Sample records for hill slope sediment

  1. Soil disturbance and hill-slope sediment transport after logging of a severely burned site in northeastern Oregon.

    Treesearch

    James D. McIver; R. McNeil

    2006-01-01

    Despite considerable public debate in recent years on the practice of postfire logging, few studies have directly evaluated its effects. Soil disturbance and hill-slope sediment transport were measured after a postfire logging operation conducted two years after the 1996 Summit Wildfire (Malheur National Forest), in northeastern Oregon. The wildfire was relatively...

  2. Hill slope and erosional controls on soil organic geochemistry in intensely managed landscapes

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Hou, T.; Hughes, M.; Tong, Y.; Papanicolaou, T.; Wacha, K.; Abban, B. K.; Boys, J.; Wilson, C. G.

    2015-12-01

    Like many regions of North America, the last 100 years of agriculture in the glaciated upper Midwest has lead to a major redistribution of soil carbon and nitrogen on the landscape. Through the natural coevolution of geomorphic, pedogenic, and ecological processes in the critical zone or by punctual changes in these processes as a result of intensive management, landscapes established characteristic hierarchies of physicochemical controls on organic matter stability. In the Intensively-Managed Landscapes - Critical Zone Observatory (IML-CZO) in Iowa and Illinois these processes are being studied with a combination of surface soil geochemical surveys and simulated rainfall/erosion experiments to document how the organic geochemistry of hill slopes, under land management ranging from row crop to restored prairie, are currently evolving, and how they evolved during early management and pre settlement. Using a combination of soil analyses including elemental, stable isotope, textural, and soil biopolymers (lignin and cutin/suberin fatty acids (SFA)) we investigated the spatial patterns of static surface soil properties and time course rainfall-erosional experiments along the same slopes to gain insight into soil carbon and biopolymer enrichment patterns in east-central Iowa within the Clear Creek Watershed. Both lignin and substituted fatty acid concentration and their molecular ratios highlighted differences in C3/C4 (soy/corn) management activities in surface soils while over 40 years of prairie restoration dramatically altered surface soil profiles. For example, a general pattern in static baseline samples was an enrichment of 15N in soils down slope and an opposite pattern of accumulation/loss of lignin and SFA in topographic highs and lows. Transport of soil particles, associated biopolymers, and elemental and isotope signatures, exhibited distinct patterns based upon both position of the hill slope and directionality of flow with respect to rill/gully direction

  3. Effects of erosion in the fate of soil organic carbon and soil aggregation in a burned Mediterranean hill-slope

    NASA Astrophysics Data System (ADS)

    Campo, Julian; Cammeraat, Erik; Gimeno-García, Eugenia; Andreu, Vicente

    2016-04-01

    The Intergovernmental Panel on Climate Change indicated a higher degree of confidence that meteorological conditions associated to climate change will be propitious to increasing extreme events manifested, among others, in bigger and more frequent wildfires (IPCC, 2014). Wildfires contribute to shaping the landscape, and also the geomorphological and hydrological processes that operate on soil are affected (Bento-Gonçalves et al., 2012). Whereas, it is well documented that wildfires produce significant changes on erosion processes, the associated fate of soil organic carbon (SOC) has received less attention. This research assesses this gap by studying the loss, redistribution, and stabilization of SOC in a Mediterranean forest hill-slope burned the 28-08-2014, with high severity fire, at the Natural Park of Sierra de Espadán, Spain (39°50'45.11"N, 0°22'20.52"W). To this end, soil was sampled (19-9-2014) in the foot's slope (depositional), middle part (transport) and top (eroding) at two depths (<2 cm, 2-5 cm), and in two environments (under canopy soil: UC; bare soil: BS). Sediments were collected from four sediment fences constructed at the foot's slope, and together with soil samples, analysed with regard to SOC content and aggregate stability (AS). The main objective is to increase the understanding on the fate of SOC in Mediterranean burned areas experiencing soil erosion, transport and deposition, with special attention to the role of aggregation and disaggregation in redistribution processes. Immediately after the fire, SOC content was high (≈50 gC kg-1) as well as the AS (water drop test>146 drops). Significant differences (ANOVA, p<0.05) in SOC contents were observed between environments (UC>BS) and soil depths (topsoil>subsoil). However, no significant differences were observed among eroding (58.8+20.8 gC kg-1), transport (67.3+34.4 gC kg-1), and depositional zones (62.0+31.3 gC kg-1), which is not in agreement with other SOC redistribution studies

  4. Stratigraphy and paleogeographic significance of a Late Pennsylvanian to Early Permian channeled slope sequence in the Darwin Basin, southern Darwin Hills, east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Stone, Paul; Magginetti, Robert T.; Ritter, Scott M.

    2015-01-01

    The complex stratigraphy of late Paleozoic rocks in the southern Darwin Hills consists of regionally extensive Mississippian and Early to Middle Pennsylvanian rocks overlain by latest Pennsylvanian to Early Permian rocks, herein called the Darwin Hills sequence. Deposition of this latter sequence marked the beginning of the Darwin Basin. In Mississippian time, a carbonate platform prograded westward over slightly older slope deposits. In the Late Mississippian this platform was exposed to erosion and siliciclastic sediments were deposited. In Early to Middle Pennsylvanian time the area subsided, forming a west-facing ramp that was subjected to deformation and erosion in Middle or early Late Pennsylvanian time. Later this area was tilted westward and deep-water sediments were deposited on this slope. In latest Pennsylvanian to earliest Permian time, a major channel was cut through the older Pennsylvanian rocks and into the Upper Mississippian strata. This channel was gradually filled with increasingly finer grained, deep-water sediment as the area evolved into a basin floor by Early Permian (Sakmarian) time. Expansion of the Darwin Basin in Artinskian time led to a second phase of deposition represented by strata of the regionally extensive Darwin Canyon Formation. The geology in this small area thus documents tectonic events occurring during the early development of the Darwin Basin.

  5. [Effects of slope gradient on slope runoff and sediment yield under different single rainfall conditions].

    PubMed

    He, Ji-Jun; Cai, Qiang-Guo; Liu, Song-Bo

    2012-05-01

    Based on the field observation data of runoff and sediment yield produced by single rainfall events in runoff plots, this paper analyzed the variation patterns of runoff and sediment yield on the slopes with different gradients under different single rainfall conditions. The differences in the rainfall conditions had little effects on the variation patterns of slope runoff with the gradient. Under the conditions of six different rainfall events in the study area, the variation patterns of slope runoff with the gradient were basically the same, i. e., the runoff increased with increasing gradient, but the increment of the runoff decreased slightly with increasing gradient, which was mainly determined by the infiltration flux of atmospheric precipitation. Rainfall condition played an important role on the slope sediment yield. Generally, there existed a critical slope gradient for slope erosion, but the critical gradient was not a fixed value, which varied with rainfall condition. The critical slope gradient for slope erosion increased with increasing slope gradient. When the critical slope gradient was greater, the variation of slope sediment yield with slope gradient always became larger.

  6. Coupling loss characteristics of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope.

    PubMed

    Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi

    2018-05-01

    Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our

  7. Observations on Cretaceous abyssal hills in the northeast Pacific

    USGS Publications Warehouse

    Eittreim, S.L.; Piper, D.Z.; Chezar, H.; Jones, D.R.; Kaneps, A.

    1984-01-01

    An abyssal hills area of 50 ?? 60 km in the northeast Pacific was studied using bottom transponder navigation, closely spaced survey lines, and long-traverse oblique photography. The block-faulted north-south hills are bounded by scarps, commonly with 40?? slopes. On these steep scarps sedimentation is inhibited and pillow basalts often crop out. An ash layer of high acoustic reflectivity at about 7 m subbottom depth blankets the area. This ash occurs in multiple beds altered to phillipsite and is highly consolidated. A 24 m.y. age for the ash is based on ichthyolith dates from samples in the overlying sediments. Acoustically transparent Neogene sediments above the ash are thickest in trough bottoms and are absent or thin on steep slopes. These Neogene sediments are composed of pale-brown pelagic clays of illite, quartz, smectite, chlorite and kaolinite. Dark-brown pelagic clays, rich in smectite and amorphous iron oxides, underlie the Neogene surficial sediments. Manganese nodules cover the bottom in varying percentages. The nodules are most abundant near basement outcrops and where the subbottom ash layer is absent. ?? 1984.

  8. Sediment Pathways Across Trench Slopes: Results From Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Cormier, M. H.; Seeber, L.; McHugh, C. M.; Fujiwara, T.; Kanamatsu, T.; King, J. W.

    2015-12-01

    Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.

  9. Soil Carbon Distribution along a Hill Slope in the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Bunn, A. G.; Schade, J. D.

    2011-12-01

    Arctic ecosystems are warming at an accelerated rate relative to lower latitudes, and this warming has significant global significance. In particular, the thawing of permafrost soils has the potential to strongly influence global carbon cycling and the functioning of terrestrial and aquatic ecosystems. Our overarching scientific goal is to study the impact of thawing permafrost on the transport and processing of carbon and other nutrients as they move with water from terrestrial ecosystems to the Arctic Ocean. Transport of materials from soil to headwater aquatic ecosystems is the first step in this movement. Processes occurring along hill slopes strongly influence the form and concentration of material available for transport. These processes include downhill accumulation of materials due to groundwater movement, or alternatively, local effects of changes in soil and vegetation characteristics. In this project, we studied a hill slope adjacent to a small first order stream in the Kolyma River in Eastern Siberia. We sampled soil at several points along three transects from the top of the hill to the riparian zone by coring and homogenizing the entire active layer at each point. We measured soil organic matter content, soil moisture, water extractable dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NH4, NO3, soluble reactive phosphorus (SRP), and CDOM absorbance. We also measured soil respiration using a laboratory-based biological oxygen demand protocol conducted on soil-water slurries. Active layer depth decreased down the hillslope, while soil moisture, organic matter, and DOC all increased down the hillslope. CDOM absorbance increased downhill, which indicates a decrease in molecular weight of organic compounds at the bottom of the hill. This suggests either an input of newer carbon or processing of high molecular weight DOM down the slope. Soil respiration also increased downhill and was likely driven in part by increased OM in the shallower

  10. Geomorphological features in the southern Canary Island Volcanic Province: The importance of volcanic processes and massive slope instabilities associated with seamounts

    NASA Astrophysics Data System (ADS)

    Palomino, Desirée; Vázquez, Juan-Tomás; Somoza, Luis; León, Ricardo; López-González, Nieves; Medialdea, Teresa; Fernández-Salas, Luis-Miguel; González, Francisco-Javier; Rengel, Juan Antonio

    2016-02-01

    The margin of the continental slope of the Volcanic Province of Canary Islands is characterised by seamounts, submarine hills and large landslides. The seabed morphology including detailed morphology of the seamounts and hills was analysed using multibeam bathymetry and backscatter data, and very high resolution seismic profiles. Some of the elevation data are reported here for the first time. The shape and distribution of characteristics features such as volcanic cones, ridges, slides scars, gullies and channels indicate evolutionary differences. Special attention was paid to recent geological processes that influenced the seamounts. We defined various morpho-sedimentary units, which are mainly due to massive slope instability that disrupt the pelagic sedimentary cover. We also studied other processes such as the role of deep bottom currents in determining sediment distribution. The sediments are interpreted as the result of a complex mixture of material derived from a) slope failures on seamounts and submarine hills; and b) slides and slumps on the continental slope.

  11. A Cone Shaped Hill

    NASA Image and Video Library

    2015-10-14

    There are many hills and knobs on Mars that reveal aspects of the local geologic history. Typically, the hills in the relatively-smooth region surrounding this image are flat topped erosional remnants or mesas with irregular or even polyhedral margins. These landforms suggest wide spread erosion of the soft or weakly-cemented sedimentary layers. This hill stands out because of is circular inverted-cone shape and apparent dark streaks along its flanks visible in lower resolution images. Close inspection from HiRISE reveals that the fine soils sloping down from the peak are intersected with radiating lines of rock and eroding rubble. This formation is similar to lava intrusions that form in the core of a volcano. As lava is squeezed up into a central conduit, radiating fractures fill with lava forming rock units called dikes. As the lava cools inside the ground and in the fractures, it forms into a harder rock that is more resistant to erosion. Later, as the surrounding sediments and soils erode, the resistant volcanic rock remains standing to tell a story of what happened underground long ago. http://photojournal.jpl.nasa.gov/catalog/PIA20003

  12. Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: estuary to continental slope

    NASA Astrophysics Data System (ADS)

    Cowie, G.; Mowbray, S.; Kurian, S.; Sarkar, A.; White, C.; Anderson, A.; Vergnaud, B.; Johnstone, G.; Brear, S.; Woulds, C.; Naqvi, S. W.; Kitazato, H.

    2014-02-01

    Surface sediments from sites across the Indian margin of the Arabian Sea were analysed for their carbon and nitrogen compositions (elemental and stable isotopic), grain size distributions and biochemical indices of organic matter (OM) source and/or degradation state. Site locations ranged from the estuaries of the Mandovi and Zuari rivers to depths of ~ 2000 m on the continental slope, thus spanning nearshore muds and sands on the shelf and both the semi-permanent oxygen minimum zone (OMZ) on the upper slope (~ 200-1300 m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, and overwhelming predominance (80%+) of marine OM on the shelf and slope. Thus, riverine OM is heavily diluted by autochthonous marine OM and/or is efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from < 0.5 wt % in relict shelf sands to over 7 wt % at slope sites within the OMZ, decreasing to ≤ 1 wt % at 2000 m. Major variability (~ 5 wt %) was found at slope sites within the OMZ of similar depth and near-identical bottom-water oxygen concentration. A strong relationship between organic C and sediment grain size was seen for sediments within the OMZ, but lower C loadings were found for sites on the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, the results indicate that OM enrichment on the upper slope can be explained by physical controls (winnowing and/or dilution) on the shelf and progressive OM degradation

  13. Antecedent topography and morphological controls on sediment accumulation and slope stability of the U.S. Atlantic margin

    NASA Astrophysics Data System (ADS)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.

    2017-12-01

    The U.S. Atlantic margin encompasses a wide variety of slope failure processes, ranging from small canyon-confined failures on the upper slope to large, open slope landslides originating in deeper water. Here we used a suite of high-resolution multibeam bathymetry and detailed multichannel seismic data coverage to investigate the relationship between modern seafloor morphology, pre-existing stratigraphy and sediment accumulation patterns. We suggest that a combination of sediment supply and antecedent margin physiography, whereby variations in margin evolution during the Miocene have influenced the modern seafloor morphology, controls both the location of slope sediment accumulation and the style of slope failure. Oversteepened margins with angular shelf breaks and steep upper slopes, referred to as oblique margins, are characterized by downslope mass transport and densely-spaced canyon formation. These margins are most likely the locus of canyon-confined failures and smaller lower slope fan-apron failures (e.g., much of the Mid-Atlantic). Sigmoidal margins with prograded slopes, a rounded shelf edge, and a low gradient slope morphology can support significant sediment accumulation across a broad area, with limited canyon development. These margins are often associated with high sediment supply and are prone to large, upper slope slab-style failures (e.g., the Hudson Apron, southwestern New England, the Currituck and Cape Fear Slide complexes). Areas with morphologies in between these two end members are characterized by limited shelf-edge accommodation space and large-scale lower slope accumulation and onlap, representing transitional stages of equilibrium slope adjustment. Large failures along these intermediate-type margins tend to develop lower on the slope where thick wedges of onlapping sediment are found (e.g., around Washington Canyon, Cape Lookout and southeastern New England). As antecedent topography and sediment loading appear to play an important role

  14. Can control of soil erosion mitigate water pollution by sediments?

    PubMed

    Rickson, R J

    2014-01-15

    The detrimental impact of sediment and associated pollutants on water quality is widely acknowledged, with many watercourses in the UK failing to meet the standard of 'good ecological status'. Catchment sediment budgets show that hill slope erosion processes can be significant sources of waterborne sediment, with rates of erosion likely to increase given predicted future weather patterns. However, linking on-site erosion rates with off-site impacts is complicated because of the limited data on soil erosion rates in the UK and the dynamic nature of the source-pathway-receptor continuum over space and time. Even so, soil erosion control measures are designed to reduce sediment production (source) and mobilisation/transport (pathway) on hill slopes, with consequent mitigation of pollution incidents in watercourses (receptors). The purpose of this paper is to review the scientific evidence of the effectiveness of erosion control measures used in the UK to reduce sediment loads of hill slope origin in watercourses. Although over 73 soil erosion mitigation measures have been identified from the literature, empirical data on erosion control effectiveness are limited. Baseline comparisons for the 18 measures where data do exist reveal erosion control effectiveness is highly variable over time and between study locations. Given the limitations of the evidence base in terms of geographical coverage and duration of monitoring, performance of the different measures cannot be extrapolated to other areas. This uncertainty in effectiveness has implications for implementing erosion/sediment risk reduction policies, where quantified targets are stipulated, as is the case in the EU Freshwater Fish and draft Soil Framework Directives. Also, demonstrating technical effectiveness of erosion control measures alone will not encourage uptake by land managers: quantifying the costs and benefits of adopting erosion mitigation is equally important, but these are uncertain and difficult to

  15. Storm-driven delivery of sediment to the continental slope: Numerical modeling for the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Kniskern, T. A.; Arango, H.

    2016-02-01

    The supply of sediment from the continental shelf to deeper waters is of critical importance for building continental margin repositories of sediment, and may also factor into episodic events on the continental slope such as turbidity currents and slope failures. While numerical sediment transport models have been developed for coastal and continental shelf areas, they have not often been used to infer sediment delivery to deeper waters. A three-dimensional coupled hydrodynamic - suspended sediment transport model for the northern Gulf of Mexico has been developed and run to evaluate the types of conditions that are associated with delivery of suspended sediment to the continental slope. Accounting for sediment delivery by riverine plumes and for sediment resuspension by energetic waves and currents, the sediment transport calculations were implemented within the Regional Ocean Modeling System (ROMS). The model domain represents the northern Gulf of Mexico shelf and slope including the Mississippi birdfoot delta and the Mississippi and DeSoto Canyons. To investigate the role of storms in driving down-slope sediment fluxes, model runs that encompassed fall, 2007 through late summer, 2008 the summer and fall of 2008 were analyzed. This time period included several winter storms, and the passage of two hurricanes (Ike and Gustav) over the study area. Preliminary results indicated that sediment delivery to the continental slope was triggered by the passage of these storm events, and focused at certain locations, such as submarine canyons. Additionally, a climatological analysis indicates that storm track influences both the wind-driven currents and wave energy on the shelf, and as such plays an important role in determining which storms trigger delivery of suspended continental shelf sediment to the adjacent slope.

  16. Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems

    NASA Astrophysics Data System (ADS)

    Sherman, C.; Schmidt, W.; Appeldoorn, R.; Hutchinson, Y.; Ruiz, H.; Nemeth, M.; Bejarano, I.; Motta, J. J. Cruz; Xu, H.

    2016-10-01

    Although sediment dynamics exert a fundamental control on the character and distribution of reefs, data on sediment dynamics in mesophotic systems are scarce. In this study, sediment traps and benthic photo-transects were used to document spatial and temporal patterns of suspended-sediment and bed-load dynamics at two geomorphically distinct mesophotic coral ecosystems (MCEs) on the upper insular slope of southwest Puerto Rico. Trap accumulation rates of suspended sediment were relatively low and spatiotemporally uniform, averaging <1 mg cm-2 d-1 and never exceeding 3 mg cm-2 d-1 over the sampled period. In contrast, trap accumulation rates of downslope bed-load movement were orders of magnitude higher than suspended-sediment accumulation rates and highly variable, by orders of magnitude, both spatially and temporally. Percent sand cover within photo-transects varied over time from 10% to more than 40% providing further evidence of downslope sediment movement. In general, the more exposed, lower gradient site had higher rates of downslope sediment movement, higher sand cover and lower coral cover than the more sheltered and steep site that exhibited lower rates of downslope sediment movement, lower sand cover and higher coral cover. In most cases, trap accumulation rates of suspended sediment and bed load varied together and peaks in trap accumulation rates correspond to peaks in SWAN-modeled wave-orbital velocities, suggesting that surface waves may influence sediment dynamics even in mesophotic settings. Though variable, off-shelf transport of sediment is a continuous process occurring even during non-storm conditions. Continuous downslope sediment movement in conjunction with degree of exposure to prevailing seas and slope geomorphology are proposed to exert an important influence on the character and distribution of insular-slope MCEs.

  17. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María

    2016-01-01

    Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.

  18. Community managed forests dominate the catchment sediment cascade in the mid-hills of Nepal: A compound-specific stable isotope analysis.

    PubMed

    Upadhayay, Hari Ram; Smith, Hugh G; Griepentrog, Marco; Bodé, Samuel; Bajracharya, Roshan Man; Blake, William; Cornelis, Wim; Boeckx, Pascal

    2018-05-08

    Soil erosion by water is critical for soil, lake and reservoir degradation in the mid-hills of Nepal. Identification of the nature and relative contribution of sediment sources in rivers is important to mitigate water erosion within catchments and siltation problems in lakes and reservoirs. We estimated the relative contribution of land uses (i.e. sources) to suspended and streambed sediments in the Chitlang catchment using stable carbon isotope signature (δ 13 C) of long-chain fatty acids as a tracer input for MixSIAR, a Bayesian mixing model used to apportion sediment sources. Our findings reveal that the relative contribution of land uses varied between suspended and streambed sediment, but did not change over the monsoon period. Significant over- or under-prediction of source contributions could occur due to overlapping source tracer values, if source groups are classified on a catchment-wide basis. Therefore, we applied a novel deconvolutional framework of MixSIAR (D-MixSIAR) to improve source apportionment of suspended sediment collected at tributary confluences (i.e. sub-catchment level) and at the outlet of the entire catchment. The results indicated that the mixed forest was the dominant (41 ± 13%) contributor of sediment followed by broadleaf forest (15 ± 8%) at the catchment outlet during the pre-wet season, suggesting that forest disturbance as well as high rainfall and steep slopes interact for high sediment generation within the study catchment. Unpaved rural road tracks located on flat and steep slopes (11 ± 8 and 9 ± 7% respectively) almost equally contributed to the sediment. Importantly, agricultural terraces (upland and lowland) had minimal contribution (each <7%) confirming that proper terrace management and traditional irrigation systems played an important role in mitigating sediment generation and delivery. Source contributions had a small temporal, but large spatial, variation in the sediment cascade of Chitlang stream

  19. Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment

    NASA Astrophysics Data System (ADS)

    Brüchert, Volker; Bröder, Lisa; Sawicka, Joanna E.; Tesi, Tommaso; Joye, Samantha P.; Sun, Xiaole; Semiletov, Igor P.; Samarkin, Vladimir A.

    2018-01-01

    The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic-carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling; intact sediment core incubations; 35S-sulfate tracer experiments; pore-water dissolved inorganic carbon (DIC); δ13CDIC; and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope and allows us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 84 % of the depth-integrated carbon mineralization. Oxygen uptake rates and anaerobic carbon mineralization rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC / NH4+ ratios in pore waters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end-member calculations, the terrestrial organic carbon contribution varied between 32 and 36 %, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using isotope end-member apportionment over the outer shelf of the Laptev and East Siberian seas suggests that about 16 Tg C yr-1 is respired in the outer shelf seafloor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3 Tg C yr-1 is degraded by anaerobic processes

  20. Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events: examples of lacustrine varved sediments in Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Yoshiro; Sasaki, Yasunori; Sasaki, Hana; Onishi, Yuri

    2016-04-01

    Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events are frequently intercalated in lacustrine successions. When sediment gravity flow deposits are present in varved sediments, it is suggested that they provide valuable information about sediment gravity flows, because they can easily trace laterally and can give the magnitude of erosion and recurrence interval of events. In addition, because large sedimentary bodies of stacked sediment gravity flow deposits in varved sediments of a calm lake are not suggested, a relatively simple depositional environment is expected. In the present study, we analysed sedimentary facies of sediment gravity flow deposits in varved lacustrine diatomites in the Middle Pleistocene Hiruzenbara and Miyajima formations in Japan, and concluded a depositional model of the lacustrine sediment gravity flow deposits. Varved diatomites: The Hiruzenbara Fm., a dammed lake fill as foots of Hiruzen Volcanos, is deposited during an interglacial period during MIS12 to 15. Varves of ca. 8000 yr were measured in a 20 m intercalating flood and lake slope failure-induced sediment gravity flow deposits. The Miyajima Fm., distributed in a paleo-caldera lake in NE Japan, includes many sediment gravity flow deposits possibly originated from fandeltas around the lake. These formations have differences in their depositional setting; the Hiruzebara Fm. was deposited in a large lake basin, whereas the Miyajima Fm. was deposited in a relatively small basin. Because of the depositional setting, intercalation of volcaniclastics is dominant in the Miyajima Fm. Lacustrine sediment gravity flow deposits: Sediment gravity flow deposits in both formations can be classified into flood- and lake slope failure-induced types based on the sedimentary facies. Composites of the both types are also found. Flood-induced types comprise fine-grained silts dominated by carbonaceous fragments, whereas lake slope failure-induced types are

  1. Comparative geochemistry of Indian margin (Arabian Sea) sediments: Estuary to continental slope.

    NASA Astrophysics Data System (ADS)

    Cowie, Greg; Mowbray, Stephen; Kurian, Siby; Sarkar, Amit; White, Carol; Anderson, Amy; Vergnaud, Bianca; Johnstone, Gisele; Brear, Samuel; Woulds, Clare; Naqvi, Wajih; Kitazato, Hiroshi

    2014-05-01

    Factors controlling the distribution of organic matter in the Arabian Sea have been the subject of much research and debate ever since organic-rich slope deposits were associated with the mid-water oxygen minimum zone (OMZ) However, the debate remains open, and numerous interacting factors have been invoked as important controls. A limitation of most previous studies is that they have been restricted to limited portions of the margin, and have not included molecular-level tracers that allow distinction of organic matter (OM) source and degradation state as factors in OM distribution. We report results from sites across the Indian margin of the Arabian Sea, which were analysed for carbon and nitrogen compositions (elemental and isotopic), grain size and indices of OM source and degradation state. Site locations ranged from the Mandovi/Zuari estuaries to depths of ~2000m on the continental slope, thus spanning both the semi-permanent OMZ on the upper slope (~200-1300m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, but overwhelming predominance (80%+) of marine OM on the shelf and slope, even in nearshore deposits. Thus, riverine OM is heavily diluted or efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from <0.5 wt% in relict shelf sands to a maximum of >7 wt% at upper slope sites within the OMZ, then decreasing to ≤1wt% at 2000m. However, major variability (~5 wt%) occured within the OMZ at sites with near-identical depths and bottom-water oxygen. A strong relationship between organic C and grain size was seen for OMZ sediments, but lower C loadings were found for sites on

  2. Inorganic geochemistry of surface sediments of the Ebro shelf and slope, northwestern Mediterranean

    USGS Publications Warehouse

    Gardner, J.V.; Dean, W.E.; Alonso, B.

    1990-01-01

    Distributions of major, minor, and trace elements in surface sediment of the continental shelf and upper slope of the northeastern Spanish continental margin reflect the influences of discharge from the Ebro River and changes in eustatic sea levels. Multivariate factor analysis of sediment geochemistry was used to identify five groupings of samples (factors) on the shelf and slope. The first factor is an aluminosilicate factor that represents detrital clastic material. The second factor is a highly variable amount of excess SiO2 and probably represents a quartz residuum originating from winnowing of relict detrital sediments. A carbonate factor (Factor 3) has no positive correlation with other geochemical parameters but is associated with the sand-size fraction. The carbonate in these sediments consists of a mixture of biogenic calcite and angular to subangular detrital grains. Organic carbon is associated with the aluminosilicate factor (Factor 1) but also factors out by itself (Factor 4); this suggests that there may be two sources of organic matter, terrestrial and marine. The fifth factor comprises upper slope sediments that contain high concentrations of manganese. The most likely explanation for these high manganese concentrations is precipitation of Mn oxyhydroxides at the interface between Mn-rich, oxygen-deficient, intermediate waters and oxygenated surface waters. During eustatic low sea levels of the glacial Pleistocene, the Ebro Delta built across the outer continental shelf and deposited sediment with fairly high contents of organic carbon and continental components. The period of marine transgression from eustatic low (glacial) to eustatic high (interglacial) sea levels was characterized by erosion of the outer shelf delta and surficial shelf sediments and the transport of sediment across the slope within numerous canyons. Once eustatic high sea level was reached, delta progradation resumed on the inner shelf. Today, coarse-grained sediment (silt and

  3. Global Paleobathymetry Reconstruction with Realistic Shelf-Slope and Sediment Wedge

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Hinnov, L. A.; Gnanadesikan, A.; Olson, P.

    2013-12-01

    We present paleo-ocean bathymetry reconstructions in a 0.1°x0.1° resolution, using simple geophysical models (Plate Model Equation for oceanic lithosphere), published ages of the ocean floor (Müller et al. 2008), and modern world sediment thickness data (Divins 2003). The motivation is to create realistic paleobathymetry to understand the effect of ocean floor roughness on tides and heat transport in paleoclimate simulations. The values for the parameters in the Plate Model Equation are deduced from Crosby et al. (2006) and are used together with ocean floor age to model Depth to Basement. On top of the Depth to Basement, we added an isostatically adjusted multilayer sediment layer, as indicated from sediment thickness data of the modern oceans and marginal seas (Divins 2003). We also created another version of the sediment layer from the Müller et al. dataset. The Depth to Basement with the appropriate sediment layer together represent a realistic paleobathymetry. A Sediment Wedge was modeled to complement the reconstructed paleobathymetry by extending it to the coastlines. In this process we added a modeled Continental Shelf and Continental Slope to match the extent of the reconstructed paleobathymetry. The Sediment Wedge was prepared by studying the modern ocean where a complete history of seafloor spreading is preserved (north, south and central Atlantic Ocean, Southern Ocean between Australia-Antarctica, and the Pacific Ocean off the west coast of South America). The model takes into account the modern continental shelf-slope structure (as evident from ETOPO1/ETOPO5), tectonic margin type (active vs. passive margin) and age of the latest tectonic activity (USGS & CGMW). Once the complete ocean bathymetry is modeled, we combine it with PALEOMAP (Scotese, 2011) continental reconstructions to produce global paleoworld elevation-bathymetry maps. Modern time (00 Ma) was assumed as a test case. Using the above-described methodology we reconstructed modern ocean

  4. Salt structure and sediment thickness, Texas-Louisiana continental slope, northwestern Gulf of Mexico

    USGS Publications Warehouse

    Martin, Raymond G.

    1973-01-01

    The objectives of this study were to determine the general configuration of the salt surface beneath the Texas-Louisiana continental slope and to isopach the Mesozoic-Cenozoic sedimentary section lying upon it. The structure contour map discloses that the entire slope province between the shelf edge and Sigsbee Escarpment is underlain by salt structures which interconnect at relatively shallow subbottom depths. Salt structures on the slope south of Louisiana and eastern Texas can be grouped according to structural relief and size which define morphological belts of decreasing deformational maturity in a downslope direction. Off northern Mexico and southernmost Texas, salt structures are anticlinal and their trends suggest a structural relationship with the folds of the Mexican Ridge province to the south. Structural trends in the two slope areas meet in the corner of the northwestern gulf where salt structure may have been influenced by a seaward extension of the San Marcos Arch, or an abrupt change in subsalt structural topography. Sediment thickness above the top of salt on the slope averages about 1,400 m (4,620 ft) which is a smaller average than expected from previous estimates. In some synclinal basins between salt structures, sediments may be as thick as 4,000-5,000 m (12,000-17,000 ft). On the average, sedimentary deposits in basins on the upper slope are thicker than on the lower slope. From the isopach map of sediments above salt it is estimated that the U.S. continental slope off Texas and Louisiana contains a sedimentary volume of about 170,000 km3 (41,000 mi3). The bulk of this volume is situated in synclinal basins between domes and principally in those beneath the upper and middle slope regions.

  5. Geomorphology and Sediment Stability of a Segment of the U.S. Continental Slope off New Jersey.

    PubMed

    Robb, J M; Hampson, J C; Twichell, D C

    1981-02-27

    The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area.

  6. Sediment Transport of Fine Sand to Fine Gravel on Transverse Bed Slopes in Rotating Annular Flume Experiments

    NASA Astrophysics Data System (ADS)

    Baar, Anne W.; de Smit, Jaco; Uijttewaal, Wim S. J.; Kleinhans, Maarten G.

    2018-01-01

    Large-scale morphology, in particular meander bend depth, bar dimensions, and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by secondary flows. Overestimating the transverse bed slope effect in morphodynamic models leads to flattening of the morphology, while underestimating leads to unrealistically steep bars and banks and a higher braiding index downstream. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and in practice models are calibrated on measured morphology. The objective of this research is to experimentally quantify the transverse bed slope effect for a large range of near-bed flow conditions with varying secondary flow intensity, sediment sizes (0.17-4 mm), sediment transport mode, and bed state to test existing predictors. We conducted over 200 experiments in a rotating annular flume with counterrotating floor, which allows control of the secondary flow intensity separate from the streamwise flow velocity. Flow velocity vectors were determined with a calibrated analytical model accounting for rough bed conditions. We isolated separate effects of all important parameters on the transverse slope. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and secondary flow intensities that deviate from known predictors depending on Shields number, and strongly depend on bed state and sediment transport mode. Fitted functions are provided for application in morphodynamic modeling.

  7. Seismic displacement of gently-sloping coastal and marine sediment under multidirectional earthquake loading

    USGS Publications Warehouse

    Kayen, Robert E.

    2017-01-01

    Gentle sediment-laden slopes are typical of the onshore coastal zone and offshore continental shelf and slope. Coastal sediment are commonly young weakly consolidated materials that are well stratified, have low strength, and can mobilize shear displacements at low levels of stress. Seismically-driven plastic displacements of these sediment pose a hazard to coastal cities, buried onshore utilities, and offshore infrastructure like harbor protection and outfalls. One-dimensional rigid downslope-directed Newmark sliding block analyses have been used to predict earthquake deformations generally on steeper slopes that are modeled as frictional materials. This study probes the effect of multidirectional earthquake motions on inertial displacements of gently sloping ground of the coastal and offshore condition where soft-compliant soil is expected. Toward that objective, this investigation seeks to understand the effect on Newmark-type displacements of [1] multidirectional earthquake shaking and [2] soil compliance. In order to model multidirectional effects, the earthquake motions are rotated into the local slope strike- and dip-components. On gently sloping ground, including the strike component of motion always results in a larger and more accurate shear stress vector. Strike motions are found to contribute to downslope deformations on any declivity. Compliant response of the soil mass also influences the plastic displacements. The magnitude of seismic displacements can be estimated with a simplified model using only the estimated soil yield-acceleration (ky) and the peak ground velocity (Vmax) of the earthquake motions. Compliance effects can be effectively mapped using the concept of Plastic Displacement Response Spectra (PDRS).

  8. Assessment of sediment yield in a sloping Mediterranean watershed in Cyprus

    NASA Astrophysics Data System (ADS)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado

    2014-05-01

    In the Mediterranean region, water catchment sediment yield as a result of erosion is higher than in many other regions in Europe due to the climatic conditions, topography, lithology and land-use. Modelling sediment transport is difficult due to intermittent stream flow and highly irregular rainfall conditions in this region. The objective of this study is to quantify sediment yield of a highly sloping Mediterranean environment. This study is conducted in the Peristerona Watershed in Cyprus, which has ephemeral water flow. In the downstream area a series of check dams have been placed across the stream to slow the flow and increase groundwater recharge. The surface area of the watershed, upstream of the check dams, is 103 km2 with elevation changing between 1540 m and 280 m and a mean local slope higher than 40% for the mountainous part and lower than 8% for the plain. The long-term average annual precipitation ranges from 755 mm in the upstream area to 276 mm in the plain. The surface extent of the sediment that was deposited at the most upstream check dam during two seasons was measured with a Differential Global Positioning System. The depth of the sediment was measured with utility poles and bulk density samples from the sediment profile were collected. The sediment had a surface area of 12600 m2 and an average depth of 0.23 m. The mean of the sediment dry bulk density samples was 1.05 t m-3 with a standard deviation of 0.11. Based on these values, area specific sediment yield was computed as 1 t ha-1 per year for the entire catchment area upstream of the check dam, assuming a check dam sediment trap efficiency of 15%. Erosion in the watershed is currently modeled with PESERA using detailed watershed data.

  9. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil.

    PubMed

    Wu, Lei; Peng, Mengling; Qiao, Shanshan; Ma, Xiao-Yi

    2018-02-01

    Soil erosion is a universal phenomenon on the Loess Plateau but it exhibits complex and typical mechanism which makes it difficult to understand soil loss laws on slopes. We design artificial simulated rainfall experiments including six rainfall intensities (45, 60, 75, 90, 105, 120 mm/h) and five slopes (5°, 10°, 15°, 20°, 25°) to reveal the fundamental changing trends of runoff and sediment yield on bare loess soil. Here, we show that the runoff yield within the initial 15 min increased rapidly and its trend gradually became stable. Trends of sediment yield under different rainfall intensities are various. The linear correlation between runoff and rainfall intensity is obvious for different slopes, but the correlations between sediment yield and rainfall intensity are weak. Runoff and sediment yield on the slope surface both presents an increasing trend when the rainfall intensity increases from 45 mm/h to 120 mm/h, but the increasing trend of runoff yield is higher than that of sediment yield. The sediment yield also has an overall increasing trend when the slope changes from 5° to 25°, but the trend of runoff yield is not obvious. Our results may provide data support and underlying insights needed to guide the management of soil conservation planning on the Loess Plateau.

  10. Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11

    USGS Publications Warehouse

    Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.

    2012-01-01

    Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total

  11. Landscape Evolution Associated with Recurring Slope Lineae (RSL) on Mars

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Dundas, C. M.; Chojnacki, M.; Ojha, L.

    2016-12-01

    RSL are low-albedo features that initiate at bedrock outcrops and extend down steep slopes. Individual slopes may have hundreds of lineae, with widths up to 5 m and lengths up to 1.5 km. RSL appear and lengthen gradually or incrementally, fade when inactive, and recur each year, normally in the warmest season. Small channels (1-20 m wide) are often present and control RSL paths. We have also detected newly-formed topographic land slumps associated with RSL fans in at least 7 locations—4 around a hill in Juventae Chasma, 2 in Garni crater in Melas Chasma, and 1 along wall slopes in Coprates Chasma. This distinctive landform assemblage is seen at several other locations within central and eastern Valles Marineris (VM): Small channels on most slope aspects of isolated hills or crater walls, extending very nearly to the tops of the hills or crater rim, associated with RSL that match the channels in size, and with a set of lobate deposits at the base of RSL fans. RSL activity in VM changes slope aspect with season—N-facing slopes in northern summer and S-facing slopes in southern summer. The slumps form midway down the RSL fans, and have a different seasonality—most active from Ls 0-120, the coldest time of year in VM. Assuming this association between gullies, RSL, and slumps is not coincidental, an integrated landscape evolution model is needed. Perhaps RSL activity carves the small gullies and deposits sediment near the base of angle-of-repose slopes, locally oversteepening the slope, which episodically slumps. RSL activity is seasonal and associated with the transient presence of hydrated salts, which indicates some role for salty water. If the RSL were caused by fluid flow, they should not be precisely confined to angle-of-repose or steeper slopes (>28 deg.), so these seem to be dry granular flows whose activity is triggered by or somehow associated with small amounts of water. There are multiple mysteries, such as how the activity recurs at the same

  12. Network-scale dynamics of sediment mixtures: how do tectonics affect surface bed texture and channel slope?

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Bras, R. L.; Tucker, G. E.

    2003-04-01

    An alluvial channel's slope and bed texture are intimately linked. Along with fluvial discharge, these variables are the key players in setting alluvial transport rates. We know that both channel slope and mean grain size usually decrease downstream, but how sensitive are these variables to tectonic changes? Are basin concavity and downstream fining drastically disrupted during transitions from one tectonic regime to another? We explore these questions using the CHILD numerical landscape evolution model to generate alluvial networks composed of a sand and gravel mixture. The steady-state and transient patterns of both channel slope and sediment texture are investigated. The steady-state patterns in slope and sediment texture are verified independently by solving the erosion equations under equilibrium conditions, i.e. the case when the erosion rate is equal to the uplift rate across the entire landscape. The inclusion of surface texture as a free parameter (as opposed to just channel slope) leads to some surprising results. In all cases, an increase in uplift rate results in channel beds which are finer at equilibrium (for a given drainage area). Higher uplift rates imply larger equilibrium transport rates; this leads to finer channels that have a smaller critical shear stress to entrain material, and therefore more material can be transported for a given discharge (and channel slope). Changes in equilibrium slopes are less intuitive. An increase in uplift rates can cause channel slopes to increase, remain the same, or decrease, depending on model parameter values. In the surprising case in which equilibrium channel slopes decrease with increasing uplift rates, we suggest that surface texture changes more than compensate for the required increase in transport rates, causing channel slopes to decrease. These results highlight the important role of sediment grain size in determining transport rates and caution us against ignoring this important variable in fluvial

  13. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Castro-Bolinaga, C. F.; Zavaleta, E. R.; Diplas, P.

    2015-03-01

    This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product) downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  14. Large sized non-uniform sediment transport at high capacity on steep slopes

    NASA Astrophysics Data System (ADS)

    Fu, X.; Zhang, L.; Duan, J. G.

    2015-12-01

    Transport of large-sized particles such as cobbles in steep streams still remains poorly understood in spite of its importance in mountain stream morphdynamics. Here we explored the law of cobble transport and the effect of cobble existence on gravel bed material transport, using flume experiments with a steep slope (4.9%) and water and sediment constantly supplying. The experiments were conducted in an 8 m long and 0.6 m wide circulating flume with the maximal size up to 90 mm and cobble concentrations in the sediment bed ranging from 22 percent to 6 percent. The sediment transport rate is on the order of 1000 g/m/s, which could be taken as high rate transport compared with existing researches. Bed load transport rate and flow variables were measured after the flume reached an equilibrium state. Bed surface topography was also measured by applying Kinect range camera before and after each run in order to analyze the fractal characteristics of the bed surface under different flow conditions. Critical shear stress of each size friction was estimated from the reference transport method (RTM) and a new hiding function was recommended. Preliminary results show that the bed was nearly in an equal mobility transport regime. We then plot dimensionless fractional transport rate versus dimensionless shear stress and assess the existing bed load transport formulas of non-uniform sediments for their applicability at high sediment transport capacity. This study contributes to the comprehension of high rate sediment transport on steep slopes.

  15. Do Recurring Slope Lineae (RSL) Shape their Local Landscapes?

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Dundas, C. M.; Chojnacki, M.; Ojha, L.

    2017-12-01

    RSL are low-albedo features on Mars that initiate at or near bedrock outcrops and extend down steep slopes, with widths up to 5 m and lengths up to 1.5 km. RSL appear and lengthen gradually or incrementally, fade when inactive, and recur each martian year in the warmest season. There are hundreds of likely RSL sites, each with up to hundreds of lineae. Small gullies (1-20 m wide) are often present and control RSL paths; such small, fresh gullies are otherwise rare in equatorial regions. The RSL flow out to the ends of distinctive fans, which may get reworked by wind-driven ripples or dunes. The fans are often relatively bright but transiently become darker, and may have a distinctive color. We have detected newly-formed topographic slumps associated with RSL fans in 12 locations in Valles Marineris (VM). A distinctive landform assemblage is seen within central and eastern VM: Small channels occur on most slope aspects of isolated hills or crater walls, extend very nearly to the tops of the hills or crater rims, are associated with seasonal RSL that extend the full length of the channels and fans, and there is a set of lobate deposits (from slumps) at the base of RSL fans. RSL activity in VM changes slope aspect with season to favor warm temperatures, but the slumps are most active from Ls 0-120, the coldest time of year in VM, especially on south-facing slopes where most of the new slumps have been seen. This association between gullies, RSL, fans, and slumps suggests integrated landscape evolution. Perhaps RSL activity erodes the small gullies and deposits sediment, creating angle-of-repose sloping fans, sometimes oversteepening the fans to cause slumping. RSL activity is associated with the transient presence of hydrated salts, which may indicate some role for salty water. If the RSL mark fluid flow, they should not be precisely confined to angle-of-repose or steeper slopes (>28°), so these must be dry granular flows with activity possibly triggered by or

  16. Effect of vegetation construction on runoff and sediment yield and runoff erosion ability on slope surface

    NASA Astrophysics Data System (ADS)

    Yang, Chun Xia; Xiao, PeiQing; Li, Li; Jiao, Peng

    2018-06-01

    Land consolidation measures affected the underlying surface erosion environment during the early stage of vegetation construction, and then had an impact on rainfall infiltration, erosion and sediment yield. This paper adopted the field simulated rainfall experiments to analyze the function that pockets site preparation measures affected on rainfall infiltration, runoff sediment yield and runoff erosion ability. The results showed that, the measures can delay the rainfall runoff formation time of the slope by 3'17" and 1'04" respectively. Compared with the same condition of the bare land and natural grassland. The rainfall infiltration coefficient each increased by 76.47% and 14.49%, and infiltration rate increased by 0.26 mm/min and 0.11mm/min respectively; The amount of runoff and sediment yield were reduced because of the pockets site preparation. The amount of runoff reducing rate were 33.51% and 30.49%, and sediment reduction rate were 81.35% and 65.66%, The sediment concentration was decreased by 71.99% and 50.58%; Runoff velocity of bare slope and natural grassland slope decreased by 38.12% and 34.59% respectively after pockets site preparation . The runoff erosion rate decreased by 67.92% and 79.68% respectively. The results will have a great significance for recognizing the effect of water and sediment reduction about vegetation and the existence of its plowing measures at the early period of restoration.

  17. Accumulation of bank-top sediment on the western slope of Great Bahama Bank: rapid progradation of a carbonate megabank

    USGS Publications Warehouse

    Wilber, R. Jude; Milliman, John D.; Halley, Robert B.

    1990-01-01

    High-resolution seismic profiles and submersible observations along the leeward slope of western Great Bahama Bank show large-scale export of bank-top sediment and rapid progradation of the slope during the Holocene. A wedge-shaped sequence, up to 90 m thick, is present along most of the slope and consists of predominantly aragonite mud derived from the bank since flooding of the platform 6-8 ka. Total sediment volume of the slope sequence is 40%-80% that of Holocene sediment currently retained on the bank. Maximum rates of vertical accumulation and lateral progradation are 11-15 m/ka and 80-110 m/ka, respectively: 10 to 100 times greater than previously known for periplatform muds. Slope deposition of exported mud during sea-level highs appears to have been a major mechanism for the westward progradation of Great Bahama Bank throughout the Quaternary; this may provide a critical modern analogue for ancient progradational margins.

  18. Antigravity hills are visual illusions.

    PubMed

    Bressan, Paola; Garlaschelli, Luigi; Barracano, Monica

    2003-09-01

    Antigravity hills, also known as spook hills or magnetic hills, are natural places where cars put into neutral are seen to move uphill on a slightly sloping road, apparently defying the law of gravity. We show that these effects, popularly attributed to gravitational anomalies, are in fact visual illusions. We re-created all the known types of antigravity spots in our laboratory using tabletop models; the number of visible stretches of road, their slant, and the height of the visible horizon were systematically varied in four experiments. We conclude that antigravity-hill effects follow from a misperception of the eye level relative to gravity, caused by the presence of either contextual inclines or a false horizon line.

  19. Suspended Sediment Load and Sediment Yield During Floods and Snowmelt Runoff In The Rio Cordon (northeastern Italy)

    NASA Astrophysics Data System (ADS)

    Lenzi, M. A.

    Suspended sediment transport in high mountain streams display a grater time-space variability and a shorter duration (normally concentrated during the snowmelt period and the duration time of single floods) than in larger lowland rivers. Suspended sedi- ment load and sediment yield were analysed in a small, high-gradient stream of East- ern Italian Alps which was instrumented to measure in continuous water discharge and sediment transport. The research was conducted in the Rio Cordon, a 5 Km2 small catchment of the Dolomites. The ratio of suspended to total sediment yield and the re- lations between sediment concentration and water discharge were analysed for eleven floods which occurred from 1991 to 2001. Different patterns of hysteresis in the re- lation between suspended sediment and discharge were related to types and locations of active sediment sources. The within-storm variation of particle size of suspended sediment during a mayor flood (September 1994, 30 yearshill-slopes were the main source of suspended load. The relation between water discharge and S.S.C. for both floods and snowmelt runoff shows larger scatter for both series of data, with snowmelt data less scattered than rain- fall induced floods. This is accounted for by the variable effectiveness of erosion pro- cesses and sediment supply mechanisms during snowmelt and rainfall-induced floods. During snowmelt, erosion processes essentially consist in the removal of loose, fine- grained sediment from slopes by surface runoff; as a consequence, suspended sedi- ment transport takes place also with rather low discharges. Abundant suspended sedi- ment transport was recorded during the snowmelt period of May 2001, that followed a winter characterized by a huge snow cover and late snowfalls. Different sources of sed- iment contribute to suspended load during the

  20. Velocity-porosity relationships for slope apron and accreted sediments in the Nankai Trough Seismogenic Zone Experiment, Integrated Ocean Drilling Program Expedition 315 Site C0001

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.; Tobin, H. J.; Knuth, M.

    2010-12-01

    In this study, we focused on the porosity and compressional wave velocity of marine sediments to examine the physical properties of the slope apron and the accreted sediments. This approach allows us to identify characteristic variations between sediments being deposited onto the active prism and those deposited on the oceanic plate and then carried into the prism during subduction. For this purpose we conducted ultrasonic compressional wave velocity measurements on the obtained core samples with pore pressure control. Site C0001 in the Nankai Trough Seismogenic Zone Experiment transect of the Integrated Ocean Drilling Program is located in the hanging wall of the midslope megasplay thrust fault in the Nankai subduction zone offshore of the Kii peninsula (SW Japan), penetrating an unconformity at ˜200 m depth between slope apron sediments and the underlying accreted sediments. We used samples from Site C0001. Compressional wave velocity from laboratory measurements ranges from ˜1.6 to ˜2.0 km/s at hydrostatic pore pressure conditions estimated from sample depth. The compressional wave velocity-porosity relationship for the slope apron sediments shows a slope almost parallel to the slope for global empirical relationships. In contrast, the velocity-porosity relationship for the accreted sediments shows a slightly steeper slope than that of the slope apron sediments at 0.55 of porosity. This higher slope in the velocity-porosity relationship is found to be characteristic of the accreted sediments. Textural analysis was also conducted to examine the relationship between microstructural texture and acoustic properties. Images from micro-X-ray CT indicated a homogeneous and well-sorted distribution of small pores both in shallow and in deeper sections. Other mechanisms such as lithology, clay fraction, and abnormal fluid pressure were found to be insufficient to explain the higher velocity for accreted sediments. The higher slope in velocity-porosity relationship for

  1. Soils as sediment: does aggregation skew slope scale SOC balances?

    NASA Astrophysics Data System (ADS)

    Hu, Yaxian; Fister, Wolfgang; Kuhn, Nikolaus

    2014-05-01

    size distribution; 2) 63% of eroded SOC for the Möhlin soil and 83% for the Movelier soil would be re-deposited in the terrestrial system rather than transferred into the aquatic system. This is much greater than the high concentration of SOC in grain size fraction <32 µm would suggest; 3) the SOC re-deposited in the terrestrial system is more likely to be mineralized than the SOC in fine particles which would be transferred into the aquatic system. Our observations indicate that 1) aggregation reduces the likely transport distances of eroded SOC, and thus decreases the likelihood of eroded SOC to be transferred from eroding hill-slopes to the aquatic system; 2) the re-deposited SOC in the terrestrial system is more likely to be mineralized than the SOC in fine particles that could be transferred into the aquatic system. These findings highlight a potentially higher contribution of erosion to atmospheric CO2 than anticipated by estimating source for sink transfer without considering the effects of aggregation.

  2. Benthic Community Structure and Sediment Geochemical Properties at Hydrocarbon Seeps Along the Continental Slope of the Western North Atlantic

    NASA Astrophysics Data System (ADS)

    Demopoulos, A. W.; Bourque, J. R.; Brooke, S.

    2015-12-01

    Hydrocarbon seeps support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. In recent years, methane seepage has been increasingly documented along the continental slope of the U.S. Atlantic margin. In 2012 and 2013, two seeps were investigated in this region: a shallow site near Baltimore Canyon (410-450 m) and a deep site near Norfolk Canyon (1600 m). Both sites contain extensive mussel beds and microbial mats. Sediment cores and grab samples were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 mm) in relationship to the associated sediment environment (organic carbon and nitrogen, stable isotopes 13C and 15N, grain size, and depth) of mussel beds, mats, and slope habitats. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments. Macrofaunal communities were distinctly different both between depths and among habitat types. Specifically, microbial mat sediments were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in Baltimore microbial mat habitats, but higher in mussel and slope sediments compared to Norfolk seep habitats found at deeper depths. Multivariate statistical analysis identified sediment carbon:nitrogen (C:N) ratios and 13C values as important variables for structuring the macrofaunal communities. Higher C:N ratios were present within microbial mat habitats and depleted 13C values occurred in sediments adjacent to mussel beds found in Norfolk Canyon seeps. Differences in the quality and source of organic matter present in the seep habitats are known to be important drivers in macrofaunal community structure and associated food webs. The multivariate analysis provides new insight into the relative importance of the seep sediment quality in supporting dense macrofaunal communities compared

  3. Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes

    PubMed Central

    2016-01-01

    Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events recorded, yet critically important field data related to the landslide motion and tsunami evolution remain lacking. Landslide-generated tsunami source and propagation scenarios are physically modelled in a three-dimensional tsunami wave basin. A unique pneumatic landslide tsunami generator was deployed to simulate landslides with varying geometry and kinematics. The landslides were generated on a planar hill slope and divergent convex conical hill slope to study lateral hill slope effects on the wave characteristics. The leading wave crest amplitude generated on a planar hill slope is larger on average than the leading wave crest generated on a convex conical hill slope, whereas the leading wave trough and second wave crest amplitudes are smaller. Between 1% and 24% of the landslide kinetic energy is transferred into the wave train. Cobble landslides transfer on average 43% more kinetic energy into the wave train than corresponding gravel landslides. Predictive equations for the offshore propagating wave amplitudes, periods, celerities and lengths generated by landslides on planar and divergent convex conical hill slopes are derived, which allow an initial rapid tsunami hazard assessment. PMID:27274697

  4. Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes.

    PubMed

    McFall, Brian C; Fritz, Hermann M

    2016-04-01

    Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events recorded, yet critically important field data related to the landslide motion and tsunami evolution remain lacking. Landslide-generated tsunami source and propagation scenarios are physically modelled in a three-dimensional tsunami wave basin. A unique pneumatic landslide tsunami generator was deployed to simulate landslides with varying geometry and kinematics. The landslides were generated on a planar hill slope and divergent convex conical hill slope to study lateral hill slope effects on the wave characteristics. The leading wave crest amplitude generated on a planar hill slope is larger on average than the leading wave crest generated on a convex conical hill slope, whereas the leading wave trough and second wave crest amplitudes are smaller. Between 1% and 24% of the landslide kinetic energy is transferred into the wave train. Cobble landslides transfer on average 43% more kinetic energy into the wave train than corresponding gravel landslides. Predictive equations for the offshore propagating wave amplitudes, periods, celerities and lengths generated by landslides on planar and divergent convex conical hill slopes are derived, which allow an initial rapid tsunami hazard assessment.

  5. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana

    NASA Astrophysics Data System (ADS)

    Liu, H.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; Wilson, C.; Xue, Z.

    2017-12-01

    Sandy barrier islands along Louisiana coast are degrading rapidly due to both natural and anthropogenic factors. Ship Shoal is one of the largest offshore sand resources, and has been used as a borrow area for Caminada Headland Restoration Project. Our knowledge of sediment transport and infilling processes in this new sandy and dynamic borrow area is rather limited. High resolution sub-bottom seismic data, side scan sonar images, multi-beam bathymetry and laser sediment grain size data were used to study seafloor morphological evolution and pit wall stability in response to both physical and geological processes. The multi-beam bathymetry and seismic profiling inside the pit showed that disequilibrium conditions led to rapid infilling in the pits at the beginning, but this process slowed down after the pit slope became stable and topography became smooth. We hypothesize that the erosion of the adjacent seabed sediment by energetic waves and longshore currents, the supply of suspended sediment from the rivers, and the erodible materials produced by local mass wasting on pit walls are three main types of infilling sediments. Compared with mud-capped dredge pits, this sandy dredge pit seems to have more gentle slopes on pit walls, which might be controlled by the angle of repose. Infilling sediment seems to be dominantly sandy, with some mud patches on bathymetric depressions. This study helps us better understand the impacts of mining sediment for coastal restoration and improves sand resource management efforts.

  6. Judgments of visually perceived eye level (VPEL) in outdoor scenes: effects of slope and height.

    PubMed

    O'Shea, Robert P; Ross, Helen E

    2007-01-01

    When one looks up a hill from below, its peak appears lower than it is; when one looks at a hill across a valley from another peak, the peak of that hill appears higher than it is. These illusions have sometimes been explained by assuming that the subjective horizontal is assimilated to the nearby slope: when looking up a slope, the subjective horizontal is raised, diminishing the height of the peak above the subjective horizontal, and making the peak appear lower than it is. When looking down a slope towards another hill, the subjective horizontal is lowered, increasing the height of that hill above the subjective horizontal, and making its peak appear higher than it is. To determine subjective horizontals we measured visually perceived eye levels (VPELs) in 21 real-world scenes on a range of slopes. We found that VPEL indeed assimilates by about 40% to slopes between 7 degrees downhill and 7 degrees uphill. For larger uphill slopes up to 23 degrees, VPEL asymptotes at about 4.5 degrees. For larger downhill slopes, the assimilation of VPEL diminishes, and at 23 degrees is raised by about 1 degree. These results are consistent with the assimilation explanation of the illusions if we assume that steep downhill slopes lose their effectiveness by being out of view. We also found that VPEL was raised when viewing from a height, in comparison with ground-level views, perhaps because the perceived slope increases with viewing height.

