculate. For the contracting case, the dynamics of the cumulative density approach those of Burgers' equation. We derive an analytical upper bound for the finite blow-up time after which the solution forms one or more delta-functions.

  9. Gravitational induction

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Cherubini, Christian; Chicone, Carmen; Mashhoon, Bahram

    2008-11-01

    We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show explicitly that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrodynamics. Some of the physical implications of gravitational induction are briefly discussed.

  10. General relativistic polytropes with a repulsive cosmological constant

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Hledík, Stanislav; Novotný, Jan

    2016-11-01

    Spherically symmetric equilibrium configurations of perfect fluid obeying a polytropic equation of state are studied in spacetimes with a repulsive cosmological constant. The configurations are specified in terms of three parameters—the polytropic index n , the ratio of central pressure and central energy density of matter σ , and the ratio of energy density of vacuum and central density of matter λ . The static equilibrium configurations are determined by two coupled first-order nonlinear differential equations that are solved by numerical methods with the exception of polytropes with n =0 corresponding to the configurations with a uniform distribution of energy density, when the solution is given in terms of elementary functions. The geometry of the polytropes is conveniently represented by embedding diagrams of both the ordinary space geometry and the optical reference geometry reflecting some dynamical properties of the geodesic motion. The polytropes are represented by radial profiles of energy density, pressure, mass, and metric coefficients. For all tested values of n >0 , the static equilibrium configurations with fixed parameters n , σ , are allowed only up to a critical value of the cosmological parameter λc=λc(n ,σ ). In the case of n >3 , the critical value λc tends to zero for special values of σ . The gravitational potential energy and the binding energy of the polytropes are determined and studied by numerical methods. We discuss in detail the polytropes with an extension comparable to those of the dark matter halos related to galaxies, i.e., with extension ℓ>100 kpc and mass M >1 012 M⊙ . For such largely extended polytropes, the cosmological parameter relating the vacuum energy to the central density has to be larger than λ =ρvac/ρc˜10-9. We demonstrate that the extension of the static general relativistic polytropic configurations cannot exceed the so-called static radius related to their external spacetime, supporting the idea

  11. Gravitational Waves from Gravitational Collapse.

    PubMed

    Fryer, Chris L; New, Kimberly C B

    2003-01-01

    Gravitational wave emission from stellar collapse has been studied for more than three decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  12. Gravitational Waves from Gravitational Collapse.

    PubMed

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  13. Gravitational waves from gravitational collapse

    SciTech Connect

    Fryer, Christopher L; New, Kimberly C

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  14. The Electron-Pair Repulsion Model for Molecular Geometry

    ERIC Educational Resources Information Center

    Gillespie, R. J.

    1970-01-01

    Describes how the electron-pair repulsion model qualitatively explains the size and shape of molecular orbitals. Briefly discusses trigonal bipyramidal molecules, three-center bonds, and transition elements. Describes cluster compounds and finishes with a discussion of the exceptions to the model and effects of ligand-ligand repulsions. (RR)

  15. Methodological Gravitism

    ERIC Educational Resources Information Center

    Zaman, Muhammad

    2011-01-01

    In this paper the author presents the case of the exchange marriage system to delineate a model of methodological gravitism. Such a model is not a deviation from or alteration to the existing qualitative research approaches. I have adopted culturally specific methodology to investigate spouse selection in line with the Grounded Theory Method. This…

  16. Repulsion of polarized particles near a magneto-optical metamaterial

    NASA Astrophysics Data System (ADS)

    Girón-Sedas, J. A.; Mejía-Salazar, J. R.; Granada, J. C.; Oliveira, Osvaldo N.

    2016-12-01

    We show that a particle emitting in close proximity to a magneto-optical metamaterial substrate can experience a repulsive force if the magnetization is found along the surface plane. An analytical condition for the existence of such a repulsive force is obtained within the near-field approximation. Significantly, the repulsive force can be tuned by varying the filling fraction in a stack of two alternating layers of a metallic magneto-optical material and a dielectric. Potential applications can be envisaged for nanomechanical devices, particularly since similar metamaterial architectures have already been developed experimentally.

  17. Gravitational Lensing

    SciTech Connect

    Lincoln, Don

    2015-06-24

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  18. Gravitational Lensing

    ScienceCinema

    Lincoln, Don

    2016-07-12

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  19. Gravitational lenses

    SciTech Connect

    Turner, E.L.

    1988-07-01

    For several years astronomers have devoted considerable effort to finding and studying a class of celestial phenomena whose very existence depends on rare cosmic accidents. These are gravitational-lens events, which occur when two or more objects at different distances from the earth happen to lie along the same line of sight and so coincide in the sky. The radiation from the more distant object, typically a quasar, is bent by the gravitational field of the foreground object. The bending creates a cosmic mirage: distorted or multiple images of the background object. Such phenomena may reveal many otherwise undetectable features of the image source, of the foreground object and of the space lying between them. Such observations could help to resolve several fundamental questions in cosmology. In the past decade theoretical and observational research on gravitational lenses has grown rapidly and steadily. At this writing at least 17 candidate lens systems have been discussed in the literature. Of the 17 lens candidates reported so far in professional literature, only five are considered to have been reliably established by subsequent observations. Another three are generally regarded as weak or speculative cases with less than 50 percent chance of actually being lens systems. In the remaining nine cases the evidence is mixed or is sparse enough so that the final judgment could swing either way. As might be concluded, little of the scientific promise of gravitational lenses has yet been realized. The work has not yielded a clear value for the proportionality constant or any of the other fundamental cosmological parameter. 7 figs.

  20. Experimental gravitation

    NASA Astrophysics Data System (ADS)

    Lämmerzahl, Claus; di Virgilio, Angela

    2016-06-01

    100 years after the invention of General Relativity (GR) and 110 years after the development of Special Relativity (SR) we have to state that until now no single experiment or observation allows any doubt about the validity of these theories within the accuracy of the available data. Tests of GR can be divided into three categories: (i) test of the foundations of GR, (ii) tests of the consequences of GR, and (iii) test of the interplay between GR and quantum mechanics. In the first category, we have tests of the Einstein Equivalence Principle and the structure of the Newton axioms, in the second category we have effects like the gravitational redshift, light defection, gravitational time delay, the perihelion shift, the gravitomagnetic effects as the Lense-Thirring and Schiff effect, and gravitational waves. Tests of the effects of gravity on quantum systems are a first step towards experiments searching for a quantum gravity theory. In this paper, we also highlight practical applications in positioning, geodesy, and the International Atomic Time. After 100 years, GR can now definitely be regarded also as practical and applied science.

  1. Sparse repulsive coupling enhances synchronization in complex networks.

    PubMed

    Leyva, I; Sendiña-Nadal, I; Almendral, J A; Sanjuán, M A F

    2006-11-01

    Through the last years, different strategies to enhance synchronization in complex networks have been proposed. In this work, we show that synchronization of nonidentical dynamical units that are attractively coupled in a small-world network is strongly improved by just making phase-repulsive a tiny fraction of the couplings. By a purely topological analysis that does not depend on the dynamical model, we link the emerging dynamical behavior with the structural properties of the sparsely coupled repulsive network.

  2. Coulomb repulsion and the electron beam directed energy weapon

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-09-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into small spots at large distances from defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Based on estimates, the nonreversible terms should be small - of the order of 0.1 mm. If this is true, it is possible to design a practical electron beam directed weapon not limited by Coulomb repulsion.

  3. Altered motion repulsion in Alzheimer’s disease

    PubMed Central

    Li, Yan; Guo, Shougang; Wang, Yongxiang; Chen, Huan

    2017-01-01

    Recent research in Alzheimer’s disease (AD) indicates that perceptual impairments may occur before the onset of cognitive declines, and can thus serve as an early noninvasive indicator for AD. In this study, we focused on visual motion processing and explored whether AD induces changes in the properties of direction repulsion between two competing motions. We used random dot kinematograms (RDKs) and measured the magnitudes of direction repulsion between two overlapping RDKs moving different directions in three groups of participants: an AD group, an age-matched old control group, and a young control group. We showed that motion direction repulsion was significantly weaker in AD patients as comparing to both healthy controls. More importantly, we found that the magnitude of motion repulsion was predictive of the assessment of clinical severity in the AD group. Our results implicate that AD pathology is associated with altered neural functions in visual cortical areas and that motion repulsion deficit is a behavioral biomarker for the tracking of AD development. PMID:28106153

  4. Effects of spatial cuing on the onset repulsion effect.

    PubMed

    Hubbard, Timothy L; Ruppel, Susan E

    2011-10-01

    Effects of cuing the onset (initial) location of a moving target on memory for the onset location of that target were examined. If a cue presented prior to target onset indicated the location where that target would appear, the onset repulsion effect (in which the judged initial location of the target was displaced in the direction opposite to target motion) was decreased, and the onset repulsion effect was smaller if the cue was valid than if the cue was invalid. If a cue presented during target motion or after the target vanished indicated the location where that target had appeared, the onset repulsion effect was eliminated. The data (1) suggest that positional uncertainty might contribute to the onset repulsion effect, (2) provide the first evidence of an effect of expectancy regarding target trajectory on the onset repulsion effect, and (3) are partially consistent with previous data involving effects of attention and spatial cuing on the Fröhlich effect and on representational momentum.

  5. Enhanced compressibility due to repulsive interaction in the Harper model

    NASA Astrophysics Data System (ADS)

    Kraus, Yaacov E.; Zilberberg, Oded; Berkovits, Richard

    2014-04-01

    We study the interplay between a repulsive interaction and an almost staggered on-site potential in one dimension. Specifically, we address the Harper model for spinless fermions with nearest-neighbor repulsion, close to half filling. Using the density matrix renormalization group, we find that, in contrast to standard behavior, the system becomes more compressible as the repulsive interaction is increased. By deriving a low-energy effective model, we unveil the effect of interactions using mean-field analysis: The density of a narrow band around half filling is anticorrelated with the on-site potential, whereas the density of lower occupied bands follows the potential and strengthens it. As a result, the states around half filling are squeezed by the background density, their band becomes flatter, and the compressibility increases.

  6. Quasiparticle-continuum level repulsion in a quantum magnet

    SciTech Connect

    Plumb, K. W.; Hwang, Kyusung; Qiu, Y.; Harriger, Leland W.; Granroth, G.  E.; Kolesnikov, Alexander I.; Shu, G. J.; Chou, F. C.; Rüegg, Ch.; Kim, Yong Baek; Kim, Young-June

    2015-11-30

    When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here, we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu2PO6.

  7. Quasiparticle-continuum level repulsion in a quantum magnet

    DOE PAGES

    Plumb, K. W.; Hwang, Kyusung; Qiu, Y.; ...

    2015-11-30

    When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here,more » we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu2PO6.« less

  8. Influence of the cosmic repulsion on the MOND model of the Magellanic Cloud motion in the field of Milky Way

    SciTech Connect

    Schee, J.; Stuchlík, Z.; Petrásek, M. E-mail: zdenek.stuchlik@fpf.slu.cz

    2013-12-01

    It has been recently shown that the cosmic repulsion can have a highly significant influence on the motion of Magellanic Clouds (MC) in the gravitational field of Milky Way, treated in the framework of the Cold Dark Matter (CDM) halo model. However, there is an alternative to the CDM halo explanation of the rotation curves in the periphery of spiral galaxies, based on MOdified Newtonian Dynamics (MOND). Therefore, we study the role of the cosmic repulsion in the framework of the MOND theory applied to determine the MC motion. Our results demonstrate that in the MOND framework the influence of the cosmic repulsion on the motion of both Small and Large MC is also highly significant, but it is of a different character than in the framework of the CDM halo model. Moreover, we demonstrate that the MC motion in the framework of the CDM halo and MOND models is subtantially different and can serve as a test of these fundamentally different approaches to the explanation of the phenomena related to galaxies and the motion of satellite galaxies.

  9. Metastable superfluidity of repulsive fermionic atoms in optical lattices.

    PubMed

    Rosch, Achim; Rasch, David; Binz, Benedikt; Vojta, Matthias

    2008-12-31

    In the fermionic Hubbard model, doubly occupied states have an exponentially large lifetime for strong repulsive interactions U. We show that this property can be used to prepare a metastable s-wave superfluid state for fermionic atoms in optical lattices described by a large-U Hubbard model. When an initial band-insulating state is expanded, the doubly occupied sites Bose condense. A mapping to the ferromagnetic Heisenberg model in an external field allows for a reliable solution of the problem. Nearest-neighbor repulsion and pair hopping are important in stabilizing superfluidity.

  10. Can Coulomb repulsion for charged particle beams be overcome?

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-01-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into a small spots at large distances from the defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Since the nonreversible terms should be small, it might be possible to construct an electron beam directed energy weapon.

  11. Repulsion-based model for contact angle saturation in electrowetting.

    PubMed

    Ali, Hassan Abdelmoumen Abdellah; Mohamed, Hany Ahmed; Abdelgawad, Mohamed

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.

  12. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.

    PubMed

    Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J

    2015-10-23

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.

  13. "Magic" surface clustering of borazines driven by repulsive intermolecular forces.

    PubMed

    Kervyn, Simon; Kalashnyk, Nataliya; Riello, Massimo; Moreton, Ben; Tasseroul, Jonathan; Wouters, Johan; Jones, Tim S; De Vita, Alessandro; Costantini, Giovanni; Bonifazi, Davide

    2013-07-15

    It's a kind of magic: Hydroxy pentaaryl borazine molecules self-assemble into small clusters (see structure) on Cu(111) surfaces, whereas with symmetric hexaaryl borazine molecules large islands are obtained. Simulations indicate that the observed "magic" cluster sizes result from long-range repulsive Coulomb forces arising from the deprotonation of the B-OH groups of the hydroxy pentaaryl borazine.

  14. Teaching Valence Shell Electron Pair Repulsion (VSEPR) Theory

    ERIC Educational Resources Information Center

    Talbot, Christopher; Neo, Choo Tong

    2013-01-01

    This "Science Note" looks at the way that the shapes of simple molecules can be explained in terms of the number of electron pairs in the valence shell of the central atom. This theory is formally known as valence shell electron pair repulsion (VSEPR) theory. The article explains the preferred shape of chlorine trifluoride (ClF3),…

  15. Electrostatic repulsive out-of-plane actuator using conductive substrate

    PubMed Central

    Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin

    2016-01-01

    A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0–4.5 μm for a dc driving voltage of 0–100 V, when compared with that in two-layer mode. PMID:27713542

  16. Electrostatic repulsive out-of-plane actuator using conductive substrate

    NASA Astrophysics Data System (ADS)

    Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin

    2016-10-01

    A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0–4.5 μm for a dc driving voltage of 0–100 V, when compared with that in two-layer mode.

  17. Repulsion-based model for contact angle saturation in electrowetting

    PubMed Central

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results. PMID:25759748

  18. Electrostatic repulsive out-of-plane actuator using conductive substrate.

    PubMed

    Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin

    2016-10-07

    A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0-4.5 μm for a dc driving voltage of 0-100 V, when compared with that in two-layer mode.

  19. The Pauli Principle and Electronic Repulsion in Helium

    ERIC Educational Resources Information Center

    Snow, Richard L.; Bills, James L.

    1974-01-01

    The authors indicate that several recent textbooks in quantum chemistry use a discussion of the excited states of the helium atom to demonstrate the importance of the Pauli principle in determining electronic repulsions. They present data suggesting "Pauli forces" do not keep electrons of parallel spins separated in space. (RH)

  20. Depth attraction and repulsion of disparate foveal stimuli.

    PubMed

    Westheimer, G; Levi, D M

    1987-01-01

    Interaction in the domain of disparity can be either of the kind where the depth difference between adjacent targets is enhanced, as if the two targets repelled each other in depth, or it may be in the opposite direction, i.e. having the character of attraction. In the fovea, interaction between stimuli is of the latter kind if targets are separated by less than 2-8 min of arc, dependent on their positions and the observer; for further separations, repulsion is exhibited. When disparate neighbors induce a change in depth of a visual feature, only a portion of the effect can be ascribed to monocular localization shifts in the two monocular retinal images. Both attraction and repulsion can occur between targets of opposite contrast. Depth interaction measured by a psychophysical nulling method increases monotonically with disparity in the regions clearly governed by the repulsion and the attraction regimen; in the transition region, repulsion overtakes attraction when the disparity becomes larger. If the concept of "pooling" of disparity is invoked to account for the affinity of seen depth of closely-adjacent stimuli, the signals involved cannot be simply those of light weighted by disparity, but must be associated with individual features.

  1. Electron Pairing, Repulsion, and Correlation: A Simplistic Approach

    ERIC Educational Resources Information Center

    Olsson, Lars-Fride; Kloo, Lars

    2004-01-01

    The interplay between a nucleus and an electron pair is explained through a basic application of an electrostatic and balanced model to determine the correlated and repulsive movements of the electron pair. The stable correlation depends on the positive charge produced by the combined force, which in turn establishes a negative potential energy.

  2. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales

    PubMed Central

    Curran, P. J.; Desoky, W. M.; Milos̆ević, M. V.; Chaves, A.; Laloë, J.-B.; Moodera, J. S.; Bending, S. J.

    2015-01-01

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications. PMID:26492969

  3. General continuum approach for dissipative systems of repulsive particles.

    PubMed

    Vieira, César M; Carmona, Humberto A; Andrade, José S; Moreira, André A

    2016-06-01

    We propose a general coarse-graining method to derive a continuity equation that describes any dissipative system of repulsive particles interacting through short-ranged potentials. In our approach, the effect of particle-particle correlations is incorporated to the overall balance of energy, and a nonlinear diffusion equation is obtained to represent the overdamped dynamics. In particular, when the repulsive interaction potential is a short-ranged power law, our approach reveals a distinctive correspondence between particle-particle energy and the generalized thermostatistics of Tsallis for any nonpositive value of the entropic index q. Our methodology can also be applied to microscopic models of superconducting vortices and complex plasma, where particle-particle correlations are pronounced at low concentrations. The resulting continuum descriptions provide elucidating and useful insights on the microdynamical behavior of these physical systems. The consistency of our approach is demonstrated by comparison with molecular dynamics simulations.

  4. Thermodynamic curvature for attractive and repulsive intermolecular forces.

    PubMed

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2013-09-01

    The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid, and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R=0 dividing the phase space into regions with effectively attractive (R<0) or repulsive (R>0) interactions. Furthermore, we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by Weeks-Chandler-Anderson. Our results show clearly a transition from R>0 (for poorly repulsive interaction) to R<0 when loading attraction in the intermolecular potential.

  5. Monodisperse Clusters in Charged Attractive Colloids: Linear Renormalization of Repulsion.

    PubMed

    Růžička, Štěpán; Allen, Michael P

    2015-08-11

    Experiments done on polydisperse particles of cadmium selenide have recently shown that the particles form spherical isolated clusters with low polydispersity of cluster size. The computer simulation model of Xia et al. ( Nat. Nanotechnol. 2011 , 6 , 580 ) explaining this behavior used a short-range van der Waals attraction combined with a variable long-range screened electrostatic repulsion, depending linearly on the volume of the clusters. In this work, we term this dependence "linear renormalization" of the repulsive term, and we use advanced Monte Carlo simulations to investigate the kinetically slowed down phase separation in a similar but simpler model. We show that amorphous drops do not dissolve and crystallinity evolves very slowly under linear renormalization, and we confirm that low polydispersity of cluster size can also be achieved using this model. The results indicate that the linear renormalization generally leads to monodisperse clusters.

  6. Synergistic effect of repulsive inhibition in synchronization of excitatory networks

    NASA Astrophysics Data System (ADS)

    Belykh, Igor; Reimbayev, Reimbay; Zhao, Kun

    2015-06-01

    We show that the addition of pairwise repulsive inhibition to excitatory networks of bursting neurons induces synchrony, in contrast to one's expectations. Through stability analysis, we reveal the mechanism underlying this purely synergistic phenomenon and demonstrate that it originates from the transition between different types of bursting, caused by excitatory-inhibitory synaptic coupling. This effect is generic and observed in different models of bursting neurons and fast synaptic interactions. We also find a universal scaling law for the synchronization stability condition for large networks in terms of the number of excitatory and inhibitory inputs each neuron receives, regardless of the network size and topology. This general law is in sharp contrast with linearly coupled networks with positive (attractive) and negative (repulsive) coupling where the placement and structure of negative connections heavily affect synchronization.

  7. One-loop quantum gravity repulsion in the early Universe.

    PubMed

    Broda, Bogusław

    2011-03-11

    Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.

  8. A magnetic bearing based on eddy-current repulsion

    NASA Technical Reports Server (NTRS)

    Nikolajsen, J. L.

    1987-01-01

    This paper describes a new type of electromagnetic bearing, called the Eddy-Current Bearing, which works by repulsion between fixed AC-electromagnets and a conducting rotor. The following advantages are expected: inherent stability, higher load carrying capacity than DC-electromagnetic bearings, simultaneous radial, angular and thrust support, motoring and generating capability, and backup mode of operation in case of primary power failure. A prototype is under construction.

  9. Molecular analysis of axon repulsion by the notochord.

    PubMed

    Anderson, Christopher N G; Ohta, Kunimasa; Quick, Marie M; Fleming, Angeleen; Keynes, Roger; Tannahill, David

    2003-03-01

    During development of the amniote peripheral nervous system, the initial trajectory of primary sensory axons is determined largely by the action of axon repellents. We have shown previously that tissues flanking dorsal root ganglia, the notochord lying medially and the dermamyotomes lying laterally, are sources of secreted molecules that prevent axons from entering inappropriate territories. Although there is evidence suggesting that SEMA3A contributes to the repellent activity of the dermamyotome, the nature of the activity secreted by the notochord remains undetermined. We have employed an expression cloning strategy to search for axon repellents secreted by the notochord, and have identified SEMA3A as a candidate repellent. Moreover, using a spectrum of different axon populations to assay the notochord activity, together with neuropilin/Fc receptor reagents to block semaphorin activity in collagen gel assays, we show that SEMA3A probably contributes to notochord-mediated repulsion. Sympathetic axons that normally avoid the midline in vivo are also repelled, in part, by a semaphorin-based notochord activity. Although our results implicate semaphorin signalling in mediating repulsion by the notochord, repulsion of early dorsal root ganglion axons is only partially blocked when using neuropilin/Fc reagents. Moreover, retinal axons, which are insensitive to SEMA3A, are also repelled by the notochord. We conclude that multiple factors act in concert to guide axons in this system, and that further notochord repellents remain to be identified.

  10. When do we need attractive-repulsive intermolecular potentials?

    SciTech Connect

    Venkattraman, Ayyaswamy

    2014-12-09

    The role of attractive-repulsive interactions in direct simulation Monte Carlo (DSMC) simulations is studied by comparing with traditional purely repulsive interactions. The larger collision cross section of the long-range LJ potential is shown to result in a higher collision frequency and hence a lower mean free path, by at least a factor of two, for given conditions. This results in a faster relaxation to equilibrium as is shown by comparing the fourth and sixth moments of the molecular velocity distribution obtained using 0-D DSMC simulations. A 1-D Fourier-Couette flow with a large temperature and velocity difference between the walls is used to show that matching transport properties will result in identical solutions using both LJPA and VSS models in the near-continuum regime. However, flows in the transitional regime with Knudsen number, Kn ∼ 0.5 show a dependence on the intermolecular potential in spite of matching the viscosity coefficient due to differences in the collision frequency. Attractive-repulsive potentials should be used when both transport coefficients and collision frequencies should be matched.

  11. Measured long-range repulsive Casimir–Lifshitz forces

    PubMed Central

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  12. TOPICAL REVIEW Gravitational lensing

    NASA Astrophysics Data System (ADS)

    Bartelmann, Matthias

    2010-12-01

    Gravitational lensing has developed into one of the most powerful tools for the analysis of the dark universe. This review summarizes the theory of gravitational lensing, its main current applications and representative results achieved so far. It has two parts. In the first, starting from the equation of geodesic deviation, the equations of thin and extended gravitational lensing are derived. In the second, gravitational lensing by stars and planets, galaxies, galaxy clusters and large-scale structures is discussed and summarized.

  13. Gravitation in Material Media

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  14. Strong energy condition and the repulsive character of f( R) gravity

    NASA Astrophysics Data System (ADS)

    Santos, Crislane S.; Santos, Janilo; Capozziello, Salvatore; Alcaniz, Jailson S.

    2017-04-01

    The Raychaudhuri equation enables to examine the whole spacetime structure without specific solutions of Einstein's equations, playing a central role for the understanding of the gravitational interaction in cosmology. In General Relativity, without considering a cosmological constant, a non-positive contribution in the Raychaudhuri equation is usually interpreted as the manifestation of the attractive character of gravity. In this case, particular energy conditions—indeed the strong energy condition—must be assumed in order to guarantee the attractive character. In the context of f( R) gravity, however, even assuming the standard energy conditions one may have a positive contribution to the Raychaudhuri equation. Besides providing a simple way to explain the observed cosmic acceleration, this fact opens the possibility of a repulsive character of this kind of gravity. In order to discuss physical bounds on f( R) models, we address the attractive/non-attractive character of f( R) gravity considering the Raychaudhuri equation and assuming the strong energy condition along with recent estimates of the cosmographic parameters.

  15. Gravitational mass of relativistic matter and antimatter

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65 repulsion of the antimatter by Earth. Here we demonstrate an indirect bound 0.96 gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron-Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 - 4 ×10-7

  16. Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction

    NASA Astrophysics Data System (ADS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2017-03-01

    We study the cosmological evolution of a complex scalar field with a self-interaction potential V (|φ |2) , possibly describing self-gravitating Bose-Einstein condensates, using a fully general relativistic treatment. We generalize the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field approximation developed in our previous paper [A. Suárez and P.-H. Chavanis, Phys. Rev. D 92, 023510 (2015), 10.1103/PhysRevD.92.023510]. We establish the general equations governing the evolution of a spatially homogeneous complex scalar field in an expanding background. We show how they can be simplified in the fast oscillation regime (equivalent to the Thomas-Fermi, or semiclassical, approximation) and derive the equation of state of the scalar field in parametric form for an arbitrary potential V (|φ |2) . We explicitly consider the case of a quartic potential with repulsive or attractive self-interaction. For repulsive self-interaction, the scalar field undergoes a stiff matter era followed by a pressureless dark matter era in the weakly self-interacting regime and a stiff matter era followed by a radiationlike era and a pressureless dark matter era in the strongly self-interacting regime. For attractive self-interaction, the scalar field undergoes an inflation era followed by a stiff matter era and a pressureless dark matter era in the weakly self-interacting regime and an inflation era followed by a cosmic stringlike era and a pressureless dark matter era in the strongly self-interacting regime (the inflation era is suggested, not demonstrated). We also find a peculiar branch on which the scalar field emerges suddenly at a nonzero scale factor with a finite energy density. At early times, it behaves as a gas of cosmic strings. At later times, it behaves as dark energy with an almost constant energy density giving rise to a de Sitter evolution. This is due to spintessence. We derive the effective cosmological constant produced by the scalar

  17. Integral equation study of soft-repulsive dimeric fluids

    NASA Astrophysics Data System (ADS)

    Munaò, Gianmarco; Saija, Franz

    2017-03-01

    We study fluid structure and water-like anomalies of a system constituted by dimeric particles interacting via a purely repulsive core-softened potential by means of integral equation theories. In our model, dimers interact through a repulsive pair potential of inverse-power form with a softened repulsion strength. By employing the Ornstein–Zernike approach and the reference interaction site model (RISM) theory, we study the behavior of water-like anomalies upon progressively increasing the elongation λ of the dimers from the monomeric case (λ =0 ) to the tangent configuration (λ =1 ). For each value of the elongation we consider two different values of the interaction potential, corresponding to one and two length scales, with the aim to provide a comprehensive description of the possible fluid scenarios of this model. Our theoretical results are systematically compared with already existing or newly generated Monte Carlo data: we find that theories and simulations agree in providing the picture of a fluid exhibiting density and structural anomalies for low values of λ and for both the two values of the interaction potential. Integral equation theories give accurate predictions for pressure and radial distribution functions, whereas the temperatures where anomalies occur are underestimated. Upon increasing the elongation, the RISM theory still predicts the existence of anomalies; the latter are no longer observed in simulations, since their development is likely precluded by the onset of crystallization. We discuss our results in terms of the reliability of integral equation theories in predicting the existence of water-like anomalies in core-softened fluids.

  18. Integral equation study of soft-repulsive dimeric fluids.

    PubMed

    Munaò, Gianmarco; Saija, Franz

    2017-03-22

    We study fluid structure and water-like anomalies of a system constituted by dimeric particles interacting via a purely repulsive core-softened potential by means of integral equation theories. In our model, dimers interact through a repulsive pair potential of inverse-power form with a softened repulsion strength. By employing the Ornstein-Zernike approach and the reference interaction site model (RISM) theory, we study the behavior of water-like anomalies upon progressively increasing the elongation λ of the dimers from the monomeric case ([Formula: see text]) to the tangent configuration ([Formula: see text]). For each value of the elongation we consider two different values of the interaction potential, corresponding to one and two length scales, with the aim to provide a comprehensive description of the possible fluid scenarios of this model. Our theoretical results are systematically compared with already existing or newly generated Monte Carlo data: we find that theories and simulations agree in providing the picture of a fluid exhibiting density and structural anomalies for low values of λ and for both the two values of the interaction potential. Integral equation theories give accurate predictions for pressure and radial distribution functions, whereas the temperatures where anomalies occur are underestimated. Upon increasing the elongation, the RISM theory still predicts the existence of anomalies; the latter are no longer observed in simulations, since their development is likely precluded by the onset of crystallization. We discuss our results in terms of the reliability of integral equation theories in predicting the existence of water-like anomalies in core-softened fluids.

  19. Structural Anisotropy and Orientation-Induced Casimir Repulsion in Fluids

    DTIC Science & Technology

    2011-05-10

    Physics , Lecture Notes in Physics , edited by D. A. R. Dalvit, P. W. Milonni, D. C. Roberts, and F. S. S. Rosa (Springer, New York) (in press). [53] A... PHYSICAL REVIEW A 83, 052503 (2011) Structural anisotropy and orientation-induced Casimir repulsion in fluids Alexander P. McCauley,1 F. S. S. Rosa...2,3 Alejandro W. Rodriguez,4,5 John D. Joannopoulos,1 D. A. R. Dalvit,3 and Steven G. Johnson4 1Department of Physics , Massachusetts Institute of

  20. Micro-electromechanical memory bit based on magnetic repulsion

    NASA Astrophysics Data System (ADS)

    López-Suárez, Miquel; Neri, Igor

    2016-09-01

    A bistable micro-mechanical system based on magnetic repulsion is presented exploring its applicability as memory unit where the state of the bit is encoded in the rest position of a deflected cantilever. The non-linearity induced on the cantilever can be tuned through the magnetic interaction intensity between the cantilever magnet and the counter magnet in terms of geometrical parameters. A simple model provides a sound prediction of the behavior of the system. Finally, we measured the energy required to store a bit of information on the system that, for the considered protocols, is bounded by the energy barrier separating the two stable states.

  1. Gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  2. The Origin of Gravitation

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng Ming

    2012-10-01

    In the natural world, people have discovered four kinds of forces: electromagnetic force, gravitation, weak force, and strong force. Although the gravitation has been discovered more than three hundred years, its mechanism of origin is unclear until today. While investigating the origin of gravitation, I do some experiments discover the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I do some experiments discover the light interference fringes are produced by the gravitation: my discovery demonstrate light is a particle, but is not a wave-particle duality. Furthermore, applications of this discovery to other moving particles show a similar effect. In a word: the micro particle moving produce gravitation and electromagnetic force. Then I do quantity experiment get a general formula: Reveal the essence of gravitational mass and the essence of electric charge; reveal the origin of gravitation and the essence of matter wave. Along this way, I unify the gravitation and electromagnetic force. Namely I find a natural law that from atomic world to star world play in moving track. See website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter

  3. Effects of Agent's Repulsion in 2d Flocking Models

    NASA Astrophysics Data System (ADS)

    Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya

    In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.

  4. Quantum Gravitational Spectroscopy

    SciTech Connect

    Nesvizhevsky, Valery V.; Antoniadis, Ignatios; Baessler, Stefan; Pignol, Guillaume

    2015-01-01

    We report that one of the main goals for improving the accuracy of quantum gravitational spectroscopy with neutrons is searches for extra short-range fundamental forces. We discuss also any progress in all competing nonneutron methods as well as constraints at other characteristic distances. Among major methodical developments related to the phenomenon of gravitational quantum states are the detailed theoretical analysis and the planning experiments on observation of gravitational quantum states of antihydrogen atoms.

  5. Gravitation in material media

    NASA Astrophysics Data System (ADS)

    Ridgely, Charles T.

    2011-03-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  6. Gravitational mass of positron from LEP synchrotron losses

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2016-07-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.

  7. Gravitational mass of positron from LEP synchrotron losses

    PubMed Central

    Kalaydzhyan, Tigran

    2016-01-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials. PMID:27461548

  8. Gravitational mass of positron from LEP synchrotron losses

    SciTech Connect

    Kalaydzhyan, Tigran

    2016-07-27

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). As a result, this serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.

  9. Gravitational mass of positron from LEP synchrotron losses

    DOE PAGES

    Kalaydzhyan, Tigran

    2016-07-27

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen domore » not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). As a result, this serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.« less

  10. Repulsive effects of hydrophobic diamond thin films on biomolecule detection

    NASA Astrophysics Data System (ADS)

    Ruslinda, A. Rahim; Ishiyama, Y.; Penmatsa, V.; Ibori, S.; Kawarada, H.

    2015-02-01

    The repulsive effect of hydrophobic diamond thin film on biomolecule detection, such as single-nucleotide polymorphisms and human immunodeficiency virus type 1 trans-activator of transcription peptide protein detection, was investigated using a mixture of a fluorine-, amine-, and hydrogen-terminated diamond surfaces. These chemical modifications lead to the formation of a surface that effectively resists the nonspecific adsorption of proteins and other biomolecules. The effect of fluorine plasma treatment on elemental composition was also investigated via X-ray photoelectron spectroscopy (XPS). XPS results revealed a fluorocarbon layer on the diamond thin films. The contact angle measurement results indicated that the fluorine-treated diamond thin films were highly hydrophobic with a surface energy value of ∼25 mN/m.

  11. Double asymptotic expansion of three-center electronic repulsion integrals

    NASA Astrophysics Data System (ADS)

    Alvarez-Ibarra, A.; Köster, A. M.

    2013-07-01

    A double asymptotic expansion for the evaluation of three-center electron repulsion integrals (ERIs) in the long-range limit is presented. For the definition of this limit, a natural division of space based on the atomic coordinates and basis function exponents in utilized. The resulting analytical expression for the calculation of three-center ERIs in the long-range limit are implemented in the density functional theory program deMon2k. Validation and benchmark calculations of n-alkanes, hydrogen saturated graphene sheets and hydrogen saturated diamond blocks are discussed. It is shown that for a sufficient large number of long-range ERIs, the linear scaling regime is reached.

  12. On-chip diamagnetic repulsion in continuous flow.

    PubMed

    Tarn, Mark D; Hirota, Noriyuki; Iles, Alexander; Pamme, Nicole

    2009-02-01

    We explore the potential of a microfluidic continuous flow particle separation system based on the repulsion of diamagnetic materials from a high magnetic field. Diamagnetic polystyrene particles in paramagnetic manganese (II) chloride solution were pumped into a microfluidic chamber and their deflection behaviour in a high magnetic field applied by a superconducting magnet was investigated. Two particle sizes (5 and 10 μm) were examined in two concentrations of MnCl2 (6 and 10%). The larger particles were repelled to a greater extent than the smaller ones, and the effect was greatly enhanced when the particles were suspended in a higher concentration of MnCl2. These findings indicate that the system could be viable for the separation of materials of differing size and/or diamagnetic susceptibility, and as such could be suitable for the separation and sorting of small biological species for subsequent studies.

  13. Tunable photonic crystal based on capillary attraction and repulsion.

    PubMed

    Chan, Chia-Tsung; Yeh, J Andrew

    2010-09-27

    A tunable photonic crystal (PhC) based on the capillary action of liquid is demonstrated in this work. The porous silicon-based photonic crystal (PSiPhC) features periodic porosity and is fabricated by electrochemical etching on 6" silicon wafer followed by hydrophobic modification on the silicon surface. The capillary action is achieved by varying the mixture ratio of liquids with high and low surface tension, yielding either capillary attraction or capillary repulsion in the nanoscale voids of the PSiPhC. By delivering the liquid mixture into and out of the voids of the PSiPhC, the reflective color of the PSiPhC can be dynamically tuned.

  14. Nonperturbative effects on the ferromagnetic transition in repulsive Fermi gases

    NASA Astrophysics Data System (ADS)

    He, Lianyi; Huang, Xu-Guang

    2012-04-01

    It is generally believed that a dilute spin-(1)/(2) Fermi gas with repulsive interactions can undergo a ferromagnetic phase transition to a spin-polarized state at a critical gas parameter (kFa)c. Previous theoretical predictions of the ferromagnetic phase transition have been based on the perturbation theory, which treats the gas parameter as a small number. On the other hand, Belitz, Kirkpatrick, and Vojta (BKV) have argued that the phase transition in clean itinerant ferromagnets is generically of first order at low temperatures, due to the correlation effects that lead to a nonanalytic term in the free energy. The second-order perturbation theory predicts a first-order phase transition at (kFa)c=1.054, consistent with the BKV argument. However, since the critical gas parameter is expected to be of order O(1), perturbative predictions may be unreliable. In this paper we study the nonperturbative effects on the ferromagnetic phase transition by summing the particle-particle ladder diagrams to all orders in the gas parameter. We consider a universal repulsive Fermi gas where the effective range effects can be neglected, which can be realized in a two-component Fermi gas of 6Li atoms by using a nonadiabatic field switch to the upper branch of a Feshbach resonance with a positive s-wave scattering length. Our theory predicts a second-order phase transition, which indicates that ferromagnetic transition in dilute Fermi gases is possibly a counterexample to the BKV argument. The predicted critical gas parameter (kFa)c=0.858 is in good agreement with the recent quantum Monte Carlo result (kFa)c=0.86 for a nearly zero-range potential [S. Pilati , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.030405 105, 030405 (2010)]. We also compare the spin susceptibility with the quantum Monte Carlo result and find good agreement.

  15. Those Elusive Gravitational Waves

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  16. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  17. Gravitationally coupled electroweak monopole

    NASA Astrophysics Data System (ADS)

    Cho, Y. M.; Kimm, Kyoungtae; Yoon, J. H.

    2016-10-01

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein-Weinberg-Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  18. Search for Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Tsubono, K.

    The current status of the experimental search for gravitational waves is reviewed here. The emphasis is on the Japanese TAMA project. We started operation of the TAMA300 laser interferometric detector in 1999, and are now collecting and analyzing observational data to search for gravitational wave signals.

  19. The gravitational wave decade

    NASA Astrophysics Data System (ADS)

    Conklin, John

    2016-03-01

    With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.

  20. Towards Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Losurdo, Giovanni

    This chapter is meant to introduce the reader to the forthcoming network of second-generation interferometric detectors of gravitational waves, at a time when their construction is close to completion and there is the ambition to detect gravitational waves for the first time in the next few years and open the way to gravitational wave astronomy. The legacy of first-generation detectors is discussed before giving an overview of the technology challenges that have been faced to make advanced detectors possible. The various aspects outlined here are then discussed in more detail in the subsequent chapters of the book.

  1. Dynamics of Attractively and Repulsively Coupled Elementary Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Trinschek, Sarah; Linz, Stefan J.

    We investigate an elementary model for doubly coupled dynamical systems that consists of two identical, mutually interacting minimal chaotic flows in the form of jerky dynamics. The coupling mechanisms allow for the simultaneous presence of attractive and repulsive interactions between the systems. Despite its functional simplicity, the model is capable of exhibiting diverse types of dynamical phenomena induced by the presence of the couplings. We provide an in-depth numerical investigation of the dynamics depending on the coupling strengths and the autonomous dynamical behavior of the subsystems. Partly, the dynamics of the system can be analytically understood using the Poincaré-Lindstedt method. An approximation of periodic orbits is carried out in the vicinity of a phase-flip transition that leads to deeper insights into the organization of the appearing dynamics in the parameter space. In addition, we propose a circuit that enables an electronic implementation of the model. A variation of the coupling mechanism to a coupling in conjugate variables leads to a regime of amplitude death.

  2. Thermodynamics and elastic moduli of fluids with steeply repulsive potentials

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.

    1997-08-01

    Analytic expressions for the thermodynamic properties and elastic moduli of molecular fluids interacting with steeply repulsive potentials are derived using Rowlinson's hard-sphere perturbation treatment which employs a softness parameter, λ specifying the deviation from the hard-sphere potential. Generic potentials of this form might be used to represent the interactions between near-hard-sphere stabilized colloids. Analytic expressions for the equivalent hard-sphere diameter of inverse power [ɛ(σ/r)n where ɛ sets the energy scale and σ the distance scale] exponential and logarithmic potential forms are derived using the Barker-Henderson formula. The internal energies in the hard-sphere limit are predicted essentially exactly by the perturbation approach when compared against molecular dynamics simulation data using the same potentials. The elastic moduli are similarly accurately predicted in the hard-sphere limit, as they are trivially related to the internal energy. The compressibility factors from the perturbation expansion do not compare as favorably with simulation data, and in this case the Carnahan-Starling equation of state prediction using the analytic effective hard-sphere diameter would appear to be a preferable route for this thermodynamic property. A more refined state point dependent definition for the effective hard-sphere diameter is probably required for this property.

  3. On long-range forces of repulsion between biological cells

    NASA Astrophysics Data System (ADS)

    Derjaguin, B. V.; Golovanov, M. V.

    1992-05-01

    We have established experimentally that when biological cells, for example, blood, are suspended in concentrated solutions of inorganic electrolytes (for instance, in a 15% solution of sodium chloride) then around some cells (leucocytes, especially tumour cells) there form haloes, i.e., circular spaces free from background cells (erythrocytes, yeast cells, colloidal particles of Indian ink). In the medium made up of erythrocytes the haloes form during 5-10 min as a result of the background cells drawing apart from the central halo-forming cell (HFC) at a distance of 10-100 μm and more. In the medium made of the Indian ink particles, the haloes form during 2-4 s and attain a thickness of about 10-20 μm. The erythrocytes and the haloes forming in their medium can be preserved for about three to five days at room temperature. It has been established that, when tumour HFCs are present at sufficient concentrations, they form hexagonal periodic structures having a mean spacing between cells of up to 60 μm. The authors put forward as one probable suggestion that the formation of haloes is largely determined by long-range repulsive forces arising from the phenomenon of diffusiophoresis generated by the diffusion currents that emerge from the surface of halo-forming cells.

  4. Crossover from attractive to repulsive Casimir forces and vice versa.

    PubMed

    Schmidt, Felix M; Diehl, H W

    2008-09-05

    Systems described by an O(n) symmetrical varphi;{4} Hamiltonian are considered in a d-dimensional film geometry at their bulk critical points. The critical Casimir forces between the film's boundary planes B_{j}, j=1,2, are investigated as functions of film thickness L for generic symmetry-preserving boundary conditions partial differential_{n}phi=c[over composite function]_{j}phi. The L-dependent part of the reduced excess free energy per cross-sectional area takes the scaling form f_{res} approximately D(c_{1}L;{Phi/nu},c_{2}L;{Phi/nu})/L;{d-1} when d<4, where c_{i} are scaling fields associated with the variables c[over composite function]_{i} and Phi is a surface crossover exponent. Explicit two-loop renormalization group results for the function D(c_{1},c_{2}) at d=4- dimensions are presented. These show that (i) the Casimir force can have either sign, depending on c_{1} and c_{2}, and (ii) for appropriate choices of the enhancements c[over composite function]_{j}, crossovers from attraction to repulsion and vice versa occur as L increases.

  5. Fluorescence correlation spectroscopy of repulsive systems: theory, simulation, and experiment.

    PubMed

    Feng, Ligang; Yang, Jingfa; Zhao, Jiang; Wang, Dapeng; Koynov, Kaloian; Butt, Hans-Jürgen

    2013-06-07

    The theoretical basis of fluorescence correlation spectroscopy (FCS) for repulsive systems, such as charged colloids or macromolecules, has been further expanded and developed. It is established that the collective correlation function can no longer be fitted using the theoretical model of non-interacting systems. Also, it is discovered that the collective correlation function can be divided into two parts: a self-part and a distinct-part, named as the self-correlation and cross-correlation function, respectively. The former indicates the self-diffusion of objects, while the latter describes mutual interactions. Dual-color fluorescence cross-correlation spectroscopy provides the direct measurements of the two parts. The particle concentration and mean squared displacement of single particles can be deduced from the self-correlation function, while the correlation volume between particles can be approximated from the cross-correlation function. In the case of charged colloids, the Debye length of the solution and particle surface charge number can be fitted from the cross-correlation function. These theoretical results are successfully proven using Brownian dynamics simulations and preliminary FCS experiments for model charged colloidal systems.

  6. Solid-solid transitions induced by repulsive interactions revisited

    NASA Astrophysics Data System (ADS)

    Navascués, G.; Velasco, E.; Mederos, L.

    2016-10-01

    We revisit a problem already studied 15 years ago by us in collaboration with Stell and Hemmer: the isostructural solid-solid transitions induced by repulsive particle interactions exhibited by classical systems interacting via the Stell-Hemmer potentials. The full phase diagram in the crystal region is obtained by applying a perturbation theory for classical solids used during our collaboration with Stell. Also, the performance of such a theory is now tested by comparing the perturbative phase diagram with that obtained from computer simulations. The latter was calculated using a recently refined method to obtain the free-energy of crystals by means of Monte Carlo simulations. The perturbation theory captures the correct topology and correctly identifies the stable, fcc and bcc, phases. In addition, the theory predicts the occurrence of special points: a point where the two stable structures coexist at the same density, and two critical points terminating the corresponding isostructural phase transitions for fcc and bcc phases. The location of some of these features in the phase diagram is predicted almost quantitatively. However, phase boundaries involving the non-compact bcc phase are much less accurate, a problem that can be traced to the poor representation used for the bcc phase of the reference, hard-sphere, system.

  7. Slit-Robo Repulsive Signaling Extrudes Tumorigenic Cells from Epithelia.

    PubMed

    Vaughen, John; Igaki, Tatsushi

    2016-12-19

    Cells dynamically interact throughout animal development to coordinate growth and deter disease. For example, cell-cell competition weeds out aberrant cells to enforce homeostasis. In Drosophila, tumorigenic cells mutant for the cell polarity gene scribble (scrib) are actively eliminated from epithelia when surrounded by wild-type cells. While scrib cell elimination depends critically on JNK signaling, JNK-dependent cell death cannot sufficiently explain scrib cell extirpation. Thus, how JNK executed cell elimination remained elusive. Here, we show that repulsive Slit-Robo2-Ena signaling exerts an extrusive force downstream of JNK to eliminate scrib cells from epithelia by disrupting E-cadherin. While loss of Slit-Robo2-Ena in scrib cells potentiates scrib tumor formation within the epithelium, Robo2-Ena hyperactivation surprisingly triggers luminal scrib tumor growth following excess extrusion. This extrusive signaling is amplified by a positive feedback loop between Slit-Robo2-Ena and JNK. Our observations provide a potential causal mechanism for Slit-Robo dysregulation in numerous human cancers.

  8. Gravitational Lensing Illustration

    NASA Video Gallery

    Simulation of a gravitational lens moving against a background field of galaxy. The gravity of the mass of the foreground object warps space. This bends the light of background galaxies making them...

  9. FLRT Structure: Balancing Repulsion and Cell Adhesion in Cortical and Vascular Development

    PubMed Central

    Seiradake, Elena; del Toro, Daniel; Nagel, Daniel; Cop, Florian; Härtl, Ricarda; Ruff, Tobias; Seyit-Bremer, Gönül; Harlos, Karl; Border, Ellen Clare; Acker-Palmer, Amparo; Jones, E. Yvonne; Klein, Rüdiger

    2014-01-01

    Summary FLRTs are broadly expressed proteins with the unique property of acting as homophilic cell adhesion molecules and as heterophilic repulsive ligands of Unc5/Netrin receptors. How these functions direct cell behavior and the molecular mechanisms involved remain largely unclear. Here we use X-ray crystallography to reveal the distinct structural bases for FLRT-mediated cell adhesion and repulsion in neurons. We apply this knowledge to elucidate FLRT functions during cortical development. We show that FLRTs regulate both the radial migration of pyramidal neurons, as well as their tangential spread. Mechanistically, radial migration is controlled by repulsive FLRT2-Unc5D interactions, while spatial organization in the tangential axis involves adhesive FLRT-FLRT interactions. Further, we show that the fundamental mechanisms of FLRT adhesion and repulsion are conserved between neurons and vascular endothelial cells. Our results reveal FLRTs as powerful guidance factors with structurally encoded repulsive and adhesive surfaces. PMID:25374360

  10. Glass transition of repulsive charged rods (fd-viruses).

    PubMed

    Kang, Kyongok

    2014-05-14

    It has recently been shown that suspensions of long and thin charged fibrous viruses (fd) form a glass at low ionic strengths. The corresponding thick electric double layers give rise to long-ranged repulsive electrostatic interactions, which lead to caging and structural arrest at concentrations far above the isotropic-nematic coexistence region. Structural arrest and freezing of the orientational texture are found to occur at the same concentration. In addition, various types of orientational textures are equilibrated below the glass transition concentration, ranging from a chiral-nematic texture with a large pitch (of about 100 μm), an X-pattern, and a tightly packed domain texture, consisting of helical domains with a relatively small pitch (of about 10 μm) and twisted boundaries. The dynamics of both particles as well as the texture are discussed, below and above the glass transition. Dynamic light scattering correlation functions exhibit two dynamical modes, where the slow mode is attributed to the elasticity of helical domains. On approach of the glass-transition concentration, the slow mode increases in amplitude, while as the amplitudes of the fast and slow mode become equal at the glass transition. Finally, interesting features of the "transient" behaviors of charged fd-rod glass are shown as the initial caging due to structural arrest, the propagation of flow originating from stress release, and the transition to the final metastable glass state. In addition to the intensity correlation function, power spectra are presented as a function of the waiting time, at the zero-frequency limit that may access to the thermal anomalities in a charged system.

  11. Dissipative particle dynamics with attractive and repulsive particle-particle interactions

    SciTech Connect

    Paul Meakin; Moubin Liu; Hai Huang

    2006-01-01

    In molecular dynamics simulations, a combination of short-range repulsive and long-range attractive interactions allows the behavior of gases, liquids, solids, and multiphase systems to be simulated. We demonstrate that dissipative particle dynamics (DPD) simulations with similar pairwise particle-particle interactions can also be used to simulate the dynamics of multiphase fluids. In these simulations, the positive, short-range, repulsive part of the interaction potentials were represented by polynomial spline functions such as those used as smoothing functions in smoothed particle hydrodynamics, and the negative long-range part of the interaction has the same form but a different range and amplitude. If a single spline function corresponding to a purely repulsive interaction is used, the DPD fluid is a gas, and we show that the Poiseuille flow of this gas can be described accurately by the Navier-Stokes equation at low Reynolds numbers. In a two-component system in which the purely repulsive interactions between different components are substantially larger than the purely repulsive intracomponent interactions, separation into two gas phases occurs, in agreement with results obtained using DPD simulations with standard repulsive particle-particle interactions. Finally, we show that a combination of short-range repulsive interactions and long-range attractive interactions can be used to simulate the behavior of liquid drops surrounded by a gas. Similar models can be used to simulate a wide range of processes such as multiphase fluid flow through fractures and porous media with complex geometries and wetting behaviors.

  12. Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion.

    PubMed

    Louis, A A; Allahyarov, E; Löwen, H; Roth, R

    2002-06-01

    Computer simulations and theory are used to systematically investigate how the effective force between two big colloidal spheres in a sea of small spheres depends on the basic (big-small and small-small) interactions. The latter are modeled as hardcore pair potentials with a Yukawa tail which can be either repulsive or attractive. For a repulsive small-small interaction, the effective force follows the trends as predicted by a mapping onto an effective nonadditive hardcore mixture: both a depletion attraction and an accumulation repulsion caused by small spheres adsorbing onto the big ones can be obtained depending on the sign of the big-small interaction. For repulsive big-small interactions, the effect of adding a small-small attraction also follows the trends predicted by the mapping. But a more subtle "repulsion through attraction" effect arises when both big-small and small-small attractions occur: upon increasing the strength of the small-small interaction, the effective potential becomes more repulsive. We have further tested several theoretical methods against our computer simulations: The superposition approximation works best for an added big-small repulsion, and breaks down for a strong big-small attraction, while density functional theory is very accurate for any big-small interaction when the small particles are pure hard spheres. The theoretical methods perform most poorly for small-small attractions.

  13. Gravitation, photons, clocks.

    NASA Astrophysics Data System (ADS)

    Okun, L. B.; Selivanov, K. G.; Telegdi, V.

    1999-10-01

    This paper is concerned with the classical phenomenon of gravitational red shift, the decrease in the measured frequency of a photon moving away from a gravitating body (e.g., the Earth) of the two current interpretations, one is that at higher altitudes the frequency-measuring clocks (atoms or atomic nuclei) run faster, i.e., their characteristic frequencies are higher, while the photon frequency in a static gravitational field is independent of the altitude and so the photon only reddens relative to the clocks. The other approach is that the photon reddens because it loses the energy when overcoming the attraction of the gravitational field. This view, which is especially widespread in popular science literature, ascribes such notions as a "gravitational mass" and "potential energy" to the photon. Unfortunately, also scientific papers and serious books on the general theory of relativity often employ the second interpretation as a "graphic" illustration of mathematically immaculate results. The authors show that this approach is misleading and only serves to create confusion in a simple subject.

  14. Nuclear Quantum Gravitation - Forces Unification

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald

    2017-01-01

    With Nuclear Quantum Gravitation, the Forces are plainly and coherently unified. This most certainly is the missing link in Newtonian Gravitation explaining clearly the internal workings based in the Atomic Nucleus. The gravitational force between two gravitating masses is because of alternating electromagnetic functions in nuclei in matter. The Cavendish Experiment - Demonstration clearly shows the Gravitational attraction between two masses, which is a force proportional to the Newtonian Mechanics. General Relativity fails this real, physical test. Nuclear Quantum Gravitation has 10 logical proofs and 21 more indications. It is Scientifically logical and is compatible with Quantum Mechanics and Newtonian Mechanics.

  15. Repulsive Fermi Polarons in a Resonant Mixture of Ultracold ^{6}Li Atoms.

    PubMed

    Scazza, F; Valtolina, G; Massignan, P; Recati, A; Amico, A; Burchianti, A; Fort, C; Inguscio, M; Zaccanti, M; Roati, G

    2017-02-24

    We employ radio-frequency spectroscopy to investigate a polarized spin mixture of ultracold ^{6}Li atoms close to a broad Feshbach scattering resonance. Focusing on the regime of strong repulsive interactions, we observe well-defined coherent quasiparticles even for unitarity-limited interactions. We characterize the many-body system by extracting the key properties of repulsive Fermi polarons: the energy E_{+}, the effective mass m^{*}, the residue Z, and the decay rate Γ. Above a critical interaction, E_{+} is found to exceed the Fermi energy of the bath, while m^{*} diverges and even turns negative, thereby indicating that the repulsive Fermi liquid state becomes energetically and thermodynamically unstable.

  16. Repulsive Fermi Polarons in a Resonant Mixture of Ultracold 6Li Atoms

    NASA Astrophysics Data System (ADS)

    Scazza, F.; Valtolina, G.; Massignan, P.; Recati, A.; Amico, A.; Burchianti, A.; Fort, C.; Inguscio, M.; Zaccanti, M.; Roati, G.

    2017-02-01

    We employ radio-frequency spectroscopy to investigate a polarized spin mixture of ultracold 6Li atoms close to a broad Feshbach scattering resonance. Focusing on the regime of strong repulsive interactions, we observe well-defined coherent quasiparticles even for unitarity-limited interactions. We characterize the many-body system by extracting the key properties of repulsive Fermi polarons: the energy E+, the effective mass m*, the residue Z , and the decay rate Γ . Above a critical interaction, E+ is found to exceed the Fermi energy of the bath, while m* diverges and even turns negative, thereby indicating that the repulsive Fermi liquid state becomes energetically and thermodynamically unstable.

  17. Breeding gravitational lenses

    NASA Astrophysics Data System (ADS)

    Liesenborgs, J.; de Rijcke, S.; Dejonghe, H.; Bekaert, P.

    2011-03-01

    Gravitational lenses are a spectacular astrophysical phenomenon, a cosmic mirage caused by the gravitational deflection of light in which multiple images of a same background object can be seen. Their beauty is only exceeded by their usefulness, as the gravitational lens effect is a direct probe of the total mass of the deflecting object. Furthermore, since the image configuration arising from the gravitational lens effect depends on the exact gravitational potential of the deflector, it even holds the promise of learning about the distribution of the mass. In this presentation, a method for extracting the information encoded in the images and reconstructing the mass distribution is presented. Being a non-parametric method, it avoids making a priori assumptions about the shape of the mass distribution. At the core of the procedure lies a genetic algorithm, an optimization strategy inspired by Darwin's principle of ``survival of the fittest''. One only needs to specify a criterion to decide if one particular trial solution is deemed better than another, and the genetic algorithm will ``breed'' appropriate solutions to the problem. In a similar way, one can create a multi-objective genetic algorithm, capable of optimizing several fitness criteria at the same time. This provides a very flexible way to incorporate all the available information in the gravitational lens system: not only the positions and shapes of the multiple images are used, but also the so-called ``null space'', i.e. the area in which no such images can be seen. The effectiveness of this approach is illustrated using simulated data, which allows one to compare the reconstruction to the true mass distribution.

  18. On the gravitational redshift

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2014-08-01

    The study of the gravitational redshift-a relative wavelength increase of ≈2×10-6 was predicted for solar radiation by Einstein in 1908-is still an important subject in modern physics. In a dispute whether or not atom interferometry experiments can be employed for gravitational redshift measurements, two research teams have recently disagreed on the physical cause of the shift. Regardless of any discussion on the interferometer aspect-we find that both groups of authors miss the important point that the ratio of gravitational to the electrostatic forces is generally very small. For instance, the ratio of the gravitational force acting on an electron in a hydrogen atom situated in the Sun’s photosphere to the electrostatic force between the proton and the electron in such an atom is approximately 3×10-21. A comparison of this ratio with the predicted and observed solar redshift indicates a discrepancy of many orders of magnitude. With Einstein’s early assumption that the frequencies of spectral lines depend only on the generating ions themselves as starting point, we show that a solution can be formulated based on a two-step process in analogy with Fermi’s treatment of the Doppler effect. It provides a sequence of physical processes in line with the conservation of energy and momentum resulting in the observed shift and does not employ a geometric description. The gravitational field affects the release of the photon and not the atomic transition. The control parameter is the speed of light. The atomic emission is then contrasted with the gravitational redshift of matter-antimatter annihilation events.

  19. Gravitational-Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  20. New gravitational memories

    NASA Astrophysics Data System (ADS)

    Pasterski, Sabrina; Strominger, Andrew; Zhiboedov, Alexander

    2016-12-01

    The conventional gravitational memory effect is a relative displacement in the position of two detectors induced by radiative energy flux. We find a new type of gravitational `spin memory' in which beams on clockwise and counterclockwise orbits acquire a relative delay induced by radiative angular momentum flux. It has recently been shown that the displacement memory formula is a Fourier transform in time of Weinberg's soft graviton theorem. Here we see that the spin memory formula is a Fourier transform in time of the recently-discovered subleading soft graviton theorem.

  1. Gravitational signatures of antiparticles:a cosmic perspective

    NASA Astrophysics Data System (ADS)

    Al Dallal, Shawqi

    The gravitational signature of antimatter has received growing interest during the past few decades. Much of the theoretical work in ordinary tensor gravity rules out any difference in the gravitational interaction of matter and antimatter. In field theories the exchange of even-spin bosons, such as the spin-2 graviton or its spin-0 partner, generates attractive forces, while the exchange of odd bosons, such as the photon or the postulated spin-1 graviton generates repulsive forces. The CPT theorem is at the origin of the argument that the exchange of even-spin bosons produces a universally attractive force field. So far, it has been impossible to construct a CPT-violating theory in flat spacetime. However, in curved spacetime, no generalization of the CPT theorem has been unequivocally demonstrated and its validity is open to question. Recently, experiments at the LEAR (Low Energy Accumulating Ring) at CERN have shown a surprising result for a fraction (3%) of antiprotons annihilated by protons of He3 nuclei. The annihilation process was retarded by as much as 10 to the power 8 times the value derived from theoretical calculations of Enrico Fermi and Edward Teller. These results are in good agreement with a formula introduced earlier by certain authors describing the time annihilation of anti-atoms by atoms. The motivation for investigating this problem is that a repulsive field between matter and antimatter may have drastic consequences on certain cosmic issues, such as the early phase of the Big Bang, Hawking radiation, and virtual particle production and annihilation. In the first part of this work we discuss the various theoretical arguments supporting or refuting the gravitational attraction between matter and antimatter, with emphasis on the CPT theorem. In the second part, we address the consequences of certain cosmic issues that arise from this problem. Finally, we propose an experimental test to clarify the nature of matter-antimatter interactions.

  2. Gravitational-Wave Detection (ii). Current Gravitational Wave Detector Results

    NASA Astrophysics Data System (ADS)

    Kanda, Nobuyuki

    2005-11-01

    The workshop session C1ii was focused on the results of recent operating detectors. 10 speakers presented the latest results of each experiments: ALLEGRO, GEO, LIGO, TAMA and VIRGO experiments. There were reports about searches for gravitational waves in analysis of observation data. The results are of no detection of gravitational waves, but observational upper-limits of gravitational waves are improved.

  3. Gravitational Waves: The Evidence Mounts

    ERIC Educational Resources Information Center

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  4. Comparison of overlap-based models for approximating the exchange-repulsion energy.

    PubMed

    Söderhjelm, Pär; Karlström, Gunnar; Ryde, Ulf

    2006-06-28

    Different ways of approximating the exchange-repulsion energy with a classical potential function have been investigated by fitting various expressions to the exact exchange-repulsion energy for a large set of molecular dimers. The expressions involve either the orbital overlap or the electron-density overlap. For comparison, the parameter-free exchange-repulsion model of the effective fragment potential (EFP) is also evaluated. The results show that exchange-repulsion energy is nearly proportional to both the orbital overlap and the density overlap. For accurate results, a distance-dependent correction is needed in both cases. If few parameters are desired, orbital overlap is superior to density overlap, but the fit to density overlap can be significantly improved by introducing more parameters. The EFP performs well, except for delocalized pi systems. However, an overlap expression with a few parameters seems to be slightly more accurate and considerably easier to approximate.

  5. Mean transverse momenta correlations in hadron-hadron collisions in MC toy model with repulsing strings

    SciTech Connect

    Altsybeev, Igor

    2016-01-22

    In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.

  6. Probing gravitational dark matter

    SciTech Connect

    Ren, Jing; He, Hong-Jian

    2015-03-27

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χ{sub s}. It is a ℤ{sub 2} odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξ{sub s}χ{sub s}{sup 2}R, where ξ{sub s} is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξ{sub s}χ{sub s}{sup 2}R, together with Higgs-curvature nonminimal coupling term ξ{sub h}H{sup †}HR, induces effective couplings between χ{sub s}{sup 2} and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  7. Gravitational waves from technicolor

    SciTech Connect

    Jaervinen, Matti; Sannino, Francesco; Kouvaris, Chris

    2010-03-15

    We investigate the production and possible detection of gravitational waves stemming from the electroweak phase transition in the early universe in models of minimal walking technicolor. In particular we discuss the two possible scenarios in which one has only one electroweak phase transition and the case in which the technicolor dynamics allows for multiple phase transitions.

  8. Research on gravitational physiology

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Dahl, A. O.

    1974-01-01

    The topic of gravitational plant physiology was studied through aspects of plant development (in ARABIDOPSIS) and of behavior (in HELIANTHUS) as these were affected by altered g experience. The effect of increased g levels on stem polarity (in COLEUS) was also examined.

  9. Locating gravitational potential energy

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2017-01-01

    Where does gravitational potential energy reside when a ball is in the air? The perfectly correct answer is that it is located in the ball-Earth system. Still, mechanical energy conservation problems are routinely solved by assigning a potential energy to the ball alone. Provided here is a proof that such an assignment introduces only an entirely undetectable error.

  10. Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre

    2012-03-01

    This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy

  11. Gravitational wave astronomy.

    NASA Astrophysics Data System (ADS)

    Finn, L. S.

    Astronomers rely on a multiplicity of observational perspectives in order to infer the nature of the Universe. Progress in astronomy has historically been associated with new or improved observational perspectives. Gravitational wave detectors now under construction will provide us with a perspective on the Universe fundamentally different from any we have come to know. With this new perspective comes the hope of new insights and understanding, not just of exotic astrophysical processes, but of "bread-and-butter" astrophysics: e.g., stars and stellar evolution, galaxy formation and evolution, neutron star structure, and cosmology. In this report the author discusses briefly a small subset of the areas of conventional, "bread-and-butter" astrophysics where we can reasonably hope that gravitational wave observations will provide us with valuable new insights and understandings.

  12. Self-gravitating skyrmions

    NASA Astrophysics Data System (ADS)

    Ayón-Beato, Eloy; Canfora, Fabrizio; Zanelli, Jorge

    2016-05-01

    A self-gravitating Skyrmion is an analytic and globally regular solution of the Einstein-Skyrme system with nonvanishing topological charge. The spacetime is the direct product R × S3 and the Skyrmion is the self-gravitating generalization of the static hedgehog solution of Manton and Ruback. This solution can be promoted to a dynamical one in which the spacetime is a cosmology of the Bianchi type-IX and, through an analytic continuation, it can also be turned into a transversable asymptotically AdS Lorentzian wormhole. The stress-energy of this wormhole satisfies physically realistic energy conditions and the only “exotic matter” required by it is a negative cosmological constant.

  13. Gravitational properties of antimatter

    SciTech Connect

    Goldman, T.; Nieto, M.M.

    1985-01-01

    Quantum gravity is at the forefront of modern particle physics, yet there are no direct tests, for antimatter, of even the principle of equivalence. We note that modern descriptions of gravity, such as fibre bundles and higher dimensional spacetimes, allow violations of the commonly stated form of the principle of equivalence, and of CPT. We review both indirect arguments and experimental tests of the expected gravitational properties of CPT-conjugate states. We conclude that a direct experimental test of the gravitational properties of antimatter, at the 1% (or better) level, would be of great value. We identify some experimental reasons which make the antiproton a prime candidate for this test, and we strongly urge that such an experiment be done at LEAR. 21 references.

  14. A gravitational puzzle.

    PubMed

    Caldwell, Robert R

    2011-12-28

    The challenge to understand the physical origin of the cosmic acceleration is framed as a problem of gravitation. Specifically, does the relationship between stress-energy and space-time curvature differ on large scales from the predictions of general relativity. In this article, we describe efforts to model and test a generalized relationship between the matter and the metric using cosmological observations. Late-time tracers of large-scale structure, including the cosmic microwave background, weak gravitational lensing, and clustering are shown to provide good tests of the proposed solution. Current data are very close to proving a critical test, leaving only a small window in parameter space in the case that the generalized relationship is scale free above galactic scales.

  15. Gravitationally induced quantum transitions

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  16. The gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.

    1992-01-01

    Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.

  17. Gravitational vacuum condensate stars

    PubMed Central

    Mazur, Pawel O.; Mottola, Emil

    2004-01-01

    A new final state of gravitational collapse is proposed. By extending the concept of Bose–Einstein condensation to gravitational systems, a cold, dark, compact object with an interior de Sitter condensate pv = -ρv and an exterior Schwarzschild geometry of arbitrary total mass M is constructed. These regions are separated by a shell with a small but finite proper thickness ℓ of fluid with equation of state p = +ρ, replacing both the Schwarzschild and de Sitter classical horizons. The new solution has no singularities, no event horizons, and a global time. Its entropy is maximized under small fluctuations and is given by the standard hydrodynamic entropy of the thin shell, which is of the order kBℓMc/, instead of the Bekenstein–Hawking entropy formula, SBH = 4πkBGM2/c. Hence, unlike black holes, the new solution is thermodynamically stable and has no information paradox. PMID:15210982

  18. Undulator Gravitational Deflection

    SciTech Connect

    Bowden, G.

    2005-01-31

    This note estimates distortions imposed by gravity on LCLS undulator strong-backs. Because of the strongback's asymmetric cross section, gravitational forces cause both torsion as well as simple bending. The superposition of these two effects yields a 4.4 {micro}m maximum deflection and a 0.16 milli radian rotation of the undulator axis. The choice of titanium is compared to aluminum.

  19. Retarded gravitation theory

    NASA Astrophysics Data System (ADS)

    Raju, C. K.

    2012-10-01

    We propose a Lorentz-covariant theory of gravity, and explain its theoretical origins in the problem of time in Newtonian physics. In this retarded gravitation theory (RGT), the gravitational force depends upon both retarded position and velocity, and the equations of motion are time-asymmetric retarded functional differential equations. We explicitly solve these equations, under simplifying assumptions, for various NASA spacecraft. This shows that the differences from Newtonian gravity, though tiny within the solar system, are just appropriate to explain the flyby anomaly as a ν/c effect due to earth's rotation. The differences can, however, be large in the case of a spiral galaxy, and we show that the combined velocity drag from a large number of co-rotating stars enormously speeds up a test particle. Thus, the non-Newtonian behaviour of rotation curves in a spiral galaxy may be explained as being due to velocity drag rather than dark matter. RGT can also be tested in the laboratory. It necessitates a reappraisal of current laboratory methods of determining the Newtonian gravitational constant G. Since RGT makes no speculative assumptions, its refutation would have serious implications across physics.

  20. Fermions and gravitational gyrotropy

    NASA Astrophysics Data System (ADS)

    Helfer, Adam D.

    2016-12-01

    In conventional general relativity without torsion, high-frequency gravitational waves couple to the chiral number density of spin one-half quanta: the polarization of the waves is rotated by 2 π N5ℓPl2, where N5 is the chiral column density and ℓPl is the Planck length. This means that if a primordial distribution of gravitational waves with E-E or B-B correlations passed through a chiral density of fermions in the very early Universe, an E-B correlation will be generated. This in turn will give rise to E-B and T-B correlations in the cosmic microwave background (CMB). Less obviously but more primitively, the condition Albrecht called "cosmic coherence" would be violated, changing the restrictions on the class of admissible cosmological gravitational waves. This altered class of waves would, generally speaking, probe earlier physics than do the conventional waves; their effects on the CMB would be most pronounced for low (≲100 ) multipoles. Rough estimates indicate that if the tensor-to-scalar ratio is less than about 10-2, it will be hard to constrain a spatially homogeneous primordial N5 by present data.

  1. Soft repulsive mixtures under gravity: Brazil-nut effect, depletion bubbles, boundary layering, nonequilibrium shaking

    NASA Astrophysics Data System (ADS)

    Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut

    2012-04-01

    A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.

  2. Soft repulsive mixtures under gravity: brazil-nut effect, depletion bubbles, boundary layering, nonequilibrium shaking.

    PubMed

    Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut

    2012-04-07

    A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.

  3. A requirement for filopodia extension toward Slit during Robo-mediated axon repulsion.

    PubMed

    McConnell, Russell E; Edward van Veen, J; Vidaki, Marina; Kwiatkowski, Adam V; Meyer, Aaron S; Gertler, Frank B

    2016-04-25

    Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.

  4. Two-dimensional colloidal mixtures in magnetic and gravitational fields

    NASA Astrophysics Data System (ADS)

    Löwen, H.; Horn, T.; Neuhaus, T.; ten Hagen, B.

    2013-11-01

    This mini-review is concerned with two-dimensional colloidal mixtures exposed to various kinds of external fields. By a magnetic field perpendicular to the plane, dipole moments are induced in paramagnetic particles which give rise to repulsive interactions leading to complex crystalline alloys in the composition-asymmetry diagram. A quench in the magnetic field induces complex crystal nucleation scenarios. If exposed to a gravitational field, these mixtures exhibit a brazil-nut effect and show a boundary layering which is explained in terms of a depletion bubble picture. The latter persists for time-dependent gravity ("colloidal shaking"). Finally, we summarize crystallization effects when the second species is frozen in a disordered matrix which provides obstacles for the crystallizing component.

  5. Kaluza-Klein magnetized cylindrical wormhole and its gravitational lensing

    NASA Astrophysics Data System (ADS)

    Hashemi, S. Sedigheh; Riazi, Nematollah

    2016-10-01

    A new exact vacuum solution in five dimensions, which describes a magnetized cylindrical wormhole in 3+1 dimensions is presented. The magnetic field lines are stretched along the wormhole throat and are concentrated near to it. We study the motion of neutral and charged test particles under the influence of the magnetized wormhole. The effective potential for a neutral test particle around and across the magnetized wormhole has a repulsive character. The gravitational lensing for the magnetized wormhole for various lens parameters are calculated and compared. The total magnetic flux on either side of the wormhole is obtained. We present analytic expressions which show regions in which the null energy condition is violated.

  6. Topological repulsion between domain walls in magnetic nanowires leading to the formation of bound states.

    PubMed

    Thomas, Luc; Hayashi, Masamitsu; Moriya, Rai; Rettner, Charles; Parkin, Stuart

    2012-05-01

    Head-to-head and tail-to-tail magnetic domain walls in nanowires behave as free magnetic monopoles carrying a single magnetic charge. Since adjacent walls always carry opposite charges, they attract one another. In most cases this long-range attractive interaction leads to annihilation of the two domain walls. Here, we show that, in some cases, a short-range repulsive interaction suppresses annihilation of the walls, even though the lowest energy state is without any domain walls. This repulsive interaction is a consequence of topological edge defects that have the same winding number. We show that the competition between the attractive and repulsive interactions leads to the formation of metastable bound states made up of two or more domain walls. We have created bound states formed from up to eight domain walls, corresponding to the magnetization winding up over four complete 360° rotations.

  7. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor.

    PubMed

    Bashaw, G J; Kidd, T; Murray, D; Pawson, T; Goodman, C S

    2000-06-23

    Drosophila Roundabout (Robo) is the founding member of a conserved family of repulsive axon guidance receptors that respond to secreted Slit proteins. Little is known about the signaling mechanisms which function downstream of Robo to mediate repulsion. Here, we present genetic and biochemical evidence that the Abelson (Abl) tyrosine kinase and its substrate Enabled (Ena) play direct and opposing roles in Robo signal transduction. Genetic interactions support a model in which Abl functions to antagonize Robo signaling, while Ena is required in part for Robo's repulsive output. Both Abl and Ena can directly bind to Robo's cytoplasmic domain. A mutant form of Robo that interferes with Ena binding is partially impaired in Robo function, while a mutation in a conserved cytoplasmic tyrosine that can be phosphorylated by Abl generates a hyperactive Robo receptor.

  8. Density dependence of the /s-wave repulsion in pionic atoms

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2002-11-01

    Several mechanisms of density dependence of the s-wave repulsion in pionic atoms, beyond the conventional model, are tested by parameter fits to a large (106 points) set of data from 16O to 238U, including 'deeply bound' states in 205Pb. Special attention is paid to the proper choice of nuclear density distributions. A density-dependent isovector scattering amplitude suggested recently by Weise to result from a density dependence of the pion decay constant is introduced and found to account for most of the so-called anomalous repulsion. The presence of such an effect might indicate partial chiral symmetry restoration in dense matter. The anomalous repulsion is fully accounted for when an additional relativistic impulse approximation term is included in the potential.

  9. Slow relaxation mode in concentrated oil-in-water microemulsions consisting of repulsive droplets

    NASA Astrophysics Data System (ADS)

    Hattori, Y.; Ushiki, H.; Courbin, L.; Panizza, P.

    2007-02-01

    The present contribution reports on the observation of two diffusive relaxation modes in a concentrated microemulsion made of repulsive droplets. These two modes can be interpreted in the frame of Weissman’s and Pusey’s theoretical pioneering works. The fast mode is associated to the collective diffusion of droplets whereas the slow one corresponds to the relaxation of droplet concentration fluctuations associated with composition and/or size. We show that (i) repulsive interactions considerably slow down the latter and (ii) a generalized Stokes Einstein relationship between its coefficient of diffusion and the Newtonian viscosity of the solutions, similar to the Walden’s rule for electrolytes, holds for concentrated microemulsion systems made of repulsive droplets.

  10. A new repulsive magnetic levitation approach using permanent magnets and air-core electromagnets

    SciTech Connect

    Wang, I.Y.A.; Busch-Vishniac, I. . Dept. of Mechanical Engineering)

    1994-07-01

    This paper introduces a new repulsive magnetic levitation approach using permanent magnets and air-core electromagnets as primary actuating components. The permanent magnets, which are attached to the bottom of a carrier, are repulsively levitated above and by oblong shaped electromagnets, which constitute one part of the guide tracks. Due to the lateral unstable nature of repulsive levitation, the stability of the levitated permanent magnets is regulated by another part of the guide tracks, electromagnetic stabilizers, which are strands of straight wires running through the entire length of the guide tracks above the levitation coils. A state feedback controller with integral compensator is designed for the stability control. The entire levitation system is divided into three subsystems: levitation, stabilization and propulsion. Al the control works with respect to each subsystem are executed extrinsic to the carrier, i.e., there is no electrical circuit on board the carrier.

  11. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar

    2016-07-01

    We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey-Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart-Landau and Van der Pol oscillators.

  12. Itinerant ferromagnetism of a repulsive atomic Fermi gas: a quantum monte carlo study.

    PubMed

    Pilati, S; Bertaina, G; Giorgini, S; Troyer, M

    2010-07-16

    We investigate the phase diagram of a two-component repulsive Fermi gas at T=0 by means of quantum Monte Carlo simulations. Both purely repulsive and resonant attractive model potentials are considered in order to analyze the limits of the universal regime where the details of interatomic forces can be neglected. The equation of state of both balanced and unbalanced systems is calculated as a function of the interaction strength and the critical density for the onset of ferromagnetism is determined. The energy of the strongly polarized gas is calculated and parametrized in terms of the physical properties of repulsive polarons, which are relevant for the stability of the fully ferromagnetic state. Finally, we analyze the phase diagram in the interaction-polarization plane under the assumption that only phases with homogeneous magnetization can be produced.

  13. Self-assembly of polytetrafluoroethylene nanoparticle films using repulsive electrostatic interactions.

    PubMed

    Du, Chuan; Wang, Jiadao; Chen, Darong

    2014-02-04

    An approach for manufacturing polytetrafluoroethylene nanoparticle films using repulsive electrostatic interactions was developed. This approach used the strong repulsive force between colloidal nanoparticles and a substrate surface to cause the colloidal nanoparticles to suspend and self-assemble at a near-wall equilibrium position. A suspended monolayer was formed and was subsequently deposited on the substrate surface. A relatively large-area (3 × 3 cm(2)), close-packed unordered monolayer of polytetrafluoroethylene nanoparticles was observed. Multilayer nanoparticle films were also generated by increasing the particle concentration and deposition time. This work confirms the feasibility of nanoparticle self-assembly under repulsive electrostatic interactions and provides new routes for the large-area fabrication of monolayer and multilayer close-packed nanoparticle films.

  14. Quantum Emulation of Gravitational Waves

    PubMed Central

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-01-01

    Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801

  15. Levodopa increases oxidative stress and repulsive guidance molecule A levels: a pilot study in patients with Parkinson's disease.

    PubMed

    Müller, Thomas; Trommer, Isabel; Muhlack, Siegfried; Mueller, Bernhard K

    2016-04-01

    Exposure to free radicals influences synthesis, degradation and function of proteins, such as repulsive guidance molecule A. Decay of this protein is essential for neuronal maintenance and recovery. Levodopa elevates oxidative stress. Therefore levodopa may impact repulsive guidance molecule A metabolism. Objectives were to investigate plasma concentrations of repulsive guidance molecule A, levodopa, cysteine and cysteinyl-glycine before and 1 h after levodopa application in patients with Parkinson's disease. Cysteine and cysteinyl-glycine as biomarkers for oxidative stress exposure decreased, repulsive guidance molecule A and levodopa rose. Repulsive guidance molecule A remained unchanged in levodopa naïve patients, but particularly went up in patients on a prior chronic levodopa regimen. Decay of cysteine specifically cysteinyl-glycine results from an elevated glutathione generation with rising cysteine consumption respectively from the alternative glutathione transformation to its oxidized form glutathione disulfide after free radical scavenging. Repulsive guidance molecule A rise may inhibit physiologic mechanisms for neuronal survival.

  16. Mars gravitational field estimation error

    NASA Technical Reports Server (NTRS)

    Compton, H. R.; Daniels, E. F.

    1972-01-01

    The error covariance matrices associated with a weighted least-squares differential correction process have been analyzed for accuracy in determining the gravitational coefficients through degree and order five in the Mars gravitational potential junction. The results are presented in terms of standard deviations for the assumed estimated parameters. The covariance matrices were calculated by assuming Doppler tracking data from a Mars orbiter, a priori statistics for the estimated parameters, and model error uncertainties for tracking-station locations, the Mars ephemeris, the astronomical unit, the Mars gravitational constant (G sub M), and the gravitational coefficients of degrees six and seven. Model errors were treated by using the concept of consider parameters.

  17. Gravitational Physics Research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  18. Optical bistability with a repulsive optical force in coupled silicon photonic crystal membranes

    NASA Astrophysics Data System (ADS)

    Hui, Pui-Chuen; Woolf, David; Iwase, Eiji; Sohn, Young-Ik; Ramos, Daniel; Khan, Mughees; Rodriguez, Alejandro W.; Johnson, Steven G.; Capasso, Federico; Loncar, Marko

    2013-07-01

    We demonstrate actuation of a silicon photonic crystal membrane with a repulsive optical gradient force. The extent of the static actuation is extracted by examining the optical bistability as a combination of the optomechanical, thermo-optic, and photo-thermo-mechanical effects using coupled-mode theory. Device behavior is dominated by a repulsive optical force which results in displacements of ≈1 nm/mW. By employing an extended guided resonance which effectively eliminates multi-photon thermal and electronic nonlinearities, our silicon-based device provides a simple, non-intrusive solution to extending the actuation range of micro-electromechanical devices.

  19. Repulsive Casimir forces between solid materials with high-refractive-index intervening liquids

    SciTech Connect

    Zwol, P. J. van; Palasantzas, G.

    2010-06-15

    In order to explore repulsive Casimir or van der Waals forces between solid materials with liquid as the intervening medium, we analyze dielectric data for a wide range of materials as, for example, (p)olytetrafluoroethylene, polystyrene, silica, and more than 20 liquids. Although significant variation in the dielectric data from different sources exists, we provide a scheme based on measured static dielectric constants, refractive indices, and applying Kramers-Kronig consistency to dielectric data to create accurate dielectric functions at imaginary frequencies. The latter is necessary for more accurate force calculations via the Lifshitz theory, thereby allowing reliable predictions of repulsive Casimir forces.

  20. Phase diagram of the system with the repulsive shoulder potential in two dimensions: Density functional approach

    NASA Astrophysics Data System (ADS)

    Chumakov, E. S.; Fomin, Y. D.; Shangina, E. L.; Tareyeva, E. E.; Tsiok, E. N.; Ryzhov, V. N.

    2015-08-01

    In the framework of the density functional theory of freezing proposed in our previous works, we calculate the phase diagram of two-dimensional system of particles interacting through the repulsive shoulder potential. This potential consists of the hard core and repulsive shoulder of the larger radius. It is shown that at low densities the system melts through the continuous transition in accordance with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario, while at high densities the conventional first order transition takes place.

  1. A novel approach for prediction of a repulsive force in a haptic manipulator: experimental verification with different trajectories

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Rock; Choi, Seung-Hyun; Oh, Jong-Seok; Choi, Seung-Bok

    2015-02-01

    This paper proposes a novel technique for predicting a repulsive force in a haptic interface. The goal of many haptic systems is to reflect a desired repulsive force to an operator. However, there is no way of describing a repulsive force mathematically. This means that the force-reflection performance of haptic systems cannot be simulated at the design process. Even though reflecting a repulsive force to an operator is the purpose of the systems, many haptic systems have been designed without knowing how an operator perceives a repulsive force during manipulation. Such design process unavoidably entails a lot of trials and errors and increases development time and costs. Here we show that the repulsive force can be predicted by establishing an optimal controller. 1-Degree of freedom lever system is designed with light and heavy inertia in order to reflect inertial variation. The dynamics of the system is derived and an optimal controller is established based on the system dynamics. The optimal controller predicts the repulsive forces under three different position trajectories. After manufacturing the lever system, actual repulsive force data is collected under the same position trajectories. The predicted repulsive forces are then compared with the actual repulsive forces. To demonstrate the effectiveness of the proposed method, a correlation coefficient between the predicted repulsive force and the actual one is presented. In addition, the mean value and standard deviation of the force error are provided. After showing that a repulsive force can be predicted by an optimal controller, a steering-wheel simulator is designed and manufactured to show that the proposed method is applicable to a haptic system’s design as well.

  2. General Relativity and Gravitation

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm

    2015-07-01

    Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.

  3. Gravitating lepton bag model

    SciTech Connect

    Burinskii, A.

    2015-08-15

    The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system.

  4. Gravitational Casimir-Polder effect

    NASA Astrophysics Data System (ADS)

    Hu, Jiawei; Yu, Hongwei

    2017-04-01

    The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir-Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z-5 in the near zone, and z-6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose-Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10-21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  5. The gravitational properties of antimatter

    SciTech Connect

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1986-09-01

    It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs. (LEW)

  6. Collapse in boson-fermion mixtures with all-repulsive interactions

    SciTech Connect

    Prytula, Vladyslav I.; Konotop, Vladimir V.; Perez-Garcia, Victor M.; Vekslerchik, Vadym E.

    2007-10-15

    We describe the collapse of the bosonic component in a boson-fermion mixture due to the pressure exerted on it by a large fermionic component, leading to collapse in a system with all-repulsive interactions. We describe the phenomena of early collapse and superslow collapse of the mixture.

  7. Discontinuous nature of the repulsive-to-attractive colloidal glass transition

    PubMed Central

    van de Laar, T.; Higler, R.; Schroën, K.; Sprakel, J.