  7. Measurements of the near-surface flow over a hill

    NASA Astrophysics Data System (ADS)

    Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.

    2002-10-01

    The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL gap 0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL lsim 0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.

  8. Bunker Hill Sediment Characterization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal A. Yancey; Debby F. Bruhn

    2009-12-01

    The long history of mineral extraction in the Coeur d’Alene Basin has left a legacy of heavy metal laden mine tailings that have accumulated along the Coeur d’Alene River and its tributaries (U.S. Environmental Protection Agency, 2001; Barton, 2002). Silver, lead and zinc were the primary metals of economic interest in the area, but the ores contained other elements that have become environmental hazards including zinc, cadmium, lead, arsenic, nickel, and copper. The metals have contaminated the water and sediments of Lake Coeur d’Alene, and continue to be transported downstream to Spokane Washington via the Spokane River. In 1983, themore » EPA listed the Bunker Hill Mining and Metallurgical Complex on the National Priorities List. Since that time, many of the most contaminated areas have been stabilized or isolated, however metal contaminants continue to migrate through the basin. Designation as a Superfund site causes significant problems for the economically depressed communities in the area. Identification of primary sources of contamination can help set priorities for cleanup and cleanup options, which can include source removal, water treatment or no action depending on knowledge about the mobility of contaminants relative to water flow. The mobility of contaminant mobility under natural or engineered conditions depends on multiple factors including the physical and chemical state (or speciation) of metals and the range of processes, some of which can be seasonal, that cause mobilization of metals. As a result, it is particularly important to understand metal speciation (National Research Council, 2005) and the link between speciation and the rates of metal migration and the impact of natural or engineered variations in flow, biological activity or water chemistry.« less

  9. Approximate Solutions for Ideal Dam-Break Sediment-Laden Flows on Uniform Slopes

    NASA Astrophysics Data System (ADS)

    Ni, Yufang; Cao, Zhixian; Borthwick, Alistair; Liu, Qingquan

    2018-04-01

    Shallow water hydro-sediment-morphodynamic (SHSM) models have been applied increasingly widely in hydraulic engineering and geomorphological studies over the past few decades. Analytical and approximate solutions are usually sought to verify such models and therefore confirm their credibility. Dam-break flows are often evoked because such flows normally feature shock waves and contact discontinuities that warrant refined numerical schemes to solve. While analytical and approximate solutions to clear-water dam-break flows have been available for some time, such solutions are rare for sediment transport in dam-break flows. Here we aim to derive approximate solutions for ideal dam-break sediment-laden flows resulting from the sudden release of a finite volume of frictionless, incompressible water-sediment mixture on a uniform slope. The approximate solutions are presented for three typical sediment transport scenarios, i.e., pure advection, pure sedimentation, and concurrent entrainment and deposition. Although the cases considered in this paper are not real, the approximate solutions derived facilitate suitable benchmark tests for evaluating SHSM models, especially presently when shock waves can be numerically resolved accurately with a suite of finite volume methods, while the accuracy of the numerical solutions of contact discontinuities in sediment transport remains generally poorer.

  10. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (west Africa). Consequences for sedimentation and southeast Atlantic upwelling

    NASA Astrophysics Data System (ADS)

    Séranne, Michel; Nzé Abeigne, César-Rostand

    1999-10-01

    Seismic reflection profiles on the slope of the south Gabon continental margin display furrows 2 km wide and some 200 m deep, that develop normal to the margin in 500-1500 m water depth. Furrows are characterised by an aggradation/progradation pattern which leads to margin-parallel, northwestward migration of their axes through time. These structures, previously interpreted as turbidity current channels, display the distinctive seismic image and internal organisation of sediment drifts, constructed by the activity of bottom currents. Sediment drifts were initiated above a major Oligocene unconformity, and they developed within a Oligocene to Present megasequence of general progradation of the margin, whilst they are markedly absent from the underlying Late Cretaceous-Eocene aggradation megasequence. The presence of upslope migrating sediment waves, and the northwest migration of the sediment drifts indicate deposition by bottom current flowing upslope, under the influence of the Coriolis force. Such landwards-directed bottom currents on the slope probably represent coastal upwelling, which has been active along the west Africa margin throughout the Neogene.

  11. Occurrence of submarine canyons, sediment waves and mass movements along the northern continental slope of the South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Hongjun; Zhan, Wenhuan; Li, Liqing; Wen, Ming-ming

    2017-07-01

    In this study, we reveal a series of newly discovered submarine canyons, sediment waves, and mass movements on a flat and smooth seafloor using high-resolution, multi-beam bathymetry and shallow seismic surveys along the northern slope of the South China Sea. We also describe their geomorphology and seismic stratigraphy characteristics in detail. These canyons display U-shaped cross sections and are roughly elongated in the NNW-SSE direction; they are typically 8-25 km long, 1.2-7 km wide, and form incisions up to 175 m into Pliocene-Quaternary slope deposits at water depths of 400-1000 m. Slide complexes and the sediment wave field are oriented in the NE-SW direction and cover areas of approximately 1790 and 926 km2, respectively. Debris/turbidity flows are present within these canyons and along their lower slopes. Detailed analysis of seismic facies indicates the presence of six seismic facies, in which Cenozoic strata located above the acoustic basement in the study area can be roughly subdivided into three sequences (1-3), which are separated by regional unconformities (Tg, T4, and T3). By combining these data with the regional geological setting and the results of previous studies, we are able to determine the genetic mechanisms used to create these canyons, sediment wave field, and mass movements. For example, frontally confined slide complexes could have been influenced by high sedimentation rates and high pore pressures. A series of very large subaqueous sediment waves, which record wavelengths of 1.4-2 km and wave heights of 30-50 m, were likely produced by interactions between internal solitary waves and along-slope bottom (contour) currents. Canyons were likely initially created by landslides and then widened laterally by the processes of downcutting, headward erosion, and active bottom currents and debris/turbidity flows on canyon floors. We therefore propose a three-dimensional model to describe the development of these mass movements, the sediment

  12. Sediment Budgets and Sources Inform a Novel Valley Bottom Restoration Practice Impacted by Legacy Sediment: The Big Spring Run, PA, Restoration Experiment

    NASA Astrophysics Data System (ADS)

    Walter, R. C.; Merritts, D.; Rahnis, M. A.; Gellis, A.; Hartranft, J.; Mayer, P. M.; Langland, M.; Forshay, K.; Weitzman, J. N.; Schwarz, E.; Bai, Y.; Blair, A.; Carter, A.; Daniels, S. S.; Lewis, E.; Ohlson, E.; Peck, E. K.; Schulte, K.; Smith, D.; Stein, Z.; Verna, D.; Wilson, E.

    2017-12-01

    Big Spring Run (BSR), a small agricultural watershed in southeastern Pennsylvania, is located in the Piedmont Physiographic Province, which has the highest nutrient and sediment yields in the Chesapeake Bay watershed. To effectively reduce nutrient and sediment loading it is important to monitor the effect of management practices on pollutant reduction. Here we present results of an ongoing study, begun in 2008, to understand the impact of a new valley bottom restoration strategy for reducing surface water sediment and nutrient loads. We test the hypotheses that removing legacy sediments will reduce sediment and phosphorus loads, and that restoring eco-hydrological functions of a buried Holocene wetland (Walter & Merritts 2008) will improve surface and groundwater quality by creating accommodation space to trap sediment and process nutrients. Comparisons of pre- and post-restoration gage data show that restoration lowered the annual sediment load by at least 118 t yr-1, or >75%, from the 1000 m-long restoration reach, with the entire reduction accounted for by legacy sediment removal. Repeat RTK-GPS surveys of pre-restoration stream banks verified that >90 t yr-1 of suspended sediment was from bank erosion within the restoration reach. Mass balance calculations of 137Cs data indicate 85-100% of both the pre-restoration and post-restoration suspended sediment storm load was from stream bank sources. This is consistent with trace element data which show that 80-90 % of the pre-restoration outgoing suspended sediment load at BSR was from bank erosion. Meanwhile, an inventory of fallout 137Cs activity from two hill slope transects adjacent to BSR yields average modern upland erosion rates of 2.7 t ha-1 yr-1 and 5.1 t ha-1 yr-1, showing modest erosion on slopes and deposition at toe of slopes. We conclude that upland farm slopes contribute little soil to the suspended sediment supply within this study area, and removal of historic valley bottom sediment effectively

  13. Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, P.; van Westen, C. J.; Jetten, V.

    2011-06-01

    A quantitative procedure for estimating landslide risk to life and property is presented and applied in a mountainous area in the Nilgiri hills of southern India. Risk is estimated for elements at risk located in both initiation zones and run-out paths of potential landslides. Loss of life is expressed as individual risk and as societal risk using F-N curves, whereas the direct loss of properties is expressed in monetary terms. An inventory of 1084 landslides was prepared from historical records available for the period between 1987 and 2009. A substantially complete inventory was obtained for landslides on cut slopes (1042 landslides), while for natural slopes information on only 42 landslides was available. Most landslides were shallow translational debris slides and debris flowslides triggered by rainfall. On natural slopes most landslides occurred as first-time failures. For landslide hazard assessment the following information was derived: (1) landslides on natural slopes grouped into three landslide magnitude classes, based on landslide volumes, (2) the number of future landslides on natural slopes, obtained by establishing a relationship between the number of landslides on natural slopes and cut slopes for different return periods using a Gumbel distribution model, (3) landslide susceptible zones, obtained using a logistic regression model, and (4) distribution of landslides in the susceptible zones, obtained from the model fitting performance (success rate curve). The run-out distance of landslides was assessed empirically using landslide volumes, and the vulnerability of elements at risk was subjectively assessed based on limited historic incidents. Direct specific risk was estimated individually for tea/coffee and horticulture plantations, transport infrastructures, buildings, and people both in initiation and run-out areas. Risks were calculated by considering the minimum, average, and maximum landslide volumes in each magnitude class and the

  14. Mineralogy of the Pahrump Hills Region, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Ming, D. W.; Vaniman, D. T.; Blake, D. F.; Chipera, S. J.; Morris, R. V.; Bish, D. L.; Cavanagh, P. D.; Achilles, C. N.; Bristow, T. F.; hide

    2015-01-01

    The Pahrump Hills region of Gale crater is a approximately 12 millimeter thick section of sedimentary rocks in the Murray formation, interpreted as the basal geological unit of Mount Sharp. The Mars Science Laboratory, Curiosity, arrived at the Pahrump Hills in September, 2014, and performed a detailed six-month investigation of the sedimentary structures, geochemistry, and mineralogy of the area. During the campaign, Curiosity drilled and delivered three rock samples to its internal instruments, including the CheMin XRD/XRF. The three targets, Confidence Hills, Mojave 2, and Telegraph Peak, contain variable amounts of plagioclase, pyroxene, iron oxides, jarosite, phyllosilicates, and X-ray amorphous material. Hematite was predicted at the base of Mount Sharp from orbital visible/near-IR spectroscopy, and CheMin confirmed this detection. The presence of jarosite throughout Pahrump Hills suggests the sediments experienced acid-sulfate alteration, either in-situ or within the source region of the sediments. This acidic leaching environment is in stark contrast to the environment preserved within the Sheepbed mudstone on the plains of Gale crater. The minerals within Sheepbed, including Fe-saponite, indicate these sediments were deposited in a shallow lake with circumneutral pH that may have been habitable.

  15. Reconstructed Paleo-topography of the Columbia Hills, Mars

    NASA Astrophysics Data System (ADS)

    Cole, S. B.; Watters, W. A.; Aron, F.; Squyres, S. W.

    2013-12-01

    From June 2004 through March 2010, the Mars Exploration Rover Spirit conducted a detailed campaign examining the Columbia Hills of Gusev Crater. In addition to mineralogical and chemical investigations, Spirit's stereo panoramic (Pancam) and navigation (Navcam) cameras obtained over 7,000 images of geologic targets along the West Spur of the Columbia Hills and Husband Hill, the highest peak. We have analyzed the entirety of this dataset, which includes stereo coverage of several outcrop exposures with apparent bedding. We have measured the bedding plane orientations of hundreds of fine-scale (~1-100cm) features on all of the potentially in-place outcrops using Digital Terrain Models (DTMs) derived from the rover's Pancam stereo image data, and mapped these orientations on a regional HiRISE image and DTM. Assuming that the bedding material was deposited conformably on the topography at the time of emplacement, we reconstruct the paleo-topography of the Columbia Hills. Our reconstructed paleo-topography is similar to the modern shape of Husband Hill, but with steeper slopes, consistent with a substantial amount of erosion since deposition. The Columbia Hills are an irregular, nearly-triangular edifice of uncertain origin, situated near the center of the 160km-diameter crater and hypothesized to be either the remnant of a central peak structure, or overlapping crater rims. They span ~6.6 km in the northerly direction by ~3.6 km in the easterly direction, and rise 90m above the basaltic plains that fill the floor of Gusev Crater and embay the Hills. The topography is as irregular as the perimeter, and is cut by numerous valleys of varying lengths, widths, and directional trends. Along the traverse, Spirit examined several rock classes as defined by elemental abundances from the Alpha Particle X-ray Spectrometer (APXS) and identified remotely by the Miniature Thermal Emission Spectrometer (Mini-TES). Unlike the Gusev Plains, the rocks of the Columbia Hills show

  16. Internal tide generation by abyssal hills using analytical theory

    NASA Astrophysics Data System (ADS)

    Melet, Angélique; Nikurashin, Maxim; Muller, Caroline; Falahat, S.; Nycander, Jonas; Timko, Patrick G.; Arbic, Brian K.; Goff, John A.

    2013-11-01

    Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ˜10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-tide generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ˜10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid-ocean ridges.

  17. Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota

    USGS Publications Warehouse

    Hayes, Timothy Scott

    1999-01-01

    Cascade Springs is a group of artesian springs in the southern Black Hills, South Dakota, with collective flow of about 19.6 cubic feet per second. Beginning on February 28, 1992, a large discharge of red suspended sediment was observed from two of the six known discharge points. Similar events during 1906-07 and 1969 were documented by local residents and newspaper accounts. Mineralogic and grain-size analyses were performed to identify probable subsurface sources of the sediment. Geochemical modeling was performed to evaluate the geochemical evolution of water discharged from Cascade Springs. Interpretations of results provide a perspective on the role of artesian springs in the regional geohydrologic framework. X-ray diffraction mineralogic analyses of the clay fraction of the suspended sediment were compared to analyses of clay-fraction samples taken from nine geologic units at and stratigraphically below the spring-discharge points. Ongoing development of a subsurface breccia pipe(s) in the upper Minnelusa Formation and/or Opeche Shale was identified as a likely source of the suspended sediment; thus, exposed breccia pipes in lower Hell Canyon were examined. Upper Minnelusa Formation breccia pipes in lower Hell Canyon occur in clusters similar to the discrete discharge points of Cascade Springs. Grain-size analyses showed that breccia masses lack clay fractions and have coarser distributions than the wall rocks, which indicates that the red, fine-grained fractions have been carried out as suspended sediment. These findings support the hypothesis that many breccia pipes were formed as throats of abandoned artesian springs. Geochemical modeling was used to test whether geochemical evolution of ground water is consistent with this hypothesis. The evolution of water at Cascade Springs could not be suitably simulated using only upgradient water from the Minnelusa aquifer. A suitable model involved dissolution of anhydrite accompanied by dedolomitization in the

  18. Neuromuscular strategies for the transitions between level and hill surfaces during walking

    PubMed Central

    Gottschall, Jinger S.; Nichols, T. Richard

    2011-01-01

    Despite continual fluctuations in walking surface properties, humans and animals smoothly transition between terrains in their natural surroundings. Walking transitions have the potential to influence dynamic balance in both the anterior–posterior and medial–lateral directions, thereby increasing fall risk and decreasing mobility. The goal of the current manuscript is to provide a review of the literature that pertains to the topic of surface slope transitions between level and hill surfaces, as well as report the recent findings of two experiments that focus on the neuromuscular strategies of surface slope transitions. Our results indicate that in anticipation of a change in surface slope, neuromuscular patterns during level walking prior to a hill are significantly different from the patterns during level walking without the future change in surface. Typically, the changes in muscle activity were due to co-contraction of opposing muscle groups and these changes correspond to modifications in head pitch. In addition, further experiments revealed that the neck proprioceptors may be an initial source of feedback for upcoming surface slope transitions. Together, these results illustrate that in order to safely traverse varying surfaces, transitions strides are functionally distinct from either level walking or hill walking independently. PMID:21502127

  19. The Effects of Permafrost Thaw on Organic Matter Quality and Availability Along a Hill Slope in Northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Connolly, C. T.; Spawn, S.; Ludwig, S.; Schade, J. D.; Natali, S.

    2014-12-01

    Climate warming and permafrost thaw in northeastern Siberia are expected to change the quantity and quality of organic matter (OM) transported through watersheds, releasing previously frozen carbon (C) to biologically available pool. Hill slopes have shown to influence the distribution of OM, resulting in a downhill accumulation of available C and nutrients relative to uphill. Here we examine how future permafrost thaw will change OM quality and availability along a hill slope in a larch-dominated watershed. We collected soils from the thawed organic and mineral layers, and 1m deep permafrost cores for dissolved organic C (DOC) and total dissolved N (TDN), C composition from measures of colored dissolved organic matter (CDOM), DOC lability from biodegradable DOC (BDOC) incubations, C and nutrient availability from extracellular-enzyme assays (EEA's), and microbial respiration from aerobic soil incubations. Here we show that organic soils (O), in comparison to mineral soils (M) and permafrost (P) are the most abundant source of C (avg O DOC: 51.6mg/L), exhibiting low molecular complexity (avg O SUVA254: 4.05) and high quality. Evidence suggests permafrost OM may be an equally abundant, and more labile source of C than mineral soils (highest P DOC: 16.1 mg/L, lowest P SUVA254: 6.32; median M DOC: 18.5 mg/L, median M SUVA254: 24.0). Furthermore, we demonstrate that there may be a positive relationship in the rate of C mineralization and distance downhill, showing 15-30% greater CO2 production/gC downhill relative to uphill. Evidence also supports a similar relationship in permafrost DOC content and molecular complexity, showing more DOC of a lower complexity further downhill. This indicates DOC transport may have been occurring through the active layer and downhill during ice-rich permafrost formation, and may supply a labile source of carbon to lowland areas and adjacent stream networks upon thaw.

  20. Sediment budget analysis of slope channel coupling and in-channel sediment storage in an upland catchment, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Smith, Hugh G.; Dragovich, Deirdre

    2008-11-01

    Slope-channel coupling and in-channel sediment storage can be important factors that influence sediment delivery through catchments. Sediment budgets offer an appropriate means to assess the role of these factors by quantifying the various components in the catchment sediment transfer system. In this study a fine (< 63 µm) sediment budget was developed for a 1.64-km 2 gullied upland catchment in southeastern Australia. A process-based approach was adopted that involved detailed monitoring of hillslope and bank erosion, channel change, and suspended sediment output in conjunction with USLE-based hillslope erosion estimation and sediment source tracing using 137Cs and 210Pb ex. The sediment budget developed from these datasets indicated channel banks accounted for an estimated 80% of total sediment inputs. Valley floor and in-channel sediment storage accounted for 53% of inputs, with the remaining 47% being discharged from the catchment outlet. Estimated hillslope sediment input to channels was low (5.7 t) for the study period compared to channel bank input (41.6 t). However an estimated 56% of eroded hillslope sediment reached channels, suggesting a greater level of coupling between the two subsystems than was apparent from comparison of sediment source inputs. Evidently the interpretation of variability in catchment sediment yield is largely dependent on the dynamics of sediment supply and storage in channels in response to patterns of rainfall and discharge. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but ongoing from subaerial processes delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, the sediment supplied to channels during this interval was

  1. Sediment flux and airflow on the stoss slope of a barchan dune

    NASA Astrophysics Data System (ADS)

    Lancaster, N.; Nickling, W. G.; Neuman, C. K. McKenna; Wyatt, V. E.

    1996-09-01

    Measurements of sediment flux on the windward slope of an isolated barchan using an array of 30 sand traps provide new data that can constrain models of dune dynamics. The data show that at low wind incident speeds, flux increases up the dune exponentially, whereas at higher wind speeds the increase with distance approaches linearity. Wind profile measurements, conducted at the same time as the flux measurements, indicate that, although wind speed at a given height increases by 1.2 times from dune toe to brinkline, wind shear velocity derived from the profile data decreases up the dune and is in many cases below transport threshold values. This demonstrates that conventional wind profiles, derived from anemometry on dunes, do not measure the part of the boundary layer that is significant for sediment transport.

  2. Slope instability in a historical and architectural interest site: the Agrigento hill (Sicily-Italy)

    NASA Astrophysics Data System (ADS)

    Liguori, Vincenzo; Manno, Giorgio

    2014-05-01

    The impact of landslides are an issue for many urban cities and their cultural heritage, especially where both natural factors and human actions are join. Indeed in these cases, both the geological-geomorphological area predisposition and the continuous human actions increase the possibility occurrence of a landslide. In order to study these landslides and their natural hazard, a multi-disciplinary approach is necessary. Agrigento (37°19'18''N; 13°35'22''E), founded around 580 b.C. along the Sicilian southern coast, is an example of a possible impacts of landslides on cultural heritage. This work discusses the geological, geomorphological and hydrological data results, performed in order to study and the monitoring the landslide on the north side of the Agrigento hill (335 m a.s.l.), on which is localized the antique cathedral (sixteenth century) and the old city. The hill geology is a typical regressive Plio-Pleistocene succession and their lithology are clays (Monte Narbone formation) , calcarenites , sands and silts of the Agrigento formation. The landslide phenomena, current since 1315, involves a calcarenitic pack (Pleistocene), weakly cemented, highly porous, fractured and fissured (E-W). This phenomena from 1924, at different times, have produced various types of instability such as: falls, flows and complex movements. From 7 March 2005 have been reactivated fractures of the calcarenitic pack, already highlighted by studies in 1966. These fractures have triggered slope movements damaging the cathedral and the various historic buildings. In order to reduce the risk and thus safeguard the monuments and the activity in this area, carried out the several studies. Since 2005, the landslide is the subject both geological-geomorphological studies and a continuous monitoring, which have used different techniques of different disciplines: interferometric analysis, interpretation of aerial and satellite imagery, geophysical investigations, stratigraphic survey, etc

  3. Multiple slope failures shaped the lower continental slope offshore NW Svalbard in the Fram Strait

    NASA Astrophysics Data System (ADS)

    Osti, Giacomo; Mienert, Jürgen; Forwick, Matthias; Sverre Laberg, Jan

    2016-04-01

    Bathymetry data show that the lower slope (between 1300 m and 3000 m water depth) of the NW-Svalbard passive margin has been affected by multiple slope failure events. The single events differ in terms of extension, volume of mobilized sediments, morphology of the slide scar, run-out distance and age. As for several mega-scale and minor Arctic slides, the trigger mechanism is still speculative and may include high sedimentation rates, dissociation of gas hydrates, excess pore pressure, or earthquakes caused by isostatic rebound. In this study, we discuss the potential trigger mechanisms that have led to the multiple slope failure events within what we suggest to be named the Fram Strait Slide Complex. The slide complex lies in proximity to the tectonically active Spitsbergen Fracture Zone where earthquakes events, occurrences of potential weak layers in the sediment column, low sedimentation rates, and extended gas hydrate-bearing sediments may all have contributed to the causes leading to multiple slope failures. Preliminary results obtained from 14C dating on N. pachyderma sin. from sediment cores from the Spitsbergen Fracture Zone slides (SFZS 1 and 2), coupled with sub-bottom profiler data (frequency 9 to 15 KHz) show that the two shallowest glide planes within one of the observed slide scars failed ~100,000 and ~115,000 yr BP. Whilst SFZS 1 affected an area of 750 km2 mobilizing a total sediment volume of 40 km3, SFZS 2 moved an area of 230 km2 with a sediment volume of 4.5 km3.

  4. Records of continental slope sediment flow morphodynamic responses to gradient and active faulting from integrated AUV and ROV data, offshore Palos Verdes, southern California Borderland

    USGS Publications Warehouse

    Maier, Katherine L.; Brothers, Daniel; Paull, Charles K.; McGann, Mary; Caress, David W.; Conrad, James E.

    2016-01-01

    Variations in seabed gradient are widely acknowledged to influence deep-water deposition, but are often difficult to measure in sufficient detail from both modern and ancient examples. On the continental slope offshore Los Angeles, California, autonomous underwater vehicle, remotely operated vehicle, and shipboard methods were used to collect a dense grid of high-resolution multibeam bathymetry, chirp sub-bottom profiles, and targeted sediment core samples that demonstrate the influence of seafloor gradient on sediment accumulation, depositional environment, grain size of deposits, and seafloor morphology. In this setting, restraining and releasing bends along the active right-lateral Palos Verdes Fault create and maintain variations in seafloor gradient. Holocene down-slope flows appear to have been generated by slope failure, primarily on the uppermost slope (~ 100–200 m water depth). Turbidity currents created a low relief (< 10 m) channel, up-slope migrating sediment waves (λ = ~ 100 m, h ≤ 2 m), and a series of depocenters that have accumulated up to 4 m of Holocene sediment. Sediment waves increase in wavelength and decrease in wave height with decreasing gradient. Integrated analysis of high-resolution datasets provides quantification of morphodynamic sensitivity to seafloor gradients acting throughout deep-water depositional systems. These results help to bridge gaps in scale between existing deep-sea and experimental datasets and may provide constraints for future numerical modeling studies.

  5. Rates of total oxygen uptake of sediments and benthic nutrient fluxes measured using an in situ autonomous benthic chamber in the sediment of the slope off the southwestern part of Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Lee, Jae Seong; An, Sung-Uk; Park, Young-Gyu; Kim, Eunsoo; Kim, Dongseon; Kwon, Jung No; Kang, Dong-Jin; Noh, Jae-Hoon

    2015-09-01

    We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) Belc II and Belp II. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge-slope-basin system in the East Sea.

  6. Rates of total oxygen uptake of sediments and benthic nutrient fluxes measured by an in situ autonomous benthic chamber in the sediment of the slope off the southwestern part of Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; An, S. U.; Park, Y. G.; Kim, E.; Kim, D.; Kwon, J. N.; Kang, D. J.; Noh, J. H.

    2016-02-01

    We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) BelcII and BelpII. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge- slope-basin system in the East Sea.

  7. Physical and geotechnical properties and assessment of sediment stability on the continental slope and basin of the Bransfield Basin (Antarctica Peninsula)

    USGS Publications Warehouse

    Casas, D.; Ercilla, G.; Estrada, F.; Alonso, B.; Baraza, J.; Lee, H.; Kayen, R.; Chiocci, F.

    2004-01-01

    Our investigation is centred on the continental slope of the Antarctic Peninsula and adjacent basin. Type of sediments, sedimentary stratigraphy, and physical and geotechnical characterization of the sediments have been integrated. Four different types of sediments have been defined: diamictons, silty and muddy turbidites, muddy, silty and muddy matrix embedded clast contourites. There is a close correspondence between the physical properties (density, magnetic susceptibility and p-wave velocity) and the texture and/or fabric as laminations and stratification. From a quantitative point of view, only a few statistical correlations between textural and physical properties have been found. Within the geotechnical properties, only water content is most influenced by texture. This slope, with a maximum gradient observed (20??), is stable, according to the stability under gravitational loading concepts, and the maximum stable slope that would range from 22?? to 29??. Nevertheless, different instability features have been observed. Volcanic activity, bottom currents, glacial loading-unloading or earthquakes can be considered as potential mechanisms to induce instability in this area. Copyright ?? Taylor & Francis Inc.

  8. Assessment of submarine landslides hazard through geotechnical and rheological analysis of sediments on the French Atlantic continental slope

    NASA Astrophysics Data System (ADS)

    Toucanne, S.; Howlett, S.; Garziglia, S.; Silva Jacinto, R.; Courgeon, S.; Sabine, M.; Riboulot, V.; Marsset, B.

    2016-12-01

    In the aftermath of the devastating tsunami on the Japanese coast in 2011, a French multi-partnership project called TANDEM has been launched to assess the impact of tsunamis generated or propagated in the vicinity of French Channel and Atlantic coastlines. Tsunami are usually generated by earthquakes, but can also be triggered by submarine landslides. This study focuses on submarine landslides along the French Atlantic continental slope using data that were mainly collected in August 2015 during the GITAN cruise (R/V Pourquoi Pas?). Following geomorphological, geophysical and sedimentological analysis of the Bay of Biscay, efforts were oriented towards the determination of the sediment properties controlling landslide dynamics from in situ and laboratory measurements. Preliminary results show over 700 landslide scars on the French Atlantic continental slope, with most of them occurring between 400 and 1000m water depth and in canyon environments. The Plio-Quaternary sediments draping the majority of the Bay of Biscay are generally normally consolidated and composed of high plasticity clays. They show similar geomechanical properties throughout the area studied, with linear evolutions with depth and good reproducibility for rheological parameters such as Storage and Loss modulus. These similarities allow to extend geotechnical and rheological models to a regional scale in the Bay of Biscay. Our multi-disciplinary approach will provide the tools to assess continental slope failures and submarine landslides generation. Finally, we will aim to qualify and quantify the volumes and flow properties of sediment transported obtained through slope-stability modeling on SAMU-3D and rheology modelling on Nixes-SPH. These results will provide the TANDEM actors with the information necessary to simulate tsunami wave generation.

  9. Hydraulic-based empirical model for sediment and soil organic carbon loss on steep slopes for extreme rainstorms on the Chinese loess Plateau

    NASA Astrophysics Data System (ADS)

    Liu, L.; Li, Z. W.; Nie, X. D.; He, J. J.; Huang, B.; Chang, X. F.; Liu, C.; Xiao, H. B.; Wang, D. Y.

    2017-11-01

    Building a hydraulic-based empirical model for sediment and soil organic carbon (SOC) loss is significant because of the complex erosion process that includes gravitational erosion, ephemeral gully, and gully erosion for loess soils. To address this issue, a simulation of rainfall experiments was conducted in a 1 m × 5 m box on slope gradients of 15°, 20°, and 25° for four typical loess soils with different textures, namely, Ansai, Changwu, Suide, and Yangling. The simulated rainfall of 120 mm h-1 lasted for 45 min. Among the five hydraulic factors (i.e., flow velocity, runoff depth, shear stress, stream power, and unit stream power), flow velocity and stream power showed close relationships with SOC concentration, especially the average flow velocity at 2 m from the outlet where the runoff attained the maximum sediment load. Flow velocity controlled SOC enrichment by affecting the suspension-saltation transport associated with the clay and silt contents in sediments. In consideration of runoff rate, average flow velocity at 2 m location from the outlet, and slope steepness as input variables, a hydraulic-based sediment and SOC loss model was built on the basis of the relationships of hydraulic factors to sediment and SOC loss. Nonlinear regression models were built to calculate the parameters of the model. The difference between the effective and dispersed median diameter (δD50) or the SOC content of the original soil served as the independent variable. The hydraulic-based sediment and SOC loss model exhibited good performance for the Suide and Changwu soils, that is, these soils contained lower amounts of aggregates than those of Ansai and Yangling soils. The hydraulic-based empirical model for sediment and SOC loss can serve as an important reference for physical-based sediment models and can bring new insights into SOC loss prediction when serious erosion occurs on steep slopes.

  10. Landslide Monitoring and Cultural Heritage At Risk: The Case Study of San Miniato Hill In Florence

    NASA Astrophysics Data System (ADS)

    Agostini, G.; Casagli, N.; Delmonaco, G.; Fanti, R.; Focardi, P.; Margottini, C.

    San Miniato (known also as Monte alle Croci or Mons Florentinus) is the most fa- mous hill bordering the southern side of the historic center of Florence. Included in the SColli FiorentiniT (Florentine hills) overlooking the monuments and artworks of Flo- & cedil;rence, San Miniato provides a wonderful view of the city. The hillside has always been affected by slope instability phenomena, with periodical reactivations documented in several historic records. Most of the monuments and artworks located on the hill are cracked and fissured and have required restoration works in various circumstances in the centuries after their construction. The first documented studies on the stability of the hill were carried out by Leonardo da Vinci in the XV century and subsequently by various commissions appointed for the restoration works. During the XX century the hill was many times monitored with geotechnical instrumentation and some investiga- tions are still in progress today. This work concerns a review of these historical studies on slope instability and the interpretation of past and present monitoring results. An analytical review of the existing data is a necessary condition for the proposal of a reliable hypothesis concerning the slope instability characterization. This is made dif- ficult by the pluri-centenary urbanization of the entire hill which has led to the almost complete obliteration of the evidence of past movements and by the relevant presence of an invaluable artistic and cultural heritage.

  11. The Problem of Alluvial Fan Slopes

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Schmidt, K.

    2005-12-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans, where water transport predominates, channel slopes tend to decrease downfan from ~0.08 to ~0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects downfan grainsize fining so that higher slopes are required just to entrain coarser particles in the waters of the upper fan, while entrainment of finer grains downfan requires lower slopes (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses using detailed field measurements of hydraulic and sediment variables in sediment transport models. On some fans in the western U.S. we find that alluvial fan channel bankfull depths are largely 0.5-1.5 m at fan heads, decreasing to 0.1-0.2 m at distal margins. Contrary to many previous studies, we find that median gravel diameter does not change systematically along the upper 60- 80% of active fan channels. So downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, surface sand cover increases systematically downfan from values of <20% above fan heads to distal fan values in excess of 70%. As a result, the threshold for sediment motion might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off- channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off-channel every ~0.25-1.25 km downfan. This leads us to hypothesize that alluvial fan long- profiles are largely statements about the rate of deposition downfan. If so, there may be climatic and

  12. Possible Ni-Rich Mafic-Ultramafic Magmatic Sequence in the Columbia Hills: Evidence from the Spirit Rover

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Gellert, R.; McCoy, T.; McSween, H. Y., Jr.; Li, R.

    2006-01-01

    The Spirit rover landed on geologic units of Hesperian age in Gusev Crater. The Columbia Hills rise above the surrounding plains materials, but orbital images show that the Columbia Hills are older [1, 2]. Spirit has recently descended the southeast slope of the Columbia Hills doing detailed measurements of a series of outcrops. The mineralogical and compositional data on these rocks are consistent with an interpretation as a magmatic sequence becoming increasingly olivine-rich down slope. The outcrop sequence is Larry s Bench, Seminole, Algonquin and Comanche. The "teeth" on the Rock Abrasion Tool (RAT) wore away prior to arrival at Larry s Bench; the data discussed are for RAT brushed surfaces.

  13. Effects of gravel on infiltration, runoff, and sediment yield in landslide deposit slope in Wenchuan earthquake area, China.

    PubMed

    Li, Tianyang; He, Binghui; Chen, Zhanpeng; Zhang, Yi; Liang, Chuan; Wang, Renxin

    2016-06-01

    Amounts of landslide deposits were triggered by the Wenchuan earthquake with magnitude 8.0 on May 12, 2008. The landslide deposits were composed of soil and rock fragments, which play important roles in hydrological and erosion processes in the steep slope of landslide deposits. The mixtures of soil and gravels are common in the top layers of landslide deposits, and its processes are obviously different with the soil without gravels. Based on the data of field investigation, a series of simulated scouring flow experiments with four proportion of gravel (0, 25, 33.3, and 50 %) and three scouring flow rates (4, 8, 12 L/min) under two steep slopes (67.5, 72.7 %) were conducted sequentially to know the effects of proportion of gravel on infiltration capacity, runoff generation, and sediment production in the steep slope of landslide deposit. Results indicated that gravel had promoted or reduced effects on infiltration capacity which could affect further the cumulative runoff volume and cumulative sediment mass increase or decrease. The cumulative infiltration volume in 25 % proportion of gravel was less than those in 0, 33.3, and 50 % proportion of gravel. The cumulative runoff volume was in an order of 25 > 0 > 33.3 > 50 % while cumulative sediment mass ranked as 25 > 33.3 > 0 > 50 % with different proportions of gravel. A significant power relationship was found between scouring time and cumulative runoff volume as well as cumulative sediment mass. The relationship between average soil and water loss rate and proportion of gravel was able to express by quadratic function, with a high degree of reliability. The results have important implications for soil and water conservation and modeling in landslide deposit but also provide useful information for the similar conditions.

  14. Calcareous nannofossil biostratigraphy and geochronology of Neogene trench-slope cover sediments in the south Boso Peninsula, central Japan: Implications for the development of a shallow accretionary complex

    NASA Astrophysics Data System (ADS)

    Chiyonobu, Shun; Yamamoto, Yuzuru; Saito, Saneatsu

    2017-07-01

    The geological structure and calcareous nannofossil biostratigraphy of the Middle to Late Miocene trench-slope succession in the southern Boso Peninsula, central Japan, were examined to obtain chronological constraints on the accretion and formation of the trench-slope architecture. As a result, trench-slope cover sediments (Kinone and Amatsu Formations) are clearly distinguishable from the Early Miocene Hota accretionary complex (Hota Group). The Hota accretionary complex was deposited below the carbonate compensation depth (CCD) and was affected by intense shearing, forming an east-west trending and south-verging fold and thrust belt. In contrast, the trench-slope cover sediments basically have a homoclinal dip, except at the northern rim where they are bounded by fault contact. They contain many species of calcareous nannofossils and foraminifers, which are indicative of their depositional environment above the CCD, and they show shallowing-upward sedimentary structures. Biostratigraphy revealed that the depositional age of the trench-slope sediments is ca. 15-5.5 Ma, suggesting that there is an approximately 2 myr hiatus beween the Miura Group and the underlying accretionary prism. Based on these results, the age of accretion of the Hota Group is inferred to be between ca. 17-15 Ma, and the group is covered by trench-slope sediments overlain on it after ca. 15 Ma. The timing of accretion and the age of the trench-slope basin tend to be younger southward of the Boso Peninsula. The accretionary system of the Boso Peninsula apparently developed in two stages, in the Middle Miocene and in the Late Miocene to Pliocene.

  15. Confidence Hills Mineralogy and Chemin Results from Base of Mt. Sharp, Pahrump Hills, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Cavanagh, P. D.; Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Morris, R. V.; Ming, D. W.; Rampe, E. B.; Achilles, C. N.; Chipera, S. J.; Treiman, A. H.; hide

    2015-01-01

    The Mars Science Laboratory (MSL) rover Curiosity recently completed its fourth drill sampling of sediments on Mars. The Confidence Hills (CH) sample was drilled from a rock located in the Pahrump Hills region at the base of Mt. Sharp in Gale Crater. The CheMin X-ray diffractometer completed five nights of analysis on the sample, more than previously executed for a drill sample, and the data have been analyzed using Rietveld refinement and full-pattern fitting to determine quantitative mineralogy. Confidence Hills mineralogy has several important characteristics: 1) abundant hematite and lesser magnetite; 2) a 10 angstrom phyllosilicate; 3) multiple feldspars including plagioclase and alkali feldspar; 4) mafic silicates including forsterite, orthopyroxene, and two types of clinopyroxene (Ca-rich and Ca-poor), consistent with a basaltic source; and 5) minor contributions from sulfur-bearing species including jarosite.

  16. Reply to the Comment on "Wave climate, sediment supply and the depth of the sand-mud transition: A global survey" by D.A. George and P.S. Hill [Marine Geology 254 (2008) 121-128

    USGS Publications Warehouse

    George, D.A.; Hill, P.S.

    2009-01-01

    An analysis of concepts presented by George and Hill [George, D.A., Hill, P.S., 2008. Wave climate, sediment supply and the depth of the sand-mud transition: A global survey. Marine Geology, 254, 121-128.] regarding the depth of the sand-mud transition (hSMT) was performed by Guill??n and Jim??nez [Jorge Guill??n and Jos?? A. Jim??nez, Comment on "Wave climate, sediment supply and the depth of the sand-mud transition: A global survey" by D.A. George and P.S. Hill [Marine Geology 254 (2008) 121-128], Marine Geology, in press]. We are pleased that our proposed definition of the hSMT was confirmed to be appropriate. We are encouraged that the authors agree that wave period and wave height should both be used to determine hSMT as we demonstrated in our Eq. (1), which calculates the bed shear stress at hSMT. More in-depth research should focus on characterizing the role of sediment supply in determining hSMT. ?? 2009 Elsevier B.V. All rights reserved.

  17. Aquatic assessment of the Pike Hill Copper Mine Superfund site, Corinth, Vermont

    USGS Publications Warehouse

    Piatak, Nadine M.; Argue, Denise M.; Seal, Robert R.; Kiah, Richard G.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2013-01-01

    The Pike Hill Copper Mine Superfund site in Corinth, Orange County, Vermont, includes the Eureka, Union, and Smith mines along with areas of downstream aquatic ecosystem impairment. The site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004. The mines, which operated from about 1847 to 1919, contain underground workings, foundations from historical structures, several waste-rock piles, and some flotation tailings. The mine site is drained to the northeast by Pike Hill Brook, which includes several wetland areas, and to the southeast by an unnamed tributary that flows to the south and enters Cookville Brook. Both brooks eventually drain into the Waits River, which flows into the Connecticut River. The aquatic ecosystem at the site was assessed using a variety of approaches that investigated surface-water quality, sediment quality, and various ecological indicators of stream-ecosystem health. The degradation of surface-water quality is caused by elevated concentrations of copper, and to a lesser extent cadmium, with localized effects caused by aluminum, iron, and zinc. Copper concentrations in surface waters reached or exceeded the USEPA national recommended chronic water-quality criteria for the protection of aquatic life in all of the Pike Hill Brook sampling locations except for the location farthest downstream, in half of the locations sampled in the tributary to Cookville Brook, and in about half of the locations in one wetland area located in Pike Hill Brook. Most of these same locations also contained concentrations of cadmium that exceeded the chronic water-quality criteria. In contrast, surface waters at background sampling locations were below these criteria for copper and cadmium. Comparison of hardness-based and Biotic Ligand Model (BLM)-based criteria for copper yields similar results with respect to the extent or number of stations impaired for surface waters in the affected area. However, the BLM

  18. Key Locations Studied at 'Pahrump Hills' on Mars

    NASA Image and Video Library

    2017-06-09

    NASA's Curiosity Mars rover examined a mudstone outcrop area called "Pahrump Hills" on lower Mount Sharp, in 2014 and 2015. This view shows locations of some targets the rover studied there. The blue dots indicate where drilled samples of powdered rock were collected for analysis. The rover drilled a sample of rock powder at "Confidence Hills" in September 2014 and analyzed it with internal laboratory instruments. Then the mission conducted a walkabout survey up the slope, along the route indicated in yellow, stopping for close inspection at the red-dot locations. Observations from the walkabout were used to choose where to take additional drilled samples for analysis during a second pass up the slope. The "Mojave 2" sample was collected in January 2015 and the "Telegraph Peak" one in February 2015. This view of the outcrop and other portions of Mount Sharp beyond is a mosaic of images taken by the rover's Mast Camera (Mastcam) in September 2014. https://photojournal.jpl.nasa.gov/catalog/PIA21709

  19. Sediment transport by streams in the Walla Walla basin, Washington and Oregon, July 1962-June 1965

    USGS Publications Warehouse

    Mapes, B.E.

    1969-01-01

    The Walla Walla River basin covers about 1,760 square miles in southeastern Washington and northeastern Oregon. From the 6,000-foot crest of the Blue Mountains on the east to the 340-foot altitude of Lake Wallula (Columbia River) on the west, the basin is drained by the Touchet River and Dry Creek, entirely within Washington, and by Mill Creek, North and South Forks Walla Walla River, and Pine Creek-Dry Creek, which all head in Oregon. The central lowland of the basin is bordered on the north by Eureka Flat, Touchet slope, and Skyrocket Hills, on the east by the Blue Mountains, and on the south by the Horse Heaven Hills. The basin is underlain by basalt of the Columbia River Group, which .is the only consolidated rock to crop out in the region. Various unconsolidated fluviatile, lacustrine, and eolian sediments cover the basalt. In the western part of the basin the basalt is overlain by lacustrine deposits of silt and sand which in places are mantled by varying thicknesses of loessal deposits. In the northern and central parts of the basin the loess is at least 100 feet thick. The mountainous eastern part of the basin is underlain at shallow depth by basalt which has a residual soil mantle weathered from the rock. The slopes of the mountains are characterized by alluvial fans and deeply cut stream valleys ,filled with alluvium of sand, gravel, and cobbles. Average annual precipitation in the basin ranges from less than 10 inches in the desert-like areas of the west to more than 45 inches in the timbered mountains of the east; 65 percent of the precipitation occurs from October through March. The average runoff from the basin is about 4.8 inches per year. Most of the runoff occurs during late winter and early spring. Exceptionally high runoff generally results from rainfall and rapid melting of snow on partially frozen ground. During the study period, July 1964-June 1965, average annual sediment yields in the basin ranged from 420 tons per square mile in the

  20. C:N:P Molar Ratios, Sources and 14C Dating of Surficial Sediments from the NW Slope of Cuba.

    PubMed

    de la Lanza Espino, Guadalupe; Soto, Luis A

    2015-01-01

    The surficial sediments recovered from 12 sites located near the channel axis of the Florida Straits and the lower slope off NW Cuba were analyzed for total organic carbon (TOC), nitrogen (TN), phosphorus (TP), elemental C:N:P ratios, C and N isotopic values, and 14C dating. The depth profiles of TOC, TN, and TP (0-18 cm) displayed a downcore trend and a significant variation. The TOC values were low (0.15 to 0.62%; 66 to 516 µmol g(-1)). Sites near the island's lower slope had lower TOC average concentrations (158-333 µmol g(-1)) than those closer to the channel axis (averaging 341-516 µmol g(-1); p <0.05). The TN concentrations near the lower slope attained 0.11% (80 µmol g(-1)), whereas, towards the channel axis, they decreased to 0.07% (55 µmol g(-1); p<0.05). The C:N ratios ranged from 1.9 to 10.2. The mean molar C:N ratio (5.4) indicated a marine hemipelagic deposition. The TP was lower at sites near the lower slope (38.4 to 50.0 µmol gv; 0.12% to 0.16%) than those near the channel axis (50.0 to 66 µmol g(-1); 0.15 to 0.21%). C:P fluctuated from 7.7 to 14.1 in the surficial sediment layer. The bulk organic δ13Corg and δ15N values confirmed pelagic organic sources, and the 14C dating revealed that the sediments were deposited during the Holocene (1000-5000 yr BP). We suggest that the hydrodynamic conditions in the Straits influence vertical and advective fluxes of particulate organic material trapped in the mixed-layer, which reduces the particulate matter flux to the seabed.

  1. C:N:P Molar Ratios, Sources and 14C Dating of Surficial Sediments from the NW Slope of Cuba

    PubMed Central

    de la Lanza Espino, Guadalupe; Soto, Luis A.

    2015-01-01

    The surficial sediments recovered from 12 sites located near the channel axis of the Florida Straits and the lower slope off NW Cuba were analyzed for total organic carbon (TOC), nitrogen (TN), phosphorus (TP), elemental C:N:P ratios, C and N isotopic values, and 14C dating. The depth profiles of TOC, TN, and TP (0-18 cm) displayed a downcore trend and a significant variation. The TOC values were low (0.15 to 0.62%; 66 to 516 µmol g-1). Sites near the island’s lower slope had lower TOC average concentrations (158-333 µmol g-1) than those closer to the channel axis (averaging 341-516 µmol g-1; p <0.05). The TN concentrations near the lower slope attained 0.11% (80 µmol g-1), whereas, towards the channel axis, they decreased to 0.07% (55 µmol g-1; p<0.05). The C:N ratios ranged from 1.9 to 10.2. The mean molar C:N ratio (5.4) indicated a marine hemipelagic deposition. The TP was lower at sites near the lower slope (38.4 to 50.0 µmol g-1; 0.12% to 0.16%) than those near the channel axis (50.0 to 66 µmol g-1; 0.15 to 0.21%). C:P fluctuated from 7.7 to 14.1 in the surficial sediment layer. The bulk organic δ13Corg and δ15N values confirmed pelagic organic sources, and the 14C dating revealed that the sediments were deposited during the Holocene (1000-5000 yr BP). We suggest that the hydrodynamic conditions in the Straits influence vertical and advective fluxes of particulate organic material trapped in the mixed-layer, which reduces the particulate matter flux to the seabed. PMID:26110791

  2. Sediment movement and dispersal patterns on the Grand Banks continental shelf and slope were tied to the dynamics of the Laurentide ice-sheet margin

    NASA Astrophysics Data System (ADS)

    Rashid, H.; MacKillop, K.; Piper, D.; Vermooten, M.; Higgins, J.; Marche, B.; Langer, K.; Brockway, B.; Spicer, H. E.; Webb, M. D.; Fournier, E.

    2015-12-01

    The expansion and contraction of the late Pleistocene Laurentide ice-sheet (LIS) was the crucial determining factor for the geomorphic features and shelf and slope sediment mobility on the eastern Canadian continental margin, with abundant mass-transport deposits (MTDs) seaward of ice margins on the upper slope. Here, we report for the first time sediment failure and mass-transport deposits from the central Grand Banks slope in the Salar and Carson petroleum basins. High-resolution seismic profiles and multibeam bathymetry show numerous sediment failure scarps in 500-1600 m water depth. There is no evidence for an ice margin on the upper slope younger than MIS 6. Centimeter-scale X-ray fluorescence analysis (XRF), grain size, and oxygen isotope data from piston cores constrain sediment processes over the past 46 ka. Geotechnical measurements including Atterberg limit tests, vane shear measurements and triaxial and multi-stage isotropic consolidation tests allowed us to assess the instability on the continental margin. Cores with continuous undisturbed stratigraphy in contourite silty muds show normal downcore increase in bulk density and undrained peak shear strength. Heinrich (H) layers are identifiable by a marked increase in the bulk density, high Ca (ppm), increase in iceberg-rafted debris and lighter δ18O in the polar planktonic foram Neogloboquadrina pachyderma (sinistral): with a few C-14 dates they provide a robust chronology. There is no evidence for significant supply of sediment from the Grand Banks at the last-glacial maximum. Mass-transport deposits (MTD) are marked by variability in the bulk density, undrained shear strength and little variation in bulk density or Ca (ppm) values. The MTD are older than 46 ka on the central Grand Banks slope, whereas younger MTDs are present in southern Flemish Pass. Factor of safety calculations suggest the slope is statically stable up to gradients of 10°, but more intervals of silty mud may fail during earthquake

  3. Unusual Sediment Transportation Processes Under Low Pressure Environments and Implications For Gullies and Recurring Slope Lineae (RSL)

    NASA Astrophysics Data System (ADS)

    Raack, J.; Herny, C.; Conway, S. J.; Balme, M. R.; Carpy, S.; Patel, M.

    2017-12-01

    Recently and presently active mass wasting features such as gullies and recurring slope lineae (RSL) are common on the surface of Mars, but their origin and triggering mechanisms are under intense debate. While several active mass wasting features have been linked to sublimation of CO2ice, dry granular flows (avalanches), or a combination of both effects, others have been more closely linked to liquid water or briny outflows (e.g. for RSL). However, liquid water on the surface of Mars is unstable under present-day low pressures and surface temperatures. Nevertheless, numerical modeling and remote sensing data have shown that maximum surface temperatures can exceed the frost point of water and that liquid water could exist on the surface of actual Mars in a transient state. But to explain the observed spatial extent of RSL and recent modification of gullies, it is estimated that relatively large amounts of liquid water are necessary. It is proving challenging to generate such quantities from the atmosphere. In this contribution we explore the potential effects of boiling water (boiling occurs at martian pressures slightly above the frost point of 273 K) on sediment transport. We will present the outcomes of a series of experiments under low surface and water temperatures (between 278 and 297 K, analogous to surface temperatures observed near RSL) and low pressures (between 8 and 11 mbar). We simulate sediment transport by boiling liquid water over a sloping bed of unconsolidated sediment. Our results reveal a suite of unusual and very reactive sediment transportation processes, which are not produced under terrestrial pressures. We will discuss the impact of these unusual sediment transport processes on estimates of water budgets for active mass wasting processes.

  4. Modern configuration of the southwest Florida carbonate slope: Development by shelf margin progradation

    USGS Publications Warehouse

    Brooks, G.R.; Holmes, C.W.

    1990-01-01

    Depositional patterns and sedimentary processes influencing modern southwest Florida carbonate slope development have been identified based upon slope morphology, seismic facies and surface sediment characteristics. Three slope-parallel zones have been identified: (1) an upper slope progradational zone (100-500 m) characterized by seaward-trending progradational clinoforms and sediments rich in shelf-derived carbonate material, (2) a lower gullied slope zone (500-800 m) characterized by numerous gullies formed by the downslope transport of gravity flows, and (3) a base-of-slope zone (> 800 m) characterized by thin, lens-shaped gravity flow deposits and irregular topography interpreted to be the result of bottom currents and slope failure along the basal extensions of gullies. Modern slope development is interpreted to have been controlled by the offshelf transport of shallow-water material from the adjacent west Florida shelf, deposition of this material along a seaward advancing sediment front, and intermittent bypassing of the lower slope by sediments transported in the form of gravity flows via gullies. Sediments are transported offshelf by a combination of tides and the Loop Current, augmented by the passage of storm frontal systems. Winter storm fronts produce cold, dense, sediment-laden water that cascades offshelf beneath the strong, eastward flowing Florida Current. Sediments are eventually deposited in a relatively low energy transition zone between the Florida Current on the surface and a deep westward flowing counter current. The influence of the Florida Current is evident in the easternmost part of the study area as eastward prograding sediments form a sediment drift that is progressively burying the Pourtales Terrace. The modern southwest Florida slope has seismic reflection and sedimentological characteristics in common with slopes bordering both the non-rimmed west Florida margin and the rimmed platform of the northern Bahamas, and shows many

  5. Computational tools for fitting the Hill equation to dose-response curves.

    PubMed

    Gadagkar, Sudhindra R; Call, Gerald B

    2015-01-01

    Many biological response curves commonly assume a sigmoidal shape that can be approximated well by means of the 4-parameter nonlinear logistic equation, also called the Hill equation. However, estimation of the Hill equation parameters requires access to commercial software or the ability to write computer code. Here we present two user-friendly and freely available computer programs to fit the Hill equation - a Solver-based Microsoft Excel template and a stand-alone GUI-based "point and click" program, called HEPB. Both computer programs use the iterative method to estimate two of the Hill equation parameters (EC50 and the Hill slope), while constraining the values of the other two parameters (the minimum and maximum asymptotes of the response variable) to fit the Hill equation to the data. In addition, HEPB draws the prediction band at a user-defined confidence level, and determines the EC50 value for each of the limits of this band to give boundary values that help objectively delineate sensitive, normal and resistant responses to the drug being tested. Both programs were tested by analyzing twelve datasets that varied widely in data values, sample size and slope, and were found to yield estimates of the Hill equation parameters that were essentially identical to those provided by commercial software such as GraphPad Prism and nls, the statistical package in the programming language R. The Excel template provides a means to estimate the parameters of the Hill equation and plot the regression line in a familiar Microsoft Office environment. HEPB, in addition to providing the above results, also computes the prediction band for the data at a user-defined level of confidence, and determines objective cut-off values to distinguish among response types (sensitive, normal and resistant). Both programs are found to yield estimated values that are essentially the same as those from standard software such as GraphPad Prism and the R-based nls. Furthermore, HEPB also has

  6. Sedimentary processes on the Atlantic Continental Slope of the United States

    USGS Publications Warehouse

    Knebel, H.J.

    1984-01-01

    Until recently, the sedimentary processes on the United States Atlantic Continental Slope were inferred mainly from descriptive studies based on the bathymetry and on widely spaced grab samples, bottom photographs, and seismic-reflection profiles. Over the past 6 years, however, much additional information has been collected on the bottom morphology, characteristics of shallow-subbottom strata, velocity of bottom currents, and transport of suspended and bottom sediments. A review of these new data provides a much clearer understanding of the kinds and relative importance of gravitational and hydrodynamic processes that affect the surface sediments. On the rugged slope between Georges Bank and Cape Lookout, N.C., these processes include: (1) small scale mass wasting within submarine canyons and peripheral gullies; (2) density flows within some submarine valleys; (3) sand spillover near the shelf break; (4) sediment creep on the upper slope; and (5) hemipelagic sedimentation on the middle and lower slope. The area between Georges Bank and Hudson Canyon is further distinguished by the relative abundance of large-scale slump scars and deposits on the open slope, the presence of ice-rafted debris, and the transport of sand within the heads of some submarine canyons. Between Cape Lookout and southern Florida, the slope divides into two physiographic units, and the topography is smooth and featureless. On the Florida-Hatteras Slope, offshelf sand spillover and sediment winnowing, related to Gulf Stream flow and possibly to storm-driven currents, are the major processes, whereas hemipelagic sedimentation is dominant over the offshore slope along the seaward edge of the Blake Plateau north of the Blake Spur. Slumping generally is absent south of Cape Lookout, although one large slump scarp (related to uplift over salt diapirs) has been identified east of Cape Romain. Future studies concerning sedimentary processes on the Atlantic slope need to resolve: (1) the ages and

  7. Interfacial liquid water on Mars and its potential role in formation of hill and dune gullies

    NASA Astrophysics Data System (ADS)

    Kossacki, Konrad J.; Markiewicz, Wojciech J.