    2016-01-01

    In purely repulsive colloidal systems a glass transition can be reached by increasing the particle volume fraction beyond a certain threshold. The resulting glassy state is governed by configurational cages which confine particles and restrict their motion. A colloidal glass may also be formed by inducing attractive interactions between the particles. When attraction is turned on in a repulsive colloidal glass a re-entrant solidification ensues. Initially, the repulsive glass melts as free volume in the system increases. As the attraction strength is increased further, this weakened configurational glass gives way to an attractive glass in which motion is hindered by the formation of physical bonds between neighboring particles. In this paper, we study the transition from repulsive-to-attractive glasses using three-dimensional imaging at the single-particle level. We show how the onset of cage weakening and bond formation is signalled by subtle changes in local structure. We then demonstrate the discontinuous nature of the solid-solid transition, which is marked by a critical onset at a threshold bonding energy. Finally, we highlight how the interplay between bonding and caging leads to complex and heterogeneous dynamics at the microscale. PMID:26940737

  8. Regardless-of-Speed Superconducting LSM Controlled-Repulsive MAGLEV Vehicle

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Egashira, Tatsuya; Hirai, Ryuichi

    1996-01-01

    This paper proposes a new repulsive Maglev vehicle which a superconducting linear synchronous motor (LSM) can levitate and propel simultaneously, independently of the vehicle speeds. The combined levitation and propulsion control is carried out by controlling mechanical-load angle and armature-current. Dynamic simulations show successful operations with good ride-quality by using a compact control method proposed here.

  9. The s-wave repulsion and deeply bound pionic atoms: fact and fancy

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    2003-06-01

    Fits to a large data set of pionic atoms show that the 'missing' s-wave repulsion is accounted for when a density dependence suggested recently by Weise is included in the isovector term of the s-wave pion optical potential. The importance of using large data sets is demonstrated and the role of deeply bound pionic atom states is discussed.

  10. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  11. Disentangling interatomic repulsion and anharmonicity in the viscosity and fragility of glasses

    NASA Astrophysics Data System (ADS)

    Krausser, J.; Lagogianni, A. E.; Samwer, K.; Zaccone, A.

    2017-03-01

    Within the shoving model of the glass transition, the relaxation time and the viscosity are related to the local cage rigidity. This approach can be extended down to the atomic level in terms of the interatomic interaction or potential of mean force. We applied this approach to both real metallic glass formers and model Lennard-Jones glasses. The main outcome of this analysis is that in metallic glasses the thermal expansion contribution is mostly independent of composition and is uncorrelated with the interatomic repulsion: As a consequence, the fragility increases upon increasing the interatomic repulsion steepness. In the Lennard-Jones glasses, the scenario is opposite: Thermal expansion and interatomic repulsion contributions are strongly correlated, and the fragility decreases upon increasing the repulsion steepness. This framework allows one to tell apart systems where "soft atoms make strong glasses" from those where, instead, "soft atoms make fragile glasses." Hence, it opens up the way for the rational, atomistic tuning of the fragility and viscosity of widely different glass-forming materials all the way from strong to fragile.

  12. Polymer Brushes that Mimic Repulsive Properties of the Boundary Lubricant Glycoprotein Lubricin

    NASA Astrophysics Data System (ADS)

    Torres, Jahn; Jay, Gregory; Ni, Qian; Bello, David; Bothun, Geoffrey; Kim, Kyung-Suk

    2011-03-01

    This is a report on the design of tailored functional groups which mimic the repulsive forces at work in the natural-joint boundary lubricant known as lubricin. Lubricin, an amphiphilic polyelectrolyte biomolecule, decreases friction and cellular adhesion by exhibiting surface force fields based on steric hindrance, Debye electrostatic double layer repulsion and hydration repulsive forces. We have identified a physically and chemically stable candidate polymers for anti-fouling coatings that will mimic lubricin's repulsive properties. Synthetic polymer brushes mimicking lubricin have been produced using these polymers grafted onto a glass surfaces. The average adhesive forces for the polymer brushes measured through atomic force microscopy are as low (56.796 +/- 0.796 mN/m), similar to those exhibited by lubricin coated surfaces and on the same order of magnitude as superhydrophobic surfaces. This work was supported by the Coatings/Biofouling Program and the Maritime Sensing Program of the Office of Naval Research as well as the ILIR Program of the Naval Undersea Warfare Center DIVNPT.

  13. W-dispersion particles in repulsive potentials: Quasibound states and their lifetime

    NASA Astrophysics Data System (ADS)

    Shvartsman, Leonid D.; Romanov, Dmitri A.

    2015-02-01

    We consider fundamental features which emerge in the mechanics of quasiparticles with nonmonotonic (as a function of p2 ) dispersion law. Quasiparticles of this kind abound in modern physics, with examples ranging from holes in quantum wells to edge magnetic states in quantum wires to photons in atomic vapors to polaritons in photonic crystals and in trapped-atom lattices. The motion of such a particle in repulsive potentials gives rise to a number of counterintuitive phenomena, which carry a promise of unusual optical manifestations. A classical particle can be trapped by repulsive potentials, and the likelihood of this trapping may increase with the value of the angular momentum. Further, in contrast to the usual quantum-mechanical notion, the particle always has a quasibound state in a two-dimensional, central-force repulsive potential, while it may have no bound states in a one-dimensional analog of this potential. The binding energy of these states and their inherent decay rate are determined by a complex interplay of the parameters of the potential, the particle dispersion law, and the value of the angular momentum. We construct the energy spectrum of quasibound states in a repulsive Coulomb potential, estimate their lifetime, and predict their optical manifestations as inverted hydrogen spectral-line series.

  14. Effect of long-range electrostatic repulsion on pore clogging during microfiltration

    NASA Astrophysics Data System (ADS)

    Chen, Sheng; Liu, Wenwei; Li, Shuiqing

    2016-12-01

    We perform computer simulations based on adhesive contact mechanics to demonstrate the clogging process of charged microparticles at the single-pore level. The effect of long-range Coulomb repulsion on clogging is characterized in terms of bulk permeability, the number of penetrating particles, and particle capture efficiency. Results indicate that the repulsion among particles delays or even totally prevents the formation of clogs. A clogging phase diagram, in the form of the driving pressure and a proposed charge parameter κq, is constructed to quantify the clogging-nonclogging transition. In addition, a critical state, where the capture efficiency of particles decreases to its minimum, is identified as a clogging-nonclogging criterion for repulsive particles. The distributions of the local volume fraction show that the structure of clogs is mainly determined by short-range adhesion. With relatively strong adhesion, a loose clog will be formed and it is easier for particles to penetrate. Finally, a schematic representation of the clogging process, considering both long-range repulsion and adhesion, is proposed to show the relationship between the clogging results and the interparticle interactions.

  15. Electronic Structure in Pi Systems: Part I. Huckel Theory with Electron Repulsion.

    ERIC Educational Resources Information Center

    Fox, Marye Anne; Matsen, F. A.

    1985-01-01

    Pi-CI theory is a simple, semi-empirical procedure which (like Huckel theory) treats pi and pseudo-pi orbitals; in addition, electron repulsion is explicitly included and molecular configurations are mixed. Results obtained from application of pi-CI to ethylene are superior to either the Huckel molecular orbital or valence bond theories. (JN)

  16. Exoplanet searches with gravitational microlensing

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander

    2012-07-01

    Depending on gravitational lens masses, people are speaking about different regimes of gravitational lensing or more precisely, different regimes correspond to different angular distances, assuming that lenses and sources are located at cosmological distances. If a gravitational lens has a stellar mass, the regime is called microlensing. Since a distance between images depends on a square root of a lens mass, a regime for a lens with a planet mass (10^{-6} M_{⊙}) is called nanolensing. Therefore, searches for light exoplanets with gravitational lensing may be called nanolensing. There are different techniques to find exoplanets such as Doppler shift measurements, transits, pulsar timing, astrometrical measurements. It was noted that gravitational microlensing is the most promising technique to find exoplanets near the habitable zone with a temperature at exoplanet surface in the range 1 - 100° C (or in the temperature range for temperature of liquid water).

  17. Gravitational correction to vacuum polarization

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.

    2015-02-01

    We consider the gravitational correction to (electronic) vacuum polarization in the presence of a gravitational background field. The Dirac propagators for the virtual fermions are modified to include the leading gravitational correction (potential term) which corresponds to a coordinate-dependent fermion mass. The mass term is assumed to be uniform over a length scale commensurate with the virtual electron-positron pair. The on-mass shell renormalization condition ensures that the gravitational correction vanishes on the mass shell of the photon, i.e., the speed of light is unaffected by the quantum field theoretical loop correction, in full agreement with the equivalence principle. Nontrivial corrections are obtained for off-shell, virtual photons. We compare our findings to other works on generalized Lorentz transformations and combined quantum-electrodynamic gravitational corrections to the speed of light which have recently appeared in the literature.

  18. Numerical simulation of gravitational lenses

    NASA Astrophysics Data System (ADS)

    Cherniak, Yakov

    Gravitational lens is a massive body or system of bodies with gravitational field that bends directions of light rays propagating nearby. This may cause an observer to see multiple images of a light source, e.g. a star, if there is a gravitational lens between the star and the observer. Light rays that form each individual image may have different distances to travel, which creates time delays between them. In complex gravitational fields generated by the system of stars, analytical calculation of trajectories and light intensities is virtually impossible. Gravitational lens of two massive bodies, one behind another, are able to create four images of a light source. Furthermore, the interaction between the four light beams can form a complicated interference pattern. This article provides a brief theory of light behavior in a gravitational field and describes the algorithm for constructing the trajectories of light rays in a gravitational field, calculating wave fronts and interference pattern of light. If you set gravitational field by any number of transparent and non- transparent objects (stars) and set emitters of radio wave beams, it is possible to calculate the interference pattern in any region of space. The proposed method of calculation can be applied even in the case of the lack of continuity between the position of the emitting stars and position of the resulting image. In this paper we propose methods of optimization, as well as solutions for some problems arising in modeling of gravitational lenses. The simulation of light rays in the sun's gravitational field is taken as an example. Also caustic is constructed for objects with uniform mass distribution.

  19. Bubble collision with gravitation

    SciTech Connect

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han E-mail: bhl@sogang.ac.kr E-mail: innocent.yeom@gmail.com

    2012-07-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  20. Gravitational adaptation of animals

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Burton, R. R.

    1982-01-01

    The effect of gravitational adaptation is studied in a group of five Leghorn cocks which had become physiologically adapted to 2 G after 162 days of centrifugation. After this period of adaptation, they are periodically exposed to a 2 G field, accompanied by five previously unexposed hatch-mates, and the degree of retained acceleration adaptation is estimated from the decrease in lymphocyte frequency after 24 hr at 2 G. Results show that the previously adapted birds exhibit an 84% greater lymphopenia than the unexposed birds, and that the lymphocyte frequency does not decrease to a level below that found at the end of 162 days at 2 G. In addition, the capacity for adaptation to chronic acceleration is found to be highly heritable. An acceleration tolerant strain of birds shows lesser mortality during chronic acceleration, particularly in intermediate fields, although the result of acceleration selection is largely quantitative (a greater number of survivors) rather than qualitative (behavioral or physiological changes).

  1. Atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity, respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous - whose rates are related by a non-constant function beta sub a - is demonstrated. The cosmological character of beta sub a is also discussed.

  2. Earth Gravitational Model 2020

    NASA Astrophysics Data System (ADS)

    Barnes, D.; Factor, J. K.; Holmes, S. A.; Ingalls, S.; Presicci, M. R.; Beale, J.; Fecher, T.

    2015-12-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and shipborne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners.

  3. The Adam family metalloprotease Kuzbanian regulates the cleavage of the roundabout receptor to control axon repulsion at the midline.

    PubMed

    Coleman, Hope A; Labrador, Juan-Pablo; Chance, Rebecca K; Bashaw, Greg J

    2010-07-01

    Slits and their Roundabout (Robo) receptors mediate repulsive axon guidance at the Drosophila ventral midline and in the vertebrate spinal cord. Slit is cleaved to produce fragments with distinct signaling properties. In a screen for genes involved in Slit-Robo repulsion, we have identified the Adam family metalloprotease Kuzbanian (Kuz). Kuz does not regulate midline repulsion through cleavage of Slit, nor is Slit cleavage essential for repulsion. Instead, Kuz acts in neurons to regulate repulsion and Kuz can cleave the Robo extracellular domain in Drosophila cells. Genetic rescue experiments using an uncleavable form of Robo show that this receptor does not maintain normal repellent activity. Finally, Kuz activity is required for Robo to recruit its downstream signaling partner, Son of sevenless (Sos). These observations support the model that Kuz-directed cleavage is important for Robo receptor activation.

  4. Weight, gravitation, inertia, and tides

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  5. An overview of gravitational physiology

    NASA Technical Reports Server (NTRS)

    Miquel, Jaime; Souza, Kenneth A.

    1991-01-01

    The focus of this review is on the response of humans and animals to the effects of the near weightless condition occurring aboard orbiting spacecraft. Gravity is an omnipresent force that has been a constant part of our lives and of the evolution of all living species. Emphasis is placed on the general mechanisms of adaptation to altered gravitational fields and vectors, i.e., both hypo- and hypergravity. A broad literature review of gravitational biology was conducted and the general state of our knowledge in this area is discussed. The review is specifically targeted at newcomers to the exciting and relatively new area of space and gravitational biology.

  6. Gravitation. [Book on general relativity

    NASA Technical Reports Server (NTRS)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  7. A new AF gravitational instanton

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Teo, Edward

    2011-09-01

    It has long been conjectured that the Euclidean Schwarzschild and Euclidean Kerr instantons are the only non-trivial asymptotically flat (AF) gravitational instantons. In this Letter, we show that this conjecture is false by explicitly constructing a new two-parameter AF gravitational instanton with a U (1) × U (1) isometry group, using the inverse-scattering method. It has Euler number χ = 3 and Hirzebruch signature τ = 1, and its global topology is CP2 with a circle S1 removed appropriately. Various other properties of this gravitational instanton are also discussed.

  8. Gravitational Stokes parameters. [for electromagnetic and gravitational radiation in relativity

    NASA Technical Reports Server (NTRS)

    Anile, A. M.; Breuer, R. A.

    1974-01-01

    The electromagnetic and gravitational Stokes parameters are defined in the general theory of relativity. The general-relativistic equation of radiative transfer for polarized radiation is then derived in terms of the Stokes parameters for both high-frequency electromagnetic and gravitational waves. The concept of Stokes parameters is generalized for the most general class of metric theories of gravity, where six (instead of two) independent states of polarization are present.

  9. Gravitational collapse of Bose-Einstein condensate dark matter halos

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu

    2014-04-01

    We study the mechanisms of the gravitational collapse of the Bose-Einstein condensate dark matter halos, described by the zero temperature time-dependent nonlinear Schrödinger equation (the Gross-Pitaevskii equation), with repulsive interparticle interactions. By using a variational approach, and by choosing an appropriate trial wave function, we reformulate the Gross-Pitaevskii equation with spherical symmetry as Newton's equation of motion for a particle in an effective potential, which is determined by the zero-point kinetic energy, the gravitational energy, and the particles interaction energy, respectively. The velocity of the condensate is proportional to the radial distance, with a time-dependent proportionality function. The equation of motion of the collapsing dark matter condensate is studied by using both analytical and numerical methods. The collapse of the condensate ends with the formation of a stable configuration, corresponding to the minimum of the effective potential. The radius and the mass of the resulting dark matter object are obtained, as well as the collapse time of the condensate. The numerical values of these global astrophysical quantities, characterizing condensed dark matter systems, strongly depend on the two parameters describing the condensate, the mass of the dark matter particle, and of the scattering length, respectively. The stability of the condensate under small perturbations is also studied, and the oscillations frequency of the halo is obtained. Hence these results show that the gravitational collapse of the condensed dark matter halos can lead to the formation of stable astrophysical systems with both galactic and stellar sizes.

  10. Gravitational Waves From Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    di Girolamo, Tristano

    2016-10-01

    In this talk, I will present the first direct detections of gravitational waves from binary stellar-mass black hole mergers during the first observing run of the two detectors of the Advanced Laser Interferometer Gravitational-wave Observatory, which opened the field of gravitational-wave astronomy, and then discuss prospects for observing gravitational waves from supermassive black holes with future detectors.

  11. Gravitation toward Walls among Human Subjects

    ERIC Educational Resources Information Center

    Dabbs, James M., Jr.; Wheeler, Patricia A.

    1976-01-01

    In two studies, college students (N=34) in a classroom corridor who walked near the wall ("gravitators") were contrasted with those who walked near the center ("non-gravitators"). Gravitators were lower than non-gravitators on Autonomy and Defendence and appeared to be less responsive to other persons. (Author)

  12. Gravitational energy sources in Jupiter

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    1973-01-01

    Gravitational sources of the intrinsic luminosity of Jupiter are examined in the context of current hydrogen-helium models. When no gravitational separation of matter occurs, the amount of heat which can be released over the remaining lifetime of the planet is necessarily limited by the size of its existing reservoir of thermal energy. This conclusion rests only on the assumption that its interior is relatively cold and degenerate. If gravitational unmixing occurs, the size of the thermal reservoir does not necessarily limit the heat output. If core formation occurs, for example, then the size of the core formed will be a limiting factor. The energy released with the formation of a helium core is computed for Jupiter. A core growth rate, averaged over several billion years, of 20 trillionths of Jupiter's mass per year is required if gravitational separation is to play a significant role in the thermal evolution.

  13. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  14. Relativistic Gravitational Experiments in Space

    NASA Technical Reports Server (NTRS)

    Hellings, Ronald W. (Editor)

    1989-01-01

    The results are summarized of a workshop on future gravitational physics space missions. The purpose of the workshop was to define generic technological requirements for such missions. NASA will use the results to direct its program of advanced technology development.

  15. Gravitational Many-Body Problem

    SciTech Connect

    Makino, J.

    2008-04-29

    In this paper, we briefly review some aspects of the gravitational many-body problem, which is one of the oldest problems in the modern mathematical science. Then we review our GRAPE project to design computers specialized to this problem.

  16. Gravitational Many-Body Problem

    NASA Astrophysics Data System (ADS)

    Makino, J.

    2008-04-01

    In this paper, we briefly review some aspects of the gravitational many-body problem, which is one of the oldest problems in the modern mathematical science. Then we review our GRAPE project to design computers specialized to this problem.

  17. Maximizing Headgroup Repulsion: Hybrid Surfactants with Ultrahighly Charged Inorganic Heads and Their Unusual Self-Assembly

    PubMed Central

    2016-01-01

    Nonequilibrium states of matter are arousing huge interest because of the outstanding possibilities to generate unprecedented structures with novel properties. Self-organizing soft matter is the ideal object of study as it unifies periodic order and high dynamics. Compared to settled systems, it becomes vital to realize more complex interaction patterns. A promising and intricate approach is implementing controlled balance between attractive and repulsive forces. We try to answer a fundamental question in surfactant science: How are processes like lyotropic liquid crystals and micellization affected, when headgroup charge becomes so large that repulsive interactions are inevitable? A particular challenge is that size and shape of the surfactant must not change. We could realize the latter by means of new hybrid surfactants with a heteropolyanion head [EW11O39]n− (E = PV, SiIV, BIII; n = 3, 4, 5). Among the unusual self-assembled structures, we report a new type of micelle with dumbbell morphology. PMID:27690457

  18. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion.

    PubMed

    Rhee, Jinseol; Mahfooz, Najmus S; Arregui, Carlos; Lilien, Jack; Balsamo, Janne; VanBerkum, Mark F A

    2002-10-01

    The formation of axon trajectories requires integration of local adhesive interactions with directional information from attractive and repulsive cues. Here, we show that these two types of information are functionally integrated; activation of the transmembrane receptor Roundabout (Robo) by its ligand, the secreted repulsive guidance cue Slit, inactivates N-cadherin-mediated adhesion. Loss of N-cadherin-mediated adhesion is accompanied by tyrosine phosphorylation of beta-catenin and its loss from the N-cadherin complex, concomitant with the formation of a supramolecular complex containing Robo, Abelson (Abl) kinase and N-cadherin. Local formation of such a receptor complex is an ideal mechanism to steer the growth cone while still allowing adhesion and growth in other directions.

  19. Development of a simple 2.45 GHz microwave plasma with a repulsive double hexapole configuration

    SciTech Connect

    Arciaga, Marko; Ulano, April; Lee, Henry Jr.; Lledo, Rumar; Ramos, Henry; Tumlos, Roy

    2008-09-15

    A simple and inexpensive 2.45 GHz microwave plasma source with a repulsive double hexapole configuration is described and characterized. In this work, the operation of the source is shown to be flexible in terms of electron density, electron temperature, and plasma uniformity even at low-pressures (approximately millitorr). It allows for easy control of the electron temperature (2-3.8 eV) and density ({approx}10{sup 9}-10{sup 10} cm{sup -3}) by removing either of the two hexapoles or by varying the separation distance between the two hexapoles. Characterization was done via information gathered from the usual Langmuir probe measurements for electron temperature and density. The source makes a resonant surface with its repulsive double hexapole magnetic configuration providing an additional longitudinal confinement near the walls midway between the two hexapoles. Magnetic field maps are presented for varying double hexapole distances. Power delivery for various settings is also presented.

  20. Order-disorder transition in repulsive self-propelled particle systems

    NASA Astrophysics Data System (ADS)

    Hiraoka, Takayuki; Shimada, Takashi; Ito, Nobuyasu

    2016-12-01

    We study the collective dynamics of repulsive self-propelled particles. The particles are governed by coupled equations of motion that include polar self-propulsion, damping of velocity and of polarity, repulsive particle-particle interaction, and deterministic dynamics. Particle dynamics simulations show that the collective coherent motion with large density fluctuations spontaneously emerges from a disordered, isotropic state. In the parameter region where the rotational damping of polarity is strong, the system undergoes an abrupt shift to the absorbing ordered state after a waiting period in the metastable disordered state. In order to obtain a simple understanding of the mechanism underlying the collective behavior, we analyze the binary particle scattering process. We show that this approach correctly predicts the order-disorder transition at a dilute limit. The same approach is expanded for finite densities, although it disagrees with the result from many-particle simulations due to many-body correlations and density fluctuations.

  1. Classical and quantum analysis of repulsive singularities in four-dimensional extended supergravity

    NASA Astrophysics Data System (ADS)

    Gaida, I.; Hollmann, H. R.; Stewart, J. M.

    1999-07-01

    Non-minimal repulsive singularities (`repulsons') in extended supergravity theories are investigated. The short-distance antigravity properties of the repulsons are tested at the classical and the quantum level by a scalar test-particle. Using a partial wave expansion it is shown that the particle is totally reflected at the origin. A high-frequency incoming particle undergoes a phase shift of icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/>/2. However, the phase shift for a low-frequency particle depends upon the physical data of the repulson. The curvature singularity at a finite distance rh turns out to be transparent for the scalar test-particle and the coordinate singularity at the origin serves as the repulsive barrier to bounce back the particles.

  2. When does ``like'' like ``like''? How does the repulsion-only assumption fail?

    NASA Astrophysics Data System (ADS)

    Ise, Norio

    2000-06-01

    When dispersed particles or solute ions have high charge densities, macroscopically homogeneous systems become microscopically inhomogeneous. Examples are the two-state structure of ordered structures in disordered region without boundary and the void structures. When the charge density is increased, the reentrant phase (liquid-solid-liquid) transition is found, which is not explainable in terms of the repulsion-only assumption. Furthermore, for relatively small charge particles and at an early stage of crystallization, space-filling ordered states are first formed, disordered regions are then created inside the ordered domains, and crystal contraction thereafter takes place, causing the two-state structure. These may be explained by invoking a counterion-mediated attractive interaction between like-charged entities in addition to the widely accepted repulsion-only assumption. .

  3. Acute behavioral responses to pheromones in C. elegans (adult behaviors: attraction, repulsion).

    PubMed

    Jang, Heeun; Bargmann, Cornelia I

    2013-01-01

    The pheromone drop test is a simple and robust behavioral assay to quantify acute avoidance of pheromones in C. elegans, and the suppression of avoidance by attractive pheromones. In the pheromone drop test, water-soluble C. elegans pheromones are individually applied to animals that are freely moving on a large plate. Upon encountering a repellent, each C. elegans animal may or may not try to escape by making a long reversal. The fraction of animals that make a long reversal response indicates the repulsiveness of a given pheromone to a specific genotype/strain of C. elegans. Performing the drop test in the presence of bacterial food enhances the avoidance response to pheromones. Attraction to pheromones can be assayed by the suppression of reversals to repulsive pheromones or by the suppression of the basal reversal rate to buffer.

  4. Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions

    NASA Astrophysics Data System (ADS)

    Chen, Hsieh; Cox, Jason R.; Ow, Hooisweng; Shi, Rena; Panagiotopoulos, Athanassios Z.

    2016-06-01

    Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca2+ ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions.

  5. Inverse problem of flame surface properties of wood using a repulsive particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yoon, Kyung-Beom; Park, Won-Hee

    2015-04-01

    The convective heat transfer coefficient and surface emissivity before and after flame occurrence on a wood specimen surface and the flame heat flux were estimated using the repulsive particle swarm optimization algorithm and cone heater test results. The cone heater specified in the ISO 5660 standards was used, and six cone heater heat fluxes were tested. Preservative-treated Douglas fir 21 mm in thickness was used as the wood specimen in the tests. This study confirmed that the surface temperature of the specimen, which was calculated using the convective heat transfer coefficient, surface emissivity and flame heat flux on the wood specimen by a repulsive particle swarm optimization algorithm, was consistent with the measured temperature. Considering the measurement errors in the surface temperature of the specimen, the applicability of the optimization method considered in this study was evaluated.

  6. Order-disorder transition in repulsive self-propelled particle systems.

    PubMed

    Hiraoka, Takayuki; Shimada, Takashi; Ito, Nobuyasu

    2016-12-01

    We study the collective dynamics of repulsive self-propelled particles. The particles are governed by coupled equations of motion that include polar self-propulsion, damping of velocity and of polarity, repulsive particle-particle interaction, and deterministic dynamics. Particle dynamics simulations show that the collective coherent motion with large density fluctuations spontaneously emerges from a disordered, isotropic state. In the parameter region where the rotational damping of polarity is strong, the system undergoes an abrupt shift to the absorbing ordered state after a waiting period in the metastable disordered state. In order to obtain a simple understanding of the mechanism underlying the collective behavior, we analyze the binary particle scattering process. We show that this approach correctly predicts the order-disorder transition at a dilute limit. The same approach is expanded for finite densities, although it disagrees with the result from many-particle simulations due to many-body correlations and density fluctuations.

  7. Research on ultra-fast vacuum mechanical switch driven by repulsive force actuator

    NASA Astrophysics Data System (ADS)

    Yuan, Zhao; He, Junjia; Pan, Yuan; Jing, Xin; Zhong, Canyi; Zhang, Ning; Wei, Xiaoguang; Tang, Guangfu

    2016-12-01

    In order to meet the fast operation demands of DC circuit breakers, a high-speed vacuum mechanical switch (VMS) driven by a repulsive force actuator is focused. To improve the drive speed and energy conversion efficiency (ECE) of the actuators, the dynamic characteristics of the double sided coil repulsive force actuators are investigated, and two generalized optimization design methods focusing on the aspect ratio of the driving coils (defined as ARF) and the electrical parameters (defined as EF) are developed. FEM simulation models' simulation and tests of VMS prototypes are conducted to verify the optimization methods. Results prove that the ARF method could improve the ECE of a VMS from 1.05% to 7.55%, and EF method could improve ECE of the same VMS from 1.05% to 6.61%, the combination of ARF and EF could improve the value of VMS's ECE to 10.50%, thus proving the validity and accuracy of the optimization methods.

  8. Analysis on Patterns of Globally Coupled Phase Oscillators with Attractive and Repulsive Interactions

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Fei; Ruan, Xiao-Dong; Xu, Zhong-Bin; Fu, Xin

    2015-11-01

    The Hong-Strogatz (HS) model of globally coupled phase oscillators with attractive and repulsive interactions reflects the fact that each individual (oscillator) has its own attitude (attractive or repulsive) to the same environment (mean field). Previous studies on HS model focused mainly on the stable states on Ott-Antonsen (OA) manifold. In this paper, the eigenvalues of the Jacobi matrix of each fixed point in HS model are explicitly derived, with the aim to understand the local dynamics around each fixed point. Phase transitions are described according to relative population and coupling strength. Besides, the dynamics off OA manifold is studied. Supported by the National Basic Research Program of China under Grant No. 2015CB057301, the Applied Research Project of Public Welfare Technology of Zhejiang Province under Grant No. 201SC31109 and China Postdoctoral Science Foundation under Grant No. 2014M560483

  9. Long-range repulsion of colloids driven by ion exchange and diffusiophoresis.

    PubMed

    Florea, Daniel; Musa, Sami; Huyghe, Jacques M R; Wyss, Hans M

    2014-05-06

    Interactions between surfaces and particles in aqueous suspension are usually limited to distances smaller than 1 μm. However, in a range of studies from different disciplines, repulsion of particles has been observed over distances of up to hundreds of micrometers, in the absence of any additional external fields. Although a range of hypotheses have been suggested to account for such behavior, the physical mechanisms responsible for the phenomenon still remain unclear. To identify and isolate these mechanisms, we perform detailed experiments on a well-defined experimental system, using a setup that minimizes the effects of gravity and convection. Our experiments clearly indicate that the observed long-range repulsion is driven by a combination of ion exchange, ion diffusion, and diffusiophoresis. We develop a simple model that accounts for our data; this description is expected to be directly applicable to a wide range of systems exhibiting similar long-range forces.

  10. Effect of interdots electronic repulsion in the Majorana signature for a double dot interferometer

    NASA Astrophysics Data System (ADS)

    Ricco, L. S.; Marques, Y.; Dessotti, F. A.; de Souza, M.; Seridonio, A. C.

    2016-04-01

    We investigate theoretically the features of the Majorana hallmark in the presence of Coulomb repulsion between two quantum dots describing a spinless double dot interferometer, where one of the dots is strongly coupled to a Kitaev wire within the topological phase. Such a system has been originally proposed without Coulomb interaction in Dessotti et al. (2014 [16]) . Our findings reveal that for dots in resonance, the ratio between the strength of Coulomb repulsion and the dot-wire coupling changes the width of the Majorana zero-bias peak for both Fano regimes studied, indicating thus that the electronic interdots correlation influences the Majorana state lifetime in the dot hybridized with the wire. Moreover, for the off-resonance case, the swap between the energy levels of the dots also modifies the width of the Majorana peak, which does not happen for the noninteracting case. The results obtained here can guide experimentalists that pursuit a way of revealing Majorana signatures.

  11. Constructing gravitational dimensions

    NASA Astrophysics Data System (ADS)

    Schwartz, Matthew

    2003-07-01

    It would be extremely useful to know whether a particular low energy effective theory might have come from a compactification of a higher dimensional space. Here, this problem is approached from the ground up by considering theories with multiple interacting massive gravitons. It is actually very difficult to construct discrete gravitational dimensions which have a local continuum limit. In fact, any model with only nearest neighbor interactions is doomed. If we could find a non-linear extension for the Fierz-Pauli Lagrangian for a graviton of mass mg, which does not break down until the scale Λ2=(mgMPl), this could be used to construct a large class of models whose continuum limit is local in the extra dimension. But this is shown to be impossible: a theory with a single graviton must break down by Λ3=(m2gMPl)1/3. Next, we look at how the discretization prescribed by the truncation of the Kaluza-Klein tower of an honest extra dimension raises the scale of strong coupling. It dictates an intricate set of interactions among various fields which conspire to soften the strongest scattering amplitudes and allow for a local continuum limit, at least at the tree level. A number of candidate symmetries associated with locality in the discretized dimension are also discussed.

  12. Shearfree cylindrical gravitational collapse

    SciTech Connect

    Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-09-15

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  13. Shearfree cylindrical gravitational collapse

    NASA Astrophysics Data System (ADS)

    di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-09-01

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke’s discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  14. Dark energy from gravitational corrections

    NASA Astrophysics Data System (ADS)

    Abe, Yugo; Horikoshi, Masaatsu; Kawamura, Yoshiharu

    2017-03-01

    We study physics concerning the cosmological constant problem in the framework of effective field theory and suggest that a dominant part of dark energy can originate from gravitational corrections of vacuum energy, under the assumption that the classical gravitational fields do not couple to a large portion of the vacuum energy effectively, in spite of the coupling between graviton and matters at a microscopic level. Our speculation is excellent with terascale supersymmetry.

  15. Residual entropy and waterlike anomalies in the repulsive one dimensional lattice gas

    SciTech Connect

    Silva, Fernando Barbosa V. da; Oliveira, Fernando Albuquerque; Barbosa, Marco Aurélio A.

    2015-04-14

    The thermodynamics and kinetics of the one dimensional lattice gas with repulsive interaction are investigated using transfer matrix technique and Monte Carlo simulations. This simple model is shown to exhibit waterlike anomalies in density, thermal expansion coefficient, and self-diffusion. An unified description for the thermodynamic anomalies in this model is achieved based on the ground state residual entropy which appears in the model due to mixing entropy in a ground state phase transition.

  16. Three-Body Wave Functions in the Continuum: Application to the Repulsive Coulomb Case

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Kievsky, A.; Viviani, M.

    2017-03-01

    In this work we describe a method that permits to obtain full three-body continuum wave functions regardless the short- or long-range character of the two-body potentials involved. Within this method all the possible incoming channels are automatically taken into account. When applied to systems where only the repulsive Coulomb interaction enters the method provides the corresponding regular three-body Coulomb functions, from which their irregular partners can be obtained.

  17. Construction of exchange repulsion in terms of the wave functions at QM/MM boundary region

    SciTech Connect

    Takahashi, Hideaki Umino, Satoru; Morita, Akihiro

    2015-08-28

    We developed a simple method to calculate exchange repulsion between a quantum mechanical (QM) solute and a molecular mechanical (MM) molecule in the QM/MM approach. In our method, the size parameter in the Buckingham type potential for the QM solute is directly determined in terms of the one-electron wave functions of the solute. The point of the method lies in the introduction of the exchange core function (ECF) defined as a Slater function which mimics the behavior of the exterior electron density at the QM/MM boundary region. In the present paper, the ECF was constructed in terms of the Becke-Roussel (BR) exchange hole function. It was demonstrated that the ECF yielded by the BR procedure can faithfully reproduce the radial behavior of the electron density of a QM solute. The size parameter of the solute as well as the exchange repulsion are, then, obtained using the overlap model without any fitting procedure. To examine the efficiency of the method, it was applied to calculation of the exchange repulsions for minimal QM/MM systems, hydrogen-bonded water dimer, and H{sub 3}O{sup +}–H{sub 2}O. We found that our approach is able to reproduce the potential energy curves for these systems showing reasonable agreements with those given by accurate full quantum chemical calculations.

  18. Diamagnetic repulsion--a versatile tool for label-free particle handling in microfluidic devices.

    PubMed

    Peyman, Sally A; Kwan, Er Yee; Margarson, Oliver; Iles, Alexander; Pamme, Nicole

    2009-12-25

    We report the exploration of diamagnetic repulsion forces for the selective manipulation of microparticles inside microfluidic devices. Diamagnetic materials such as polymers are repelled from magnetic fields, an effect greatly enhanced by suspending a diamagnetic object in a paramagnetic Mn(2+) solution. The versatility of diamagnetic repulsion is demonstrated for the trapping, focussing and deflection of polystyrene particles for three example applications. Firstly, magnet pairs with unlike poles facing each other were arranged along a microcapillary to trap plugs of differently functionalised particles for a simultaneous surface-based assay in which biotin was selectively bound to a plug of streptavidin coated particles utilising only 22nL of reagent. Secondly, by slightly modifying the magnetic field design, the rapid focussing of particles into a narrow central stream at a flow rate of 650microms(-1) was accomplished for particle pre-concentration. In a third application, 5 and 10microm polystyrene particles were separated from each other in continuous flow by passing the particle mixture through a microfluidic chamber with a perpendicular magnetic field, a method termed diamagnetophoresis. The separation was investigated between flow rates of 20-100microL h(-1), with full resolution of the particle populations being achieved at 20microL h(-1). These experiments show the potential of diamagnetic repulsion for simple, label-free manipulation of particles and other diamagnetic objects such as cells for a range of bioanalytical techniques.

  19. Stabilization of thin liquid films by repulsive van der Waals force.

    PubMed

    Li, Er Qiang; Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-05-13

    Using high-speed video recording of bubble rise experiments, we study the stability of thin liquid films trapped between a rising bubble and a surfactant-free liquid-liquid meniscus interface. Using different combinations of nonpolar oils and water that are all immiscible, we investigate the extent to which film stability can be predicted by attractive and repulsive van der Waals (vdW) interactions that are indicated by the relative magnitude of the refractive indices of the liquid combinations, for example, water (refractive index, n = 1.33), perfluorohexane (n = 1.23), and tetradecane (n = 1.43). We show that, when the film-forming phase was oil (perfluorohexane or tetradecane), the stability of the film could always be predicted from the sign of the vdW interaction, with a repulsive vdW force resulting in a stable film and an attractive vdW force resulting in film rupture. However, if aqueous electrolyte is the film-forming bulk phase between the rising air bubble and the upper oil phase, the film always ruptured, even when a repulsive vdW interaction was predicted. We interpret these results as supporting the hypothesis that a short-ranged hydrophobic attraction determines the stability of the thin water film formed between an air phase and a nonpolar oil phase.

  20. Myosin 1b functions as an effector of EphB signaling to control cell repulsion

    PubMed Central

    Prospéri, Marie-Thérèse; Lépine, Priscilla; Dingli, Florent; Paul-Gilloteaux, Perrine; Martin, René; Loew, Damarys; Knölker, Hans-Joachim

    2015-01-01

    Eph receptors and their membrane-tethered ligands, the ephrins, have important functions in embryo morphogenesis and in adult tissue homeostasis. Eph/ephrin signaling is essential for cell segregation and cell repulsion. This process is accompanied by morphological changes and actin remodeling that drives cell segregation and tissue patterning. The actin cortex must be mechanically coupled to the plasma membrane to orchestrate the cell morphology changes. Here, we demonstrate that myosin 1b that can mechanically link the membrane to the actin cytoskeleton interacts with EphB2 receptors via its tail and is tyrosine phosphorylated on its tail in an EphB2-dependent manner. Myosin 1b regulates the redistribution of myosin II in actomyosin fibers and the formation of filopodia at the interface of ephrinB1 and EphB2 cells, which are two processes mediated by EphB2 signaling that contribute to cell repulsion. Together, our results provide the first evidence that a myosin 1 functions as an effector of EphB2/ephrinB signaling, controls cell morphology, and thereby cell repulsion. PMID:26195670

  1. The vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion

    PubMed Central

    Zylbersztejn, Kathleen; Petkovic, Maja; Burgo, Andrea; Deck, Marie; Garel, Sonia; Marcos, Séverine; Bloch-Gallego, Evelyne; Nothias, Fatiha; Serini, Guido; Bagnard, Dominique; Binz, Thomas

    2012-01-01

    Attractive and repulsive molecules such as Semaphorins (Sema) trigger rapid responses that control the navigation of axonal growth cones. The role of vesicular traffic in axonal guidance is still largely unknown. The exocytic vesicular soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor (SNARE) Synaptobrevin 2 (Syb2) is known for mediating neurotransmitter release in mature neurons, but its potential role in axonal guidance remains elusive. Here we show that Syb2 is required for Sema3A-dependent repulsion but not Sema3C-dependent attraction in cultured neurons and in the mouse brain. Syb2 associated with Neuropilin 1 and Plexin A1, two essential components of the Sema3A receptor, via its juxtatransmembrane domain. Sema3A receptor and Syb2 colocalize in endosomal membranes. Moreover, upon Sema3A treatment, Syb2-deficient neurons failed to collapse and transport Plexin A1 to cell bodies. Reconstitution of Sema3A receptor in nonneuronal cells revealed that Sema3A further inhibited the exocytosis of Syb2. Therefore, Sema3A-mediated signaling and axonal repulsion require Syb2-dependent vesicular traffic. PMID:22213797

  2. Study of Electromagnetic Repulsion Switch to High Speed Reclosing and Recover Time Characteristics of Superconductor

    NASA Astrophysics Data System (ADS)

    Koyama, Tomonori; Kaiho, Katsuyuki; Yamaguchi, Iwao; Yanabu, Satoru

    Using a high-temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor and vacuum interrupter as the commutation switch were connected in parallel using a bypass coil. When the fault current flows in this equipment, the superconductor is quenched and the current is then transferred to the parallel coil due to the voltage drop in the superconductor. This large current in the parallel coil actuates the magnetic repulsion mechanism of the vacuum interrupter and the current in the superconductor is broken. Using this equipment, the current flow time in the superconductor can be easily minimized. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. This system has many merits. So, we introduced to electromagnetic repulsion switch. There is duty of high speed re-closing after interrupting fault current in the electrical power system. So the SFCL should be recovered to superconducting state before high speed re-closing. But, superconductor generated heat at the time of quench. It takes time to recover superconducting state. Therefore it is a matter of recovery time. In this paper, we studied recovery time of superconductor. Also, we proposed electromagnetic repulsion switch with reclosing system.

  3. The role of repulsive guidance molecules in the embryonic and adult vertebrate central nervous system

    PubMed Central

    Mueller, Bernhard K; Yamashita, Toshihide; Schaffar, Gregor; Mueller, Reinhold

    2006-01-01

    During the development of the nervous system, outgrowing axons often have to travel long distances to reach their target neurons. In this process, outgrowing neurites tipped with motile growth cones rely on guidance cues present in their local environment. These cues are detected by specific receptors expressed on growth cones and neurites and influence the trajectory of the growing fibres. Neurite growth, guidance, target innervation and synapse formation and maturation are the processes that occur predominantly but not exclusively during embryonic or early post-natal development in vertebrates. As a result, a functional neural network is established, which is usually remarkably stable. However, the stability of the neural network in higher vertebrates comes at an expensive price, i.e. the loss of any significant ability to regenerate injured or damaged neuronal connections in their central nervous system (CNS). Most importantly, neurite growth inhibitors prevent any regenerative growth of injured nerve fibres. Some of these inhibitors are associated with CNS myelin, others are found at the lesion site and in the scar tissue. Traumatic injuries in brain and spinal cord of mammals induce upregulation of embryonic inhibitory or repulsive guidance cues and their receptors on the neurites. An example for embryonic repulsive directional cues re-expressed at lesion sites in both the rat and human CNS is provided with repulsive guidance molecules, a new family of directional guidance cues. PMID:16939972

  4. Aggregation of heteropolyanions in aqueous solutions exhibiting short-range attractions and long-range repulsions

    DOE PAGES

    Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; ...

    2015-12-15

    Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomersmore » and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.« less

  5. Aggregation of heteropolyanions in aqueous solutions exhibiting short-range attractions and long-range repulsions

    SciTech Connect

    Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; Burton-Pye, Benjamin P.; Monica Olvera de la Cruz; Antonio, Mark R.

    2015-12-15

    Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomers and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.

  6. Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons.

    PubMed

    Lundström, Annika; Gallio, Marco; Englund, Camilla; Steneberg, Pär; Hemphälä, Johanna; Aspenström, Pontus; Keleman, Krystyna; Falileeva, Ludmilla; Dickson, Barry J; Samakovlis, Christos

    2004-09-01

    Slit proteins steer the migration of many cell types through their binding to Robo receptors, but how Robo controls cell motility is not clear. We describe the functional analysis of vilse, a Drosophila gene required for Robo repulsion in epithelial cells and axons. Vilse defines a conserved family of RhoGAPs (Rho GTPase-activating proteins), with representatives in flies and vertebrates. The phenotypes of vilse mutants resemble the tracheal and axonal phenotypes of Slit and Robo mutants at the CNS midline. Dosage-sensitive genetic interactions between vilse, slit, and robo mutants suggest that vilse is a component of robo signaling. Moreover, overexpression of Vilse in the trachea of robo mutants ameliorates the phenotypes of robo, indicating that Vilse acts downstream of Robo to mediate midline repulsion. Vilse and its human homolog bind directly to the intracellular domains of the corresponding Robo receptors and promote the hydrolysis of RacGTP and, less efficiently, of Cdc42GTP. These results together with genetic interaction experiments with robo, vilse, and rac mutants suggest a mechanism whereby Robo repulsion is mediated by the localized inactivation of Rac through Vilse.

  7. Facial Age Aftereffects Provide Some Evidence for Local Repulsion (But None for Re-Normalisation)

    PubMed Central

    2015-01-01

    Face aftereffects can help adjudicate between theories of how facial attributes are encoded. O'Neil and colleagues (2014) compared age estimates for faces before and after adapting to young, middle-aged or old faces. They concluded that age aftereffects are best described as a simple re-normalisation—e.g. after adapting to old faces, all faces look younger than they did initially. Here I argue that this conclusion is not substantiated by the reported data. The authors fit only a linear regression model, which captures the predictions of re-normalisation, but not alternative hypotheses such as local repulsion away from the adapted age. A second concern is that the authors analysed absolute age estimates after adaptation, as a function of baseline estimates, so goodness-of-fit measures primarily reflect the physical ages of test faces, rather than the impact of adaptation. When data are re-expressed as aftereffects and fit with a nonlinear “locally repulsive” model, this model performs equal to or better than a linear model in all adaptation conditions. Data in O'Neil et al. do not provide strong evidence for either re-normalisation or local repulsion in facial age aftereffects, but are more consistent with local repulsion (and exemplar-based encoding of facial age), contrary to the original report. PMID:28299168

  8. Nuclear Quantum Gravitation - The Correct Theory

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald

    2016-03-01

    Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/

  9. Gravitational lensing in Tangherlini spacetime in the weak gravitational field and the strong gravitational field

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki; Kitamura, Takao; Nakajima, Koki; Asada, Hideki

    2014-09-01

    The gravitational lensing effects in the weak gravitational field by exotic lenses have been investigated intensively to find nonluminous exotic objects. Gravitational lensing based on 1/rn fall-off metric, as a one-parameter model that can treat by hand both the Schwarzschild lens (n =1) and the Ellis wormhole (n =2) in the weak field, has been recently studied. Only for n=1 case, however, it has been explicitly shown that effects of relativistic lens images by the strong field on the light curve can be neglected. We discuss whether relativistic images by the strong field can be neglected for n>1 in the Tangherlini spacetime which is one of the simplest models for our purpose. We calculate the divergent part of the deflection angle for arbitrary n and the regular part for n=1, 2 and 4 in the strong field limit, the deflection angle for arbitrary n under the weak gravitational approximation. We also compare the radius of the Einstein ring with the radii of the relativistic Einstein rings for arbitrary n. We conclude that the images in the strong gravitational field have little effect on the total light curve and that the time-symmetric demagnification parts in the light curve will appear even after taking account of the images in the strong gravitational field for n>1.

  10. How To Measure Gravitational Aberration?

    NASA Astrophysics Data System (ADS)

    Krizek, M.; Solcova, A.

    2007-08-01

    In 1905, Henri Poincaré predicted the existence of gravitational waves and assumed that their speed c[g] would be that of the speed of light c. If the gravitational aberration would also have the same magnitude as the aberration of light, we would observe several paradoxical phenomena. For instance, the orbit of two bodies of equal mass would be unstable, since two attractive forces arise that are not in line and hence form a couple. This tends to increase the angular momentum, period, and total energy of the system. This can be modelled by a system of ordinary differential equations with delay. A big advantage of computer simulation is that we can easily perform many test for various possible values of the speed of gravity [1]. In [2], Carlip showed that gravitational aberration in general relativity is almost cancelled out by velocity-dependent interactions. This means that rays of sunlight are not parallel to the attractive gravitational force of the Sun, i.e., we do not see the Sun in the direction of its attractive force, but slightly shifted about an angle less than 20``. We show how the actual value of the gravitational aberration can be obtained by measurement of a single angle at a suitable time instant T corresponding to the perihelion of an elliptic orbit. We also derive an a priori error estimate that expresses how acurately T has to be determined to attain the gravitational aberration to a prescribed tolerance. [1] M. Křížek: Numerical experience with the finite speed of gravitational interaction, Math. Comput. Simulation 50 (1999), 237-245. [2] S. Carlip: Aberration and the speed of gravity, Phys. Lett. A 267 (2000), 81-87.

  11. General Relativity and Gravitation, 1989

    NASA Astrophysics Data System (ADS)

    Ashby, Neil; Bartlett, David F.; Wyss, Walker

    2005-10-01

    Part I. Classical Relativity and Gravitation Theory: 1. Global properties of exact solutions H. Friedrich; 2. Numerical relativity T. Nakamura; 3. How fast can a pulsar spin? J. L. Friedman; 4. Colliding waves in general relativity V. Ferrari; Part II. Relativistic Astrophysics, Early Universe, and Classical Cosmology: 5. Observations of cosmic microwave radiation R. B. Partridge; 6. Cosmic microwave background radiation (theory) M. Panek; 7. Inflation and quantum cosmology A. D. Linde; 8. Observations of lensing B. Fort; 9. Gravitational lenses: theory and interpretation R. Blandford; Part III. Experimental Gravitation and Gravitational Waves: 10. Solar system tests of GR: recent results and present plans I. Shapiro; 11. Laser interferometer detectors R. Weiss; 12. Resonant bar gravitational wave experiments G. Pizzella; 13. A non-inverse square law test E. Adelberger; Part IV. Quantum Gravity, Superstrings, Quantum Cosmology: 14. Cosmic strings B. Unruh; 15. String theory as a quantum theory of gravity G. Horowitz; 16. Progress in quantum cosmology J. B. Hartle; 17. Self-duality, quantum gravity, Wilson loops and all that A. V. Ashtekar; Part V. Summary Talk: 18. GR-12 Conference summary J. Ehlers II; Part VI. Reports on Workshops/Symposia: 19. Exact solutions and exact properties of Einstein equations V. Moncrieff; 20. Spinors, twistors and complex methods N. Woodhouse; 21. Alternative gravity theories M. Francaviglia; 22. Asymptotia, singularities and global structure B. G. Schmidt; 23. Radiative spacetimes and approximation methods T. Damour; 24. Algebraic computing M. MacCallum; 25. Numerical relativity J. Centrella; 26. Mathematical cosmology J. Wainwright; 27. The early universe M. Turner; 28. Relativistic astrophysics M. Abramowitz; 29. Astrophysical and observational cosmology B. Carr; 30. Solar system and pulsar tests of gravitation R. Hellings; 31. Earth-based gravitational experiments J. Faller; 32. Resonant bar and microwave gravitational wave

  12. Gravitational Effects on Signal Transduction

    NASA Technical Reports Server (NTRS)

    Sytkowski, Arthur J.

    1999-01-01

    An understanding of the mechanisms by which individual cells perceive gravity and how these cells transduce and respond to gravitational stimuli is critical for the development of long-term manned space flight experiments. We now propose to use a well-characterized model erythroid cell system and to investigate gravitational perturbations of its erythropoietin (Epo) signaling pathway and gene regulation. Cells will be grown at 1-G and in simulated microgravity in the NASA Rotating Wall Vessel bioreactor (RWV). Cell growth and differentiation, the Epo-receptor, the protein kinase C pathway to the c-myc gene, and the protein phosphatase pathway to the c-myb gene will be studied and evaluated as reporters of gravitational stimuli. The results of these experiments will have impact on the problems of 1) gravitational sensing by individual cells, and 2) the anemia of space flight. This ground-based study also will serve as a Space Station Development Study in gravitational effects on intracellular signal transduction.

  13. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  14. THE OPTIMAL GRAVITATIONAL LENS TELESCOPE

    SciTech Connect

    Surdej, J.; Hanot, C.; Sadibekova, T.; Delacroix, C.; Habraken, S.; Coleman, P.; Dominik, M.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sluse, D.

    2010-05-15

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  15. Chirality and gravitational parity violation.

    PubMed

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented.

  16. Gravitational waves and multimessenger astronomy

    NASA Astrophysics Data System (ADS)

    Ricci, Fulvio

    2016-07-01

    It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.

  17. Cardiovascular Adjustments to Gravitational Stress

    NASA Technical Reports Server (NTRS)

    Blomqvist, C. Gunnar; Stone, H. Lowell

    1991-01-01

    The effects of gravity on the cardiovascular system must be taken into account whenever a hemodynamic assessment is made. All intravascular pressure have a gravity-dependent hydrostatic component. The interaction between the gravitational field, the position of the body, and the functional characteristics of the blood vessels determines the distribution of intravascular volume. In turn this distribution largely determines cardiac pump function. Multiple control mechanisms are activated to preserve optimal tissue perfusion when the magnitude of the gravitational field or its direction relative to the body changes. Humans are particularly sensitive to such changes because of the combination of their normally erect posture and the large body mass and blood volume below the level of the heart. Current aerospace technology also exposes human subjects to extreme variations in the gravitational forces that range from zero during space travel to as much an nine-times normal during operation of high-performance military aircraft. This chapter therefore emphasizes human physiology.

  18. Lattice-Boltzmann simulations of repulsive particle-particle and particle-wall interactions: Coughing and choking

    NASA Astrophysics Data System (ADS)

    Başaǧaoǧlu, Hakan; Succi, Sauro

    2010-04-01

    We propose and numerically investigate a new particle retention mechanism for particle entrapment in creeping flows in a constricted section of a saturated rough-walled narrow flow channel. We hypothesize that particles, whose size is smaller than channel width, can be temporarily or permanently immobilized in a flow channel away from channel walls due to particle-particle and particle-wall repulsive potentials, and, consequently, the flow field is clogged temporarily (coughing) or permanently (choking). Two mathematically simplified repulsive particle-particle and particle-wall interaction potentials are incorporated into a two-dimensional colloidal lattice-Boltzmann model. These potentials are two-body Lennard-Jones 12 and screened electrostatic repulsive potentials. Numerical simulations reveal that unlike in smooth-walled flow channels, particles are entrapped away from rough-walled channel walls and subsequently clog the flow field if fluid-drag and repulsive forces on particles are in balance. Off-balance forces, however, could result in temporary clogging if repulsive forces are stronger on the advancing edge of a particle than on its trailing edge. The new conceptualization and two-particle numerical simulations successfully captured (i) temporary entrapment of two particles (coughing), (ii) temporary entrapment of one of the particles with permanent entrapment of the other particle (coughing-choking), and (iii) permanent entrapment of both particles (choking) as a function of repulsive interaction strength.

  19. pH-programmable self-assembly of plasmonic nanoparticles: hydrophobic interaction versus electrostatic repulsion

    NASA Astrophysics Data System (ADS)

    Li, Weikun; Kanyo, Istvan; Kuo, Chung-Hao; Thanneeru, Srinivas; He, Jie

    2014-12-01

    We report a general strategy to conceptualize a new design for the pH-programmable self-assembly of plasmonic gold nanoparticles (AuNPs) tethered by random copolymers of poly(styrene-co-acrylic acid) (P(St-co-AA)). It is based on using pH as an external stimulus to reversibly change the surface charge of polymer tethers and to control the delicate balance of interparticle attractive and repulsive interactions. By incorporating -COOH moieties locally within PSt hydrophobic segments, the change in the ionization degree of -COOH moieties can dramatically disrupt the hydrophobic attraction within a close distance. pH acts as a key parameter to control the deprotonation of -COOH moieties and ``programs'' the assembled nanostructures of plasmonic nanoparticles in a stepwise manner. At a higher solution pH where -COOH groups of polymer tethers became highly deprotonated, electrostatic repulsion dominated the self-assembly and favored the formation of end-to-end, anisotropic assemblies, e.g. 1-D single-line chains. At a lower pH, the less deprotonated -COOH groups led to the decrease of electrostatic repulsion and the side-to-side aggregates, e.g. clusters and multi-line chains of AuNPs, became favorable. The pH-programmable self-assembly allowed us to engineer a ``manual'' program for a sequential self-assembly by changing the pH of the solution. We demonstrated that the two-step pH-programmable assembly could generate more sophisticated ``multi-block'' chains using two differently sized AuNPs. Our strategy offers a general means for the programmable design of plasmonic nanoparticles into the specific pre-ordained nanostructures that are potentially useful for the precise control over their plasmon coupling.We report a general strategy to conceptualize a new design for the pH-programmable self-assembly of plasmonic gold nanoparticles (AuNPs) tethered by random copolymers of poly(styrene-co-acrylic acid) (P(St-co-AA)). It is based on using pH as an external stimulus to

  20. Vapor-liquid equilibria for copolymer+solvent systems: Effect of intramolecular repulsion

    SciTech Connect

    Gupta, R.B.; Prausnitz, J.M.

    1995-03-01

    Role of intramolecular interactions in blend miscibility is well documented for polymer+copolymer mixtures. Some copolymer+polymer mixtures are miscible although their corresponding homopolymers are not miscible; for example, over a range of acrylonitrile content, styrene/acrylonitrile copolymers are miscible with poly(methyl methacrylate) but neither polystyrene nor polyacrylonitrile is miscible with poly(methyl methacrylate). Similarly, over a composition range, butadiene/acrylonitrile copolymers are miscible with poly(vinyl chloride) while none of the binary combinations of the homopolymers [polybutadiene, polyacrylonitrile, and poly(vinyl chloride)] are miscible. This behavior has been attributed to ``intramolecular repulsion`` between unlike copolymer segments. We have observed similar behavior in vapor-liquid equilibria (VLE) of copolymer+solvent systems. We find that acrylonitrile/butadiene copolymers have higher affinity for acetonitrile solvent than do polyacrylonitrile or polybutadiene. We attribute this non-intuitive behavior to ``intramolecular repulsion`` between unlike segments of the copolymer. This repulsive interaction is weakened when acetonitrile molecules are in the vicinity of unlike copolymer segments, favoring copolymer+solvent miscibility. We find similar behavior when acetonitrile is replaced by methyl ethyl ketone. To best knowledge, this effect has not been reported previously for VLE. We have obtained VLE data for mixtures containing a solvent and a copolymer as a function of copolymer composition. It appears that, at a given solvent partial pressure, there may be copolymer composition that yields maximum absorption of the solvent. This highly non-ideal VLE phase behavior may be useful for optimum design of a membrane for a separation process.

  1. The gravitational field of Phobos

    SciTech Connect

    Chao, B.F.; Rubincam, D.P. )

    1989-08-01

    The external gravitational field produced by a rigid body of uniform density but irregular shape is formulated in terms of spherical harmonics. The formalism is applied to the Martian satellite Phobos. Based on a 3-dimensional shape model of Phobos by Duxbury, the gravitational coefficients up to degree and order 4 for a homogeneous Phobos are computed. In particular, the authors find J{sub 2} = 0.105. The in-plane liberation amplitude of a homogeneous Phobos is predicted to be 0.97{degree}, within the rather large uncertainty of the observed value of 0.78 {plus minus} 0.4{degree}.

  2. GRAVITATIONAL WAVES FROM STELLAR COLLAPSE

    SciTech Connect

    C. L. FRYER

    2001-01-01

    Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.

  3. Particles, Fields, and Gravitation. Proceedings

    SciTech Connect

    Rembieli ski, J.

    1998-11-01

    These proceedings represent papers presented at the Conference on Particles, Fields, and Gravitation held in Lodz, Poland in April, 1998. The topics discussed included quantum deformations and noncommutative geometry, quantum mechanics, quantum and topological field theory, modern gravitation theory and geometrical methods in physics. Solvable and quasisolvable models were also disussed. The talks and the resulting papers provided a comprehensive coverage of the main aspects of contemporary theoretical and mathematical physics. The Conference was attended by more than 100 scientists from all over the world. There were 54 papers presented at the conference,out of which 1 paper has been abstracted for the Energy,Science and Technology database.(AIP)

  4. Gravitational compression of colloidal gels

    NASA Astrophysics Data System (ADS)

    Liétor-Santos, J. J.; Kim, C.; Lu, P. J.; Fernández-Nieves, A.; Weitz, D. A.

    2009-02-01

    We study the compression of depletion gels under the influence of a gravitational stress by monitoring the time evolution of the gel interface and the local volume fraction, φ , inside the gel. We find φ is not constant throughout the gel. Instead, there is a volume fraction gradient that develops and grows along the gel height as the compression process proceeds. Our results are correctly described by a non-linear poroelastic model that explicitly incorporates the φ -dependence of the gravitational, elastic and viscous stresses acting on the gel.

  5. Dynamics of dissipative gravitational collapse

    SciTech Connect

    Herrera, L.; Santos, N.O.

    2004-10-15

    The Misner and Sharp approach to the study of gravitational collapse is extended to the dissipative case in, both, the streaming out and the diffusion approximations. The role of different terms in the dynamical equation are analyzed in detail. The dynamical equation is then coupled to a causal transport equation in the context of Israel-Stewart theory. The decreasing of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamics state, is reobtained, at any time scale. In accordance with the equivalence principle, the same decreasing factor is obtained for the gravitational force term. Prospective applications of this result to some astrophysical scenarios are discussed.

  6. Testing the gravitational instability hypothesis?

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests

  7. Cosmologies with variable gravitational constant

    SciTech Connect

    Narkikar, J.V.

    1983-03-01

    In 1937 Dirac presented an argument, based on the socalled large dimensionless numbers, which led him to the conclusion that the Newtonian gravitational constant G changes with epoch. Towards the end of the last century Ernst Mach had given plausible arguments to link the property of inertia of matter to the large scale structure of the universe. Mach's principle also leads to cosmological models with a variable gravitational constant. Three cosmologies which predict a variable G are discussed in this paper both from theoretical and observational points of view.

  8. Topological Phase Transitions in the Repulsively Interacting Haldane-Hubbard Model.

    PubMed

    Vanhala, Tuomas I; Siro, Topi; Liang, Long; Troyer, Matthias; Harju, Ari; Törmä, Päivi

    2016-06-03

    Using dynamical mean-field theory and exact diagonalization we study the phase diagram of the repulsive Haldane-Hubbard model, varying the interaction strength and the sublattice potential difference. In addition to the quantum Hall phase with Chern number C=2 and the band insulator with C=0 present already in the noninteracting model, the system also exhibits a C=0 Mott insulating phase, and a C=1 quantum Hall phase. We explain the latter phase by a spontaneous symmetry breaking where one of the spin components is in the Hall state and the other in the band insulating state.

  9. Interplay between electron-phonon interaction and Hubbard repulsion: Bipolaron formation

    SciTech Connect

    Nath, S.; Mondal, N. S.; Ghosh, N. K.

    2015-06-24

    In the weak coupling limit, the 2D Hubbard model extended by on-site (local) and inter-site (long range) electron-phonon (EP) interaction has been investigated within Lanczos method of exact diagonalization (ED). On-site (S0) bipolaron formation has been favored by on-site EP interaction induced effective attraction between electrons. But, inter-site phonon mediated interaction between electrons helps to form both S0 and neighboring site (S1) bipolaron. It is further observed that both types of bipolaron formation are suppressed by on-site Hubbard repulsion.

  10. Structural ordering and glass forming of soft spherical particles with harmonic repulsions

    SciTech Connect

    Sun, Bin; Sun, Zhiwei; Ouyang, Wenze Xu, Shenghua

    2014-04-07

    We carry out dissipative particle dynamics simulations to investigate the dynamic process of phase transformation in the system with harmonic repulsion particles. Just below the melting point, the system undergoes liquid state, face-centered cubic crystallization, body-centered cubic crystallization, and reentrant melting phase transition upon compression, which is in good agreement with the phase diagram constructed previously via thermodynamic integration. However, when the temperature is decreased sufficiently, the system is trapped into an amorphous and frustrated glass state in the region of intermediate density, where the solid phase and crystal structure should be thermodynamically most stable.

  11. Ferromagnetism of the repulsive atomic Fermi gas: three-body recombination and domain formation

    NASA Astrophysics Data System (ADS)

    Zintchenko, Ilia; Wang, Lei; Troyer, Matthias

    2016-08-01

    The simplest model for itinerant ferromagnetism, the Stoner model, has so far eluded experimental observation in repulsive ultracold fermions due to rapid three-body recombination at large scattering lengths. Here we show that a ferromagnetic phase can be stabilised by imposing a moderate optical lattice. The reduced kinetic energy drop upon formation of a polarized phase in an optical lattice extends the ferromagnetic phase to smaller scattering lengths where three-body recombination is small enough to permit experimental detection of the phase. We also show, using time dependent density functional theory, that in such a setup ferromagnetic domains emerge rapidly from a paramagnetic initial state.

  12. Suppression of the quantum-mechanical collapse by repulsive interactions in a quantum gas

    SciTech Connect

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    2011-01-15

    The quantum-mechanical collapse (alias fall onto the center of particles attracted by potential -r{sup -2}) is a well-known issue in quantum theory. It is closely related to the quantum anomaly, i.e., breaking of the scaling invariance of the respective Hamiltonian by quantization. We demonstrate that the mean-field repulsive nonlinearity prevents the collapse and thus puts forward a solution to the quantum-anomaly problem that differs from that previously developed in the framework of the linear quantum-field theory. This solution may be realized in the 3D or 2D gas of dipolar bosons attracted by a central charge and in the 2D gas of magnetic dipoles attracted by a current filament. In the 3D setting, the dipole-dipole interactions are also taken into regard, in the mean-field approximation, resulting in a redefinition of the scattering length which accounts for the contact repulsion between the bosons. In lieu of the collapse, the cubic nonlinearity creates a 3D ground state (GS), which does not exist in the respective linear Schroedinger equation. The addition of the harmonic trap gives rise to a tristability, in the case when the Schroedinger equation still does not lead to the collapse. In the 2D setting, the cubic nonlinearity is not strong enough to prevent the collapse; however, the quintic term does it, creating the GS, as well as its counterparts carrying the angular momentum (vorticity). Counterintuitively, such self-trapped 2D modes exist even in the case of a weakly repulsive potential r{sup -2}. The 2D vortical modes avoid the phase singularity at the pivot (r=0) by having the amplitude diverging at r{yields}0 instead of the usual situation with the amplitude of the vortical mode vanishing at r{yields}0 (the norm of the mode converges despite of the singularity of the amplitude at r{yields}0). In the presence of the harmonic trap, the 2D quintic model with a weakly repulsive central potential r{sup -2} gives rise to three confined modes, the middle

  13. Oscillator death induced by amplitude-dependent coupling in repulsively coupled oscillators.

    PubMed

    Liu, Weiqing; Xiao, Guibao; Zhu, Yun; Zhan, Meng; Xiao, Jinghua; Kurths, Jürgen

    2015-05-01

    The effects of amplitude-dependent coupling on oscillator death (OD) are investigated for two repulsively coupled Lorenz oscillators. Based on numerical simulations, it is shown that as constraint strengths on the amplitude-dependent coupling change, an oscillatory state may undergo a transition to an OD state. The parameter regimes of the OD domain are theoretically determined, which coincide well with the numerical results. An electronic circuit is set up to exhibit the transition process to the OD state with an amplitude-dependent coupling. These findings may have practical importance on chaos control and oscillation depression.

  14. Oscillator death induced by amplitude-dependent coupling in repulsively coupled oscillators

    NASA Astrophysics Data System (ADS)

    Liu, Weiqing; Xiao, Guibao; Zhu, Yun; Zhan, Meng; Xiao, Jinghua; Kurths, Jürgen

    2015-05-01

    The effects of amplitude-dependent coupling on oscillator death (OD) are investigated for two repulsively coupled Lorenz oscillators. Based on numerical simulations, it is shown that as constraint strengths on the amplitude-dependent coupling change, an oscillatory state may undergo a transition to an OD state. The parameter regimes of the OD domain are theoretically determined, which coincide well with the numerical results. An electronic circuit is set up to exhibit the transition process to the OD state with an amplitude-dependent coupling. These findings may have practical importance on chaos control and oscillation depression.

  15. Soft Repulsion and the Behavior of Equations of State at High Pressures

    NASA Astrophysics Data System (ADS)

    Boshkova, Olga L.; Deiters, Ulrich K.

    2010-02-01

    The so-called characteristic curves of Brown—the Amagat (Joule inversion), Boyle, and Charles (Joule-Thomson inversion) curves—of hydrogen are calculated with several equations of state. This work demonstrates that not all equations can generate physically reasonable Amagat curves. After inclusion of corrections for soft repulsion (based on the Weeks-Chandler-Andersen perturbation theory) and quantum effects into the simplified perturbed-hard-chain theory (SPHCT) equation of state, this equation is able to not only generate an Amagat curve, but also predict pVT data, residual Gibbs energies, and heat capacities of several gases at and above 100 MPa reasonably well.

  16. Evolutionary design of non-frustrated networks of phase-repulsive oscillators

    PubMed Central

    Levnajić, Zoran

    2012-01-01

    Evolutionary optimisation algorithm is employed to design networks of phase-repulsive oscillators that achieve an anti-phase synchronised state. By introducing the link frustration, the evolutionary process is implemented by rewiring the links with probability proportional to their frustration, until the final network displaying a unique non-frustrated dynamical state is reached. Resulting networks are bipartite and with zero clustering. In addition, the designed non-frustrated anti-phase synchronised networks display a clear topological scale. This contrasts usually studied cases of networks with phase-attractive dynamics, whose performance towards full synchronisation is typically enhanced by the presence of a topological hierarchy. PMID:23243494

  17. Gravitationally neutral dark matter-dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    NASA Astrophysics Data System (ADS)

    Gribov, I. A.; Trigger, S. A.

    2016-11-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.

  18. Merging Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  19. Transformation optics: Gravitational lens on a chip

    NASA Astrophysics Data System (ADS)

    Leonhardt, Ulf

    2013-11-01

    Massive objects in space act as gravitational lenses, bending and focusing light. Scientists have now created a photonic analogue of a gravitational lens on a chip, and have shown that it is strong enough to force light into orbits.

  20. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.

  1. The Gravitational Landscape of the Solar System

    ERIC Educational Resources Information Center

    van den Berg, Willem H.

    2008-01-01

    The Sun's gravitational influence is of course much greater than that of any of the planets. Just how much greater can be dramatically illustrated by plotting their combined gravitational potential on the same graph.

  2. How to test gravitation theories by means of gravitational-wave measurements

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1974-01-01

    Gravitational-wave experiments are a potentially powerful tool for testing gravitation theories. Most theories in the literature predict rather different polarization properties for gravitational waves than are predicted by general relativity; and many theories predict anomalies in the propagation speeds of gravitational waves.

  3. Gravitational Lenses in the Classroom

    ERIC Educational Resources Information Center

    Ros, Rosa M.

    2008-01-01

    It is not common to introduce current astronomy in school lessons. This article presents a set of experiments about gravitational lenses. It is normal to simulate them by means of computers, but it is very simple to simulate similar effects using a drinking glass full of liquid or using only the glass base. These are, of course, cheap and easy…

  4. Thought experiments on gravitational forces

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.; Katz, Joseph

    2014-03-01

    Large contributions to the near closure of the Universe and to the acceleration of its expansion are due to the gravitation of components of the stress-energy tensor other than its mass density. To familiarize astronomers with the gravitation of these components we conduct thought experiments on gravity, analogous to the real experiments that our forebears conducted on electricity. By analogy to the forces due to electric currents we investigate the gravitational forces due to the flows of momentum, angular momentum and energy along a cylinder. Under tension the gravity of the cylinder decreases but the `closure' of the 3-space around it increases. When the cylinder carries a torque the flow of angular momentum along it leads to a novel helical interpretation of Levi-Civita's external metric and a novel relativistic effect. Energy currents give gravomagnetic effects in which parallel currents repel and antiparallel currents attract, though such effects must be added to those of static gravity. The gravity of beams of light give striking illustrations of these effects and a re-derivation of light bending via the gravity of the light itself. Faraday's experiments lead us to discuss lines of force of both gravomagnetic and gravity fields. A serious conundrum arises if Landau and Lifshitz's definition of gravitational force is adopted.

  5. Counteracting Gravitation In Dielectric Liquids

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E.; Jackson, Henry W.; Strayer, Donald M.

    1993-01-01

    Force of gravity in variety of dielectric liquids counteracted by imposing suitably contoured electric fields. Technique makes possible to perform, on Earth, variety of experiments previously performed only in outer space and at great cost. Also used similarly in outer space to generate sort of artificial gravitation.

  6. Gravitational lensing in plasmic medium

    SciTech Connect

    Bisnovatyi-Kogan, G. S. Tsupko, O. Yu.

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  7. Normalization of Gravitational Acceleration Models

    NASA Technical Reports Server (NTRS)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.

    2011-01-01

    Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  8. The Optical Gravitational Lensing Experiment

    NASA Technical Reports Server (NTRS)

    Udalski, A.; Szymanski, M.; Kaluzny, J.; Kubiak, M.; Mateo, Mario

    1992-01-01

    The technical features are described of the Optical Gravitational Lensing Experiment, which aims to detect a statistically significant number of microlensing events toward the Galactic bulge. Clusters of galaxies observed during the 1992 season are listed and discussed and the reduction methods are described. Future plans are addressed.

  9. Gravitational lensing in plasmic medium

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2015-07-01

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  10. Caution: Strong Gravitational Field Present

    ERIC Educational Resources Information Center

    Reif, Marc

    2014-01-01

    I came up with a new way to introduce the concept of a constant gravitational field near the surface of the Earth. I made "g-field detectors" (see Fig. 1 ) and suspended them by strings from the ceiling in a regular spacing. The detectors are cardstock arrows with a hole punched out of them and the letter "g" in the center.

  11. A SIMPLE GRAVITATIONAL LENS MODEL FOR COSMIC VOIDS

    SciTech Connect

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu

    2015-05-10

    We present a simple gravitational lens model to illustrate the ease of using the embedded lensing theory when studying cosmic voids. It confirms the previously used repulsive lensing models for deep voids. We start by estimating magnitude fluctuations and weak-lensing shears of background sources lensed by large voids. We find that sources behind large (∼90 Mpc) and deep voids (density contrast about −0.9) can be magnified or demagnified with magnitude fluctuations of up to ∼0.05 mag and that the weak-lensing shear can be up to the ∼10{sup −2} level in the outer regions of large voids. Smaller or shallower voids produce proportionally smaller effects. We investigate the “wiggling” of the primary cosmic microwave background (CMB) temperature anisotropies caused by intervening cosmic voids. The void-wiggling of primary CMB temperature gradients is of the opposite sign to that caused by galaxy clusters. Only extremely large and deep voids can produce wiggling amplitudes similar to galaxy clusters, ∼15 μK by a large void of radius ∼4° and central density contrast −0.9 at redshift 0.5 assuming a CMB background gradient of ∼10 μK arcmin{sup −1}. The dipole signal is spread over the entire void area, and not concentrated at the lens center as it is for clusters. Finally, we use our model to simulate CMB sky maps lensed by large cosmic voids. Our embedded theory can easily be applied to more complicated void models and used to study gravitational lensing of the CMB, to probe dark matter profiles, to reduce the lensing-induced systematics in supernova Hubble diagrams, and to study the integrated Sachs–Wolfe effect.

  12. Drosophila neurexin IV interacts with Roundabout and is required for repulsive midline axon guidance.

    PubMed

    Banerjee, Swati; Blauth, Kevin; Peters, Kimberly; Rogers, Stephen L; Fanning, Alan S; Bhat, Manzoor A

    2010-04-21

    Slit/Roundabout (Robo) signaling controls midline repulsive axon guidance. However, proteins that interact with Slit/Robo at the cell surface remain largely uncharacterized. Here, we report that the Drosophila transmembrane septate junction-specific protein Neurexin IV (Nrx IV) functions in midline repulsive axon guidance. Nrx IV is expressed in the neurons of the developing ventral nerve cord, and nrx IV mutants show crossing and circling of ipsilateral axons and fused commissures. Interestingly, the axon guidance defects observed in nrx IV mutants seem independent of its other binding partners, such as Contactin and Neuroglian and the midline glia protein Wrapper, which interacts in trans with Nrx IV. nrx IV mutants show diffuse Robo localization, and dose-dependent genetic interactions between nrx IV/robo and nrx IV/slit indicate that they function in a common pathway. In vivo biochemical studies reveal that Nrx IV associates with Robo, Slit, and Syndecan, and interactions between Robo and Slit, or Nrx IV and Slit, are affected in nrx IV and robo mutants, respectively. Coexpression of Nrx IV and Robo in mammalian cells confirms that these proteins retain the ability to interact in a heterologous system. Furthermore, we demonstrate that the extracellular region of Nrx IV is sufficient to rescue Robo localization and axon guidance phenotypes in nrx IV mutants. Together, our studies establish that Nrx IV is essential for proper Robo localization and identify Nrx IV as a novel interacting partner of the Slit/Robo signaling pathway.

  13. Effects of interaction on thermodynamics of a repulsive Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Satadal; Das, Tapan Kumar; Chakrabarti, Barnali

    2013-11-01

    We report the effects of interaction on thermodynamic properties of a repulsive Bose-Einstein condensate confined in a harmonic trap by using the correlated potential harmonics expansion method. This many-body technique permits the use of a realistic interactomic interaction, which gives rise to the effective long-range interaction of the condensate in terms of the s-wave scattering length. We have computed temperature (T) dependence of the chemical potential, specific heat, condensate fraction, entropy, pressure, and the average energy per particle of a system containing a large number (A) of 87Rb atoms in the Joint Institute for Laboratory Astrophysics (JILA) trap. The repulsion among the interacting bosons results in a small but measurable drop of condensate fraction and critical temperature (Tc), compared to those of a noninteracting condensate. These are in agreement with the experiment. Although all thermodynamic quantities have a strong dependence on A and to a smaller extent on the interatomic interaction, our numerical calculation appears to show that a thermodynamic quantity per particle follows a universal behavior as a function of T/Tc. This shows the importance of Tc for all thermodynamic properties of the condensate. As expected, for T>Tc, these properties follow those of a trapped noncondensed Bose gas.

  14. Segment Self-Repulsion is the Major Driving Force of Influenza Genome Packaging

    NASA Astrophysics Data System (ADS)

    Venev, Sergey V.; Zeldovich, Konstantin B.

    2013-03-01

    The genome of influenza A virus consists of eight separate RNA segments, which are selectively packaged into virions prior to virus budding. The microscopic mechanism of highly selective packaging involves molecular interactions between packaging signals in the genome segments and remains poorly understood. We propose that the condition of proper packaging can be formulated as a large gap between RNA-RNA interaction energies in the viable virion with eight unique segments and in improperly packed assemblages lacking the complete genome. We then demonstrate that selective packaging of eight unique segments into an infective influenza virion can be achieved by self-repulsion of identical segments at the virion assembly stage, rather than by previously hypothesized intricate molecular recognition of particular segments. Using Monte Carlo simulations to maximize the energy gap, without any other assumptions, we generated model eight-segment virions, which all display specific packaging, strong self-repulsion of the segments, and reassortment patterns similar to natural influenza. The model provides a biophysical foundation of influenza genome packaging and reassortment and serves as an important step towards robust sequence-driven prediction of reassortment patterns of the influenza virus.

  15. Discrete perturbation theory for the hard-core attractive and repulsive Yukawa potentials

    NASA Astrophysics Data System (ADS)

    Torres-Arenas, J.; Cervantes, L. A.; Benavides, A. L.; Chapela, G. A.; del Río, F.

    2010-01-01

    In this work we apply the discrete perturbation theory [A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97, 1225 (1999)] to obtain an equation of state for the case of two continuous potentials: the hard-core attractive Yukawa potential and the hard-core repulsive Yukawa potential. The main advantage of the presented equation of state is that it is an explicit analytical expression in the parameters that characterize the intermolecular interactions. With a suitable choice of their inverse screening length parameter one can model the behavior of different systems. This feature allows us to make a systematic study of the effect of the variation in the parameters on the thermodynamic properties of this system. We analyze single phase properties at different conditions of density and temperature, and vapor-liquid phase diagrams for several values of the reduced inverse screening length parameter within the interval κ∗=0.1-5.0. The theoretical predictions are compared with available and new Monte Carlo simulation data. Good agreement is found for most of the cases and better predictions are found for the long-range ones. The Yukawa potential is an example of a family of hard-core plus a tail (attractive or repulsive) function that asymptotically goes to zero as the separations between particles increase. We would expect that similar results could be found for other potentials with these characteristics.

  16. Discrete perturbation theory for the hard-core attractive and repulsive Yukawa potentials.

    PubMed

    Torres-Arenas, J; Cervantes, L A; Benavides, A L; Chapela, G A; del Río, F

    2010-01-21

    In this work we apply the discrete perturbation theory [A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97, 1225 (1999)] to obtain an equation of state for the case of two continuous potentials: the hard-core attractive Yukawa potential and the hard-core repulsive Yukawa potential. The main advantage of the presented equation of state is that it is an explicit analytical expression in the parameters that characterize the intermolecular interactions. With a suitable choice of their inverse screening length parameter one can model the behavior of different systems. This feature allows us to make a systematic study of the effect of the variation in the parameters on the thermodynamic properties of this system. We analyze single phase properties at different conditions of density and temperature, and vapor-liquid phase diagrams for several values of the reduced inverse screening length parameter within the interval kappa( *)=0.1-5.0. The theoretical predictions are compared with available and new Monte Carlo simulation data. Good agreement is found for most of the cases and better predictions are found for the long-range ones. The Yukawa potential is an example of a family of hard-core plus a tail (attractive or repulsive) function that asymptotically goes to zero as the separations between particles increase. We would expect that similar results could be found for other potentials with these characteristics.

  17. Extended Structures in RNA Folding Intermediates Are Due to Nonnative Interactions Rather than Electrostatic Repulsion

    SciTech Connect

    Baird, Nathan J.; Gong, Haipeng; Zaheer, Syed S.; Freed, Karl F.; Pan, Tao; Sosnick, Tobin R.

    2010-05-25

    RNA folding occurs via a series of transitions between metastable intermediate states for Mg{sup 2+} concentrations below those needed to fold the native structure. In general, these folding intermediates are considerably less compact than their respective native states. Our previous work demonstrates that the major equilibrium intermediate of the 154-residue specificity domain (S-domain) of the Bacillus subtilis RNase P RNA is more extended than its native structure. We now investigate two models with falsifiable predictions regarding the origins of the extended intermediate structures in the S-domains of the B. subtilis and the Escherichia coli RNase P RNA that belong to different classes of P RNA and have distinct native structures. The first model explores the contribution of electrostatic repulsion, while the second model probes specific interactions in the core of the folding intermediate. Using small-angle X-ray scattering and Langevin dynamics simulations, we show that electrostatics plays only a minor role, whereas specific interactions largely account for the extended nature of the intermediate. Structural contacts in the core, including a nonnative base pair, help to stabilize the intermediate conformation. We conclude that RNA folding intermediates adopt extended conformations due to short-range, nonnative interactions rather than generic electrostatic repulsion of helical domains. These principles apply to other ribozymes and riboswitches that undergo functionally relevant conformational changes.

  18. Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions

    PubMed Central

    Chen, Hsieh; Cox, Jason R.; Ow, Hooisweng; Shi, Rena; Panagiotopoulos, Athanassios Z.

    2016-01-01

    Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca2+ ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions. PMID:27334145

  19. Repulsive Casimir effect from extra dimensions and Robin boundary conditions: From branes to pistons

    SciTech Connect

    Elizalde, E.; Odintsov, S. D.; Saharian, A. A.

    2009-03-15

    We evaluate the Casimir energy and force for a massive scalar field with general curvature coupling parameter, subject to Robin boundary conditions on two codimension-one parallel plates, located on a (D+1)-dimensional background spacetime with an arbitrary internal space. The most general case of different Robin coefficients on the two separate plates is considered. With independence of the geometry of the internal space, the Casimir forces are seen to be attractive for special cases of Dirichlet or Neumann boundary conditions on both plates and repulsive for Dirichlet boundary conditions on one plate and Neumann boundary conditions on the other. For Robin boundary conditions, the Casimir forces can be either attractive or repulsive, depending on the Robin coefficients and the separation between the plates, what is actually remarkable and useful. Indeed, we demonstrate the existence of an equilibrium point for the interplate distance, which is stabilized due to the Casimir force, and show that stability is enhanced by the presence of the extra dimensions. Applications of these properties in braneworld models are discussed. Finally, the corresponding results are generalized to the geometry of a piston of arbitrary cross section.

  20. Problems of Global Networks of Gravitational Detectors

    NASA Astrophysics Data System (ADS)

    Kuchik, E. K.; Rudenko, V. N.

    We describe the network of gravitational wave detectors which now exist in the world: Stanford-Louisiana-Pert-Geneva-Moscow. A computer simulation of a gravitational wave detection is performed. Proposals for the creation of a global observational gravitational wave service are made.

  1. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approximately 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  2. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approx. 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters, through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  3. Escaping the crunch: Gravitational effects in classical transitions

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew C.; Yang, I.-Sheng

    2010-09-01

    During eternal inflation, a landscape of vacua can be populated by the nucleation of bubbles. These bubbles inevitably collide, and collisions sometimes displace the field into a new minimum in a process known as a classical transition. In this paper, we examine some new features of classical transitions that arise when gravitational effects are included. Using the junction condition formalism, we study the conditions for energy conservation in detail, and solve explicitly for the types of allowed classical transition geometries. We show that the repulsive nature of domain walls, and the de Sitter expansion associated with a positive energy minimum, can allow for classical transitions to vacua of higher energy than that of the colliding bubbles. Transitions can be made out of negative or zero energy (terminal) vacua to a de Sitter phase, restarting eternal inflation, and populating new vacua. However, the classical transition cannot produce vacua with energy higher than the original parent vacuum, which agrees with previous results on the construction of pockets of false vacuum. We briefly comment on the possible implications of these results for various measure proposals in eternal inflation.

  4. Does Pressure Accentuate General Relativistic Gravitational Collapse and Formation of Trapped Surfaces?

    NASA Astrophysics Data System (ADS)

    Mitra, Abhas

    2013-04-01

    It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.

  5. Parametric study of the vibration-induced repulsion or attraction force on a particle in a viscous fluid cell.

    PubMed

    Saadatmand, Mehrrad; Kawaji, Masahiro

    2014-04-01

    Experiments and three-dimensional direct numerical simulations were performed to investigate the effects of physical parameters on the repulsion or attraction force affecting the motion of a particle oscillating near a solid wall of a fluid cell under microgravity. The following physical parameters were investigated: fluid cell amplitude, fluid and particle densities, angular frequency of the cell vibration, initial distance between the particle centroid and the closest cell wall, particle radius, and dynamic viscosity. Based on the simulations, a nondimensional relation was developed to relate those physical parameters to the repulsion or attraction force affecting the particle. The relation shows that the repulsion or attraction force is increased by the increase in the cell vibration amplitude and frequency and also the force direction would change from attraction to repulsion above a threshold fluid viscosity. Relations to other physical parameters were also studied and are reported. This paper follows our previous work on the physical mechanism of observed repulsion force on a particle in a viscous fluid cell [M. Saadatmand and M. Kawaji, Phys. Rev. E 88, 023019 (2013)].