    2010-11-01

    Gullies are among the most intriguing structures identified on the surface of Mars. Most common are gullies located on the slopes of craters which are probably formed by liquid water transported by shallow aquifers (Heldmann, J.L., Carlsson, E., Johansson, H., Mellon, M.T., Toon, O.B. [2007]. Icarus 188, 324-344). Two particular types of gullies are found on slopes of isolated hills and dunes. The hill-slope gullies are located mostly at 50°S, which is at the high end of latitudes of bulk of the gullies found so far. The dune gullies are found in several locations up to 65°S (Reiss, D., Jaumann, R., Kereszturi, A., Sik, A., Neukum, G. [2007]. Lunar Planet. Sci. XXXVIII. Abstract 1993), but the best known are those in Russel crater at 54°S. The hill and dune gullies are longer than others making the aquifers explanation for their formation unlikely (Balme, M., Mangold, N., Baratoux, D., Costard, F., Gosselin, M., Masson, P., Pnet, P., Neukum, G. [2006]. J. Geophys. Res. 111. doi:10.1029/2005JE002607). Recently it has been noted that thin liquid films of interfacial water can play a role in rheological processes on the surface of Mars (Moehlmann, D. [2008]. Icarus 195, 131-139. Kereszturi, A., Moehlmann, D., Berczi, Sz., Ganti, T., Kuti, A., Sik, A., Horvath, A. [2009]. Icarus 201, 492-503.). Here we try to answer the question whether interfacial liquid water may occur on Mars in quantities large enough to play a role in formation of gullies. To verify this hypothesis we have calculated thermal models for hills and dunes of various steepness, orientation and physical properties. We find that within a range of average expected values of parameters it is not possible to have more than a few monolayers of liquid water at depths greater than a centimeter. To create subsurface interfacial water film significantly thicker and hence to produce conditions for the slope instability, parameters have to be chosen to have their extreme realistic values or an additional source

  8. Behavior of fiber reinforced sandy slopes under seepage

    USDA-ARS?s Scientific Manuscript database

    Seepage flow is a major contributor to instability of natural hill slopes, river banks and engineered embankments. In order to increase the factor of safety, an emerging technology involves the inclusion of synthetic fibers in the soil. The addition of tension resisting fibers has a favorable effec...

  9. Geologic and paleoecologic studies of the Nebraska Sand Hills

    USGS Publications Warehouse

    Ahlbrandt, Thomas S.; Fryberger, S.G.; Hanley, John H.; Bradbury, J. Platt

    1980-01-01

    PART A: The Nebraska Sand Hills are an inactive, late Quaternary, most probably Holocene, dune field (covering 57,000 km 2 ) that have been eroded along streams and in blowouts, resulting in excellent lateral and vertical exposures of the stratification of dune and interdune sediments. This paper presents new data on the geometry, primary sedimentary structures, modification of sedimentary structures, direction of sand movement, and petrography of these eolian deposits. Eolian deposits of the Sand Hills occur as relatively thin (9-24 m) 'blanket' sands, composed of a complex of dune and discontinuous, diachronous interdune deposits unconformably overlying fluviolacustrine sediments. The internal stratification of large dunes in the Sand Hills (as high as 100 m), is similar to the internal stratification of smaller dunes of the same type in the Sand Hills, differing only in scale. Studies of laminae orientation in the Sand Hills indicate that transverse, barchan, and blowout dunes can be differentiated in rocks of eolian origin using both the mean dip angle of laminae and the mean angular deviation of dip direction. A variety of secondary structures modify or replace primary eolian stratification in the Sand Hills, the more common of which are dissipation structures and bioturbation. Dissipation structures in the Sand Hills may develop when infiltrating water deposits clay adjacent to less permeable layers in the sand, or along the upper margins of frozen layers that form in the sands during winter. Cross-bed measurements from dunes of the Nebraska Sand Hills necessitate a new interpretation of the past sand transport directions. The data from these measurements indicate a general northwest-to-southeast drift of sand, with a more southerly drift in the southeast part of the Sand Hills. A large area of small dunes < 100 m high) described by Smith (1965) as linear or seif in the central part of the Sand Hills was interpreted by him on the basis of morphology only. We

  10. Slope basins, headless canyons, and submarine palaeoseismology of the Cascadia accretionary complex

    USGS Publications Warehouse

    McAdoo, B.G.; Orange, D.L.; Screaton, Elizabeth; Lee, H.; Kayen, R.

    1997-01-01

    A combination of geomorphological, seismic reflection and geotechnical data constrains this study of sediment erosion and deposition at the toe of the Cascadia accretionary prism. We conducted a series of ALVIN dives in a region south of Astoria Canyon to examine the interrelationship of fluid flow and slope failure in a series of headless submarine canyons. Elevated head gradients at the inflection point of canyons have been inferred to assist in localized failures that feed sediment into a closed slope basin. Measured head gradients are an order of magnitude too low to cause seepage-induced slope failure alone; we therefore propose transient slope failure mechanisms. Intercanyon slopes are uniformly unscarred and smooth, although consolidation tests indicate that up to several metres of material may have been removed. A sheet-like failure would remove sediment uniformly, preserving the observed smooth intercanyon slope. Earthquake-induced liquefaction is a likely trigger for this type of sheet failure as the slope is too steep and short for sediment flow to organize itself into channels. Bathymetric and seismic reflection data suggest sediment in a trench slope basin between the second and third ridges from the prism's deformation is derived locally. A comparison of the amounts of material removed from the slopes and that in the basin shows that the amount of material removed from the slopes may slightly exceed the amount of material in the basin, implying that a small amount of sediment has escaped the basin, perhaps when the second ridge was too low to form a sufficient dam, or through a gap in the second ridge to the south. Regardless, almost 80% of the material shed off the slopes around the basin is deposited locally, whereas the remaining 20% is redeposited on the incoming section and will be re-accreted.

  11. [Sediment-yielding process and its mechanisms of slope erosion in wind-water erosion crisscross region of Loess Plateau, Northwest China].

    PubMed

    Tuo, Deng-Feng; Xu, Ming-Xiang; Zheng, Shi-Qing; Li, Qiang

    2012-12-01

    Due to the coupling effects of wind and water erosions in the wind-water erosion crisscross region of Loess Plateau, the slope erosion in the region was quite serious, and the erosion process was quite complicated. By using wind tunnel combined with simulated rainfall, this paper studied the sediment-yielding process and its mechanisms of slope erosion under the effects of wind-water alternate erosion, and quantitatively analyzed the efffects of wind erosion on water erosion and the relationships between wind and water erosions. There was an obvious positive interaction between wind and water erosions. Wind erosion promoted the development of microtopography, and altered the quantitative relationship between the sediment-yielding under water erosion and the variation of rainfall intensity. At the rainfall intensity of 60 and 80 mm x h(-1), the sediment-yielding without wind erosion decreased with the duration of rainfall and tended to be stable, but the sediment-yielding with wind erosion decreased to a certain valley value first, and then showed an increasing trend. At the rainfall intensity of 60, 80, and 100 mm x h(-1), the sediment-yielding with the wind erosion at speeds of 11 and 14 m x s(-1) increased by 7.3%-27.9% and 23.2%-39.0%, respectively, as compared with the sediment-yielding without wind erosion. At the rainfall intensity of 120 and 150 mm x h(-1) and in the rainfall duration of 15 minutes, the sediment-yielding with and without wind erosion presented a decreasing trend, but, with the increase of rainfall duration, the sediment-yielding with wind erosion showed a trend of decreasing first and increasing then, as compared with the sediment-yielding without wind erosion. The mechanisms of wind-water alternate erosion were complicated, reflecting in the mutual relation and mutual promotion of wind erosion and water erosion in the aspects of temporal-spatial distribution, energy supply, and action mode of erosion forces.

  12. Mechanical Stability of Stratified Sediments along the upper continental Slope off Vesterålen, northern Norway - Insights from in situ CPTU Tests

    NASA Astrophysics Data System (ADS)

    Voelker, D.; Stegmann, S.; Kreiter, S.; L'Heureux, J. S.; Vanneste, M. W. B.; Baeten, N. J.; Knudsen, S.; Rise, L.; Longva, O.; Brendryen, J.; Haflidason, H.; Chand, S.; Mörz, T.; Kopf, A.

    2015-12-01

    High-resolution single channel-seismic data (3.5 kHz) reveal small-scale submarine landslide structures and superficial deformation features (e.g. tension cracks) along the gently dipping (3°) upper continental slope west of the Vesterålen Archipelago off northern Norway. Previous laboratory-based geotechnical studies attest that the slope is per sestable and that seismic events in an order of magnitude M5.7 may have triggered the slope sediments to fail. Here we present geotechnical in situ data (sedimentary strength, pore pressure), which were obtained with RV Poseidon in summer 2014 using the static CPTU system GOST. The CPTU system provided high-resolution geotechnical profiles of the uppermost sediments to a maximum penetration depth of ~ 20 m at six sites within the landslide features and beside them in undisturbed slope sediments as reference. The CPTU data reveal the occurrence of mechanically weaker zones (MWZ) by the drop of sedimentary strength. These zones are interbedded by coarser, more competent layers. The occurrence of sensitive fine-grained material may be responsible for the loss of strength in the deeper portion (appx. 12 to 18 m below seafloor). An 1D infinite pseudo-static stability analysis attests that the mechanically weaker zones (MWZ) correlate well with portions, where the Factor of Safety (FoS) ≤ 1 (meta-stable to unstable) indicates permanent deformation or failure in case additional dynamic load is induced by an earthquake. Thus, the mechanically weak layers can be considered as one important pre-condition for landslide activity. In conclusion, the integration of in situ CPTU data with geophysical data improves soil characterization and hence foster a better understanding of the pre-conditioning factors for slope instability at the upper continental slope off Vesterålen. Risk assessment for the present-day slope off Vesterålen is particularly crucial, because the opening of the region for offshore oil and gas exploration is

  13. Regional variability of slope stability: Application to the Eel margin, California

    USGS Publications Warehouse

    Lee, H.; Locat, J.; Dartnell, P.; Israel, K.; Florence, Wong

    1999-01-01

    Relative values of downslope driving forces and sediment resisting forces determine the locations of submarine slope failures. Both of these vary regionally, and their impact can be addressed when the data are organized in a Geographic Information System (GIS). The study area on the continental margin near the Eel River provides an excellent opportunity to apply GIS spatial analysis techniques for evaluation of slope stability. In this area, swath bathymetric mapping shows seafloor morphology and distribution of slope steepness in fine detail, and sediment analysis of over 70 box cores delineates the variability of sediment density near the seafloor surface. Based on the results of ten geotechnical studies of submarine study areas, we developed an algorithm that relates surface sediment density to the shear strength appropriate to the type of cyclic loading produced by an earthquake. Strength and stress normalization procedures provide results that are conceptually independent of subbottom depth. Results at depth are rigorously applicable if sediment lithology does not vary significantly and consolidation state can be estimated. Otherwise, the method applies only to shallow-seated slope failure. Regional density, slope, and level of anticipated seismic shaking information were combined in a GIS framework to yield a map that illustrates the relative stability of slopes in the face of seismically induced failure. When a measure of predicted relative slope stability is draped on an oblique view of swath bathymetry, a variation in this slope stability is observed on an otherwise smooth slope along the mid-slope region north of a plunging anticline. The section of slope containing diffuse, pockmarked gullies has a lower measure of stability than a separate section containing gullies that have sharper boundaries and somewhat steeper sides. Such an association suggests that our slope-stability analysis relates to the stability of the gully sides. The remainder of the

  14. Seed population dynamics on abandoned slopes in the hill and gully Loess Plateau region of China

    NASA Astrophysics Data System (ADS)

    Yu, Weijie; Jiao, Juying

    2017-04-01

    Recovery of natural vegetation is an effective but slow approach to control the soil erosion in the Chinese hill and gully Loess Plateau region. As seed stage is particularly vulnerable to environmental conditions, characteristics of seed population should be needed to study for determining whether the recovery of natural vegetation is limited during this stage on the abandoned slopes in this region. The study was performed on three abandoned slopes in a watershed with an area of 8.27 km2in the Shaanxi province of China. The differences in soil seed banks were investigated in two different points in time, late March2011 and early April 2013. Main factors of seed population dynamics, such as seed yield of dominant species, seed inputs by seed rain as well as seed outputs through seed loss by overland flow and seedling emergence, were monitored from late March 2011 to early April 2013. In this study, seed rain densities of the main later successional species, i.e., Lespedeza davurica, Stipa bungeana and Artemisia gmelinii accounted for 51.5-71.6% of their own seed yields. The soil seed bank density in early April 2013 was larger than that in late March 2011. The density of seed inputs by seed rain was 10186 seeds•m-2, and the total seed bank, including seed rain and seeds present in the soil seed bank in late March 2011, reached a density of 15018 seeds•m-2 during the study period. Seed densities of loss due to overland flow and seedling emergence were 79 seeds•m-2 from 20 species and 938 seedlings•m-2 that belonged to 38 species during a study period, and the seed output through them accounted for 0.5% and 6.3% of the total seed bank, respectively. The study concluded that overland flow could not result in large numbers of seeds loss and seeds were accumulating in the soil seed bank due to seed rain, and vegetation succession might be limited by curbed spatial seed dispersal and seedling establishment.

  15. Experimental investigation of flow over two-dimensional multiple hill models.

    PubMed

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke

    2017-12-31

    The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Modeling sediment concentration of rill flow

    NASA Astrophysics Data System (ADS)

    Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen

    2018-06-01

    Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.

  17. Abyssal hills: Influence of topography on benthic foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Stefanoudis, Paris V.; Bett, Brian J.; Gooday, Andrew J.

    2016-11-01

    Abyssal plains, often thought of as vast flat areas, encompass a variety of terrains including abyssal hills, features that constitute the single largest landscape type on Earth. The potential influence on deep-sea benthic faunas of mesoscale habitat complexity arising from the presence of abyssal hills is still poorly understood. To address this issue we focus on benthic foraminifera (testate protists) in the >150-μm fraction of Megacorer samples (0-1 cm layer) collected at five different sites in the area of the Porcupine Abyssal Plain Sustained Observatory (NE Atlantic, 4850 m water depth). Three sites are located on the tops of small abyssal hills (200-500 m elevation) and two on the adjacent abyssal plain. We examined benthic foraminiferal assemblage characteristics (standing stock, diversity, composition) in relation to seafloor topography (hills vs. plain). Density and rarefied diversity were not significantly different between the hills and the plain. Nevertheless, hills do support a higher species density (i.e. species per unit area), a distinct fauna, and act to increase the regional species pool. Topographically enhanced bottom-water flows that influence food availability and sediment type are suggested as the most likely mechanisms responsible for these differences. Our findings highlight the potential importance of mesoscale heterogeneity introduced by relatively modest topography in regulating abyssal foraminiferal diversity. Given the predominance of abyssal hill terrain in the global ocean, we suggest the need to include faunal data from abyssal hills in assessments of abyssal ecology.

  18. Skating down a steeper slope: Fear influences the perception of geographical slant

    PubMed Central

    Stefanucci, Jeanine K.; Proffitt, Dennis R.; Clore, Gerald L.; Parekh, Nazish

    2008-01-01

    Conscious awareness of hill slant is overestimated, but visually guided actions directed at hills are relatively accurate. Also, steep hills are consciously estimated to be steeper from the top as opposed to the bottom, possibly because they are dangerous to walk down. In the present study, participants stood at the top of a hill on either a skateboard or a wooden box of the same height. They gave three estimates of the slant of the hill: a verbal report, a visually matched estimate, and a visually guided action. Fear of descending the hill was also assessed. Those participants that were scared (by standing on the skateboard) consciously judged the hill to be steeper relative to participants who were unafraid. However, the visually guided action measure was accurate across conditions. These results suggest that our explicit awareness of slant is influenced by the fear associated with a potentially dangerous action. “[The phobic] reported that as he drove towards bridges, they appeared to be sloping at a dangerous angle.” (Rachman and Cuk 1992 p. 583). PMID:18414594

  19. Landslide susceptibility estimations in the Gerecse hills (Hungary).

    NASA Astrophysics Data System (ADS)

    Gerzsenyi, Dávid; Gáspár, Albert

    2017-04-01

    Surface movement processes are constantly posing threat to property in populated and agricultural areas in the Gerecse hills (Hungary). The affected geological formations are mainly unconsolidated sediments. Pleistocene loess and alluvial terrace sediments are overwhelmingly present, but fluvio-lacustrine sediments of the latest Miocene, and consolidated Eocene and Mesozoic limestones and marls can also be found in the area. Landslides and other surface movement processes are being studied for a long time in the area, but a comprehensive GIS-based geostatistical analysis have not yet been made for the whole area. This was the reason for choosing the Gerecse as the focus area of the study. However, the base data of our study are freely accessible from online servers, so the used method can be applied to other regions in Hungary. Qualitative data was acquired from the landslide-inventory map of the Hungarian Surface Movement Survey and from the Geological Map of Hungary (1 : 100 000). Morphometric parameters derived from the SRMT-1 DEM were used as quantitative variables. Using these parameters the distribution of elevation, slope gradient, aspect and categorized geological features were computed, both for areas affected and not affected by slope movements. Then likelihood values were computed for each parameters by comparing their distribution in the two areas. With combining the likelihood values of the four parameters relative hazard values were computed for each cell. This method is known as the "empirical probability estimation" originally published by Chung (2005). The map created this way shows each cell's place in their ranking based on the relative hazard values as a percentage for the whole study area (787 km2). These values provide information about how similar is a certain area to the areas already affected by landslides based on the four predictor variables. This map can also serve as a base for more complex landslide vulnerability studies involving

  20. Determination of soil erosion in a steep hill slope with different land-use types: a case study in Mertesdorf (Ruwertal/Germany).

    PubMed

    Hacisalihoglu, Sezgin

    2007-04-01

    Inappropriate land use is one of the main reasons for soil erosion and land degradation. Vine growing plays an important role in many semiarid regions all over the world as a permanent plant cover in terms of preventing erosion, sustainable use of land and water resources, defense against desertification and settling population in rural areas. In this paper, in a steep hill slope of the village Mertesdorf (Ruwertal/Germany), Algemeine boden abtrags gleichung (ABAG) have been applied to determine and compare the soil erosion amounts between the different land use types such as vine growing, forest lands, grasslands, shrubs and new forestations. The results show that the soil erosion amounts differs in a high ratio between the land use types. Soil erosion amounts in the vine growing areas are the highest (6.47 t/ha/year), then comes with 1.19 t/ha/year the over grazed grasslands and the lowest erosion amounts have been determined, as expected, in the forest lands (0.66 t/ha/year).

  1. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis

    NASA Astrophysics Data System (ADS)

    Armstrong-Altrin, John S.; Machain-Castillo, María Luisa; Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Sanchez-Cabeza, Joan-Albert; Ruíz-Fernández, Ana Carolina

    2015-03-01

    The aim of this work is to constrain the provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico (~1089-1785 m water depth). To achieve this, 10 piston sediment cores (~5-5.5 m long) were studied for mineralogy, major, trace and rare earth element geochemistry. Samples were analyzed at three core sections, i.e. upper (0-1 cm), middle (30-31 cm) and lower (~300-391 cm). The textural study reveals that the core sediments are characterized by silt and clay fractions. Radiocarbon dating of sediments for the cores at different levels indicated a maximum of ~28,000 year BP. Sediments were classified as shale. The chemical index of alteration (CIA) values for the upper, middle, and lower sections revealed moderate weathering in the source region. The index of chemical maturity (ICV) and SiO2/Al2O3 ratio indicated low compositional maturity for the core sediments. A statistically significant correlation observed between total rare earth elements (∑REE) versus Al2O3 and Zr indicated that REE are mainly housed in detrital minerals. The North American Shale Composite (NASC) normalized REE patterns, trace element concentrations such as Cr, Ni and V, and the comparison of REE concentrations in sediments and source rocks indicated that the study area received sediments from rocks intermediate between felsic and mafic composition. The enrichment factor (EF) results indicated that the Cd and Zn contents of the upper section sediments were influenced by an anthropogenic source. The trace element ratios and authigenic U content of the core sediments indicated the existence of an oxic depositional environment.

  2. Mercury at the Oat Hill Extension Mine and James Creek, Napa County, California: Tailings, Sediment, Water, and Biota, 2003-2004

    USGS Publications Warehouse

    Slowey, Aaron J.; Rytuba, James J.; Hothem, Roger L.; May, Jason T.

    2007-01-01

    Executive Summary The Oat Hill Extension (OHE) Mine is one of several mercury mines located in the James Creek/Pope Creek watershed that produced mercury from the 1870's until 1944 (U.S. Bureau of Mines, 1965). The OHE Mine developed veins and mineralized fault zones hosted in sandstone that extended eastward from the Oat Hill Mine. Waste material from the Oat Hill Mine was reprocessed at the OHE Mine using gravity separation methods to obtain cinnabar concentrates that were processed in a retort. The U.S. Bureau of Land Management requested that the U.S. Geological Survey measure and characterize mercury and other chemical constituents that are potentially relevant to ecological impairment of biota in tailings, sediment, and water at the OHE Mine and in the tributaries of James Creek that drain the mine area (termed Drainage A and B) (Figs. 1 and 2). This report summarizes such data obtained from sampling of tailings and sediments at the OHE on October 17, 2003; water, sediment, and biota from James Creek on May 20, 2004; and biota on October 29, 2004. These data are interpreted to provide a preliminary assessment of the potential ecological impact of the mine on the James Creek watershed. The mine tailings are unusual in that they have not been roasted and contain relatively high concentrations of mercury (400 to 1200 ppm) compared to unroasted waste rock at other mines. These tailings have contaminated a tributary to James Creek with mercury primarily by erosion, on the basis of higher concentration of mercury (780 ng/L) measured in unfiltered (total mercury, HgT) spring water flowing from the OHE to James Creek compared to 5 to 14 ng/L HgT measured in James Creek itself. Tailing piles (presumably from past Oat Hill mine dumping) near the USBLM property boundary and upstream of the main OHE mine drainage channel (Drainage A; Fig. 2) also likely emit mercury, on the basis of their mercury composition (930 to 1200 ppm). The OHE spring water is likely an

  3. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    USGS Publications Warehouse

    Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon

    2014-01-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  4. Columbia Hills, Mars: aeolian features seen from the ground and orbit

    USGS Publications Warehouse

    Greeley, Ronald; Whelley, Patrick L.; Neakrase, Lynn D.V.; Arvidson, Raymond E.; Bridges, Nathan T.; Cabrol, Nathalie A.; Christensen, Philip R.; Di, Kaichang; Foley, Daniel J.; Golombek, Matthew P.; Herkenhoff, Kenneth; Knudson, Amy; Kuzmin, Ruslan O.; Li, Ron; Michaels, Timothy; Squyres, Steven W.; Sullivan, Robert; Thompson, Shane D.

    2008-01-01

    Abundant wind-related features occur along Spirit's traverse into the Columbia Hills over the basaltic plains of Gusev Crater. Most of the windblown sands are probably derived from weathering of rocks within the crater, and possibly from deposits associated with Ma'adim Vallis. Windblown particles act as agents of abrasion, forming ventifacts, and are organized in places into various bed forms. Wind-related features seen from orbit, results from atmospheric models, and considerations of topography suggest that the general wind patterns and transport pathways involve: (1) winter nighttime winds that carry sediments from the mouth of Ma'adim Vallis into the landing site area of Spirit, where they are mixed with locally derived sediments, and (2) winter daytime winds that transport the sediments from the landing site southeast toward Husband Hill; similar patterns occur in the summer but with weaker winds. Reversals of daytime flow out of Gusev Crater and nighttime wind flow into the crater can account for the symmetry of the bed forms and bimodal orientations of some ventifacts.

  5. Columbia Hills, Mars: Aeolian features seen from the ground and orbit

    USGS Publications Warehouse

    Greeley, R.; Whelley, P.L.; Neakrase, L.D.V.; Arvidson, R. E.; Bridges, N.T.; Cabrol, N.A.; Christensen, P.R.; Di, K.; Foley, D.J.; Golombek, M.P.; Herkenhoff, K.; Knudson, A.; Kuzmin, R.O.; Li, R.; Michaels, T.; Squyres, S. W.; Sullivan, R.; Thompson, S.D.

    2008-01-01

    Abundant wind-related features occur along Spirit's traverse into the Columbia Hills over the basaltic plains of Gusev Crater. Most of the windblown sands are probably derived from weathering of rocks within the crater, and possibly from deposits associated with Ma'adim Vallis. Windblown particles act as agents of abrasion, forming ventifacts, and are organized in places, into various bed forms. Wind-related features seen from orbit, results from atmospheric models, and considerations of topography suggest that the general wind patterns and transport pathways involve: (1) winter nighttime winds that carry sediments from the mouth of Ma'adim. Vallis into the landing site area of Spirit, where they are mixed with locally derived sediments, and (2) winter daytime winds that transport the sediments from the landing site southeast toward Husband Hill; similar patterns occur in the summer but with weaker winds. Reversals of daytime flow out of Gusev Crater and nighttime wind flow into the crater can account for the symmetry of the bed forms and bimodal orientations of some ventifacts. Copyright 2008 by the American Geophysical Union.

  6. A new vision of carbonate slopes: the Little Bahama Bank

    NASA Astrophysics Data System (ADS)

    Mulder, Thierry; Gillet, Hervé; Hanquiez, Vincent; Reijmer, John J.; Tournadour, Elsa; Chabaud, Ludivine; Principaud, Mélanie; Schnyder, Jara; Borgomano, Jean

    2015-04-01

    Recent data collected in November 2014 (RV Walton Smith) on the upper slope of the Little Bahama Bank (LBB) between 30 and 400 m water depth allowed to characterize the uppermost slope (Rankey et al., 2012) over a surface of 170 km2. The new data set includes multibeam bathymetry and acoustic imagery, 3.5 kHz very-high resolution (VHR) seismic reflection lines, 21 gravity cores and 11 Van Veen grabs. The upper slope of the LBB does not show a steep submarine cliff as known from western Great Bahama Bank. The carbonate bank progressively deepens towards the basin through a slighty inclined plateau. The slope value is < 6° down to a water depth of about 70 m. The plateau is incised by decameter-wide gullies that covered with indurated sediment. Some of the gullies like Roberts Cuts show a larger size and may play an important role in sediment transfer from the shallow-water carbonate bank down to the canyon heads at 400-500 m water depth (Mulder et al., 2012). In the gully area, the actual reef rests on paleo-reefs that outcrop at a water depth of about 40 m. These paleo-reef structures could represent reefs that established themselves during past periods of sea-level stagnation. Below this water depth, the slope steepens up to 30° to form the marginal escarpment (Rankey et al., 2012), which is succeeded by the open margin realm (Rankey et al., 2012). The slope inclination value decreases at about 180-200 m water depth. Between 20 and 200 m of water depth, the VHR seismic shows no seafloor sub-bottom reflector. Between 180 and 320 m water depth, the seafloor smoothens. The VHR seismic shows an onlapping sediment wedge, which starts in this water depth and shows a blind or very crudely stratified echo facies. The sediment thickness of this Holocene unit may exceed 20 m. It fills small depressions in the substratum and thickens in front of gullies that cut the carbonate platform edge. Sediment samples show the abundancy of carbonate mud on the present Bahamian

  7. Late Holocene eolian activity in the mineralogically mature Nebraska Sand Hills

    USGS Publications Warehouse

    Muhs, D.R.; Stafford, Thomas W.; Swinehart, J.B.; Cowherd, S.D.; Mahan, S.A.; Bush, C.A.; Madole, R.F.; Maat, P.B.

    1997-01-01

    The age of sand dunes in the Nebraska Sand Hills has been controversial, with some investigators suggesting a full-glacial age and others suggesting that they were last active in the late Holocene. New accelerator mass spectrometry radiocarbon ages of unaltered bison bones and organic-rich sediments suggest that eolian sand deposition occurred at least twice in the past 3000 14C yr B.P. in three widely separated localities and as many as three times in the past 800 14C yr at three other localities. These late Holocene episodes of eolian activity are probably the result of droughts more intense than the 1930s "Dust Bowl" period, based on independent Great Plains climate records from lake sediments and tree rings. However, new geochemical data indicate that the Nebraska Sand Hills are mineralogically mature. Eolian sands in Nebraska have lower K-feldspar (and K2O, Rb, and Ba) contents than most possible source sediments and lower K-feldspar contents than dunes of similar age in Colorado. The most likely explanation for mineralogical maturity is reduction of sand-sized K-feldspar to silt-sized particles via ballistic impacts due to strong winds over many cycles of eolian activity. Therefore, dunes of the Nebraska Sand Hills must have had a long history, probably extending over more than one glacial-interglacial cycle, and the potential for reactivation is high, with or without a future greenhouse warming. ?? 1997 University of Washington.

  8. Influence of mining-related activities on concentrations of metals in water and sediment from streams of the Black Hills, South Dakota.

    PubMed

    May, T W; Wiedmeyer, R H; Gober, J; Larson, S

    2001-01-01

    Water and sediment samples were collected from streams in Spearfish Creek, Whitewood Creek, and Bear Butte Creek watersheds in the Black Hills, SD, an area impacted by gold mining operations. Arsenic concentrations that exceeded the U.S. Environmental Protection Agency's Maximum Concentration Limit of 50 microg/L for drinking water were found in water from Annie Creek, a tributary of Spearfish Creek, and from Whitewood Creek. Gold Run, a tributary of Whitewood Creek, and Annie Creek contained Se concentrations in water that exceeded the EPA Ecotox threshold of 5 microg/L and were classified as a high hazard for Se accumulation from water into the planktonic food chain and for resultant toxicity to fish and aquatic birds. Concentrations of As, Cd, Cu, Hg, Ni, Pb, and Zn in sediment exceeded EPA Ecotox thresholds in one or more of the watersheds suggesting potential adverse ecological effects. Sediment from Rubicon Creek, a tributary of Spearfish Creek, contained Se concentrations high enough (4.0 microg/g) to be a moderate hazard for accumulation from sediments into the benthic food chain, with resultant dietary toxicity to fish and aquatic birds. These results are discussed in light of historical mining activities and recent clean-up and reclamation efforts. Based on the results and comparisons to Ecotox tresholds, further studies of ecological effects are warranted.

  9. Influence of mining-related activities on concentrations of metals in water and sediment from streams of the Black Hills, South Dakota

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Gober, J.; Larson, S.

    2001-01-01

    Water and sediment samples were collected from streams in Spearfish Creek, Whitewood Creek, and Bear Butte Creek watersheds in the Black Hills, SD, an area impacted by gold mining operations. Arsenic concentrations that exceeded the U.S. Environmental Protection Agency's Maximum Concentration Limit of 50 μg/L for drinking water were found in water from Annie Creek, a tributary of Spearfish Creek, and from Whitewood Creek. Gold Run, a tributary of Whitewood Creek, and Annie Creek contained Se concentrations in water that exceeded the EPA Ecotox threshold of 5 μg/L and were classified as a high hazard for Se accumulation from water into the planktonic food chain and for resultant toxicity to fish and aquatic birds. Concentrations of As, Cd, Cu, Hg, Ni, Pb, and Zn in sediment exceeded EPA Ecotox thresholds in one or more of the watersheds suggesting potential adverse ecological effects. Sediment from Rubicon Creek, a tributary of Spearfish Creek, contained Se concentrations high enough (4.0 μg/g) to be a moderate hazard for accumulation from sediments into the benthic food chain, with resultant dietary toxicity to fish and aquatic birds. These results are discussed in light of historical mining activities and recent clean-up and reclamation efforts. Based on the results and comparisons to Ecotox tresholds, further studies of ecological effects are warranted.

  10. Mapping debris flow susceptibility using analytical network process in Kodaikkanal Hills, Tamil Nadu (India)

    NASA Astrophysics Data System (ADS)

    Sujatha, Evangelin Ramani; Sridhar, Venkataramana

    2017-12-01

    Rapid debris flows, a mixture of unconsolidated sediments and water travelling at speeds > 10 m/s are the most destructive water related mass movements that affect hill and mountain regions. The predisposing factors setting the stage for the event are the availability of materials, type of materials, stream power, slope gradient, aspect and curvature, lithology, land use and land cover, lineament density, and drainage. Rainfall is the most common triggering factor that causes debris flow in the Palar subwatershed and seismicity is not considered as it is a stable continental region and moderate seismic zone. Also, there are no records of major seismic activities in the past. In this study, one of the less explored heuristic methods known as the analytical network process (ANP) is used to map the spatial propensity of debris flow. This method is based on top-down decision model and is a multi-criteria, decision-making tool that translates subjective assessment of relative importance to weights or scores and is implemented in the Palar subwatershed which is part of the Western Ghats in southern India. The results suggest that the factors influencing debris flow susceptibility in this region are the availability of material on the slope, peak flow, gradient of the slope, land use and land cover, and proximity to streams. Among all, peak discharge is identified as the chief factor causing debris flow. The use of micro-scale watersheds demonstrated in this study to develop the susceptibility map can be very effective for local level planning and land management.

  11. Rapid sedimentation and overpressure in shallow sediments of the Bering Trough, offshore southern Alaska

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Worthington, Lindsay L.; Gulick, Sean P. S.; Van Avendonk, Harm J. A.

    2017-04-01

    Pore pressures in sediments at convergent margins play an important role in driving chemical fluxes and controlling deformation styles and localization. In the Bering Trough offshore Southern Alaska, extreme sedimentation rates over the last 140 kyr as a result of glacial advance/retreats on the continental shelf have resulted in elevated pore fluid pressures in slope sediments overlying the Pamplona Zone fold and thrust belt, the accretionary wedge resulting from subduction of the Yakutat microplate beneath the North American Plate. Based on laboratory experiments and downhole logs acquired at Integrated Ocean Drilling Program Site U1421, we predict that the overpressure in the slope sediments may be as high as 92% of the lithostatic stress. Results of one-dimensional numerical modeling accounting for changes in sedimentation rate over the last 130 kyr predicted overpressures that are consistent with our estimates, suggesting that the overpressure is a direct result of the rapid sedimentation experienced on the Bering shelf and slope. Comparisons with other convergent margins indicate that such rapid sedimentation and high overpressure are anomalous in sediments overlying accretionary wedges. We hypothesize that the shallow overpressure on the Bering shelf/slope has fundamentally altered the deformation style within the Pamplona Zone by suppressing development of faults and may inhibit seismicity by focusing faulting elsewhere or causing deformation on existing faults to be aseismic. These consequences are probably long-lived as it may take several million years for the excess pressure to dissipate.

  12. Mars Exploration Rover APXS Results from Matijevic Hill

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Clark, B. C.; Gellert, R.; Klingelhoefer, G.; Ming, D. W.; Mittlefehldt, D. W.; Morris, R. V.; Schrader, C. M.; Schroeder, C.; Yen, A. S.; hide

    2013-01-01

    Correlation analysis of APXS results on the eastern slope rocks indicate that the Matijevic Hill rocks are overall compositionally distinct from the Shoemaker Formation rocks [6]. Compared to the Shoemaker impactites, Matijevic Hill rocks are higher in Al, Si, and Ni, and lower in Ti, Fe, and Zn. No significant variation is evident in the APXS analyses that indicate the presence of a smectite or other phyllosilicate, as opposed to basaltic rocks. However, APXS data cannot in themselves rule out phyllosilicates. If indeed this material contains smectite, as seen from orbit, it implies that the rock has been isochemically altered to create the phyllosilicate content. The Cl content of the Cape York rocks is relatively high, and whereas the S/Cl ratio in the Burns Formation is 4x higher than in soil, in the Cape York rocks it is lower than in soil. These trends indicate that the alteration processes and types of aqueous salt loads were different between Cape York and Meridiani. In addition, significant deviations from the Martian Mn/Fe ratio are observed in Whitewater Lake coatings and the altered Grasford/Deadwood rocks (Fig. 3). These variations indicate that the redox/pH conditions during alteration of the Shoemaker Formation rocks and the Matijevic Hill rocks were similar, but that the Deadwood/Grasberg unit may have undergone alteration under different conditions, possibly at a later time. The Matijevic Hill outcrops appear to share a common genetic origin. It is not yet clear whether both the Shoemaker impactites and Matijevic Hill rocks are related to the formation of Endeavour Crater, or whether the Matijevic Hill suite represents a prior episode of Martian impact or volcanism. Opportunity continues to investigate both hypotheses.

  13. Infiltration on sloping terrain and its role on runoff generation and slope stability

    NASA Astrophysics Data System (ADS)

    Loáiciga, Hugo A.; Johnson, J. Michael

    2018-06-01

    A modified Green-and-Ampt model is formulated to quantify infiltration on sloping terrain underlain by homogeneous soil wetted by surficial water application. This paper's theory for quantifying infiltration relies on the mathematical statement of the coupled partial differential equations (pdes) governing infiltration and runoff. These pdes are solved by employing an explicit finite-difference numerical method that yields the infiltration, the infiltration rate, the depth to the wetting front, the rate of runoff, and the depth of runoff everywhere on the slope during external wetting. Data inputs consist of a water application rate or the rainfall hyetograph of a storm of arbitrary duration, soil hydraulic characteristics and antecedent moisture, and the slope's hydraulic and geometric characteristics. The presented theory predicts the effect an advancing wetting front has on slope stability with respect to translational sliding. This paper's theory also develops the 1D pde governing suspended sediment transport and slope degradation caused by runoff influenced by infiltration. Three examples illustrate the application of the developed theory to calculate infiltration and runoff on a slope and their role on the stability of cohesive and cohesionless soils forming sloping terrain.

  14. The hill forts and castle mounds in Lithuania: interaction between geodiversity and human-shaped landscape

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Guobyte, Rimante; Satkunas, Jonas

    2015-04-01

    Lithuania is famous for its abundant, picturesque hill forts and castle mounds of natural origin. In Lithuania as well as in whole Europe the fortified hills were used as the society dwelling place since the beginning of the Late Bronze Age. Their importance increased when Livonian and Teutonic Orders directed a series of military campaigns against Lithuania with the aim of expansion of Christianity in the region at the end of 1st millennium AD, and they were intensively used till the beginning of the 15th c. when most of them were burned down during fights with the Orders or just abandoned due to the changing political and economical situation. What types of the geodiversity were used for fortified dwellings? The choice in a particular area depended on a variety of geomorphology left behind the retreating ice sheets. High spots dominating their surroundings were of prime interest. In E and SE Lithuania, the Baltic Upland hills marking the eastern margin of the last Weichselian glacier hosted numerous fortified settlements from the end of 2nd millennium BC to the Medieval Ages (Narkunai, Velikuskes etc). In W Lithuania, plateau-like hills of the insular Samogitian Upland had been repeatedly fortified from the beginning of 1st millennium AD to the 14th century (Satrija, Medvegalis etc). Chains of hill forts and castle mounds feature the slopes of glaciofluvial valleys of Nemunas, Neris and other rivers where the slopes were dissected by affluent rivulets and ravines and transformed into isolated, well protected hills (Kernave, Punia, Veliuona etc). Peninsulas and headlands formed by the erosion of fluvial and lacustrine deposits were used in the lowlands, e.g. in central and N Lithuania (Paberze, Mezotne etc). How much the landscape was modified for defense purposes? Long-term erosion and overgrowing vegetation damaged the former fortified sites, however some remains and the archeological excavations allowed their reconstruction. The fortified Bronze Age settlements

  15. Effect of DEM mesh size on AnnAGNPS simulation and slope correction.

    PubMed

    Wang, Xiaoyan; Lin, Q

    2011-08-01

    The objective of this paper is to study the impact of the mesh size of the digital elevation model (DEM) on terrain attributes within an Annualized AGricultural NonPoint Source pollution (AnnAGNPS) Model simulation at watershed scale and provide a correction of slope gradient for low resolution DEMs. The effect of different grid sizes of DEMs on terrain attributes was examined by comparing eight DEMs (30, 40, 50, 60, 70, 80, 90, and 100 m). The accuracy of the AnnAGNPS stimulation on runoff, sediments, and nutrient loads is evaluated. The results are as follows: (1) Rnoff does not vary much with decrease of DEM resolution whereas soil erosion and total nitrogen (TN) load change prominently. There is little effect on runoff simulation of AnnAGNPS modeling by the amended slope using an adjusted 50 m DEM. (2) A decrease of sediment yield and TN load is observed with an increase of DEM mesh size from 30 to 60 m; a slight decrease of sediment and TN load with the DEM mesh size bigger than 60 m. There is similar trend for total phosphorus (TP) variation, but with less range of variation, the simulation of sediment, TN, and TP increase, in which sediment increase up to 1.75 times compared to the model using unadjusted 50 m DEM. In all, the amended simulation still has a large difference relative to the results using 30 m DEM. AnnAGNPS is less reliable for sediment loading prediction in a small hilly watershed. (3) Resolution of DEM has significant impact on slope gradient. The average, minimum, maximum of slope from the various DEMs reduced obviously with the decrease of DEM precision. For the grade of 0∼15°, the slopes at lower resolution DEM are generally bigger than those at higher resolution DEM. But for the grade bigger than 15°, the slopes at lower resolution DEM are generally smaller than those at higher resolution DEM. So it is necessary to adjust the slope with a fitting equation. A cubic model is used for correction of slope gradient from lower resolution to

  16. The Character and Formation of Elongated Depressions on the Upper Bulgarian Slope

    NASA Astrophysics Data System (ADS)

    Xu, Cuiling; Greinert, Jens; Haeckel, Matthias; Bialas, Jörg; Dimitrov, Lyubomir; Zhao, Guangtao

    2018-06-01

    Seafloor elongated depressions are indicators of gas seepage or slope instability. Here we report a sequence of slopeparallel elongated depressions that link to headwalls of sediment slides on upper slope. The depressions of about 250 m in width and several kilometers in length are areas of focused gas discharge indicated by bubble-release into the water column and methane enriched pore waters. Sparker seismic profiles running perpendicular and parallel to the coast, show gas migration pathways and trapped gas underneath these depressions with bright spots and seismic blanking. The data indicate that upward gas migration is the initial reason for fracturing sedimentary layers. In the top sediment where two young stages of landslides can be detected, the slopeparallel sediment weakening lengthens and deepens the surficial fractures, creating the elongated depressions in the seafloor supported by sediment erosion due to slope-parallel water currents.

  17. Friis Hills glacial history: an international collaboration to examine Miocene climate in Antarctica

    NASA Astrophysics Data System (ADS)

    Halberstadt, A. R. W.; Kowalewski, D. E.

    2016-12-01

    The Friis Hills, Antarctica (western McMurdo Dry Valleys) contain unique, well-preserved records of Miocene climate. These terrestrial deposits hold geomorphic clues for deciphering the glacial history in a region directly adjacent to the East Antarctic Ice Sheet. Stacked till sheets, interbedded with lake sediments and non-glacial deposits, reveal a complex history of ice flow and erosion throughout multiple glacial-interglacial cycles (Lewis and Ashworth, 2015). Fossiliferous beds containing Nothofagus, diatoms, algal cells, pollen, insects, and mosses provide past climatological constraints. The Friis Hills sustained multiple alpine glaciations as well as full ice-sheet development, recording glacial drainage reorganization and evidence of previous ice configurations that possibly overrode the Transantarctic Mountains (Lewis and Ashworth, 2015) exposing only scattered nunataks (i.e. a portion of Friis Hills). Lack of chronological control has previously hindered efforts to link the Friis Hills glacial history with regional context; a tephra deposit at the base of the glacial drifts currently provides a single age constraint within the drift deposits. To build upon previous studies, an international collaboration between the USAP, Antarctic New Zealand, and the Italian Antarctic community proposes to core a paleo-lake in the center of the Friis Hills in November 2016, thereby acquiring one of the oldest continuous sedimentological records within the McMurdo Dry Valleys. Here we report discoveries from this year's fieldwork, and reconstruct paleoenvironment at the periphery of the East Antarctic Ice Sheet for the mid-early Miocene, a critical time when marine isotopic records indicate dramatic ice fluctuations. Ash within the sediment core stratigraphy will provide a more robust chronology for the region, and will also suggest possible outcrop locations of corresponding ash deposits to pursue while in the field. We anticipate that the Friis Hills stratigraphy will

  18. Overpressure, Flow Focusing, Compaction and Slope Stability on the continental slope: Insights from IODP Expedition 308

    NASA Astrophysics Data System (ADS)

    Flemings, P. B.

    2010-12-01

    Integrated Ocean Drilling Program Expepedition 308 used direct measurements of pore pressure, analysis of hydromechanical properties, and geological analysis to illuminate how sedimentation, flow focusing, overpressure, and slope stability couple beneath the seafloor on the deepwater continental slope in the Gulf of Mexico. We used pore pressure penetrometers to measure severe overpressures (60% of the difference between lithostatic stress and hydrostatic pressure) that extend from the seafloor for 100’s of meters. We ran uniaxial consolidation experiments on whole core and found that although permeability is relatively high near the seafloor, the sediments are highly compressible. As a result, the coefficient of consolidation (the hydraulic diffusivity) is remarkably constant over a large range of effective stresses. This behavior accounts for the high overpressure that begins near the seafloor and extends to depth. Forward modeling suggests that flow is driven laterally along a permeable unit called the Blue Unit. Calculations suggest that soon after deposition, lateral flow lowered the effective stress and triggered the submarine landslides that we observe. Later in the evolution of this system, overpressure may have pre-conditioned the slope to failure by earthquakes. Results from IODP Expedition 308 illustrate how pore pressure and sedimentation control the large-scale form of continental margins, how submarine landslides form, and provide strategies for designing stable drilling programs.

  19. Concentrations and isotope ratios of mercury in sediments from shelf and continental slope at Campos Basin near Rio de Janeiro, Brazil.

    PubMed

    Araujo, Beatriz Ferreira; Hintelmann, Holger; Dimock, Brian; Almeida, Marcelo Gomes; Rezende, Carlos Eduardo

    2017-07-01

    Mercury (Hg) may originate from both anthropogenic and natural sources. The measurement of spatial and temporal variations of Hg isotope ratios in sediments may enable source identification and tracking of environmental processes. In this study we establish the distribution of mercury concentrations and mercury isotope ratios in surface sediments of three transects along the continental shelf and slope in Campos Basin-RJ-Brazil. The shelf showed on average lower total Hg concentrations (9.2 ± 5.3 ng g -1 ) than the slope (24.6 ± 8.8 ng g -1 ). MMHg average concentrations of shelf 0.15 ± 0.12 ng g -1 and slope 0.13 ± 0.06 ng g -1 were not significantly different. Distinct differences in Hg isotope ratio signatures were observed, suggesting that the two regions were impacted by different sources of Hg. The shelf showed more negative δ 202 Hg and Δ 199 Hg values ranging from -0.59 to -2.19‰ and from -0.76 to 0.08‰, respectively. In contrast, the slope exhibited δ 202 Hg values from -0.29 to -1.82‰ and Δ 199 Hg values from -0.23 to 0.09‰. Mercury found on the shelf, especially along the "D" and "I" transects, is depleted in heavy isotopes resulting in more negative δ 202 Hg compared to the slope. Isotope ratios observed in the "D" and "I" shelf region are similar to Hg ratios commonly associated with plants and vegetation and very comparable to those detected in the estuary and adjoining mangrove forest, which suggests that Hg exported from rivers may be the dominating source of Hg in near coastal regions along the northern part of the shelf. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sediment property changes in response to the glacial activity on the continental slope to the eastern side of Pennell-Iselin Bank in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Ha, Sangbeom; Khim, Boo-Keun; Colizza, Ester; Marci, Patrizia; Sagnotti, Leonardo; Caricchi, Chiara; Langone, Leonardo; Giglio, Federico; Kuhn, Gerhard

    2017-04-01

    High latitude marine environments including the Antarctic continental margin have sensitively responded to the climate change, and the Ross Sea is one of these examples. Subglacial marine sedimentary changes have been studied extensively in the continental shelf areas of the Ross Sea to understand the growth and retreat of glaciers in response to the glacial-interglacial changes. However, the continental slope areas of the Ross Sea have not been investigated comparatively less. Thus, in order to comprehend the glaciomarine sedimentation change on the continental slope of the Ross Sea, 3 gravity cores (GC1, GC2, GC3) and 3 box cores (BC1, BC2, BC3) were collected from 3 sites (RS14-C1, C2, C3 by decreasing water depth), respectively, across the continental slope to the eastern side of the Pennell-Iselin Bank during XXIX PNRA (Rosslope II) cruise in 2014. A variety of sedimentological (grain size, magnetic susceptibility, XRF) and geochemical (biogenic opal, total organic carbon, CaCO3, δ13C of organic matter) properties were analyzed along with AMS 14C dating of bulk sediments. All core sediments consist of mostly hemipelagic sandy clay or silty clay with scattered IRD (Ice-Rafted Debris). Sediment color of three cores changes consistently downward from brown to gray with some alternations in core GC1. Based on the basic sediment properties such as sediment color, grain size, and magnetic susceptibility, sediment lithology was decided to divide Unit A and Unit B, both of which were further divided into two subunits. Despite old carbon effect, AMS 14C dates confirm that Unit A belongs to the Holocene and Unit B covers the deglacial to last glacial period at the top of cores. Unit A is characterized by low TOC, low CaCO3, low biogenic opal content and low C/N ratios, whereas Unit B is characterized by high TOC, high CaCO3, moderate to high biogenic opal content and high C/N ratios. Consequently, Unit A represents the modern and interglacial sediments deposited mainly

  1. Maps showing estimated sediment yield from coastal landslides and active slope distribution along the Big Sur coast, Monterey and San Luis Obispo Counties, California

    USGS Publications Warehouse

    Hapke, Cheryl J.; Green, Krystal R.; Dallas, Kate

    2004-01-01

    The 1982-83 and 1997-98 El Ni?os brought very high precipitation to California?s central coast; this precipitation resulted in raised groundwater levels, coastal flooding, and destabilized slopes throughout the region. Large landslides in the coastal mountains of Big Sur in Monterey and San Luis Obispo Counties blocked sections of California State Route 1, closing the road for months at a time. Large landslides such as these occur frequently in the winter months along the Big Sur coast due to the steep topography and weak bedrock. A large landslide in 1983 resulted in the closure of Highway 1 for over a year to repair the road and stabilize the slope. Resulting work from the 1983 landslide cost over $7 million and generated 30 million cubic yards of debris from landslide removal and excavations to re-establish the highway along the Big Sur coast. Before establishment of the Monterey Bay National Marine Sanctuary (MBNMS) in 1992, typical road opening measures involved disposal of some landslide material and excess material generated from slope stabilization onto the seaward side of the highway. It is likely that some or most of this disposed material, either directly or indirectly through subsequent erosion, was eventually transported downslope into the ocean. In addition to the landslides that initiate above the road, natural slope failures sometimes occur on the steep slopes below the road and thus deliver material to the base of the coastal mountains where it is eroded and dispersed by waves and nearshore currents. Any coastal-slope landslide, generated through natural or anthropogenic processes, can result in sediment entering the nearshore zone. The waters offshore of the Big Sur coast are part of the MBNMS. Since it was established in 1992, landslide-disposal practices came under question for two reasons. The U.S. Code of Federal Regulations, Title 15, Section 922.132 prohibits discharging or depositing, from beyond the boundary of the Sanctuary, any material

  2. Geometry and significance of stacked gullies on the northern California slope

    USGS Publications Warehouse

    Field, M.E.; Gardner, J.V.; Prior, D.B.

    1999-01-01

    Recent geophysical surveys off northern California reveal patterns of gullies on the sea floor and preserved within continental-slope deposits that represent both erosional and aggradational processes. These surveys, conducted as part of the STRATAFORM project, combined multibeam bathymetry and backscatter with high-resolution seismic profiles. These data provide a new basis for evaluating gully morphology, distribution, and their significance to slope sedimentation and evolution. The continental margin off northern California exhibits an upper slope that has undergone both progradation and aggradation. The slope surface, which dips at <2??to 4.0??, contains a set of straight, evenly spaced, and parallel to sub-parallel gullies that begin at the 380-m isobath and extend onto the Eel and Klamath plateaus and into Trinity Canyon. The surface gullies are typically 100-m wide or more and only 1-2 m deep. The gullied slope is underlain by a sedimentary sequence that contains abundant buried gullies to subsurface depths of over 150 m. Although some of the buried gullies are distinctly erosional, most are part of the aggradational pattern responsible for the overall growth of the slope. The latest phase of gully erosion is marked by a gullied surface lying <20 m below the present-day sea floor. These erosional gullies locally truncate individual reflectors, have small depositional levees, and exhibit greater relief than do overlying gullies exposed on the sea floor. The older subsurface gullies document a period of widespread, but minor, erosion and downslope transport, presumably from a large, proximal sediment source. The cycles of downcutting and gully excavation are a minor part of the stratigraphic section, and are likely related to the combined influence of lower sea levels and higher sediment yields. During aggradation of the slope depositional sequences, sediment was draped over the gully features, producing sediment layers that mimic the underlying gully form

  3. A Model based Examination of Conditions for Ignition of Turbidity Currents on Slopes

    NASA Astrophysics Data System (ADS)

    Mehta, A. J.; Krishna, G.

    2009-12-01

    Turbidity currents form a major mechanism for the movement of sediment in the natural environment. Self-accelerating turbidity currents over continental slopes are of considerable scientific and engineering interest due to their role as agents for submarine sediment transportation from the shelf to the seabed. Such currents are called ignitive provided they eventually reach a catastrophic state as acceleration results in high sediment loads due to erosion of the sloping bed. A numerical model, which treats the fluid and the particles as two separate phases, is applied to investigate the effects of particle size, initial flow friction velocity and mild bed slope on the ignitive condition. Laboratory experimental data have been included as part of the analysis for qualitative comparison purposes. Ignition for the smallest of the three selected sizes (0.21mm) of medium sand typical of Florida beaches was found to depend on the initial conditions at the head of the slope as determined by the pressure gradient. Bed slope seemed to be of secondary importance. For the two sands with larger grain sizes (0.28mm and 0.35mm) the slope was found to play a more important role when compared to the initial pressure gradient. For a given pressure gradient, increasing the slope increased the likelihood of self-acceleration. It is concluded that in general ignition cannot be defined merely in terms of positive values of the velocity gradient and the sediment flux gradient along the slope. Depending on particle size the initial pressure gradient can also play a role. For the selected initial conditions (grain size, pressure gradient and bed slope), out of the 54 combinations tested, all except three satisfied the Knapp-Bagnold criterion for auto-suspension irrespective of whether the turbid current was ignitive or non-ignitive. In all 54 cases the current was found to erode the bed. Further use of the model will require accommodation of wider ranges of sediment size and bed density

  4. Characterization and quantification of suspended sediment sources to the Manawatu River, New Zealand.

    PubMed

    Vale, S S; Fuller, I C; Procter, J N; Basher, L R; Smith, I E

    2016-02-01

    Knowledge of sediment movement throughout a catchment environment is essential due to its influence on the character and form of our landscape relating to agricultural productivity and ecological health. Sediment fingerprinting is a well-used tool for evaluating sediment sources within a fluvial catchment but still faces areas of uncertainty for applications to large catchments that have a complex arrangement of sources. Sediment fingerprinting was applied to the Manawatu River Catchment to differentiate 8 geological and geomorphological sources. The source categories were Mudstone, Hill Subsurface, Hill Surface, Channel Bank, Mountain Range, Gravel Terrace, Loess and Limestone. Geochemical analysis was conducted using XRF and LA-ICP-MS. Geochemical concentrations were analysed using Discriminant Function Analysis and sediment un-mixing models. Two mixing models were used in conjunction with GRG non-linear and Evolutionary optimization methods for comparison. Discriminant Function Analysis required 16 variables to correctly classify 92.6% of sediment sources. Geological explanations were achieved for some of the variables selected, although there is a need for mineralogical information to confirm causes for the geochemical signatures. Consistent source estimates were achieved between models with optimization techniques providing globally optimal solutions for sediment quantification. Sediment sources was attributed primarily to Mudstone, ≈38-46%; followed by the Mountain Range, ≈15-18%; Hill Surface, ≈12-16%; Hill Subsurface, ≈9-11%; Loess, ≈9-15%; Gravel Terrace, ≈0-4%; Channel Bank, ≈0-5%; and Limestone, ≈0%. Sediment source apportionment fits with the conceptual understanding of the catchment which has recognized soft sedimentary mudstone to be highly susceptible to erosion. Inference of the processes responsible for sediment generation can be made for processes where there is a clear relationship with the geomorphology, but is problematic for

  5. Stability of submarine slopes in the northern South China Sea: a numerical approach

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Luan, Xiwu

    2013-01-01

    Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is evaluated using a 2D limit equilibrium method. Considerations of slope, sediment, and triggering force on the factor of safety (FOS) were calculated in drained and undrained ( Φ=0) cases. Results show that submarine slopes are stable when the slope is <16° under static conditions and without a weak interlayer. With a weak interlayer, slopes are stable at <18° in the drained case and at <9° in the undrained case. Earthquake loading can drastically reduce the shear strength of sediment with increased pore water pressure. The slope became unstable at >13° with earthquake peak ground acceleration (PGA) of 0.5 g; whereas with a weak layer, a PGA of 0.2 g could trigger instability at slopes >10°, and >3° for PGA of 0.5 g. The northern slope of the South China Sea is geomorphologically stable under static conditions. However, because of the possibility of high PGA at the eastern margin of the South China Sea, submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope. Therefore, submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake, the most important factor for triggering submarine slides on the northern slope of the South China Sea. Considering the distribution of PGA, we consider the northern slope of the South China Sea to be stable, excluding the Taiwan Bank slope, which is tectonically active.

  6. GLORIA side-scan imagery of Aleutian basin, Bering Sea slope and Abyssal plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.R.; Cooper, A.K.; Gardner, J.V.

    1987-05-01

    During July-September 1986, about 700,000 km/sup 2/ of continental slope and abyssal plain of the Aleutian basin, Bering Sea, were insonified with GLORIA (Geological Long Range Inclined Asdic) side-scane sonar. A sonar mosaic displays prominent geomorphic features including the massive submarine canyons of the Beringian and the northern Aleutian Ridge slopes and shows well-defined sediment patterns including large deep-sea channels and fan systems on the Aleutian basin abyssal plain. Dominant erosional and sediment transport processes on both the Beringian and the Aleutian Ridge slopes include varieties of mass movement that range from small debris flows and slides to massive slidesmore » and slumps of blocks measuring kilometers in dimension. Sediment-flow patterns that appear to be formed by sheet flow rather than channelized flow extend basinward from the numerous canyons and gullies that incise the slopes of the Beringian margin and of Bowers Ridge and some places along the Aleutian Ridge. These Beringian and Bowers canyon sediment sources, however, appear to have contributed less modern sediment to the Aleutian basin than the large, well-defined channel systems that emanate from Bering, Umnak, and Amchitka submarine canyons and extend for several hundred kilometers across the abyssal plain. This GLORIA imagery emphasizes the important contribution of the Aleutian Ridge to modern sedimentation in the deep Bering Sea.« less

  7. The Role of Glaciation in Slope Instability of Arctic Trough Mouth Fans: An Example of the NW Barents Sea

    NASA Astrophysics Data System (ADS)

    Urgeles, R.; Llopart, J.; Lucchi, R.; Rebesco, M.; Brückner, N. W.; Rüther, D. C.; Lantzsch, H.

    2017-12-01

    Submarine slope instability plays a major role in the development of Arctic Trough Mouth Fans (TMFs). TMFs consist of an alternation of rapidly deposited glacigenic debris flows and a sequence of well-layered plumites and hemipelagic sediments. In this sedimentary context, shallow geophysical data and core samples indicate that there is a specific timing (i.e. shortly after the deglaciation phase) for the occurrence of slope failures. High mean sedimentation rates during glacial maxima of up to 18 kg m-2 yr-1 likely allow excess pore pressure to develop in the water rich plumites and hemipelagic sediments deposited in the previous deglacial period, particularly where such plumites attain a significant thickness. Basin numerical models considering the effect of (1) sediment physical properties, (2) polar margin architecture and (3) ice stream sediment dispersal patterns on resulting stresses, fluid flow and slope failure initiation of the Storfjorden Trough Mouth Fan, NW Barents Sea, show that during glacial maxima, ice streams and rapid accumulation of glacigenic debris flows on the slope induce pore pressure build-up in continental shelf/upper slope sediments. The overpressure developed during glacial maxima remains during the deglacial phase. This overpressure combined with downslope stratification of high water content and low shear strength deglacial/interglacial sediments results in a significant decrease in the factor of safety of the upper slope sediments. The position of the submarine landslides in the stratigraphic record suggest, however, that such excess pore pressure is not enough to trigger the slope failures and indicate that earthquakes related to isostatic rebound are likely involved in the final activation.

  8. Louisiana continental slope: geologic and seismic stratigraphic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, P.K.; Cooke, D.W.

    1987-05-01

    The continental slope of Louisiana from Green Canyon to Mississippi Canyon was studied by interpreting seismic CDP data and wells in the area. The slope is characterized by blocked canyon intraslope basins of various dimensions with maximum thickness of sediments in excess of 21,000 ft, rotational slump blocks and large-scale submarine slides. In the subsurface, the outer shelf and upper slope show contrasting character with that of the lower slope, especially below the Sigsbee Scarp. The seismic stratigraphic units established for the deep sea area can be recognized in their entirety up to a water depth of 6000 to 5500more » ft. In shallower water salt tectonics obliterates the sequence. Fragmental records of the sequence, especially the top of Challenger boundary, have been recognized in as shallow as 2000 to 3000 ft of water. The Tertiary units often downlap and onlap directly on the Challenger unit, indicating the progradational nature of the clastic slope. The Sigsbee unit has been traced through the entire slope area and can be divided into five subunits of unique acoustical characteristics. The slope constantly regrades in response to Neogene sea level fluctuations. Loading of the shelf by deltaic deposition contributes to salt sill formation and flowage of salt over deep-water sediments on the slope during high sea level. Regressive sea is represented by slope failure, formation of large-scale submarine slides, filling of blocked canyon intraslope basins which show similar seismic facies to that of Orca and Pigmy basins as reported from DSDP studies, and sporadic uplifting of salt diapirs and massifs and the formation of linear transverse salt ridges.« less

  9. Acoustic Velocity Of The Sediments Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, C.; Liu, C.; Huang, P.

    2004-12-01

    Along the Manila Trench south of 21øXN, deep-sea sediments are being underthrusted beneath the Taiwan accretionary prism which is composed of the Kaoping Slope and Hengchun Ridge. Offshore southwestern Taiwan, foreland sediments and Late Miocene strata of the Tainan Basin are being accreted onto the fold-and thrust belt of the syn-collision accretionary wedge of the Kaoping Slope. The Kaoping Slope consists of thick Neogene to Recent siliciclastics deformed by fold-and-thrust structures and mud diapers. These Pliocene-Quaternary sediments deposited in the Kaoping Shelf and upper slope area are considered to be paleo-channel deposits confined by NNE-SSW trend mud diapiric structure. Seismic P-wave velocities of the sediment deposited in the Kaoping Shelf and Kaoping Slope area are derived from mutichannel seismic reflection data and wide-angle reflection and refraction profiles collected by sonobuoys. Sediment velocity structures constrained from mutichannel seismic reflection data using velocity spectrum analysis method and that derived from sonobuoy data using tau-sum inversion method are compared, and they both provide consistent velocity structures. Seismic velocities were analyzed along the seismic profile from the surface to maximum depths of about 2.0 km below the seafloor. Our model features a sediment layer1 with 400 ms in thickness and a sediment layer2 with 600 ms in thickness. For the shelf sediments, we observe a linear interval velocity trend of V=1.53+1.91T in layer1, and V=1.86+0.87T in layer2, where T is the one way travel time within the layer. For the slop sediment, the trend of V=1.47+1.93T in layer1, and V=1.70+1.55T in layer2. The layer1¡¦s velocities gradients are similar between the shelf (1.91 km/sec2) and the slope(1.93 km/sec2). It means layer1 distributes over the slope and shelf widely. The result of the sediment velocity gradients in this area are in good agreement with that reported for the south Atlantic continental margins.

  10. Bathymetry (Part I), sedimentary regimes (Part II), and abyssal waste-disposal potential near the conterminous United States

    NASA Astrophysics Data System (ADS)

    Bowles, Frederick A.; Vogt, Peter R.; Jung, Woo-Yeol

    1998-05-01

    Placing waste on the seafloor, with the intention that it remain in place and isolated from mankind, requires a knowledge of the environmental factors that may be applicable to a specific seafloor area. DBDB5 (Digital Bathymetric Database gridded at 5' latitude by 5' longitude cell dimension) is used here for regional assessments of seafloor depth, slope, and relief at five surrogate abyssal waste sites; two each in the western Atlantic and eastern Pacific, and one in the Gulf of Mexico. Only Pacific-1 exhibits a `high' slope (2°) by DBDB5 standards, whereas the remaining sites are located on almost level seafloor. Detailed examination of the sites using multibeam-based contour sheets show the area around Atlantic-1 to be a featureless plain. Atlantic-2 and both Pacific sites are surrounded by abyssal hill topography, with local slopes ranging from greater than 6° at all sites to above 15° at Pacific-2. Neither Pacific site features a seafloor as `flat' as at Atlantic-1 or at the Gulf of Mexico site. Locating waste sites on sedimented slopes could have serious consequences due to catastrophic slope failure and downslope displacement of waste by mass sediment-transport processes. Neither slumping nor sliding are perceived as critical processes affecting the surrogate sites because of their locations on negligibly sloping seafloors. However, debris flows and turbidity currents are capable of transporting large volumes of sediment for long distances over low gradients and, in the case of turbidity currents, at great speed. Dispersal of loose waste material by these processes is virtually assured, but less likely if the waste is bagged. The turbidity current problem is alleviated (but not eliminated) by locating waste sites on distal portions of abyssal plains. Both Pacific sites are surrounded by abyssal hills and, in the case of Pacific-2, far beyond the reach of land-derived turbidity currents. Thin sediment cover and low rates of sedimentation have also resulted

  11. Effect of Angle of Attack on Slope Climbing Performance

    NASA Technical Reports Server (NTRS)

    Creager, Colin M.; Jones, Lucas; Smith, Lauren M.

    2017-01-01

    Ascending steep slopes is often a very difficult challenge for off-road vehicles, whether on Earth or on extraterrestrial bodies. This challenge is even greater if the surface consists of loose granular soil that does not provide much shear strength. This study investigated how the path at which a vehicle traverses a slope, specifically the angle that it is commanded to drive relative to the base of the hill (the angle of attack), can affect its performance. A vehicle was driven in loose sand at slope angles up to 15 degrees and angles of attack ranging from 10 to 90 degrees. A novel photogrammetry technique was implemented to both track vehicle motion and create a three-dimensional profile of the terrain. This allowed for true wheel sinkage measurements. The study showed that though low angles of attack result in lower wheel slip and sinkage, the efficiency of the vehicles uphill motion increased at higher angles of attack. For slopes up to 15 degrees, a 90 degree angle of attack provided the greatest likelihood of successful ascent.

  12. The Black Hills-Rapid City flood of June 9-10, 1972: A description of the storm and flood

    USGS Publications Warehouse

    Schwarz, Francis K.; Hughes, L.A.; Hansen, E.M.; Petersen, M.S.; Kelly, Donovan B.

    1975-01-01

    Almost all the flood peaks occurred between 2230 MDT on June 9 and 0100 MDT on June 10, 1972, in a flood belt about 40 miles long and 20 miles wide along the eastern slopes of the Black Hills. This belt extended from Sturgis, S. Dak., on the north to Hermosa, S. Dak., on the south, with Rapid City near the center. To document the flood, peak discharge determinations were made at 49 sites. Records show that about 13,000 acre-feet of water flowed through Rapid City during the 2 days of flooding. At one point during the night of June 9, the floodwaters rose about 3.5 feet in 15 minutes. Coming off the slopes of the Black Hills, the flood peak traveled the 22 miles between Deer Creek and Rapid City in about 3.5 hours.

  13. Late Cenozoic sea-level changes and the onset of glaciation: impact on continental slope progradation off eastern Canada

    USGS Publications Warehouse

    Piper, D.J.W.; Normark, W.R.

    1989-01-01

    Late Cenozoic sedimentation from four varied sites on the continental slopes off southeastern Canada has been analysed using high-resolution airgun multichannel seismic profiles, supplemented with some single channel data. Biostratigraphic ties are available to exploratory wells at three of the sites. Uniform, slow accumulation of hemipelagic sediments was locally terminated by the late Miocene sea-level lowering, which is also reflected in changes in foraminiferan faunas on the continental shelf. Data are very limited for the early Pliocene but suggest a return to slow hemipelagic sedimentation. At the beginning of the late Pliocene, there was a change in sedimentation style marked by a several-fold increase in accumulation rates and cutting of slope valleys. This late Pliocene cutting of slope valleys corresponds to the onset of late Cenozoic growth of the Laurentian Fan and the initiation of turbidite sedimentation on the Sohm Abyssal Plain. Although it corresponds to a time of sea-level lowering, the contrast with the late Miocene lowstand indicates that there must also have been a change in sediment delivery to the coastline, perhaps as a result of increased rainfall or development of valley glaciers. High sedimentation rates continued into the early Pleistocene, but the extent of slope dissection by gullies increased. Gully-cutting episodes alternated with sediment-draping episodes. Throughout the southeastern Canadian continental margin, there was a change in sedimentation style in the middle Pleistocene that resulted from extensive ice sheets crossing the continental shelf and delivering coarse sediment directly to the continental slope. ?? 1989.

  14. The Black Hills (South Dakota) flood of June 1972: Impacts and implications

    Treesearch

    Howard K. Orr

    1973-01-01

    Rains of 12 inches or more in 6 hours fell on the east slopes of the Black Hills the night of June 9, 1972. Resulting flash floods exacted a disastrous toll in human life and property. Rainfall and discharge so greatly exceeded previous records that recurrence intervals have been presented in terms of multiples of the estimated 50- or 100- year event. Quick runoff was...

  15. The Role of Microfossils in the Compression of Marine Sediments: Implications for Submarine Slope Failure

    NASA Astrophysics Data System (ADS)

    Reece, J. S.; Shackleton, T.

    2016-12-01

    The influence of microfossils on engineering properties has long been recognized. However, most experimental studies have been conducted on diatomites, which are almost exclusively composed of diatom fossils. Here, instead, we analyze the impact of varying amounts of microfossils in natural marine sediments on the macro-scale mechanical behavior. We use foraminifera as an example for microfossils, which, in contrast to diatoms, have been understudied. We uniformly mix foraminifera with natural mudstone from Site C0011 in the Nankai Trough, offshore Japan, obtained during Integrated Ocean Drilling Program (IODP) Expedition 322, at three different microfossil concentrations: 0 wt%, 5 wt%, and 10 wt%. The foraminifera, extracted by washing and sieving, originated from IODP Site U1338 in the Equatorial Pacific. We use resedimentation to prepare the homogeneous microfossil-rich mudstone samples and uniaxially compress them to 100 kPa. Additionally, we use scanning electron microscopy to investigate microstructural changes during compression as a function of microfossil content. Microfossil-rich sediments are known to initially not consolidate to as low porosities as other marine clays owing to microfossil shells acting as structural components. But they show a delayed compressibility when the yield stress is overcome and microfossil shells collapse resulting in an increase in porosity and compressibility. Here, we investigate the 1) threshold microfossil content at which the microfabric significantly changes during compression and 2) stress at which foraminifera chambers start to break. We anticipate to observe an increase in compressibility and microstructural changes in the vicinity of the yield stress with increasing microfossil content attributed to the crushing of foraminifera and particle rearrangement. But the total axial stress of 100 kPa at the end of the resedimentation experiments may not be large enough to have a significant effect on the macroscopic

  16. Sedimentology and geochemistry of a perennially ice-covered epishelf lake in Bunger Hills Oasis, East Antarctica.

    PubMed

    Doran, P T; Wharton, R A; Lyons, W B; Des Marais, D J; Andersen, D T

    2000-01-01

    A process-oriented study was carried out in White Smoke lake, Bunger Hills, East Antarctica, a perennially ice-covered (1.8 to 2.8 m thick) epishelf (tidally-forced) lake. The lake water has a low conductivity and is relatively well mixed. Sediments are transferred from the adjacent glacier to the lake when glacier ice surrounding the sediment is sublimated at the surface and replaced by accumulating ice from below. The lake bottom at the west end of the lake is mostly rocky with a scant sediment cover. The east end contains a thick sediment profile. Grain size and delta 13C increase with sediment depth, indicating a more proximal glacier in the past. Sedimentary 210Pb and 137Cs signals are exceptionally strong, probably a result of the focusing effect of the large glacial catchment area. The post-bomb and pre-bomb radiocarbon reservoirs are c. 725 14C yr and c. 1950 14C yr, respectively. Radiocarbon dating indicates that the east end of the lake is >3 ka BP, while photographic evidence and the absence of sediment cover indicate that the west end has formed only over the last century. Our results indicate that the southern ice edge of Bunger Hills has been relatively stable with only minor fluctuations (on the scale of hundreds of metres) over the last 3000 years.

  17. Management of turbidity current venting in reservoirs under different bed slopes.

    PubMed

    Chamoun, Sabine; De Cesare, Giovanni; Schleiss, Anton J

    2017-12-15

    The lifetime and efficiency of dams is endangered by the process of sedimentation. To ensure the sustainable use of reservoirs, many sediment management techniques exist, among which venting of turbidity currents. Nevertheless, a number of practical questions remain unanswered due to a lack of systematic investigations. The present research introduces venting and evaluates its performance using an experimental model. In the latter, turbidity currents travel on a smooth bed towards the dam and venting is applied through a rectangular bottom outlet. The combined effect of outflow discharge and bed slopes on the sediment release efficiency of venting is studied based on different criteria. Several outflow discharges are tested using three different bed slopes (i.e., 0%, 2.4% and 5.0%). Steeper slopes yield higher venting efficiency. Additionally, the optimal outflow discharge leading to the largest venting efficiency with the lowest water loss increases when moving from the horizontal bed to the inclined positions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Stratigraphy and depositional environments of Fox Hills Formation (Late Cretaceous), Williston basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, D.J.

    The Fox Hills Formation (Late Cretaceous, Maestrichtian) was investigated where it crops out along the southern flank of the Williston basin and in the subsurface over the central portion of the basin, using 300 well logs. The formation is conformable and gradational with the underlying Pierre formation and can be either conformable or unconformable with the overlying Hell Creek Formation. The Fox Hills Formation is younger, thicker, and stratigraphically more complex to the east and is comprised of marginal marine sediments deposited during the final Cretaceous regression. To the west, the Fox Hills Formation is an upward-coarsening unit generally 30more » to 45 m thick and usually contains three members: from the base, Trail City, Timber Lake, and Colgate. The lower Fox Hills (Trail City, Timber Lake) is generally dominated by hummocky bedding and contains a variety of trace fossils, most notably Ophiomorpha. The upper Fox Hills (Colgate), where present, is characterized by cross-bedding. To the east, including the type area, the section is generally 80 to 100 m thick and contains four members: from the base, Trail City, Timber Lake, Iron Lightning (Colgate and Bullhead lithofacies), and Linton. In contrast to the section in the west, this section is as much as three times thicker, contains abundant body fossils, generally lacks hummocky bedding, and contains the Bullhead and Linton strata. In the west, the strata represent lower shoreface deposits, predominantly of storm origin (lower Fox Hills), overlain by upper shoreface and fluvial deposits (upper Fox Hills). In the east, the lower Fox Hills contains deposits of the lower shoreface (Trail City) and a barrier bar complex (Timber Lake), overlain by the deltaic deposits of the upper Fox Hills (Iron Lightning, Linton).« less

  19. Varying sediment sources (Hudson Strait, Cumberland Sound, Baffin Bay) to the NW Labrador Sea slope between and during Heinrich events 0 to 4

    USGS Publications Warehouse

    Andrews, John T.; Barber, D.C.; Jennings, A.E.; Eberl, D.D.; Maclean, B.; Kirby, M.E.; Stoner, J.S.

    2012-01-01

    Core HU97048-007PC was recovered from the continental Labrador Sea slope at a water depth of 945 m, 250 km seaward from the mouth of Cumberland Sound, and 400 km north of Hudson Strait. Cumberland Sound is a structural trough partly floored by Cretaceous mudstones and Paleozoic carbonates. The record extends from ∼10 to 58 ka. On-board logging revealed a complex series of lithofacies, including buff-colored detrital carbonate-rich sediments [Heinrich (H)-events] frequently bracketed by black facies. We investigate the provenance of these facies using quantitative X-ray diffraction on drill-core samples from Paleozoic and Cretaceous bedrock from the SE Baffin Island Shelf, and on the < 2-mm sediment fraction in a transect of five cores from Cumberland Sound to the NW Labrador Sea. A sediment unmixing program was used to discriminate between sediment sources, which included dolomite-rich sediments from Baffin Bay, calcite-rich sediments from Hudson Strait and discrete sources from Cumberland Sound. Results indicated that the bulk of the sediment was derived from Cumberland Sound, but Baffin Bay contributed to sediments coeval with H-0 (Younger Dryas), whereas Hudson Strait was the source during H-events 1–4. Contributions from the Cretaceous outcrops within Cumberland Sound bracket H-events, thus both leading and lagging Hudson Strait-sourced H-events.

  20. Vertical and lateral flux on the continental slope off Pakistan: correlation of sediment core and trap results

    NASA Astrophysics Data System (ADS)

    Schulz, H.; von Rad, U.

    2014-06-01

    Due to the lack of bioturbation, the varve-laminated muds from the oxygen minimum zone (OMZ) off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the nearshore part of the northeastern Arabian Sea. West of Karachi (Hab area), the results of two sediment trap stations (EPT and WPT) were correlated with 16 short sediment cores on a depth transect crossing the OMZ. The top of a distinct, either reddish- or light-gray silt layer, 210Pb-dated as AD 1905 ± 10, was used as an isochronous stratigraphic marker bed to calculate sediment accumulation rates. In one core, the red and gray layer were separated by a few (5-10) thin laminae. According to our varve model, this contributes < 10 years to the dating uncertainty, assuming that the different layers are almost synchronous. We directly compared the accumulation rates with the flux rates from the sediment traps that collected the settling material within the water column above. All traps on the steep Makran continental slope show exceptionally high, pulsed winter fluxes of up to 5000 mg m-2 d-1. Based on core results, the flux at the seafloor amounts to 4000 mg m-2 d-1 and agrees remarkably well with the bulk winter flux of material, as well as with the flux of the individual bulk components of organic carbon, calcium carbonate and opal. However, due to the extreme mass of remobilized matter, the high winter flux events exceeded the capacity of the shallow traps. Based on our comparisons, we argue that high-flux events must occur regularly during winter within the upper OMZ off Pakistan to explain the high accumulations rates. These show distribution patterns that are a negative function of water depth and distance from the shelf. Some of the sediment fractions show marked shifts in accumulation rates near the lower boundary of the OMZ. For instance, the flux of benthic foraminifera is lowered but stable below ~1200-1300 m. However, flux and sedimentation in the

  1. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Safaei Pirooz, Amir A.; Flay, Richard G. J.

    2018-03-01

    We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.

  2. Paleomagnetism and rock magnetism from sediments along a continental shelf-to-slope transect in the NW Barents Sea: Implications for geomagnetic and depositional changes during the past 15 thousand years

    NASA Astrophysics Data System (ADS)

    Caricchi, C.; Lucchi, R. G.; Sagnotti, L.; Macrì, P.; Morigi, C.; Melis, R.; Caffau, M.; Rebesco, M.; Hanebuth, T. J. J.

    2018-01-01

    Paleomagnetic and rock magnetic data were measured on glaciomarine silty-clay successions along an E-W sediment-core transect across the continental shelf and slope of the Kveithola paleo-ice stream system (south of Svalbard, north-western Barents Sea), representing a stratigraphic interval spanning the last deglaciation and the Holocene. The records indicate that magnetite is the main magnetic mineral and that magnetic minerals are distinctly less abundant on the shelf than at the continental slope. The paleomagnetic properties allow for the reconstruction of a well-defined characteristic remanent magnetization (ChRM) throughout the sedimentary successions. The stratigraphic trends of rock magnetic and paleomagnetic parameters are used for a shelf-slope core correlation and sediment facies analysis is applied for depositional processes reconstruction. The new paleomagnetic records compare to the PSV and RPI variation predicted for the core sites by a simulation using the global geomagnetic field variation models SHA.DIF.14k and CALS7K.2 and closest PSV and RPI regional stack curves. The elaborated dataset, corroborated by available 14C ages, provides a fundamental chronological framework to constrain the coupling of shelf-slope sedimentary processes and environmental changes in the NW Barents Sea region during and after deglaciation.

  3. Alluvial cover controlling the width, slope and sinuosity of bedrock channels

    NASA Astrophysics Data System (ADS)

    Turowski, Jens Martin

    2018-02-01

    Bedrock channel slope and width are important parameters for setting bedload transport capacity and for stream-profile inversion to obtain tectonics information. Channel width and slope development are closely related to the problem of bedrock channel sinuosity. It is therefore likely that observations on bedrock channel meandering yields insights into the development of channel width and slope. Active meandering occurs when the bedrock channel walls are eroded, which also drives channel widening. Further, for a given drop in elevation, the more sinuous a channel is, the lower is its channel bed slope in comparison to a straight channel. It can thus be expected that studies of bedrock channel meandering give insights into width and slope adjustment and vice versa. The mechanisms by which bedrock channels actively meander have been debated since the beginning of modern geomorphic research in the 19th century, but a final consensus has not been reached. It has long been argued that whether a bedrock channel meanders actively or not is determined by the availability of sediment relative to transport capacity, a notion that has also been demonstrated in laboratory experiments. Here, this idea is taken up by postulating that the rate of change of both width and sinuosity over time is dependent on bed cover only. Based on the physics of erosion by bedload impacts, a scaling argument is developed to link bedrock channel width, slope and sinuosity to sediment supply, discharge and erodibility. This simple model built on sediment-flux-driven bedrock erosion concepts yields the observed scaling relationships of channel width and slope with discharge and erosion rate. Further, it explains why sinuosity evolves to a steady-state value and predicts the observed relations between sinuosity, erodibility and storm frequency, as has been observed for meandering bedrock rivers on Pacific Arc islands.

  4. Design of Rock Slope Reinforcement: An Himalayan Case Study

    NASA Astrophysics Data System (ADS)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  5. Geomorphic Implications of Fire and Slope Aspect in the Jemez Mountains, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Fitch, E. P.; Meyer, G. A.

    2011-12-01

    Following a fire, extensive erosion may occur on hillslopes due to reduced infiltration and increased runoff as well as a decrease in vegetative anchoring and surface roughness. This increased erosion and subsequent sedimentation on alluvial fans at the base of the hillslope may be the primary process of geomorphic change in fire-prone mountains in the Western US. Insolation differences on north and south facing slopes may also be another potential influence on geomorphic change due to soil moisture and vegetation differences, which may affect the spatial distribution of erosion as well as sediment transport processes. Due to the long recovery period of forest stands in fire-prone areas, it is important to understand the natural variability of erosion for the purposes of forest and river ecology and management as well as mass movement-flooding hazard. The 2002 Lakes Fire area in the Jemez Mountains, NM, provides a natural study area with incision of alluvial fans after the Lakes Fire exposing the internal structure of these fans. The study area displays steeper, drier ponderosa pine dominated south-facing slopes and less steep, moister Douglas-fir dominated north-facing slopes, which suggests that slope aspect may influence fire regime and post-fire erosion in the Jemez Mountains. In order to determine the importance of fire and aspect on erosion and sedimentation, over 15 sections within alluvial fans with both north and south aspect were studied. Debris flow, hyperconcentrated flow and stream flow make up the majority of sediment transport processes in this area. Therefore, deposits formed by these processes were described, and evidence for fire-related sedimentation was assessed. Additionally, the relative importance of sediment transport types in relation to north versus south slope aspects was examined. Finally, charcoal fragments within deposits from north and south aspects were analyzed in terms of their abundance and angularity in order to aid in estimating

  6. Modes of development of slope canyons and their relation to channel and levee features on the Ebro sediment apron, off-shore northeastern Spain

    USGS Publications Warehouse

    O'Connell, S.; Ryan, William B. F.; Normark, W.R.

    1987-01-01

    Six submarine slope canyons in an area of the northwestern Mediterranean, offshore from the Ebro River and Delta, were surveyed with bathymetric swathmapping (SeaBeam) and mid-range side-looking sonar (SeaMARC I). All of the canyons have slightly winding paths with concave-upwards gradients that are relatively steep shallower than 1,200 m. Two major types of canyons are identified on the basis of their morphologic character at the base of the slope; Type-I canyons lead to an unchannelled base-of-slope deposit and Type-II canyons are continuous with channel-levee systems that cross the rise. Four Type-I canyons were surveyed in the area. Two of these are broad, U-shaped, steep (average gradients of 1:14), do not indent the shelf, and terminate downslope at debris-flow deposits. These two canyons, the most northern in the area, have rounded heads with extensive gullies separated by knife-edge ridges. Relief of the canyon walls is about equal on both sides of the canyons, although the right-hand walls (looking downslope) are generally steeper. The other two Type-I canyons in the area are similar in that they do not indent the shelf, but they are much smaller and shallower and coalesce before terminating in the base-of-slope region. The two Type-II canyons that feed leveed-channels are U-shaped with flatter floors, longer profiles and gentler gradients than Type-I canyons. They are closer to the Valencia Valley and have relatively small cross-sectional areas. We propose a four-stage evolutionary sequence to explain the development of the canyons observed in this section on the prograding Ebro margin. During the initial stage, slumping and erosion on the slope creates a network of small gullies. During the next stage, headward growth of one (or more) gully leads to a major indentation of the shelf. This is the critical factor for developing a channel that will incise the slope and provide a major conduit for moving sediment to the basin. Stage 3 is characterized by the

  7. Catchment sediment flux: a lake sediment perspective on the onset of the Anthropocene?

    NASA Astrophysics Data System (ADS)

    Chiverrell, Richard

    2014-05-01

    Definitions of the Anthropocene are varied but from a geomorphological perspective broadly can be described as the interval of recent Earth history during which 'humans have had an 'overwhelming' effect on the Earth system' (Brown et al., 2013). Identifying the switch to a human-dominated geomorphic process regime is actually a challenging process, with in the 'Old World' ramping up of human populations and impacts on earth surface processes since the Neolithic/Mesolithic transition and the onset of agriculture. In the terrestrial realm lakes offer a unique window on changes in human forcing of earth surface processes from a sedimentary flux perspective, because unlike alluvial and hill-slope systems sedimentation is broadly continuous and uninterrupted. Dearing and Jones (2003) showed for a global dataset of lakes a 5-10 fold increase in sediment delivery comparing pre- and post-anthropogenic disturbance. Here sediment records from several lakes in lowland agricultural landscapes are presented to examine the changes in the flux and composition of materials delivered from their catchments. By definition the lakes record the switch to a human dominated system, but not necessary in accelerated sediment accumulation rates with changes in sediment composition equally important. Data from Crose, Hatch and Peckforton Meres, in lowland northwest England are interrogated producing quantitative land-cover reconstructions from pollen spectra calculated using the REVEALS model (Sugita, 2007), geochemical evidence for changes sediment provenance and flux, and 14C and stable Pb pollutant based chronological models detecting changes in sediment accumulation rate. The lake sediment geochemistry points to several phases of heightened human impact within these small agricultural catchments. Following small-in-scale forest cover reductions and limited impacts in terms of sediment flux during the Neolithic, the Bronze to Iron Age saw the first substantial reductions in forest cover

  8. Drainage morphometric analysis for assessing form and processes of the watersheds of Pachamalai hills and its adjoinings, Central Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Prabhakaran, A.; Jawahar Raj, N.

    2018-03-01

    The present study attempts to understand the form and geomorphic/hydrologic processes of the 20 watersheds of the Pachamalai hills and its adjoinings located in Tamil Nadu State of southern India from the analysis of its drainage morphometric characteristics. Survey of India's topographic sheets of 1:50,000 is the data source from which stream networks and watersheds of the study area were demarcated followed by the analysis of their morphometric characteristics using ArcGIS software. The results of the analysis formed the basis for deducing the form and processes of the watersheds of the study area. The form of the watersheds inferred from the analysis includes shape, length, slope steepness and length, degree of branching of streams, dissection and elongation of watersheds. The geomorphic/hydrologic processes inferred include denudation rate, potential energy, intensity of erosion, mean annual run off, mean discharge, discharge rate, rock resistivity and infiltration potential, amount of sediment transported, mean annual rainfall, rainfall intensity, lagtime, flash flood potential, flood discharge per unit area, sediment yield and speed of the water flow in the streams. The understanding of variations of form and processes mentioned can be used towards prioritizing the watersheds for development, management and conservation planning.

  9. Proterozoic events recorded in quartzite cobbles at Jack Hills, Western Australia: New constraints on sedimentation and source of > 4 Ga zircons

    NASA Astrophysics Data System (ADS)

    Grange, Marion L.; Wilde, Simon A.; Nemchin, Alexander A.; Pidgeon, Robert T.

    2010-03-01

    Rare heavy mineral bands within quartzite cobbles were identified in two conglomerate units within the Jack Hills belt, Western Australia. Seven zircon-bearing cobbles were analysed from one location (site 152) and three from another (site 154), both approximately 1 km west of the site where zircons in excess of 4 Ga are abundant (W74 'discovery' site). Individual pebbles from the 152 site reveal three distinctive features, containing either zircons > 3.0 Ga in age, < 1.9 Ga in age or a range of ages from ˜ 1.2 to ˜ 3.6 Ga. Those from site 154 are more uniform, containing only zircons with ages between 3.1 and 3.9 Ga. Only one grain > 4 Ga was discovered from the entire suite of pebbles, in contrast to the well-studied W74 site. A single detrital zircon with an age of 1220 ± 42 Ma from location 152 is the youngest grain so far reported from sedimentary rocks at Jack Hills. It shows magmatic oscillatory zoning and thus implies at least two sedimentary cycles within the Proterozoic; requiring erosion of an igneous precursor, incorporation into a clastic sediment, induration and subsequent erosion and transport to be hosted in the conglomerate. The nearest source for rocks of this age is the Bangemall Supergroup in the Collier Basin, ˜ 100 km northeast in the Capricorn Orogen. This would imply tectonic interleaving of originally more extensive Bangemall rocks, possibly related to activity along the Cargarah Shear Zone that traverses the Jack Hills belt. The lack of > 4.1 Ga zircons in the pebbles is highly significant, suggesting the immediate source of ancient zircons was no longer present at the Earth's surface. This equates with a general lack of ancient crystals noted in rocks that contain Proterozoic zircons from previous studies and implies that such grains diminish in number as earlier sedimentary rocks were successively recycled.

  10. Tectonics of the ophiolite belt from Naga Hills and Andaman Islands, India

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.; Ray, K. K.; Sengupta, S.

    1990-06-01

    The ophiolitic rocks of Naga Hills-Andaman belt occur as rootless slices, gently dipping over the Paleogene flyschoid sediments, the presence of blue-schists in ophiolite melange indicates an involvement of the subduction process. Subduction was initiated prior to mid-Eocene as proved by the contemporaneous lower age limit of ophiolite-derived cover sediment as against the accreted ophiolites and olistostromal trench sediment. During the late Oligocene terminal collision between the Indian and Sino-Burmese blocks, basement slivers from the Sino-Burmese block, accreted ophiolites and trench sediments from the subduction zone were thrust westward as nappe and emplaced over the down-going Indian plate. The geometry of the ophiolites and the presence of a narrow negative gravity anomaly flanking their map extent, run counter to the conventional view that the Naga-Andaman belt marks the location of the suture. The root-zone of the ophiolite nappe representing the suture is marked by a partially-exposed eastern ophiolite belt of the same age and gravity-high zone, passing through central Burma-Sumatra-Java. The ophiolites of the Andaman and Naga Hills are also conventionally linked with the subduction activity, west of Andaman islands. This activity began only in late Miocene, much later than onland emplacement of the ophiolites; it further developed west of the suture in its southern part. Post-collisional northward movement of the Indian plate subparallel to the suture, also developed leaky dextral transcurrent faults close to the suture and caused Neogene-Quatemary volcanism in central Burma and elsewhere.

  11. The Ring of Fire: The Effects of Slope upon Pattern Formation in Simulated Forest Fire Systems

    NASA Astrophysics Data System (ADS)

    Morillo, Robin; Manz, Niklas

    We report about spreading fire fronts under sloped conditions using the general cellular automaton model and data from physical scaled-down experiments. Punckt et al. published experimental and computational results for planar systems and our preliminary results confirmed the expected speed-slope dependence of fire fronts propagating up or down the hill with a cut-off slope value above which no fire front can exist. Here we focus on two fascinating structures in reaction-diffusion systems: circular expanding target pattern and rotating spirals. We investigated the behaviors of both structures with varied values for the slope of the forest and the homogeneity of the trees. For both variables, a range of values was found for which target pattern or spiral formation was possible.

  12. A 5000km2 data set along western Great Bahama Bank illustrates the dynamics of carbonate slope deposition

    NASA Astrophysics Data System (ADS)

    Schnyder, Jara S. D.; Jo, Andrew; Eberli, Gregor P.; Betzler, Christian; Lindhorst, Sebastian; Schiebel, Linda; Hebbeln, Dierk; Wintersteller, Paul; Mulder, Thierry; Principaud, Melanie

    2014-05-01

    An approximately 5000km2 hydroacoustic and seismic data set provides the high-resolution bathymetry map of along the western slope of Great Bahama Bank, the world's largest isolated carbonate platform. This large data set in combination with core and sediment samples, provides and unprecedented insight into the variability of carbonate slope morphology and the processes affecting the platform margin and the slope. This complete dataset documents how the interplay of platform derived sedimentation, distribution by ocean currents, and local slope and margin failure produce a slope-parallel facies distribution that is not governed by downslope gradients. Platform-derived sediments produce a basinward thinning sediment wedge that is modified by currents that change directions and strength depending on water depth and location. As a result, winnowing and deposition change with water depth and distance from the margin. Morphological features like the plunge pool and migrating antidunes are the result of currents flowing from the banktop, while the ocean currents produce contourites and drifts. These continuous processes are punctuated by submarine slope failures of various sizes. The largest of these slope failures produce several hundred of km2 of mass transport complexes and could generate tsunamis. Closer to the Cuban fold and thrust belt, large margin collapses pose an equal threat for tsunami generation. However, the debris from margin and slope failure is the foundation for a teeming community of cold-water corals.

  13. True 3-D View of 'Columbia Hills' from an Angle

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic of images from NASA's Mars Exploration Rover Spirit shows a panorama of the 'Columbia Hills' without any adjustment for rover tilt. When viewed through 3-D glasses, depth is much more dramatic and easier to see, compared with a tilt-adjusted version. This is because stereo views are created by producing two images, one corresponding to the view from the panoramic camera's left-eye camera, the other corresponding to the view from the panoramic camera's right-eye camera. The brain processes the visual input more accurately when the two images do not have any vertical offset. In this view, the vertical alignment is nearly perfect, but the horizon appears to curve because of the rover's tilt (because the rover was parked on a steep slope, it was tilted approximately 22 degrees to the west-northwest). Spirit took the images for this 360-degree panorama while en route to higher ground in the 'Columbia Hills.'

    The highest point visible in the hills is 'Husband Hill,' named for space shuttle Columbia Commander Rick Husband. To the right are the rover's tracks through the soil, where it stopped to perform maintenance on its right front wheel in July. In the distance, below the hills, is the floor of Gusev Crater, where Spirit landed Jan. 3, 2004, before traveling more than 3 kilometers (1.8 miles) to reach this point. This vista comprises 188 images taken by Spirit's panoramic camera from its 213th day, or sol, on Mars to its 223rd sol (Aug. 9 to 19, 2004). Team members at NASA's Jet Propulsion Laboratory and Cornell University spent several weeks processing images and producing geometric maps to stitch all the images together in this mosaic. The 360-degree view is presented in a cylindrical-perspective map projection with geometric seam correction.

  14. How do Watershed Characteristics and Precipitation Influence Post-Wildfire Valley Sediment Storage and Delivery Over Time?

    NASA Astrophysics Data System (ADS)

    Brogan, D. J.; Nelson, P. A.; MacDonald, L. H.

    2016-12-01

    Considerable advances have been made in understanding post-wildfire runoff, erosion, and mass wasting at the hillslope and small watershed scale, but the larger-scale effects on flooding, water quality, and sedimentation are often the most significant impacts. The problem is that we have virtually no watershed-specific tools to quantify the proportion of eroded sediment that is stored or delivered from watersheds larger than about 2-5 km2. In this study we are quantifying how channel and valley bottom characteristics affect post-wildfire sediment storage and delivery. Our research is based on intensive monitoring of sediment storage over time in two 15 km2 watersheds (Skin Gulch and Hill Gulch) burned in the 2012 High Park Fire using repeated cross section and longitudinal surveys from fall 2012 through summer 2016, five airborne laser scanning (ALS) datasets from fall 2012 through summer 2015, and both radar and ground-based precipitation measurements. We have computed changes in sediment storage by differencing successive cross sections, and computed spatially explicit changes in successive ALS point clouds using the multiscale model to model cloud comparison (M3C2) algorithm. These channel changes are being related to potential morphometric controls, including valley width, valley slope, confinement, contributing area, valley expansion or contraction, topographic curvature (planform and profile), and estimated sediment inputs. We hypothesize that maximum rainfall intensity and lateral confinement will be the primary independent variables that describe observed patterns of erosion and deposition, and that the results can help predict post-wildfire sediment delivery and identify high priority areas for restoration.

  15. Reconstruction of multistage massive rock slope failure: Polymethodical approach in Lake Oeschinen (CH)

    NASA Astrophysics Data System (ADS)

    Knapp, Sibylle; Gilli, Adrian; Anselmetti, Flavio S.; Hajdas, Irka

    2016-04-01

    Lateglacial and Holocene rock-slope failures occur often as multistage failures where paraglacial adjustment and stress adaptation are hypothesised to control stages of detachment. However, we have only limited datasets to reconstruct detailed stages of large multistage rock-slope failures, and still aim at improving our models in terms of geohazard assessment. Here we use lake sediments, well-established for paleoclimate and paleoseismological reconstruction, with a focus on the reconstruction of rock-slope failures. We present a unique inventory from Lake Oeschinen (Bernese Alps, Switzerland) covering about 2.4 kyrs of rock-slope failure history. The lake sediments have been analysed using sediment-core analysis, radiocarbon dating and seismic-to-core and core-to-core correlations, and these were linked to historical and meteorological records. The results imply that the lake is significantly younger than the ~9 kyrs old Kandersteg rock avalanche (Tinner et al., 2005) and shows multiple rock-slope failures, two of which could be C14-dated. Several events detached from the same area potentially initiated by prehistoric earthquakes (Monecke et al., 2006) and later from stress relaxation processes. The data imply unexpected short recurrence rates that can be related to certain detachment scarps and also help to understand the generation of a historical lake-outburst flood. Here we show how polymethodical analysis of lake sediments can help to decipher massive multistage rock-slope failure. References Monecke, K., Anselmetti, F.S., Becker, A., Schnellmann, M., Sturm, M., Giardini, D., 2006. Earthquake-induced deformation structures in lake deposits: A Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae, 99(3), 343-362. Tinner, W., Kaltenrieder, P., Soom, M., Zwahlen, P., Schmidhalter, M., Boschetti, A., Schlüchter, C., 2005. Der nacheiszeitliche Bergsturz im Kandertal (Schweiz): Alter und Auswirkungen auf die

  16. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    NASA Astrophysics Data System (ADS)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  17. Deep sea sedimentation processes and geomorphology: Northwest Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Mosher, David; Campbell, Calvin; Gardner, Jim; Chaytor, Jason; Piper, David; Rebesco, Michele

    2017-04-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data informed by subbottom profiler and seismic reflection data. Erosion by off-shelf sediment transport in turbidity currents creates gullies, canyons and channels and a steep upper slope. Amalgamation of these conduits produces singular channels and turbidite fan complexes on the lower slope, flattening slope-profile gradients. The effect is an exponentially decaying "graded" slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a "stepped" slope, and/or a significant downslope gradient change where MTDs pinch out. Large drift deposits created by geostrophic currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. They form a linear "above grade" profile along their crests from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts form "stepped" slope profiles, where they onlap the margin. Trough-mouth fan complexes become more common along the margin with increasing latitude. Sediment deposition and retention, particularly those dominated by glacigenic debris flows, characterize these segments producing an "above grade" slope profile. Understanding these geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping in which

  18. Potential Analysis of Rainfall-induced Sediment Disaster

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Wen; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Tsai, Kuang-Jung; Chue, Yung-Sheng

    2014-05-01

    Most of the mountain regions in Taiwan are sedimentary and metamorphic rocks which are fragile and highly weathered. Severe erosion occurs due to intensive rainfall and rapid flow, the erosion is even worsen by frequent earthquakes and severely affects the stability of hillsides. Rivers are short and steep in Taiwan with large runoff differences in wet and dry seasons. Discharges respond rapidly with rainfall intensity and flood flows usually carry large amount of sediment. Because of the highly growth in economics and social change, the development in the slope land is inevitable in Taiwan. However, sediment disasters occur frequently in high and precipitous region during typhoon. To make the execution of the regulation of slope land development more efficiency, construction of evaluation model for sediment potential is very important. In this study, the Genetic Adaptive Neural Network (GANN) was implemented in texture analysis techniques for the classification of satellite images of research region before and after typhoon or extreme rainfall and to obtain surface information and hazard log data. By using GANN weight analysis, factors, levels and probabilities of disaster of the research areas are presented. Then, through geographic information system the disaster potential map is plotted to distinguish high potential regions from low potential regions. Finally, the evaluation processes for sediment disaster after rainfall due to slope land use are established. In this research, the automatic image classification and evaluation modules for sediment disaster after rainfall due to slope land disturbance and natural environment are established in MATLAB to avoid complexity and time of computation. After implementation of texture analysis techniques, the results show that the values of overall accuracy and coefficient of agreement of the time-saving image classification for different time periods are at intermediate-high level and above. The results of GANN show that

  19. Biozone Characterization of Foraminifera in Upper Pleistocene through Recent Shelf and Slope Sediments, Northern Gulf of Alaska: Integration of SHE-diversity and Polytopic Vector Analyses

    NASA Astrophysics Data System (ADS)

    Zellers, S.; Cowan, E. A.; Davies, M. H.

    2014-12-01

    Gulf of Alaska sediments contain distinct, low-diversity assemblages of benthic and planktic foraminifera, whose distribution is a function of food availability, water mass properties, ice proximity, transport/deposition, predation, and taphonomic processes. Spatial and temporal changes in diversity reflect these processes and provide insight into this margin's history. Two quantitative techniques are integrated to define and characterize benthic foraminferal biozones in Gulf of Alaska sediment core samples collected by the R/V Maurice Ewing in 2004 at shelf site EW0408-79JC (59.53° N, 141.76° W, 158 m depth), and slope site EW0408-85JC (59.56° N, 144.15° W, 682 m depth). Sediments date from the end of the most recent glaciation (diamict in 85JC) to the present (bioturbated, silty clay at both sites). We apply SHE analysis, a graphical, iterative technique, based on diversity trends in a plot of ln E vs. ln N, where E is species evenness and N is cumulative number of specimens. In each step, the plot is examined for the first change in slope between successive samples, representing a change in diversity. At this point a boundary is defined, samples before the break are removed, and the analysis is repeated until all samples are analyzed. Data are further analyzed using an unmixing algorithm known as polytopic vector analyses. This technique defines a small number of orthogonal end members that explain a majority of the variance, thus reducing data complexity and aiding interpretation. SHE-analysis of benthic foraminiferal data defines eighteen informal abundance biozones. Polytopic vector analyses indicate that the faunal assemblages reflect mixtures of up to seven distinct biofacies: outer neritic (2), upper bathyal (2), reduced oxygen (2), and inner neritic. Rapid changes in faunal diversity correspond with increased sedimentation rates, especially during the end of the most recent glaciation (17 to 16 ka). The same relationship occurs over the last 1000

  20. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    PubMed

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  1. Is the Critical Shields Stress for Incipient Sediment Motion Dependent on Bed Slope in Natural Channels? No.

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Jerolmack, D. J.

    2017-12-01

    Understanding when coarse sediment begins to move in a river is essential for linking rivers to the evolution of mountainous landscapes. Unfortunately, the threshold of surface particle motion is notoriously difficult to measure in the field. However, recent studies have shown that the threshold of surface motion is empirically correlated with channel slope, a property that is easy to measure and readily available from the literature. These studies have thoroughly examined the mechanistic underpinnings behind the observed correlation and produced suitably complex models. These models are difficult to implement for natural rivers using widely available data, and thus others have treated the empirical regression between slope and the threshold of motion as a predictive model. We note that none of the authors of the original studies exploring this correlation suggested their empirical regressions be used in a predictive fashion, nevertheless these regressions between slope and the threshold of motion have found their way into numerous recent studies engendering potentially spurious conclusions. We demonstrate that there are two significant problems with using these empirical equations for prediction: (1) the empirical regressions are based on a limited sampling of the phase space of bed-load rivers and (2) the empirical measurements of bankfull and critical shear stresses are paired. The upshot of these problems limits the empirical relations predictive capacity to field sites drawn from the same region of the bed-load river phase space and that the paired nature of the data introduces a spurious correlation when considering the ratio of bankfull to critical shear stress. Using a large compilation of bed-load river hydraulic geometry data, we demonstrate that the variation within independently measured values of the threshold of motion changes systematically with bankfull shields stress and not channel slope. Additionally, we highlight using several recent datasets

  2. Arcadia Planitia Hills

    NASA Image and Video Library

    2018-04-25

    The rounded hills in this VIS image are located in Arcadia Planitia. Broad linear ridges and groups of hills in this region are part of Phlegra Dorsa (ridges) and Phlegra Montes (hills). Orbit Number: 71248 Latitude: 30.6712 Longitude: 171.018 Instrument: VIS Captured: 2018-01-05 17:05 https://photojournal.jpl.nasa.gov/catalog/PIA22377

  3. Submarine slope failures in the Beaufort Sea; Influence of gas hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Grozic, J. L.; Dallimore, S.

    2012-12-01

    The continental shelf of the Beaufort Sea is composed of complex of marine and non-marine sequences of clay, silt, and sand. In many areas of the shelf these sediments contain occurrences of ice-bonded permafrost and associated pressure and temperature conditions that are conducive to the occurrence of methane gas hydrates. This complex environment is undergoing dramatic warming, where changes in sea level, ocean bottom temperatures, and geothermal regimes are inducing permafrost thawing and gas hydrate decomposition. Decomposition is inferred to be occurring at the base and top of the gas hydrate stability zone, which will cause sediment weakening and the generation of excess water and free gas. In such settings, the overlying permafrost cap may act as a permeability barrier, which could result in significant excess pore pressures and reduction in sediment stability. The shelf to slope transition is thought to be an area of extensive regional instability with acoustic records indicating there is upwards of 500 km of slumps and glides extending over the entire Beaufort margin. Some of these slide regions are coincident with up-dip limit of the permafrost gas hydrate stability zone. In this paper, a two dimensional model of the Beaufort shelf was constructed to examine the influence of gas hydrate decomposition on slope stability. The model relies on available data on the Beaufort sediments generated from offshore hydrocarbon exploration in the 1980s and 90s, as well as knowledge available from multidisciplinary marine research programs conducted in the outer shelf area. The slope stability model investigates the influence of marine transgression and ocean bottom warming by coupling soil deformation with hydrate dissociation during undrained conditions. By combining mechanical and thermal loading of the sediment, a more accurate indication of slope stability was obtained. The stability analysis results indicate a relatively low factor of safety for the Beaufort

  4. Interrill soil erosion processes on steep slopes

    USDA-ARS?s Scientific Manuscript database

    To date interrill erosion processes and regimes are not fully understood. The objectives are to 1) identify the erosion regimes and limiting processes between detachment and transport on steep slopes, 2) characterize the interactive effects between rainfall intensity and flow depth on sediment trans...

  5. Rainfall and sheet power model for interrill erosion in steep slope

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun

    2015-04-01

    The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).

  6. Low-velocity zone and topography as a source of site amplification effect on Tarzana hill, California

    USGS Publications Warehouse

    Graizer, V.

    2009-01-01

    Tarzana station is located in the foothills of the Santa Monica Mountains in California near the crest of a low (<20 m) natural hill with gentle slopes. The hill is about 500 m in length by 130 m in width and is formed of extremely weathered shale at the surface to fresh at depth. Average S-wave is about 250 m/s in the top 17-18 m, and S- and P-wave velocities significantly increase below this depth. According to the NEHRP classification based on VS30???300 m/s it is a site class D. Strong-motion instrumentation at Tarzana consisted of an accelerograph at the top of the hill, a downhole instrument at 60 m depth, and an accelerograph at the base of the hill. More than 20 earthquakes were recorded by at least three instruments at Tarzana from 1998 till 2003. Comparisons of recordings and Fourier spectra indicate strong directional resonance in a direction perpendicular to the strike of the hill. The dominant peaks in ground motion amplification on the top of the hill relative to the base are at frequencies ???3.6 and 8-9 Hz for the horizontal components. Our hypothesis is that the hill acts like a wave trap. This results in an amplification at predominant frequencies f=V/4 h (h is layer's thickness) at f???3.6 Hz for S-waves (using average VS17=246 m/s and h=17 m) and f???7.9 Hz for P-waves (using average VP17=535 m/s and h=17 m). As was shown by Bouchon and Barker [Seismic response of a hill: the example of Tarzana, California. Bull Seism Soc Am 1996;86(1A):66-72], topography of this hill amplifies and polarizes ground motion in the frequency range of 3-5 Hz. Hill acts as a magnifying polarizing glass: It polarizes ground motion in the direction perpendicular to the strike of the hill and also amplifies ground motions that had been also amplified by a low-velocity layer.

  7. Erosion, storage, and transport of sediment in two subbasins of the Rio Puerco, New Mexico

    USGS Publications Warehouse

    Gellis, A.C.; Pavich, M.J.; Ellwein, A.L.; Aby, S.; Clark, I.; Wieczorek, M.E.; Viger, R.

    2012-01-01

    Arroyos in the American Southwest proceed through cut-and-fill cycles that operate at centennial to millennial time scales. The geomorphic community has put much effort into understanding the causes of arroyo cutting in the late Quaternary and in the modern record (late 1800s), while little effort has gone into understanding how arroyos fill and the sources of this fill. Here, we successfully develop a geographic information system (GIS)-modeled sediment budget that is based on detailed field measurements of hillslope and channel erosion and deposition. Field measurements were made in two arroyo basins draining different lithologies and undergoing different land disturbance (Volcano Hill Wash, 9.30 km2; Arroyo Chavez, 2.11 km2) over a 3 yr period. Both basins have incised channels that formed in response to the late nineteenth-century incision of the Rio Puerco. Large volumes of sediment were generated during arroyo incision, equal to more than 100 yr of the current annual total sediment load (bed load + suspended load) in each basin. Downstream reaches in both arroyos are presently aggrading, and the main source of the sediment is from channel erosion in upstream reaches and first- and second-order tributaries. The sediment budget shows that channel erosion is the largest source of sediment in the current stage of the arroyo cycle: 98% and 80% of the sediment exported out of Volcano Hill Wash and Arroyo Chavez, respectively. The geomorphic surface most affected by arroyo incision and one of the most important sediment sources is the valley alluvium, where channel erosion, gullying, soil piping, and grazing all occur. Erosion rates calculated for the entire Volcano Hill Wash (-0.26 mm/yr) and Arroyo Chavez (-0.53 mm/yr) basins are higher than the modeled upland erosion rates in each basin, reflecting the large contributions from channel erosion. Erosion rates in each basin are affected by a combination of land disturbance (grazing) and lithology

  8. Architecture and sedimentary processes on the mid-Norwegian continental slope: A 2.7 Myr record from extensive seismic evidence

    NASA Astrophysics Data System (ADS)

    Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.

    2018-07-01

    Quaternary architectural evolution and sedimentary processes on the mid-Norwegian continental slope are investigated using margin-wide three- and two-dimensional seismic datasets. Of ∼100,000 km3 sediments delivered to the mid-Norwegian shelf and slope over the Quaternary, ∼75,000 km3 comprise the slope succession. The structural high of the Vøring Plateau, characterised by initially low (∼1-2°) slope gradients and reduced accommodation space, exerted a strong control over the long-term architectural evolution of the margin. Slope sediment fluxes were higher on the Vøring Plateau area, increasing up to ∼32 km3 ka-1 during the middle Pleistocene, when fast-flowing ice streams advanced to the palaeo-shelf edge. Resulted in a more rapid slope progradation on the Vøring Plateau, these rates of sediment delivery are high compared to the maximum of ∼7 km3 ka-1 in the adjacent sectors of the slope, characterised by steeper slope (∼3-5°), more available accommodation space and smaller or no palaeo-ice streams on the adjacent shelves. In addition to the broad-scale architectural evolution, identification of more than 300 buried slope landforms provides an unprecedented level of detailed, process-based palaeoenvironmental reconstruction. Channels dominate the Early Pleistocene record (∼2.7-0.8 Ma), during which glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Morphologic signature of glacigenic debris-flows appear within the Middle-Late Pleistocene (∼0.8-0 Ma) succession. Their abundance increases towards Late Pleistocene, marking a decreasing role for channelized turbidity currents and dense water flows. This broad-scale palaeo-environmental shift coincides with the intensification of Northern Hemispheric glaciations, highlighting first-order climate control on the sedimentary processes in high-latitude continental slopes.

  9. Grain size controls on sediment supply from debris-mantled dryland hillslopes

    NASA Astrophysics Data System (ADS)

    Michaelides, K.

    2011-12-01

    Debris-mantled hillslopes are common in arid and semiarid environments where low rates of chemical weathering give rise to thin, non-cohesive soils mantled with a layer of coarse rock fragments derived from weathered bedrock that can reach boulder size. The grain size distributions (GSDs) on the surface of these hillslopes interact with different magnitudes and frequencies of runoff-producing rainfall events that selectively transport grain sizes of different classes depending on flow, grain position on the slope, and hillslope attributes. Sediment transport over many runoff events determines sediment delivery to the slope base, which ultimately modifies the GSD of valley floors. The relationship between hillslope attributes and sediment flux forms the basis of geomorphic transport laws used to model the topographic evolution of drainage basins over >104 y timescales, but the specific responses of sediment flux across the hillslope and the corresponding changes in GSDs to individual storm events are poorly understood. Sheetwash erosion of coarse fragments presents a particular set of conditions for sediment transport that is poorly resolved in current models. A particle-based model for sheetwash sediment transport on debris-mantled hillslopes was developed within a rainfall-runoff model. The rainfall-runoff model produces spatial values of flow depth and velocity which are used to drive a particle-by-particle force-balance model derived from first principles for grain sizes > 1 mm. Particles on the hillslope surface are represented explicitly and can be composed of mixed grain sizes of any distribution or of uniform sizes of any diameter. The model resolves all the forces on each particle at each time and space step based on the flow hydraulics acting on them, so no assumptions are made about incipient motion using Shield's criterion. This research examines how the interplay between hillslope GSD, hillslope attributes (gradient and length) and runoff

  10. Origin of Slope Failure in the Ursa Region, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Stigall, J.; Dugan, B.

    2008-12-01

    We use one-dimensional fluid flow and stability models to predict the evolution of overpressure and stability conditions of IODP Expedition Sites U1322 and U1324 in the Ursa region, northern Gulf of Mexico. Simulations of homogenous mud deposited at 3 and 12 mm/yr for Sites U1322 and U1324, with permeability (k) on the order of 10-17m2 and bulk compressibility of .4 /MPa, predict overpressures up to .45MPa and 1MPa in shallow sediments (<200m below sea floor). With limit equilibrium calculations for an infinite slope, these overpressures equate to a factor of safety (FS) greater than 10 and 4.5 for a internal friction angle of 26° and a seafloor slope of 2°. This implies stability throughout the last 50,000 years. Seismic and core observations, however, document major slope failures that span the entire Ursa region. Permeability in this region is well constrained by laboratory experiments, so we investigate how pulsed (high-to-low) sedimentation rates could have created unstable conditions, FS <1. Models with periods of high sedimentation generate overpressure that create unstable conditions while maintaining the time-averaged sedimentation rates. Other factors which are not possible to simulate in one dimension, such as a complex basin geometry, also influence the conditions that caused the past failures. A two-dimensional model linking lateral flow between the sites with the interpreted geometry from seismic stratigraphy gives a better picture of the flow field and instability within the basin. Asymmetrical loading of permeable sediments could have created a lateral difference in pore pressures which would have driven lateral flow from Site U1324 to Site U1322 where overpressures are higher than our one-dimensional models suggest. We anticipate that two-dimensional models with transient sedimentation patterns will enhance our understanding of flow in marginally stable environments and triggers of slope failures in passive margin systems.