  6. Spherical gravitational curvature boundary-value problem

    NASA Astrophysics Data System (ADS)

    Šprlák, Michal; Novák, Pavel

    2016-08-01

    Values of scalar, vector and second-order tensor parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth's gravitational field.

  7. In vitro investigations of repulsion during laser lithotripsy using a pendulum set-up.

    PubMed

    Sroka, Ronald; Haseke, Nicolas; Pongratz, Thomas; Hecht, Volkmar; Tilki, Derya; Stief, Christian G; Bader, Markus Jürgen

    2012-05-01

    Ureteroscopic laser lithotripsy is a commonly used technique to treat ureteral calculi.The type of energy source used is one of the main influences of retrograd calculi propulsion. Using a momentum pendulum under-water set-up the induced momentum and the initial velocity were investigated. Pulsed laser light from three different clinically available laser systems, including a Ho:YAG laser, a frequency-doubled double-pulse (second harmonic generation, SHG) Nd:YAG laser and a flash-lamp pumped dye (FLPD) laser, were transmitted via flexible fibres of different core diameter to the front of the pendulum sinker. Single pulses at variable pulse energy, according to the clinical laser parameter settings, were applied to the target sinker, thus causing a repulsion-induced deflection which was documented by video recording. The maximum deflection was determined. Solving the differential equation of a pendulum gives the initial velocity, the laser-induced momentum and the efficiency of momentum transfer. The induced deflection as well as the starting velocity of the two short-duration pulsed laser systems (SHG Nd:YAG, FLPD) were similar (s (max) = 2-3.6 cm and v (0) = 150-200 mm/s, respectively), whereas both values were lower using the Ho:YAG laser with a long pulse duration (s (max) = 0.9--1.6 cm and v (0) = 60-105 mm/s, respectively). The momentum I induced by the Ho:YAG laser was only 50% and its transfer efficacy η (Repuls) was reduced to less than 5% of the values of the two short-pulsed laser systems. This investigation clearly showed the variable parts and amounts of repulsion using different pulsed lasers in an objective and reproducible manner. The momentum transfer efficiency could be determined without any physical friction problems. Further investigations are needed to compare stone fragmentation techniques with respect to laser repulsion and its clinical impact.

  8. a Field-Theoretical Investigation of 2-D Coulomb Systems with Short-Range Yukawa Repulsion.

    NASA Astrophysics Data System (ADS)

    Jargocki, Krzysztof Piotr

    The two-dimensional Coulomb gas, consisting of positive and negative charges, is an important system which, on one hand, is equivalent to the vortex sector of the planar X-Y model, and, on the other, to the sine-Gordon field theory. In most treatments the charged particles are assumed to have a repulsive hard core which prevents arbitrarily close approaches. In the present work a new regularization scheme based on a soft short-range Yukawa repulsion between the Coulomb gas particles is presented. This formulation is transcribed into a local sine-Gordon-like field theory involving two Bose fields, one the original massless sine -Gordon field corresponding to the long-range Coulomb interaction and an auxiliary massive field corresponding to the short -range Yukawa repulsion. The resulting Lagrangian is not Hermitian. Using the techniques of functional integration, an effective field theory involving the Coulomb field alone is obtained by integrating out the massive field. The resulting Lagrangian is now Hermitian. Then a generalization of Peierls' inequality is used to make a variational calculation of the ground state energy of the Coulomb system. Unlike in the pure sine-Gordon case the theory has a well-defined ground state energy for (beta)q('2) > 2 (or (beta)c('2) > 8(pi)). A new method is used to derive the Kosterlitz -Thouless renormalization group equations, starting with the original sine-Gordon-like theory. The equations are identical to those found previously by other authors. A wave function renormalization is found to be necessary in addition to the normal ordering discussed by Coleman. A fermionized version of the theory is obtained, using the dictionary provided by Kogut and Susskind, which involves two Fermi fields and an electromagnetic potential. Position -space correlation functions are calculated at the critical point. The effective potential is computed in the one -loop approximation. A nonlinear field theory with derivative couplings is found to

  9. Gravitational waves from compact objects

    NASA Astrophysics Data System (ADS)

    de Freitas Pacheco, José Antonio

    2010-11-01

    Large ground-based laser beam interferometers are presently in operation both in the USA (LIGO) and in Europe (VIRGO) and potential sources that might be detected by these instruments are revisited. The present generation of detectors does not have a sensitivity high enough to probe a significant volume of the universe and, consequently, predicted event rates are very low. The planned advanced generation of interferometers will probably be able to detect, for the first time, a gravitational signal. Advanced LIGO and EGO instruments are expected to detect few (some): binary coalescences consisting of either two neutron stars, two black holes or a neutron star and a black hole. In space, the sensitivity of the planned LISA spacecraft constellation will allow the detection of the gravitational signals, even within a “pessimistic" range of possible signals, produced during the capture of compact objects by supermassive black holes, at a rate of a few tens per year.

  10. Natural wormholes as gravitational lenses

    SciTech Connect

    Cramer, J.G.; Forward, R.L.; Morris, M.S.; Visser, M.; Benford, G.; Landis, G.A. Forward Unlimited, P.O. Box 2783, Malibu, California 90265 Department of Physics and Astronomy, Butler University, Indianapolis, Indiana 46208 Physics Department, Washington University, St. Louis, Missouri 63130-4899 Physics Department, University of California at Irvine, Irvine, California 92717-4575 NASA Lewis Research Center, Mail Code 302-1, Cleveland, Ohio 44135-3191 )

    1995-03-15

    Once quantum mechanical effects are included, the hypotheses underlying the positive mass theorem of classical general relativity fail. As an example of the peculiarities attendant upon this observation, a wormhole mouth embedded in a region of high mass density might accrete mass, giving the other mouth a net [ital negative] mass of unusual gravitational properties. The lensing of such a gravitationally negative anomalous compact halo object (GNACHO) will enhance background stars with a time profile that is observable and qualitatively different from that recently observed for massive compact halo objects (MACHO's) of positive mass. While the analysis is discussed in terms of wormholes, the observational test proposed is more generally a search for compact negative mass objects of any origin. We recommend that MACHO search data be analyzed for GNACHO's.

  11. Extragalactic sources of gravitational waves

    NASA Astrophysics Data System (ADS)

    Rees, M. J.

    The prospects of detecting gravitational waves from galactic nuclei are shown to be bleak: although some 'scenarios', such as those involving black hole coalescence, would emit a pulse with about 0.1 efficiency, the predicted event rate is discouragingly low. If most of the 'unseen' mass in the universe were in the remnants of massive 'Population III' stars, then the overlapping bursts from the collapse of such objects in early epochs would yield a stochastic background that could amount to about 0.001 (or even more) of the critical cosmological density. Such a background may be above the detectability threshold for future experiments, and can be probed by studying the timing noise of pulsars, and the secular behavior of the binary pulsar. General constraints on stochastic backgrounds, including 'primordial' gravitational radiation, are summarized.

  12. Gravitational instabilities in protostellar disks

    NASA Technical Reports Server (NTRS)

    Tohline, J. E.

    1994-01-01

    The nonaxisymmetric stability of self-gravitating, geometrically thick accretion disks has been studied for protostellar systems having a wide range of disk-to-central object mass ratios. Global eigenmodes with four distinctly different characters were identified using numerical, nonlinear hydrodynamic techniques. The mode that appears most likely to arise in normal star formation settings, however, resembles the 'eccentric instability' that was identified earlier in thin, nearly Keplerian disks: It presents an open, one-armed spiral pattern that sweeps continuously in a trailing direction through more than 2-pi radians, smoothly connecting the inner and outer edges of the disk, and requires cooperative motion of the point mass for effective amplification. This particular instability promotes the development of a single, self-gravitating clump of material in orbit about the point mass, so its routine appearance in our simulations supports the conjecture that the eccentric instability provides a primary route to the formation of short-period binaries in protostellar systems.

  13. Tuning Gravitationally Lensed Standard Sirens

    NASA Astrophysics Data System (ADS)

    Jönsson, J.; Goobar, A.; Mörtsell, E.

    2007-03-01

    Gravitational waves emitted by chirping supermassive black hole binaries could in principle be used to obtain very accurate distance determinations. Provided they have an electromagnetic counterpart from which the redshift can be determined, these standard sirens could be used to build a high-redshift Hubble diagram. Errors in the distance measurements will most likely be dominated by gravitational lensing. We show that the (de)magnification due to inhomogeneous foreground matter will increase the scatter in the measured distances by a factor of ~10. We propose to use optical and IR data of the foreground galaxies to minimize the degradation from weak lensing. We find that the net effect of correcting the estimated distances for lensing is comparable to increasing the sample size by a factor of 3 when using the data to constrain cosmological parameters.

  14. Nonadiabatic charged spherical gravitational collapse

    SciTech Connect

    Di Prisco, A.; Herrera, L.; Le Denmat, G.; MacCallum, M. A. H.; Santos, N. O.

    2007-09-15

    We present a complete set of the equations and matching conditions required for the description of physically meaningful charged, dissipative, spherically symmetric gravitational collapse with shear. Dissipation is described with both free-streaming and diffusion approximations. The effects of viscosity are also taken into account. The roles of different terms in the dynamical equation are analyzed in detail. The dynamical equation is coupled to a causal transport equation in the context of Israel-Stewart theory. The decrease of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamic state, is reobtained, with the viscosity terms included. In accordance with the equivalence principle, the same decrease factor is obtained for the gravitational force term. The effect of the electric charge on the relation between the Weyl tensor and the inhomogeneity of the energy density is discussed.

  15. Gravitational wave science from space

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.

    2016-05-01

    The rich millihertz gravitational wave band can only be accessed with a space- based detector. The technology for such a detector will be demonstrated by the LISA Pathfinder satellite that is due to launch this year and ESA has selected gravitational wave detection from space as the science theme to be addressed by the L3 large mission to be launched around 2034. In this article we will discuss the sources that such an instrument will observe, and how the numbers of events and precision of parameter determination are affected by modifications to the, as yet not finalised, mission design. We will also describe some of the exciting scientific applications of these observations, to astrophysics, fundamental physics and cosmology.

  16. Structure, stability, and formation pathways of colloidal gels in systems with short-range attraction and long-range repulsion.

    PubMed

    van Schooneveld, Matti M; de Villeneuve, Volkert W A; Dullens, Roel P A; Aarts, Dirk G A L; Leunissen, Mirjam E; Kegel, Willem K

    2009-04-09

    We study colloidal gels formed upon centrifugation of dilute suspensions of spherical colloids (radius 446 nm) that interact through a long-range electrostatic repulsion (Debye length approximately 850 nm) and a short-range depletion attraction (approximately 12.5 nm), by means of confocal scanning laser microscopy (CSLM). In these systems, at low colloid densities, colloidal clusters are stable. Upon increasing the density by centrifugation, at different stages of cluster formation, we show that colloidal gels are formed that significantly differ in structure. While significant single-particle displacements do not occur on the hour time scale, the different gels slowly evolve within several weeks to a similar structure that is at least stable for over a year. Furthermore, while reference systems without long-range repulsion collapse into dense glassy states, the repulsive colloidal gels are able to support external stress in the form of a centrifugal field of at least 9g.

  17. Superconductivity in repulsively interacting fermions on a diamond chain: Flat-band-induced pairing

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keita; Okumura, Masahiko; Yamada, Susumu; Machida, Masahiko; Aoki, Hideo

    2016-12-01

    To explore whether a flat-band system can accommodate superconductivity, we consider repulsively interacting fermions on the diamond chain, a simplest possible quasi-one-dimensional system that contains a flat band. Exact diagonalization and the density-matrix renormalization group are used to show that we have a significant binding energy of a Cooper pair with a long-tailed pair-pair correlation in real space when the total band filling is slightly below 1/3, where a filled dispersive band interacts with the flat band that is empty but close to EF. Pairs selectively formed across the outer sites of the diamond chain are responsible for the pairing correlation. At exactly 1/3-filling an insulating phase emerges, where the entanglement spectrum indicates the particles on the outer sites are highly entangled and topological. These come from a peculiarity of the flat band in which "Wannier orbits" are not orthogonalizable.

  18. Improved evolutionary algorithm for the global optimization of clusters with competing attractive and repulsive interactions

    NASA Astrophysics Data System (ADS)

    Cruz, S. M. A.; Marques, J. M. C.; Pereira, F. B.

    2016-10-01

    We propose improvements to our evolutionary algorithm (EA) [J. M. C. Marques and F. B. Pereira, J. Mol. Liq. 210, 51 (2015)] in order to avoid dissociative solutions in the global optimization of clusters with competing attractive and repulsive interactions. The improved EA outperforms the original version of the method for charged colloidal clusters in the size range 3 ≤ N ≤ 25, which is a very stringent test for global optimization algorithms. While the Bernal spiral is the global minimum for clusters in the interval 13 ≤ N ≤ 18, the lowest-energy structure is a peculiar, so-called beaded-necklace, motif for 19 ≤ N ≤ 25. We have also applied the method for larger sizes and unusual quasi-linear and branched clusters arise as low-energy structures.

  19. Spatial Nonlocal Pair Correlations in a Repulsive 1D Bose Gas

    SciTech Connect

    Sykes, A. G.; Davis, M. J.; Kheruntsyan, K. V.; Gangardt, D. M.; Viering, K.; Raizen, M. G.

    2008-04-25

    We analytically calculate the spatial nonlocal pair correlation function for an interacting uniform 1D Bose gas at finite temperature and propose an experimental method to measure nonlocal correlations. Our results span six different physical realms, including the weakly and strongly interacting regimes. We show explicitly that the characteristic correlation lengths are given by one of four length scales: the thermal de Broglie wavelength, the mean interparticle separation, the healing length, or the phase coherence length. In all regimes, we identify the profound role of interactions and find that under certain conditions the pair correlation may develop a global maximum at a finite interparticle separation due to the competition between repulsive interactions and thermal effects.

  20. Phase diagram of softly repulsive systems: the Gaussian and inverse-power-law potentials.

    PubMed

    Prestipino, Santi; Saija, Franz; Giaquinta, Paolo V

    2005-10-08

    We redraw, using state-of-the-art methods for free-energy calculations, the phase diagrams of two reference models for the liquid state: the Gaussian and inverse-power-law repulsive potentials. Notwithstanding the different behaviors of the two potentials for vanishing interparticle distances, their thermodynamic properties are similar in a range of densities and temperatures, being ruled by the competition between the body-centered-cubic (bcc) and face-centered-cubic (fcc) crystalline structures and the fluid phase. We confirm the existence of a reentrant bcc phase in the phase diagram of the Gaussian-core model, just above the triple point. We also trace the bcc-fcc coexistence line of the inverse-power-law model as a function of the power exponent n and relate the common features in the phase diagrams of such systems to the softness degree of the interaction.

  1. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory.

    PubMed

    Zhang, Xichao; Zhao, G P; Fangohr, Hans; Liu, J Ping; Xia, W X; Xia, J; Morvan, F J

    2015-01-06

    Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.

  2. Sine-Gordon Theory in the Repulsive Regime, Thermodynamic Bethe Ansatz and Minimal Models

    NASA Astrophysics Data System (ADS)

    Itoyama, H.

    2013-06-01

    Neutral excitations present in the repulsive regime (1/2 < β2/8π < 1) of the sine- Gordon/massive-Thirring model and its study of the massless limit by the thermodynamic Bethe ansatz is revisited. At β2/8π = 1 - 1/(p + 1) the solitons become infinitely heavy, forcing truncation to the neutral excitations alone. The central charge in this limit is calculated to be c = 1 - 6/p(p + 1); the mass and S-matrices of the truncated theories are identified as those of the minimal conformal theory Mp perturbed by the ϕ(1,3) operator.

  3. Bacteria-repulsive polyglycerol surfaces by grafting polymerization onto aminopropylated surfaces.

    PubMed

    Weber, Theresa; Gies, Yasmin; Terfort, Andreas

    2012-11-13

    The formation of hydrogels on surfaces is a frequently used strategy to render these surfaces biorepulsive. Hyperbranched polyglycerol layers are a promising alternative to the frequently used polyethyleneglycol layers. Here, we present a strategy to covalently graft polyglycerol layers onto surfaces by first depositing an aminopropylsiloxane layer, which then acts as initiator layer for the ring-opening polymerization of 2-(hydroxymethyl)oxirane (glycidol). For silicon surfaces, the resulting polyglycerol layers start being biorepulsive for E. coli at a thickness of 2 nm and reach their highest bacterial repulsion (98%) at thicknesses of 7 nm or larger. This deposition strategy promises general applicability because the formation of aminopropylsiloxane layers has already been described for many materials.

  4. Equation satisfied by the energy-density functional for electron-electron mutual Coulomb repulsion

    SciTech Connect

    Joubert, Daniel P.

    2011-10-15

    It is shown that the electron-electron mutual Coulomb repulsion energy-density functional V{sub ee}{sup {gamma}}[{rho}] satisfies the equationV{sub ee}{sup {gamma}}[{rho}{sub N}{sup 1}]-V{sub ee}{sup {gamma}}[{rho}{sub N-1}{sup {gamma}}]={integral}d{sup 3}r({delta}V{sub ee}{sup {gamma}}[{rho}{sub N}{sup 1}]/{delta}{rho}{sub N}{sup 1}(r))[{rho}{sub N}{sup 1}(r)-{rho}{sub N-1}{sup {gamma}}(r)], where {rho}{sub N}{sup 1}(r) and {rho}{sub N-1}{sup {gamma}}(r) are N-electron and (N-1)-electron densities determined from the same adiabatic scaled external potential of the N-electron system at coupling strength {gamma}.

  5. Oscillatory instabilities of gap solitons in a repulsive Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Kizin, P. P.; Zezyulin, D. A.; Alfimov, G. L.

    2016-12-01

    The paper is devoted to numerical study of stability of nonlinear localized modes ("gap solitons") for the spatially one-dimensional Gross-Pitaevskii equation (1D GPE) with periodic potential and repulsive interparticle interactions. We use the Evans function approach combined with the exterior algebra formulation in order to detect and describe weak oscillatory instabilities. We show that the simplest ("fundamental") gap solitons in the first and in the second spectral gap undergo oscillatory instabilities for certain values of the frequency parameter (i.e., the chemical potential). The number of unstable eigenvalues and the associated instability rates are described. Several stable and unstable more complex (non-fundamental) gap solitons are also discussed. The results obtained from the Evans function approach are independently confirmed using the direct numerical integration of the GPE.

  6. Reentrant disordered phase in a system of repulsive rods on a Bethe-like lattice

    NASA Astrophysics Data System (ADS)

    Kundu, Joyjit; Rajesh, R.

    2013-07-01

    We solve exactly a model of monodispersed rigid rods of length k with repulsive interactions on the random locally tree-like layered lattice. For k≥4 we show that with increasing density, the system undergoes two phase transitions: first, from a low-density disordered phase to an intermediate density nematic phase and, second, from the nematic phase to a high-density reentrant disordered phase. When the coordination number is four, both phase transitions are continuous and in the mean field Ising universality class. For an even coordination number larger than four, the first transition is discontinuous, while the nature of the second transition depends on the rod length k and the interaction parameters.

  7. Hard sphere perturbation theory for fluids with soft-repulsive-core potentials

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor; Stell, George

    2004-03-01

    The thermodynamic properties of fluids with very soft repulsive-core potentials, resembling those of some liquid metals, are predicted with unprecedented accuracy using a new first-order thermodynamic perturbation theory. This theory is an extension of Mansoori-Canfield/Rasaiah-Stell (MCRS) perturbation theory, obtained by including a configuration integral correction recently identified by Mon, who evaluated it by computer simulation. In this work we derive an analytic expression for Mon's correction in terms of the radial distribution function of the soft-core fluid, g0(r), approximated using Lado's self-consistent extension of Weeks-Chandler-Andersen (WCA) theory. Comparisons with WCA and MCRS predictions show that our new extended-MCRS theory outperforms other first-order theories when applied to fluids with very soft inverse-power potentials (n⩽6), and predicts free energies that are within 0.3kT of simulation results up to the fluid freezing point.

  8. Designing convex repulsive pair potentials that favor assembly of kagome and snub square lattices

    NASA Astrophysics Data System (ADS)

    Piñeros, William D.; Baldea, Michael; Truskett, Thomas M.

    2016-08-01

    Building on a recently introduced inverse strategy, isotropic and convex repulsive pair potentials were designed that favor assembly of particles into kagome and equilateral snub square lattices. The former interactions were obtained by a numerical solution of a variational problem that maximizes the range of density for which the ground state of the potential is the kagome lattice. Similar optimizations targeting the snub square lattice were also carried out, employing a constraint that required a minimum chemical potential advantage of the target over select competing structures. This constraint helped to discover isotropic interactions that meaningfully favored the snub square lattice as the ground state structure despite the asymmetric spatial distribution of particles in its coordination shells and the presence of tightly competing structures. Consistent with earlier published results [W. Piñeros et al., J. Chem. Phys. 144, 084502 (2016)], enforcement of greater chemical potential advantages for the target lattice in the interaction optimization led to assemblies with enhanced thermal stability.

  9. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory

    NASA Astrophysics Data System (ADS)

    Zhang, Xichao; Zhao, G. P.; Fangohr, Hans; Liu, J. Ping; Xia, W. X.; Xia, J.; Morvan, F. J.

    2015-01-01

    Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.

  10. Repulsive Interaction of Sulfide Layers on Compressor Impeller Blades Remanufactured Through Plasma Spray Welding

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Zhou, D.; Wang, Y. L.; Huang, H. H.

    2016-12-01

    This study investigated the repulsive interaction of sulfide layers on compressor impeller blades remanufactured through plasma spray welding (PSW). Sulfide layers on the blades made of FV(520)B steel were prepared through multifarious corrosion experiments, and PSW was utilized to remanufacture blade specimens. The specimens were evaluated through optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, 3D surface topography, x-ray diffraction, ImageJ software analysis, Vicker's micro-hardness test and tensile tests. Results showed a large number of sulfide inclusions in the fusion zone generated by sulfide layers embodied into the molten pool during PSW. These sulfide inclusions seriously degraded the mechanical performance of the blades remanufactured through PSW.

  11. Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models

    NASA Astrophysics Data System (ADS)

    Endah Saraswati, Teguh; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri

    2017-01-01

    Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH3). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory.

  12. Influence of repulsion zone in the directional alignment of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Cambui, Dorilson

    2014-04-01

    Collective behavior in animal groups such as schools of fish, swarms of insects or flocks of birds, although a phenomenon widely studied in biological systems, is subject of great interdisciplinary interest. An important tool to describe the dynamics of collective motion and ordered live organisms is the concept of self-propelled particles. Proposed by Vicsek and collaborators, it was considered in this model only as an (single) interaction rule, set as alignment, where particles align to motion the nearest neighbors. In this paper, we have considered a variant of this model by adding a second rule called repulsion zone, where particles repel each other at short distances, in order to investigate the influence of this zone on directional order of the particles.

  13. Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion.

    PubMed

    Knorr, Anne; Ludwig, Ralf

    2015-12-02

    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3-4 kJmol(-1). The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.

  14. Repulsively bound exciton-biexciton states in high-spin fermions in optical lattices

    SciTech Connect

    Argueelles, A.; Santos, L.

    2011-03-15

    We show that the interplay between spin-changing collisions and quadratic Zeeman coupling provides a mechanism for the formation of repulsively bound composites in high-spin fermions, which we illustrate by considering spin flips in an initially polarized hard-core one-dimensional Mott insulator of spin-3/2 fermions. We show that after the flips the dynamics is characterized by the creation of two types of exciton-biexciton composites. We analyze the conditions for the existence of these bound states and discuss their intriguing properties. In particular we show that the effective mass and stability of the composites depends nontrivially on spin-changing collisions, on the quadratic Zeeman effect, and on the initial exciton localization. Finally, we show that the composites may remain stable against inelastic collisions, opening the possibility of interesting quantum composite phases.

  15. Designing convex repulsive pair potentials that favor assembly of kagome and snub square lattices.

    PubMed

    Piñeros, William D; Baldea, Michael; Truskett, Thomas M

    2016-08-07

    Building on a recently introduced inverse strategy, isotropic and convex repulsive pair potentials were designed that favor assembly of particles into kagome and equilateral snub square lattices. The former interactions were obtained by a numerical solution of a variational problem that maximizes the range of density for which the ground state of the potential is the kagome lattice. Similar optimizations targeting the snub square lattice were also carried out, employing a constraint that required a minimum chemical potential advantage of the target over select competing structures. This constraint helped to discover isotropic interactions that meaningfully favored the snub square lattice as the ground state structure despite the asymmetric spatial distribution of particles in its coordination shells and the presence of tightly competing structures. Consistent with earlier published results [W. Piñeros et al., J. Chem. Phys. 144, 084502 (2016)], enforcement of greater chemical potential advantages for the target lattice in the interaction optimization led to assemblies with enhanced thermal stability.

  16. Mansouri-Chang gravitation theory

    NASA Technical Reports Server (NTRS)

    Pavelle, R.

    1978-01-01

    The gauge theory of gravitation introduced by Mansouri and Chang (1976) is investigated; a symbolic manipulation computer system generates the Mansouri-Chang field equations in various coordinate systems. It is found that all vacuum Einstein spaces are vacuum Mansouri-Chang spaces in four dimensions, though for higher dimensions an Einstein vacuum space is not generally a Mansouri-Chang solution. The possibility that no solutions of the Mansouri-Chang equations are not Einstein vacuum spaces is discussed.

  17. Gravitational Instabilities in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  18. Electromagnetic Counterparts to Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; GROWTH Collaboration; iPTF/ZTF Collaboration

    2017-01-01

    The direct detection of gravitational waves from merging black holes marks the dawn of a new era. I will present ongoing efforts and prospectsto identify and characterize the electromagnetic counterpart. Among the various models for electromagnetic emission from binary neutronstar mergers, free neutron decay gives the most luminous and fast-evolving optical counterpart. I will describe a co-ordinated global effort, the GROWTH (Global Relay of Observatories Watching Transients Happen) network working in tandem with the Zwicky Transient Facility.

  19. Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.

    PubMed

    Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A

    2016-02-14

    The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.

  20. Gravitational Instability in Planetesimal Disks

    NASA Astrophysics Data System (ADS)

    Bolin, Bryce T.; Lithwick, Yoram; Pan, Margaret; Rein, Hanno; Wu, Yanqin

    2014-11-01

    Gravitational instability (GI) has been proposed as a method of forming giant gas planets enhanced by disk thermodynamics in a protoplanetary disk (Boss, 1997, Science 276; Durisen et al., 2007, Protostars and Planets V) and as a method of forming planetesimals through the focusing of boulders by the interaction between solids and gases in a turbulent circumstellar disk (Johansen et al., 2007, Nature 448; Youdin & Goodman, 2005, Astrophys. J. 620). GI is mediated through a gaseous circumstellar disk in each each of these scenarios. We explore the possibility of GI occurring in a planetesimal disk devoid of gas. In this regime, mutual collisions between planetesimals are required to dissipate their orbital shear and velocity dispersion enough for collapse to occur as described by the Toomre stability criterion (Toomre, 1964, Astrophys. J. 139; Toomre, 1981, Structure and Evolution of Normal Galaxies). How frequent must collisions be between planetesimals in a gravitationally stable planetesimal disk for GI to occur? Are there collisional rates where GI is postponed indefinitely in an equilibrium state between gravitational stirring and collisional cooling? We present 3D shearing sheet simulations using the REBOUND N-body code with the symplectic epicyclic integrator (Rein & Liu, 2011, A&A 537; Rein & Tremaine, 2011, MNRAS 415) in which the candidate collision rates are within a few orders of magnitude of the disk dynamical lifetime. Our simulations suggest that collisions rate directly controls disk cooling. The shape of the disk cooling curve is independent of the collision rate when scaled to the collision time.

  1. Measuring Gravitation Using Polarization Spectroscopy

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Yu, Nan; Maleki, Lute

    2004-01-01

    A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.

  2. Thermal duality and gravitational collapse

    NASA Astrophysics Data System (ADS)

    Hewitt, Michael

    2015-07-01

    Thermal duality is a relationship between the behaviour of heterotic string models of the E(8)×E(8) or SO(32) types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedorn transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. A heuristic criterion for the conversion process is presented, relating Newtonian gravity to the string tension, suggesting an upper limit to the strength of the gravitational interaction. This conversion process might have observable consequences for charged particles falling into a rotating collapsed object by producing high energy particles via a variant of the Penrose process.

  3. Effect of the repulsion interaction on the ground-state of the Kondo lattice model with a superlattice potential

    NASA Astrophysics Data System (ADS)

    Silva-Valencia, J.; Franco, R.; Figueira, M. S.

    2014-04-01

    We investigate the ground-state of a new Kondo lattice model, where the free carriers interact repulsively between them and undergo an external superlattice potential. This model can be simulated with 171Yb atoms confined in optical lattices. We use the density matrix renormalization group method to evaluate the charge and spin gaps, and the structure factors. We found that the ground-state evolves from a Kondo spin liquid state to a charge-gapped antiferromagnetic state with zero spin gap, when the antiferromagnetic exchange increases. Also, we verify that the quantum critical point varies linearly with the repulsion and the exchange.

  4. Low frequency gravitational wave astrophysics

    NASA Astrophysics Data System (ADS)

    Larson, Shane

    The field of low-frequency gravitational wave astronomy is evolving as the design of the Laser Interferometer Space Antenna (LISA) is in flux. Changing mission architectures naturally has an impact on the science goals and science capabilities in gravitational wave astronomy, requiring astrophysicists to pursue a deeper understanding on three fronts. (1) What astrophysical knowledge can be extracted from populations of sources based on their relative strengths in the data streams? (2) How are the science returns maximized as detector capabilities evolve? (3) How do evolving detector performance expectations alter the science that is possible with space- based gravitational wave detectors? This work proposes a series of investigations that address these questions along two broad avenues of inquiry. The first thrust of this effort is designed to examine how the population of ultra-compact galactic binaries can be better characterized by multi-messenger observations and statistical population analyses. While these investigations are astrophysical interesting in and of themselves, they are particularly relevant as detector designs evolve because the binaries are a limiting source of astrophysical noise that must be mitigated in order to maximize the science return for other sources, such as massive binary black hole inspirals and extreme mass ratio inspirals. The second thrust of this effort is geared toward characterization of the detector itself, since this ultimately fixes our ability to answer astrophysical questions. While many high-fidelity simulators exist for the original LISA mission architecture, the work proposed here will develop a new, flexible suite of prototyping tools analogous to the "Online Sensitivity Curve Generator" (which the PI authored). These tools will allow astrophysicists and data analysts alike to rapidly assess whether new proposed architectures for a space-based gravitational wave observatory will enhance or adversely impact the science

  5. The final stage of gravitational collapse for high density fluid medium

    SciTech Connect

    Souza, R. G.; De Campos, M.

    2013-03-25

    The High density high density fluids can be represented by a stiff matter state equation P={rho} and also by the Hagedorn state equation. The first is constructed using a lagrangian that allows bare nucleons to interact attractively via scalar meson exchange, and repulsively by a more massive vector meson exchange; the second consider that for large mass the spectrum of hadrons grows exponentially, namely {rho}(m) {approx}exp(m/T{sub H}), where T{sub H} is the Hagedorn temperature, resulting the state equation P = P{sub 0}+{rho}{sub 0}ln({rho}/{rho}{sub 0}). We study the gravitational collapse for a high density fluid, considering a Hagedorn state equation in a presence of a vacuum component.

  6. Electromagnetic Counterparts of Gravitational Wave Transients

    NASA Astrophysics Data System (ADS)

    Branchesi, Marica

    2015-03-01

    In the near future the ground-based gravitational wave detectors will reach sensitivities that should make it possible for the first time to directly observe gravitational waves. The simultaneous availability of gravitational wave detectors observing together with space and ground-based electromagnetic telescopes will offer a great opportunity to explore the Universe in a new multi-messenger perspective. Promising sources of gravitational waves are the most energetic astrophysical events such as the merger of neutron stars and/or stellar-mass black holes and the core collapse of massive stars. These events are believed to produce electromagnetic transients in the sky, like gamma-ray bursts and supernovae. An overview of the expected electromagnetic counterparts of the gravitational wave sources is presented, focusing on the challenges, opportunities and strategies for starting transient gravitational wave astronomy.

  7. Gravitational couplings on D-brane revisited

    NASA Astrophysics Data System (ADS)

    Ghodsi, Ahmad; Jafari, Ghadir

    2016-11-01

    Gravitational couplings in bulk space-time include those terms which are fixed by scattering amplitude of strings and ambiguous terms that are coming from the field redefinitions. These field redefinitions can be fixed in the bulk by ghost-free condition. In this paper we have revised the effective gravitational couplings on D-branes by including the field redefinitions. We find the gravitational effective action up to α '2-order.

  8. Classical underpinnings of gravitationally induced quantum interference

    SciTech Connect

    Mannheim, P.D.

    1998-02-01

    We show that the gravitational modification of the phase of a neutron beam [the Colella-Overhauser-Werner (COW) experiment] has a classical origin, being due to the time delay that classical particles experience in traversing a background gravitational field. Similarly, we show that classical light waves also undergo a phase shift in traversing a gravitational field. We show that the COW experiment respects the equivalence principle even in the presence of quantum mechanics. {copyright} {ital 1998} {ital The American Physical Society}

  9. Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water.

    PubMed

    Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli

    2015-08-01

    Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts.

  10. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids

    NASA Astrophysics Data System (ADS)

    Fuentes-Herrera, M.; Moreno-Razo, J. A.; Guzmán, O.; López-Lemus, J.; Ibarra-Tandi, B.

    2016-06-01

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  11. Slit-Dependent Endocytic Trafficking of the Robo Receptor Is Required for Son of Sevenless Recruitment and Midline Axon Repulsion.

    PubMed

    Chance, Rebecca K; Bashaw, Greg J

    2015-09-01

    Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth cone motility is critical to learning how proper wiring is established during development. Roundabout (Robo) is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and vertebrates. Here we show that endocytic trafficking of the Robo receptor in response to Slit-binding is necessary for its repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo activation assays support a role for Clathrin-dependent endocytosis, and entry into both the early and late endosomes as positive regulators of Slit-Robo signaling. We identify two conserved motifs in Robo's cytoplasmic domain that are required for its Clathrin-dependent endocytosis and activation in vitro; gain of function and genetic rescue experiments provide strong evidence that these trafficking events are required for Robo repulsive guidance activity in vivo. Our data support a model in which Robo's ligand-dependent internalization from the cell surface to the late endosome is essential for receptor activation and proper repulsive guidance at the midline by allowing recruitment of the downstream effector Son of Sevenless in a spatially constrained endocytic trafficking compartment.

  12. Slit-Dependent Endocytic Trafficking of the Robo Receptor Is Required for Son of Sevenless Recruitment and Midline Axon Repulsion

    PubMed Central

    Chance, Rebecca K.; Bashaw, Greg J.

    2015-01-01

    Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth cone motility is critical to learning how proper wiring is established during development. Roundabout (Robo) is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and vertebrates. Here we show that endocytic trafficking of the Robo receptor in response to Slit-binding is necessary for its repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo activation assays support a role for Clathrin-dependent endocytosis, and entry into both the early and late endosomes as positive regulators of Slit-Robo signaling. We identify two conserved motifs in Robo’s cytoplasmic domain that are required for its Clathrin-dependent endocytosis and activation in vitro; gain of function and genetic rescue experiments provide strong evidence that these trafficking events are required for Robo repulsive guidance activity in vivo. Our data support a model in which Robo’s ligand-dependent internalization from the cell surface to the late endosome is essential for receptor activation and proper repulsive guidance at the midline by allowing recruitment of the downstream effector Son of Sevenless in a spatially constrained endocytic trafficking compartment. PMID:26335920

  13. Feasibility analysis of gravitational experiments in space

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. F.

    1977-01-01

    Experiments on gravitation and general relativity suggested by different workers in the past ten or more years are reviewed, their feasibility examined, and the advantages of performing them in space were studied. The experiments include: (1) the gyro relativity experiment; (2) experiments to test the equivalence of gravitational and inertial mass; (3) an experiment to look for nongeodesic motion of spinning bodies in orbit around the earth; (4) experiments to look for changes of the gravitational constant G with time; (5) a variety of suggestions; laboratory tests of experimental gravity; and (6) gravitational wave experiments.

  14. Physics, Astrophysics and Cosmology with Gravitational Waves.

    PubMed

    Sathyaprakash, B S; Schutz, Bernard F

    2009-01-01

    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  15. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years) as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves) these signals carry direct information about their sources - such as masses) spins) luminosity distances) and orbital parameters - through dense) obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers) highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  16. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    A new era in time-domain astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multimessenger astronomy across the gravitational wave spectrum.

  17. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  18. Gravitational forces and moments on spacecraft

    NASA Technical Reports Server (NTRS)

    Kane, T. R.; Likins, P. W.

    1975-01-01

    The solution of problems of attitude dynamics of spacecraft and the influence of gravitational forces and moments is examined. Arguments are presented based on Newton's law of gravitation, and employing the methods of Newtonian (vectorial) mechanics, with minimal recourse to the classical concepts of potential theory. The necessary ideas were developed and relationships were established to permit the representation of gravitational forces and moments exerted on bodies in space by other bodies, both in terms involving the mass distribution properties of the bodies, and in terms of vector operations on those scalar functions classically described as gravitational potential functions.

  19. The second-order gravitational red shift

    NASA Technical Reports Server (NTRS)

    Jaffe, J.

    1973-01-01

    The direct measurement of the nonlinear term of the gravitational field equations by using very stable clocks is discussed along with measuring the perhelion advance of a planet or satellite. These are considered measurements of the second-order gravitational red shift. The exact expression for the frequency shift of light in a gravitational field is derived. Other topics discussed include: The Doppler-cancelling technique; the second-order red shift in a spherically symmetric gravitational field; finite signal transit time; and the reality and interpretation of coordinates in the second-order red shift experiment.

  20. Long-range repulsive charged colloids in and out of equilibrium

    NASA Astrophysics Data System (ADS)

    van der Linden, M. N.

    2013-04-01

    The research described in this thesis focusses on the behaviour of charged colloidal particles with long-range repulsive interactions. The experimental model system we used consisted of sterically stabilised charged poly(methyl methacrylate) (PMMA) colloids suspended in cyclohexyl bromide (CHB). In this low-polar solvent very low ionic concentrations can be achieved, resulting in a large Debye screening length (on the order of the particle diameter), i.e. long-range interactions. The pair interaction in these systems is often modelled by the hard-core repulsive Yukawa (or screened Coulomb) potential, which we used for our computer simulations. In Monte Carlo simulations we investigated the effect of size polydispersity on the crystal-fluid transition. We observed a shift to higher volume fraction of the crystal-fluid transition upon increasing the polydispersity. At high polydispersities parts of the higher charged systems that were initially crystalline became amorphous. The amorphous parts had a higher polydispersity than the crystalline parts, indicating the presence of a terminal polydispersity beyond which the homogeneous crystal phase was no longer stable. We investigated the slow dynamics close to the glass transition as a function of the range of the potential, also in simulations. We determined the long-time structural relaxation time and long-time self-diffusion coefficient, which could be well fitted by a power law predicted by mode-coupling theory (MCT) and by the Vogel-Fulcher-Tammann (VFT) equation. In experiments we used confocal microscopy to study the system quantitatively in 3D on a single-particle level. We performed micro-electrophoresis measurements to determine the surface potential and charge of the PMMA particles at a volume fraction around 0.02. The surface potential was roughly independent of the diameter of the particle and was found to be lower for unlocked particles (steric stabiliser adsorbed to surface) than for locked particles

  1. Invariants of simple gravitational lenses

    NASA Astrophysics Data System (ADS)

    Kassiola, Aggeliki; Kovner, Israel

    1995-01-01

    We present approximate tests which can be applied to a newly observed quadruple QSO, or to a quadruplet of extended objects distorted by a foreground cluster of galaxies. These tests indicate whether the responsible gravitational lens may have a simple mass distribution. If the lens galaxy is detected, the tests give an approximate orientation for it, which can be compared with the observed orientation of the galaxy. The tests do not require construction of an explicit lens model, and therefore can save time and effort. In the case of many objects distorted by a cluster, these diagnostics can help to select possible quadruplet candidates.

  2. Gravitational polarizability of black holes

    SciTech Connect

    Damour, Thibault; Lecian, Orchidea Maria

    2009-08-15

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h{sub l} of a black hole are defined and computed. They are then compared to their electromagnetic analogs h{sub l}{sup EM}. The Love numbers h{sub l} give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  3. Gravitational Lensing Extends SETI Range

    NASA Astrophysics Data System (ADS)

    Factor, Richard

    Microwave SETI (The Search for Extraterrestrial Intelligence) focuses on two primary strategies, the "Targeted Search" and the "All-Sky Survey." Although the goal of both strategies is the unequivocal discovery of a signal transmitted by intelligent species outside our solar system, they pursue the strategies in very different manners and have vastly different requirements. This chapter introduces Gravitational Lensing SETI (GL-SETI), a third strategy. Its goal is the unequivocal discovery of an extraterrestrial signal, with equipment and data processing requirements that are substantially different from the commonly-used strategies. This strategy is particularly suitable for use with smaller radio telescopes and has budgetary requirements suitable for individual researchers.

  4. Primordial gravitational waves and cosmology.

    PubMed

    Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan

    2010-05-21

    The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale.

  5. A VLA gravitational lens survey

    NASA Technical Reports Server (NTRS)

    Hewitt, J. N.; Turner, E. L.; Burke, B. F.; Lawrence, C. R.; Bennett, C. L.

    1987-01-01

    A VLA survey designed to detect gravitational lensing on sub-arc second and arc second scales is described, and preliminary results of radio data are presented. In particular, it is found that the density of matter in the form of a uniform comoving number density of 10 to the 11th - 10 to the 12th solar mass compact objects, luminous or dark, must be substantially less than the critical density. Data obtained for the radio source 1042+178 are briefly examined.

  6. Critical behavior of gravitating sphalerons

    NASA Astrophysics Data System (ADS)

    Millward, R. Steven; Hirschmann, Eric W.

    2003-07-01

    We examine the gravitational collapse of sphaleron type configurations in the Einstein-Yang-Mills-Higgs theory. Working in spherical symmetry, we investigate the critical behavior in this model. We provide evidence that for various initial configurations, there can be three different critical transitions between possible end states with different critical solutions sitting on the threshold between these outcomes. In addition, we show that within the dispersive and black hole regimes there are new possible end states: namely, a stable, regular sphaleron and a stable, hairy black hole.

  7. Gravitational effects on inflaton decay

    SciTech Connect

    Ema, Yohei; Jinno, Ryusuke; Mukaida, Kyohei; Nakayama, Kazunori

    2015-05-22

    We point out that the inflaton inevitably couples to all non-conformally coupled matters gravitationally through an oscillation in the Hubble parameter or the cosmic scale factor. It leads to particle production during the inflaton oscillation regime, which is most efficient just after inflation. Moreover, the analysis is extended to the model with non-minimal inflaton couplings to gravity, in which the Hubble parameter oscillates more violently. We apply our results to the graviton production by the inflaton: gravitons are also produced just after inflation, but the non-minimal coupling does not induce inflaton decay into the graviton pair.