  11. Slope failures and timing of turbidity flows north of Puerto Rico

    USGS Publications Warehouse

    ten Brink, Uri S.; Chaytor, Jason D.

    2014-01-01

    The submerged carbonate platform north of Puerto Rico terminates in a high (3,000–4,000 m) and in places steep (>45°) slope characterized by numerous landslide scarps including two 30–50 km-wide amphitheater-shaped features. The origin of the steep platform edge and the amphitheaters has been attributed to: (1) catastrophic failure, or (2) localized failures and progressive erosion. Determining which of the two mechanisms has shaped the platform edge is critically important in understanding landslide-generated tsunami hazards in the region. Multibeam bathymetry, seismic reflection profiles, and a suite sediment cores from the Puerto Rico Trench and the slope between the trench and the platform edge were used to test these two hypotheses. Deposits within trench axis and at the base of the slope are predominantly composed of sandy carbonate turbidites and pelagic sediment with inter-fingering of chaotic debris units. Regionally-correlated turbidites within the upper 10 m of the trench sediments were dated between ∼25 and 22 kyrs and ∼18–19 kyrs for the penultimate and most recent events, respectively. Deposits on the slope are laterally discontinuous and vary from thin layers of fragmented carbonate platform material to thick pelagic layers. Large debris blocks or lobes are absent within the near-surface deposits at the trench axis and the base of slope basins. Progressive small-scale scalloping and self-erosion of the carbonate platform and underlying stratigraphy appears to be the most likely mechanism for recent development of the amphitheaters. These smaller scale failures may lead to the generation of tsunamis with local, rather than regional, impact.

  12. Analysis of pottery from the Palatine Hills of Rome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landsberger, S.; Wisseman, S.; Desena, E.

    1994-12-31

    During the past several summers the Soprintendenza Archeologica di Roma and the American Academy in Rome have carried out collaborative excavations on the late Roman complex located on the northeastern slope of the Palatine Hill. The late Roman complex is situated on the lower slopes of the area commonly known as Vigna Barberini, after its 17th century owners. Because this area, as well as most of the east slope of the Palatine, has never been systematically explored, it remains from an archaeological point of view essentially unknown. The overall aim of the excavations is to investigate layout, function, and occupationalmore » history of a mid-to-late imperial building complex located just southwest of the Arch of Constatine. Part of this international project is the chemical characterization of Roman fineware pottery from archaeological excavations on the site of the imperial palaces. Excavation has yielded more than 8 t of Late Roman and Early Medieval pottery (circa 3rd to 10th centuries A.D.). Many classes of pottery have already been classified by their provenance based on distribution patterns, but others require chemical characterization to separate similar clays. To that end routine neutron activation analysis (NAA) methods have been used to analyze {approximately}200 pieces of pottery.« less

  13. Submarine Landslide Hazards Offshore Southern Alaska: Seismic Strengthening Versus Rapid Sedimentation

    NASA Astrophysics Data System (ADS)

    Sawyer, D.; Reece, R.; Gulick, S. P. S.; Lenz, B. L.

    2017-12-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure within the slope and Surveyor Fan. This conclusion is supported because shear strength follows an expected active margin profile outside of the fan, where background sedimentation rates occur. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking

  14. Investigating Deep-Marine Sediment Waves in the Northern Gulf of Mexico Using 3D Seismic Data

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Gani, M. R.

    2016-12-01

    Deep-water depositional elements have been studied for decades using outcrop, flume tank, sidescan sonar, and seismic data. Even though they have been well recognized by researchers, the improvements in the quality of 3D seismic data with increasingly larger dimension allow detailed analysis of deep-water depositional elements with new insights. This study focuses on the deep-marine sediment waves in the northern Gulf of Mexico. By interpreting a 3D seismic dataset covering 635 km2 at Mississippi Canyon and Viosca Knoll areas, large sediment waves, generated by sediment gravity flows, were mapped and analyzed with various seismic attributes. A succession of sediment waves, approximately 100 m in thickness, is observed on the marine slope that tapers out at the toe of the slope. The individual sediment wave exhibits up to 500 m in wavelength and up to 20 m in height. The wave crests oriented northeast-southwest are broadly aligned parallel to the regional slope-strike, indicating their sediment gravity flow origin. The crestlines are straight or slightly sinuous, with sinuosity increasing downslope. Their anti-dune patterns likely imply the presence of supercritical flows. The sediment waves have a retrogradational stacking pattern. Seismic amplitude maps of each sediment wave revealed that after depositing the majority of sheet-like sands on the upper slope, sediment gravity flows started to form large sediment waves on the lower slope. The steep and narrow upcurrent flanks of the sediment waves always display higher amplitudes than the gentle and wide downcurrent flanks, indicating that the sands were likely preferentially trapped along the upcurrent flanks, whereas the muds spread along the downcurrent flanks. The formation of sediment waves likely requires a moderate sand-mud ratio, as suggested by these observations: (1) absence of sediment waves on the upper slope where the sands were mainly deposited as unconfined sheets with a high sand-mud ratio; (2

  15. The Lawn Hill annulus: An Ordovician meteorite impact into water-saturated dolomite

    NASA Astrophysics Data System (ADS)

    Darlington, Vicki; Blenkinsop, Tom; Dirks, Paul; Salisbury, Jess; Tomkins, Andrew

    2016-12-01

    The Lawn Hill Impact Structure (LHIS) is located 250 km N of Mt Isa in NW Queensland, Australia, and is marked by a highly deformed dolomite annulus with an outer diameter of 18 km, overlying low metamorphic grade siltstone, sandstone, and shale, along the NE margin of the Georgina Basin. This study provides detailed field observations from sections of the Lawn Hill annulus and adjacent areas that demonstrate a clear link between the deformation of the dolomite and the Lawn Hill impact. 40Ar-39Ar dating of impact-related melt particles provides a time of impact in the Ordovician (472 ± 8 Ma) when the Georgina Basin was an active depocenter. The timing and stratigraphic thickness of the dolomite sequence in the annulus suggest that there was possibly up to 300 m of additional sedimentary rocks on top of the currently exposed Thorntonia Limestone at the time of impact. The exposed annulus is remarkably well preserved, with preservation attributed to postimpact sedimentation. The LHIS has an atypical crater morphology with no central uplift. The heterogeneous target materials at Lawn Hill were probably low-strength, porous, and water-saturated, with all three properties affecting the crater morphology. The water-saturated nature of the carbonate unit at the time of impact is thought to have influenced the highly brecciated nature of the annulus, and restricted melt production. The impact timing raises the possibility that the Lawn Hill structure may be a member of a group of impacts resulting from an asteroid breakup that occurred in the mid-Ordovician (470 ± 6 Ma).

  16. Surface area and the seabed area, volume, depth, slope, and topographic variation for the world's seas, oceans, and countries.

    PubMed

    Costello, Mark John; Cheung, Alan; De Hauwere, Nathalie

    2010-12-01

    Depth and topography directly and indirectly influence most ocean environmental conditions, including light penetration and photosynthesis, sedimentation, current movements and stratification, and thus temperature and oxygen gradients. These parameters are thus likely to influence species distribution patterns and productivity in the oceans. They may be considered the foundation for any standardized classification of ocean ecosystems and important correlates of metrics of biodiversity (e.g., species richness and composition, fisheries). While statistics on ocean depth and topography are often quoted, how they were derived is rarely cited, and unless calculated using the same spatial resolution the resulting statistics will not be strictly comparable. We provide such statistics using the best available resolution (1-min) global bathymetry, and open source digital maps of the world's seas and oceans and countries' Exclusive Economic Zones, using a standardized methodology. We created a terrain map and calculated sea surface and seabed area, volume, and mean, standard deviation, maximum, and minimum, of both depth and slope. All the source data and our database are freely available online. We found that although the ocean is flat, and up to 71% of the area has a < 1 degree slope. It had over 1 million approximately circular features that may be seamounts or sea-hills as well as prominent mountain ranges or ridges. However, currently available global data significantly underestimate seabed slopes. The 1-min data set used here predicts there are 68,669 seamounts compared to the 30,314 previously predicted using the same method but lower spatial resolution data. The ocean volume exceeds 1.3 billion km(3) (or 1.3 sextillion liters), and sea surface and seabed areas over 354 million km(2). We propose the coefficient of variation of slope as an index of topographic heterogeneity. Future studies may improve on this database, for example by using a more detailed bathymetry

  17. Delineation of preventative landslide buffers along steep streamside slopes in northern California

    Treesearch

    Jason S. Woodward; David W. Lamphear; Matthew R. House

    2012-01-01

    Green Diamond Resource Co (GDRCo) applies tree retention buffers to steep slopes along fish bearing (Class I) and non-fish bearing (Class II) streams that are in addition to the standard riparian management zones associated with timber harvest plans. These Steep Streamside Slope (SSS) buffers were designed to reduce the amount of sediment delivering to watercourses as...

  18. Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars

    USGS Publications Warehouse

    McCoy, T.J.; Sims, M.; Schmidt, M.E.; Edwards, L.; Tornabene, L.L.; Crumpler, L.S.; Cohen, B. A.; Soderblom, L.A.; Blaney, D.L.; Squyres, S. W.; Arvidson, R. E.; Rica, J.W.; Treguier, E.; d'Uston, C.; Grant, J. A.; McSween, H.Y.; Golombek, M.P.; Haldemann, A.F.C.; de Souza, P.A.

    2008-01-01

    The strike and dip of lithologic units imaged in stereo by the Spirit rover in the Columbia Hills using three-dimensional imaging software shows that measured dips (15-32??) for bedding on the main edifice of the Columbia Hill are steeper than local topography (???8-10??). Outcrops measured on West Spur are conformable in strike with shallower dips (7-15??) than observed on Husband Hill. Dips are consistent with observed strata draping the Columbia Hills. Initial uplift was likely related either to the formation of the Gusev Crater central peak or ring or through mutual interference of overlapping crater rims. Uplift was followed by subsequent draping by a series of impact and volcaniclastic materials that experienced temporally and spatially variable aqueous infiltration, cementation, and alteration episodically during or after deposition. West Spur likely represents a spatially isolated depositional event. Erosion by a variety of processes, including mass wasting, removed tens of meters of materials and formed the Tennessee Valley primarily after deposition. This was followed by eruption of the Adirondack-class plains basalt lava flows which embayed the Columbia Hills. Minor erosion, impact, and aeolian processes have subsequently modified the Columbia Hills. Copyright 2008 by the American Geophysical Union.

  19. Chemical and textural characteristics of sediments at an EPA reference site for dredged material on the continental slope SW of the Farallon Islands

    USGS Publications Warehouse

    Bothner, Michael H.; Gill, P.W.; Boothman, W.S.; Taylor, B.B.; Karl, Herman A.

    1997-01-01

    A U.S. Environmental Protection Agency (EPA) reference site for dredged material has been established on the Continental Slope off San Francisco in water depths of 800-1500 m. This site, 35 km southwest of the Farallon Islands, serves as a reference for sediment testing in support of dredging and disposal at the San Francisco Deep Ocean Disposal Site (SF-DODS). An estimated 300 million cubic yards of dredged material from San Francisco Bay are expected to be discharged at this site during the next 50 years. Information from the reference site provides an additional baseline for monitoring environmental changes at the SF-DODS. This study provides sediment data on a suite of heavy metals and organic compounds which make up the EPA list of "chemicals of concern" because of their potential toxicity to marine organisms.

  20. Spatial distribution level of land erosion disposition based on the analysis of slope on Central Lematang sub basin

    NASA Astrophysics Data System (ADS)

    Putranto, Dinar Dwi Anugerah; Sarino, Yuono, Agus Lestari

    2017-11-01

    Soil erosion is a natural process that is influenced by the magnitude of rainfall intensity, land cover, slope, soil type and soil processing system. However, it is often accelerated by human activities, such as improper cultivation of agricultural land, clearing of forest land for mining activities, and changes in topographic area due to use for other purposes such as pile materials, mined pits and so on. The Central Lematang sub-basin is part of the Lematang sub basin, at the Musi River Region Unit, South Sumatra Province, in Indonesia, which has a topographic shape with varying types of slope and altitude. The critical condition of Central Lematang sub basin has been at an alarming rate, as more than 47.5% of topographic and land use changes are dominated by coal mining activities and forest encroachment by communities. The method used in predicting erosion is by USPED (Unit Stream Power Erosion and Disposition). This is because the USPED [1] method can predict not only sediment transport but also the value of peeling (detachment) and sediment deposition. From slope analysis result, it is found that the highest erosion potential value is found on slope (8-15%) and the sediment is carried on a steep slope (15-25%). Meanwhile, the high sediment deposition area is found in the waters of 5.226 tons / ha / year, the steeper area of 2.12 tons / ha / year.

  1. Numerical Modelling of Seismic Slope Stability

    NASA Astrophysics Data System (ADS)

    Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles

    Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.

  2. A 2.7 Myr record of sedimentary processes on a high-latitude continental slope: 3D seismic evidence from the mid-Norwegian margin

    NASA Astrophysics Data System (ADS)

    Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.

    2017-12-01

    An extensive three-dimensional seismic dataset is used to investigate the sedimentary processes and morphological evolution of the mid-Norwegian continental slope through the Quaternary. These data reveal hundreds of buried landforms, including channels and debris flows of variable morphology, as well as gullies, iceberg ploughmarks, slide scars and sediment waves. Slide scars, turbidity currents and debris flows comprise slope systems controlled by local slope morphology, showing the spatial variability of high-latitude sedimentation. Channels dominate the Early Pleistocene ( 2.7-0.8 Ma) morphological record of the mid-Norwegian slope. During Early Plesitocene, glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Glacigenic debris-flows appear within the Middle-Late Pleistocene ( 0.8-0 Ma) succession. Their abundance increases on Late Pleistocene palaeo-surfaces, marking a paleo-environmental change characterised by decreasing role for channelized turbidity currents and dense water flows. This transition coincides with the gradual shift to full-glacial ice-sheet conditions marked by the appearance of the first erosive fast-flowing ice streams and an associated increase in sediment flux to the shelf edge, emphasizing first-order climate control on the temporal variability of high-latitude sedimentary slope records.

  3. Can sea level rise cause large submarine landslides on continental slopes?

    NASA Astrophysics Data System (ADS)

    Urlaub, Morelia

    2014-05-01

    Submarine landslides are one of the volumetrically most important sediment transport processes at continental margins. Moreover, these landslides are a major geohazard as they can cause damaging tsunamis and destroy seabed infrastructure. Due to their inaccessibility our understanding of what causes these landslides is limited and based on hypotheses that are difficult to test. Some of the largest submarine landslides, such as the Storegga Slide off Norway, occurred during times of eustatic sea level rise. It has been suggested that this global sea level rise was implicated in triggering of the landslides by causing an increase in excess pore pressure in the subseafloor. However, in a homogeneous slope a change in the thickness of the overlying water mass is not expected to affect its stability, as only the hydrostatic pressure component will change, whereas pore pressures in excess of hydrostatic will remain unaltered. Whether sufficiently rapid sea level rise, aided by rather impermeable sediment and complex layering, could cause excess pore pressures that may destabilise a continental slope is more difficult to answer and has not yet been tested. I use Finite Element Modelling to explore and quantify the direct effect of changes in the thickness of the overlying water mass on the stability of a generic sediment column with different stratigraphic conditions and hydro-mechanical properties. The results show that the direct effect of sea level rise on continental slope stability is minimal. Nevertheless, sea level rise may foster other processes, such as lithospheric stress changes resulting in increased seismicity, that could potentially cause large submarine landslides on continental slopes.

  4. Potential role of gas hydrate decomposition in generating submarine slope failures: Chapter 12

    USGS Publications Warehouse

    Pauli, Charles K.; Ussler, William III; Dillon, William P.; Max, Michael D.

    2003-01-01

    Gas hydrate decomposition is hypothesized to be a factor in generating weakness in continental margin sediments that may help explain some of the observed patterns of continental margin sediment instability. The processes associated with formation and decomposition of gas hydrate can cause the strengthening of sediments in which gas hydrate grow and the weakening of sediments in which gas hydrate decomposes. The weakened sediments may form horizons along which the potential for sediment failure is increased. While a causal relationship between slope failures and gas hydrate decomposition has not been proven, a number of empirical observations support their potential connection.

  5. Chemical and isotopic signature of bulk organic matter and hydrocarbon biomarkers within mid-slope accretionary sediments of the northern Cascadia margin gas hydrate system

    USGS Publications Warehouse

    Kaneko, Masanori; Shingai, Hiroshi; Pohlman, John W.; Naraoka, Hiroshi

    2010-01-01

    The chemical and isotopic compositions of sedimentary organic matter (SOM) from two mid-slope sites of the northern Cascadia margin were investigated during Integrated Ocean Drilling Program (IODP) Expedition 311 to elucidate the organic matter origins and identify potential microbial contributions to SOM. Gas hydrate is present at both locations (IODP Sites U1327 and U1328), with distinct patterns of near-seafloor structural accumulations at the cold seep Site U1328 and deeper stratigraphic accumulations at the slope-basin Site U1327. Source characterization and evidence that some components of the organic matter have been diagenetically altered are determined from the concentrations and isotopic compositions of hydrocarbon biomarkers, total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS). The carbon isotopic compositions of TOC (δ13CTOC = −26 to −22‰) and long-chain n-alkanes (C27, C29 and C31, δ13C = −34 to − 29‰) suggest the organic matter at both sites is a mixture of 1) terrestrial plants that employ the C3 photosynthetic pathway and 2) marine algae. In contrast, the δ15NTN values of the bulk sediment (+ 4 to + 8‰) are consistent with a predominantly marine source, but these values most likely have been modified during microbial organic matter degradation. The δ13C values of archaeal biomarker pentamethylicosane (PMI) (− 46.4‰) and bacterial-sourced hopenes, diploptene and hop-21-ene (− 40.9 to − 34.7‰) indicate a partial contribution from methane carbon or a chemoautotrophic pathway. Our multi-isotope and biomarker-based conclusions are consistent with previous studies, based only on the elemental composition of bulk sediments, that suggested a mixed marine-terrestrial organic matter origin for these mid-slope sites of the northern Cascadia margin.

  6. Quantification of soil erosion and transport processes in the in the Myjava Hill Land

    NASA Astrophysics Data System (ADS)

    Hlavcová, Kamila; Kohnová, Silvia; Velisková, Yvetta; Studvová, Zuzana; Socuvka, Valentin; Németová, Zuzana; Duregová, Maria

    2017-04-01

    The aim of the study is a complex analysis of soil erosion processes and proposals for erosion control in the region of the Myjava Hill Land located in western Slovakia. The Myjava Hill Land is characteristic of quick runoff response, intensive soil erosion by water and related muddy floods, which are determined by both natural and socio-economic conditions. In this paper a case study in the Svacenický Creek catchment, with a focus on the quantification of soil loss from the agriculturally arable lands and sediment transport to the dry water reservoir (polder) of the Svacenický Creek is presented. Erosion, sediment transport, and the deposition of sediments in the water reservoir represent a significant impact on its operation, mainly with regard to reducing its accumulation volume. For the analysis of the soil loss and sediment transport from the Svacenický Creek catchment, the Universal Soil Loss Equation, the USLE 2D, and the Sediment Delivery Ratio (SDR) models were applied. Because the resulting values of the soil loss exceeded the values of the tolerated soil loss, erosion control measures by strip cropping were designed. Strip cropping is based on altering crop strips with protective (infiltration) strips. The effectiveness of the protective (infiltration) strips for reducing runoff from the basin by the SCS-CN method was estimated. Monitoring the morphological parameters of bottom sediments and their changes over time is crucial information in the field of water reservoir operations. In September 2015, the AUV EcoMapper was used to gather the data information on the Svacenický Creek reservoir. The data includes information about the sediment depths and parameters of the water quality. The results of the surveying are GIS datasets and maps, which provide a higher resolution of the bathymetric data and contours of the bottom reservoir. To display the relief of the bottom, the ArcMap 10.1. software was used. Based on the current status of the bottom

  7. Assessing RUSLE and hill-slope soil movement modeling in the central Appalachians

    Treesearch

    Jingxin Wang; Pam Edwards; Greg W. Hamons; William Goff

    2010-01-01

    The determination of the topographical attributes responsible for the origination and transfer of sediment were investigated in a central Appalachian mixed hardwood forest from 2002 through 2005. Two study watersheds were chosen on the left fork of Clover Run within the Indian Run watershed in Tucker County, West Virginia. Silt fence was installed around all the stream...

  8. Impact craters as biospheric microenvironments, Lawn Hill Structure, Northern Australia.

    PubMed

    Lindsay, John; Brasier, Martin

    2006-04-01

    Impact craters on Mars act as traps for eolian sediment and in the past may have provided suitable microenvironments that could have supported and preserved a stressed biosphere. If this is so, terrestrial impact structures such as the 18-km-diameter Lawn Hill Structure, in northern Australia, may prove useful as martian analogs. We sampled outcrop and drill core from the carbonate fill of the Lawn Hill Structure and recorded its gamma-log signature. Facies data along with whole rock geochemistry and stable isotope signatures show that the crater fill is an outlier of the Georgina Basin and was formed by impact at, or shortly before, approximately 509-506 million years ago. Subsequently, it was rapidly engulfed by the Middle Cambrian marine transgression, which filled it with shallow marine carbonates and evaporites. The crater formed a protected but restricted microenvironment in which sediments four times the thickness of the nearby basinal succession accumulated. Similar structures, common on the martian surface, may well have acted as biospheric refuges as the planet's water resources declined. Low-pH aqueous environments on Earth similar to those on Mars, while extreme, support diverse ecologies. The architecture of the eolian crater fill would have been defined by long-term ground water cycles resulting from intermittent precipitation in an extremely arid climate. Nutrient recycling, critical to a closed lacustrine sub-ice biosphere, could be provided by eolian transport onto the frozen water surface.

  9. Sediment delivery estimates in water quality models altered by resolution and source of topographic data.

    PubMed

    Beeson, Peter C; Sadeghi, Ali M; Lang, Megan W; Tomer, Mark D; Daughtry, Craig S T

    2014-01-01

    Moderate-resolution (30-m) digital elevation models (DEMs) are normally used to estimate slope for the parameterization of non-point source, process-based water quality models. These models, such as the Soil and Water Assessment Tool (SWAT), use the Universal Soil Loss Equation (USLE) and Modified USLE to estimate sediment loss. The slope length and steepness factor, a critical parameter in USLE, significantly affects sediment loss estimates. Depending on slope range, a twofold difference in slope estimation potentially results in as little as 50% change or as much as 250% change in the LS factor and subsequent sediment estimation. Recently, the availability of much finer-resolution (∼3 m) DEMs derived from Light Detection and Ranging (LiDAR) data has increased. However, the use of these data may not always be appropriate because slope values derived from fine spatial resolution DEMs are usually significantly higher than slopes derived from coarser DEMs. This increased slope results in considerable variability in modeled sediment output. This paper addresses the implications of parameterizing models using slope values calculated from DEMs with different spatial resolutions (90, 30, 10, and 3 m) and sources. Overall, we observed over a 2.5-fold increase in slope when using a 3-m instead of a 90-m DEM, which increased modeled soil loss using the USLE calculation by 130%. Care should be taken when using LiDAR-derived DEMs to parameterize water quality models because doing so can result in significantly higher slopes, which considerably alter modeled sediment loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Potential geologic hazards on the eastern Gulf of Cadiz slope (SW Spain)

    USGS Publications Warehouse

    Baraza, J.; Ercilla, G.; Nelson, C.H.

    1999-01-01

    Geologic hazards resulting from sedimentary, oceanographic and tectonic processes affect more than one third of the offshore Gulf of Cadiz, and are identified by interpreting high-resolution seismic profiles and sonographs. Hazards of sedimentary origin include the occurrence of slope instability processes in the form of single or multiple slumps occupying up to 147 km2 mainly concentrated in the steeper, upper slope area. Besides the presence of steep slopes, the triggering of submarine landslides is probably due to seismic activity and favoured by the presence of biogenic gas within the sediment. Gassy sediments and associated seafloor pockmarks cover more than 240 km2 in the upper slope. Hazards from oceanographic processes result from the complex system of bottom currents created by the interaction of the strong Mediterranean Undercurrent and the rough seafloor physiography. The local intensification of bottom currents is responsible for erosive processes along more than 1900 km2 in the upper slope and in the canyons eroded in the central area of the slope, undermining slopes and causing instability. The strong bottom currents also create a mobile seafloor containing bedforms in an area of the Gulf that extends more than 2500 km2, mostly in the continental slope terraces. Hazards of tectonic origin are important because the Gulf of Cadiz straddles two major tectonic regions, the Azores-Gibraltar fracture zone and the Betic range, which results in diapir uplift over an area of more than 1000 km2, and in active seismicity with earthquakes of moderate magnitude. Also, tsunamis produced by strong earthquakes occur in the Gulf of Cadiz, and are related to the tectonic activity along the Azores-Gibraltar fracture zone.

  11. Submarine slope failures due to pipe structure formation.

    PubMed

    Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H

    2018-02-19

    There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

  12. Genetic diversity and structure in hill rice (Oryza sativa L.) landraces from the North-Eastern Himalayas of India.

    PubMed

    Roy, Somnath; Marndi, B C; Mawkhlieng, B; Banerjee, A; Yadav, R M; Misra, A K; Bansal, K C

    2016-07-13

    Hill rices (Oryza sativa L.) are direct seeded rices grown on hill slopes of different gradients. These landraces have evolved under rainfed and harsh environmental conditions and may possess genes governing adaptation traits such as tolerance to cold and moisture stress. In this study, 64 hill rice landraces were collected from the state of Arunachal Pradesh of North-Eastern region of India, and assessed by agro-morphological variability and microsatellite markers polymorphism. Our aim was to use phenotypic and genetic diversity data to understand the basis of farmers' classification of hill rice landraces into two groups: umte and tening. Another goal was to understand the genetic differentiation of hill rices into Indica or japonica subspecies. According to farmers' classification, hill rices were categorized into two groups: umte (large-grained, late maturing) and tening (small-grained, early maturing). We did not find significant difference in days to 50 % flowering between the groups. Principal component analysis revealed that two groups can be distinguished on the basis of kernel length-to-width ration (KLW), kernel length (KL), grain length (GrL), grain length-to-width ration (GrLW) and plant height (Ht). Stepwise canonical discriminant analysis identified KL and Ht as the main discriminatory characters between the cultivar groups. Genetic diversity analysis with 35 SSR markers revealed considerable genetic diversity in the hill rice germplasm (gene diversity: 0.66; polymorphism information content: 0.62). Pair-wise allelic difference between umte and tening groups was not statistically significant. The model-based population structure analysis showed that the hill rices were clustered into two broad groups corresponding to Indica and Japonica. The geographic distribution and cultivars grouping of hill rices were not congruent in genetic clusters. Both distance- and model-based approaches indicated that the hill rices were predominantly japonica or

  13. Aragonite preservation in late Quaternary sediment cores on the Brazilian Continental Slope: implications for intermediate water circulation

    NASA Astrophysics Data System (ADS)

    Gerhardt, S.; Groth, H.; Rühlemann, C.; Henrich, R.

    We present late Quaternary records of aragonite preservation determined for sediment cores recovered on the Brazilian Continental Slope (1790-2585m water depth) where North Atlantic Deep Water (NADW) dominates at present. We have used various indirect dissolution proxies (carbonate content, aragonite/calcite contents, and sand percentages) as well as gastropodal abundances and fragmentation of Limacina inflata to determine the state of aragonite preservation. In addition, microscopic investigations of the dissolution susceptibility of three Limacina species yielded the Limacina Dissolution Index which correlates well with most of the other proxies. Excellent preservation of aragonite was found in the Holocene section, whereas aragonite dissolution gradually increases downcore. This general pattern is attributed to an overall increase in aragonite corrosiveness of pore waters. Overprinted on this early diagenetic trend are high-frequency fluctuations of aragonite preservation, which may be related to climatically induced variations of intermediate water masses.

  14. Hydraulic properties for interrill erosion on steep slopes using a portable rainfall simulator

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Hwang, Yoonhee; Deog Park, Sang; Yun, Minu; Park, Sangyeon

    2017-04-01

    The hydraulic parameters for sheet flow on steep slopes have been not frequently measured because the shallow flow depth and slow flow velocity are difficult to measure. In this study hydraulic values of sheet flow were analyzed to evaluate interrill erosion on steep slopes. A portable rainfall simulator was used to conduct interrill erosion test. The kinetic energy of rainfall simulator was obtained by disdrometer being capable of measuring the drop size distribution and velocity of falling raindrops. The sheet flow velocity was determined by the taken time for a dye transferring fixed points using video images. Surface runoff discharge and sediment yield increased with increase of rainfall intensity and kinetic energy and slope steepness. Especially sediment yield was strongly correlated with sheet flow velocity. The maximum velocity of sheet flow was 2.3cm/s under rainfall intensity of 126.8mm/h and slope steepness of 53.2%. The sheet flow was laminar and subcritical flow as the flow Reynolds number and Froude number are respectively the ranges of 10 22 and 0.05 0.25. The roughness coefficient (Manning's n) for sheet flow on steep slopes was relatively large compared to them on the gentle slope. Keywords: Sheet flow velocity; Rainfall simulator; Interrill erosion; Steep slope This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1C1A2A01055469).

  15. Sediment source apportionment in Laurel Hill Creek, PA, using Bayesian chemical mass balance and isotope fingerprinting

    USGS Publications Warehouse

    Stewart, Heather; Massoudieh, Arash; Gellis, Allen C.

    2015-01-01

    A Bayesian chemical mass balance (CMB) approach was used to assess the contribution of potential sources for fluvial samples from Laurel Hill Creek in southwest Pennsylvania. The Bayesian approach provides joint probability density functions of the sources' contributions considering the uncertainties due to source and fluvial sample heterogeneity and measurement error. Both elemental profiles of sources and fluvial samples and 13C and 15N isotopes were used for source apportionment. The sources considered include stream bank erosion, forest, roads and agriculture (pasture and cropland). Agriculture was found to have the largest contribution, followed by stream bank erosion. Also, road erosion was found to have a significant contribution in three of the samples collected during lower-intensity rain events. The source apportionment was performed with and without isotopes. The results were largely consistent; however, the use of isotopes was found to slightly increase the uncertainty in most of the cases. The correlation analysis between the contributions of sources shows strong correlations between stream bank and agriculture, whereas roads and forest seem to be less correlated to other sources. Thus, the method was better able to estimate road and forest contributions independently. The hypothesis that the contributions of sources are not seasonally changing was tested by assuming that all ten fluvial samples had the same source contributions. This hypothesis was rejected, demonstrating a significant seasonal variation in the sources of sediments in the stream.

  16. Geologic map of the Bodie Hills, California and Nevada

    USGS Publications Warehouse

    John, David A.; du Bray, Edward A.; Box, Stephen E.; Vikre, Peter G.; Rytuba, James J.; Fleck, Robert J.; Moring, Barry C.

    2015-01-01

    The Bodie Hills covers about 1,200 km2 straddling the California-Nevada state boundary just north of Mono Lake in the western part of the Basin and Range Province, about 20 km east of the central Sierra Nevada. The area is mostly underlain by the partly overlapping, middle to late Miocene Bodie Hills volcanic field and Pliocene to late Pleistocene Aurora volcanic field (John and others, 2012). Upper Miocene to Pliocene sedimentary deposits, mostly basin-filling sediments, gravel deposits, and fanglomerates, lap onto the west, north, and east sides of the Bodie Hills, where they cover older Miocene volcanic rocks. Quaternary surficial deposits, including extensive colluvial, fluvial, glacial, and lacustrine deposits, locally cover all older rocks. Miocene and younger rocks are tilted ≤30° in variable directions. These rocks are cut by several sets of high-angle faults that exhibit a temporal change from conjugate northeast-striking left-lateral and north-striking right-lateral oblique-slip faults in rocks older than about 9 Ma to north- and northwest-striking dip-slip faults in late Miocene rocks. The youngest faults are north-striking normal and northeast-striking left-lateral oblique-slip faults that cut Pliocene-Pleistocene rocks. Numerous hydrothermal systems were active during Miocene magmatism and formed extensive zones of hydrothermally altered rocks and several large mineral deposits, including gold- and silver-rich veins in the Bodie and Aurora mining districts (Vikre and others, in press).

  17. Using U-Pb Detrital Zircon to Identify Evolution of Sediment Drainage in the South Central Pyrenean Foreland Basin, Spain

    NASA Astrophysics Data System (ADS)

    Clark, J. D.; Stockli, D. F.; McKay, M. P.; Thomson, K.; Puigdefabregas, C.; Castelltort, S.; Dykstra, M.; Fildani, A.

    2014-12-01

    Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.

  18. The influence of terracettes on surface hydrology and erosion on vegetated Alpine, mountain and steep-sloping environments

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; (Phil) Greenwood, Philip

    2014-05-01

    Alpine and mountain slopes represent important pathways that link high altitude grazing areas to meadows and rangelands at lower elevations. Given the often acute gradient of mountain slopes, they represent a convenient and potentially highly efficient runoff conveyance route that facilitates the downslope transfer of fine-sediment and sediment-bound nutrients and contaminants during erosion events. Above a certain gradient, many slopes host small steps, or `terracettes`. As these are generally orientated across slope, their genesis is usually attributed to a combination of soil creep, coupled with (and often accentuated by) grazing animals. Motivated by the prevalence of these distinct landform features and lack of information on their role as runoff conveyance routes, this communication reports preliminary results from an investigation to explore the possibility that terracettes may act as preferential flow-paths, with an as yet undocumented ability to greatly influence surface hydrology in mountainous and steeply-sloping environments. A ca. 40 m2 area of vegetated terracettes and section of adjacent thalweg, with gradients ranging from approximately 25-35o, were scanned using an automated Topcon IS03 Total Station at a resolution of 0.1 * 0.1 m. Data were converted to a Digital Elevation Model (DEM) in ArcGIS 10 Geographical Information System (GIS), and queried using Spatial Analyst (Surface Hydrology; Flow Accumulation function) to identify slope-sections that could act as preferential flow-pathways during runoff events. These data were supplemented by information on soil physical properties that included grain size composition, bulk density and porosity, in order to establish spatial variations in soil characteristics associated with the vertical and horizontal terracette features. Combining the digital and in-situ data indicate that the technique is able to identify preferential surface flow-paths. Such information could greatly benefit the future management

  19. Progress in the application of landform analysis in studies of semiarid erosion

    USGS Publications Warehouse

    Schumm, Stanley Alfred; Hadley, R.F.

    1961-01-01

    The analysis of topographic and hydrologic data gathered during studies of erosion in semiarid areas of Western United States show the following relation: (a) Mean annual sediment yield from small drainage basins is related to a ratio of basin relief to length; (b) mean annual runoff from small drainage basins is related to drainage density; (c) mean annual sediment yield per unit area decreases with increase in drainage area; (d) the form of some convex hill slopes is related to surficial creep; (e) asymmetry of drainage basins, including differences in hill-slope erosion and drainage density, is related to microclimatic variations on slopes of diverse exposure; .(f) the cutting of discontinuous gullies is closely related to steepening by deposition of the semiarid valley floor; (g) aggradation in ephemeral streams seems to be most prevalent in reaches where the ratio of contributing drainage area to channel length is relatively small; and (h) streamchannel shape, expressed as a width-depth ratio, is related to the percentage of silt-clay in bed and bank alluvium. The above relations cannot be detected without measurement of terrain characteristics. They further indicate the importance of quantitative terrain analysis in studies of erosion.

  20. True Volumes of Slope Failure Estimated From a Quaternary Mass-Transport Deposit in the Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Qiliang; Alves, Tiago M.; Lu, Xiangyang; Chen, Chuanxu; Xie, Xinong

    2018-03-01

    Submarine slope failure can mobilize large amounts of seafloor sediment, as shown in varied offshore locations around the world. Submarine landslide volumes are usually estimated by mapping their tops and bases on seismic data. However, two essential components of the total volume of failed sediments are overlooked in most estimates: (a) the volume of subseismic turbidites generated during slope failure and (b) the volume of shear compaction occurring during the emplacement of failed sediment. In this study, the true volume of a large submarine landslide in the northern South China Sea is estimated using seismic, multibeam bathymetry and Ocean Drilling Program/Integrated Ocean Drilling Program well data. The submarine landslide was evacuated on the continental slope and deposited in an ocean basin connected to the slope through a narrow moat. This particular character of the sea floor provides an opportunity to estimate the amount of strata remobilized by slope instability. The imaged volume of the studied landslide is 1035 ± 64 km3, 406 ± 28 km3 on the slope and 629 ± 36 km3 in the ocean basin. The volume of subseismic turbidites is 86 km3 (median value), and the volume of shear compaction is 100 km3, which are 8.6% and 9.7% of the landslide volume imaged on seismic data, respectively. This study highlights that the original volume of the failed sediments is significantly larger than that estimated using seismic and bathymetric data. Volume loss related to the generation of landslide-related turbidites and shear compaction must be considered when estimating the total volume of failed strata in the submarine realm.

  1. Geologic controls on submarine slope failure along the central U.S. Atlantic margin: Insights from the Currituck Slide Complex

    USGS Publications Warehouse

    Hill, Jenna C.; Brothers, Daniel S.; Craig, Bradley K.; ten Brink, Uri S.; Chaytor, Jason D.; Flores, Claudia

    2017-01-01

    Multiple styles of failure, ranging from densely spaced, mass transport driven canyons to the large, slab-type slope failure of the Currituck Slide, characterize adjacent sections of the central U.S. Atlantic margin that appear to be defined by variations in geologic framework. Here we use regionally extensive, deep penetration multichannel seismic (MCS) profiles to reconstruct the influence of the antecedent margin physiography on sediment accumulation along the central U.S. Atlantic continental shelf-edge, slope, and uppermost rise from the Miocene to Present. These data are combined with high-resolution sparker MCS reflection profiles and multibeam bathymetry data across the Currituck Slide Complex. Pre-Neogene allostratigraphic horizons beneath the slope are generally characterized by low gradients and convex downslope profiles. This is followed by the development of thick, prograded deltaic clinoforms during the middle Miocene. Along-strike variations in morphology of a regional unconformity at the top of this middle Miocene unit appear to have set the stage for differing styles of mass transport along the margin. Areas north and south of the Currituck Slide are characterized by oblique margin morphology, defined by an angular shelf-edge and a relatively steep (> 8°), concave slope profile. Upper slope sediment bypass, closely spaced submarine canyons, and small, localized landslides confined to canyon heads and sidewalls characterize these sectors of the margin. In contrast, the Currituck region is defined by a sigmoidal geometry, with a rounded shelf-edge rollover and gentler slope gradient (< 6°). Thick (> 800 m), regionally continuous stratified slope deposits suggest the low gradient Currituck region was a primary depocenter for fluvial inputs during multiple sea level lowstands. These results imply that the rounded, gentle slope physiography developed during the middle Miocene allowed for a relatively high rate of subsequent sediment accumulation

  2. Sedimentary dynamics and high-frequency sequence stratigraphy of the southwestern slope of Great Bahama Bank

    NASA Astrophysics Data System (ADS)

    Wunsch, Marco; Betzler, Christian; Eberli, Gregor P.; Lindhorst, Sebastian; Lüdmann, Thomas; Reijmer, John J. G.

    2018-01-01

    New geophysical data from the leeward slope of Great Bahama Bank show how contour currents shape the slope and induce re-sedimentation processes. Along slope segments with high current control, drift migration and current winnowing at the toe of slope form a deep moat. Here, the slope progradation is inhibited by large channel incisions and the accumulation of large mass transport complexes, triggered by current winnowing. In areas where the slope is bathed by weaker currents, the accumulation of mass transport complexes and channel incision is rather controlled by the position of the sea level. Large slope failures were triggered during the Mid-Pleistocene transition and Mid-Brunhes event, both periods characterized by changes in the cyclicity or the amplitude of sea-level fluctuations. Within the seismic stratigraphic framework of third order sequences, four sequences of higher order were identified in the succession of the upper Pleistocene. These higher order sequences also show clear differences in function of the slope exposure to contour currents. Two stochastic models emphasize the role of the contour currents and slope morphology in the facies distribution in the upper Pleistocene sequences. In areas of high current influence the interplay of erosional and depositional processes form a complex facies pattern with downslope and along strike facies alterations. In zones with lower current influence, major facies alternations occur predominately in downslope direction, and a layer-cake pattern characterizes the along strike direction. Therefore, this study highlights that contour currents are an underestimated driver for the sediment distribution and architecture of carbonate slopes.

  3. Asymmetric Effects of Subaerial and Subaqueous Basement Slopes on Self-Similar Morphology of Prograding Deltas

    NASA Astrophysics Data System (ADS)

    Lai, Steven Yueh Jen; Hsiao, Yung-Tai; Wu, Fu-Chun

    2017-12-01

    Deltas form over basements of various slope configurations. While the morphodynamics of prograding deltas over single-slope basements have been studied previously, our understanding of delta progradation over segmented basements is still limited. Here we use experimental and analytical approaches to investigate the deltaic morphologies developing over two-slope basements with unequal subaerial and subaqueous slopes. For each case considered, the scaled profiles of the evolving delta collapse to a single profile for constant water and sediment influxes, allowing us to use the analytical self-similar profiles to investigate the individual effects of subaerial/subaqueous slopes. Individually varying the subaerial/subaqueous slopes exerts asymmetric effects on the morphologies. Increasing the subaerial slope advances the entire delta; increasing the subaqueous slope advances the upstream boundary of the topset yet causes the downstream boundary to retreat. The delta front exhibits a first-retreat-then-advance migrating trend with increasing subaqueous slope. A decrease in subaerial topset length is always accompanied by an increase in subaqueous volume fraction, no matter which segment is steepened. Applications are presented for estimating shoreline retreat caused by steepening of basement slopes, and estimating subaqueous volume and delta front using the observed topset length. The results may have implications for real-world delta systems subjected to upstream tectonic uplift and/or downstream subsidence. Both scenarios would exhibit reduced topset lengths, which are indicative of the accompanied increases in subaqueous volume and signal tectonic uplift and/or subsidence that are at play. We highlight herein the importance of geometric controls on partitioning of sediment between subaerial and subaqueous delta components.

  4. Estimated post-Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain

    USGS Publications Warehouse

    Nelson, C.H.

    1990-01-01

    Because of the extensive data base of seismic profiles, radiometric ages, and stratigraphic time markers such as the subaerial Messinian surface, sedimentation rates and Ebro River sediment discharge can be estimated for different periods and environments of the Ebro continental margin. New values for sediment discharge (i.e., 6.2 versus previous estimates of 2-3.5 million t/yr) for the Holocene highstand are more reliable but remain minimum estimates because a small proportion of Ebro sediment advected to the Balearic Rise and Abyssal Plain cannot be accounted for, especially during lowstands. The general highstand conditions of the Pliocene, which were similar to those of the Holocene, resulted in a low discharge of Ebro River sediment (ca. 6.5 million t/yr) and an even thickness of sediment across the margin that deposited at rates of about 24-40 cm/ky. In contrast, sediment supply increased two-three times during the Pleistocene, the margin prograded rapidly and deposition occurred at rates of 101-165 cm/ky on the outer shelf and slope, but basin floor rates remained anomalously low (21-26 cm/ky) because sediment was drained and broadly dispersed eastward in Valencia Trough. During the late Pleistocene rise of sea level, the main depocenters progressively shifted shoreward and sedimentation rates greatly decreased from 175 cm/ky on the upper slope during the early transgression to 106 cm/ky on the outer shelf and then to 63 cm/ky on the mid-shelf during the late transgression as the river sediment discharge dropped to half by Holocene time. Maximal sedimentation rates occurred in active depocenters of sediment dispersal such as the Holocene delta (370 cm/ky) or the youngest Pleistocene Oropesa channel-levee complex (705 cm/ky) where deposition rates increased by an order of magnitude or more compared to average Ebro shelf (38 cm/ky) or base-of-slope rates in the Pleistocene (21 cm/ky). The sedimentation rates verify the importance of sea-level control on the

  5. Indo-Burma Range: a belt of accreted microcontinents, ophiolites and Mesozoic-Paleogene flyschoid sediments

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.

    2015-07-01

    This study provides an insight into the lithotectonic evolution of the N-S trending Indo-Burma Range (IBR), constituting the southern flank of the Himalayan syntaxis. Paleogene flyschoid sediments (Disang-Barail) that represent a shallow marine to deltaic environment mainly comprise the west-central sector of IBR, possibly resting upon a continental base. On the east, these sequences are tectonically flanked by the Eocene olistostromal facies of the Disang, which developed through accretion of trench sediments during the subduction. The shelf and trench facies sequences of the Disang underwent overthrusting from the east, giving rise to two ophiolite suites ( Naga Hills Lower Ophiolite ( NHLO) and Victoria Hills Upper Ophiolite ( VHUO), but with different accretion history. The ophiolite and ophiolite cover rock package were subsequently overthrusted by the Proterozoic metamorphic sequence, originated from the Burmese continent. The NHLO suite of Late Jurassic to Early Eocene age is unconformably overlain by mid-Eocene shallow marine ophiolite-derived clastics. On the south, the VHUO of Mesozoic age is structurally underlain by continental metamorphic rocks. The entire package in Victoria Hills is unconformably overlain by shallow marine Late Albian sediments. Both the ophiolite suites and the sandwiched continental metamorphic rocks are thrust westward over the Paleogene shelf sediments. These dismembered ophiolites and continental metamorphic rocks suggest thin-skinned tectonic detachment processes in IBR, as reflected from the presence of klippe of continental metamorphic rocks over the NHLO and the flyschoid Disang floor sediments and half windows exposing the Disang beneath the NHLO.

  6. MARIUS HILLS REGION, MOON: Stratigraphy of low shields and mare basalts

    NASA Astrophysics Data System (ADS)

    Gebhart, Jennifer; Hiesinger, Harry; van der Bogert, Carolyn; Hendrik Pasckert, Jan; Weinauer, Julia; Lawrence, Samuel; Stopar, Julie; Robinson, Mark

    2016-04-01

    The Marius Hills region consists of more than 250 individual basaltic low shields (usually referred to as "domes") and cones, located on a broad topographic rise. The bases of numerous low shields have slope angles of ~2-3° whereas the upper portions have slopes of ~6-7° [1], interpreted to reflect changes in composition over time [1]. However, the absence of spectral differences between the two dome morphologies and the surrounding mare basalts suggests that the observed morphologies are more plausibly explained by changes in effusion rates, temperature (viscosity), and/or crystallization over time [e.g., 2]. Previous studies indicate that volcanism in this region occurred in the Upper Imbrian (3.2-3.8 Ga) [3], although several other authors reported ages ranging from the Imbrian (~3.3 Ga) to the Eratosthenian (~2.5 Ga) [e.g., 1,2,4]. [2,5] reported that all low shields are embayed by younger mare units, indicating that they formed during an older stage of volcanic activity. Mare basalts surrounding the Marius Hills exhibit absolute model ages of 1.2-3.7 Ga [6]. We used 36 LRO NAC images to perform crater size-frequency distribution (CSFD) measurements. The images were calibrated and map-projected with ISIS 3 and imported into ArcGIS. Within ArcGIS, we used CraterTools [7] to perform our CSFD measurements. The crater size-frequency distributions were then plotted with CraterStats [8], using the production and chronology functions of [9]. We conducted CSFD measurements for 50 Marius Hills low shields. Our count area sizes ranged from 1.06 x 101 to 8.75 x 101 km2; those for adjacent basalts varied between 6.17 x 100 and 8.01 x 101 km2. We determined absolute model ages (AMAs) of 1.03 to 3.65 Ga for the low shields and did not find a spatial correlation of ages versus their locations. CSFD measurements for 27 adjacent basalts show AMAs of 1.20-3.69 Ga. Of those basalts, 24 exhibit AMAs of 3-3.5 Ga; there is no correlation of AMAs and the geographic position of the

  7. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska

    USGS Publications Warehouse

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential.The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska.For this report, DGGS funded reanalysis of 105 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Zane Hills area in the Hughes and Shungnak quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  8. Quantifying the Spatial Distribution of Hill Slope Erosion Using a 3-D Laser Scanner

    NASA Astrophysics Data System (ADS)

    Scholl, B. N.; Bogonko, M.; He, Y.; Beighley, R. E.; Milberg, C. T.

    2007-12-01

    Soil erosion is a complicated process involving many interdependent variables including rainfall intensity and duration, drop size, soil characteristics, ground cover, and surface slope. The interplay of these variables produces differing spatial patterns of rill versus inter-rill erosion by changing the effective energy from rain drop impacts and the quantities and timing of sheet and shallow, concentrated flow. The objective of this research is to characterize the spatial patterns of rill and inter-rill erosion produced from simulated rainfall on different soil densities and surface slopes using a 3-D laser scanner. The soil used in this study is a sandy loam with bulk density due to compaction ranging from 1.25-1.65 g/cm3. The surface slopes selected for this study are 25, 33, and 50 percent and represent common slopes used for grading on construction sites. The spatial patterns of soil erosion are measured using a Trimble GX DR 200+ 3D Laser Scanner which employs a time of flight calculation averaged over 4 points using a class 2, pulsed, 532 nm, green laser at a distance of 2 to 11 m from the surface. The scanner measures point locations on an approximately 5 mm grid. The pre- and post-erosion scan surfaces are compared to calculate the change in volume and the dimensions of rills and inter-rill areas. The erosion experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University. SERL experiments utilize a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters. Rainfall is applied to the soil surface using two overhead Norton ladder rainfall simulators, which produce realistic rain drop diameters (median = 2.25 mm) and impact velocities. Simulated storm events used in this study consist of rainfall intensities ranging from 5, 10 to 15 cm/hr for durations of 20 to 30 minutes. Preliminary results are presented that illustrate a change in runoff processes and

  9. Geology of Tompkins Hill gas field, Humboldt County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J.

    1988-03-01

    The Tompkins Hill gas field, located in Humboldt County, California, is the only producing field in the Eel River basin. The field is an anticlinal flexure on the north limb of the Eel River syncline in the central onshore portion of the basin. The Tompkins Hill anticline is doubly plunging and trends east-west. Stratigraphic units present in the field include the Yager, Eel River, and Rio Dell Formations and Scotia Bluffs Sandstone. The Yager occurs below a major unconformity, and forms economic basement. Strata overlying the Eel River, Rio Dell, and Scotia Bluffs represent a progradational basin-fill sequence, including submarinemore » fan, slope, shelf, and littoral deposits. The primary productive interval in the field is within the middle of the Rio Dell and consists of interbedded fine sandstone and mudrock. Portions of the Eel River and upper Rio Dell Formations are also productive. The Tompkins Hill gas field was discovered by the Texas Company in 1937 with the drilling of Eureka 2 in Sec. 22, T3N, R1W. The play was probably based on outcrop mapping and the presence of gas seeps in the area. The primary trapping mechanism in the field is structural, although stratigraphy may have been a factor in constraining gas. To date, 39 producing wells have been drilled and 87.4 bcf of gas, consisting of 98% methane, has been produced. Very minor amounts of condensate are also produced. The source rocks for the gas are uncertain, but both the Yager Formation and strata of the lower Wildcat Group may have contributed.« less

  10. Characterising weak layers that accommodate submarine landslides on the Northwest African continental slope

    NASA Astrophysics Data System (ADS)

    Urlaub, M.; Krastel, S.; Geersen, J.; Schwenk, T.

    2017-12-01

    Numerous studies invoke weak layers to explain the occurrence of large submarine landslides (>100 km³), in particular those on very gentle slopes (<3°). Failure conditions are thought to be met only within this layer, which is embedded between stable sediments. Although key to understanding failure mechanisms, little is known about the nature and composition of such weak layers, mainly because they are (1) often destroyed with the landslide and (2) difficult to reach with ship-based gravity and piston coring. The Northwest African continental slope hosts numerous large submarine landslides that are translational, such that failure takes place along bedding-parallel surfaces at different stratigraphic depths. This suggests that failure occurs along weak layers, which are deposited repeatedly over time. Using high resolution seismic reflection data we trace several failure surfaces of the Cap Blanc Slide complex offshore Northwest Africa to ODP-Site 658. Core-seismic integration shows that the failure surfaces coincide with diatom oozes that are topped by clay. Along Northwest Africa diatom-rich sediments are typically deposited at the end of glacial periods. In the seismic data these oozes show up as distinct high amplitude reflectors due to their characteristic low densities. Similar high-amplitude reflectors embedded into low-reflective seismic units are commonly observed in shallow sediments (<100 m below seafloor) along the entire Northwest African continental slope. The failure surfaces of at least three large landslides coincide with such reflectors. As the most recent Pleistocene glacial periods likely influenced sediment deposition along the entire Northwest African margin in a similar manner we hypothesize that diatom oozes play a critical role for the generation of submarine landslides off Northwest Africa as well as globally within subtropical regions. An initiative to drill the Northwest African continental slope with IODP is ongoing, within which this

  11. Trend analyses of sediment data for the DEC project

    USGS Publications Warehouse

    Rebich, Richard Allen

    1995-01-01

    Daily stream discharge, suspended-sediment concentration, and suspended-sediment discharge data were collected at eight sites in six watersheds of the Demonstration Erosion Control project in the Yazoo River Basin in north-central Mississippi during the period July 1985 through September 1991. The project is part of an ongoing interagency program of planning, design, construction, monitoring, and evaluation to alleviate flooding, erosion, sedimentation, and water-quality problems for watersheds located in the bluff hills upstream of the Mississippi River alluvial plain. This paper presents preliminary results of trend analyses for stream discharge and sediment data for the eight project sites. More than 550 stream discharge measurements and 20,000 suspended-sediment samples have been collected at the eight sites since 1985.

  12. Lithological indicators of loess sedimentation of SW Poland

    NASA Astrophysics Data System (ADS)

    Krawczyk, Marcin; Ryzner, Kamila; Skurzyński, Jacek; Jary, Zdzisław

    2017-12-01

    High-resolution grain-size investigations were carried out in two SW Polish loess sections: Biały Kościół (Niemcza-Strzelin Hills) and Zaprężyn (Trzebnica Hills). Each sequence was sampled by using the same methodology and samples were taken at 5 centimeters intervals. The particle size distribution was obtained with a Mastersizer 2000 laser, used for diffraction methods. From the obtained results the basic parameters and grain size indicators were calculated: Mz, Grain Size Index ratio, U-ratio and the percentage content of clay (< 4μm) and sand (> 63 μm). Both loess-soil sequences are composed of interfluve and slope loess facies and consist of five litho-pedostratigraphic units developed during the Late Pleistocene and Holocene: two loess units L1LL1, L1LL2 and three polygenetic fossil soils sets S0, S1 and L1SS1. The distance between these two profiles is about 60 km. Zaprężyn, as a section located more to the north, has almost no lower younger loess and higher level of weathering which could be related to proximity of this site to the Ice Sheet margin. The climate here was more extreme and harsh. What is more, the difference in development of soil L1SS1 can be observed: while in Biały Kościół pedogenesis process was slower and less disturbed than in Zaprężyn. The upper part of L1SS1 in Biały Kościół was deformed by gelifluction, frost heave and other periglacial processes. Mz indicator by the grain-size distribution in these sediments reflects subtle variations in the climatic system. Moreover, in Zaprężyn the content of sand fraction is higher than in Biały Kościół what can be the evidence of short episodes of strong winds during cold period of sedimentation. The aim of this paper is to compare two loess profiles by their stratigraphical and lithological similarities which are result of climate conditions and features of surrounding environment.

  13. Biomarkers in sedimentary sequences: Indicators to track sediment sources over decadal timescales

    NASA Astrophysics Data System (ADS)

    Chen, F. X.; Fang, N. F.; Wang, Y. X.; Tong, L. S.; Shi, Z. H.

    2017-02-01

    Long-term sedimentary sequence research can reveal how human activities and climate interact to affect catchment vegetation, flooding, soil erosion, and sediment sources. In this study, a biomarker sediment fingerprinting technique based on n-alkanes was used to identify long timescale (decadal) sediment sources in a small agricultural catchment. However, the highly saline carbonate environment and bacterial and algal activities elevated the levels of even-chain n-alkanes in the sediments, leading to an obvious even-over-odd predominance of short and middle components (C15-C26). Therefore, by analyzing three odd, long-chain n-alkanes (C27, C29 and C31) in 27 source samples from cropland, gully, and steep slope areas and one sediment sequence (one cultivated horizon and 47 flood couplets), a composite fingerprinting method and genetic algorithm optimization were applied to find the optimal source contributions to sediments. The biomarker fingerprinting results demonstrated that the primary sediment source is gullies, followed by cropland and steep slope areas. The average median source contributions associated with 47 flood couples collected from sediment core samples ranged from 0 ± 0.1% to 91.9 ± 0.4% with an average of 45.0% for gullies, 0 ± 0.4% to 95.6 ± 1.6% with an average of 38.2% for cropland, and 0 ± 2.1% to 60.7 ± 0.4% with an average of 16.8% for steep slopes. However, because farmers were highly motivated to manage the cropland after the 1980s, over half the sediments were derived from cropland in the 1980s. Biomarkers have significant advantages in the identification of sediments derived from different landscape units (e.g., gully and steep slope areas), and n-alkanes have considerable potential in high-resolution research of environmental change based on soil erosion in the hilly Loess Plateau region.