  8. Separation of peptides and intact proteins by electrostatic repulsion reversed phase liquid chromatography.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2014-12-29

    A new brand of BEH-C18 hybrid particles chemically bonded to a leash carrying an amine group permits the implementation of electrostatic repulsive interactions chromatography. Using columns packed with this material, the influence of the concentration of positive charges bonded to the BEH-C18 surface on the overloaded band profiles of a few positively charged peptides and proteins was investigated in the gradient elution mode. Three columns packed with endcapped BEH-C18 particles bonded with three different surface-charge densities (LOW, MEDIUM and HIGH) were used and compared with those provided by a column packed with non-doped, endcapped BEH-C18 particles. The surface concentrations of fixed charges in the LOW, MEDIUM and HIGH columns were estimated at 0.029, 0.050, and 0.064μmol/m(2), for example, about two orders of magnitude smaller than the surface density of bonded C18 chains (2.1μmol/m(2)). Three different mobile phase additives (0.1% v/v of trifluoro-acetic, phosphoric, and formic acid) were used to optimize the purification levels of proteins under different loading conditions. The weak ion-pairing ions (formate and phosphate) generate smaller retention but broader, more fronting band profiles than those eluted with a stronger ion-pairing ion (trifluoroactate). This effect is worse in the presence of fixed charges at the surface of the BEH-C18 particles. This was explained by an enhanced anti-Langmuirian adsorption behavior of the charged proteins in the presence of fixed surface charges. As the protein concentration increases in the bulk, so does the internal ionic strength, the electrostatic repulsive interactions weaken, and retention increases. Band fronting is mostly eliminated by replacing weak ion-pairing acids with TFA with which the adsorption isotherm remains weakly langmuirian. Faster but still complete gradient separation of insulin and myoglobin were achieved with the HIGH column than with the reference neutral column, despite a measurable

  9. Regional recovery of the disturbing gravitational potential by inverting satellite gravitational gradients

    NASA Astrophysics Data System (ADS)

    Pitoňák, Martin; Šprlák, Michal; Hamáčková, Eliška; Novák, Pavel

    2016-04-01

    Regional recovery of the disturbing gravitational potential in the area of Central Europe from satellite gravitational gradients data is discussed in this contribution. The disturbing gravitational potential is obtained by inverting surface integral formulas which transform the disturbing gravitational potential onto disturbing gravitational gradients in the spherical local north-oriented frame. Two numerical approaches that solve the inverse problem are considered. In the first approach, the integral formulas are rigorously decomposed into two parts, that is, the effects of the gradient data within near and distant zones. While the effect of the near zone data is sought as an inverse problem, the effect of the distant zone data is synthesized from the global gravitational model GGM05S using spectral weights given by truncation error coefficients up to the degree 150. In the second approach, a reference gravitational field up to the degree 180 is applied to reduce and smooth measured gravitational gradients. In both cases we recovered the disturbing gravitational potential from each of the four well-measured gravitational gradients of the GOCE satellite separately as well as from their combination. Obtained results are compared with the EGM2008, DIR-r2, TIM-r2 and SPW-r2 global gravitational models. The best fit was achieved for EGM2008 and the second approach combining all four well-measured gravitational gradients with rms of 1.231 m2 s-2.

  10. Effect of repulsive interactions on the rate of doublet formation of colloidal nanoparticles in the presence of convective transport.

    PubMed

    Lattuada, Marco; Morbidelli, Massimo

    2011-03-01

    In this work, we have performed a systematic investigation of the effect of electrostatic repulsive interactions on the aggregation rate of colloidal nanoparticles to from doublets in the presence of a convective transport mechanism. The aggregation rate has been computed by solving numerically the Fuchs-Smoluchowski diffusion-convection equation. Two convective transport mechanisms have been considered: extensional flow field and gravity-induced relative sedimentation. A broad range of conditions commonly encountered in the applications of colloidal dispersions has been analyzed. The relative importance of convective to diffusive contributions has been quantified by using the Peclet number Pe. The simulation results indicate that, in the presence of repulsive interactions, the evolution of the aggregation rate as a function of Pe can always be divided into three distinct regimes, no matter which convective mechanism is considered. At low Pe values the rate of aggregation is independent of convection and is dominated by repulsive interactions. At high Pe values, the rate of aggregation is dominated by convection, and independent of repulsive interactions. At intermediate Pe values, a sharp transition between these two regimes occurs. During this transition, which occurs usually over a 10-100-fold increase in Pe values, the aggregation rate can change by several orders of magnitude. The interval of Pe values where this transition occurs depends upon the nature of the convective transport mechanism, as well as on the height and characteristic lengthscale of the repulsive barrier. A simplified model has been proposed that is capable of quantitatively accounting for the simulations results. The obtained results reveal unexpected features of the effect of ionic strength and particle size on the stability of colloidal suspensions under shear or sedimentation, which have relevant consequences in industrial applications.

  11. Effects of coulomb repulsion on conductivity of heterojunction carbon nanotube quantum dots with spin-orbital coupling and interacting leads

    NASA Astrophysics Data System (ADS)

    Ogloblya, O. V.; Kuznietsova, H. M.; Strzhemechny, Y. M.

    2017-01-01

    We performed numerical studies for the conductance of a heterojunction carbon nanotube quantum dot (QD) with an extra spin orbital quantum number and a conventional QD in which the electron state is determined only by the spin quantum number. Our computational approach took into account the spin-orbit interaction and the Coulomb repulsion both between electrons on a QD as well as between the QD electron and the contacts. We utilized an approach based on the Keldysh non-equilibrium Green's function formalism as well as the equation of motion technique. We focused on the case of a finite Coulombic on-site repulsion and considered two possible cases of applied voltage: spin bias and conventional bias. For the system of interest we obtained bias spectroscopy diagrams, i.e. contour charts showing dependence of conductivity on two variables - voltage and the energy level position in a QD - which can be controlled by the plunger gate voltage. The finite Coulombic repulsion splits the density of states into two distinct maxima with the energy separation between them controlled by that parameter. It was also shown that an increase of either the value of the on-site Coulomb repulsion in a QD or the parameter of the Coulomb repulsion between the electrons in the QD and the contacts leads to an overall shift of the density of electronic states dependence toward higher energy values. Presence of the QD-lead interaction yields formation of a new pair of peaks in the differential conductance dependence. We also show that existence of four quantum states in a QD leads to abrupt changes in the density of states. These results could be beneficial for potential applications in nanotube-based amperometric sensors.

  12. How surface bonding and repulsive interactions cause phase transformations: ordering of a prototype macrocyclic compound on Ag(111).

    PubMed

    Bischoff, Felix; Seufert, Knud; Auwärter, Willi; Joshi, Sushobhan; Vijayaraghavan, Saranyan; Écija, David; Diller, Katharina; Papageorgiou, Anthoula C; Fischer, Sybille; Allegretti, Francesco; Duncan, David A; Klappenberger, Florian; Blobner, Florian; Han, Runyuan; Barth, Johannes V

    2013-04-23

    We investigated the surface bonding and ordering of free-base porphine (2H-P), the parent compound of all porphyrins, on a smooth noble metal support. Our multitechnique investigation reveals a surprisingly rich and complex behavior, including intramolecular proton switching, repulsive intermolecular interactions, and density-driven phase transformations. For small concentrations, molecular-level observations using low-temperature scanning tunneling microscopy clearly show the operation of repulsive interactions between 2H-P molecules in direct contact with the employed Ag(111) surface, preventing the formation of islands. An increase of the molecular coverage results in a continuous decrease of the average intermolecular distance, correlated with multiple phase transformations: the system evolves from an isotropic, gas-like configuration via a fluid-like phase to a crystalline structure, which finally gives way to a disordered layer. Herein, considerable site-specific molecule-substrate interactions, favoring an exclusive adsorption on bridge positions of the Ag(111) lattice, play an important role. Accordingly, the 2D assembly of 2H-P/Ag(111) layers is dictated by the balance between adsorption energy maximization while retaining a single adsorption site counteracted by the repulsive molecule-molecule interactions. The long-range repulsion is associated with a charge redistribution at the 2H-P/Ag(111) interface comprising a partial filling of the lowest unoccupied molecular orbital, resulting in long-range electrostatic interactions between the adsorbates. Indeed, 2H-P molecules in the second layer that are electronically only weakly coupled to the Ag substrate show no repulsive behavior, but form dense-packed islands.

  13. Gravitational instabilities in astrophysical fluids

    NASA Astrophysics Data System (ADS)

    Tohline, Joel E.

    1990-01-01

    Over the past decade, the significant advancements that have been made in the development of computational tools and numerical techniques have allowed astrophysicists to begin to model accurately the nonlinear growth of gravitational instabilities in a variety of physical systems. The fragmentation or rotationally driven fission of dynamically evolving, self-gravitating ``drops and bubbles'' is now routinely modeled in full three-dimensional generality as we attempt to understand the behavior of protostellar clouds, rotating stars, galaxies, and even the primordial soup that defined the birth of the universe. A brief review is presented here of the general insights that have been gained from studies of this type, followed by a somewhat more detailed description of work, currently underway, that is designed to explain the process of binary star formation. A short video animation sequence, developed in conjunction with some of the research being reviewed, illustrates the basic-nature of the fission instability in rotating stars and of an instability that can arise in a massive disk that forms in a protostellar cloud.

  14. Gravitational radiation from the Galaxy

    NASA Technical Reports Server (NTRS)

    Hils, D.; Bender, P. L.; Webbink, R. F.

    1990-01-01

    The spectral flux of gravitational radiation incident on earth from the Galactic W UMa binaries, unevolved binaries, cataclysmic binaries, neutron star binaries, black hole-neutron star binaries, and close white dwarf binary (CWDB) systems is calculated. The peak values for the strain amplitude hv produced by the binaries are: log hv = -17.0/sq rt Hz at log v = -4.40 Hz for W UMa's; log hv = -16.5/sq rt Hz at log v = -5.50 Hz for unevolved binaries; log hv = -18.2/sq rt Hz at log v = -5.15 Hz for neutron star binaries; log hv = -17.0/sq rt Hz at log v = -4.7 Hz for black hole-neutron star binaries; log hv = -18.0 /sq rt Hz at log v = -4.10 Hz for cataclysmic binaries, and log hv = -27.0/sq rt Hz at log v = -4.0 Hz for CWDBs. The gravitational flux at ultralow frequencies is emitted mainly by unevolved binaries. The integrated flux incident on earth is about 2.4 x 10 to the -9th ergs/sq cm/s.

  15. Towards noiseless gravitational lensing simulations

    NASA Astrophysics Data System (ADS)

    Angulo, Raul E.; Chen, Ruizhu; Hilbert, Stefan; Abel, Tom

    2014-11-01

    The microphysical properties of the dark matter (DM) particle can, in principle, be constrained by the properties and abundance of substructures in galaxy clusters, as measured through strong gravitational lensing. Unfortunately, there is a lack of accurate theoretical predictions for the lensing signal of these substructures, mainly because of the discreteness noise inherent to N-body simulations. Here, we present a method, dubbed as Recursive-TCM, that is able to provide lensing predictions with an arbitrarily low discreteness noise. This solution is based on a novel way of interpreting the results of N-body simulations, where particles simply trace the evolution and distortion of Lagrangian phase-space volume elements. We discuss the advantages and limitations of this method compared to the widely used density estimators based on cloud-in-cells and adaptive-kernel smoothing. Applying the new method to a cluster-sized DM halo simulated in warm and cold DM scenarios, we show how the expected differences in their substructure population translate into differences in convergence and magnification maps. We anticipate that our method will provide the high-precision theoretical predictions required to interpret and fully exploit strong gravitational lensing observations.

  16. Gravitational waves from axion monodromy

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-01

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this ``dynamical phase decomposition" phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  17. Gravitational waves in bimetric MOND

    NASA Astrophysics Data System (ADS)

    Milgrom, Mordehai

    2014-01-01

    I consider the weak-field limit (WFL) of the bimetric, relativistic formulation of the modified Newtonian dynamics (BIMOND)—the lowest order in the small departures hμν=gμν-ημν, h stretchy="false">^μν=g stretchy="false">^μν-ημν from double Minkowski space-time. In particular, I look at propagating solutions, for a favorite subclass of BIMOND. The WFL splits into two sectors for two linear combinations, hμν±, of hμν and h stretchy="false">^μν. The hμν+ sector is equivalent to the WFL of general relativity (GR), with its gauge freedom, and has the same vacuum gravitational waves. The hμν- sector is fully nonlinear even for the weakest hμν-, and inherits none of the coordinate gauge freedom. The equations of motion are scale invariant in the deep-MOND limit of purely gravitational systems. In these last two regards, the BIMOND WFL is greatly different from that of other bimetric theories studied to date. Despite the strong nonlinearity, an arbitrary pair of harmonic GR wave packets of hμν and h stretchy="false">^μν moving in the same direction, is a solution of the (vacuum) BIMOND WFL.

  18. Dyadosphere formed in gravitational collapse

    SciTech Connect

    Ruffini, Remo; Xue Shesheng

    2008-10-10

    We first recall the concept of Dyadosphere (electron-positron-photon plasma around a formed black holes) and its motivation, and recall on (i) the Dirac process: annihilation of electron-positron pairs to photons; (ii) the Breit-Wheeler process: production of electron-positron pairs by photons with the energy larger than electron-positron mass threshold; the Sauter-Euler-Heisenberg effective Lagrangian and rate for the process of electron-positron production in a constant electric field. We present a general formula for the pair-production rate in the semi-classical treatment of quantum mechanical tunneling. We also present in the Quantum Electro-Dynamics framework, the calculations of the Schwinger rate and effective Lagrangian for constant electromagnetic fields. We give a review on the electron-positron plasma oscillation in constant electric fields, and its interaction with photons leading to energy and number equipartition of photons, electrons and positrons. The possibility of creating an overcritical field in astrophysical condition is pointed out. We present the discussions and calculations on (i) energy extraction from gravitational collapse; (ii) the formation of Dyadosphere in gravitational collapsing process, and (iii) its hydrodynamical expansion in Reissner Nordstroem geometry. We calculate the spectrum and flux of photon radiation at the point of transparency, and make predictions for short Gamma-Ray Bursts.

  19. Gravitational-wave Mission Study

    NASA Technical Reports Server (NTRS)

    Mcnamara, Paul; Jennrich, Oliver; Stebbins, Robin T.

    2014-01-01

    In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies

  20. Confusion in Cosmology and Gravitation

    NASA Astrophysics Data System (ADS)

    Corda, C.; Katebi, R.; Schmidt, N. O.

    2016-10-01

    In a series of papers, Santilli and collaborators released various strong statements against the general theory of relativity (GTR) and the standard ΛCDM model of cosmology. In this paper we show that such claims are due to misunderstandings of basic concepts of gravitation and cosmology. In particular, we show that Santilli and collaborators demonstrated neither that the GTR is wrong, nor that the Universe is not expanding. We also show that the so-called iso-gravitation theory (IGT) of Santilli is in macroscopic contrast with geodesic motion and, in turn, with the Equivalence Principle (EP) and must therefore be ultimately rejected. Finally, we show that, although the so called iso-redshift could represent an interesting alternative (similar to the tired light theory historically proposed by Zwicky) to the Universe expansion from a qualitative point of view, it must be rejected from a quantitative point of view because the effect of iso-redshift is 10-6 smaller than the effect requested to achieve the cosmological redshift.

  1. The SOAR Gravitational Arc Survey

    NASA Astrophysics Data System (ADS)

    Makler, M.; Furlanetto, C.; Santiago, B. X.; Caminha, G. B.; Cypriano, E.; Cibirka, N.; Pereira, M. E. S.; Bom, C. R. D.; Lima, M. P.; Brandt, C. H.; Neto, A. F.; Estrada, J.; Lin, H.; Hao, J.; McKay, T. M.; da Costa, L. N.; Maia, M. A. G.

    2014-10-01

    We present the first results of the SOAR Gravitational Arc Survey (SOGRAS). The survey imaged 47 clusters in two redshift intervals centered at z=0.27 and z=0.55, targeting the richest clusters in each interval. Images were obtained in the g', r' and i' bands with a median seeing of 0.83, 0.76 and 0.71 arcsec, respectively, in these filters. Most of the survey clusters are located within the Sloan Digital Sky Survey (SDSS) Stripe-82 region and all of them are in the SDSS footprint. We present the first results of the survey, including the 6 best strong lensing systems, photometric and morphometric catalogs of the galaxy sample, and cross matches of the clusters and galaxies with complementary samples (spectroscopic redshifts, photometry in several bands, X-ray and Sunyaev Zel'dovich clusters, etc.), exploiting the synergy with other surveys in Stripe-82. We apply several methods to characterize the gravitational arc candidates, including the Mediatrix method (Bom et al. 2012) and ArcFitting (Furlanetto et al. 2012), and for the subtraction of galaxy cluster light. Finally, we apply strong lensing inversion techniques to the best systems, providing constraints on their mass distribution. The analyses of a spectral follow-up with Gemini and the derived dynamical masses are presented in a poster submitted to this same meeting (Cibirka et al.). Deeper follow-up images with Gemini strengthen the case for the strong lensing nature of the candidates found in this survey.

  2. Gravitational waves from axion monodromy

    SciTech Connect

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-02

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this “dynamical phase decomposition' phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  3. Loop quantum cosmology gravitational baryogenesis

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-11-01

    Loop quantum cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer a remedy for or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of loop quantum cosmology. As we demonstrate, when loop quantum cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation-dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of loop quantum cosmology and we investigate under which circumstances the baryon-to-entropy ratio can be compatible with the observational constraints.

  4. Atomic gravitational wave interferometric sensor

    SciTech Connect

    Dimopoulos, Savas; Hogan, Jason M.; Kasevich, Mark A.; Graham, Peter W.; Rajendran, Surjeet

    2008-12-15

    We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite based, utilizing the core technology of the Stanford 10 m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with two {approx}10 m atom interferometers separated by a {approx}1 km baseline can operate with strain sensitivity {approx}(10{sup -19}/{radical}(Hz)) in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment with two atom interferometers separated by a {approx}1000 km baseline can probe the same frequency spectrum as LISA with comparable strain sensitivity {approx}(10{sup -20}/{radical}(Hz)). The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations and acceleration noise, and significantly reduces spacecraft control requirements. We analyze the backgrounds in this configuration and discuss methods for controlling them to the required levels.

  5. Gravitational Waves: Elusive Cosmic Messengers

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes is expected to be the strongest g ravitational wave source for ground-based interferometers such as LIG O, VIRGO, and GE0600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires t hat we know the radiation waveforms they emit. Since these mergers ta ke place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate t hese waveforms. For more than 30 years, scientists have tried to comp ute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could comple te even a single orbit. Within the past few years, however, this situ ation has changed dramatically, with a series of remarkable breakthro ughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applic ations in gravitational wave detection, data analysis, and astrophysi cs.

  6. Gravitational radiation from the Galaxy

    SciTech Connect

    Hils, D.; Bender, P.L.; Webbink, R.F. Illinois Univ., Urbana )

    1990-09-01

    The spectral flux of gravitational radiation incident on earth from the Galactic W UMa binaries, unevolved binaries, cataclysmic binaries, neutron star binaries, black hole-neutron star binaries, and close white dwarf binary (CWDB) systems is calculated. The peak values for the strain amplitude hv produced by the binaries are: log hv = -17.0/sq rt Hz at log v = -4.40 Hz for W UMa's; log hv = -16.5/sq rt Hz at log v = -5.50 Hz for unevolved binaries; log hv = -18.2/sq rt Hz at log v = -5.15 Hz for neutron star binaries; log hv = -17.0/sq rt Hz at log v = -4.7 Hz for black hole-neutron star binaries; log hv = -18.0 /sq rt Hz at log v = -4.10 Hz for cataclysmic binaries, and log hv = -27.0/sq rt Hz at log v = -4.0 Hz for CWDBs. The gravitational flux at ultralow frequencies is emitted mainly by unevolved binaries. The integrated flux incident on earth is about 2.4 x 10 to the -9th ergs/sq cm/s. 74 refs.

  7. Grand unification through gravitational effects

    SciTech Connect

    Calmet, Xavier; Hsu, Stephen D. H.; Reeb, David

    2010-02-01

    We systematically study the unification of gauge couplings in the presence of (one or more) effective dimension-5 operators cHG{sub {mu}{nu}G}{sup {mu}{nu}/}4M{sub pl}, induced into the grand unified theory by gravitational interactions at the Planck scale. These operators alter the usual condition for gauge-coupling unification, which can, depending on the Higgs content H and vacuum expectation value, result in unification at scales M{sub X} significantly different than naively expected. We find nonsupersymmetric models of SU(5) and SO(10) unification, with natural Wilson coefficients c, that easily satisfy the constraints from proton decay. Furthermore, gauge-coupling unification at scales as high as the Planck scale seems feasible, possibly hinting at simultaneous unification of gauge and gravitational interactions. In the Appendix we work out the group theoretical aspects of this scenario for SU(5) and SO(10) unified groups in detail; this material is also relevant in the analysis of nonuniversal gaugino masses obtained from supergravity.

  8. Black holes as gravitational atoms

    NASA Astrophysics Data System (ADS)

    Vaz, Cenalo

    2014-06-01

    Recently, it was argued [A. Almheiri et al., arXiv: 1207.3123, A. Almheiri et al., arXiv: 1304.6483], via a delicate thought experiment, that it is not consistent to simultaneously require that (a) Hawking radiation is pure, (b) effective field theory is valid outside a stretched horizon and (c) infalling observers encounter nothing unusual as they cross the horizon. These are the three fundamental assumptions underlying Black Hole Complementarity and the authors proposed that the most conservative resolution of the paradox is that (c) is false and the infalling observer burns up at the horizon (the horizon acts as a "firewall"). However, the firewall violates the equivalence principle and breaks the CPT invariance of quantum gravity. This led Hawking to propose recently that gravitational collapse may not end up producing event horizons, although he did not give a mechanism for how this may happen. Here we will support Hawking's conclusion in a quantum gravitational model of dust collapse. We will show that continued collapse to a singularity can only be achieved by combining two independent and entire solutions of the Wheeler-DeWitt equation. We interpret the paradox as simply forbidding such a combination. This leads naturally to a picture in which matter condenses on the apparent horizon during quantum collapse.

  9. Effects of confinement between attractive and repulsive walls on the thermodynamics of an anomalous fluid.

    PubMed

    Leoni, Fabio; Franzese, Giancarlo

    2016-12-01

    We study via molecular-dynamics simulations the thermodynamics of an anomalous fluid confined in a slit pore with one wall structured and attractive and another unstructured and repulsive. We find that the phase diagram of the homogeneous part of the confined fluid is shifted to higher temperatures, densities, and pressures with respect to the bulk, but it can be rescaled on the bulk case. We calculate a moderate increase of mobility of the homogeneous confined fluid that we interpret as a consequence of the layering due to confinement and the collective modes due to long-range correlations. We show that, as in bulk, the confined fluid has structural, diffusion, and density anomalies that order in the waterlike hierarchy, and a liquid-liquid critical point (LLCP). The overall anomalous region moves to higher temperatures, densities, and pressure, and the LLCP displaces to higher temperature compared to bulk. Motivated by experiments, we calculate also the phase diagram not just for the homogeneous part of the confined fluid but for the entire fluid in the pore, and we show that it is shifted toward higher pressures but preserves the thermodynamics, including the LLCP. Because our model has waterlike properties, we argue that in experiments with supercooled water confined in slit pores with a width of >3 nm if hydrophilic and of >1.5 nm if hydrophobic, the existence of the LLCP could be easier to test than in bulk, where it is not directly accessible.

  10. Negative-mass mitigation of Coulomb repulsion for terahertz undulator radiation of electron bunches

    SciTech Connect

    Balal, N.; Magory, E.; Bandurkin, I. V.; Bratman, V. L.; Savilov, A. V.

    2015-10-19

    It is proposed to utilize the effect of negative mass for stabilization of the effective axial size of very dense and short electron bunches produced by photo-injector guns by using combined undulator and strong uniform magnetic fields. It has been shown that in the “abnormal” regime, an increase in the electron energy leads to a decrease in the axial velocity of the electron; due to the negative-mass effect, the Coulomb repulsion of electrons leads to their attraction and formation of a fairly stable and compact bunch “nucleus.” An undulator with a strong uniform magnetic field providing the negative-mass effect is designed for an experimental source of terahertz radiation. The use of the negative-mass regime in this experiment should result in a long-pulse coherent spontaneous undulator emission from a short dense moderately relativistic (5.5 MeV) photo-injector electron bunch with a high (up to 20%) efficiency and a narrow frequency spectrum.

  11. Rapidly rotating boson molecules with long- or short-range repulsion: An exact diagonalization study

    SciTech Connect

    Baksmaty, Leslie O.; Yannouleas, Constantine; Landman, Uzi

    2007-02-15

    The Hamiltonian for a small number N{<=}11 of bosons in a rapidly rotating harmonic trap, interacting via a short range (contact potential) or a long range (Coulomb) interaction, is studied via an exact diagonalization in the lowest Landau level. Our analysis shows that, for both low and high fractional fillings, the bosons localize and form rotating boson molecules (RBMs) consisting of concentric polygonal rings. Focusing on systems with the number of trapped atoms sufficiently large to form multiring bosonic molecules, we find that, as a function of the rotational frequency and regardless of the type of repulsive interaction, the ground-state angular momenta grow in specific steps that coincide with the number of localized bosons on each concentric ring. Comparison of the conditional probability distributions (CPDs) for both interactions suggests that the degree of crystalline correlations appears to depend more on the fractional filling {nu} than on the range of the interaction. The RBMs behave as nonrigid rotors, i.e., the concentric rings rotate independently of each other. At filling fractions {nu}<1/2, we observe well developed crystallinity in the CPDs (two-point correlation functions). For larger filling fractions {nu}>1/2, observation of similar molecular patterns requires consideration of even higher-order correlation functions.

  12. Gauche effect in 1,2-difluoroethane. Hyperconjugation, bent bonds, steric repulsion.

    PubMed

    Goodman, Lionel; Gu, Hongbing; Pophristic, Vojislava

    2005-02-17

    Natural bond orbital deletion calculations show that whereas the gauche preference arises from vicinal hyperconjugative interaction between anti C-H bonds and C-F* antibonds, the cis C-H/C-F* interactions are substantial (approximately 25% of the anti interaction). The established significantly >60 degrees FCCF dihedral angle for the equilibrium conformer can then be rationalized in terms of the hyperconjugation model alone by taking into account both anti interactions that maximize near 60 degrees and the smaller cis interactions that maximize at a much larger dihedral angle. This explanation does not invoke repulsive forces to rationalize the 72 degrees equilibrium conformer angle. The relative minimum energy for the trans conformer is the consequence of a balance between decreasing hyperconjugative stabilization and decreasing steric destabilization as the FCCF torsional angle approaches 180 degrees . The torsional coordinate is predicted to be strongly contaminated by CCF bending, with the result that approximately half of the trans --> gauche stabilization energy stems from mode coupling.

  13. Thermodynamics, contact, and density profiles of the repulsive Gaudin-Yang model

    NASA Astrophysics Data System (ADS)

    PâÅ£u, Ovidiu I.; Klümper, Andreas

    2016-03-01

    We address the problem of computing the thermodynamic properties of the repulsive one-dimensional two-component Fermi gas with contact interaction, also known as the Gaudin-Yang model. Using a specific lattice embedding and the quantum transfer matrix we derive an exact system of only two nonlinear integral equations for the thermodynamics of the homogeneous model which is valid for all temperatures and values of the chemical potential, magnetic field, and coupling strength. This system allows for an easy and extremely accurate calculation of thermodynamic properties circumventing the difficulties associated with the truncation of the thermodynamic Bethe ansatz system of equations. We present extensive results for the densities, polarization, magnetic susceptibility, specific heat, interaction energy, Tan contact, and local correlation function of opposite spins. Our results show that at low and intermediate temperatures the experimentally accessible contact is a nonmonotonic function of the coupling strength. As a function of the temperature the contact presents a pronounced local minimum in the Tonks-Girardeau regime which signals an abrupt change of the momentum distribution in a small interval of temperature. The density profiles of the system in the presence of a harmonic trapping potential are computed using the exact solution of the homogeneous model coupled with the local density approximation. We find that at finite temperature the density profile presents a double shell structure (partially polarized center and fully polarized wings) only when the polarization in the center of the trap is above a critical value which is monotonically increasing with temperature.

  14. Repulsive Fermi gas in a harmonic trap: Ferromagnetism and spin textures

    NASA Astrophysics Data System (ADS)

    Leblanc, L. J.; Thywissen, J. H.; Burkov, A. A.; Paramekanti, A.

    2009-07-01

    We study ferromagnetism in a repulsively interacting two-component Fermi gas in a harmonic trap. Within a local density approximation, the two components phase separate beyond a critical interaction strength, with one species having a higher density at the trap center. We discuss several easily observable experimental signatures of this transition. The mean-field release energy, its separate kinetic and interaction contributions, as well as the potential energy all depend on the interaction strength and contain a sharp signature of this transition. In addition, the conversion rate of atoms to molecules, arising from three-body collisions, peaks at an interaction strength just beyond the ferromagnetic transition point. We then go beyond the local density approximation and derive an energy functional that includes a term that depends on the local magnetization gradient and acts as a “surface tension.” Using this energy functional, we numerically study the energetics of some candidate spin textures that may be stabilized in a harmonic trapping potential at zero net magnetization. We find that a hedgehog state has a lower energy than an “in-out” domain-wall state in an isotropic trap. Upon inclusion of trap anisotropy we find that the hedgehog magnetization profile gets distorted due to the surface tension term, this distortion being more apparent for small atom numbers. We estimate that the magnetic dipole interaction does not play a significant role in this system. We consider possible implications for experiments on trapped L6i and K40 gases.

  15. Effects of confinement between attractive and repulsive walls on the thermodynamics of an anomalous fluid

    NASA Astrophysics Data System (ADS)

    Leoni, Fabio; Franzese, Giancarlo

    2016-12-01

    We study via molecular-dynamics simulations the thermodynamics of an anomalous fluid confined in a slit pore with one wall structured and attractive and another unstructured and repulsive. We find that the phase diagram of the homogeneous part of the confined fluid is shifted to higher temperatures, densities, and pressures with respect to the bulk, but it can be rescaled on the bulk case. We calculate a moderate increase of mobility of the homogeneous confined fluid that we interpret as a consequence of the layering due to confinement and the collective modes due to long-range correlations. We show that, as in bulk, the confined fluid has structural, diffusion, and density anomalies that order in the waterlike hierarchy, and a liquid-liquid critical point (LLCP). The overall anomalous region moves to higher temperatures, densities, and pressure, and the LLCP displaces to higher temperature compared to bulk. Motivated by experiments, we calculate also the phase diagram not just for the homogeneous part of the confined fluid but for the entire fluid in the pore, and we show that it is shifted toward higher pressures but preserves the thermodynamics, including the LLCP. Because our model has waterlike properties, we argue that in experiments with supercooled water confined in slit pores with a width of >3 nm if hydrophilic and of >1.5 nm if hydrophobic, the existence of the LLCP could be easier to test than in bulk, where it is not directly accessible.

  16. Harmonically trapped attractive and repulsive spin–orbit and Rabi coupled Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Chiquillo, Emerson

    2017-03-01

    Numerically we investigate the ground state of effective one-dimensional spin–orbit (SO) and Rabi coupled two pseudo-spinor Bose–Einstein condensates (BECs) under the effect of harmonic traps. For both signs of the interaction, density profiles of SO and Rabi coupled BECs in harmonic potentials, which simulate a real experimental situation are obtained. The harmonic trap causes a strong reduction of the multi-peak nature of the condensate and it increases its density. For repulsive interactions, the increase of SO coupling results in an uncompressed less dense condensate and with increased multi-peak nature of the density. The increase of Rabi coupling leads to a density increase with an almost constant number of multi-peaks. For both signs of the interaction and negative values of Rabi coupling, the condensate develops a notch in the central point and it seems to a dark-in-bright soliton. In the case of the attractive nonlinearity, an interesting result is the increase of the collapse threshold under the action of the SO and Rabi couplings.

  17. A Transcription Factor Network Coordinates Attraction, Repulsion, and Adhesion Combinatorially to Control Motor Axon Pathway Selection

    PubMed Central

    Zarin, Aref Arzan; Asadzadeh, Jamshid; Hokamp, Karsten; McCartney, Daniel; Yang, Long; Bashaw, Greg J.; Labrador, Juan-Pablo

    2014-01-01

    SUMMARY Combinations of transcription factors (TFs) instruct precise wiring patterns in the developing nervous system; however, how these factors impinge on surface molecules that control guidance decisions is poorly understood. Using mRNA profiling, we identified the complement of membrane molecules regulated by the homeobox TF Even-skipped (Eve), the major determinant of dorsal motor neuron (dMN) identity in Drosophila. Combinatorial loss- and gain-of-function genetic analyses of Eve target genes indicate that the integrated actions of attractive, repulsive, and adhesive molecules direct eve-dependent dMN axon guidance. Furthermore, combined misexpression of Eve target genes is sufficient to partially restore CNS exit and can convert the guidance behavior of interneurons to that of dMNs. Finally, we show that a network of TFs, comprised of eve, zfh1, and grain, induces the expression of the Unc5 and Beaten-path guidance receptors and the Fasciclin 2 and Neuroglian adhesion molecules to guide individual dMN axons. PMID:24560702

  18. Interplay of Pomeranchuk instability and superconductivity in the two-dimensional repulsive Hubbard model

    NASA Astrophysics Data System (ADS)

    Kitatani, Motoharu; Tsuji, Naoto; Aoki, Hideo

    2017-02-01

    Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d -wave superconductivity is studied for the repulsive Hubbard model on the square lattice with the dynamical mean-field theory combined with the fluctuation exchange approximation (FLEX+DMFT). We show that the fourfold symmetric Fermi surface becomes unstable against a spontaneous distortion into twofold near the van Hove filling, where the symmetry of superconductivity coexisting with the Pomeranchuk-distorted Fermi surface is modified from the d -wave pairing to the (d +s ) wave. By systematically shifting the position of van Hove filling with varied second- and third-neighbor hoppings, we find that the transition temperature TcPI for the Pomeranchuk instability is more sensitively affected by the position of van Hove filling than the superconducting TcSC. This implies that the filling region for strong Pomeranchuk instability and that for the TcSC dome can be separated, and that Pomeranchuk instability can appear even if the peak of TcPI is lower than the peak of TcSC. An interesting finding is that the Fermi surface distortion can enhance the superconducting TcSC in the overdoped regime, which is explained with a perturbational picture for small distortions.

  19. Repulsive Guidance Molecule is a structural bridge between Neogenin and Bone Morphogenetic Protein

    PubMed Central

    Healey, Eleanor G.; Bishop, Benjamin; Elegheert, Jonathan; Bell, Christian H.; Padilla-Parra, Sergi; Siebold, Christian

    2015-01-01

    Repulsive guidance molecules (RGMs) control crucial processes spanning cell motility, adhesion, immune cell regulation and systemic iron metabolism. RGMs signal via two fundamental signaling cascades: the Neogenin (NEO1) and the Bone Morphogenetic Protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a novel protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the ternary BMP2–RGM–NEO1 complex crystal structure, which combined with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM–NEO1 complex. Our results show how RGM acts as the central hub linking BMP and NEO1 and physically connecting these fundamental signaling pathways. PMID:25938661

  20. Repulsive guidance molecule a blockade exerts the immunoregulatory function in DCs stimulated with ABP and LPS.

    PubMed

    Xu, Xuxu; Gao, Yan; Zhai, Zhiyong; Zhang, Shuo; Shan, Fengping; Feng, Juan

    2016-08-02

    Repulsive guidance molecule a (RGMa) is an axonal guidance molecule that has recently found to exert function in immune system. This study evaluated the function of RGMa in modulation of dendritic cells (DCs) function stimulated with Achyranthes bidentata polysaccharide (ABP) and lipopolysaccharide (LPS) using a RGMa-neutralizing antibody. Compared with the Control-IgG/ABP and Control-IgG/LPS groups, DCs in the Anti-RGMa/ABP and Anti-RGMa/LPS groups 1) showed small, round cells with a few cell processes and organelles, and many pinocytotic vesicles; 2) had decreased MHC II, CD86, CD80, and CD40 expression; 3) displayed the decreased IL-12p70, IL-1β and TNF-α levels and increased IL-10 secretion; 4) had a high percentage of FITC-dextran uptake; and 5) displayed a reduced ability to drive T cell proliferation and reinforced T cell polarization toward a Th2 cytokine pattern. We conclude that DCs treated with RGMa-neutralizing antibodies present with tolerogenic and immunoregulatory characteristics, which provides new insights into further understanding of the function of RGMa.

  1. One-dimensional fermions with {delta}-function repulsion in the Brueckner theory

    SciTech Connect

    Buzatu, F.D.

    1997-01-01

    The single-particle energies for a one-dimensional system of interacting fermions via a repulsive {delta}-function potential are self-consistently calculated using the Brueckner and Gammel method. The breakdown of the usual Fermi liquid picture is signaled in this approach by the occurrence of a negative gap at {plus_minus}k{sub F} between the lowest energy of a particle state ({vert_bar}k{vert_bar}{gt}k{sub F}) and the highest energy of a hole state ({vert_bar}k{vert_bar}{lt}k{sub F}); a normal ground-state configuration with all the hole states double occupied is thus unstable. Two possible pictures getting account of the rearrangement of the particles in a stable configuration are discussed: (1) an effective potential simulating a normal Fermi liquid behavior; (2) a condensate of fermions and a reduced Fermi sea normally occupied. The ground-state energy computed within these schemes is in remarkable agreement with the Bethe-Ansatz results for all values of the model parameters. {copyright} {ital 1996} {ital The American Physical Society}

  2. Nonlocal Entropic Repulsion Effects on Rod Polymer Induced Depletion Attraction between Spherical Particles

    NASA Astrophysics Data System (ADS)

    Chen, Yeng-Long; Schweizer, Kenneth

    2002-03-01

    The polymer liquid state integral equation approach for treating depletion phenomena in rigid rod-colloid suspensions is generalized to account for spatially nonlocal entropic repulsions which modify rod orientation near an impenetrable particle. A thermodynamically consistent theory for the rod segment-particle direct correlation function is formulated under athermal conditions for thin rods and all ratios of the rod length, L, to sphere diameter, D. Results for the polymer density profile near a colloid, the cross second virial coefficient, and the sphere-sphere depletion potential under dilute polymer conditions have been obtained. Relative to simpler approaches based on the (local) Percus-Yevick closure approximation, the new theory represents a qualitative improvement for the shape of the polymer density profile at small separations, and a major quantitative improvement for the depletion attraction strength at colloidal contact when D>L. Detailed comparisons reveal very good agreement of the theory with both exact simulation results for all size asymmetry ratios, and recent direct experimental measurements of the fd-virus(rod) induced depletion potential between silica colloids where L ~ D.

  3. An attraction-repulsion point process model for respiratory syncytial virus infections.

    PubMed

    Goldstein, Joshua; Haran, Murali; Simeonov, Ivan; Fricks, John; Chiaromonte, Francesca

    2015-06-01

    How is the progression of a virus influenced by properties intrinsic to individual cells? We address this question by studying the susceptibility of cells infected with two strains of the human respiratory syncytial virus (RSV-A and RSV-B) in an in vitro experiment. Spatial patterns of infected cells give us insight into how local conditions influence susceptibility to the virus. We observe a complicated attraction and repulsion behavior, a tendency for infected cells to lump together or remain apart. We develop a new spatial point process model to describe this behavior. Inference on spatial point processes is difficult because the likelihood functions of these models contain intractable normalizing constants; we adapt an MCMC algorithm called double Metropolis-Hastings to overcome this computational challenge. Our methods are computationally efficient even for large point patterns consisting of over 10,000 points. We illustrate the application of our model and inferential approach to simulated data examples and fit our model to various RSV experiments. Because our model parameters are easy to interpret, we are able to draw meaningful scientific conclusions from the fitted models.

  4. Two-dimensional O(3) model at nonzero density: From dual lattice simulations to repulsive bosons

    NASA Astrophysics Data System (ADS)

    Bruckmann, Falk; Gattringer, Christof; Kloiber, Thomas; Sulejmanpasic, Tin

    2016-12-01

    We discuss the thermodynamics of the O(3) nonlinear sigma model in 1 +1 dimensions at nonzero chemical potential (equivalent to a magnetic field). In its conventional field theory representation the model suffers from a sign problem. By dualizing the model, we are able to fully access the nonzero density regime of an asymptotically free theory with dynamical mass gap at arbitrary chemical potential values. We find a quantum phase transition at zero temperature where as a function of the chemical potential the density assumes a nonzero value. Measuring the spin stiffness we present evidence for a corresponding dynamical critical exponent z close to 2. The low energy O(3) model is conjectured to be described by a massive boson triplet with repulsive interactions. We confirm the universal square-root behavior expected for such a system at low density (and temperature) and compare our data to the results of Bethe Ansatz solutions of the relativistic and nonrelativistic one-dimensional Bose gas. We also comment on a potential Berezinskii-Kosterlitz-Thouless transition at nonzero density.

  5. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth.

    PubMed

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-08-21

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.

  6. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages.

    PubMed

    Xia, Yin; Cortez-Retamozo, Virna; Niederkofler, Vera; Salie, Rishard; Chen, Shanzhuo; Samad, Tarek A; Hong, Charles C; Arber, Silvia; Vyas, Jatin M; Weissleder, Ralph; Pittet, Mikael J; Lin, Herbert Y

    2011-02-01

    Repulsive guidance molecule (RGM) family members RGMa, RGMb/Dragon, and RGMc/hemojuvelin were found recently to act as bone morphogenetic protein (BMP) coreceptors that enhance BMP signaling activity. Although our previous studies have shown that hemojuvelin regulates hepcidin expression and iron metabolism through the BMP pathway, the role of the BMP signaling mediated by Dragon remains largely unknown. We have shown previously that Dragon is expressed in neural cells, germ cells, and renal epithelial cells. In this study, we demonstrate that Dragon is highly expressed in macrophages. Studies with RAW264.7 and J774 macrophage cell lines reveal that Dragon negatively regulates IL-6 expression in a BMP ligand-dependent manner via the p38 MAPK and Erk1/2 pathways but not the Smad1/5/8 pathway. We also generated Dragon knockout mice and found that IL-6 is upregulated in macrophages and dendritic cells derived from whole lung tissue of these mice compared with that in respective cells derived from wild-type littermates. These results indicate that Dragon is an important negative regulator of IL-6 expression in immune cells and that Dragon-deficient mice may be a useful model for studying immune and inflammatory disorders.

  7. Superconductivity in the boson-fermion model with short range fermion repulsion

    NASA Astrophysics Data System (ADS)

    Kostyrko, Tomasz

    1998-03-01

    We consider influence of an on-site Coulomb repulsion U between fermions on superconducting properties of a two-component system of the wide band electrons hybridized with heavy boson-like local electron pairs^1,2. Within an RPA treatment valid for U< fermion bandwidth, we show that U almost completely suppresses superconductivity as long as a boson level stays above a Fermi level (BCS limit), reducing both Tc and a range of stability of an s-wave superconducting phase at T=0 K. In a Bose region, where the chemical potential remains pinned to the boson level, superconductivity is always stable at T=0 K and suppression of Tc is relatively small, especially for finite values of a boson mass. Above results are verified with the conclusions based on an effective t-J like hamiltonian derived by means of a canonical perturbation method from the boson-fermion model in a strong U limit. We show that the on-site boson-fermion hybridization is reduced by a factor of 2t/U (t - fermion hopping) and transforms into an intersite coupling supporting an extended s-wave superconducting order in this limit. [1em] 1. J. Ranninger and Robaszkiewicz, Physica B 135, 468 (1985). 2. R. Friedberg and T.D. Lee, Phys. Rev. B 40, 423 (1989).