  14. The abrupt installation of the euxinic environment as reflected by the unconsolidated sediments of the western slope of the Black Sea off the Romanian shore

    NASA Astrophysics Data System (ADS)

    Duliu, Octavian G.; Oaie, Gheorghe; Bojar, Ana-Voica; Zinicovscaia, Inga; Culicov, Otilia-Ana; Frontasyeva, Marina V.; Gradinaru, Janet

    2016-04-01

    A 4,5 m long core containing unconsolidated sediments collected at a depth of 500 m on the western slope of the Black Sea, off Romanian shore was analyzed by Computed Tomography (CT), X-ray Diffraction (XRD), X-ray Fluorescence (XRF) and Instrumental Neutron Activation Analysis (INAA) in order to investigate the changes in the Black Sea environment during the past 10.5 - 12 ky. The most relevant information regarding unconsolidated sediments was furnished by the CT images, clearly indicating the moment when the euxinic environment settled on this sector of the Black Sea, presumably 2.7 ky ago. This event is represented by the sedimentation of a coccolithic mud consisting of alternation of dark and light thin laminae composed of terigenous and respectively coccoliths rich material. This type of mud is characteristic for the sedimentary unit 1, filling the uppermost 50 cm of the core. The observation was confirmed by subsequent XRF and INAA determinations, which show a high content of calcium carbonate related to accumulation of Emilliania huxley coccoliths as well as of minor elements such as iron, molybdenum and uranium, a typical characteristic of euxinic environment. For instance, the average content of Mo and U is 28 and respectively 4 time higher than the corresponding content of the Upper Continental Core (UCC), while the Fe/Al ratio is around 0.52. Moreover, the average chondrite normalized Ce content of sedimentary unite 1 is 1.37 ± 0.17, slightly higher than 1.22, the characteristic value for the UCC. The Ce data indicate a weak positive anomaly, characteristic also for an euxinic reducing environment. All these investigations confirm the abrupt installation at a depth of 500 m of an euxinic environment on the western slope of the Black Sea, euxinic environment persisting to present time.

  15. Hydrology of two slopes in subarctic Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Woo, Ming-Ko

    1999-11-01

    Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.

  16. How does slope form affect erosion in CATFLOW-SED?

    NASA Astrophysics Data System (ADS)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2016-04-01

    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  17. Sediment gravity flows triggered by remotely generated earthquake waves

    NASA Astrophysics Data System (ADS)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  18. Sediment gravity flows triggered by remotely generated earthquake waves

    USGS Publications Warehouse

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan; Salmi, Marie

    2017-01-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  19. Techniques for establishing vegetation for long-term erosion control on disturbed slopes in Alabama

    Treesearch

    M. Dougherty; A. Baharanyi; B. Guertal; J. Grace

    2010-01-01

    One year results from 21 outdoor erosion and sediment control plots constructed in 2008 on a 4:1 slope are presented. The study objectives were to evaluate; 1) the effects of incorporating lime and fertilizer on establishment of bermudagrass on steep slopes, 2) the differences in bermudagrass establishment as a function of temporary covers including wheat straw,...

  20. Relict slope rings and talus flatirons in the Colorado Piedmont: Origin, chronology and paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco; Morgan, Matthew L.; Matthews, Vincent; Gutiérrez, Mateo; Jiménez-Moreno, Gonzalo

    2015-02-01

    In the Colorado Piedmont, talus flatiron chronosequences are associated with buttes that consist of erodible arkosic sandstone and resistant caprock. Following the removal of the caprock, some buttes evolve into crater-like relict slope rings resulting from the differential erosion of the soft bedrock in the core of the hills. These unique landforms are only documented in the Colorado Piedmont. Their development is attributed to the unusually high erodibility contrast between the low-cohesion sandy bedrock and the bouldery colluvial armor. The talus flatiron sequences and relict slope rings mapped in the three studied areas record alternating periods of accumulation and incision in the slopes that are likely controlled by changes in moisture availability and vegetation cover density. The obtained OSL dates place slope accumulation phases at > 124 ka, and ca. 73 ka, 50-40 ka, 15 ka, and 10-6 ka. A comparison of these geochronological data with paleoclimatic records from the region suggests that colluvium deposition occurred during periods of denser vegetation cover, which are controlled by climate changes. Further investigations, including additional and more accurate geochrological data from the relict slopes, will help to better understand the paleoclimatic significance of these largely unknown morphostratigraphic features.

  1. Monitoring baseline suspended sediment in forested basins: the effects of sampling on suspended sediment rating curves

    Treesearch

    Robert B. Thomas

    1988-01-01

    Abstract - Rating curves are widely used for directly assessing changes in the suspended sediment delivery process and indirectly for estimating total yields. Four sampling methods were simulated-over a 31-day record of suspended sediment from the North Fork of the Mad River near Korbel, California. The position and size of the four groups of plotted slope/intercept...

  2. Plot-scale effects on runoff and erosion along a slope degradation gradient

    NASA Astrophysics Data System (ADS)

    Moreno-de Las Heras, Mariano; Nicolau, José M.; Merino-MartíN, Luis; Wilcox, Bradford P.

    2010-04-01

    In Earth and ecological sciences, an important, crosscutting issue is the relationship between scale and the processes of runoff and erosion. In drylands, understanding this relationship is critical for understanding ecosystem functionality and degradation processes. Recent work has suggested that the effects of scale may differ depending on the extent of degradation. To test this hypothesis, runoff and sediment yield were monitored during a hydrological year on 20 plots of various lengths (1-15 m). These plots were located on a series of five reclaimed mining slopes in a Mediterranean-dry environment. The five slopes exhibited various degrees of vegetative cover and surface erosion. A general decrease of unit area runoff was observed with increasing plot scale for all slopes. Nevertheless, the amount of reinfiltrated runoff along each slope varied with the extent of degradation, being highest at the least degraded slope and vice versa. In other words, unit area runoff decreased the least on the most disturbed site as plot length increased. Unit area sediment yield declined with increasing plot length for the undisturbed and moderately disturbed sites, but it actually increased for the highly disturbed sites. The different scaling behavior of the most degraded slopes was especially clear under high-intensity rainfall conditions, when flow concentration favored rill erosion. Our results confirm that in drylands, the effects of scale on runoff and erosion change with the extent of degradation, resulting in a substantial loss of soil and water from disturbed systems, which could reinforce the degradation process through feedback mechanisms with vegetation.

  3. Geologic map of the La Mesita Negra SE Quadrangle, Bernalillo County, New Mexico

    USGS Publications Warehouse

    Shroba, Ralph R.; Thompson, Ren A.; Schmidt, Dwight L.; Personius, Stephen F.; Maldonado, Florian; Brandt, Theodore R.

    2003-01-01

    Geologic mapping, in support of the USGS Middle Rio Grande Basin Geologic Mapping Project, shows the spatial distribution of artificial-fill, alluvial, colluvial, and eolian deposits, lava flows and related sediments of the Albuquerque volcanoes, and upper Santa Fe Group sediments. These deposits are on, beneath, and along the West Mesa (Llano de Albuquerque) just west of Albuquerque, New Mexico. Artificial fill deposits are mapped chiefly beneath and near segments of Interstate 40, in an inactive landfill (or dump) north of Interstate 40 near the eastern boundary of the map area, and in the active Cerro Colorado landfill near the southwestern corner of the map area. Alluvial deposits are mapped in stream channels, beneath treads of terraces, and on hill slopes. They include alluvium in stream channels and beneath treads of low terraces, terrace alluvium, sheetwash deposits, gravelly alluvium, and old alluvium and calcic soils of the Llano de Albuquerque. Alluvial and colluvial deposits are mapped on hill slopes. They include young alluvial-slope deposits, alluvium and colluvium, undivided, and old alluvial-slope deposits. Colluvial deposits are also mapped on hill slopes. They include colluvial deposits, undivided, as well as alluvial deposits, eolian sand, and calcic soils associated with fault scarps. Eolian deposits as well as eolian and alluvial deposits mantle gently slopping surfaces on the Llano de Albuquerque. They include active eolian sand, active and inactive eolian sand and sheetwash deposits, undivided, and inactive eolian sand and sheetwash deposits, undivided. Lava flows and related sediments of the Albuquerque volcanoes were mapped near the southeast corner of the map area. They include five young lava flows, two young cinder deposits, and old lava flows. Upper Santa Fe Group sediments are well exposed and mapped in the western part of the map area. They include a gravel unit, a pebbly sand unit, and a mud and sand unit. Undivided upper Santa Fe

  4. Soft-sediment deformations (convolute lamination and load structures) in turbidites as indicators of flow reflections against bounding slopes

    NASA Astrophysics Data System (ADS)

    Tinterri, Roberto; Muzzi Magalhaes, Pierre; Tagliaferri, Alessio; Cunha, Rogerio S.; Laporta, Michele

    2015-04-01

    turbidites containing these deformative structures show that they are genetically linked to contained-reflected beds in structurally-confined basins, suggesting a trigger mechanism associated with the cyclic-wave loading produced by flow impacts or reflected bores and internal waves related to ponded turbidity currents. The data that can demonstrate this hypothesis come from the foredeep turbidites of the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southwestern France), where a basin scale high-resolution stratigraphic framework with bed-by-bed correlations is now available. These data show that the lateral and vertical distribution of convolute laminae and load structures is not random but has an evident depositional logic related to reflection processes against bounding slopes. Therefore, the main objectives of this work are: 1) to show that convolute laminae and load structures are strictly associated with other sedimentary structures that are unequivocally related to reflection and rebound processes of turbidity currents against morphological obstacles; 2) to show that their lateral and vertical distribution increases concomitantly with the number of contained-reflected beds in the proximity of structurally-controlled morphological highs; 3) to show that the increase in contained-reflected beds with convolute laminae is strictly related to the increase in the synsedimentary-structural uplifts producing more pronounced morphologic highs; 4) to discuss the processes that link soft-sediment deformations with cyclic-wave loading related to internal waves and bores produced by reflection processes.

  5. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars

    USGS Publications Warehouse

    Nachon, Marion; Mangold, Nicolas; Forni, Olivier; Kah, Linda C.; Cousin, Agnes; Wiens, Roger C.; Anderson, Ryan; Blaney, Diana L.; Blank, Jen G.; Calef, Fred J.; Clegg, Samuel M.; Fabre, Cecile; Fisk, Martin R.; Gasnault, Olivier; Grotzinger, John P.; Kronyak, Rachel; Lanza, Nina L.; Lasue, Jeremie; Le Deit, Laetitia; Le Mouelic, Stephane; Maurice, Sylvestre; Meslin, Pierre-Yves; Oehler, D. Z.; Payre, Valerie; Rapin, William; Schroder, Susanne; Stack, Katherine M.; Sumner, Dawn

    2017-01-01

    The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. Here we report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins with calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. In contrast, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.

  6. Landscape changes and natural hazards affecting the Pincio hill (Rome, Italy) in historical times

    NASA Astrophysics Data System (ADS)

    Guarino, Paolo Maria; Lucarini, Mauro; Spizzichino, Daniele

    2016-04-01

    This work focuses on preliminary results achieved by means of a research project carried out by ISPRA in collaboration with Soprintendenza Capitolina (the Cultural Heritage Capitoline Superintendence), aimed at defining an interpretative model of natural and anthropic evolution of the Pincio Hill (Rome, Italy) during the last 2,500 years. The study area is located in the NE sector of the city of Rome and includes the Pincio hill Cultural Heritage site and the surrounding area of the Tiber River flood plain. The Pincio Hill is a very interesting case of interplay among: i) natural landscape setting; ii) historical urban transformations; iii) human activity and recurrence of natural hazard events impacting heavily on the territory since ancient times. During the last decades, designs of new areas to be allocated for underground parking jointly with new archaeological excavations surveys have allowed the acquisition of a large amount of new data. The study has been carried out through a new reinterpretation of recently drilled boreholes stratigraphic logs and the conspicuous related archaeological literature. The main outcome of the research activities are summarized as below. Concerning the top of the hill, latest archaeological excavations brought to the light traces of ancient structures and settlements dating from the Archaic period until the fourth century AD, highlighting the facto the character of strong agricultural and landscape appeal that have involved the western sector of the Pincio hill since the ancient times, without evidence of relevant alterations of the original landscape. In the slope sector, the information coming from geotechnical survey allowed the reconstruction of isochronous surfaces inside of landfills, divided according to their age. The profile of the slope below the landfill from the Roman period seems very steep and irregular, in strong contrast to the medieval one and the current one, characterized by multiple succession of terraces. In

  7. Using H/V Spectral Ratio Analysis to Map Sediment Thickness and to Explain Macroseismic Intensity Variation of a Low-Magnitude Seismic Swarm in Central Belgium

    NASA Astrophysics Data System (ADS)

    Van Noten, K.; Lecocq, T.; Camelbeeck, T.

    2013-12-01

    Between 2008 and 2010, the Royal Observatory of Belgium received numerous ';Did You Feel It'-reports related to a 2-year lasting earthquake swarm at Court-Saint-Etienne, a small town in a hilly area 20 km SE of Brussels, Belgium. These small-magnitude events (-0.7 ≤ ML ≤ 3.2, n = c. 300 events) were recorded both by the permanent seismometer network in Belgium and by a locally installed temporary seismic network deployed in the epicentral area. Relocation of the hypocenters revealed that the seismic swarm can be related to the reactivation of a NW-SE strike-slip fault at 3 to 6 km depth in the basement rocks of the Lower Palaeozoic London-Brabant Massif. This sequence caused a lot of emotion in the region because more than 60 events were felt by the local population. Given the small magnitudes of the seismic swarm, most events were more often heard than felt by the respondents, which is indicative of a local high-frequency earthquake source. At places where the bedrock is at the surface or where it is covered by thin alluvial sediments (<10 m), such as in incised river valleys and on hill slopes, reported macroseismic intensities are higher than those on hill tops where respondents live on a thicker Quaternary and Cenozoic sedimentary cover (> 30 m). In those river valleys that have a considerable alluvial sedimentary cover, macroseismic intensities are again lower. To explain this variation in macroseismic intensity we present a macroseismic analysis of all DYFI-reports related to the 2008-2010 seismic swarm and a pervasive H/V spectral ratio (HVSR) analysis of ambient noise measurements to model the thickness of sediments covering the London-Brabant Massif. The HVSR method is a very powerful tool to map the basement morphology, particularly in regions of unknown subsurface structure. By calculating the soil's fundamental frequency above boreholes, we calibrated the power-law relationship between the fundamental frequency, shear wave velocity and the thickness

  8. Recent seasonal hypoxia on the Western Black Sea shelf recorded in adjacent slope sediments

    NASA Astrophysics Data System (ADS)

    Roepert, Anne; Jilbert, Tom S.; Slomp, Caroline P.

    2015-04-01

    Bottom water hypoxia is a major environmental problem afflicting estuarine and marine environments across the globe (Diaz and Rosenberg, 2008). Hypoxia is often attributed to human-induced increased nutrient discharge from rivers and related eutrophication. The Western Black Sea shelf is a typical example of a system where such anthropogenic impacts are thought to have contributed to the development of seasonal hypoxia in the late 20th century. However, due to the lack of spatially and temporally consistent monitoring in the region, questions remain about the evolution, causes and consequences of the seasonal hypoxia on the Western Black Sea shelf and whether or not the ecological state has recently improved (Capet et al., 2013). In this study a resin-embedded sediment core from a location below the chemocline on the Western Black Sea slope (water depth 377 m) was analyzed for its elemental composition by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), recovering a continuous geochemical record at a sub-annual resolution for the last 100 years. Relative enrichments in organic carbon, Pb, Fe, S, and Mo were observed in the depth interval corresponding to the 1970s until the 1990s, suggesting an increased carbon flux to the sediments as well as an anthropogenic pollution signal. We propose that the expansion of eutrophication on the Western Black Sea shelf was responsible for the enhanced carbon flux to our study site, while the associated hypoxia enhanced the shuttling of redox-sensitive elements to locations below the chemocline. The subsequent decrease in organic carbon and metal enrichments at the core top suggests a recent rise in oxygen concentrations and improvement of the ecological state of the Western Black Sea shelf. References: Capet, A., Beckers, J.-M., Grégoire, M. (2013). "Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf-is there any recovery after eutrophication

  9. Seismic stratigraphy of the Mississippi-Alabama shelf and upper continental slope

    USGS Publications Warehouse

    Kindinger, J.L.

    1988-01-01

    The Mississippi-Alabama shelf and upper continental slope contain relatively thin Upper Pleistocene and Holocene deposits. Five stages of shelf evolution can be identified from the early Wisconsinan to present. The stages were controlled by glacioeustatic or relative sea-level changes and are defined by the stratigraphic position of depositional and erosional episodes. The stratigraphy was identified on seismic profiles by means of geomorphic pattern, high-angle clinoform progradational deposits, buried stream entrenchments, planar conformities, and erosional unconformities. The oldest stage (stage 1) of evolution occurred during the early Wisconsinan lowstand; the subaerially exposed shelf was eroded to a smooth seaward-sloping surface. This paleosurface is overlain by a thin (< 10 m) drape of transgressive deposits (stage 2). Stage 3 occurred in three phases as the late Wisconsinan sea retreated: (1) fluvial channel systems eroded across the shelf, (2) deposited a thick (90 m) shelf-margin delta, and (3) contemporaneously deposited sediments on the upper slope. Stage 4 included the rapid Holocene sea-level rise that deposited a relatively thin transgressive facies over parts of the shelf. The last major depositional episode (stage 5) was the progradation of the St. Bernard delta over the northwestern and central parts of the area. A depositional hiatus has occurred since the St. Bernard progradation. These Upper Quaternary shelf and slope deposits provide models for analogous deposits in the geologic record. Primarily, they are examples of cyclic sedimentation caused by changes in sea level and may be useful in describing short-term, sandy depositional episodes in prograding shelf and slope sequences. ?? 1988.

  10. Prediction of Mass Wasting, Erosion, and Sediment Transport With the Distributed Hydrology-Soil-Vegetation Model

    NASA Astrophysics Data System (ADS)

    Doten, C. O.; Lanini, J. S.; Bowling, L. C.; Lettenmaier, D. P.

    2004-12-01

    Erosion and sediment transport in a temperate forested watershed are predicted with a new sediment module linked to the Distributed Hydrology-Soil-Vegetation Model (DHSVM). The DHSVM sediment module represents the main sources of sediment generation in forested environments: mass wasting, hillslope erosion and road surface erosion. It produces failures based on a factor-of-safety analysis with the infinite slope model through use of stochastically generated soil and vegetation parameters. Failed material is routed downslope with a rule-based scheme that determines sediment delivery to streams. Sediment from hillslopes and road surfaces is also transported to the channel network. Basin sediment yield is predicted with a simple channel sediment routing scheme. The model was applied to the Rainy Creek catchment, a tributary of the Wenatchee River which drains the east slopes of the Cascade Mountains, and Hard and Ware Creeks on the west slopes of the Cascades. In these initial applications, the model produced plausible sediment yield and ratios of landsliding and surface erosion , when compared to published rates for similar catchments in the Pacific Northwest. We have also used the model to examine the implications of fires and logging road removal on sediment generation in the Rainy Creek catchment. Generally, in absolute value, the predicted changes (increased sediment generation) following fires, which are primarily associated with increased slope failures, are much larger than the modest changes (reductions in sediment yield) associated with road obliteration, although the small sensitivity to forest road obliteration may be due in part to the relatively low road density in the Rainy Creek catchment, and to mechanisms, such as culvert failure, that are not represented in the model.

  11. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part II. Lipids

    NASA Technical Reports Server (NTRS)

    Venkatesan, M. I.; Ruth, E.; Steinberg, S.; Kaplan, I. R.

    1987-01-01

    Organic geochemical measurements of the lipid fraction, comparing saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediments cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon. The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that approximately 50% of the shelf organic matter is exported to the slope. Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigations.

  12. High natural erosion rates are the backdrop for enhanced anthropogenic soil erosion in the Middle Hills of Nepal

    NASA Astrophysics Data System (ADS)

    West, A. J.; Arnold, M.; Aumaître, G.; Bourlès, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.

    2014-08-01

    Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be difficult to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well-maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills, but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Because of the high natural background rates, simple comparison of short- and long-term rates may not reveal unsustainable soil degradation, particularly if much of the catchment-scale erosion flux derives from mass wasting. Correcting for the mass wasting contribution in the Likhu implies minimum catchment-averaged soil production rates of ~0.25-0.35 mm yr-1. The deficit between these production rates and soil losses suggests that terraced agriculture in the Likhu may not be associated with a large systematic soil deficit, at least when terraces are well maintained, but that poorly managed terraces, forest and scrubland may lead to rapid depletion of soil resources.

  13. Denudational slope processes and slope response to global climate changes and other disturbances: insights from the Nepal Himalayas.

    NASA Astrophysics Data System (ADS)

    Fort, Monique

    2016-04-01

    Hillslope geomorphology results from a large range of denudational processes mainly controlled by relief, structure, lithology, climate, land-cover and land use. In most areas of the world, the "critical zone" concept is a good integrator of denudation that operates on a long-term scale. However, in large and high mountain areas, short-time scale factors often play a significant role in the denudational pattern, accelerating and/or delaying the transfer of denudation products and fluxes, and creating specific, spatially limited disturbances. We focus on the Nepal Himalayas, where the wide altitudinal range of bio-climatic zones and the intense geodynamic activity create a complex mosaic of landforms, as expressed by the present geomorphology of mountain slopes. On the basis of examples selected in the different Himalayan mountain belts (Siwaliks hills, middle mountains, High Himalaya), we illustrate different types of slopes and disturbances induced by active tectonics, climate extremes, and climate warming trends. Special attention is paid to recent events, such as landslide damming, triggered by either intense rainfalls (Kali Gandaki and Sun Kosi valleys) or the last April-May 2015 Gorkha seismic sequence (southern Khumbu). Lastly, references to older, larger events show that despite the highly dynamic environment, landforms caused by large magnitude disturbances may persist in the landscape in the long term.

  14. [Sediment transport characteristics at different erosion stages for non-hardened roads of the Shenfu Coalfield, west China].

    PubMed

    Guo, Ming-ming; Wang, Wen-long; Li, Jian-ming; Huang, Peng-fei; Zhu, Bao-cai; Wang, Zhen; Luo, Ting

    2015-02-01

    Non-hardened roads formed in the production of the Shenfu Coalfield have a unique condition of underlying surface. The road surface is composed of a regolith layer with a certain thickness resulted from long-term rolling and thus, is characterized by weakened anti-scourabilty and anti-erodibility. In contrast, soil layer below the regolith has a higher bulk density and anti-erodibility. The processes of soil erosion on the non-hardened roads exhibit some differences under rainfall condition. The process of sediment transport and the relationship between sediment transport rate and erosion factors at different erosion stages were studied on non-hardened roads with slope degrees ranging from 3° to 12° (3°, 6°, 9°, 12°) by a field experiment under artificial rainfall. Results showed that the first peak of sediment transport on the regolith surface was observed at the sheet erosion stage. Sheet erosion occurred only at 3° slope degree, with an average variation coefficient of 0.07 for sediment transport rate. Rills in every testing began to develop at slope degrees of 6° to 12° about 15 min after runoff initiation. At the sheet erosion stage, the process of sediment transport fluctuated considerably at rainfall intensities of > 1.5 mm · min(-1), but the differences in its variation were little at the three slope degrees, with average variation coefficients of 0.20, 0.19 and 0.16, respectively. Rainfall intensity had a more significant impact on sediment transport rate than slope degree. The process of sediment transport at the rill erosion stage fluctuated, but the fluctuation was obviously smaller than that at the sheet erosion stage, with average variation coefficients of 0.05, 0.09 and 0.10 at the three slope degrees. Many wide and shallow rills evolved at the rill erosion stage. The sediment transport rate could be well predicted by a power function of rainfall intensity and slope degree at the sheet and rill erosion stages. The stable sediment transport

  15. Bioturbation in shelf/slope sediments off Cape Hatteras, North Carolina: the use of 234Th, Chl- a, and Br - to evaluate rates of particle and solute transport

    NASA Astrophysics Data System (ADS)

    Green, M. A.; Aller, R. C.; Cochran, J. K.; Lee, C.; Aller, J. Y.

    Biogenic particle reworking ( 234Th, Chl- a), chloropigment distributions, and pore-water irrigation rates (Br - tracer) were examined in the continental shelf-break/upper-slope region off the North Carolina, Cape Hatteras coastline. Sediment cores were obtained along three primary east-west transects (water depth ˜75-800 m; 36°20'N, 35°50'N, 35°25'N), at additional shallow stations along 35°40'N, and at slope stations within a region of complex topography known as the Manteo Lease Block. Samples were collected during August 1994, July 1996, and August 1996, and were recovered using two shipboard techniques (Haps Corer and Box Corer) as well as by the deep submersible, Johnson Sea-Link. Natural and experimental tracer distributions demonstrate that with few exceptions surface deposits throughout this region are rapidly reworked and irrigated by abundant infaunal benthos. Excess 234Th ( t1/2=24.1 days) was present at all stations, with surface activities (0-0.5 cm) ranging from ˜2 to 62 dpm cm -3 (5-54 dpm g -1), average inventories of ˜28±21 (median˜24) dpm cm -2, and typical penetration depths of 5-7 cm. Steady-state particle mixing coefficients ( Db) estimated using excess 234Th ranged from ˜1 to 200 cm 2 yr -1. Although the highest mixing intensities were found between ˜300 and 500 m water depths, rates were locally variable, and there was little or no evidence for any consistent attenuation with bathymetric depth in either 234Th inventories or mixing intensity. Estimates of Db made using Chl- a distributions are similar to those estimated using 234Th, ranging from ˜36 to 110 cm 2 yr -1. Added Br - tracer penetrated >7 cm in ˜24 h periods in shipboard-incubated sediment cores, representing rates ranging from 1.5 to 38X molecular diffusion (mean=13.1±13.0; median ˜11X). Sedimentary Chl- a and phaeophytin- a distributions below the photic zone are indicative of high input of fresh planktonic debris and rapid remineralization. These inputs presumably

  16. Analytical solution of groundwater flow in a sloping aquifer with stream-aquifer interaction.

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhan, H.

    2017-12-01

    This poster presents a new analytical solution to study water exchange, hydraulic head distribution and water flow in a stream-unconfined aquifer interaction system with a sloping bed and stream of varying heads in presence of two thin vertical sedimentary layers. The formation of a clogging bed of fine-grained sediments allows the interfaces among a sloping aquifer and two rivers as the third kind and Cauchy boundary conditions. The numerical solution of the corresponding nonlinear Boussinesq equation is also developed to compare the performance of the analytical solution. The effects of precipitation recharge, bed slope and stage variation rate of two rivers for water flow in the sloping aquifer are discussed in the results.

  17. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  18. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  19. Sediment discharge from highway construction near Port Carbon, Pennsylvania

    USGS Publications Warehouse

    Helm, Robert E.

    1978-01-01

    About 16,000 tons of suspended-sediment was discharged from the basin during the construction. The highway construction produced about 8,000 tons or 50 percent of the total sediment discharge. Steep slopes, the availability of fine coal wastes, coal-washing operations, and other land uses in the basin were responsible for most of the remaining sediment discharge. Seventy percent of the total suspended-sediment discharge occurred during eight storms.

  20. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    NASA Astrophysics Data System (ADS)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  1. Synergies between geomorphic hazard and risk and sediment cascade research fields: exploiting geomorphic processes' susceptibility analyses to derive potential sediment sources in the Oltet, river catchment, southern Romania

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta-Cristina

    2015-04-01

    Identifying sediment sources and sediment availability represents a major problem and one of the first concerns in the field of sediment cascade. This paper addresses the on-site effects associated with sediment transfer, investigating the degree to which studies pertaining to the field of geomorphic hazard and risk research could be exploited in sediment budget estimations. More precisely, the paper investigates whether results obtained in assessing susceptibility to various geomorphic processes (landslides, soil erosion, gully erosion) could be transferred to the study of sediment sources within a basin. The study area is a medium-sized catchment (> 2400 km2) in southern Romania encompassing four different geomorphic units (mountains, hills, piedmont and plain). The region is highly affected by a wide range of geomorphic processes which supply sediments to the drainage network. The presence of a reservoir at the river outlet emphasizes the importance of estimating sediment budgets. The susceptibility analyses are conducted separately for each type of the considered processes in a top-down framework, i.e. at two different scales, using scale-adapted methods and validation techniques in each case, as widely-recognized in the hazard and risk research literature. The analyses start at a regional scale, which has in view the entire catchment, using readily available data on conditioning factors. In a second step, the suceptibility analyses are carried out at a medium scale for selected hotspot-compartments of the catchment. In order to appraise the extent to which susceptibility results are relevant in interpreting sediment sources at catchment scale, scale-induced differences are analysed in the case of each process. Based on the amount of uncertainty revealed by each regional-scale analysis in comparison to the medium-scale ones, decisions are made on whether the first are acceptable to the aim of identifying potential sediment source areas or if they should be

  2. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars

    DOE PAGES

    Nachon, M.; Mangold, N.; Forni, O.; ...

    2017-09-01

    The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. We report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins withmore » calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. Conversely, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.« less

  3. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachon, M.; Mangold, N.; Forni, O.

    The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. We report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins withmore » calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. Conversely, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.« less

  4. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loope, D.B.; Swinehart, J.B.

    1992-01-01

    Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of themore » dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.« less

  5. Geochemical data for environmental studies of mineral deposits at Nabesna, Kennecott, Orange Hill, Bond Creek, Bremner, and Gold Hill, Wrangell-St. Elias National Park and Preserve, Alaska

    USGS Publications Warehouse

    Eppinger, R.G.; Briggs, P.H.; Rosenkrans, D.S.; Ballestrazze, Vanessa; Aldir, Jose; Brown, Z.A.; Crock, J.G.; d'Angelo, W. M.; Doughten, M.W.; Fey, D.L.; Hageman, P.L.; Hopkins, R.T.; Knight, R.J.; Malcolm, M.J.; McHugh, J.B.; Meier, A.L.; Motooka, J.M.; O'Leary, R. M.; Roushey, B.H.; Sultley, S.J.; Theodorakos, P.M.; Wilson, S.A.

    1999-01-01

    Environmental geochemical investigations were carried out between 1994 and 1997 in Wrangell-St. Elias National Park and Preserve (WRST), Alaska. Mineralized areas studied include the historic Nabesna gold mine/mill and surrounding areas; the historic Kennecott copper mill area and nearby Bonanza, Erie, Glacier, and Jumbo mines; the historic mill and gold mines in the Bremner district; the active gold placer mines at Gold Hill; and the unmined copper-molybdenum deposits at Orange Hill and Bond Creek. The purpose of the study was to determine the extent of possible environmental hazards associated with these mineralized areas and to establish background and baseline levels for selected elements. Thus, concentrations of a large suite of trace elements were determined to assess metal loadings in the various sample media collected. This report presents the methodology, analytical results, and sample descriptions for water, leachate, sediment, heavy-mineral concentrate, rock, and vegetation (willow) samples collected during these geochemical investigations. An interpretive U.S. Geological Survey Professional Paper incorporating these geochemical data will follow.

  6. Shallow structure and stratigraphy of the carbonate West Florida continental slope and their implications to sedimentation and geohazards

    USGS Publications Warehouse

    Doyle, Larry J.

    1983-01-01

    An 1800-joule sparker survey of the West Florida continental slope between about 26?N and 29?15?N showed a top bed of Pleistocene age forming an irregular drape over a surface that is probably Pliocene. The contact between the top two layers is unconformable in the south and, in some places, shows karst collapse and solution features. Karst topography grades into a more hummocky erosional surface to the north, which in turn smoothes out; the contact become conformable still further north. A period of folding, which is widespread over the outer portion of the study area and which may be related to large scale mass wasting, occurred at about the same time represented by the unconformity. Significant subsidence has occurred as late as Pleistocene. The surface layer thins to a minimum (0 in the south) at about 525-meters water depth and then thickens again dramatically to the west, downslope. This thinning is interpreted to be due to the Loop Current, which flows from north to south in the area and which acts to block deposition and scour the bottom. Despite the fact that the margin is dominated by carbonates, usually associated with low sedimentation rates, there is widespread evidence of mass wasting affecting ancient and surficial deposits on the outer part of the upper slope. Three potential groups of geohazards identified are: 1. Potential bottom failure in areas where a thin top layer overlies the karst surface. 2. Potential for sliding and slumping. 3. Scour due to currents which could also affect drilling and engineering activities.

  7. Wind streaks in Tharsis and Elysium - Implications for sediment transport by slope winds

    NASA Astrophysics Data System (ADS)

    Lee, S. W.; Thomas, P. C.; Veverka, J.

    1982-11-01

    Detailed maps of wind streaks in Tharsis and Elysium have been compiled from Viking Orbiter observations spanning one complete Martian year. The streak pattern is controlled by slope winds on the central volcanoes and on the flanks of the Tharsis bulge, while the global circulation dominates in Elysium. Dust erosion by downslope winds occurs over much of Tharsis and in the vicinity of Elysium Mons; this process is effective even at the low atmospheric pressures found near the summits of the large volcanoes. Erosional streaks are largely absent in Elysium Planitia; net deposition of dust might have occurred during the period of the observations. Surface properties such as slope, thermal inertia, and roughness may influence the efficiency of slope wind production sufficiently to account for the pronounced differences in streak types and patterns present in these two regions.

  8. Depositional analysis of Hill sand of Rodessa Formation (lower Cretaceous) in north Shongaloo-Red Rock field, Webster Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamick, J.A.; Sartin, A.A.

    1988-09-01

    Hill sand is an informal subdivision of the Lower Cretaceous Rodessa Formation and is a common hydrocarbon reservoir in northeastern Texas, northern Louisiana, and southern Arkansas. The Hill sand is lithologically variable within the study area and consists of conglomerate, fine-grained sandstone, siltstone, mottled red-green claystone, black shale, and limestone. Five depositional environments were interpreted for lithofacies present in Hill sand cores from the North Shongaloo-Red Rock field. These include facies A, fluvial point bar; facies B, crevasse system; facies C, interdistributary bay; facies D, swamp; and facies E, carbonate interdistributary bay. Fluvial point bar and crevasse deposits commonly formmore » hydrocarbon reservoirs in the field. On a regional scale, depositional environments observed in the Hill sand include several fluvial deposystems trending northeast-southwest through Webster Parish. These deposystems terminate into deltaic distributary mouth bars along a northwest-southeast-trending coastline. Areas west of the coastline were occupied by shallow marine environments. Interchannel areas east of the coastline were occupied by interdistributary bay, lake, and crevasse environments in lower deltaic areas, and by lake, swamp, and crevasse environments in upper deltaic areas. Lowermost deposits of the Hill sand throughout the region are interpreted to consist of shallow marine environments. These marine deposits were overlain by thick, predominantly nonmarine sediments. Near the end of Hill sand deposition, the entire region was covered by very shallow marine environments, prior to deposition of the overlying First Lower Anhydrite Stringer.« less

  9. On the origin of Hill's causal criteria.

    PubMed

    Morabia, A

    1991-09-01

    The rules to assess causation formulated by the eighteenth century Scottish philosopher David Hume are compared to Sir Austin Bradford Hill's causal criteria. The strength of the analogy between Hume's rules and Hill's causal criteria suggests that, irrespective of whether Hume's work was known to Hill or Hill's predecessors, Hume's thinking expresses a point of view still widely shared by contemporary epidemiologists. The lack of systematic experimental proof to causal inferences in epidemiology may explain the analogy of Hume's and Hill's, as opposed to Popper's, logic.

  10. A detrital sediment budget of a Maldivian reef platform

    NASA Astrophysics Data System (ADS)

    Morgan, K. M.; Kench, P. S.

    2014-10-01

    Sediment dynamics are an important control on the morphology and development of reef systems by actively removing and redistributing excess detrital sediment. This study presents quantitative data from direct point measurements of sediment transport on the platform surface and fore-reef slope of Vabbinfaru reef, North Malé Atoll, Maldives. A suite of sediment traps were used to construct actual rates of platform sediment fluxes and off-reef export over different spatial and temporal (seasonal) scales to establish key sediment transport pathways. Findings showed that high sediment fluxes occur on Vabbinfaru platform in the absence of major storm activity (up to 1905 g m- 1 d- 1), with 95% of annual transport occurring during the southwest monsoon as a result of increased wave energy. Climate-driven changes in the platform process regime caused a reversal of net sediment transport pathways between each monsoon season. Off-reef export rates were high, reaching a maximum of 12.58 kg m- 1 y- 1 for gravel and 407 g m- 1 d- 1 for sand-sized sediment. An estimated 127,120 kg is exported from the platform annually equating to a significant loss from the reef sediment budget and contributing to the long-term geomorphic development of the fore-reef slope and atoll basin. Detrital sediment reservoirs on Vabbinfaru are not purely depositional carbonate sinks, but rather temporary stores that are important in the transfer of sediment between reef zones.

  11. Geochemical Characterization of Mine Waste, Mine Drainage, and Stream Sediments at the Pike Hill Copper Mine Superfund Site, Orange County, Vermont

    USGS Publications Warehouse

    Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Kiah, Richard G.; Deacon, Jeffrey R.; Adams, Monique; Anthony, Michael W.; Briggs, Paul H.; Jackson, John C.

    2006-01-01

    The Pike Hill Copper Mine Superfund Site in the Vermont copper belt consists of the abandoned Smith, Eureka, and Union mines, all of which exploited Besshi-type massive sulfide deposits. The site was listed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004 due to aquatic ecosystem impacts. This study was intended to be a precursor to a formal remedial investigation by the USEPA, and it focused on the characterization of mine waste, mine drainage, and stream sediments. A related study investigated the effects of the mine drainage on downstream surface waters. The potential for mine waste and drainage to have an adverse impact on aquatic ecosystems, on drinking- water supplies, and to human health was assessed on the basis of mineralogy, chemical concentrations, acid generation, and potential for metals to be leached from mine waste and soils. The results were compared to those from analyses of other Vermont copper belt Superfund sites, the Elizabeth Mine and Ely Copper Mine, to evaluate if the waste material at the Pike Hill Copper Mine was sufficiently similar to that of the other mine sites that USEPA can streamline the evaluation of remediation technologies. Mine-waste samples consisted of oxidized and unoxidized sulfidic ore and waste rock, and flotation-mill tailings. These samples contained as much as 16 weight percent sulfides that included chalcopyrite, pyrite, pyrrhotite, and sphalerite. During oxidation, sulfides weather and may release potentially toxic trace elements and may produce acid. In addition, soluble efflorescent sulfate salts were identified at the mines; during rain events, the dissolution of these salts contributes acid and metals to receiving waters. Mine waste contained concentrations of cadmium, copper, and iron that exceeded USEPA Preliminary Remediation Goals. The concentrations of selenium in mine waste were higher than the average composition of eastern United States soils. Most mine waste was

  12. Mercury in sediments from shelf and continental slope at Campos Basin near Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    Araujo, Beatriz; Hintelmann, Holger; Dimock, Brian; Gomes de Almeida, Marcelo; Falcão, Ana Paula; de Rezende, Carlos Eduardo

    2016-04-01

    Mercury (Hg) is a global pollutant due to its ability to undergo long-range transport from source regions to remote parts of the world, and its ubiquitous presence in aquatic ecosystems. The Hg isotope ratios could be an effective tool for tracing the sources and process of Hg in the environment. This study aimed to establish the distribution of mercury in surface sediments of three transects (25- 3000m water depth) in continental shelf and slope in Campos Basin-RJ-Brazil, using the Hg isotopes to understand the geochemical processes relating to Hg cycling that occur in a subtropical coastal environment. The study area was divided into three transects: A (located to the south and close to a upwelling area), D (located opposite the mouth of the Paraiba do Sul River) and I (located north near the top of Vitória-ES). Sampling isobaths were 25, 50, 75, 100, 150, 400, 700, 1000, 1300, 1900, 2500 and 3000m. The Total Hg, MMHg and Hg stable isotopes were determined based on EPA Method 1631, EPA method 1630 and Foucher and Hintelmann (2006), respectively. The silt/clay ranged from 0.05 to 95%, and the organic carbon (OC) from 0.07 to 1.43 % for all transects. THg and MMHg concentrations in the shelf were 11.9 ± 7.2 (1.7- 22.2) ng.g-1 and 0.15 ± 0.12 (0.02 - 0.40) ng.g-1; in the slope 30.3 ± 9.2 (11.6 - 51.6) ng.g-1 and 0.13 ± 0.06 (0.03 -0.29) ng.g-1 , respectively. The δ202Hg and Δ199Hg varied from -0.32 to -1.85 ‰ (-0.79 ± 0.44‰) and -0.41 to 0.09 ‰ (-0.03 ± 0.12 ‰) for all transects, respectively. The delta values between both regions are significantly different, the shelf region showed δ202Hg from -0.59 to -2.19 ‰ (mean: -1.52 ±0.65) and Δ199Hg from - 0.53 to 0.08 ‰ (mean: -0.27 ±0.55) and the slope region were observed δ202Hg values from -0.32 to -1.82 ‰ (mean: -0.73 ±0.39 ‰ n=18) and gΔ199Hg from -0.23 to 0.09‰ (mean: -0.02 ±0.08‰ n=5). The slope appears to be enriched with heavier isotopes compared to the shelf, however, in the

  13. Identifying the pollen of an extinct spruce species in the Late Quaternary sediments of the Tunica Hills region, south-eastern United States

    USGS Publications Warehouse

    Luke Mander,; Jacklyn Rodriguez,; Pietra G. Mueller,; Jackson, Stephen T.; Surangi W. Punyasena,

    2014-01-01

    Late Quaternary fluvial deposits in the Tunica Hills region of Louisiana and Mississippi are rich in spruce macrofossils of the extinct species Picea critchfieldii, the one recognized plant extinction of the Late Quaternary. However, the morphology of P. critchfieldii pollen is unknown, presenting a barrier to the interpretation of pollen spectra from the last glacial of North America. To address this issue, we undertook a morphometric study of Picea pollen from Tunica Hills. Morphometric data, together with qualitative observations of pollen morphology using Apotome fluorescence microscopy, indicate that Picea pollen from Tunica Hills is morphologically distinct from the pollen of P. glauca, P. mariana and P. rubens. Measurements of grain length, corpus width and corpus height indicate that Picea pollen from Tunica Hills is larger than the pollen of P. mariana and P. rubens, and is slightly larger than P. glauca pollen. We argue that the morphologically distinctive Tunica Hills Picea pollen was probably produced by the extinct spruce species P. critchfieldii. These morphological differences could be used to identify P. critchfieldii in existing and newly collected pollen records, which would refine its paleoecologic and biogeographic history and clarify the nature and timing of its extinction in the Late Quaternary.

  14. Deltaic sedimentation and stratigraphic sequences in post-orogenic basins, Western Greece

    NASA Astrophysics Data System (ADS)

    Piper, David J. W.; Kontopoulos, N.; Panagos, A. G.

    1988-03-01

    Post-orogenic basin sediments in the gulfs of Corinth, Patras and Amvrakia, on the western coast of Greece, occur in four tectonic settings: (1) true graben; (2) simple and complex half graben; (3) shallow half graben associated with the high-angel surface traces of thrust faults; and (4) marginal depressions adjacent to graben in which sediment loading has occurred. Late Quaternary facies distribution has been mapped in all three basins. Sea level changes, interacting with the apparently fortuitous elevation of horsts at basin margins, result in a complex alternation of well-mixed marine, stratified marine, brackish and lacustrine facies. Organic carbon contents of muds are high in all but the well-mixed marine facies. Basin margin slope is the most important determinant of facies distribution. The steep slopes of the Gulf of Corinth half graben result in fan-deltas which deliver coarse sediments in turbidity currents to the deep basin floor. Where gradients are reduced by marginal downwarping (Gulf of Patras) or on the gentle slopes of thrust-related half graben (Gulf of Amvrakia) coarse sediments are trapped on the subaerial delta or the coastal zone, and the fine sediment reaching the basin floor appears derived mainly from muddy plumes during winter floods.

  15. Submarine slope failures along the convergent continental margin of the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, CéSar R.; Weinrebe, Wilhelm; Behrmann, Jan H.

    2011-06-01

    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ˜1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but

  16. Denudational slope processes on weathered basalt in northern California: 130 ka history of soil development, periods of slope stability and colluviation, and climate change

    NASA Astrophysics Data System (ADS)

    McDonald, Eric; Harrison, Bruce; Baldwin, John; Page, William; Rood, Dylan

    2017-04-01

    The geomorphic history of hillslope evolution is controlled by multiple types of denudational processes. Detailed analysis of hillslope soil-stratigraphy provides a means to identify the timing of periods of slope stability and non-stability, evidence of the types of denudational processes, and possible links to climatic drivers. Moreover, the degree of soil formation and the presence of buried or truncated soils provide evidence of the relative age of alternating periods of colluviation and stability. We use evaluation of soil stratigraphy, for a small forested hillslope (<500 m of slope length) located in the Cascades of northern California, to elucidate both the timing and processes controlling 130 ka of hillslope evolution. The soils and slope colluvium are derived from highly weathered basalt. Stratigraphic interpretation is reinforced with soil profile development index (PDI) derived age estimates, tephrochronology, luminescence ages on colluvium, and He3 nuclide exposure dates. Soils formed along hilltop ridges are well developed and reflect deep (>2-3 m) in-situ weathering of the basalt bedrock. PDI age estimates and He3 exposure dates indicate that these hilltop soils had been in place for 100-130 ka, implying a long period of relative surface stability. At about 40-30 ka, soil stratigraphy indicates the onset of 3 distinct cycles of denudation of the hilltop and slopes. Evidence for changes in stability and onset of soil erosion is the presence of several buried soils formed in colluvium downslope of the hilltop. These buried soils have formed in sediment derived from erosion of the hilltop soils (i.e. soil parent material of previously weathered soil matrix and basalt cobbles). The oldest buried soil indicates that slope stability was re-established between 32-23 ka, with stability and soil formation lasting to about 10 ka. Soil-stratigraphy indicates that two additional intervals of downslope transport of sediment between 6-10 ka, and 2-5 ka. Soil

  17. Organic geochemistry of sediments of deep Gulf of Mexico basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, J.; Sassen, R.; Nunn, J.

    1989-09-01

    An analysis of 716 core samples from DSDP (Deep Sea Drilling Project) Leg 96 in the Mississippi submarine fan and the Orca and Pigmy basins in the Louisiana continental slope was done using a Rock-Eval pyrolysis unit with TOC (total organic carbon) module. The analysis allows computation of the hydrogen index (HI), TOC, and kerogen type, and assessment of the oil-generative capacity of the sediments in the Louisiana continental slope. No samples are obviously oil prone. TOC content ranges from 0.12 to 2.29%, with an overall average of 0.82%. HI values are generally less than 150 mg HC/g TOC. T{submore » max} (temperature of the maximum of the S{sub 2} peak) values (425{degree}C average) show the sediments are immature throughout the study area. Hydrocarbon-generative potential of the sediments ranges from 492 to 1,107 ppm, with an average of 854 ppm. Because of organic lean, thermally immature, and gas-prone terrestrial organic matter, there is little reason to assume that the sediments from the Mississippi fan can provide oil source rock for the Gulf Coast basin, and that sediments of anoxic basins in the Louisiana continental slope are analogs to the past environments where source rocks for crude oil have been deposited.« less

  18. WHISPERS Project on the easternmost slope of the Ross Sea (Antarctica): preliminary results.

    NASA Astrophysics Data System (ADS)

    Olivo, E.; De Santis, L.; Bergamasco, A.; Colleoni, F.; Gales, J. A.; Florindo-Lopez, C.; Kim, S.; Kovacevic, V.; Rebesco, M.

    2017-12-01

    The advance and retreat of the West Antarctic Ice Sheet from the outer continental shelf and the oceanic circulation are the main causes of the depositional processes on the Ross Sea continental slope, at present time and during the most of the Cenozoic. Currently the Antarctic Bottom Water formation is directly linked to the relatively warm Circumpolar Deep Water that, encroaching the continental shelf, mixes with the colder Ross Sea Bottom Water. Detailed multibeam and geological surveys useful to locate and characterize peculiar morphological structures on the bottom are essential to study how the glacial and oceanographic processes interact with the seabed sediments. In the framework of the PNRA-WHISPERS project (XXXIIth Italian Antarctic expedition - January/March 2017), new multibeam bathymetric, sub-bottom chirp, were acquired from the easternmost margin of the Ross Sea, on the southeastern side of the Hayes Bank, usually covered by sea ice. We observed on the upper slope erosional features (incised gullies of likely glacial meltwater origin). A broad scar in the upper slope is characterized by an elongated SSW-NNE ridge (10 km long, 850-1200 m water depth, 2 km wide), that may be a remnants of previous glacial or debris flow deposits, eroded by meltwater outwash discharge at the beginning of grounding ice retreat and by RSBW cascading along the slope, as documented by Expandable Bathy-Thermograph and Acoustic Depth Current Profile data. Sub-bottom chirp profiles crossing this ridge show a very low amplitude reflective sea bed, supporting the hypothesis of its soft sediment nature, in good agreement with a very low acoustic velocity obtained by multichannel seismic data reprocessing. The occurrence of internal stratification on 2D multichannel seismic profiles would discount a gas-fluids related mud volcano origin. No sediment cores were collected, due to bad sea conditions and limited ship time, further data collection would be needed to fully understand

  19. Sediment production from forest roads in western Oregon

    Treesearch

    Charlie Luce; Thomas A. Black

    1999-01-01

    Prevention and estimation of soil erosion from forest roads requires an understanding of how road design and maintenance affect sediment production. Seventy-four plots were installed on forest roads in the Oregon Coast Range to examine the relationship between sediment production and road attributes such as distance between culverts, road slope, soil texture,...

  20. Sediment Concentration and Its Relation to Catchment Characteristics in Forested Headwater Streams of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, J.; Safeeq, M.; Hunsaker, C. T.

    2017-12-01

    Sediment yields are highly variable and controlled by multiple topographic, geomorphic, and hydrologic factors that make its generalization or prediction challenging. We examined the characteristics of sediment concentration across ten headwater catchments located in the Kings River Experimental Watersheds, Sierra Nevada, California. Study catchments ranged from 50 to 475 ha and spanned from 1,782 to 2,373 m in elevation in the rain-snow transition zone. Mean annual streamflow ranged from 281 to 408 mm in the low elevation Providence and 436 to 656 mm in the high elevation Bull catchments. We measured suspended sediment concentration (SSC) and bedload sediment yield from 2004-2016. We related these outputs to catchment mean elevation, relief, slope, and drainage density as natural controls and runoff ratio, baseflow index, recession constant, and slope of the flow duration curve as hydrologic controls. The SSC were higher in the high elevation Bull catchments (64 ± 34 mg L-1) as compared to low elevation Providence catchments (30 ± 17 mg L-1). Measured SSC in both Bull and Providence declined with increasing catchment mean elevation (R > - 0.5). We found slope of the flow duration curve (R = 0.85) and recession constant (R = -0.91) as the two of best predictors of SSC in Providence. In Bull, drainage area (R = 0.87) and baseflow index (R = -0.78) were the two best predictors of SSC. The intercept and slope of the suspended sediment yield - discharge rating curve (SSY-Q) in Providence was positively related to catchment relief. In contrast, the SSY-Q intercept increased and SSY-Q slope declined with increasing relief in Bull. The mean annual bedload sediment yield varied between 0.4 Mg km-2 and 4.2 Mg km-2 across the ten watersheds, and bedload contributed a relatively small fraction to the total sediment load. Mean bedload sediment yields across the catchments were most associated with catchment slope and relief. These preliminary results provide insight on the

  1. Postglacial sedimentary record of the Southern California continental shelf and slope, Point Conception to Dana Point

    USGS Publications Warehouse

    Sommerfield, C.K.; Lee, H.J.; Normark, W.R.

    2009-01-01

    Sedimentary strata on the Southern California shelf and slope (Point Conception to Dana Point) display patterns and rates of sediment accumulation that convey information on sea-level inundation, sediment supply, and oceanic transport processes following the Last Glacial Maximum. In Santa Monica Bay and San Pedro Bay, postglacial transgression is recorded in shelf deposits by wave-ravinement surfaces dated at 13-11 ka and an upsection transition from coastal to shallow-marine sediment facies. Depositional conditions analogous to the modern environment were established in the bays by 8-9 ka. On the continental slope, transgression is evidenced in places by an increase in sediment grain size and accumulation rate ca. 15-10 ka, a consequence of coastal ravinement and downslope resedimentation, perhaps in conjunction with climatic increases in fluvial sediment delivery. Grain sizes and accumulation rates then decreased after 12-10 ka when the shelf flooded and backfilled under rising sea level. The Santa Barbara coastal cell contains the largest mass of postglacial sediment at 32-42 ?? 109 metric tons, most of which occurs between offshore Santa Barbara and Hueneme Canyon. The San Pedro cell contains the second largest quantity of sediment, 8-11 ?? 109 metric tons, much of which is present on the eastern Palos Verdes and outer San Pedro shelves. By comparison, the mass of sediment sequestered within the Santa Monica cell is smaller at ??6-8 ?? 109 metric tons. The postglacial sediment mass distribution among coastal cells reflects the size of local fluvial sediment sources, whereas intracell accumulation patterns reflect antecedent bathymetric features conducive for sediment bypass or trapping. ?? 2009 The Geological Society of America.

  2. The Hollin Hill Landslide Observatory - a decade of geophysical characterization and monitoring

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Wilkinson, P. B.; Meldrum, P.; Smith, A.; Dixon, N.; Merritt, A.; Swift, R. T.; Whiteley, J.; Gunn, D.; Chambers, J. E.

    2017-12-01

    Landslides are major and frequent natural hazards. They shape the Earth's surface, and endanger communities and infrastructure worldwide. Within the last decade, landslides caused more than 28,000 fatalities and direct damage exceeding $1.8 billion. Climate change, causing more frequent weather extremes, is likely to increase occurrences of shallow slope failures worldwide. Thus, there is a need to improve our understanding of these shallow, rainfall-induced landslides. In this context, integrated geophysical characterization and monitoring can play a crucial role by providing volumetric data that can be linked to the hydrological and geotechnical conditions of a slope. This enables understanding of the complex hydrological processes most-often being associated with landslides. Here we present a review of a decade of characterizing and monitoring a complex, inland, clayey landslide - forming the "Hollin Hill Landslide Observatory". Within the last decade, this landslide has experienced different activity characteristics, including creep, flow, and rotational failures - thereby providing an excellent testbed for the development of geophysical and geotechnical monitoring instrumentation and methodologies. These include developments of 4D geoelectrical monitoring techniques to estimate electrode positions from the resistivity data, incorporating these into a time-lapse inversion, and imaging moisture dynamics that control the landslide behaviour. Other developments include acoustic emission monitoring, and active and passive seismic monitoring. This work is underpinned by detailed characterization of the landslide, using geomorphological and geological mapping, geotechnical investigations, and a thorough geoelectrical and seismic characterization of the landslide mass. Hence, the data gained from the Hollin Hill landslide observatory has improved our understanding of the shallow landslide dynamics in response to climate change, their mechanics and evolution. The

  3. Black Hills Region, SD, USA

    NASA Image and Video Library

    1973-06-22

    SL2-81-157 (22 June 1973) --- This view of the Black Hills Region, SD (44.0N, 104.0W) shows the scenic Black Hills where Mt. Rushmore and other monuments are located. Cities and towns in this view include: Rapid City, Deadwood, and Belle Fourche with the nearby Belle Fourche Reservoir. Notable in this scene are the recovering burn scars (seen as irregular shaped light toned patches) from a 1959 forest fire in the Black Hills National Forest near the edge of the photo. Photo credit: NASA

  4. Hazard analysis on the Mid-Atlantic Continental Slope, DCS lease sale 59 Area

    USGS Publications Warehouse

    Cardinell, Alex P.; Keer, Frederick R.

    1982-01-01

    A multi-parameter high-resolution seismic survey covering 253 offshore lease blocks was undertaken for analysis of critical structural and depositional features and a suite of piston cores was examined for geotechnical properties on the Mid-Atlantic continental slope in the OCS Lease Sale 59 area. The analysis of this data revealed complex interrelationships between a number of buried structural and depositional features indicating the existence of a variety of slope environments in the proposed lease sale area. The relationship these depositional features have to fault scarps and other topographic irregularities is critical to hazards assessment in this area. Southwest of the Hudson Canyon area, a major slump complex was partially delineated and numerous drape structures, which in some cases appear to have developed into contemporaneous down-to-the-basin faults, are associated with topographic irregularities. Southwest of the Baltimore Canyon area, slumps may be a result of the formation of mud diapers. These diapers? are the first reported in the Mid-Atlantic continental slope. Piston cores were collected at selected locations to provide information on geotechnical strength parameters of slumps, slides, and undisturbed sediments. These data indicate that localized areas of under consolidated sediments are found on valley walls and ridges of the upper slope. These zones may represent discrete areas where either mass movement has occurred or the potential for mass movement may exist. Many of the mass-movement features identified in the OCS Lease Sale 59 area may be Pleistocene in age and are related to' conditions prevailing during low sea stands. Since these conditions are presently absent, the potential for sediment mass movement does not appear to present a major problem to oil and gas operations within the proposed OCS Lease Sale 59 area.

  5. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, Uri S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.

    2014-01-01

    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.

  6. Geochemical cycles in sediments deposited on the slopes of the Guaymas and Carmen Basins of the Gulf of California over the last 180 years

    USGS Publications Warehouse

    Dean, W.; Pride, C.; Thunell, R.

    2004-01-01

    Sediments deposited on the slopes of the Guaymas and Carmen Basins in the central Gulf of California were recovered in two box cores. Q-mode factor analyses identified detrital-clastic, carbonate, and redox associations in the elemental composition of these sediments. The detrital-clastic fraction appears to contain two source components, a more mafic component presumably derived from the Sierra Madre Occidental along the west coast of Mexico, and a more felsic component most likely derived from sedimentary rocks (mostly sandstones) of the Colorado Plateau and delivered by the Colorado River. The sediments also contain significant siliceous biogenic components and minor calcareous biogenic components, but those components were not quantified in this study. Redox associations were identified in both cores based on relatively high concentrations of molybdenum, which is indicative of deposition under conditions of sulfate reduction. Decreases in concentrations of molybdenum in younger sediments suggest that the bottom waters of the Gulf have became more oxygenated over the last 100 years. Many geochemical components in both box cores exhibit distinct cyclicity with periodicities of 10-20 years. The most striking are 20-year cycles in the more mafic components (e.g., titanium), particularly in sediments deposited during the 19th century. In that century, the titanium cycles are in very good agreement with warm phases of the Pacific Decadal Oscillation, implying that at times of greater influx of titanium-rich volcanic debris, there were more El Nin??os and higher winter precipitation. The cycles are interpreted as due to greater and lesser riverine influx of volcanic rock debris from the Sierra Madre. There is also spectral evidence for periodicities of 4-8 and 8-16 years, suggesting that the delivery of detrital-clastic material is responding to some multiannual (ENSO?) forcing.

  7. Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA

    NASA Astrophysics Data System (ADS)

    Godfrey, Andrew E.; Everitt, Benjamin L.; Duque, José F. Martín

    2008-12-01

    The Fremont River drains about 1000 km 2 of Mancos Shale badlands, which provide a large percentage of the total sediment load of its middle and lower reaches. Factors controlling sediment movement include: weathering that produces thin paralithic soils, mass movement events that move the soil onto locations susceptible to fluvial transport, intense precipitation events that move the sediment along rills and across local pediments, and finally Fremont River floods that move the sediment to the main-stem Colorado River. A forty-year erosion-pin study has shown that down-slope creep moves the weathered shale crust an average of 5.9 cm/yr. Weather records and our monitoring show that wet winters add large slab failures and mudflows. Recent sediment-trap studies show that about 95% of sediment movement across pediments is accomplished by high-intensity summer convective storms. Between 1890 and 1910, a series of large autumn floods swept down the Fremont River, eroding its floodplain and transforming it from a narrow and meandering channel to a broad, braided one. Beginning about 1940, the Fremont's channel began to narrow. Sequential aerial photos and cross-sections suggest that floodplain construction since about 1966 has stored about 4000 to 8000 m 3 of sediment per kilometer per year. These data suggest that it will take two centuries to restore the floodplain to its pre-1890 condition, which is in line with geologic studies elsewhere on the Colorado Plateau. The various landscape elements of slope, pediment, and floodplain are semi-independent actors in sediment delivery, each with its own style. Accelerated mass movement on the slopes has an approximate 20-year recurrence. Sediment movement from slope across pediments to master stream is episodic and recurs more frequently. The slope-to-pediment portion of the system appears well connected. However, sediment transport through the floodplain is not well connected in the decadal time scale, but increases in the

  8. Controls on delta formation, area, and topset slope: New predictive relationships developed using a global delta dataset

    NASA Astrophysics Data System (ADS)

    Caldwell, R. L.; Edmonds, D. A.; Baumgardner, S. E.; Paola, C.; Roy, S.; Nienhuis, J.

    2017-12-01

    River deltas are irreplaceable natural and societal resources, though they are at risk of drowning due to sea-level rise and decreased sediment delivery. To enhance hazard mitigation efforts in the face of global environmental change, we must understand the controls on delta growth. Previous empirical studies of delta growth are based on small datasets and often biased towards large, river-dominated deltas. We are currently lacking relationships that predict delta formation, area, or topset slope across the full breadth of global deltas. To this end, we developed a global dataset of 5,229 rivers (with and without deltas) paired with nine upstream (e.g., sediment discharge) and four downstream (e.g., wave height) environmental variables. Using Google Earth imagery, we identify all coastal river mouths (≥ 50 m wide) connected to an upstream catchment, and define deltas as river mouths that split into two or more distributary channels, end in a depositional protrusion from the shoreline, or do both. Delta area is defined as the area of the polygon connecting the delta node, two lateral shoreline extent points, and the basinward-most extent of the delta. Topset slope is calculated as the average, linear slope from the delta node elevation (extracted from SRTM data) to the main channel mouth, and shoreline and basinward extent points. Of the 5,229 rivers in our dataset, 1,816 (35%) have a delta. Using 495 rivers (those with data available for all variables), we build an empirically-derived relationship that predicts delta formation with 76% success. Delta formation is controlled predominantly by upstream water and sediment discharge, with secondary control by downstream waves and tides that suppress delta formation. For those rivers that do form deltas, we show that delta area is best predicted by sediment discharge, bathymetric slope, and drainage basin area (R2 = 0.95, n = 170), and exhibits a negative power-law relationship with topset slope (R2 = 0.85, n = 1

  9. Sediment Dynamics and Geohazards offshore Uruguay and Northern Argentina: First Results from the multi-disciplinary Meteor-Cruise M78-3

    NASA Astrophysics Data System (ADS)

    Krastel, Sebastian; Freudenthal, Tim; Hanebuth, Till; Preu, Benedict; Schwenck, Tilmann; Strasser, Michael; Violante, Roberto; Wefer, Gerold; Winkelmann, Daniel

    2010-05-01

    About 90% of the sediments generated by weathering and erosion on land get finally deposited at the ocean margins. The sediment distribution processes and landscape evolution on land are relatively well understood, but comparably little is known about the role and relative importance of marine sediment dynamics in controlling the architectural evolution of ocean margins. Important players include hemi-pelagic settling, down-slope and current-controlled along-slope sediment transport, depositional and post-depositional sedimentary processes (e.g. consolidation and diagenesis), as well as the destabilization of sediment bodies and their erosion. Submarine landslides in this context thus may represent an important sediment transport process, but also a major geo-hazard due to the increasing number of offshore constructions as well as their potential to instantaneously displace large water masses triggering waves in densely populated coastal areas. Here we present first results from a seagoing expedition that aimed at investigating the interaction processes of sediment redistribution, partitioning, deposition and diagenesis from the coast to the deep-sea along the western South-Atlantic passive continental margin. During RV Meteor Cruise M78/3 in May-July 2009 the shelf, slope and rise offshore Argentina and Uruguay have been investigated by means of hydroacoustic and seismic mapping as well as geological sampling with conventional coring tools as well as the new MARUM seafloor drill rig (MeBo) that revealed recovery of geological strata sampled from up to 50m below seafloor. The working area is characterized by a high amount of fluvial input by the Rio de la Plata river. The continental slope is relatively wide and shows average slope gradients between 1 and 2.5 but locally higher slope gradients may occur (>5). The transition for the continental rise with low slope gradients is found in ~ 3000m water depth. The working area is located in a highly dynamic

  10. Large Rock-Slope Failures Impacting on Lakes - Event Reconstruction and Interaction Analysis in Two Alpine Regions Using Sedimentology and Geophysics

    NASA Astrophysics Data System (ADS)

    Knapp, S.; Anselmetti, F.; Gilli, A.; Krautblatter, M.; Hajdas, I.

    2016-12-01

    Massive rock-slope failures are responsible for more than 60% of all catastrophic landslides disasters. Lateglacial and Holocene rock-slope failures often occur as multistage failures, but we have only limited datasets to reconstruct detailed stages and still aim at improving our knowledge of mobility processes. In this context, studying lakes will become more and more important for two main reasons. On the one hand, the lake background sedimentation acts as a natural chronometer, which enables the stratigraphic positioning of events and helps to reconstruct the event history. This way we will be able to improve our knowledge on multistage massive rock-slope failures. On the other hand, climate warming forces us to face an increase of lakes forming due to glacial melting, leading to new hazardous landscape settings. We will be confronted with complex reaction chains and feedback loops related to rock-slope instability, stress adaptation, multistage rock-slope failures, lake tsunamis, entrainment of water and fines, and finally lubrication. As a result, in future we will have to deal more and more with failed rock material impacting on lakes with much longer runout-paths than expected, and which we have not been able to reconstruct in our models so far. Here we want to present the key findings of two of our studies on lake sediments related to large rock-slope failures: We used reflection seismic profiles and sediment cores for the reconstruction of the rockfall history in the landslide-dammed Lake Oeschinen in the Bernese Oberland, Switzerland, where we detected and dated ten events and correlated them to (pre)historical data. As a second project, we have been working on the mobility processes of the uppermost sediments deposited during the late event stadium of the Eibsee rock avalanche at Mount Zugspitze in the Bavarian Alps, Germany. In the reflection seismic profiles we detected sedimentary structures that show high levels of fluidization and thus would hint at

  11. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads

    USGS Publications Warehouse

    Dean, David; Topping, David; Schmidt, John C.; Griffiths, Ronald; Sabol, Thomas

    2016-01-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, undergoes rapid geomorphic changes as a result of its large sediment supply and variable hydrology; thus, it is a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling alluvial channel change. We analyzed a suite of sediment transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically based analyses suggest that channel change in the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by substantial deposition of sediment supplied to the Rio Grande during tributary-sourced flash floods. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem have the capacity to enlarge the Rio Grande, and these floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment transport analyses show that the locations and rates of sand erosion and deposition during long-duration floods are most strongly controlled by spatial changes in flow strength, largely through changes in channel slope. However, spatial differences in the in-channel sediment supply regulate sediment evacuation or accumulation over time in long reaches (greater than a kilometer).

  12. Flow and sediment transport dynamics in a slot and cauldron blowout and over a foredune, Mason Bay, Stewart Island (Rakiura), NZ

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.; Hilton, Michael; Konlecher, Teresa

    2017-10-01

    This study is the first to simultaneously compare flow and sediment transport through a blowout and over an adjacent foredune, and the first study of flow within a highly sinuous, slot and cauldron blowout. Flow across the foredune transect is similar to that observed in other studies and is primarily modulated by across-dune vegetation density differences. Flow within the blowout is highly complex and exhibits pronounced accelerations and jet flow. It is characterised by marked helicoidal coherent vortices in the mid-regions, and topographically vertically forced flow out of the cauldron portion of the blowout. Instantaneous sediment transport within the blowout is significant compared to transport onto and/or over the adjacent foredune stoss slope and ridge, with the blowout providing a conduit for suspended sediment to reach the downwind foredune upper stoss slope and crest. Medium term (4 months) aeolian sedimentation data indicates sand is accumulating in the blowout entrance while erosion is taking place throughout the majority of the slot, and deposition is occurring downwind of the cauldron on the foredune ridge. The adjacent lower stoss slope of the foredune is accreting while the upper stoss slope is slightly erosional. Longer term (16 months) pot trap data shows that the majority of foredune upper stoss slope and crest accretion occurs via suspended sediment delivery from the blowout, whereas the majority of the suspended sediment arriving to the well-vegetated foredune stoss slope is deposited on the mid-stoss slope. The results of this study indicate one mechanism of how marked alongshore foredune morphological variability evolves due to the role of blowouts in topographically accelerating flow, and delivering significant aeolian sediment downwind to relatively discrete sections of the foredune.

  13. Characterising and classifying agricultural drainage channels for sediment and phosphorus management

    NASA Astrophysics Data System (ADS)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; Quinn, Mary Kelly; Daly, Karen; Sims, James Tom; Melland, Alice

    2016-04-01

    In agricultural landscapes, surface ditches and streams can significantly influence the attenuation and transfer of sediment and phosphorus (P) from upstream sources to receiving water-bodies. The sediment attenuation and/or transfer capacity of these features depends on channel physical characteristics. This is similar for P, in addition to the sediment physico-chemical characteristics. Therefore, a greater understanding of (i) channel physical characteristics and (ii) the associated sediment physico-chemical characteristics could be used to develop channel-specific management strategies for the reduction of downstream sediment and P transfers. Using a detailed field survey of surface channel networks in a well-drained arable and a poorly-drained grassland catchment (both c.10km2), this study (i) characterised all ditches and streams in both catchments, (ii) investigated the physico-chemical characteristics of sediments in a subset of ditches, (iii) classified all channels into four classes of fine sediment retention and/or transfer likelihood based on a comparison of physical characteristics (slope and drainage area) with observations of fine sediment accumulation and (iv) considered P management strategies that are suited to each class. Mehlich3-Al/P and Mehlich3-Ca/P contents of ditch sediments in the well (non-calcareous) and poorly (calcareous) drained catchments, respectively, indicated potential for soluble P retention (above thresholds of 11.7 and 74, respectively). In general, ditches with low slopes had the greatest potential to retain fine sediment and associated particulate P. As sediments in these catchments are likely to primarily adsorb, rather than release soluble P, these flat ditches are also likely to reduce soluble P loading downstream. Ditches with moderate-high slopes had the greatest potential to mobilise fine sediment and associated P during event flows. Ditch dimensions were not closely related to their indicative flow volumes and were

  14. Effects of vegetation cover of natural grassland on runoff and sediment yield in loess hilly region of China.

    PubMed

    Zhao, Xining; Chen, Xiaoli; Huang, Jun; Wu, Pute; Helmers, Matthew J

    2014-02-01

    The effects of vegetation cover (VC) on runoff and sediment yield were investigated from rainfall simulation experiments in the Loess Plateau of China. Five VCs from 0% to 80% and three different rainfall intensities (I₂.₀, ₁.₅, ₀.₇₅) were implemented. The results indicated that runoff and sediment yields in slopes were significantly affected by I and VC, and when the VC amounted to 40% there occurred obvious benefits of runoff and sediment reductions and then amplitude decreased with the increase of VC. The runoff reduction benefits at I₁.₅ and I₀.₇₅ were much greater than that at I₂.₀, while the sediment reduction benefits had no significant difference among different rainfall intensities. At I₂.₀, the natural grassland slopes with high VC exhibited the characteristics of high runoff but low sediment production. There existed a power function relationship between cumulative runoff and sediment yield. The increase in cumulative sediment yield was less than the increase in cumulative runoff with increasing VC, and the sediment reduction benefit was greater than runoff reduction on natural grassland slopes. The ratio of runoff reduction to sediment reduction can be used as a comprehensive index for assessing the benefits of runoff and sediment reduction in natural grassland. © 2013 Society of Chemical Industry.

  15. The Q-Slope Method for Rock Slope Engineering

    NASA Astrophysics Data System (ADS)

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  16. Velocity of water flow along saturated loess slopes under erosion effects

    NASA Astrophysics Data System (ADS)

    Huang, Yuhan; Chen, Xiaoyan; Li, Fahu; Zhang, Jing; Lei, Tingwu; Li, Juan; Chen, Ping; Wang, Xuefeng

    2018-06-01

    Rainfall or snow-melted water recharge easily saturates loose top soils with a less permeable underlayer, such as cultivated soil slope and partially thawed top soil layer, and thus, may influence the velocity of water flow. This study suggested a methodology and device system to supply water from the bottom soil layer at the different locations of slopes. Water seeps into and saturates the soil, when the water level is controlled at the same height of the soil surface. The structures and functions of the device, the components, and the operational principles are described in detail. A series of laboratory experiments were conducted under slope gradients of 5°, 10°, 15°, and 20° and flow rates of 2, 4, and 8 L min-1 to measure the water flow velocities over eroding and non-eroded loess soil slopes, under saturated conditions by using electrolyte tracing. Results showed that flow velocities on saturated slopes were 17% to 88% greater than those on non-saturated slopes. Flow velocity increased rapidly under high flow rates and slope gradients. Saturation conditions were suitable in maintaining smooth rill geomorphology and causing fast water flow. The saturated soil slope had a lubricant effect on the soil surface to reduce the frictional force, resulting in high flow velocity. The flow velocities of eroding rills under different slope gradients and flow rates were approximately 14% to 33% lower than those of non-eroded rills on saturated loess slopes. Compared with that on a saturated loess slope, the eroding rill on a non-saturated loess slope can produce headcuts to reduce the flow velocity. This study helps understand the hydrodynamics of soil erosion and sediment transportation of saturated soil slopes.

  17. Geochemistry of fluid phases and sediments: Relevance to hydrothermal circulation in Middle Valley, ODP Legs 139 and 169

    USGS Publications Warehouse

    Gieskes, J.M.; Simoneit, B.R.T.; Shanks, Wayne C.; Goodfellow, W.D.; James, R.H.; Baker, P.A.; Ishibashi, J.-I.

    2002-01-01

    Geochemical and isotopic studies of pore fluids and solid phases recovered from the Dead Dog and Bent Hill hydrothermal sites in Middle Valley (Ocean Drilling Program Leg 169) have been compared with similar data obtained previously from these sites during Ocean Drilling Program Leg 139. Although generally the hydrothermal systems reflect non-steady state conditions, the data allow an assessment of the history of the hydrothermal processes. Sediment K/A1 ratios as well as the distribution of anhydrite in the sediments suggest that the Dead Dog hydrothermal field has been, and still is, active. In contrast, similar data in the Bent Hill hydrothermal field indicate a waning of hydrothermal activity. Pore fluid and hydrothermal vent data in the Dead Dog hydrothermal field are similar in nature to the data collected during ODP Leg 139. In the area of the Bent Hill sulfide deposit, however, the pore water data indicate that recent wholesale flushing of the sediment column with relatively unaltered seawater has obliterated a previous record of hydrothermal activity in the pore fluids. Data from the deepest part of Hole 1035A in the Bent Hill locality show the presence of hydrothermal fluids at greater depths in this area. This suggests the origin of the hydrothermal fluids found to be emanating from Hole 1035F, which constitutes one of the first man made hydrothermal vents in the Middle Valley hydrothermal system. Similarly, CORKed Hole 858G, because of seal failures, has acted as a hydrothermal vent, with sulfide deposits forming inside the CORK. ?? 2002 Elsevier Science Ltd. All rights reserved.

  18. A spatially distributed model for the dynamic prediction of sediment erosion and transport in mountainous forested watersheds

    NASA Astrophysics Data System (ADS)

    Doten, Colleen O.; Bowling, Laura C.; Lanini, Jordan S.; Maurer, Edwin P.; Lettenmaier, Dennis P.

    2006-04-01

    Erosion and sediment transport in a temperate forested watershed are predicted with a new sediment model that represents the main sources of sediment generation in forested environments (mass wasting, hillslope erosion, and road surface erosion) within the distributed hydrology-soil-vegetation model (DHSVM) environment. The model produces slope failures on the basis of a factor-of-safety analysis with the infinite slope model through use of stochastically generated soil and vegetation parameters. Failed material is routed downslope with a rule-based scheme that determines sediment delivery to streams. Sediment from hillslopes and road surfaces is also transported to the channel network. A simple channel routing scheme is implemented to predict basin sediment yield. We demonstrate through an initial application of this model to the Rainy Creek catchment, a tributary of the Wenatchee River, which drains the east slopes of the Cascade Mountains, that the model produces plausible sediment yield and ratios of landsliding and surface erosion when compared to published rates for similar catchments in the Pacific Northwest. A road removal scenario and a basin-wide fire scenario are both evaluated with the model.

  19. The subsurface geology of the Florida-Hatteras shelf, slope, and inner Blake Plateau

    USGS Publications Warehouse

    Paull, Charles K.; Dillon, William P.

    1979-01-01

    The structure and stratigraphy of the Florida-Hatteras Slope and inner Blake Plateau was studied by means of 4,780 km of single-channel air gun seismic reflection profiles. Control for the seismic stratigraphy is provided by correlating reflecting units and paleontologically dated stratigraphic units identified in offshore wells and dredge hauls. Many Tertiary unconformities exist, and major regional unconformities at the end of the Oligocene and in the late Paleocene are mapped. Reflecting surfaces believed to represent the tops of the Cretaceous, Paleocene, and Oligocene extend throughout the region. Upper Cretaceous (pre-Maastrichtian) rocks on the southeastern side of the Carolina Platform form a large seaward-facing progradational wedge. The Upper Cretaceous rocks in the Southeast Georgia Embayment, are seismically transparent and on the inner Blake Plateau are cut by numerous small faults, perhaps due to compaction. Within the survey area relatively flat-lying Maastrichtian and Paleocene strata show no evidence that a feature similar to the present Florida-Hatteras Slope existed at the beginning of the Tertiary. Late Paleocene erosion, related to the initiation of the Gulf Stream flow, probably developed this regional unconformity. Eocene and Oligocene sediments landward of the present Gulf Stream form a thick sequence of seaward-dipping progradational beds. A seaward progradational wedge of Miocene to Holocene age covers a regionally traceable unconformity, which separates the Oligocene from the Miocene sediments. Under and seaward of the present Gulf Stream, the Eocene and younger sediment supply was much smaller and the buildup is comparatively insignificant. The difference in accumulation rates in the Eocene and younger sediments, landward and seaward of the Gulf Stream, is responsible for the Florida-Hatteras Slope. Tertiary isopach maps suggest that there is a well developed triangular depocenter under the shelf. The edges of the depocenter correspond

  20. A temperature and photographic time-series from a seafloor gas hydrate deposit on the Gulf of Mexico Slope

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Vararo, M.; Bender, L.

    2003-04-01

    Under laboratory conditions, gas hydrates are highly sensitive to changes in water temperature. MacDonald et al. (1994) and Roberts et al. (1999) have monitored in-situ deposits and recorded rapid changes in gas flux from vents partially plugged with gas hydrate; the changes appear to correlate with fluctuation in bottom temperature over ranges of <0.2 to 1.0 C. To study this process in a different way, a monitoring array consisting of a time lapse camera and two thermistor probes was deployed at a hydrocarbon seep known as Bush Hill. Every 6 hours for 96 days (until battery power was exhausted), the camera recorded a digital image of a prominent gas hydrate mound consisting of Structure II hydrate with gas vents, chemosynthetic tube worms, and a number of mobile species. The temperature probes comprised two autonomous Antares thermistors, one at each end of a 50-cm PVC wand, which recorded temperatures with precision of better than 0.1 C at 30-min intervals over 327 d. One probe was implanted with a tight seal into a drill hole about 7 cm deep in the top of the gas hydrate mound. The second was inserted about 50 cm deep into the adjacent sediments. For each probe, the top thermistor recorded the ambient water temperature while the bottom thermistor recorded the internal temperature of the hydrate or sediment. Photographic results show no dramatic changes in the size, shape, or gas venting from the mound during the 96 day time-series. There were subtle increases in the amount of hydrate exposed to the water between the end of the photographic time series and the recovery of the monitoring array. Mean temperatures (SDEV) and temperature range recorded by the probes were as follows: In-water: 7.87 ( 0.44) and 6.64-9.73 C In-hydrate: 7.81 ( 0.34) and 6.87-9.18 C In-sediment: 7.81 ( 0.16) and 7.79-9.18 C Spectra of the temperature records showed significant high-frequency peaks for in-water data corresponding to K1, M2 and M3 lunar tides. Of these peaks, only the K1

  1. Geomorphology of the Eastern North American Continental Margin: the role of deep sea sedimentation processes

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Campbell, C.; Piper, D.; Chaytor, J. D.; Gardner, J. V.; Rebesco, M.

    2016-12-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data in concert with subbottom profiler and seismic reflection data. Most of the continental margin has a steep (>3o) upper slope down to 1500 to 2500 m and then a gradual middle and lower slope with a general concave upward shape There is a constant interplay of deep sea sedimentation processes, but the general morphology is dictated by the dominant one. Erosion by off-shelf sediment transport in turbidity currents creating channels, gullies and canyons creates the steep upper slope. These gullies and canyons amalgamate to form singular channels that are conduits to the abyssal plain. This process results in a general seaward flattening of gradients, producing an exponentially decaying slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a two-segment slope, and/or a significant downslope gradient change where MTDs pinch out. Large sediment bodies deposited by contour-following currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. Along their crests, they form a linear profile from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts tend to form bathymetric steps in profile, where they onlap the margin. Stacked drifts create several steps. Turbidites of the abyssal plain onlap

  2. Equilibrium Conditions of Sediment Suspending Flows on Earth, Mars and Titan

    NASA Astrophysics Data System (ADS)

    Amy, L. A.; Dorrell, R. M.

    2016-12-01

    Sediment entrainment, erosion and deposition by liquid water on Earth is one of the key processes controlling planetary surface evolution. Similar modification of planetary surfaces by liquids associated with a volatile cycle are also inferred to have occurred on other planets (e.g., water on Mars and methane-ethane on Titan). Here we explore conditions for equilibrium flow - the threshold between net sediment erosion and deposition - on different planets. We use a new theoretical model for particle erosion-suspension-deposition: this model shows a better fit to empirical data than comparative suspension criterions (e.g., Rouse Number) since it takes into account both flow competence and capacity, and particle size distribution effects. Shear stresses required to initially entrain sediment and maintain equilibrium flow vary significantly, being several times lower on Mars and more than ten times lower on Titan resulting principally from lower gravities. On all planets it is harder to maintain equilibrium flow as sediment mixtures become poorer sorted (higher shear stresses are needed as standard deviation increases). In comparison to large differences in critical shear stresses, critical slopes for equilibrium flow are similar for planets. Compared to Earth, equilibrium slopes on Mars should be slightly lower whilst those on Titan will be higher or lower for organic and ice particle systems, respectively. Particle size distribution has a similar, order of magnitude effect, on equilibrium slope on each planet. The results highlight that whilst reduced gravity on Titan and Mars significantly decreases the bed shear stress required for particle transport, it also proportionally effects the bed shear stress of moving fluid, such that similar slope gradients are required for equilibrium flow; minor variations in equilibrium slopes are related to differences in the particle-fluid density contrasts as well as fluid viscosities. These results help explain why planetary

  3. Bedrock, soils, and hillslope hydrology in the Central Texas Hill Country, USA: implications on environmental management in a carbonate-rock terrain

    NASA Astrophysics Data System (ADS)

    Woodruff, C. M.; Wilding, L. P.

    2008-08-01

    The Hill Country of Central Texas, USA, is undergoing rapid socioeconomic development, but environmental management of this region is hampered by misconceptions about local bedrock, soils, terrain, and hydrologic processes. The Hill Country is underlain mostly by Glen Rose Limestone (Lower Cretaceous) and exhibits a stepped terrain, which has been incorrectly attributed to alternating hard and soft bedrock strata. Other characteristics mistakenly attributed to this landscape include thin soils with scant water-retention capabilities, and rapid runoff as the dominant hydrologic process. This report presents new findings: unweathered bedrock is well indurated, but interbeds exhibit variable weathering rates. Recessive slopes (“risers”) on this stepped terrain result from rapid deterioration of strata having generally heterogeneous depositional fabrics (bioturbation and irregular clay partings) in contrast to ledge-forming strata having homogeneous fabrics. A stony regolith is thus formed beneath risers, providing porous and permeable ground that retards runoff and promotes the formation of moderately deep to deep (two-tiered) regolith/soil zones. These surficial materials on local steep slopes compose important natural environmental buffers; they support diverse biota and enhanced geochemical cycling of nutrients; they also exhibit significant water retention and enhanced erosion abatement. Proper land management demands recognition of these attributes in the siting, design, and construction of facilities.

  4. Field data describing the movement and storage of sediment in the East Fork River, Wyoming; Part I, River hydraulics and sediment transport, 1979

    USGS Publications Warehouse

    Emmett, William W.; Myrick, Robert M.; Meade, Robert H.

    1980-01-01

    Bed-material gradation and water-surface slope were determined for a 3.3-kilometer reach of East Fork River, Wyo. During peak snowmelt runoff, frequent measurements of water discharge and sediment-transport rate provided data describing the inflow and outflow of water and sediment. In spring 1979, bankfull stage was exceeded on 8 days. Maximum discharge was about 32 cubic meters per second, which has a recurrence interval of about 2 years. The median particle size of bed material is 1.28 millimeters; the 35 and 65 percentiles are represented by diameters of 0.50 and 2.88 millimeters, respectively. The average water-surface slope in the reach is 0.0007 and varies little with river stage. Bedload-transport rates ranged from a little less than 0.001 to a little more than 0.1 kilograms per meter of channel width per second. Median bedload grain size, with several exceptions, ranged from 0.4 to 1.5 millimeters. Gravel-size particles generally constituted 10 to 40% of the bedload. Suspended-sediment concentrations ranged from 6 to 95 milligrams per liter. Suspended sediment smaller than sand constited about half the measured suspended sediment, ranging from 17 to 81%. (USGS)

  5. Fracture and slope stability monitoring at Puigcercós landslide (Catalonia, Spain)

    NASA Astrophysics Data System (ADS)

    Khazaradze, Giorgi; Vasquez, Sebastian; López, Robert; Guinau, Guinau; Calvet, Jaume; Vilaplana, Joan Manuel; Blanch, Xabier; Tapia, Mar; Roig, Pere; Suriñach, Emma

    2017-04-01

    The village of Puigcercós ( 50 inhabitants) is located in the region of Pallars Jussà (Lleida) in Catalonia, several km south of the town of Tremp. In 1881 the entire village had to be moved from its historical location on top of the hill to its current location. This was caused by a series of landslides caused by continuing rainfall. The most important landslide occurred on January 13th 1881, which displaced more than 5 million cubic meters of sediments and rocks and created an impressive rock scar of approximately 25 m height and 150 m width. The area where the sediments were accumulated is extensive, reaching 8 hectares. During the last years, our group has chosen the site of Puigcercós to conduct pilot studies of landslides and rockfalls using multidisciplinary approach, involving Terrestrial Laser Scanner, Total Station, DGPS, seismic monitoring and geophysical techniques. The geophysical surveys of the zone of the sediment accumulation, can help determine the internal structure of the displaced sediments. The work presented here mainly concerns the deformation monitoring at the site using geodetic techniques. In July 2015, a network of 11 new geodetic points has been established and measured with GPS. The location of these points was chosen with the purpose of answering two important questions in the studies of the stability and geomorphological activity of the Puigcercós landslide: 1) As a result of combined analysis of the tape-meter, total station and GPS measurements, we hope to obtain absolute values of deformation in the upper part of the escarpment, controlling the stability of the escarpment front and the associated fractures near the coronation. For this purpose, two geodetic control points have been established at the hilltop, some 5 meters away from the escarpment itself. 2) Determine the slope stability of the depositional area, where we established nine geodetic points. As of today, these points have been measured twice, in 2015 and 2016

  6. Gas hydrates from the continental slope, offshore Sakhalin Island, Okhotsk Sea

    USGS Publications Warehouse

    Ginsburg, G.D.; Soloviev, V.A.; Cranston, R.E.; Lorenson, T.D.; Kvenvolden, K.A.

    1993-01-01

    Ten gas-vent fields were discovered in the Okhotsk Sea on the northeast continental slope offshore from Sakhalin Island in water depths of 620-1040 m. At one vent field, estimated to be more than 250 m across, gas hydrates, containing mainly microbial methane (??13C = -64.3???), were recovered from subbottom depths of 0.3-1.2 m. The sediment, having lenses and bedded layers of gas hydrate, contained 30-40% hydrate per volume of wet sediment. Although gas hydrates were not recovered at other fields, geochemical and thermal measurements suggest that gas hydrates are present. ?? 1993 Springer-Verlag.

  7. Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Winters, W.; Walker, M.; Hunter, R.; Collett, T.; Boswell, R.; Rose, K.; Waite, W.; Torres, M.; Patil, S.; Dandekar, A.

    2011-01-01

    This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography.This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4. m-627.9. m); unit C-GH1 (649.8. m-660.8. m); and unit C-GH2 (663.2. m-666.3. m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate.In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average "plug" intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7. mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than

  8. Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Winters, William J.; Walker, Michael; Hunter, Robert; Collett, Timothy S.; Boswell, Ray M.; Rose, Kelly K.; Waite, William F.; Torres, Marta; Patil, Shirish; Dandekar, Abhijit

    2011-01-01

    This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography. This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4 m-627.9 m); unit C-GH1 (649.8 m-660.8 m); and unit C-GH2 (663.2 m-666.3 m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate. In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average "plug" intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7 mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than an

  9. Submarine landslide and tsunami hazards offshore southern Alaska: Seismic strengthening versus rapid sedimentation

    NASA Astrophysics Data System (ADS)

    Sawyer, Derek E.; Reece, Robert S.; Gulick, Sean P. S.; Lenz, Brandi L.

    2017-08-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure. This conclusion is supported by shear strength outside of the fan that follow an active margin trend. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking.

  10. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, E.; Muller, S. K.; Kueppers, U.; Dingwell, D. B.

    2015-05-01

    Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufriere Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding

  11. Geochemical Investigation of Slope Failure on the Northern Cascadia Margin Frontal Ridge

    NASA Astrophysics Data System (ADS)

    Pohlman, J. W.; Riedel, M.; Waite, W.; Rose, K.; Lapham, L.; Hamilton, T. S.; Enkin, R.; Spence, G. D.; Hyndman, R.; Haacke, R.

    2008-12-01

    Numerous submarine landslides occur along the seaward side of the northern Cascadia margin's frontal ridge. Bottom simulating reflectors (BSRs) are also prevalent beneath the ridge at a sediment depth (~255 mbsf) coincident with the failure of at least one potentially recent slump. By one scenario, the most recent megathrust earthquake on the northern Cascadia margin, which occurred in 1700 A.D., raised the pore pressure and destabilized gas-charged sediment at the BSR depth. If true, the exposed seafloor within the slide's sole would contain gas-charged, sulfate-free sediment immediately following the slope failure. Over time, sulfate would diffuse into the exposed sediment and re-establish an equilibrium sulfate gradient. In this study, three 1-5 km wide collapse structures and the surrounding areas were cored during the Natural Resources Canada (NRCan) supported cruise PGC0807 to determine if the failures were related to over- pressurized gas and constrain the age of the slumps. Sulfate and methane gradients were measured from cores typically collected along a transect from the headwall scarp, and down to the toe of the slide. Rapidly decreasing sulfate concentrations with depth (a proxy for enhanced methane flux toward the seafloor) above the headwall of Lopez slump confirms a high background flux on the crest of the ridge. However, within the cores we recovered from the headwall, slide sole and slide deposits at all sites investigated, sulfate was abundant, methane was largely absent and, correspondingly, sulfate gradients were relatively low. On the basis of these results, methane was either lost from the system during or since the slope failure, or was never present in the high concentrations expected at an exhumed BSR. Numerical models that simulate sulfate diffusion following the slump-induced pore water profile perturbations will be utilized to constrain the age of the slope failures. Complementary sedimentological and geotechnical studies from the

  12. Large rock-slope failures impacting on lakes - Reconstruction of events and deciphering mobility processes at Lake Oeschinen (CH) and Lake Eibsee (D)

    NASA Astrophysics Data System (ADS)

    Knapp, Sibylle; Anselmetti, Flavio; Gilli, Adrian; Krautblatter, Michael; Hajdas, Irka

    2017-04-01

    Among single event landslide disasters large rock-slope failures account for 75% of disasters with more than 1000 casualties. The precise determination of recurrence rates and failure volumes combined with an improved understanding of mobility processes are essential to better constrain runout models and establish early warning systems. Here we present the data sets from the two alpine regions Lake Oeschinen (CH) and Lake Eibsee (D) to show how lake studies can help to decipher the multistage character of rock-slope failures and to improve the understanding of the processes related to rock avalanche runout dynamics. We focus on such that impacted on a (paleo-) lake for two main reasons. First, the lake background sedimentation acts as a natural chronometer, which enables the stratigraphic positioning of events and helps to reconstruct the event history. This way it becomes possible to (i) decipher the multistage character of the failure of a certain rock slope and maybe detect progressive failure, (ii) determine the recurrence rates of failures at that certain rock slope, and (iii) consider energies based on estimated failure volumes, fall heights and deposition patterns. Hence, the interactions between a rock-slope failure, the water reservoir and the altered rock-slope are better understood. Second, picturing a rock avalanche running through and beyond a lake, we assume the entrainment of water and slurry to be crucial for the subsequent flow dynamics. The entrainment consumes a large share of the total energy, and orchestrates the mobility leading to fluidization, a much higher flow velocity and a longer runout-path length than expected. At Lake Oeschinen (CH) we used lake sediment cores and reflection seismic profiles in order to reconstruct the 2.5 kyrs spanning rock-slope failure history including 10 events, six of which detached from the same mountain flank, and correlated them with (pre-) historical data. The Lake Eibsee records provide insights into the

  13. Sediment transport by runoff on debris-mantled dryland hillslopes

    NASA Astrophysics Data System (ADS)

    Michaelides, Katerina; Martin, Gareth J.

    2012-09-01

    Hillslopes supply sediment to river channels, and therefore impact drainage basin functioning and evolution. The relationship between hillslope attributes and sediment flux forms the basis of geomorphic transport laws used to model the long-term topographic evolution of drainage basins, but their specific interactions during individual storm events are not well understood. Runoff-driven erosion of coarse particles, prevalent in dryland environments, presents a particular set of conditions for sediment transport that is poorly resolved in current models. In order to address this gap, we developed a particle-based, force-balance model for sheetwash sediment transport on coarse, debris-mantled hillslopes within a rainfall-runoff model. We use the model to examine how the interplay between hillslope attributes (gradient, length and grain size distribution) and runoff characteristics affects sediment transport, grain-size changes on the hillslope, and sediment supply to the slope base. The relationship between sediment flux and hillslope gradient was found to transition from linear above a threshold to sigmoidal depending on hillslope length, initial grain sizes, and runoff characteristics. Grain sizes supplied to the slope base vary in a complex manner with hillslope attributes but an overall coarsening of the hillslopes is found to occur with increasing gradient, corroborating previous findings from field measurements. Intense, short duration storms result in within-hillslope sediment redistribution and equifinality in sediment supply for different hillslope characteristics, which explain the lack of field evidence for any systematic relationships. Our model findings provide insights into hillslope responses to climatic forcing and have theoretical implications for modeling hillslope evolution in dry lands.

  14. Anticipated sediment delivery to the lower Elwha River during and following dam removal: Chapter 2 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Czuba, Christiana R.; Randle, Timothy J.; Bountry, Jennifer A.; Magirl, Christopher S.; Czuba, Jonathan A.; Curran, Christopher A.; Konrad, Christopher P.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    During and after the planned incremental removal of two large, century-old concrete dams between 2011 and 2014, the sediment-transport regime in the lower Elwha River of western Washington will initially spike above background levels and then return to pre-dam conditions some years after complete dam removal. Measurements indicate the upper reaches of the steep-gradient Elwha River, draining the northeast section of the Olympic Mountains, carries between an estimated 120,000 and 290,000 cubic meters of sediment annually. This large load has deposited an estimated 19 million cubic meters of sediment within the two reservoirs formed by the Elwha and Glines Canyon Dams. It is anticipated that from 7 to 8 million cubic meters of this trapped sediment will mobilize and transport downstream during and after dam decommissioning, restoring the downstream sections of the sediment-starved river and nearshore marine environments. Downstream transport of sediment from the dam sites will have significant effects on channel morphology, water quality, and aquatic habitat during and after dam removal. Sediment concentrations are expected to be between 200 and 1,000 milligrams per liter during and just after dam removal and could rise to as much as 50,000 milligrams per liter during high flows. Downstream sedimentation in the river channel and flood plain will be potentially large, particularly in the lower Elwha River, an alluvial reach with a wide flood plain. Overall aggradation could be as much as one to several meters. Not all reservoir sediment, however, will be released to the river. Some material will remain on hill slopes and flood plains within the drained reservoirs in quantities that will depend on the hydrology, precipitation, and mechanics of the incising channel. Eventually, vegetation will stabilize this remaining reservoir sediment, and the overall sediment load in the restored river will return to pre-dam levels.

  15. Observational study of surface wind along a sloping surface over mountainous terrain during winter

    NASA Astrophysics Data System (ADS)

    Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk

    2018-03-01

    The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.

  16. Geologic characteristics and movement of the Meadow Creek landslide, part of the Coal Hill landslide complex, western Kane County, Utah

    USGS Publications Warehouse

    Ashland, Francis X.; McDonald, Greg N.; Carney, Stephanie M.; Tabet, David E.; Johnson, Cari L.

    2010-01-01

    The Meadow Creek landslide, part of the Coal Hill landslide complex in western Kane County, Utah, is about 1.7 miles (2.7 km) wide and 1.3 miles (2.1 km) long and contains six smaller historical slides. The upper part of the Meadow Creek landslide is gently sloping and consists of displaced and back-rotated blocks of Cretaceous Dakota and Cedar Mountain Formations that form northeast- to locally east-trending ridges that are separated by sediment-filled half-grabens. The lower part of the landslide is gently to moderately sloping, locally incised, and consists of heterogeneous debris that overrides the Jurassic Carmel Formation near Meadow Creek. Monitoring using a survey-grade Global Positioning System (GPS) instrument detected movement of the southern part of the Meadow Creek landslide between October 2005 and October 2008, including movement of two of the historical slides-landslides 1 and 2. The most movement during the measurement period occurred within the limits of persistently moving landslide 1 and ranged from about 24 to 64 inches (61-163 cm). Movement of the abutting southern part of the Meadow Creek landslide ranged from approximately 6 to 10 inches (15-25 cm). State Route 9 crosses over approximately a mile (1.6 km) of the southern part of the Meadow Creek landslide, including landslide 1. The highway and its predecessor (State Route 15) have been periodically displaced and damaged by persistent movement of landslide 1. Most of the landslide characteristics, particularly its size, probable depth, and the inferred weak strength and low permeability of clay-rich gouge derived from the Dakota and Cedar Mountain Formations, are adverse to and pose significant challenges to landslide stabilization. Secondary hazards include piping-induced sinkholes along scarps and ground cracks, and debris flows and rock falls from the main-scarp escarpment.

  17. Assessing slope dynamics in a climate-sensitive high arctic region with Sentinel-1 dataset

    NASA Astrophysics Data System (ADS)

    Mantovani, Matteo; Pasuto, Alessandro; Soldati, Mauro; Popovic, Radmil; Berthling, Ivar

    2017-04-01

    As witnessed by an increasing number of studies, the evidence of ongoing climate change and its geomorphological effects is unquestionable. In the Svalbard archipelago, the Arctic amplification of global warming trends currently has a significant effect on permafrost temperatures and active layer thickness. Combined with altered intensity and variability of precipitation, slopes are likely to become more active in terms of both rapid and slow (creep) processes - at least as a temporary effect where the ice-rich transient layer of soils or jointed permafrost rock walls are starting to thaw. The slopes of the Kongsfjorden area aroundNy-Ålesund, NW Spitzbergen comprise a variable set of slopes systems on which to evaluate current modifications of slope sediment transfer; from low-angle fined-grained vegetated slopes to steep rock walls, talus slopes and rock glaciers. In addition, systems influenced by currently retreating glaciers and thermokarst processes are also found, in some settings interfering with the rock wall and talus slope systems. Within the framework of the SLOPES project, we provide baseline data on slope geometry from detailed terrestrial laser scanning and drone aerial image acquisition. Further, in order to document current dynamics, we employ interferometric analysis of data gathered by the new ESA mission SENTINEL. This presentation will report on data from the interferometric analysis.

  18. Red Hill

    EPA Pesticide Factsheets

    Information about the Red Hill Bulk Fuel Storage Facility in Hawaii Administrative Order on Consent (AOC), an enforceable agreement of the Hawaii Department of Health, the Environmental Protection Agency, and the U.S. Navy -- Defense Logistics Agency.

  19. Numerical Simulation of the 9-10 June 1972 Black Hills Storm Using CSU RAMS

    NASA Technical Reports Server (NTRS)

    Nair, U. S.; Hjelmfelt, Mark R.; Pielke, Roger A., Sr.

    1997-01-01

    Strong easterly flow of low-level moist air over the eastern slopes of the Black Hills on 9-10 June 1972 generated a storm system that produced a flash flood, devastating the area. Based on observations from this storm event, and also from the similar Big Thompson 1976 storm event, conceptual models have been developed to explain the unusually high precipitation efficiency. In this study, the Black Hills storm is simulated using the Colorado State University Regional Atmospheric Modeling System. Simulations with homogeneous and inhomogeneous initializations and different grid structures are presented. The conceptual models of storm structure proposed by previous studies are examined in light of the present simulations. Both homogeneous and inhomogeneous initialization results capture the intense nature of the storm, but the inhomogeneous simulation produced a precipitation pattern closer to the observed pattern. The simulations point to stationary tilted updrafts, with precipitation falling out to the rear as the preferred storm structure. Experiments with different grid structures point to the importance of removing the lateral boundaries far from the region of activity. Overall, simulation performance in capturing the observed behavior of the storm system was enhanced by use of inhomogeneous initialization.

  20. Directional Site Amplification Effect on Tarzana Hill, California

    NASA Astrophysics Data System (ADS)

    Graizer, V.; Shakal, A.

    2003-12-01

    Significantly amplified ground accelerations at the Tarzana Hill station were recorded during the 1987 Mw 5.9 Whittier Narrows and the 1994 Mw 6.7 Northridge earthquakes. Peak horizontal ground acceleration at the Tarzana station during the 1999 Mw 7.1 Hector Mine earthquake was almost twice as large as the accelerations recorded at nearby stations. The Tarzana site was drilled to a depth of 100 m. A low shear-wave velocity near the surface of 100 m/sec increasing to near 750 m/sec at 100 m depth was measured. The 20 m high hill was found to be well drained with a water table near 17 m. Modelo formation (extremely weathered at the surface to fresh at depth) underlies the hill. The subsurface geology and velocities obtained allow classification of this location as a soft-rock site. After the Northridge earthquake the California Strong Motion Instrumentation Program significantly increased instrumentation at Tarzana to study the unusual site amplification effect. Current instrumentation at Tarzana consists of an accelerograph at the top of Tarzana hill (Tarzana - Cedar Hill B), a downhole instrument at 60 m depth, and an accelerograph at the foot of the hill (Tarzana - Clubhouse), 180 m from the Cedar Hill B station. The original station, Tarzana - Cedar Hill Nursery A, was lost in 1999 due to construction. More than twenty events, including the Hector Mine earthquake, were recorded by all these instruments at Tarzana. Comparison of recordings and response spectra demonstrates strong directional resonance on the top of the hill in a direction perpendicular to the strike of the hill in the period range from 0.04 to 0.8 sec (1.2 to 25 Hz). There is practically no amplification from the bottom to the top of the hill for the component parallel to the strike of the hill. In contrast to accelerations recorded during the Hector Mine earthquake (high frequency part of seismic signal), displacements (relatively low frequency part of seismic signal) demonstrate almost no site

  1. Isotopic Composition of Carbon Dioxide Released from Confidence Hills Sediment as Measured by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J.; Archer, P., Jr.; Conrad, P.; Eigenbrode, J.; Freissinet, C.; Glavin, D.; Grotzinger, J. P.; Jones, J.; hide

    2015-01-01

    In October 2014, the Mars Science Laboratory (MSL) "Curiosity" rover drilled into the sediment at the base of Mount Sharp in a location namsed Cionfidence Hills (CH). CH marked the fifth sample pocessed by the Sample Analysis at Mars (SAM) instrument suite since Curiosity arrived in Gale Crater, with previous analyses performed at Rocknest (RN), John Klein (JK), Cumberland (CB), and Windjana (WJ). Evolved gas analysis (EGA) of all samples has indicated H2O as well as O-, C- and S-bearing phases in the samples, often at abundances that would be below the detection limit of the CheMin instrument. By examining the temperatures at which gases are evolved from samples, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases when their identities are unclear to CheMin. SAM may also detect gases evolved from amorphous material in solid samples, which is not suitable for analysis by CheMin. Finally, the isotopic composition of these gases may suggest possible formation scenarios and relationships between phases. We will discuss C isotope ratios of CO2 evolved from the CH sample as measured with SAM's quadrupole mass spectrometer (QMS) and draw comparisons to samples previously analyzed by SAM.

  2. Slope Stability Problems and Back Analysis in Heavily Jointed Rock Mass: A Case Study from Manisa, Turkey

    NASA Astrophysics Data System (ADS)

    Akin, Mutluhan

    2013-03-01

    This paper presents a case study regarding slope stability problems and the remedial slope stabilization work executed during the construction of two reinforced concrete water storage tanks on a steep hill in Manisa, Turkey. Water storage tanks of different capacities were planned to be constructed, one under the other, on closely jointed and deformed shale and sandstone units. The tank on the upper elevation was constructed first and an approximately 20-m cut slope with two benches was excavated in front of this upper tank before the construction of the lower tank. The cut slope failed after a week and the failure threatened the stability of the upper water tank. In addition to re-sloping, a 15.6-m deep contiguous retaining pile wall without anchoring was built to support both the cut slope and the upper tank. Despite the construction of a retaining pile wall, a maximum of 10 mm of displacement was observed by inclinometer measurements due to the re-failure of the slope on the existing slip surface. Permanent stability was achieved after the placement of a granular fill buttress on the slope. Back analysis based on the non-linear (Hoek-Brown) failure criterion indicated that the geological strength index (GSI) value of the slope-forming material is around 21 and is compatible with the in situ-determined GSI value (24). The calculated normal-shear stress plots are also consistent with the Hoek-Brown failure envelope of the rock mass, indicating that the location of the sliding surface, GSI value estimated by back analysis, and the rock mass parameters are well defined. The long-term stability analysis illustrates a safe slope design after the placement of a permanent toe buttress.

  3. Storage and remobilization of suspended sediment in the lower amazon river of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Dunne, T.; Richey, J.E.; Santos, U.De. M.; Salati, E.

    1985-01-01

    In the lower Amazon River, suspended sediment is stored during rising stages of the river and resuspended during falling river stages. The storage and resuspension in the reach are related to the mean slope of the flood wave on the river surface; this slope is smaller during rising river stages than during falling stages. The pattern of storage and resuspension damps out the extreme values of high and low sediment discharge and tends to keep them near the mean value between 3.0 ?? 106 and 3.5 ?? 106 metric tons per day. Mean annual discharge of suspended sediment in the lower Amazon is between 1.1 ?? 109 and 1.3 ?? 109 metric tons per year.

  4. Species distribution of kobs (Kobus kob) in the Shai Hills Resource Reserve: an exploratory analysis.

    PubMed

    Antwi, Raymond Agyepong; Owusu, Erasmus Henaku; Attuquayefio, Daniel Korley

    2018-02-01

    The well-being of a species fundamentally rests on understanding its biology, home range, and distribution. The highly seasonal distribution of kobs poses conservation and management difficulties, particularly because of the capricious nature of the ever-changing ecological and vegetation dynamics of the ecosystem. Assessing the distribution of kobs and their associated vegetation provides insight into the vulnerability and conservation status of the species. Species distribution and habitat suitability maps were developed and created respectively for the management of kobs in the Shai Hills Resource Reserve. Kob presence data collected was analyzed using the spatial analyst and Hawth's tool in the ArcGIS software where the gradients of kob distribution within the protected area landscape were plotted and mapped. Seven environmental variables including location, land cover/use, slope/elevation, nearness to dams and rivers, temperature, and rainfall were considered to have effect on kob distribution pattern and as such used in the development of species distribution and habitat suitability maps. The results indicated that kobs in the Shai Hills Resource Reserve (SHRR) assume a clumped or contagious distribution pattern where individual kobs are aggregated in patches. Rainfall, temperature, nearness to dams and rivers, slope/elevation, and land cover/use had influence in kob distribution. Of all the cataloged habitats, 86, 13, and 1% were moderately suitable, suitable, and unsuitable, respectively. Long-term survival of species depends on adequately large areas of suitable habitats and opportunities for home range activities between such areas. As such, it is recommended that suitable habitats for kobs be dedicated and designated as conservation areas, especially areas along the western boundary.

  5. 3D Numerical Investigation of the Role of the Slope in the 'Fill-and-Spill' Process in Submarine Minibasin

    NASA Astrophysics Data System (ADS)

    Bastianon, E.; Viparelli, E.; Cantelli, A.; Imran, J.

    2017-12-01

    Intraslope basins are important geomorphological features present in several continental slopes around the world. They are quasi-circular in shape, and some are connected by submarine canyons. Minibasins constitute excellent locations for the deposition of siliciclastic material transported by turbidity currents and are often targets for hydrocarbon exploration. Sediment deposition in intraslope minibasin is described by the `fill-and-spill' model. When a turbidity current enters an empty minibasin, it reflects on the distal flank creating a bore. A sharp interface separates the clear water above from the turbidity current. In this phase sediments are deposited, and ponded deposits form at a lower elevation relative to the spill point. In phases in which sedimentation exceed subsidence, the thickness of the ponded deposit increases, the space between the minibasin floor and the spill point decreases, and the turbidity currents eventually overspill. The depositional pattern changes with preferential sediment deposition in the proximal part of the minibasin and the formation of a perched apron. The objective of this study is to investigate how the characteristics of the minibasin deposits change with increasing vertical distance between the minibasin inlet and the spill point, i.e. with an increase in slopes of the submarine settings. We applied a three-dimensional numerical model for turbidity currents that solves the Reynolds-averaged Navier-Stokes equations for dilute suspension along with the Exner equation of bed sediment conservation for multiple grain size classes. The model grid is adjusted according to changes in the bed elevation. The model is first validated using 2D and 3D laboratory experiments in which the minibasin entrance and the spill point are at similar elevation. The validation is done with a comparison of measured and simulated deposit geometries, vertical profiles of suspended sediment concentration and spatial distributions of sediment sizes

  6. Low methane concentrations in sediment along the continental slope north of Siberia: Inference from pore water geochemistry

    NASA Astrophysics Data System (ADS)

    Miller, C.; Dickens, G. R.; Jakobsson, M.; Koshurnikov, A.

    2016-12-01

    The Eastern Siberian Margin (ESM), a vast region of the Arctic, potentially holds large amounts of methane in sediments as gas hydrate and free gas. Although this CH4 has become a topic of discussion, primarily because of rapid regional climate change, the ESM remains sparingly explored. Here we present pore water chemistry results from 32 cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The cores come from depth transects across the continental slope of the ESM between Wrangel Island and the New Siberian Islands. Upward CH4 flux towards the seafloor, as inferred from profiles of dissolved sulfate (SO42-), alkalinity, and the δ13C-dissolved inorganic Carbon (DIC), is negligible at all stations east of where the Lomonosov Ridge abuts the ESM at about 143°E. In the upper eight meters of these cores, downward sulfate flux never exceeds 9.2 mol/m2-kyr, the upward alkalinity flux never exceeds 6.8 mol/m2-kyr, and δ13C-DIC only slowly decreases with depth (-3.6‰/m on average). Additionally, dissolved H2S was not detected in these cores, and nutrient and metal profiles reveal that metal oxide reduction by organic carbon dominates the geochemical environment. A single core on Lomonosov Ridge differs, as diffusive fluxes for SO42- and alkalinity were 13.9 and 11.3 mol/m2-kyr, respectively, the δ13C-DIC gradient was 5.6‰/m, and Mn2+ reduction terminated within 1.3 m of the seafloor. These are among the first pore water results generated from this vast climatically sensitive region, and they imply that significant quantities of CH4, including gas hydrates, do not exist in any of our investigated depth transects spread out along much of the ESM continental slope. This contradicts previous assumptions and hypothetical models and discussion, which generally have assumed the presence of substantial CH4.

  7. AmeriFlux US-Blk Black Hills

    DOE Data Explorer

    Meyers, Tilden [NOAA/ARL

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Blk Black Hills. Site Description - The Black Hills tower was established by the Institute for Atmospheric Studies of the South Dakota School of Mines and Technology.

  8. Means of Slope Retreat on the Na Pali Cliffs, Kauai, Hawaii

    NASA Astrophysics Data System (ADS)

    Osborn, G.; Sheardown, A.; Blay, C.

    2016-12-01

    The spectacular, 500 to 600 m high, deeply grooved escarpment referred to as the Na Pali cliffs, on the northwest coast of Kauai, requires a substrate competent enough to hold up high steep cliffs yet erodible enough to allow generation of wide, deep grooves. These opposing tendencies are afforded by weathering of originally strong basalt that keeps pace with erosion. The fluted cliffs maintain a rather consistent slope angle, generally 50-60°, whether they are close to the shoreline or have retreated some distance from it, indicating that the slopes are retreating parallel to themselves. Previous literature promotes groundwater sapping or waterfall-plunge-pool erosion as the chief means of valley-head retreat, but there is no evidence that either concept provides a general explanation for retreat of the fluted cliffs. The eroding cliffs maintain steepness because as much rock is eroded at the base as at the top, and transported sediment is washed completely out of the gully system. The thin-bedded basalts exposed in the steep flutes are decomposed into irregularly alternating fine sediment of low to moderate cohesion and thoroughly fractured beds or lenses of solid but chemically weathered rock, and covered with a veneer of sparse grass. Erosion proceeds by episodic removal of thin grass-covered surficial sheets of the weathering products. Some of this process may be facilitated by shallow mass movement, but probably most of the work is done by overland and channelized flow during intense rainstorms. The Na Pali coast experiences one-hour rainfalls of 2-2.5 inches (1 year recurrence interval) and 5-6 inches (100 year recurrence interval); experiments by others on basaltic soils in Molokai suggest such rain is more than enough to generate erosion-inducing overland flow. Between the deep grooves and the shoreline are slopes with lesser drainage densities and lesser slope angles. The rocks here are not distinguished from the rocks above in previous literature, and

  9. Laboratory investigation of coupled deformation and fluid flow in mudrock: implications for slope stability in the Ursa Basin, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Flemings, P. B.; Song, I.; Saffer, D. M.

    2012-04-01

    Integrated Ocean Drilling Program (IODP) Expedition 308 was dedicated to the study of fluid flow, overpressure, and slope stability in the Ursa Basin, on the continental slope of the Gulf of Mexico. In this location, turbidite channel levees deposited a wedge-shaped body: the deposition rate in the thick part of the wedge exceeded 12 mm/yr. This rapid deposition of fine grained sediments generated excess pore pressure observed near the seafloor. IODP drilling focused on three Sites: U1322, U1323, and U1324, along the steepest slope (2°) on the eastern section of the Ursa Canyon levee deposits. In this study, we conducted a suite of deformation experiments on samples from Site 1324, to understand the stress-strain behavior and stress history of the recovered core material. Our samples were taken from depths of 30-160 meters below seafloor, and are composed of ~40% silt and ~60% clay, with porosities ranging from ~42-55%. We first conducted uniaxial consolidation tests to determine pre-consolidation stresses and define deformation behavior due to simulated vertical loading. In a subset of tests, we subjected the samples to undrained shearing following consolidation, to define the friction angle and define relationships between stress state and deformation. We find that the lateral effective stress during uniaxial compression is 56-64% of the vertical effective stress (avg. K0=0.6). Pre-consolidation stresses suggest that pore pressure is hydrostatic to 50 mbsf (meters below seafloor), and is overpressured below this, with excess pressures up to 70% of the hydrostatic effective vertical stress (λ*=0.7) at 160 mbsf. The time coefficient of consolidation (cv) in these experiments is ~2.2x10-8 m2/s. Undrained shear tests define a failure envelope with a residual friction angle (φ) of 23° and zero cohesion. In our shearing tests, we observed no pore pressure change during initial (primarily elastic) shear deformation, but note a monotonic increase in pore pressure

  10. Near-bottom currents over the continental slope in the Mid-Atlantic Bight

    USGS Publications Warehouse

    Csanady, G.T.; Churchill, J.H.; Butman, B.