  8. Systematically altering the hydrophobic nanobubble bridging capillary force from attractive to repulsive.

    PubMed

    Hampton, Marc A; Nguyen, Anh V

    2009-05-15

    Atomic force microscopy (AFM) was used to examine how ethanol/water concentration affects the nanobubble bridging capillary force between a hydrophobic silica colloidal probe and a hydrophobic silica wafer. Nanobubbles were produced on the solid surfaces by a previously utilised method which uses solvent-exchange and surface scanning. In pure water a strong, long range attractive force ( approximately 230 nm) with a single jump in step was measured, typical of an interaction between two nanobubbles attached to the hydrophobic surfaces. An increase in the ethanol concentration had little effect on the range of the force but dramatically reduced its magnitude. At an ethanol concentration of 40% by mass, the force became repulsive after the initial attractive jump in. Above an ethanol concentration of 40% by mass, the capillary force disappeared. The change in the force with ethanol concentration was explained using a capillary force model with constant volume and contact angle. The bridge geometry, contact angle, volume and rupture distance were determined for different ethanol concentrations.

  9. Diffusion of Particles in the Extracellular Matrix: The Effect of Repulsive Electrostatic Interactions

    PubMed Central

    Stylianopoulos, Triantafyllos; Poh, Ming-Zher; Insin, Numpon; Bawendi, Moungi G.; Fukumura, Dai; Munn, Lance L.; Jain, Rakesh K.

    2010-01-01

    Diffusive transport of macromolecules and nanoparticles in charged fibrous media is of interest in many biological applications, including drug delivery and separation processes. Experimental findings have shown that diffusion can be significantly hindered by electrostatic interactions between the diffusing particle and charged components of the extracellular matrix. The implications, however, have not been analyzed rigorously. Here, we present a mathematical framework to study the effect of charge on the diffusive transport of macromolecules and nanoparticles in the extracellular matrix of biological tissues. The model takes into account steric, hydrodynamic, and electrostatic interactions. We show that when the fiber size is comparable to the Debye length, electrostatic forces between the fibers and the particles result in slowed diffusion. However, as the fiber diameter increases the repulsive forces become less important. Our results explain the experimental observations that neutral particles diffuse faster than charged particles. Taken together, we conclude that optimal particles for delivery to tumors should be initially cationic to target the tumor vessels and then change to neutral charge after exiting the blood vessels. PMID:20816045

  10. Static and dynamic phases for magnetic vortex matter with attractive and repulsive interactions.

    PubMed

    Drocco, J A; Olson Reichhardt, C J; Reichhardt, C; Bishop, A R

    2013-08-28

    Exotic vortex states with long range attraction and short range repulsion have recently been proposed to arise in certain superconducting hybrid structures such as type-I/type-II layered systems as well as multi-band superconductors. In previous work it has been shown that such systems can form clump or phase separated states, but little is known about how they behave in the presence of pinning and under an applied drive. Using large scale simulations we examine the static and dynamic properties of such vortex states interacting with random and periodic pinning. In the absence of pinning this system does not form patterns but instead undergoes complete phase separation. When pinning is present there is a transition from inhomogeneous to homogeneous vortex configurations similar to a wetting phenomenon. Under an applied drive, a dynamical dewetting process can occur from a strongly pinned homogeneous state into pattern forming states, such as moving stripes that are aligned with the direction of drive or moving labyrinth or clump phases. We show that a signature of the exotic vortex interactions observable with transport measurements is a robust double peak feature in the differential resistance curves. Our results should be valuable for determining whether such vortex interactions are occurring in these systems and also for addressing the general problem of systems with competing interactions in the presence of random and periodic pinning.

  11. A review of dynamic stability of repulsive-force maglev suspension systems

    SciTech Connect

    Cai, Y.; Rote, D.M.

    1998-07-01

    Vehicle dynamics and the need to satisfy ride quality requirements have long been recognized as crucial to the commercial success of passenger-carrying transportation systems. Design concepts for maglev systems are no exception. Early maglev investigators and designers were well aware of the importance of ride quality and took care to ensure that their designs would meet acceptable ride quality standards. In contrast, the dynamic stability of electrodynamic suspension (EDS) systems, which has obvious implications for system safety and cost as well as for ride quality, has not received nearly as much attention. Because of the well-known under-damped nature of EDS suspension systems and the observation of instabilities in laboratory-scale model systems, it is prudent to develop a better understanding of vehicle stability characteristics. The work reported in this was undertaken with the intention of summarizing information that has been accumulated worldwide and that is relevant to dynamic stability of repulsive-force maglev suspension systems, assimilating that information, and gaining an understanding of the factors that influence that stability. Included in the paper is a discussion and comparison of results acquired from some representative tests of large-scale vehicles on linear test tracks, together with analytical and laboratory-scale investigations of stability and dynamics of EDS systems. This paper will also summarize the R and D activities at Argonne National Laboratory (ANL) since 1991 to study the nature of the forces that are operative in an EDS system and the dynamic stability of such systems.

  12. Confining and repulsive potentials from effective non-Abelian gauge fields in graphene bilayers

    NASA Astrophysics Data System (ADS)

    González, J.

    2016-10-01

    We investigate the effect of shear and strain in graphene bilayers, under conditions where the distortion of the lattice gives rise to a smooth one-dimensional modulation in the stacking sequence of the bilayer. We show that strain and shear produce characteristic Moiré patterns which can have the same visual appearance on a large scale, but representing graphene bilayers with quite different electronic properties. The different features in the low-energy electronic bands can be ascribed to the effect of a fictitious non-Abelian gauge field mimicking the smooth modulation of the stacking order. Strained and sheared bilayers show a complementary behavior, which can be understood from the fact that the non-Abelian gauge field acts as a repulsive interaction in the former, expelling the electron density away from the stacking domain walls, while behaving as a confining interaction leading to localization of the electronic states in the sheared bilayers. In this latter case, the presence of the effective gauge field explains the development of almost flat low-energy bands, resembling the form of the zeroth Landau level characteristic of a Dirac fermion field. The estimate of the gauge field strength in those systems gives a magnitude of the order of several tens of tesla, implying a robust phenomenology that should be susceptible of being observed in suitably distorted bilayer samples.

  13. Universal behavior of repulsive two-dimensional fermions in the vicinity of the quantum freezing point

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash; Skinner, Brian; Fogler, Michael M.; Demler, Eugene

    2013-07-01

    We show by a meta-analysis of the available Quantum Monte Carlo (QMC) results that two-dimensional fermions with repulsive interactions exhibit universal behavior in the strongly correlated regime, and that their freezing transition can be described using a quantum generalization of the classical Hansen-Verlet freezing criterion. We calculate the liquid-state energy and the freezing point of the 2D dipolar Fermi gas (2DDFG) using a variational method by taking ground-state wave functions of 2D electron gas (2DEG) as trial states. A comparison with the recent fixed-node diffusion Monte Carlo analysis of the 2DDFG shows that our simple variational technique captures more than 95% of the correlation energy, and predicts the freezing transition within the uncertainty bounds of QMC. Finally, we utilize the ground-state wave functions of 2DDFG as trial states and provide a variational account of the effects of finite 2D confinement width. Our results indicate significant beyond mean-field effects. We calculate the frequency of collective monopole oscillations of the quasi-2D dipolar gas as an experimental demonstration of correlation effects.

  14. Exchange repulsive potential adaptable for electronic structure changes during chemical reactions

    SciTech Connect

    Yokogawa, D.

    2015-04-28

    Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as the main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.

  15. Theoretical and experimental evidence of level repulsion states and evanescent modes in sonic crystal stubbed waveguides

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Vasseur, J. O.; Garcia-Raffi, L. M.; Hladky-Hennion, A. C.

    2012-02-01

    The complex band structures calculated using the extended plane wave expansion (EPWE) reveal the presence of evanescent modes in periodic systems, never predicted by the classical \\omega(\\vec {k}) methods, providing novel interpretations of several phenomena as well as a complete picture of the system. In this work, we theoretically and experimentally observe that in the ranges of frequencies where a deaf band is traditionally predicted, an evanescent mode with excitable symmetry appears, changing drastically the interpretation of the transmission properties. On the other hand, the simplicity of the sonic crystals in which only the longitudinal polarization can be excited is used to interpret, without loss of generality, the level repulsion between symmetric and antisymmetric bands in sonic crystals as the presence of an evanescent mode connecting both repelled bands. These evanescent modes, obtained using EPWE, explain both the attenuation produced in this range of frequencies and the transfer of symmetry from one band to the other in good agreement with both experimental results and multiple scattering predictions. Thus, the evanescent properties of the periodic system have been revealed to be necessary for the design of new acoustic and electromagnetic applications based on periodicity.

  16. Influence of pH condition on colloidal suspension of exfoliated graphene oxide by electrostatic repulsion

    SciTech Connect

    Meng, Long-Yue; Park, Soo-Jin

    2012-02-15

    A facile chemical process is described to produce graphene oxide utilizing a zwitterions amino acid intermediate from graphite oxide sheets. 11-aminoundecanoic acid molecules were protonated to intercalate molecules into the graphite oxide sheets to achieve ion exchange, and the carboxyl groups were then ionized in a NaOH solution to exfoliate the graphite oxide sheets. In this way, the produced graphene oxide nanosheets were stably dispersed in water. The delaminated graphene nanosheets were confirmed by XRD, AFM, and TEM. XRD patterns indicated the d{sub 002}-spacing of the graphite greatly increased from 0.380 nm and 0.870 nm. AFM and TEM images showed that the ordered graphite crystal structure of graphene nanosheets was effectively exfoliated by this method. The prepared graphene nanosheets films showed 87.1% transmittance and a sheet resistance of 2.1 Multiplication-Sign 10{sup 3} {Omega}/square. - Graphical abstract: A stable graphene oxide suspension could be quickly prepared by exfoliating a graphite oxide suspension by a host-guest electrostatic repulsion in aqueous solution. Highlights: Black-Right-Pointing-Pointer Graphene nanosheets were prepared by a zwitterions amino acid intermediate from graphite oxide. Black-Right-Pointing-Pointer 11-aminoundecanoic acid was protonated to intercalate molecules into the graphene oxide to achieve ion exchange. Black-Right-Pointing-Pointer The d{sub 002}-spacing of the graphite oxide greatly increased from 0.330 nm to 0.415 nm after 11-aminoundecanoic acid treatment.

  17. A report on the gravitational redshift test for non-metric theories of gravitation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The frequencies of two atomic hydrogen masers and of three superconducting cavity stabilized oscillators were compared as the ensemble of oscillators was moved in the Sun's gravitational field by the rotation and orbital motion of the Earth. Metric gravitation theories predict that the gravitational redshifts of the two types of oscillators are identical, and that there should be no relative frequency shift between the oscillators; nonmetric theories, in contrast, predict a frequency shift between masers and SCSOs that is proportional to the change in solar gravitational potential experienced by the oscillators. The results are consistent with metric theories of gravitation at a level of 2%.

  18. Testing Gravitational Physics with Space-based Gravitational-wave Observations

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2011-01-01

    Gravitational wave observations provide exceptional and unique opportunities for precision tests of gravitational physics, as predicted by general relativity (GR). Space-based gravitational wave measurements, with high signal-to-noise ratios and large numbers of observed events may provide the best-suited gravitational-wave observations for testing GR with unprecedented precision. These observations will be especially useful in testing the properties of gravitational waves and strong-field aspects of the theory which are less relevant in other observations. We review the proposed GR test based on observations of massive black hole mergers, extreme mass ratio inspirals, and galactic binary systems.

  19. Onthe static and spherically symmetric gravitational field

    NASA Astrophysics Data System (ADS)

    Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra

    Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.

  20. Articulated Multimedia Physics, Lesson 9, Universal Gravitation.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the ninth lesson of the Articulated Multimedia Physics Course, instructional materials relating to universal gravitation are presented in this study guide. The subject is concerned with the quantitative meaning of the law of universal gravitation and its applications in astronomy. The content is arranged in scrambled form, and the use of matrix…

  1. Singularities from colliding plane gravitational waves

    NASA Astrophysics Data System (ADS)

    Tipler, Frank J.

    1980-12-01

    A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.

  2. How Spherical Is a Cube (Gravitationally)?

    ERIC Educational Resources Information Center

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  3. Gravitational potential: real-life results

    NASA Astrophysics Data System (ADS)

    Mungan, Carl E.

    2016-01-01

    The equilibrium surface of a large body of water is a gravitational equipotential. However, that does not imply that in a local region of increased gravitational field g the height h of the water surface will be lower to keep the potential gh constant, in contrast to a recent claim to that effect.

  4. Gravitational bending of light rays in plasma

    SciTech Connect

    Tsupko, O. Yu.; Bisnovatyi-Kogan, G. S.

    2010-01-01

    We investigate the gravitational lensing effect in presence of plasma. We observe that in a homogeneous plasma the gravitational deflection angle differs from that in vacuum, and it depends on the frequency of the photon. We discuss observational consequences of this dependence for the point-mass lensing and estimate possibility of the observation of this effect by the planned project Radioastron.

  5. Gravitational consequences of modern field theories

    NASA Technical Reports Server (NTRS)

    Horowitz, Gary T.

    1989-01-01

    Some gravitational consequences of certain extensions of Einstein's general theory of relativity are discussed. These theories are not alternative theories of gravity in the usual sense. It is assumed that general relativity is the appropriate description of all gravitational phenomena which were observed to date.

  6. How Spherical Is a Cube (Gravitationally)?

    NASA Astrophysics Data System (ADS)

    Sanny, Jeff; Smith, David

    2015-02-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center.1,2 By integrating over ring elements of a spherical shell, we show that the gravitational force on a point mass outside the shell is the same as that of a particle with the same mass as the shell at its center. This derivation works for objects with spherical symmetry while depending on the fact that the gravitational force between two point masses varies inversely as the square of their separation.3 If these conditions are not met, then the problem becomes more difficult. In this paper, we remove the condition of spherical symmetry and examine the gravitational force between two uniform cubes.

  7. Theory and experiment in gravitational physics

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1981-01-01

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  8. Gravitational wave emission from oscillating millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  9. Types of biological reactions to the gravitation loads.

    PubMed

    Pestov, I D

    1997-07-01

    The nature of adaptation to gravitational loads is reviewed. Topics include an organism's antigravitation function, exposure to gravitational loads, types of physiological reactions, and results of adaptation.

  10. Gravitational science with LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Trenkel, C.; Kemble, S.

    2009-03-01

    We investigate the potential of conducting interesting gravitational science experiments with LISA Pathfinder, by executing well defined de-orbiting manoeuvres following the nominal mission. Preliminary work suggests that the residual control authority of the micropropulsion system is sufficient to follow trajectories that cross the region surrounding the Sun-Earth saddle point, and also include one or multiple Earth flybys. Crossing the saddle point region may allow tests of Modified Newtonian Dynamics (MOND), while the flybys may potentially shed some light on the so-called flyby anomaly. We present some sample trajectories and discuss the limitations of the current model. Finally, we discuss the work required to take these ideas from the proof of principle presented here, to a concrete proposal for an extended mission.

  11. Centrifuges in gravitational physiology research

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.

    1993-01-01

    Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.

  12. CHAOTIC ZONES AROUND GRAVITATING BINARIES

    SciTech Connect

    Shevchenko, Ivan I.

    2015-01-20

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.

  13. Gravitational effects in dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Singh, N. B.; Chopra, M.

    1983-01-01

    The theories of diffusion-controlled dendritic crystallization will be reviewed briefly, along with recently published critical experiments on the kinetics and morphology of dendritic growth in pure substances. The influence of the gravitational body force on dendrite growth kinetics will be shown to be highly dependent on the growth orientation with respect to the gravity vector and on the level of the thermal supercooling. In fact, an abrupt transition occurs at a critical supercooling, above which diffusional transport dominates the growth process and below which convective transport dominates. Our most recent work on binary mixtures shows that dilute solute additions influence the crystallization process indirectly, by altering the interfacial stability, rather than by directly affecting the transport mode. Directions for future studies in this field will also be discussed.

  14. Gravitational effects on electrochemical batteries

    NASA Technical Reports Server (NTRS)

    Meredith, R. E.; Juvinall, G. L.; Uchiyama, A. A.

    1972-01-01

    The existing work on gravitational effects on electrochemical batteries is summarized, certain conclusions are drawn, and recommendations are made for future activities in this field. The effects of sustained high-G environments on cycle silver-zinc and nickel-cadmium cells have been evaluated over four complete cycles in the region of 10 to 75 G. Although no effects on high current discharge performances or on ampere-hour capacity were noted, severe zinc migration and sloughing of active material from the zinc electrode were observed. This latter effect constitutes real damage, and over a long period of time would result in loss of capacity. It is recommended that a zero-G battery experiment be implemented. Both an orbiting satellite and a sounding rocket approach are being considered.

  15. Exploring gravitational theories beyond Horndeski

    NASA Astrophysics Data System (ADS)

    Gleyzes, Jérôme; Langlois, David; Piazza, Federico; Vernizzi, Filippo

    2015-02-01

    We have recently proposed a new class of gravitational scalar-tensor theories free from Ostrogradski instabilities, in ref. [1]. As they generalize Horndeski theories, or "generalized" galileons, we call them G3. These theories possess a simple formulation when the time hypersurfaces are chosen to coincide with the uniform scalar field hypersurfaces. We confirm that they contain only three propagating degrees of freedom by presenting the details of the Hamiltonian formulation. We examine the coupling between these theories and matter. Moreover, we investigate how they transform under a disformal redefinition of the metric. Remarkably, these theories are preserved by disformal transformations that depend on the scalar field gradient, which also allow to map subfamilies of G3 into Horndeski theories.

  16. Classifying self-gravitating radiations

    NASA Astrophysics Data System (ADS)

    Kim, Hyeong-Chan

    2017-02-01

    We study a static system of self-gravitating radiations confined in a sphere by using numerical and analytical calculations. Because of the scaling symmetry of radiations, most of the main properties of a solution can be represented as a segment of a solution curve on a plane of two-dimensional scale invariant variables. We define an "approximate horizon" (AH) from the analogy with an apparent horizon. Any solution curve contains a unique point that corresponds to the AH. A given solution is uniquely labeled by three parameters representing the solution curve, the size of the AH, and the sphere size, which are an alternative to the data at the outer boundary. Various geometrical properties including the existence of an AH and the behaviors around the center can be identified from the parameters. We additionally present an analytic solution of the radiations on the verge of forming a black hole. Analytic formulas for the central mass of the naked singularity are given.

  17. Gravitational microlensing searches and results

    SciTech Connect

    Alcock, C.

    1997-05-08

    Baryonic matter, in the form of Machos (MAssive Compact Halo Objects), might be a significant constituent of the dark matter that dominates the Milky Way. This article describes how surveys for Machos exploit the gravitational microlens magnification of extragalactic stars. The experimental searches for this effect monitor millions of stars, in some cases every night, looking for magnification events. The early results of these surveys indicate that Machos make up a significant fraction of the dark matter in the Milky Way, and that these objects have stellar masses. Truly substellar objects do not contribute much to the total. Additionally, the relatively high event rate towards the Galactic bulge seems to require that the bulge be elongated, and massive.

  18. Folding gravitational-wave interferometers

    NASA Astrophysics Data System (ADS)

    Sanders, J. R.; Ballmer, Stefan W.

    2017-01-01

    The sensitivity of kilometer-scale terrestrial gravitational wave interferometers is limited by mirror coating thermal noise. Alternative interferometer topologies can mitigate the impact of thermal noise on interferometer noise curves. In this work, we explore the impact of introducing a single folding mirror into the arm cavities of dual-recycled Fabry–Perot interferometers. While simple folding alone does not reduce the mirror coating thermal noise, it makes the folding mirror the critical mirror, opening up a variety of design and upgrade options. Improvements to the folding mirror thermal noise through crystalline coatings or cryogenic cooling can increase interferometer range by as much as a factor of two over the Advanced LIGO reference design.

  19. Multipole expansions of gravitational radiation

    NASA Astrophysics Data System (ADS)

    Thorne, Kip S.

    1980-04-01

    This paper brings together, into a single unified notation, the multipole formalisms for gravitational radiation which various people have constructed. It also extends the results of previous workers. More specifically: Part One of this paper reviews the various scalar, vector, and tensor spherical harmonics used in the general relativity literature-including the Regge-Wheeler harmonics, the symmetric, trace-free ("STF") tensors of Sachs and Pirani, the Newman-Penrose spin-weighted harmonics, and the Mathews-Zerilli Clebsch-Gordan-coupled harmonics-which include "pure-orbital" harmonics and "pure-spin" harmonics. The relationships between the various harmonics are presented. Part One then turns attention to gravitational radiation. The concept of "local wave zone" is introduced to facilitate a clean separation of "wave generation" from "wave propagation." The generic radiation field in the local wave zone is decomposed into multipole components. The energy, linear momentum, and angular momentum in the waves are expressed as infinite sums of multipole contributions. Attention is then restricted to sources that admit a nonsingular, spacetime-covering de Donder coordinate system. (This excludes black holes.) In such a coordinate system the multipole moments of the radiation field are expressed as volume integrals over the source. For slow-motion systems, these source integrals are re-expressed as infinite power series in Lλ/≡(size of source)(reduced wavelength of waves). The slow-motion source integrals are then specialized to systems with weak internal gravity to yield (i) the standard Newtonian formulas for the multipole moments, (ii) the post-Newtonian formulas of Epstein and Wagoner, and (iii) post-post-Newtonian formulas. Part Two of this paper derives a multipole-moment wave-generation formalism for slow-motion systems with arbitrarily strong internal gravity, including systems that cannot be covered by de Donder coordinates. In this formalism one calculates

  20. Gauss-Bonnet gravitational baryogenesis

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-09-01

    In this letter we study some variant forms of gravitational baryogenesis by using higher order terms containing the partial derivative of the Gauss-Bonnet scalar coupled to the baryonic current. This scenario extends the well known theory that uses a similar coupling between the Ricci scalar and the baryonic current. One appealing feature of the scenario we study is that the predicted baryon asymmetry during a radiation domination era is non-zero. We calculate the baryon to entropy ratio for the Gauss-Bonnet term and by using the observational constraints we investigate which are the allowed forms of the R + F (G) gravity controlling the evolution. Also we briefly discuss some alternative higher order terms that can generate a non-zero baryon asymmetry, even in the conformal invariance limit.

  1. Self-gravitating branes again

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Irakleidou, Maria

    2014-03-01

    We raise on theoretical grounds the question of the physical relevance of Israel matching conditions and their generalizations to higher codimensions, the standard cornerstone of the braneworld and other membrane scenarios. Our reasoning is based on the incapability of the conventional matching conditions to accept the Nambu-Goto probe limit, the inconsistency of codimension-2 and -3 classical defects for D=4 and the probable inconsistency of high enough codimensional defects for any D since there is no high enough Lovelock density to support them. We propose alternative matching conditions which seem to overcome the previous puzzles. Instead of varying the brane-bulk action with respect to the bulk metric at the brane position, we vary with respect to the brane embedding fields so that the gravitational backreaction is included ("gravitating Nambu-Goto matching conditions"). Here, we consider in detail the case of a codimension-2 brane in 6-dim Einstein-Gauss-Bonnet gravity, prove its consistency for an axially symmetric cosmological configuration and show that the theory possesses richer structure compared to the standard theory. The cosmologies found have the Friedmann behavior and extra correction terms. For a radiation brane one solution avoids a cosmological singularity and undergoes accelerated expansion near the minimum scale factor. In the presence of an induced gravity term, there naturally appears in the theory the effective cosmological constant scale λ /(M64rc2), which for a brane tension λ ˜M64 (e.g. TeV4) and rc˜H0-1 gives the observed value of the cosmological constant.

  2. Gravitational Effects on Human Physiology.

    PubMed

    Atomi, Yoriko

    2015-01-01

    Physical working capacity decreases with age and also in microgravity. Regardless of age, increased physical activity can always improve the physical adaptability of the body, although the mechanisms of this adaptability are unknown. Physical exercise produces various mechanical stimuli in the body, and these stimuli may be essential for cell survival in organisms. The cytoskeleton plays an important role in maintaining cell shape and tension development, and in various molecular and/or cellular organelles involved in cellular trafficking. Both intra and extracellular stimuli send signals through the cytoskeleton to the nucleus and modulate gene expression via an intrinsic property, namely the "dynamic instability" of cytoskeletal proteins. αB-crystallin is an important chaperone for cytoskeletal proteins in muscle cells. Decreases in the levels of αB-crystallin are specifically associated with a marked decrease in muscle mass (atrophy) in a rat hindlimb suspension model that mimics muscle and bone atrophy that occurs in space and increases with passive stretch. Moreover, immunofluorescence data show complete co-localization of αB-crystallin and the tubulin/microtubule system in myoblast cells. This association was further confirmed in biochemical experiments carried out in vitro showing that αB-crystallin acts as a chaperone for heat-denatured tubulin and prevents microtubule disassembly induced by calcium. Physical activity induces the constitutive expression of αB-crystallin, which helps to maintain the homeostasis of cytoskeleton dynamics in response to gravitational forces. This relationship between chaperone expression levels and regulation of cytoskeletal dynamics observed in slow anti-gravitational muscles as well as in mammalian striated muscles, such as those in the heart, diaphragm and tongue, may have been especially essential for human evolution in particular. Elucidation of the intrinsic properties of the tubulin/microtubule and chaperone

  3. GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time

    PubMed Central

    Myung, Jihwan; Hong, Sungho; DeWoskin, Daniel; De Schutter, Erik; Forger, Daniel B.; Takumi, Toru

    2015-01-01

    The mammalian suprachiasmatic nucleus (SCN) forms not only the master circadian clock but also a seasonal clock. This neural network of ∼10,000 circadian oscillators encodes season-dependent day-length changes through a largely unknown mechanism. We show that region-intrinsic changes in the SCN fine-tune the degree of network synchrony and reorganize the phase relationship among circadian oscillators to represent day length. We measure oscillations of the clock gene Bmal1, at single-cell and regional levels in cultured SCN explanted from animals raised under short or long days. Coupling estimation using the Kuramoto framework reveals that the network has couplings that can be both phase-attractive (synchronizing) and -repulsive (desynchronizing). The phase gap between the dorsal and ventral regions increases and the overall period of the SCN shortens with longer day length. We find that one of the underlying physiological mechanisms is the modulation of the intracellular chloride concentration, which can adjust the strength and polarity of the ionotropic GABAA-mediated synaptic input. We show that increasing day-length changes the pattern of chloride transporter expression, yielding more excitatory GABA synaptic input, and that blocking GABAA signaling or the chloride transporter disrupts the unique phase and period organization induced by the day length. We test the consequences of this tunable GABA coupling in the context of excitation–inhibition balance through detailed realistic modeling. These results indicate that the network encoding of seasonal time is controlled by modulation of intracellular chloride, which determines the phase relationship among and period difference between the dorsal and ventral SCN. PMID:26130804

  4. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns.

    PubMed

    Premnath, Priyatha; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  5. Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.

    PubMed

    Ruppeiner, George

    2005-07-01

    A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 33.7913 a phase transition is required to go between these regimes; (7) for any alpha>3 we may include a first-order phase transition, which is expected from computer simulations; and (8) if alpha-->infinity, the density approaches a finite value as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.

  6. Riemannian geometry of thermodynamics and systems with repulsive power-law interactions

    NASA Astrophysics Data System (ADS)

    Ruppeiner, George

    2005-07-01

    A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy γr-α . Such systems are useful in modeling melting transitions. The limit α→∞ corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (α>3) and repulsive (γ>0) interactions. The geometric theory solutions for given α>3 , γ>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b(ρT-3/α) , where ρ is the density; (2) all solutions are equivalent up to a single scaling constant for ρT-3/α , related to γ via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 3<α<3.7913 , the solution goes from the low to the expected high density limit smoothly; (6) for α>3.7913 a phase transition is required to go between these regimes; (7) for any α>3 we may include a first-order phase transition, which is expected from computer simulations; and (8) if α→∞ , the density approaches a finite value as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.

  7. Repulsive particles under a general external potential: Thermodynamics by neglecting thermal noise

    NASA Astrophysics Data System (ADS)

    Ribeiro, Mauricio S.; Nobre, Fernando D.

    2016-08-01

    A recent proposal of an effective temperature θ , conjugated to a generalized entropy sq, typical of nonextensive statistical mechanics, has led to a consistent thermodynamic framework in the case q =2 . The proposal was explored for repulsively interacting vortices, currently used for modeling type-II superconductors. In these systems, the variable θ presents values much higher than those of typical room temperatures T , so that the thermal noise can be neglected (T /θ ≃0 ). The whole procedure was developed for an equilibrium state obtained after a sufficiently long-time evolution, associated with a nonlinear Fokker-Planck equation and approached due to a confining external harmonic potential, ϕ (x ) =α x2/2 (α >0 ). Herein, the thermodynamic framework is extended to a quite general confining potential, namely ϕ (x ) =α|x | z/z (z >1 ). It is shown that the main results of the previous analyses hold for any z >1 : (i) The definition of the effective temperature θ conjugated to the entropy s2. (ii) The construction of a Carnot cycle, whose efficiency is shown to be η =1 -(θ2/θ1) , where θ1 and θ2 are the effective temperatures associated with two isothermal transformations, with θ1>θ2 . The special character of the Carnot cycle is indicated by analyzing another cycle that presents an efficiency depending on z . (iii) Applying Legendre transformations for a distinct pair of variables, different thermodynamic potentials are obtained, and furthermore, Maxwell relations and response functions are derived. The present approach shows a consistent thermodynamic framework, suggesting that these results should hold for a general confining potential ϕ (x ) , increasing the possibility of experimental verifications.

  8. Expression of the repulsive SLIT/ROBO pathway in the human endometrium and Fallopian tube.

    PubMed

    Duncan, W C; McDonald, S E; Dickinson, R E; Shaw, J L V; Lourenco, P C; Wheelhouse, N; Lee, K-F; Critchley, H O D; Horne, A W

    2010-12-01

    We investigated whether the repulsive SLIT/ROBO pathway is expressed in the endometrium and is negatively regulated during implantation. We also examined whether deficient expression in the Fallopian tube (FT) may predispose to ectopic pregnancy (EP). Endometrium (n = 21) and FT (n = 17) were collected across the menstrual cycle from fertile women with regular cycles. Decidualized endometrium (n = 6) was obtained from women undergoing termination, and FT (n = 6) was obtained from women with EP. SLIT/ROBO expression was quantified by reverse transcription-PCR and protein localized by immunohistochemistry. The regulation of SLIT/ROBO expression in vitro, by sex steroids and hCG, was assessed in endometrial (hTERT-EEpC) epithelial cells, and the effects of Chlamydia trachomatis infection and smoking were studied in oviductal (OE-E6/E7) epithelial cells. Endometrial SLIT3 was highest in the mid-secretory phase (P = 0.0003) and SLIT1,2 and ROBO1 showed a similar trend. ROBO2 was highest in proliferative phase (P = 0.027) and ROBO3,4 showed a similar trend. SLIT2,3 and ROBO1, 4 were lower in decidua compared with mid-secretory endometrium (P < 0.05). SLITs and ROBOs, excepting ROBO2, were expressed in FT but there were no differences across the cycle or in EP. SLIT/ROBO proteins were localized to endometrial and FT epithelium. Treatment of hTERT-EEpC with a combination of estradiol and medroxyprogesterone acetate inhibited ROBO1 expression (P < 0.01) but hCG had no effect. Acute treatment of OE-E6/E7 with smoking metabolite, cotinine, and C. trachomatis had no effect. These findings imply a regulated role for the endometrial SLIT/ROBO interaction during normal development and pregnancy but that it may not be important in the aetiology of EP.

  9. Invariant sums of random matrices and the onset of level repulsion

    NASA Astrophysics Data System (ADS)

    Burda, Zdzisław; Livan, Giacomo; Vivo, Pierpaolo

    2015-06-01

    We compute analytically the joint probability density of eigenvalues and the level spacing statistics for an ensemble of random matrices with interesting features. It is invariant under the standard symmetry groups (orthogonal and unitary) and yet the interaction between eigenvalues is not Vandermondian. The ensemble contains real symmetric or complex Hermitian matrices S of the form {S}=\\sumi=1M < {O}i {D}_i{O}_iT> or {S}=\\sumi=1M < {U}i {D}_i{U}_i^\\dagger> respectively. The diagonal matrices {D}_i=diag\\{λ_1(i),\\ldots,λ_N(i)\\} are constructed from real eigenvalues drawn independently from distributions p(i)(x), while the matrices Oi and Ui are all orthogonal or unitary. The average <·> is simultaneously performed over the symmetry group and the joint distribution of \\{λ_j(i)\\} . We focus on the limits (i.) N → ∞ and (ii.) M → ∞, with N = 2. In the limit (i.), the resulting sum S develops level repulsion even though the original matrices do not feature it, and classical RMT universality is restored asymptotically. In the limit (ii.) the spacing distribution attains scaling forms that are computed exactly: for the orthogonal case, we recover the β = 1 Wigner's surmise, while for the unitary case an entirely new universal distribution is obtained. Our results allow to probe analytically the microscopic statistics of the sum of random matrices that become asymptotically free. We also give an interpretation of this model in terms of radial random walks in a matrix space. The analytical results are corroborated by numerical simulations.

  10. Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: Modeling, simulation and experiment

    NASA Astrophysics Data System (ADS)

    Masoumi, Masoud; Wang, Ya

    2016-10-01

    This paper investigates a magnetic levitation characteristic used in a vibration based energy harvester, called repulsive magnetic scavenger (RMS). The RMS is capable of harvesting ocean wave energy with a unique repelling permanent magnet array, which provides a stronger and more uniform magnetic field, compared to its attracting magnetic counterparts. The levitating magnets are stacked together around a threaded rod so that the same pole is facing each other. Two fixed magnets placed with one at each end of the RMS provides a collocated harvesting and braking mechanism in the face of high amplitude vibrations. Magnets in the levitated magnet stack are separated by pole pieces which are made of metals to intensify the magnetic field strength. The effect of the thickness and the use of different materials with different permeability for pole pieces is also studied to obtain an optimal energy harvesting efficiency. Moreover, the procedure to find the restoring force applied to the levitating magnet stack is demonstrated. Then, the Duffing vibration equation of the harvester is solved and the frequency response function is calculated for various force amplitudes and electrical damping so as to investigate the effect of these parameters on the response of the system. Furthermore, the effect of the maximum displacement of the moving magnet stack on the natural frequency of the device is studied. And finally, Faraday's law is employed to estimate the output voltage and power of the system under the specified input excitation force. Experiments show that the output emf voltage of the manufactured prototype reaches up to 42 V for an excitation force with the frequency of 9 Hz and the maximum amplitude of 3.4 g.

  11. Aluminum foils: the contrasting characters of hyperconjugation and steric repulsion in aluminum dimetallocenes.

    PubMed

    Compaan, Katherine R; Wilke, Jeremiah J; Schaefer, Henry F

    2011-08-31

    The novel sandwich complex Cp2*Al2I2, which was recently synthesized by Minasian and Arnold, has been characterized using ab initio and density functional methods. A large family of related compounds was also investigated. Although a few Al(II)–Al(II) bonds are known, this is the first such bond to be supported by Cp-type ligands. In addition, in the remarkable Cp4*Al4 synthesis by Roesky, Cp2*Al2I2 is the Al(II) intermediate; Cp4*Al4 is important as a precursor to novel organoaluminum species. Halogen and ligand effects on the Al–Al bond in Cp2*Al2I2 were systematically explored by studying a series of 20 Cp2*Al2I2 derivatives using density functional theory with relativistic basis sets for the halogens. Comparison was made with the focal point treatment, which uses extrapolation to estimate the full configuration interaction and complete basis set limit energy. Torsional potential energy curves, natural population analyses, and enthalpies of hydrogenation were computed. Using the focal point approach, torsional barriers were computed with 0.05 kcal mol(–1) uncertainty. The interplay of steric and electronic effects on the torsional potential energy curves, enthalpies of dehydrogenation reactions, and geometries is discussed. In species with small ligands (R = H, Me), hyperconjugative effects determine the torsional landscape, whereas steric repulsions dominate in species with Cp* alkyl ligands. Species with Cp ligands represent an intermediate case, thus providing insight into how ligands modulate the structures and properties of small metal clusters.

  12. Performing Hong-Ou-Mandel-type numerical experiments with repulsive condensates: The case of dark and dark-bright solitons

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Yuan; Kevrekidis, Panayotis G.; Krüger, Peter

    2016-12-01

    The Hong-Ou-Mandel experiment leads indistinguishable photons simultaneously reaching a 50:50 beam splitter to emerge on the same port through a two-photon interference. Motivated by this phenomenon, we consider numerical experiments of the same flavor for classical wave objects in the setting of repulsive condensates. We examine dark solitons interacting with a repulsive barrier, a case in which we find no significant asymmetries in the emerging waves after the collision, presumably due to their topological nature. We also consider case examples of two-component systems, where the dark solitons trap a bright structure in the second component (dark-bright solitary waves). For these, pronounced asymmetries upon collision are possible for the nontopological bright component. We also show an example of a similar phenomenology for ring dark-bright structures in two dimensions.

  13. Cross GTPase-activating protein (CrossGAP)/Vilse links the Roundabout receptor to Rac to regulate midline repulsion.

    PubMed

    Hu, Hailan; Li, Ming; Labrador, Juan-Pablo; McEwen, Jason; Lai, Eric C; Goodman, Corey S; Bashaw, Greg J

    2005-03-22

    The regulators of the Rho-family GTPases, GTPase-activating proteins (GAPs) and guanine exchange factors (GEFs), play important roles in axon guidance. By means of a functional genomic study of the Rho-family GEFs and GAPs in Drosophila, we have identified a Rho-family GAP, CrossGAP (CrGAP), which is involved in Roundabout (Robo) receptor-mediated repulsive axon guidance. CrGAP physically associates with the Robo receptor. Too much or too little CrGAP activity leads to defects in Robo-mediated repulsion at the midline choice point. The CrGAP gain-of-function phenotype mimics the loss-of-function phenotypes of both Robo and Rac. Dosage-sensitive genetic interactions among CrGAP, Robo, and Rac support a model in which CrGAP transduces signals downstream of Robo receptor to regulate Rac-dependent cytoskeletal changes.

  14. RESEARCH NOTE WCA repulsive and attractive contributions to the thermodynamic properties at the vapour-liquid equilibrium

    NASA Astrophysics Data System (ADS)

    Cuadros, F.; Mulero, A.; Faundez, C. A.

    The Lennard-Jones attractive and repulsive contributions of intermolecular forces (as separated in the Weeks-Chandler-Andersen (WCA) theory) to the pressure and chemical potential of coexisting vapour and liquid phases are obtained by using an equation of state recently proposed by us. Some comments are given about the computer simulation results obtained by Plackov and Sadus (1997, Fluid Phase Equilib., 134, 77) using the McQuarrie-Katz separation of the intermolecular potential.

  15. The Bright Future of Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Gonzalez, Gabriela

    2008-04-01

    These are exciting times in the search for gravitational waves. Gravitational waves are expected from many different astrophysical sources: brief transients from violent events like supernova explosions and collisions of neutron stars and black holes, coalescence of compact binary systems, continuous waves from rotating systems, and stochastic signals from cosmological origin or unresolved transients. The LIGO gravitational wave detectors have achieved unprecedented sensitivity to gravitational waves, and other detectors around the world are expected to reach similar sensitivities. The LIGO Scientific Collaboration (LSC) has recently completed their most sensitive observation run to date with LIGO and GEO detectors, including several months of joint observations with the European VIRGO detector. The LIGO Laboratory and the LSC, as well as the Virgo Collaboration, are actively preparing for operating enhanced detectors in the very near future. The next decade will see the construction and commissioning of Advanced LIGO and VIRGO, and quite possibly the launch of the space-based LISA mission, starting for sure then, if not earlier, a new era for gravitational wave astronomy. Plans for a world-wide network of ground based detectors involving more detectors in Europe, Japan and Australia are becoming more concrete. The future of gravitational wave astronomy is bright indeed! In this talk, will briefly describe the present status of the ground and space based detector projects and discuss the science we may expect to do with the detectors (and detections!) we will have in the upcoming era of gravitational wave astronomy.

  16. Particle production in a gravitational wave background

    NASA Astrophysics Data System (ADS)

    Jones, Preston; McDougall, Patrick; Singleton, Douglas

    2017-03-01

    We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.

  17. Antagonistic effects of nearest-neighbor repulsion on the superconducting pairing dynamics in the doped Mott insulator regime

    NASA Astrophysics Data System (ADS)

    Reymbaut, A.; Charlebois, M.; Asiani, M. Fellous; Fratino, L.; Sémon, P.; Sordi, G.; Tremblay, A.-M. S.

    2016-10-01

    The nearest-neighbor superexchange-mediated mechanism for dx2-y2 superconductivity in the one-band Hubbard model faces the challenge that nearest-neighbor Coulomb repulsion can be larger than superexchange. To answer this question, we use cellular dynamical mean-field theory (CDMFT) with a continuous-time quantum Monte Carlo solver to determine the superconducting phase diagram as a function of temperature and doping for on-site repulsion U =9 t and nearest-neighbor repulsion V =0 ,2 t ,4 t . In the underdoped regime, V increases the CDMFT superconducting transition temperature Tcd even though it decreases the superconducting order parameter at low temperature for all dopings. However, in the overdoped regime V decreases Tcd. We gain insight into these paradoxical results through a detailed study of the frequency dependence of the anomalous spectral function, extracted at finite temperature via the MaxEntAux method for analytic continuation. A systematic study of dynamical positive and negative contributions to pairing reveals that even though V has a high-frequency depairing contribution, it also has a low frequency pairing contribution since it can reinforce superexchange through J =4 t2/(U -V ) . Retardation is thus crucial to understanding pairing in doped Mott insulators, as suggested by previous zero-temperature studies. We also comment on the tendency to charge order for large V and on the persistence of d -wave superconductivity over extended-s or s +d wave.

  18. Photon Devil’s staircase: photon long-range repulsive interaction in lattices of coupled resonators with Rydberg atoms

    PubMed Central

    Zhang, Yuanwei; Fan, Jingtao; Liang, J.-Q.; Ma, Jie; Chen, Gang; Jia, Suotang; Nori, Franco

    2015-01-01

    The realization of strong coherent interactions between individual photons is a long-standing goal in science and engineering. In this report, based on recent experimental setups, we derive a strong photon long-range repulsive interaction, by controlling the van der Waals repulsive force between Cesium Rydberg atoms located inside different cavities in extended Jaynes-Cummings-Hubbard lattices. We also find novel quantum phases induced by this photon long-range repulsive interaction. For example, without photon hopping, a photon Devil’s staircase, induced by the breaking of long-range translation symmetry, can emerge. If photon hopping occurs, we predict a photon-floating solid phase, due to the motion of particle- and hole-like defects. More importantly, for a large chemical potential in the resonant case, the photon hopping can be frozen even if the hopping term exists. We call this new phase the photon-frozen solid phase. In experiments, these predicted phases could be detected by measuring the number of polaritons via resonance fluorescence. PMID:26108705

  19. Outgrowth of Neurites from NIE-115 Neuroblastoma Cells Is Prevented on Repulsive Substrates through the Action of PAK

    PubMed Central

    Marler, Katharine J. M.; Kozma, Robert; Ahmed, Sohail; Dong, Jing-Ming; Hall, Christine; Lim, Louis

    2005-01-01

    In the central nervous system (CNS), damaged axons are inhibited from regeneration by glial scars, where secreted chondroitin sulfate proteoglycan (CSPG) and tenascin repulse outgrowth of neurites, the forerunners of axons and dendrites. During differentiation, these molecules are thought to form boundaries for guiding neurons to their correct targets. In neuroblastoma NIE-115 cells, outgrowth of neurites on laminin could be induced by serum starvation or inhibition of RhoA by Clostridium botulinum C3 toxin. The outgrowing neurites avoided crossing onto the repulsive substrate CSPG or tenascin. This avoidance response was partially overcome on expression of membrane-targeted and kinase-inactive forms of PAK. In these cells, the endogenous PAK isoforms colocalized with actin in distinctive sites, αPAK in the cell center as small clusters and along the neurite shaft and βPAK and γPAK in areas with membrane ruffles and filopodia, respectively. When isoform-specific N-terminal PAK sequences were introduced to interfere with PAK function, substantially more neurites crossed onto CSPG when cells contained a γPAK-derived peptide but not the corresponding αPAK- or βPAK-derived peptide. Thus, while neurite outgrowth can be promoted by RhoA inhibition, overcoming the accompanying repulsive guidance response will require modulation of PAK activity. These results have therapeutic implications for CNS repair processes. PMID:15923637

  20. Soliton and phonon production by an oscillating obstacle in a quasi-one-dimensional trapped repulsive Bose-Einstein condensate

    SciTech Connect

    Radouani, Abdelaziz

    2004-07-01

    We use the one-dimensional (1D) Gross-Pitaevskii equation to investigate the dynamical evolution of a dilute repulsive Bose-Einstein condensate (BEC) confined in an elongated static nonharmonic trap and stirred by an oscillating Gaussian obstacle moving at uniform speed in alternate direction. Direct numerical solutions of this equation show that above a critical obstacle velocity, the motion of the obstacle creates gray solitons and phonons. At first, when the velocity of the obstacle increases, the dissipation also increases. But the dissipation reaches a maximal value and then decreases dramatically and vanishes at high obstacle velocities. Our results at low obstacle velocities are similar to those previously obtained experimentally and by simulations in the case of vortice and phonon production in 3D and 2D trapped repulsive BEC's. But at high obstacle velocities, we show that the quasi-1D trapped repulsive BEC behaves as a quasisuperfluid medium with disappearance of gray soliton and phonon excitations. This extends previous results and provides the main dependence of the phenomenon on the obstacle characteristics.

  1. Self-propelled particles with selective attraction-repulsion interaction: from microscopic dynamics to coarse-grained theories

    NASA Astrophysics Data System (ADS)

    Großmann, R.; Schimansky-Geier, L.; Romanczuk, P.

    2013-08-01

    In this work we derive and analyse coarse-grained descriptions of self-propelled particles with selective attraction-repulsion interaction, where individuals may respond differently to their neighbours depending on their relative state of motion (approach versus movement away). Based on the formulation of a nonlinear Fokker-Planck equation, we derive a kinetic description of the system dynamics in terms of equations for the Fourier modes of the one-particle density function. This approach allows effective numerical investigation of the stability of solutions of the nonlinear Fokker-Planck equation. Further on, we also derive a hydrodynamic theory by performing a closure at the level of the second Fourier mode of the one-particle density function. We show that the general form of equations is in agreement with the theory formulated by Toner and Tu. The stability of spatially homogeneous solutions is analysed and the range of validity of the hydrodynamic equations is quantified. Finally, we compare our analytical predictions on the stability of the homogeneous solutions with results of individual-based simulations. They show good agreement for sufficiently large densities and non-negligible short-ranged repulsion. The results of the kinetic theory for weak short-ranged repulsion reveal the existence of a previously unknown phase of the model consisting of dense, nematically aligned filaments, which cannot be accounted for by the present hydrodynamics theory of the Toner and Tu type for polar active matter.

  2. Gravitational radiation observations on the moon

    NASA Technical Reports Server (NTRS)

    Stebbins, R. T.; Saulson, P. R.; Armstrong, J. W.; Hellings, R. W.; Bender, P. L.; Drever, R. W. P.

    1990-01-01

    The paper discusses the features of a laser-interferometer gravitational-wave observatory (LIGO) which is planned for operation in the Unitied States, with special attention given to the benefits gained from an addition of a low-mass laser gravitational wave antenna on the moon to the earth-based antennas. It is pointed out that the addition of a moon-based antenna would improve the angular resolution for burst signals by a factor of about 50 (in the plane containing the source, the moon, and the earth), which would be of major importance in studies of gravitational wave sources.

  3. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns.

  4. Gravitational Model of the Three Elements Theory

    NASA Astrophysics Data System (ADS)

    Lassiaille, Frederic

    The gravitational model of the three elements theory is an alternative theory to dark matter. It uses a modification of Newton's law in order to explain gravitational mysteries. The results of this model are explanations for the dark matter mysteries, the Pioneer anomaly, and the disparities of the measurements of G. Concerning the earth flyby anomalies, the theoretical order of magnitude is the same as the experimental one. A very small change of the perihelion advance of the planet orbits is calculated by this model. Meanwhile, this gravitational model is perfectly compatible with restricted relativity and general relativity, and is part of the three element theory, a unifying theory.

  5. Hypermass generalization of Einstein's gravitation theory

    NASA Technical Reports Server (NTRS)

    Edmonds, J. D., Jr.

    1973-01-01

    The curvilinear invariant quaternion formalism is examined for curved space time. Einstein's gravitation equation is shown to have a simple and natural form in this notation. The hypermass generalization of particle mass, which was generated in our studies of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. Covariance requires that the gravitational constant be generalized to an invariant quaternion when the mass is. The modification appears minor and of no importance cosmologically, unless one begins considering time and mass dependence of G.

  6. Gravitational waves from neutron star binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan

    With H. A. Bethe, G. E. Brown worked on the merger rate of neutron star binaries for the gravitational wave detection. Their prediction has to be modified significantly due to the observations of 2M⊙ neutron stars and the detection of gravitational waves. There still, however, remains a possibility that neutron star-low mass black hole binaries are significant sources of gravitational waves for the ground-based detectors. In this paper, I review the evolution of neutron star binaries with super-Eddington accretion and discuss the future prospect.

  7. Generalized gravitational entropy from total derivative action

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Miao, Rong-Xin

    2015-12-01

    We investigate the generalized gravitational entropy from total derivative terms in the gravitational action. Following the method of Lewkowycz and Maldacena, we find that the generalized gravitational entropy from total derivatives vanishes. We compare our results with the work of Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero entropy, the holographic and the field-theoretic universal terms of entanglement entropy would not match. Furthermore, the second law of thermodynamics could be violated if the entropy of total derivatives did not vanish.

  8. Gravitational wave-Gauge field oscillations

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Devulder, C.; Maksimova, N. A.

    2016-09-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multidimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  9. HUBBLE'S TOP TEN GRAVITATIONAL LENSES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368

  10. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    SciTech Connect

    Premnath, Priyatha; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  11. Hunting for dark particles with gravitational waves

    SciTech Connect

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    2016-10-03

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  12. The gravitational field and brain function

    NASA Astrophysics Data System (ADS)

    Mei, Lei; Zhou, Chuan-Dai; Lan, Jing-Quan; Wang, Zhi-Ging; Wu, Wen-Can; Xue, Xin-Min

    The frontal cortex is recognized as the highest adaptive control center of the human brain. The principle of the ``frontalization'' of human brain function offers new possibilities for brain research in space. There is evolutionary and experimental evidence indicating the validity of the principle, including it's role in nervous response to gravitational stimulation. The gravitational field is considered here as one of the more constant and comprehensive factors acting on brain evolution, which has undergone some successive crucial steps: ``encephalization'', ``corticalization'', ``lateralization'' and ``frontalization''. The dominating effects of electrical responses from the frontal cortex have been discovered 1) in experiments under gravitational stimulus; and 2) in processes potentially relating to gravitational adaptation, such as memory and learning, sensory information processing, motor programing, and brain state control. A brain research experiment during space flight is suggested to test the role of the frontal cortex in space adaptation and it's potentiality in brain control.

  13. Lovelock gravitational field equations in cosmology

    SciTech Connect

    Deruelle, N. Laboratoire de Physique Theorique, Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75005 Paris ); Farina-Busto, L. )

    1990-06-15

    We present a systematic study of cosmological solutions in the Lovelock theory of gravitation, including maximally symmetric space-times, Robertson-Walker universes, and product manifolds of symmetric subspaces.

  14. Gravitational Waves from a Dark Phase Transition

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro

    2015-10-01

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU (N ) dark sectors with nf flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  15. Gravitational Waves from Oscillons after Inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cefalà, Francesco; Orani, Stefano

    2017-01-01

    We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.

  16. Gravitational Lens B0218+357

    NASA Video Gallery

    This movie illustrates the components of a gravitational lens system (a kind of natural telescope formed when a rare cosmic alignment allows the gravity of a massive object to bend and amplify ligh...

  17. Building a Galactic Scale Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    McLaughlin, Maura

    2016-03-01

    Pulsars are rapidly rotating neutron stars with phenomenal rotational stability that can be used as celestial clocks in a variety of fundamental physics experiences. One of these experiments involves using a pulsar timing array of precisely timed millisecond pulsars to detect perturbations due to gravitational waves. The low frequency gravitational waves detectable through pulsar timing will most likely result from an ensemble of supermassive black hole binaries. I will introduce the efforts of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), a collaboration that monitors over 50 millisecond pulsars with the Green Bank Telescope and the Arecibo Observatory, with a focus on our observation and data analysis methods. I will also describe how NANOGrav has joined international partners through the International Pulsar Timing Array to form a low-frequency gravitational wave detector of unprecedented sensitivity.

  18. Gravitational Waves: A New Observational Window

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.

    2010-01-01

    The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.

  19. Homogeneous cosmological models in Yang's gravitation theory

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.; Pavelle, R.

    1979-01-01

    We present a dynamic, spatially homogeneous solution of Yang's pure space gravitational field equations which is non-Einsteinian. The predictions of this cosmological model seem to be at variance with observations.

  20. Gravitation in pathogeny of essential hypertension.

    PubMed

    Dorogovtsev, V N

    2004-07-01

    The purpose of this research is the study of changes of a systemic hemodynamics under passive orthostatic test for a healthy persons and an ill with Essential Hypertension (EH) and analysis of a possible role of the gravitational factor in a Pathogeny of this disease. For an ill with EH reduction of Stroke Volume and Cardiac Output were reliably lower in an orthostatic position. Increasing of a Total peripheral vascular resistance was twice less for ill. Considerable differences in reaction of cardiovascular system to gravitational influence for an ill with Essential Hypertension are stipulated by changes in central regulation of circulation and in the structure of a vascular wall. It allows to assume influence of gravitation at early stages of a Pathogeny of the given disease. The detection of hyper reactivity of a cardiovascular system to influence of gravitation can indicate the first stage of the disease.

  1. The Rotational and Gravitational Effect of Earthquakes

    NASA Technical Reports Server (NTRS)

    Gross, Richard

    2000-01-01

    The static displacement field generated by an earthquake has the effect of rearranging the Earth's mass distribution and will consequently cause the Earth's rotation and gravitational field to change. Although the coseismic effect of earthquakes on the Earth's rotation and gravitational field have been modeled in the past, no unambiguous observations of this effect have yet been made. However, the Gravity Recovery And Climate Experiment (GRACE) satellite, which is scheduled to be launched in 2001, will measure time variations of the Earth's gravitational field to high degree and order with unprecedented accuracy. In this presentation, the modeled coseismic effect of earthquakes upon the Earth's gravitational field to degree and order 100 will be computed and compared to the expected accuracy of the GRACE measurements. In addition, the modeled second degree changes, corresponding to changes in the Earth's rotation, will be compared to length-of-day and polar motion excitation observations.

  2. Gauge anomalies, gravitational anomalies, and superstrings

    SciTech Connect

    Bardeen, W.A.

    1985-08-01

    The structure of gauge and gravitational anomalies will be reviewed. The impact of these anomalies on the construction, consistency, and application of the new superstring theories will be discussed. 25 refs.

  3. Hunting for dark particles with gravitational waves

    NASA Astrophysics Data System (ADS)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    2016-10-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  4. Gravitational Waves and Time Domain Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  5. The Gravitational Universe - ESA's L3 mission

    NASA Astrophysics Data System (ADS)

    Mueller, Guido; Ando, Masaki; Binetruy, Pierre; Bouyer, Philippe; Cacciapuoti, Luigi; Cruise, Mike; Favata, Fabio; Gehler, Martin; Genzel, Reinhard; Jennrich, Oliver; Kasevich, Mark; Klipstein, Bill; Perryman, Michael; Safa, Frederic; Schutz, Bernard; Stebbins, Robin; Vitale, Stefano

    2015-04-01

    Following the advice of ESA's Senior Survey Committee (SSC) the Science Programme Committee (SPC) decided in November 2013 to select the science theme ``The Gravitational Universe'' for their L3 mission. The Director of Science and Robotic Exploration (D/SRE) has established a Gravitational Observatory Advisory Team (GOAT) to advise on the scientific and technological approaches for a gravitational wave observatory with a planned launch date in 2034. Our team is comprised of scientists from Europe and the US as well as scientists and engineers from ESA and observers from NASA and JAXA. We meet about every ten weeks, evaluate the technical readiness of all necessary technologies, study the science impact of different mission designs, and will advise ESA on the required future technology development. We will report on our progress and plans forward to a future space-based gravitational-wave observatory. For JAXA.

  6. Report from the Gravitational Observatory Advisory Team

    NASA Astrophysics Data System (ADS)

    Mueller, Guido; Gravitational Observatory Advisory Team

    2016-03-01

    As a response to the selection of the Gravitational Universe as the science theme for ESA's L3 mission, ESA formed the Gravitational-Wave Observatory Advisory Team (GOAT) to advise ESA on the scientific and technological approach for a gravitational wave observatory. NASA is participating with three US scientists and one NASA observer; JAXA was also invited and participates with one observer. The GOAT looked at a range of mission technologies and designs, discussed their technical readiness with respect to the ESA schedule, recommended technology development activities for selected technologies, and worked with the wider gravitational-wave community to analyze the impact on the science of the various mission designs. The final report is expected to be submitted to ESA early March and I plan to summarize its content.

  7. Approximation methods in gravitational-radiation theory

    NASA Astrophysics Data System (ADS)

    Will, C. M.

    1986-02-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913+16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. The author summarizes recent developments in two areas in which approximations are important: (1) the quadrupole approximation, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (2) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  8. Gravitational Wave Detection with Atom Interferometry

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.

    2008-01-23

    We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. The terrestrial experiment can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment probes the same frequency spectrum as LISA with better strain sensitivity {approx} 10{sup -20}/{radical}Hz. Each configuration compares two widely separated atom interferometers run using common lasers. The effect of the gravitational waves on the propagating laser field produces the main effect in this configuration and enables a large enhancement in the gravitational wave signal while significantly suppressing many backgrounds. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations and acceleration noise, and reduces spacecraft control requirements.

  9. LISA: Detecting Gravitational Waves from Space

    NASA Technical Reports Server (NTRS)

    Livas, Jeff

    2009-01-01

    The laser interferometer space antenna (LISA), a joint NASA/ESA mission, will be the first dedicated gravitational wave detector in space. This presentation will provide a tutorial of the LISA measurement concept.

  10. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  11. The Nuclear Electromagnetic Graviton, Basis of Gravity-Gravitation and Nuclear Quantum Gravitation

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald

    2003-04-01

    The basic attraction of two nuclei at an average .8546Angstroms apart, and the dynamic Electromagnetic factor included in the Newtonian formula equals Gq = 1.010334x10-48 Newtons. This is the basic Graviton function. This ALTERNATING ELECTROMAGNETIC DYNAMIC FORCE couples between the nuclei in masses according to the type of mass, the number of nuclei, and through the mass that produces a gravitating body. Nuclei linearly and dynamically couple in gravitating mass to produce maximum Gravity at the surface. Nucleon polar Electromagnetic build-up is what causes Gravity on a Gravitating Body. The Electromagnetic Graviton also propagates through space and produces Gravitation between Gravitating masses. Electromagnetic Graviton energy has to have a wavelength approximately the size of one nuclei, 2.98x10-15 meters and a frequency of 1.007 x10-23 Hertz. There are many proofs that Gravity and Gravitation are Electromagnetic. Clearly, there is ONE FORCE that acts at a distance in many ways. It is very apparent that this ONE FORCE is ELECTROMAGNETISM. This is the cause of the nuclear strong force, the nuclear weak force, Gravity and Gravitation. Gravity and Gravitation are Electromagnetic - NUCLEAR QUANTUM GRAVITATION. See: http://www.physicaloverviews.org

  12. Gravitational Effects upon Locomotion Posture

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Edwards, W. Brent; Perusek, Gail P.; Samorezov, Sergey

    2008-01-01

    Researchers use actual microgravity (AM) during parabolic flight and simulated microgravity (SM) obtained with horizontal suspension analogs to better understand the effect of gravity upon gait. In both environments, the gravitational force is replaced by an external load (EL) that returns the subject to the treadmill. However, when compared to normal gravity (N), researchers consistently find reduced ground reaction forces (GRF) and subtle kinematic differences (Schaffner et al., 2005). On the International Space Station, the EL is applied by elastic bungees attached to a waist and shoulder harness. While bungees can provide EL approaching body weight (BW), their force-length characteristics coupled with vertical oscillations of the body during gait result in a variable load. However, during locomotion in N, the EL is consistently equal to 100% body weight. Comparisons between AM and N have shown that during running, GRF are decreased in AM (Schaffner et al, 2005). Kinematic evaluations in the past have focussed on joint range of motion rather than joint posture at specific instances of the gait cycle. The reduced GRF in microgravity may be a result of differing hip, knee, and ankle positions during contact. The purpose of this investigation was to compare joint angles of the lower extremities during walking and running in AM, SM, and N. We hypothesized that in AM and SM, joints would be more flexed at heel strike (HS), mid-stance (MS) and toe-off (TO) than in N.

  13. Gravitational spectra from direct measurements

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.; Colombo, O. L.

    1978-01-01

    A simple rapid method is described for determining the spectrum of a surface field from harmonic analysis of direct measurements along great circle arcs. The method is shown to give excellent overall trends to very high degree from even a few short arcs of satellite data. Three examples are taken with perfect measurements of satellite tracking over a planet made up of hundreds of point-masses using (1) altimetric heights from a low orbiting spacecraft, (2) velocity residuals between a low and a high satellite in circular orbits, and (3) range-rate data between a station at infinity and a satellite in highly eccentric orbit. In particular, the smoothed spectrum of the Earth's gravitational field is determined to about degree 400(50 km half wavelength) from 1 D x 1 D gravimetry and the equivalent of 11 revolutions of Geos 3 and Skylab altimetry. This measurement shows there is about 46 cm of geoid height remaining in the field beyond degree 180.

  14. Gravitational action with null boundaries

    NASA Astrophysics Data System (ADS)

    Lehner, Luis; Myers, Robert C.; Poisson, Eric; Sorkin, Rafael D.

    2016-10-01

    We present a complete discussion of the boundary term in the action functional of general relativity when the boundary includes null segments in addition to the more usual timelike and spacelike segments. We confirm that ambiguities appear in the contribution from a null segment, because it depends on an arbitrary choice of parametrization for the generators. We also show that similar ambiguities appear in the contribution from a codimension-two surface at which a null segment is joined to another (spacelike, timelike, or null) segment. The parametrization ambiguity can be tamed by insisting that the null generators be affinely parametrized; this forces each null contribution to the boundary action to vanish, but leaves intact the fredom to rescale the affine parameter by a constant factor on each generator. Once a choice of parametrization is made, the ambiguity in the joint contributions can be eliminated by formulating well-motivated rules that ensure the additivity of the gravitational action. Enforcing these rules, we calculate the time rate of change of the action when it is evaluated for a so-called "Wheeler-DeWitt patch" of a black hole in asymptotically anti de Sitter space. We recover a number of results cited in the literature, obtained with a less complete analysis.

  15. The gravitational acceleration of antimatter

    SciTech Connect

    Holzscheiter, M.H.

    1994-06-01

    We have proposed measuring the acceleration of antiprotons in the Earth`s gravitational field by launching antiprotons from a thermal distribution at 4 K upwards against the force of gravity and measuring their time-of-flight (TOF). The TOF distribution thus obtained will exhibit a cut-off representing the minimum kinetic energy necessary to reach the detector at the top of the experiment. The cut-off time is independent of the inertial mass of the particles and is a direct measure of g for the particles studied. We propose to compare the cut-off time, and thereby g, of negative hydrogen ions and antiprotons. The single most difficult problem to be solved for this method consists of shielding all stray-electric fields to a level where the force of gravity is dominating force acting on the particle. Alternative methods for reducing the effect of stray-electric fields are discussed and a brief analysis of experimental possibilities using neutral antihydrogen atoms is presented.

  16. Global gravitational anomalies and transport

    NASA Astrophysics Data System (ADS)

    Chowdhury, Subham Dutta; David, Justin R.

    2016-12-01

    We investigate the constraints imposed by global gravitational anomalies on parity odd induced transport coefficients in even dimensions for theories with chiral fermions, gravitinos and self dual tensors. The η-invariant for the large diffeomorphism corresponding to the T transformation on a torus constraints the coefficients in the thermal effective action up to mod 2. We show that the result obtained for the parity odd transport for gravitinos using global anomaly matching is consistent with the direct perturbative calculation. In d = 6 we see that the second Pontryagin class in the anomaly polynomial does not contribute to the η-invariant which provides a topological explanation of this observation in the `replacement rule'. We then perform a direct perturbative calculation for the contribution of the self dual tensor in d = 6 to the parity odd transport coefficient using the Feynman rules proposed by Gaumé and Witten. The result for the transport coefficient agrees with that obtained using matching of global anomalies.

  17. Gravitational wave detection in space

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    Gravitational Wave (GW) detection in space is aimed at low frequency band (100nHz-100mHz) and middle frequency band (100mHz-10Hz). The science goals are the detection of GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries and (v) Relic GW Background. In this paper, we present an overview on the sensitivity, orbit design, basic orbit configuration, angular resolution, orbit optimization, deployment, time-delay interferometry (TDI) and payload concept of the current proposed GW detectors in space under study. The detector proposals under study have arm length ranging from 1000km to 1.3 × 109km (8.6AU) including (a) Solar orbiting detectors — (ASTROD Astrodynamical Space Test of Relativity using Optical Devices (ASTROD-GW) optimized for GW detection), Big Bang Observer (BBO), DECi-hertz Interferometer GW Observatory (DECIGO), evolved LISA (e-LISA), Laser Interferometer Space Antenna (LISA), other LISA-type detectors such as ALIA, TAIJI etc. (in Earthlike solar orbits), and Super-ASTROD (in Jupiterlike solar orbits); and (b) Earth orbiting detectors — ASTROD-EM/LAGRANGE, GADFLI/GEOGRAWI/g-LISA, OMEGA and TIANQIN.

  18. Measuring gravitational effects on antimatter in space

    NASA Astrophysics Data System (ADS)

    Piacentino, G. M.; Palladino, A.; Venanzoni, G.

    2016-09-01

    We propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP violating decay KL →π+π- in space. We show that at the altitude of the International Space Station, gravitational effects may change the level of CP violation such that a 5 σ discrimination may be obtained by collecting the KL produced by the cosmic proton flux within a few years.

  19. Gravitational radiation from collapsing magnetized dust

    SciTech Connect

    Sotani, Hajime; Yoshida, Shijun; Kokkotas, Kostas D.

    2007-04-15

    In this article we study the influence of magnetic fields on the axial gravitational waves emitted during the collapse of a homogeneous dust sphere. We found that while the energy emitted depends weakly on the initial matter perturbations it has strong dependence on the strength and the distribution of the magnetic field perturbations. The gravitational wave output of such a collapse can be up to an order of magnitude larger or smaller calling for detailed numerical 3D studies of collapsing magnetized configurations.

  20. Connecting Compton and Gravitational Compton Scattering

    NASA Astrophysics Data System (ADS)

    Holstein, Barry R.

    2017-01-01

    The study of Compton scattering—S + γ → S + γ—at MAMI and elsewhere has led to a relatively successful understanding of proton structure via its polarizabilities. The recent observation of gravitational radiation observed by LIGO has raised the need for a parallel understanding of gravitational Compton scattering—S + g → S + g—and we show here how it can be obtained from ordinary Compton scattering by use of the double copy theorem.

  1. Gravitational particle production in bouncing cosmologies

    SciTech Connect

    Haro, Jaume; Elizalde, Emilio E-mail: elizalde@ieec.uab.es

    2015-10-01

    It is argued that the Universe reheating in bouncing cosmologies could be explained via gravitational particle production, as due to a sudden phase transition in the contracting regime. To this end, it is shown that, in the context of Loop Quantum Cosmology, gravitational production of massive particles conformally coupled with gravity in a matter-ekpyrotic bouncing Universe, where the sudden phase transition occurs in the contracting regime, yields a reheating temperature which is in good agreement with cosmological observations.

  2. Frequency shifts in gravitational resonance spectroscopy

    DOE PAGES

    Baeßler, S.; Nesvizhevsky, V. V.; Pignol, G.; ...

    2015-02-25

    Quantum states of ultracold neutrons in a gravitational field are characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts-which we call the Stern-Gerlach shift, interference shift, and spectator-state shift-appear in conceivable measurement schemes and have general importance. Lastly, these shifts have to be taken into account in precision experiments.

  3. Gravitational Force and the Cardiovascular System

    NASA Technical Reports Server (NTRS)

    Pendergast, D. R.; Olszowka, A. J.; Rokitka, M. A.; Farhi, L. E.

    1991-01-01

    Cardiovascular responses to changes in gravitational force are considered. Man is ideally suited to his 1-g environment. Although cardiovascular adjustments are required to accommodate to postural changes and exercise, these are fully accomplished for short periods (min). More challenging stresses are those of short-term microgravity (h) and long-term microgravity (days) and of gravitational forces greater than that of Earth. The latter can be simulated in the laboratory and quantitative studies can be conducted.

  4. The Path to Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    Barish, Barry

    2017-01-01

    Experimental efforts toward gravitational wave detection began with the innovative resonant bar experiments of Joseph Weber in the 1960s. This technique evolved, but was eventually replaced by the potentially more sensitive suspended mass interferometers. Large scale interferometers, GEO, LIGO and Virgo were funded in 1994. The 22 year history since that time will be discussed, tracing the key technical challenges and solutions that have enabled LIGO to reach the incredible sensitivities where gravitational waves from binary black hole mergers have been observed.

  5. Chiral Self-Gravitating Cosmic Vortices

    SciTech Connect

    Rybakov, Yu.P.

    2005-06-01

    In the framework of general relativity, an exact axisymmetric (vortex) solution of the equations of motion is obtained for the SU(2) symmetric sigma model. This solution is characterized by the topological charge (winding number) and angular deficit. In the linearized approximation, the Lyapunov stability of vortices is proved and the deflection angle of a light ray in the gravitational field of the vortex (gravitational lens effect) is calculated.

  6. Gravitational waves and the early universe

    NASA Astrophysics Data System (ADS)

    Boyle, Latham A.

    Can we detect primordial gravitational waves ( i.e. tensor perturbations)? If so, what will they teach us about the early universe? These two questions are central to this two part thesis. First, in chapters 2 and 3, we compute the gravitational wave spectrum produced by inflation. We argue that if inflation is correct, then the scalar spectral index n s should satisfy n s [Special characters omitted.] 0.98; and if n s satisfies 0.95 [Special characters omitted.] n s [Special characters omitted.] 0.98, then the tensor-to-scalar ratio r should satisfy r [Special characters omitted.] 0.01. This means that, if inflation is correct, then primordial gravitational waves are likely to be detectable. We compute in detail the "tensor transfer function" T t ( k, t) which relates the tensor power spectrum at two different times t 1 and t 2 , and the "tensor extrapolation function" E t ( k, k [low *] ) which relates the primordial tensor power spectrum at two different wavenumbers k and k [low *] . By analyzing these two expressions, we show that inflationary gravitational waves should yield crucial clues about inflation itself, and about the "primordial dark age" between the end of inflation and the start of big bang nucleosynthesis (BBN). Second, in chapters 4 and 5, we compute the gravitational wave spectrum produced by the cyclic model. We examine a surprising duality relating expanding and contracting cosmological models that generate the same spectrum of gauge-invariant Newtonian potential fluctuations. This means that, if the cyclic model is correct, then it cannot be distinguished from inflation by observing primordial scalar perturbations alone. Fortunately, gravitational waves may be used to cleanly discriminate between the inflationary and cyclic scenarios: we show that BBN constrains the gravitational wave spectrum generated by the cyclic model to be so suppressed that it cannot be detected by any known experiment. Thus, the detection of a primordial gravitational

  7. Physical optics in a uniform gravitational field

    NASA Astrophysics Data System (ADS)

    Hacyan, Shahen

    2012-01-01

    The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.

  8. Space-borne gravitational wave observatories

    NASA Astrophysics Data System (ADS)

    Vitale, Stefano

    2014-05-01

    The paper describes the progress toward a space-borne gravitational wave observatory and its foreseeable science potential. In particular the paper describes the status of the LISA-like mission called eLISA, the reference mission for the Gravitational Universe theme adopted by ESA for its Large mission L3, and the status of its precursor LISA Pathfinder, due to launch in 2015.

  9. The pregalactic cosmic gravitational wave background

    NASA Technical Reports Server (NTRS)

    Matzner, Richard A.

    1989-01-01

    An outline is given that estimates the expected gravitational wave background, based on plausible pregalactic sources. Some cosmologically significant limits can be put on incoherent gravitational wave background arising from pregalactic cosmic evolution. The spectral region of cosmically generated and cosmically limited radiation is, at long periods, P greater than 1 year, in contrast to more recent cosmological sources, which have P approx. 10 to 10(exp -3).

  10. NUCLEAR QUANTUM GRAVITATION - Further Explanations and Proofs

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald R.

    2002-04-01

    It is obvious that Electromagnetism encompasses all of physical nature, including gravity. Electromagnetism is the only entity in nature that propagates force at a distance. This extends and couples into the Universe, and is based on Atoms and Nuclei of Matter. NUCLEAR QUANTUM GRAVITATION states that Electromagnetic functions in Nuclei, Electromagnetically couple between Nuclei and Matter to produce Gravity - Gravitation. Some indications and proofs of this are: the levitation of glass spheres with an argon laser producing far greater results than explained by light pressure; Naval Seasat measurements of ocean elevations showing seawater dynamically collecting around sea mounts; the 13.5 degree shift of Foucault Pendulum during a solar eclipse; Fischbach studies of Evotos data showing a variation in the rate of gravitational accelerations equal to the Electromagnetic Force Constant; variation in gravity measurement devices when near more mass; accomplishment of faster than light speed by Doctor Ishii of Marquette University; accomplishment of faster than light speed by the University of California; Electromagnetic levitations by National High Magnetic Field Laboratory; laser tweezers equivalent to a traction beam, Scientific American; studies by the Naval Research Labs showing the neutron beam defraction pattern difference between Earth days and nights respective to the Sun and Moon; the Mercury two-thirds ratio phase locked to the Sun's gravity; and the 1 to 1 Electromagnetic gravitational locking of our own Moon to the Earth. It is very apparent that Gravity and Gravitation are Electromagnetic - NUCLEAR QUANTUM GRAVITATION.

  11. Local gravitational redshifts can bias cosmological measurements

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Davis, Tamara M.; Wiis, Jophiel

    2015-07-01

    Measurements of cosmological parameters via the distance-redshift relation usually rely on models that assume a homogenous universe. It is commonly presumed that the large-scale structure evident in our Universe has a negligible impact on the measurement if distances probed in observations are sufficiently large (compared to the scale of inhomogeneities) and are averaged over different directions on the sky. This presumption does not hold when considering the effect of the gravitational redshift caused by our local gravitational potential, which alters light coming from all distances and directions in the same way. Despite its small magnitude, this local gravitational redshift gives rise to noticeable effects in cosmological inference using SN Ia data. Assuming conservative prior knowledge of the local potential given by sampling a range of gravitational potentials at locations of Milky-Way-like galaxies identified in cosmological simulations, we show that ignoring the gravitational redshift effect in a standard data analysis leads to an additional systematic error of ~1% in the determination of density parameters and the dark energy equation of state. We conclude that our local gravitational field affects our cosmological inference at a level that is important in future observations aiming to achieve percent-level accuracy.

  12. Unify the electromagnetic force and gravitation

    NASA Astrophysics Data System (ADS)

    Ming, Zheng Sheng

    2013-04-01

    In the process of mankind investigate natural rule: people know four kinds of force: electromagnetic force, gravitation, weak force, and strong force. Meanwhile people use these four kinds force to explain all phenomena in the Nature. Obviously people do not know their mechanism of origin until now. On the other hand, these four kinds force is the difference showing form of one force, is not it? For solve these questions and find their mechanism of origin, I do some experiments and discover that the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I also do experiments show that light is a particle, but is not a wave-particle duality. My experiments show that the elementary particles moving produce gravitation and electromagnetic force, this effect also produce wave effect. That is to say my experiment and calculate not only reveal the origin of gravitation, but also reveal the origin of electric charge and magnetic force. Base on this I first unify the electromagnetic force and gravitation. The more detail see below website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter

  13. Unify the electromagnetic force and gravitation

    NASA Astrophysics Data System (ADS)

    Sheng Ming, Zheng

    2013-04-01

    In the process of mankind investigate natural rule: people know four kinds of force: electromagnetic force, gravitation, weak force, and strong force. Meanwhile people use these four kinds force to explain all phenomena in the Nature. Obviously people do not know their mechanism of origin until now. On the other hand, these four kinds force is the difference showing form of one force, is not it? For solve these questions and find their mechanism of origin, I do some experiments and discover that the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I also do experiments show that light is a particle, but is not a wave-particle duality. My experiments show that the elementary particles moving produce gravitation and electromagnetic force, this effect also produce wave effect. That is to say my experiment and calculate not only reveal the origin of gravitation, but also reveal the origin of electric charge and magnetic force. Base on this I first unify the electromagnetic force and gravitation. The more detail see below website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter.

  14. Probing cosmic superstrings with gravitational waves

    NASA Astrophysics Data System (ADS)

    Sousa, L.; Avelino, P. P.

    2016-09-01

    We compute the stochastic gravitational wave background generated by cosmic superstrings using a semianalytical velocity-dependent model to describe their dynamics. We show that heavier string types may leave distinctive signatures on the stochastic gravitational wave background spectrum within the reach of present and upcoming gravitational wave detectors. We examine the physically motivated scenario in which the physical size of loops is determined by the gravitational backreaction scale and use NANOGrav data to derive a conservative constraint of G μF<3.2 ×10-9 on the tension of fundamental strings. We demonstrate that approximating the gravitational wave spectrum generated by cosmic superstring networks using the spectrum generated by ordinary cosmic strings with reduced intercommuting probability (which is often done in the literature) leads, in general, to weaker observational constraints on G μF. We show that the inclusion of heavier string types is required for a more accurate characterization of the region of the (gs,G μF) parameter space that may be probed using direct gravitational wave detectors. In particular, we consider the observational constraints that result from NANOGrav data and show that heavier strings generate a secondary exclusion region of parameter space.

  15. Local gravitational redshifts can bias cosmological measurements

    SciTech Connect

    Wojtak, Radosław; Davis, Tamara M.; Wiis, Jophiel E-mail: tamarad@physics.uq.edu.au

    2015-07-01

    Measurements of cosmological parameters via the distance-redshift relation usually rely on models that assume a homogenous universe. It is commonly presumed that the large-scale structure evident in our Universe has a negligible impact on the measurement if distances probed in observations are sufficiently large (compared to the scale of inhomogeneities) and are averaged over different directions on the sky. This presumption does not hold when considering the effect of the gravitational redshift caused by our local gravitational potential, which alters light coming from all distances and directions in the same way. Despite its small magnitude, this local gravitational redshift gives rise to noticeable effects in cosmological inference using SN Ia data. Assuming conservative prior knowledge of the local potential given by sampling a range of gravitational potentials at locations of Milky-Way-like galaxies identified in cosmological simulations, we show that ignoring the gravitational redshift effect in a standard data analysis leads to an additional systematic error of ∼1% in the determination of density parameters and the dark energy equation of state. We conclude that our local gravitational field affects our cosmological inference at a level that is important in future observations aiming to achieve percent-level accuracy.

  16. Time Evolution of Pure Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Miyama, S. M.

    1981-03-01

    Numerical solutions to the Einstein equations in the case of pure gravitational waves are given. The system is assumed to be axially symmetric and non-rotating. The time symmetric initial data and the conformally flat initial data are obtained by solving the constraint equations at t=0. The time evolution of these initial data depends strongly on the initial amplitude of the gravitational waves. In the case of the low initial amplitude, waves only disperse to null infinity. By comparing the initial gravitational energy with the total energy loss through an r=constant surface, it is concluded that the Newman-Penrose method and the Gibbon-Hawking method are the most desirable for measuring the energy flux of gravitational radiation numerically. In the case that the initial ratio of the spatial extent of the gravitational waves to the Schwarzschild radius (M/2) is smaller than about 300, the waves collapse by themselves, leading to formation of a black hole. The analytic solutions of the linearized Einstein equations for the pure gravitational waves are also shown.

  17. Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline.

    PubMed

    Fan, Xueping; Labrador, Juan Pablo; Hing, Huey; Bashaw, Greg J

    2003-09-25

    Drosophila Roundabout (Robo) is the founding member of a conserved family of repulsive axon guidance receptors that respond to secreted Slit proteins. Here we present evidence that the SH3-SH2 adaptor protein Dreadlocks (Dock), the p21-activated serine-threonine kinase (Pak), and the Rac1/Rac2/Mtl small GTPases can function during Robo repulsion. Loss-of-function and genetic interaction experiments suggest that limiting the function of Dock, Pak, or Rac partially disrupts Robo repulsion. In addition, Dock can directly bind to Robo's cytoplasmic domain, and the association of Dock and Robo is enhanced by stimulation with Slit. Furthermore, Slit stimulation can recruit a complex of Dock and Pak to the Robo receptor and trigger an increase in Rac1 activity. These results provide a direct physical link between the Robo receptor and an important cytoskeletal regulatory protein complex and suggest that Rac can function in both attractive and repulsive axon guidance.

  18. Gravitation Astrometric Measurement Experiment (GAME)

    NASA Astrophysics Data System (ADS)

    Gai, M.; Vecchiato, A.; Ligori, S.; Riva, A.; Lattanzi, M. G.; Busonero, D.; Fienga, A.; Loreggia, D.; Crosta, M. T.

    2012-07-01

    GAME is a recent concept for a small/medium class mission aimed at Fundamental Physics tests in the Solar system, by means of an optimised instrument in the visible, based on smart combination of coronagraphy and Fizeau interferometry. The targeted precision on the γ and β parameters of the Parametrised Post-Newtonian formulation of General Relativity are respectively in the 10-7-10-8 and 10-5-10-6 range, improving by one or two orders of magnitude with respect to the expectations on current or near future experiments. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy from a Solar system scale experiment. The measurement principle is based on the differential astrometric signature on the stellar positions, i.e. based on the spatial component of the effect rather than the temporal component as in the most recent experiments using radio link delay timing variation (Cassini). The instrument concept is based on multiple field, multiple aperture Fizeau interferometry, observing simultaneously regions close to the Solar limb (requiring the adoption of coronagraphic techniques), and others in opposition to the Sun. The diluted optics approach is selected for achieving an efficient rejection of the scattered solar radiation, while retaining an acceptable angular resolution on the science targets. The multiple field observation is aimed at cost-effective control of systematic effects through simultaneous calibration. We describe the science motivation, the proposed mission profile, the instrument concept and the expected performance.

  19. Isotopic Fractionation by Gravitational Escape

    NASA Astrophysics Data System (ADS)

    Lammer, H. S. J.

    2003-04-01

    Present natural data bases for abundances of the isotopic compositions of noble gases, carbon and nitrogen inventories can be found in the Sun, the solar wind, meteorites and the planetary atmospheres and crustal reservoirs. Mass distributions in the various volatile reservoirs provide boundary conditions which must be satisfied in modelling the history of the present atmospheres. Such boundary conditions are constraints posed by comparison of isotopic ratios in primordial volatile sources with the isotopic pattern which was found on the planets and their satellites. Observations from space missions and Earth-based spectroscopic telescope observations of Venus, Mars and Saturn's major satellite Titan show that the atmospheric evolution of these planetary bodies to their present states was affected by processes capable of fractionating their elements and isotopes. The isotope ratios of D/H in the atmospheres of Venus and Mars indicate evidence for their planetary water inventories. Venus' H2O content may have been at least 0.3% of a terrestrial ocean. Analysis of the D/H ratio on Mars imply that a global H2O ocean with a depth of ≤ 30 m was lost since the end of hydrodynamic escape. Calculations of the time evolution of the 15N/14N isotope anomalies in the atmospheres of Mars and Titan show that the Martian atmosphere was at least ≥ 20 times denser than at present and that the mass of Titan's early atmosphere was about 30 times greater than its present value. A detailed study of gravitational fractionation of isotopes in planetary atmospheres furthermore indicates a much higher solar wind mass flux of the early Sun during the first half billion years.

  20. Hydrodynamic interactions enhance gelation in dispersions of colloids with short-ranged attraction and long-ranged repulsion.

    PubMed

    Varga, Zsigmond; Swan, James

    2016-09-28

    We show that discrete element simulations of colloidal gelation must account for hydrodynamic interactions between suspended particles through investigation of gelation in a dispersion of colloids interacting pair-wise via short-ranged attraction and long-ranged repulsion (SALR). These dynamic simulations juxtapose self-assembly with and without hydrodynamic interactions between the particles. The long-ranged repulsion impacts the relative rates of coagulation and compaction of colloidal aggregates pre-gel, and introduces a surprising sensitivity to the nature of hydrodynamic interactions between the suspended colloids. For such SALR dispersions, we observe a significant disparity between the percolation boundaries predicted by simulations including and neglecting long-ranged hydrodynamic interactions. Additionally, we find that the percolation boundaries predicted by simulations including hydrodynamic interactions agree well with those measured experimentally. Long-ranged repulsion promotes gelation via growth of anisotropic clusters regardless of the hydrodynamic model employed. However, differences between the models, which persist far from the percolation boundary, are apparent via measurements of the fractal dimension, local bond order parameters, and the collective relaxation dynamics. Notably, the growth of elongated clusters is augmented in simulations that incorporate long-ranged hydrodynamic interactions due to the anisotropic diffusion of elongated bodies at low Reynolds numbers, which favors percolation over a transition of anisotropic clusters to their more isotropic ground states. It is only in relatively dense suspensions that a combination of hydrodynamic screening and significantly faster aggregation combine to bring the two simulation methods into agreement. These results demonstrate the necessity of long-ranged hydrodynamic forces in discrete element simulations of heterogeneous gelation at the colloidal scale.