    1988-01-01

    From a set of 28 current meter records we have found that near-bottom currents faster than 0.2 m s-1 occur frequently over the outer continental shelf of the Mid-Atlantic Bight (bottom depth <210 m) but very rarely (<1% of the time) between bottom depths of 500 m and 2 km over the slope. The rarity of strong near-bottom flow over the middle and lower slope allows the accumulation of fine-grained sediment and organic carbon in this region. Fast near-bottom currents which do occur over the slope are invariably associated with topographic waves, although it is often superimposed inertial oscillations which increase current speed above the level of 0.2 m s-1. Episodes of intense inertial oscillations occur randomly and last typically for 10-20 days. Their energy source is unknown. Topographic wave energy exhibits a slight, but statistically significant, minimum over the mid-slope. These waves appear irregularly and vary both along isobaths and in time. The irregularity is presumably a consequence of random topographic wave generation by Gulf Stream instability. The current regime within sea-floor depressions in the slope (canyons and gullies) is distinctly different from that of the open slope; most notable is the near absence of topographic wave motion within depressions. ?? 1988.

  11. Sediment Flux from Source to Sink in the Brazos-Trinity Depositional System

    NASA Astrophysics Data System (ADS)

    Pirmez, C.; Prather, B. E.; Droxler, A.; Ohayer, W.

    2007-12-01

    During the Late Pleistocene a series of intra-slope basins offshore Texas in the Western Gulf of Mexico, received a high influx of clastic sediments derived primarily from the Brazos, Trinity, and Mississippi rivers. Sediment failures initiated at shelf edge deltas resulted in mass flows that negotiate a complex slope and basin topography caused by salt tectonics. Sediment locally fill ponded basins eventually spilling into subsequent basins downstream. Interaction between these flows and slope topography leads to a complex partitioning of sediment over time and space that can only be unraveled with high-resolution data. The availability of system-wide coverage with conventional 3d seismic surveys, a dense grid of high-resolution 2d seismic lines and cored wells from two of the four linked intraslope basins, makes this locale an ideal area to investigate the transfer of sediment across the continental margin, from river sources to the ultimate sink within an enclosed intraslope basin. Data from IODP Expedition 308 and industry wells, combined with data from previous studies on the shelf constrain an integrated seismic stratigraphic framework for the depositional system. Numerous radiocarbon age dates coupled with multiple stratigraphic tools (seismic-, bio-, and tephra correlations and oxygen isotope measurements) provide an unprecedented high-resolution chronology that allow for detailed estimation of sedimentation rates in this turbidite system and calculation of sediment volumes in each of the basins over time intervals of a few millennia during the late Pleistocene. We find that rates of sedimentation exceed 10 m/kyr during some periods of ultra-fast turbidite accumulation. Rates of channel incision and tectonic subsidence can also be calculated and are comparable to the rapid accumulation rates measured in the basin fill. Our observations indicate that while sealevel changes exert a first order control on delivery of sediment to the basins, the sedimentary

  12. A model study of sediment transport across the shelf break

    NASA Astrophysics Data System (ADS)

    Marchal, Olivier

    2017-04-01

    A variety of dynamical processes can contribute to the transport of material (e.g., particulate matter) across the shelf break - the region separating the continental shelf from the continental slope. Among these processes are (i) the reflection of internal waves on the outer shelf and upper slope, and (ii) the instability of hydrographic fronts, roughly aligned with isobaths, that are often present at the shelf break. On the one hand, internal waves reflecting on a sloping boundary can produce bottom shear stresses that are large enough to resuspend non-cohesive sediments into the water column. On the other hand, eddies shed from unstable shelf break fronts can incorporate into their core particle-rich waters from the outer shelf and upper slope, and transport these waters offshore. Here we present numerical experiments with a three-dimensional numerical model of ocean circulation and sediment transport, which illustrate the joint effect of internal waves and eddies on sediment transport across the shelf break. The model is based on the primitive equations and terrain-following coordinates. The model domain is square and idealized, comprising a flat continental shelf, a constant continental slope, and a flat abyssal basin. The model grid has O(1 km) horizontal resolution, so that (sub)mesoscale eddies observed in the vicinity of shelf breaks, such as south of New England, can be represented in detail. Internal waves are excited through the specification of a periodic variation in the across-slope component of velocity at the offshore boundary of the domain, and eddies are generated from the baroclinic instability of a shelf break jet that is initially in strict thermal wind balance. Numerical experiments are conducted that are characterized by (i) different slopes of internal wave characteristics relative to the continental slope, representing sub-critical, critical, and super-critical regimes, and (ii) different values for the dimensionless ratios that emerge

  13. Dip-slope and Dip-slope Failures in Taiwan - a Review

    NASA Astrophysics Data System (ADS)

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  14. Slope and basinal deposits adjacent to isolated carbonate platforms in the Indian Ocean: Sedimentology, geomorphology, and a new 1.2 Ma record of highstand shedding

    NASA Astrophysics Data System (ADS)

    Counts, J. W.; Jorry, S.; Jouet, G.

    2017-12-01

    Newly analyzed bathymetric, seismic, and core data from carbonate-topped seamounts in the Mozambique Channel reveals a variety of depositional processes and products operating on platform slopes and adjacent basins. Mass transport complexes (including turbidites and debrites), leveed channel systems with basin-floor fans, and contourites are imaged in high resolution in both seafloor maps and cross-section, and show both differences and similarities compared with platform slopes in the Bahamas and elsewhere. In some, though not all, platforms, increased sedimentation can be observed on the leeward margins, and slope rugosity may be asymmetric with respect to prevailing wind direction. Deposition is also controlled by glacial-interglacial cycles; cores taken from the lower slopes (3000+ m water depth) of carbonate platforms reveal a causative relationship between sea level and aragonite export to the deep ocean. δ18O isotopes from planktonic and benthic foraminifera of two 27-meter cores, reveal a high-resolution, continuous depositional record of carbonate sediment dating back to 1.2 Ma. Sea level rise, as determined by correlation with the LR04 benthic stack, is coincident with increased aragonite flux from platform tops. Gravity flow deposits are also affected by platform flooding—the frequency of turbidite/debrite deposits on pinnacle slopes increases during highstand, although such deposits are also present during glacial episodes. The results reported here are the first record of highstand shedding in the southern Indian Ocean, and provide the longest Quaternary sediment record to date in the region, including the Mid-Brunhes transition (MIS 11) that serves as an analog for the current climate conditions. In addition, this is the first study to describe sedimentation on the slopes of these platforms, providing an important point of comparison that has the potential to influence source-to-sink carbonate facies models.

  15. Seeing mountains in mole hills: geographical-slant perception

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Creem, S. H.; Zosh, W. D.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    When observers face directly toward the incline of a hill, their awareness of the slant of the hill is greatly overestimated, but motoric estimates are much more accurate. The present study examined whether similar results would be found when observers were allowed to view the side of a hill. Observers viewed the cross-sections of hills in real (Experiment 1) and virtual (Experiment 2) environments and estimated the inclines with verbal estimates, by adjusting the cross-section of a disk, and by adjusting a board with their unseen hand to match the inclines. We found that the results for cross-section viewing replicated those found when observers directly face the incline. Even though the angles of hills are directly evident when viewed from the side, slant perceptions are still grossly overestimated.

  16. Hydraulic experimental investigation on spatial distribution and formation process of tsunami deposit on a slope

    NASA Astrophysics Data System (ADS)

    Harada, K.; Takahashi, T.; Yamamoto, A.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An important aim of the study of tsunami deposits is to estimate the characteristics of past tsunamis from the tsunami deposits found locally. Based on the tsunami characteristics estimated from tsunami deposit, it is possible to examine tsunami risk assessment in coastal areas. It is considered that tsunami deposits are formed based on the dynamic correlation between tsunami's hydraulic values, sediment particle size, topography, etc. However, it is currently not enough to evaluate the characteristics of tsunamis from tsunami deposits. This is considered to be one of the reasons that the understanding of the formation process of tsunami deposits is not sufficiently understood. In this study, we analyze the measurement results of hydraulic experiment (Yamamoto et al., 2016) and focus on the formation process and distribution of tsunami deposits. Hydraulic experiment was conducted with two-dimensional water channel with a slope. Tsunami was inputted as a bore wave flow. The moving floor section was installed as a seabed slope connecting to shoreline and grain size distribution was set some cases. The water level was measured using ultrasonic displacement gauges, and the flow velocity was measured using propeller current meters and an electromagnetic current meter. The water level and flow velocity was measured at some points. The distribution of tsunami deposit was measured from shoreline to run-up limit on the slope. Yamamoto et al. (2016) reported the measurement results on the distribution of tsunami deposit with wave height and sand grain size. Therefore, in this study, hydraulic analysis of tsunami sediment formation process was examined based on the measurement data. Time series fluctuation of hydraulic parameters such as Froude number, Shields number, Rouse number etc. was calculated to understand on the formation process of tsunami deposit. In the front part of the tsunami, the flow velocity take strong flow from shoreline to around the middle of slope. From

  17. Development of a Sediment Transport Component for DHSVM

    NASA Astrophysics Data System (ADS)

    Doten, C. O.; Bowling, L. C.; Maurer, E. P.; Voisin, N.; Lettenmaier, D. P.

    2003-12-01

    The effect of forest management and disturbance on aquatic resources is a problem of considerable, contemporary, scientific and public concern in the West. Sediment generation is one of the factors linking land surface conditions with aquatic systems, with implications for fisheries protection and enhancement. Better predictive techniques that allow assessment of the effects of fire and logging, in particular, on sediment transport could help to provide a more scientific basis for the management of forests in the West. We describe the development of a sediment transport component for the Distributed Hydrology Soil Vegetation Model (DHSVM), a spatially distributed hydrologic model that was developed specifically for assessment of the hydrologic consequences of forest management. The sediment transport module extends the hydrologic dynamics of DHSVM to predict sediment generation in response to dynamic meteorological inputs and hydrologic conditions via mass wasting and surface erosion from forest roads and hillslopes. The mass wasting component builds on existing stochastic slope stability models, by incorporating distributed basin hydrology (from DHSVM), and post-failure, rule-based redistribution of sediment downslope. The stochastic nature of the mass wasting component allows specification of probability distributions that describe the spatial variability of soil and vegetation characteristics used in the infinite slope model. The forest roads and hillslope surface erosion algorithms account for erosion from rain drop impact and overland erosion. A simple routing scheme is used to transport eroded sediment from mass wasting and forest roads surface erosion that reaches the channel system to the basin outlet. A sensitivity analysis of the model input parameters and forest cover conditions is described for the Little Wenatchee River basin in the northeastern Washington Cascades.

  18. The timber resources of the Ohio Hill Country

    Treesearch

    Paul S. DeBald; Roger E. McCay

    1969-01-01

    This report presents 1967 forest resource statistics for the Hill Country-Ohio's portion of Appalachia. The Hill Country comprises 28 counties, which were divided into three geographic sampling units for this survey. The Hill Country of the 1952 Ohio forest survey contained 26 of these counties. The additional Appalachia counties are Brown and Clermont in the...

  19. Role of gas hydrates in slope failure on frontal ridge of northern Cascadia margin

    NASA Astrophysics Data System (ADS)

    Yelisetti, Subbarao; Spence, George D.; Riedel, Michael

    2014-10-01

    Several slope failures are observed near the deformation front on the frontal ridges of the northern Cascadia accretionary margin off Vancouver Island. The cause for these events is not clear, although several lines of evidence indicate a possible connection between the occurrence of gas hydrate and submarine landslide features. The presence of gas hydrate is indicated by a prominent bottom-simulating reflector (BSR), at a depth of ˜265-275 m beneath the seafloor (mbsf), as interpreted from vertical-incidence and wide-angle seismic data beneath the ridge crests of the frontal ridges. For one slide, informally called Slipstream Slide, the velocity structure inferred from tomography analyses shows anomalous high velocities values of about 2.0 km s-1 at shallow depths of 100 mbsf. The estimated depth of the glide plane (100 ± 10 m) closely matches the depth of these shallow high velocities. In contrast, at a frontal ridge slide just to the northwest (informally called Orca Slide), the glide plane occurs at the same depth as the current BSR. Our new results indicate that the glide plane of the Slipstream slope failure is associated with the contrast between sediments strengthened by gas hydrate and overlying sediments where little or no hydrate is present. In contrast, the glide plane of Orca Slide is between sediment strengthened by hydrate underlain by sediments beneath the gas hydrate stability zone, possibly containing free gas. Additionally, a set of margin perpendicular normal faults are imaged from seafloor down to BSR depth at both frontal ridges. As inferred from the multibeam bathymetry, the estimated volume of the material lost during the slope failure at Slipstream Slide is about 0.33 km3, and ˜0.24 km3 of this volume is present as debris material on the ocean basin floor. The 20 per cent difference is likely due to more widely distributed fine sediments not easily detectable as bathymetric anomalies. These volume estimates on the Cascadia margin are

  20. An Improved Experimental Method for Simulating Erosion Processes by Concentrated Channel Flow

    PubMed Central

    Chen, Xiao-Yan; Zhao, Yu; Mo, Bin; Mi, Hong-Xing

    2014-01-01

    Rill erosion is an important process that occurs on hill slopes, including sloped farmland. Laboratory simulations have been vital to understanding rill erosion. Previous experiments obtained sediment yields using rills of various lengths to get the sedimentation process, which disrupted the continuity of the rill erosion process and was time-consuming. In this study, an improved experimental method was used to measure the rill erosion processes by concentrated channel flow. By using this method, a laboratory platform, 12 m long and 3 m wide, was used to construct rills of 0.1 m wide and 12 m long for experiments under five slope gradients (5, 10, 15, 20, and 25 degrees) and three flow rates (2, 4, and 8 L min−1). Sediment laden water was simultaneously sampled along the rill at locations 0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 10 m, and 12 m from the water inlet to determine the sediment concentration distribution. The rill erosion process measured by the method used in this study and that by previous experimental methods are approximately the same. The experimental data indicated that sediment concentrations increase with slope gradient and flow rate, which highlights the hydraulic impact on rill erosion. Sediment concentration increased rapidly at the initial section of the rill, and the rate of increase in sediment concentration reduced with the rill length. Overall, both experimental methods are feasible and applicable. However, the method proposed in this study is more efficient and easier to operate. This improved method will be useful in related research. PMID:24949621

  1. Structure of Infaunal Communities on the Beaufort Sea Shelf and Slope: Insights from Morphological and Environmental DNA Sequencing Approaches

    NASA Astrophysics Data System (ADS)

    Hardy, S. M.; Bik, H.; Walker, A.; Sharma, J.; Blanchard, A.

    2016-02-01

    Rapid change is occurring in the Arctic concurrently with increased human activity, yet our knowledge of the structure and function of high-Arctic sediment communities is still rudimentary. The Beaufort Sea is particularly poorly sampled, and largely unexplored at slope depths, providing little information with which to assess the impacts of petroleum exploration activities now beginning in this area. We are investigating diversity and community structure of meio- and macrobenthic infauna on the continental shelf and slope of the Beaufort Sea across a range of depths (50 to 1000 m) using traditional taxonomic and environmental DNA sequencing approaches, and comparing results to additional sites in the adjacent NE Chukchi Sea petroleum lease-sale area. The Beaufort slope is topographically complex and characterized by an east-west gradient in benthic habitat characteristics, with heavy input of terrestrial organic matter particularly in the region of the Mackenzie River delta. Warmer, saltier subsurface Atlantic water masses impact benthic communities at mid-slope depths, likely influencing turnover in community structure observed with depth. Food resources are variable across the region, with very high sediment chlorophyll concentrations at 350 m depth in some areas. Differences in nematode assemblages were detected across the Beaufort Sea shelf/slope, across depths within the Beaufort Sea, and between the Beaufort and adjacent NE Chukchi Sea. These differences were apparent in both morphological and environmental sequencing data. Macrofaunal communities showed variable community structure among transects, with high abundance and high dominance in polychaete assemblages coincident with the chlorophyll maximum. Sequencing data also revealed an abundance of protists in sediments which have been mostly ignored in studies of ecosystem dynamics in this region, and may represent an important component of the food web.

  2. Submarine landslides on the north continental slope of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Wang, Dawei; Wu, Shiguo; Völker, David; Zeng, Hongliu; Cai, Guanqiang; Li, Qingping

    2018-02-01

    Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea (SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and over-pressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.

  3. Physical properties of hydrate‐bearing sediments

    USGS Publications Warehouse

    Waite, William F.; Santamarina, J.C.; Cortes, D.D.; Dugan, Brandon; Espinoza, D.N.; Germaine, J.; Jang, J.; Jung, J.W.; Kneafsey, T.J.; Shin, H.; Soga, K.; Winters, William J.; Yun, T.S.

    2009-01-01

    Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate‐bearing sediments. Formation phenomena include pore‐scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small‐strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate‐bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate‐bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.

  4. Compilation of selected hydrologic data, through water year 1992, Black Hills Hydrology Study, western South Dakota

    USGS Publications Warehouse

    Driscoll, Daniel G.; Bradford, Wendell

    1994-01-01

    This report presents water-level, water-quailty, and springflow data that have been collected or compiled, through water year 1992, for the Black Hills Hydrology Study. This study is a long-term cooperative effort between the U.S. Geological Survey, the South Dakota Department of Environmental and Natural Resources, and the West Dakota Water Development District (which represents various local and county cooperators). Water-level data are presented for 32 observation wells and 2 cave sites in the Black Hills area of western South Dakota. The wells are part of a network of observation wells maintained by the South Dakota Department of Environment and Natural Resources and are completed in various bedrock formations that are utilized as aquifers in the Black Hills area. Both cave sites are located within outcrops of the Madison Limestone. Data presented include site descriptions, hydrographs, and tabular data. Water- quality data are presented for 12 surface-water sites and 5 ground-water sites. Data presented include field parameters, bacteria counts, and concentrations of common ions, solids, nutrients, trace elements, radiometrics, cyanide, phenols, dissolved organic carbon, and suspended sediment. Spring data are presented for 83 springs and 21 stream reaches with significant springflow components. Data presented include site information, discharge, and field water-quality parameters including temperature, specific conductance, dissolved oxygen, and pH.

  5. 77 FR 75120 - Black Hills National Forest Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Black Hills National Forest Advisory Board will... copying. The public may inspect comments received at the Supervisor's Office, Black Hills National Forest...

  6. Sedimentation as a Control for Large Submarine Landslides: Mechanical Modeling and Analysis of the Santa Barbara Basin

    NASA Astrophysics Data System (ADS)

    Stoecklin, A.; Friedli, B.; Puzrin, A. M.

    2017-11-01

    The volume of submarine landslides is a key controlling factor for their damage potential. Particularly large landslides are found in active sedimentary regions. However, the mechanism controlling their volume, and in particular their thickness, remains unclear. Here we present a mechanism that explains how rapid sedimentation can lead to localized slope failure at a preferential depth and set the conditions for the emergence of large-scale slope-parallel landslides. We account for the contractive shearing behavior of the sediments, which locally accelerates the development of overpressures in the pore fluid, even on very mild slopes. When applied to the Santa Barbara basin, the mechanism offers an explanation for the regional variation in landslide thickness and their sedimentation-controlled recurrence. Although earthquakes are the most likely trigger for these mass movements, our results suggest that the sedimentation process controls the geometry of their source region. The mechanism introduced here is generally applicable and can provide initial conditions for subsequent landslide triggering, runout, and tsunami-source analyses in sedimentary regions.

  7. Sediment connectivity evolution on an alpine catchment undergoing glacier retreat

    NASA Astrophysics Data System (ADS)

    Goldin, Beatrice; Rudaz, Benjamin; Bardou, Eric

    2014-05-01

    Climate changes can result in a wide range of variations of natural environment including retreating glaciers. Melting from glaciers will have a significant impact on the sediment transport characteristics of glacierized alpine catchments that can affect downstream channel network. Sediment connectivity assessment, i.e. the degree of connections that controls sediment fluxes between different segments of a landscape, can be useful in order to address management activity on sediment fluxes changes of alpine streams. Through the spatial characterization of the connectivity patterns of a catchment and its potential evolution it is possible to both define sediment transport pathways and estimate different contributions of the sub-catchment as sediment sources. In this study, a topography based index (Cavalli et al., 2013) has been applied to assess spatial sediment connectivity in the Navisence catchment (35 km2), an alpine basin located in the southern Walliser Alps (Switzerland) characterized by a complex glacier system with well-developed lateral moraines on glacier margins already crossed by several lateral channels. Glacier retreat of the main glacial edifice will provide a new connectivity pattern. At present the glacier disconnects lateral slopes from the main talweg: it is expected that its retreat will experience an increased connectivity. In order to study this evolution, two high resolution (2 m) digital terrain models (DTMs) describing respectively the terrain before and after glacier retreat have been analyzed. The current DTM was obtained from high resolution photogrammetry (2 m resolution). The future DTM was derived from application of the sloping local base level (SLBL) routine (Jaboyedoff et al., 2004) on the current glacier system, allowing to remove the ice body by reconstituting a U-shaped polynomial bedrock surface. From this new surface a coherent river network was drawn and slight random noise was added. Finally the river network was burned into

  8. UTILIZATION OF BACTERIA TO REMEDIATE CONTAMINATED SOILS AND SEDIMENTS IN THE US: LASAGNA AND OTHER TREATMENTS

    EPA Science Inventory

    This is an overview of the work underway at USEPA/ORD/NRMRL's Center Hill Microbiology Laboratory on bioremediation of contaminated soils and sediments. The Laboratory has isolated and naturally selected for various isolates. An isolate that will be reviewed is CHL-004, a Pseudom...

  9. Linking slope stability and climate change: the Nordfjord region, western Norway, case study

    NASA Astrophysics Data System (ADS)

    Vasskog, K.; Waldmann, N.; Ariztegui, D.; Simpson, G.; Støren, E.; Chapron, E.; Nesje, A.

    2009-12-01

    Valleys, lakes and fjords are spectacular features of the Norwegian landscape and their sedimentary record recall past climatic, environmental and glacio-isostatic changes since the late glacial. A high resolution multi-proxy study is being performed on three lakes in western Norway combining different geophysical methods and sediment coring with the aim of reconstructing paleoclimate and to investigate how the frequency of hazardous events in this area has changed through time. A very high resolution reflection seismic profiling revealed a series of mass-wasting deposits. These events, which have also been studied in radiocarbon-dated cores, suggest a changing impact of slope instability on lake sedimentation since the late glacial. A specially tailored physically-based mathematical model allowed a numerical simulation of one of these mass wasting events and related tsunami, which occurred during a devastating rock avalanche in 1936 killing 74 persons. The outcome has been further validated against historical, marine and terrestrial information, providing a model that can be applied to comparable basins at various temporal and geographical scales. Detailed sedimentological and geochemical studies of selected cores allows characterizing the sedimentary record and to disentangle each mass wasting event. This combination of seismic, sedimentary and geophysical data permits to extend the record of mass wasting events beyond historical times. The geophysical and coring data retrieved from these lakes is a unique trace of paleo-slope stability generated by isostatic rebound and climate change, thus providing a continuous archive of slope stability beyond the historical record. The results of this study provide valuable information about the impact of climate change on slope stability and source-to-sink processes.

  10. Red Hill Updates

    EPA Pesticide Factsheets

    This and other periodic updates are intended to keep the public informed on major progress being made to protect public health and the environment at the Red Hill Underground Fuel Storage Facility in Hawaii.

  11. 78 FR 73187 - Black Hills National Forest Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Black Hills National Forest Advisory Board (Board... the Black Hills National Forest in South Dakota; and (4) update and report on Mountain Pine Beetle...

  12. 77 FR 8214 - Black Hills National Forest Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: USDA Forest Service. ACTION: Notice of intent to re-establish the Black Hills National Forest Advisory Board...-establish the Black Hills National Forest Advisory Board (Board). The purpose is to obtain advice and...

  13. 78 FR 65962 - Black Hills National Forest Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: Forest Service, USDA. ACTION: Notice of cancellation of meeting of the Black Hills National Forest Advisory Board. SUMMARY: The U. S. Department of Agriculture, Forest Service, Black Hills National Forest cancelled the...

  14. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea.

    PubMed

    Niu, Mingyang; Fan, Xibei; Zhuang, Guangchao; Liang, Qianyong; Wang, Fengping

    2017-09-01

    Cold seeps are widespread chemosynthetic ecosystems in the deep-sea environment, and cold seep microbial communities of the South China Sea are poorly constrained. Here we report on the archaeal communities, particularly those involved in methane metabolization, in sediments of a newly discovered cold seep (named 'Haima') on the northwest slope of the South China Sea. Archaeal diversity, abundance and distribution were investigated in two piston cores collected from a seep area (QDN-14B) and a non-seep control site (QDN-31B). Geochemical investigation of the QDN-14B core identified an estimated sulfate-methane transition zone (Estimated SMTZ) at 300-400 cm below sea floor (cmbsf), where a high abundance of anaerobic methane-oxidizing archaea (ANME) occurred, as revealed by analysis of the 16S rRNA gene and the gene (mcrA) encoding the α-subunit of the key enzyme methyl-coenzyme M reductase. ANME-2a/b was predominant in the upper and middle layers of the estimated SMTZ, whereas ANME-1b outcompeted ANME-2 in the sulfate-depleted bottom layers of the estimated SMTZ and the methanogenic zone. Fine-scale phylogenetic analysis further divided the ANME-1b group into three subgroups with different distribution patterns: ANME-1bI, ANME-1bII and ANME-1bIII. Multivariate analyses indicated that dissolved inorganic carbon and sulfate may be important factors controlling the composition of the methane-metabolizing community. Our study on ANME niche separation and interactions with other archaeal groups improves our understanding of the metabolic diversity and flexibility of ANME, and the findings further suggest that ANME subgroups may have evolved diversified/specified metabolic capabilities other than syntrophic anaerobic oxidation of methane coupled with sulfate reduction in marine sediments. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Martha N. Hill: transformational leader.

    PubMed

    Coombs, V J

    1998-01-01

    Martha N. Hill, PhD, RN, FAAN, is a world-renowned researcher, educator, and nursing leader. Her election as president of the American Heart Association, effective June 1997, places her in one of the highest regarded positions in the field of cardiology. Despite her success on a national and international level, Dr. Hill has managed to continue to mentor and conduct clinical research with her nursing colleagues and students at The Johns Hopkins University in Baltimore, Maryland.

  16. The "House" in Half Hollow Hills

    ERIC Educational Resources Information Center

    Karnilow, Sheldon

    2006-01-01

    In this article, the author relates how he initiated a systemic improvement to Half Hollow Hills school district when he became its superintendent. He relates that although he came to Half Hollow Hills with a deep understanding of the models of systemic change, he did not bring with him a specific prescriptive plan for improvement. His plan for…

  17. Report on the Black Hills Alliance.

    ERIC Educational Resources Information Center

    Ryan, Joe

    1979-01-01

    A rally to save the Black Hills from coal- and uranium-greedy energy companies was held on July 6 and over 2,000 joined in a 15-mile walk on July 7 in Rapid City, South Dakota. The Black Hills Alliance, an Indian coalition concerned about energy development proposals in the Great Plains, sponsored the gathering. (NQ)

  18. Management Decisions and the "Dred" Hills

    Treesearch

    Steven W. Anderson

    1992-01-01

    An area of public land called the Red Hills was being so abused by the public that it was often called the "Dred" Hills. Some staff work had been accomplished to protect sensitive areas within the 7,200-acre site, but depreciative behavior continued. Primary destructive activities included off-road vehicle use and indiscriminate shooting and dumping. This...

  19. Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density

    NASA Astrophysics Data System (ADS)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    affect the flows only at concentrations just below the cubic packing density of spheres of C = 52%. These experimental results also imply that natural flows may be able to transport vast volumes of non-cohesive sediment with relative ease, especially considering that the experimental flows moved on a horizontal slope. References Bagnold, R. A. (1954). Experiments on a Gravity-Free Dispersion of Large Solid Spheres in Newtonian Fluid under Shear. Proceedings of the Royal Society series A: Mathematical, Physical and Engineering Sciences, 225(1160), 49-63. Bagnold, R. A. (1963). Beach and nearshore processes: Part 1. Mechanics of marine sedimentation. In: Hill, M. N. (Ed.) The Earth Beneath the Sea, vol. 3. Wiley-Interscience, London, 507-533.

  20. Uranium hydrogeochemical and stream sediment reconnaissance data from the area of the Shishmaref, Kotzebue, Selawik and Shungnak Quadrangles, northern Seward Peninsula and vicinity, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, R.G.; Hill, D.E.; Sharp, R.R. Jr.

    1978-05-01

    During the summer of 1976, 1336 water and 1251 sediment samples were collected for Los Alamos Scientific Laboratory (LASL) from 1356 streams and small lakes or ponds within Shishmaref, Kotzebue, Selawik, and western portion of Shungnak NTMS quadrangles in western Alaska. Both a water and sediment sample were generally obtained from each location at a nominal location density of 1/23 km/sup 2/. Total uranium was measured in waters by fluorometry and in sediments and a few waters by delayed neutron counting at LASL. Uranium concentrations in waters have a mean of 0.31 ppB and a maximum of 9.23 ppB, andmore » sediments exhibit a mean of 3.44 ppM and a maximum of 37.7 ppM. A large number of high-uranium concentrations occur in both water and sediment samples collected in the Selawik Hills. At least two locations within the Selawik Hills appear favorable for further investigation of possible uranium mineralization. A cluster of high-uranium sediments, seen in the Waring Mountains, are probably derived from a lower Cretaceous conglomerate unit which is assocated with known airborne radiometric anomalies. Apparently less favorable areas for further investigation of possible uranium mineralization are also located in the Waring Mountains and Kiana Hills. Additional samples were collected within the Shungnak quadrange to increase the sampling density used elsewhere in the area to about one location per 11 km/sup 2/ (double-density). Contoured plots of uranium concentrations for both waters and sediments were prepared for all double-density sample locations, and then for the even-numbered and odd-numbered locations separately. These plots indicate that the HSSR sampling density of 1/23 km/sup 2/ used in lowland areas of Alaska provide essentially the same definition of relative areal uranium distributions in waters and sediments as seen when the density is doubled. These plots indicate that regional distribution patterns for uranium are well defined without selective

  1. Porosity modification during and following deposition of deep-water sediments

    NASA Astrophysics Data System (ADS)

    Butler, R. W.; McCaffrey, W. D.; Haughton, P.; del Pino Sanchez, A.; Barker, S.; Hailwood, E.; Hakes, B.

    2005-12-01

    Deposition and early burial of sediments, especially sandy turbidites, are commonly accompanied by the reorganization of porosity structure through the localized expulsion of interstitial fluid. Fluid escape structures are preserved as thin sheets and pipes. Coeval sediment remobilization may be represented by shear structures, commonly taken to indicate down-slope creep and slumping. The history of shearing vs dewatering may be established from cross-cutting structures preserved in outcrop and/or core. Although these relationships are known for gravity-driven soft-sediment deformation on submarine slopes, they can also develop during deposition itself due to shear from the over-riding flow. Such deformation features, including pseudo s-c fabrics and distributed shear, together may previously have been misinterpreted as indicators of palaeoslope (slumps) or even of tectonic deformation. Progressive aggradation of sandy turbidites can show complex banded facies within which soft-sediment deformation is tiered. Syn-deposition micro-growth strata testify to ongoing seabed deformation occurring beneath active flows, while the bedforms themselves provide direct measurements of the magnitude of shear stresses imparted into the seabed and estimates of the shear strength of this substrate. Such banded facies may be interpreted in terms of cyclic partitioning of shear stress into the flow and the substrate. The modified porosity structures and related heterogeneities in permeability of such materials may persist during deeper burial, influencing the rheology of the sediment. These bed-scale processes are reflected in the quality and flow rates of hydrocarbon reservoirs. The reorganization of sand-body architecture through remobilization, by traction and/or down-slope failure, also has a strong impact on the permeability on the multi-bed scale (10s-100s m). Examples will be presented from hydrocarbon reservoirs in the subsurface and from outcrops of Tertiary turbidites in

  2. Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.

    2014-12-01

    Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181

  3. Effect of the slope and initial moisture content on soil loss, aggregate and particle size distribution

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka

    2015-04-01

    Soil structure degradation has effect through the soil water balance and nutrient supply on the agricultural potential of an area. The soil erosion process comprises two phases: detachment and transport by water. To study the transport phase nozzle type laboratory-scale rainfall simulator was used with constant 80 mmhr-1 intensity on an arable haplic Cambisol. Measuring the aggregate and particle size distribution of the soil loss gives a good approach the erosion process. The primary objective of this study was to examine the sediment concentration, and detect the quality and quantity change of the soil loss during a single precipitation under six treatment combinations (recently tilled and crusty soil surface on two different slope steepness, inland inundation and drought soil conditions). Soil loss were collected continually, and separated per aggregate size fractions with sieves in three rounds during a rain to measure the weights. The particle size distribution was measured with Horiba LA-950 particle size analyzer. In general the ratio of the macro aggregates decreases and the ratio of the micro aggregates and clay fraction increases in the sediment with time during the precipitation due to the raindrop impact. Sediment concentration depends on the slope steepness, as from steeper slopes the runoff can transport bigger amount of sediment, but from the tilled surface bigger aggregates were washing down. Micro aggregate fraction is one of the indicators of good soil structure. The degradation of micro aggregates occurs in steeper slopes and the most erosive time period depends on the micromorphology of the surface. And while the aggregate size distribution of the soil loss of the treatments shows high variety of distribution and differs from the original soil, the particle size distribution of each aggregate size fraction shows similar trends except the 50-250 µm fraction where the fine sand fraction is dominating instead of the loam. This anomaly may be

  4. Rock magnetic and geochemical analyses of surface sediment characteristics in deep ocean environments: A case study across the Ryukyu Trench

    NASA Astrophysics Data System (ADS)

    Kawamura, N.; Kawamura, K.; Ishikawa, N.

    2008-03-01

    Magnetic minerals in marine sediments are often dissolved or formed with burial depth, thereby masking the primary natural remanent magnetization and paleoclimate signals. In order to clarify the present sedimentary environment and the progressive changes with burial depth in the magnetic properties, we studied seven cores collected from the Ryukyu Trench, southwest Japan. Magnetic properties, organic geochemistry, and interstitial water chemistry of seven cores are described. Bottom water conditions at the landward slope, trench floor, and seaward slope are relatively suboxic, anoxic, and oxic, respectively. The grain size of the sediments become gradually finer with the distance from Okinawa Island and finer with increasing water depth. The magnetic carriers in the sediments are predominantly magnetite and maghemized magnetite, with minor amounts of hematite. In the topmost sediments from the landward slope, magnetic minerals are diluted by terrigenous materials and microfossils. The downcore variations in magnetic properties and geochemical data provided evidence for the dissolution of fine-grained magnetite with burial depth under an anoxic condition.

  5. Glacially-derived overpressure in the northeastern Alaskan subduction zone: combined tomographic and morphometric analysis of shallow sediments on the Yakutat shelf and slope, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Clary, W. A.; Worthington, L. L.; Scuderi, L. A.; Daigle, H.; Swartz, J. M.

    2017-12-01

    The Pamplona zone fold and thrust belt is the offshore expression of convergence and shallow subduction of the Yakutat microplate beneath North America in the northeastern Alaska subduction zone. The combination of convergent tectonics and glaciomarine sedimentary processes create patterns of deformation and deposition resulting in a shallow sedimentary sequence with varying compaction, fluid pressure, and fault activity. We propose that velocity variations observed in our tomographic analysis represent long-lived fluid overpressure due to loading by ice sheets and sediments. Regions with bathymetric and stratigraphic evidence of recent ice sheets and associated sedimentation should be collocated with evidence of overpressure (seismic low velocity zones) in the shallow sediments. Here, we compare a velocity model with shelf seismic stratigraphic facies and modern seafloor morphology. To document glacially derived morphology we use high resolution bathymetry to identify channel and gully networks on the western Yakutat shelf-slope then analyze cross-channel shape indices across the study area. We use channel shape index measurements as a proxy of recent ice-proximal sedimentation based on previously published results that proposed a close correlation. Profiles taken at many locations were fitted with a power function and assigned a shape - U-shape channels likely formed proximal to recent ice advances. Detailed velocity models were created by a combination of streamer tomography and pre-stack depth migration velocities with seismic data including: a 2008 R/V Langseth dataset from the St. Elias Erosion and Tectonics Project (STEEP); and a 2004 high-resolution R/V Ewing dataset. Velocity-porosity-permeability relationships developed using IODP Expedition 341 drilling data inform interpretation and physical properties analyses of the shallow sediments. Initial results from a 35 km profile extending SE seaward of the Bering glacier and subparallel to the Bering trough

  6. Quantifying fluvial sediment transport in a mountain catchment (Schöttlbach, Styria) using sediment impact sensors

    NASA Astrophysics Data System (ADS)

    Stangl, Johannes; Sass, Oliver; Schneider, Josef; Harb, Gabriele

    2013-04-01

    Sediment transport in river systems, being the output of geomorphic processes in the catchment, is a recurrent problem for geomorphological sediment budget studies, natural hazard assessment and river engineering. Sediment budgets of alpine catchments are likely to be modified by changing total precipitation and the probability of heavy precipitation events in the context of climate change, even if projections of precipitation change for Austria and the entire Alpine region are still very uncertain. Effective sediment management requires profound knowledge on the sediment cascade in the head-waters. However, bedload measurements at alpine rivers or torrents are rare; in Styria, they are altogether missing. Due to a three hour heavy rainfall event on 07-Jul 2011, which caused cata-strophic flooding with massive damage in the city of Oberwölz and its surrounding, we chose the catchment area of the Schöttlbach in the upper Mur river valley in Styria (Austria) as our study area. In the framework of the ClimCatch project, we intend to develop a conceptual model of coupled and decoupled sediment routing to quantify the most prominent sediment fluxes and sediment sinks, combining up-to-date geomorphological and river engineering techniques. Repeated Airborne Laser Scans will provide an overview of ongoing processes, diachronous TLS surveys (cut-and-fill analysis), ground-penetrating radar and 2D-geoelectric surveys should quantity the most important mass fluxes on the slopes and in the channels and derive a quantitative sediment budget, including the volume of temporary sediment stores. Besides quantifying slope processes, sediment sinks and total sediment output, the sediment trans-port in the torrents is of particular interest. We use sediment impact sensors (SIS) which were in-stalled in several river sections in the main stretch of the Schöttlbach and in its tributaries. The SIS mainly consists of two parts connected by a coated cable, the steel shell with the

  7. Mathematical model of sediment and solute transport along slope land in different rainfall pattern conditions

    PubMed Central

    Tao, Wanghai; Wu, Junhu; Wang, Quanjiu

    2017-01-01

    Rainfall erosion is a major cause of inducing soil degradation, and rainfall patterns have a significant influence on the process of sediment yield and nutrient loss. The mathematical models developed in this study were used to simulate the sediment and nutrient loss in surface runoff. Four rainfall patterns, each with a different rainfall intensity variation, were applied during the simulated rainfall experiments. These patterns were designated as: uniform-type, increasing-type, increasing- decreasing -type and decreasing-type. The results revealed that changes in the rainfall intensity can have an appreciable impact on the process of runoff generation, but only a slight effect on the total amount of runoff generated. Variations in the rainfall intensity in a rainfall event not only had a significant effect on the process of sediment yield and nutrient loss, but also the total amount of sediment and nutrient produced, and early high rainfall intensity may lead to the most severe erosion and nutrient loss. In this study, the calculated data concur with the measured values. The model can be used to predict the process of surface runoff, sediment transport and nutrient loss associated with different rainfall patterns. PMID:28272431

  8. Significance of anoxic slope basins to occurrence of hydrocarbons along flexure trend, Gulf of Mexico: a reappraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinkelman, M.G.; Curry, D.J.

    1987-05-01

    Recently, Tertiary anoxic slope basins have been proposed as the sources for much of the oil occurring along the Flexure Trend in the Gulf of Mexico. The intraslope basins are thought to have been formed in response to salt diapirism and concomitant salt withdrawal resulting from differential sediment loading between the basins and the diapirs, as well as due to associated faulting. Of the modern intraslope basins, the black, organic-rich muds accumulating in the Orca basin have especially attracted and are suggested to be modern analogs to late Tertiary source rocks accumulated and buried across the continental slope. Although themore » organic carbon content of the anoxic sediments in the Orca basin is generally high (2 to 3%), the concentration of preserved oil-generative organic matter in these sediments is low. Rock-Eval P2 yields are usually in the range of 340 to 1620 ppm, and hydrogen indices are generally less than 100. Pyrolysis-GC and 13C-NMR data show that up to 30 + % of the organic carbon is contained in carboxyl and other oxygenated groups, which are lost during diagenesis and early catagenesis of the sediments, and that much of the remainder is aromatized and degraded. The degradation was probably by oxidation during settling through the oxic water column. The geochemical data indicate, therefore, that the bulk of the organic carbon in the Orca basin is not capable of forming oil during catagenesis. Published regional cross sections across the Texas-Louisiana continental margin commonly show a thick (0.5-4 km), continuous salt sequence, sourcing salt diapirs and ridges, to underlie the Oligocene(.)/Miocene to Pleistocene sedimentary section of the outer continental shelf and slope.« less

  9. 75. Southeast elevation of Forest Hills station looking Northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. Southeast elevation of Forest Hills station - looking Northwest from junction of Washington and Walk Hill Streets. At left is the beginning of Section F-7 the exposed steel portion of elevated structure leading to the Forest Hills storage yard (demolished in 1985). - Boston Elevated Railway, Elevated Mainline, Washington Street, Boston, Suffolk County, MA

  10. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions

    USGS Publications Warehouse

    Keefer, D.K.

    1994-01-01

    -term importance of seismically triggered landslides, these erosion rates are compared to erosion rates calculated for other slope processes and to rates calculated from fluvial sediment discharge. Comparisons with other slope processes indicate that earthquake-induced landslides are the predominant agents of slope erosion on the island of Hawaii, in the San Francisco Bay region, and in western New Guinea. For Hawaii, the San Francisco Bay region, and Sierra Nevada-Great Basin region of California, the erosion rates calculated for earthquake-induced landslides also exceed the regional erosion rates calculated from fluvial sediment discharge. ?? 1994.

  11. Agri-spillways as soil erosion protection tools in conventional sloping vineyards (Montes de Málaga, Spain)

    NASA Astrophysics Data System (ADS)

    Rodrigo-Comino, Jesús

    2017-04-01

    Rainfall causes soil erosion on Mediterranean sloping vineyards (>25˚ of slope inclination), however, little is known about information related to cheap, effective and suitable soil erosion protection measures. In the vineyards of the Montes de Málaga (southern Spain), a concrete land management practice against soil erosion is actually conducted by building tilled rills to down-slope direction to canalize water and sediments. We decided to call them agri-spillways. In this study, by carrying out runoff experiments, we assessed two agri-spillways (from 10 m to 15 m length) under extreme conditions. A motor driven pump mobilizes a constant water inflow about of 1.33 L s-1during between 12 and 15 minutes (≈1000 litres). Finally, we observed: i) a high capacity of these agri-spillways to canalize a large volume of water and sediments; and, ii) higher speed of water flow (from 0.16 m s-1to 0.28 m s-1) and sediment concentration (SC) rates with ratios up to 1538.6 g l-1). By comparing among them, the speed of water flow and the SC were much higher in one of tested rills, which was 5 meters length less and 7 degrees more of inclination. So, we concluded that these agri-spillways, after correctly planning and long term maintenance from contribution area to down-slope direction, can be function as a potential tool for designing suitable and cheap plans to protect the soil in Mediterranean sloping vineyards. Acknowledgements Firstly, we acknowledge the farmer's syndicate UPA (Unión de Pequeños Agricultores) and the wine-grower Pepe Gámez (Almáchar) for providing access to the study area. Secondly, we thank the students of the Bachelor course and Master from Trier University for their hard efforts in the field and laboratory works in the Almáchar campaign. Thirdly, we acknowledge the geomorphology and soil laboratory technicians María Pedraza and Rubén Rojas of GSoilLab (Málaga University) for the soil analysis. Finally, we also thank the Ministerio de Educaci

  12. Autonomous Legged Hill and Stairwell Ascent

    DTIC Science & Technology

    2011-11-01

    environments with little burden to a human operator. Keywords: autonomous robot , hill climbing , stair climbing , sequential composition, hexapod, self...X-RHex robot on a set of stairs with laser scanner, IMU, wireless repeater, and handle payloads. making them useful for both climbing hills and...reconciliation into that more powerful (but restrictive) framework. 1) The Stair Climbing Behavior: RHex robots have been climbing single-flight stairs

  13. Chocolate Hills Rock

    NASA Image and Video Library

    2010-02-16

    This false-color image, taken by the panoramic camera on NASA rover Opportunity, shows the rock Chocolate Hills, perched on the rim of the 10-meter 33-foot wide Concepcion crater. This rock has a thick, dark-colored coating resembling chocolate.

  14. Evolution of the Puente Hills Thrust Fault

    NASA Astrophysics Data System (ADS)

    Bergen, K. J.; Shaw, J. H.; Dolan, J. F.

    2013-12-01

    This study aims to assess the evolution of the blind Puente Hills thrust fault system (PHT) by determining its age of initiation, lateral propagation history, and changes in slip rate over time. The PHT presents one of the largest seismic hazards in the United States, given its location beneath downtown Los Angeles. The PHT is comprised of three fault segments: the Los Angeles (LA), Santa Fe Springs (SFS), and Coyote Hills (CH). The LA and SFS segments are characterized by growth stratigraphy where folds formed by uplift on the fault segments have been continually buried by sediment from the Los Angeles and San Gabriel rivers. The CH segment has developed topography and is characterized by onlapping growth stratigraphy. This depositional setting gives us the unique opportunity to measure uplift on the LA and SFS fault segments, and minimum uplift on the CH fault segment, as the difference in sediment thicknesses across the buried folds. We utilize depth converted oil industry seismic reflection data to image the fold geometries. Identifying time-correlative stratigraphic markers for slip rate determination in the basin has been a problem for researchers in the past, however, as the faunal assemblages observed in wells are time-transgressive by nature. To overcome this, we utilize the sequence stratigraphic model and well picks of Ponti et al. (2007) as a basis for mapping time-correlative sequence boundaries throughout our industry seismic reflection data from the present to the Pleistocene. From the Pleistocene to Miocene we identify additional sequence boundaries in our seismic reflection data from imaged sequence geometries and by correlating industry well formation tops. The sequence and formation top picks are then used to build 3-dimensional surfaces in the modeling program Gocad. From these surfaces we measure the change in thicknesses across the folds to obtain uplift rates between each sequence boundary. Our results show three distinct phases of

  15. 27 CFR 9.190 - Red Hill Douglas County, Oregon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red Hill...

  16. 27 CFR 9.190 - Red Hill Douglas County, Oregon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red Hill...

  17. 27 CFR 9.190 - Red Hill Douglas County, Oregon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red Hill...

  18. Sedimentary, tectonic, and sea-level controls on submarine fan and slope-apron turbidite systems

    USGS Publications Warehouse

    Stow, D.A.V.; Howell, D.G.; Nelson, C.H.

    1984-01-01

    To help understand factors that influence submarine fan deposition, we outline some of the principal sedimentary, tectonic, and sea-level controls involved in deep-water sedimentation, give some data on the rates at which they operate, and evaluate their probable effects. Three depositional end-member systems, two submarine fan types (elongate and radial), and a third nonfan, slope-apron system result primarily from variations in sediment type and supply. Tectonic setting and local and global sea-level changes further modify the nature of fan growth, the distribution of facies, and the resulting vertical stratigraphic sequences. ?? 1984 Springer-Verlag New York Inc.

  19. Terrestrial plant biopolymers in marine sediments

    NASA Astrophysics Data System (ADS)

    Gough, Mark A.; Fauzi, R.; Mantoura, C.; Preston, Martin

    1993-03-01

    The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterised terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial land plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary lignin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations ( ca. 0.5 μgg-1 in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. To account for these observations, preferential offshore transport of finer and more degraded material is proposed. Nonspecific oxidation products dominated the gas chromatograms of NEA sediments, which appear to originate from marine sources of sedimentary organic carbon

  20. Relative roughness controls on incipient sediment motion in steep channels

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.; Fuller, B. M.

    2012-12-01

    For over eight decades, researchers have noted an appreciable increase in the nondimensional shear stress (Shields number) at initiation of fluvial bedload transport with increasing bed slope. The precise cause of the trend, however, is obscured by the covariance of several factors with increased slope: a greater downstream component of the gravity acting on the grains and fluid, changes in bed morphology, increased grainsize relative to the channel width that may lead to grain bridging, and increased grainsize relative to flow depth (relative roughness) that may change flow hydraulics and particle buoyancy. Here, we report on ongoing laboratory experiments spanning a wide range of bed slopes (2% to 67%) designed to isolate these variables and determine the true cause of heightened critical Shields numbers on steep slopes. First, we eliminated bed morphology as a factor by using only planar beds. To investigate the effect of grain bridging, we used two different channel widths, representing width-to-grainsize ratios of 23:1 and 9:1. Finally, to separate the effects of slope from relative roughness, we compared incipient motion conditions for acrylic particles (submerged specific gravity of 0.15) to natural siliciclastic gravel (submerged specific gravity of 1.65). Different particle densities allowed us to explore incipient motion as a function of relative roughness, independent of channel slope, because lighter particles move at shallower flow depths than heavier ones of the same size. Results show that both materials exhibit a positive trend between bed slope and critical Shields number despite the existence of planar beds for all slopes. Furthermore, changing the grainsize-to-width ratio had a negligible effect on this trend. For all slopes, the critical Shields number for bedload transport was higher for the acrylic particles than for gravel, indicating that relative roughness has a strong control on incipient sediment motion independent of channel slope. These

  1. The Camp Hill Project: Objectives and Design

    ERIC Educational Resources Information Center

    Mattingly, John B.

    1976-01-01

    Available from: EC 090 474. Outlined are the problems and objectives of Pennsylvania's Camp Hill Project--a program designed to complete psychological needs assessments for juveniles incarcerated at Camp Hill, to develop project policies and guidelines in preparation for meeting with juvenile court judges, and to hire staff. (SBH)

  2. Relative foraminiferan abundance as an indicator of seagrass sediment health:

    NASA Astrophysics Data System (ADS)

    Cajandig, P.; Quiros, A.; Nolan, H.; Tallman, R.; Cooper, N.; Ayala, J.; Courtier, C.

    2013-12-01

    Authors: Patrick Cajandig*, Jose Ayala**, Nathaniel Cooper**, Catherine Courtier**, Hannah Nolan**, Rachelle Tallman**, T.E. Angela L. Quiros** * Davis High-School CA, **University of California Santa Cruz, Ecology and Evolutionary Biology Department Seagrasses are a key component in coastal ecosystems. Found in shallow marine environments, they make a large contribution to coastal ecosystem health by sustaining water quality, stabilizing the sea bottom, and providing habitat as well as food for other organisms. Seagrasses accumulate tiny grains of sediment, increasing water clarity. Just like barren hills are prone to erosion compared to vegetated, rooted down hills, we find a similar situation in the ocean. Seagrasses have broad roots that extend vertically and horizontally to help stabilize the seabed. Seagrasses support a whole ecosystem, because some organisms feed off of the seagrass alone, while others feed off the inhabitants of the seagrass. The quality of sediment is a vital part of seagrass health, just like nutrient rich soils are important to land plants. But what in seagrass sediment is a good indication of health? We hypothesize that seagrass health measures such as percent cover and seagrass species diversity are related to the abundance of foraminiferans relative to other seagrass sediment components. My mentor, T. E. Angela L. Quiros, from the University of California, Santa Cruz (UCSC), collected the sediment samples from seagrass beds in the Philippines. Samples were dried and brought to UCSC for sediment sieving. We used different sized sieves to sort the sediment. These sieves ranged from coarse to very fine sieves (Phi -2.0 (coarse) through +3.0 (fine) going in 0.5 intervals on a log scale). We weighed the sediment that was caught in each tray and separated them into bags of different size classes. To analyze each sample, we subsampled four size classes (Phi's -2.0, -1.5,-1.0, 0.0), and used a dissecting scope to identify and then weigh the

  3. After runaway: The trans-Hill stage of planetesimal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lithwick, Yoram

    2014-01-01

    When planetesimals begin to grow by coagulation, they first enter an epoch of runaway, during which the biggest bodies grow faster than all the others. The questions of how runaway ends and what comes next have not been answered satisfactorily. We show that runaway is followed by a new stage—the 'trans-Hill stage'—that commences when the bodies that dominate viscous stirring ('big bodies') become trans-Hill, i.e., when their Hill velocity matches the random speed of the small bodies they accrete. Subsequently, the small bodies' random speed grows in lockstep with the big bodies' sizes, such that the system remains in themore » trans-Hill state. Trans-Hill growth is crucial for determining the efficiency of growing big bodies, as well as their growth timescale and size spectrum. Trans-Hill growth has two sub-stages. In the earlier one, which occurs while the stirring bodies remain sufficiently small, the evolution is collisionless, i.e., collisional cooling among all bodies is irrelevant. The efficiency of forming big bodies in this collisionless sub-stage is very low, ∼10α << 1, where α ∼ 0.005(a/AU){sup –1} is the ratio between the physical size of a body and its Hill radius. Furthermore, the size spectrum is flat (equal mass per size decade, i.e., q = 4). This collisionless trans-Hill solution explains results from previous coagulation simulations for both the Kuiper Belt and the asteroid belt. The second trans-Hill sub-stage commences once the stirring bodies grow big enough (>α{sup –1} × the size of the accreted small bodies). After that time, collisional cooling among small bodies controls the evolution. The efficiency of forming big bodies rises and the size spectrum becomes more top heavy. Trans-Hill growth can terminate in one of two ways, depending on the sizes of the small bodies. First, mutual accretion of big bodies can become significant and conglomeration proceeds until half of the total mass is converted into big bodies. This mode

  4. Application of Persistent Scatterer Interferometry (PSI) in monitoring slope movements in Nainital, Uttarakhand Lesser Himalaya, India

    NASA Astrophysics Data System (ADS)

    Yhokha, Akano; Goswami, Pradeep K.; Chang, Chung-Pai; Yen, Jiun-Yee; Ching, Kuo-En; Aruche, K. Manini

    2018-02-01

    Orogenic movements and sub-tropical climate have rendered the slopes of the Himalayan region intensely deformed and weathered. As a result, the incidences of slope failure are quite common all along the Himalayan region. The Lesser Himalayan terrane is particularly vulnerable to mass-movements owing to geological fragility, and many parts of it are bearing a high-risk of associated disaster owing to the high population density. An important step towards mitigation of such disasters is the monitoring of slope movement. Towards this, the Persistent Scatterer Interferometry (PSI) technique can be applied. In the present study, the PSI technique is employed in Lesser Himalayan town of Nainital in Uttarakhand state of India to decipher and monitor slope movements. A total of 15 multi-date ENVISAT ASAR satellite images, acquired during August 2008 to August 2010 period, were subjected to PSI, which revealed a continuous creep movement along the hillslopes located towards the eastern side of the Nainital lake. The higher reaches of the hill seem to be experiencing accelerated creep of {˜ }21 mm/year, which decreases downslope to {˜ }5 mm/year. Based on spatial pattern of varying PSI Mean LOS Velocity (MLV) values, high (H), moderate (M), low (L) and very low (S) creeping zones have been delineated in the hillslopes. Given the long history of mass movements and continuously increasing anthropogenic activities in Nainital, these results call for immediate measures to avert any future disaster in the town.

  5. Jack Hills, Australia

    NASA Image and Video Library

    2009-06-02

    This image acquired by NASA Terra spacecraft, shows the oldest material on Earth which has yet been dated by man is a zircon mineral of 4.4 billion years old from a sedimentary gneiss in the Jack Hills of the Narre Gneiss Terrane of Australia.

  6. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments

    PubMed Central

    Lenstra, Wytze; Jong, Dirk; Meysman, Filip J. R.; Sapart, Célia J.; van der Veen, Carina; Röckmann, Thomas; Gonzalez, Santiago; Slomp, Caroline P.

    2016-01-01

    Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands), we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2–0.8 mol m-2 yr-1) during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50–170 nmol cm-3 d-1) both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1) reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years), thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1) allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic) methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments. PMID:27560511

  7. The Gas Hills uranium district and some probable controls for ore deposition

    USGS Publications Warehouse

    Zeller, Howard Davis

    1957-01-01

    Uranium deposits occur in the upper coarse-grained facies of the Wind River formation of Eocene age in the Gas Hills district of the southern part of the Wind River Basin. Some of the principal deposits lie below the water table in the unoxidized zone and consist of uraninite and coffinite occurring as interstitial fillings in irregular blanket-like bodies. In the near-surface deposits that lie above the water table, the common yellow uranium minerals consist of uranium phosphates, silicates, and hydrous oxides. The black unoxidized uraninite -coffinite ores show enrichment of molybdenum, arsenic, and selenium when compared to the barren sandstone. Probable geologic controls for ore deposits include: 1) permeable sediments that allowed passage of ore-bearing solutions; 2) numerous faults that acted as impermeable barriers impounding the ore -bearing solutions; 3) locally abundant pyrite, carbonaceous material, and natuial gas containing hydrogen sulfide that might provide a favorable environment for precipitation of uranium. Field and laboratory evidence indicate that the uranium deposits in the Gas Hills district are very young and related to the post-Miocene to Pleistocene regional tilting to the south associated with the collapse of the Granite Mountains fault block. This may have stopped or reversed ground water movement from a northward (basinward) direction and alkaline ground water rich in carbonate could have carried the uranium into the favorable environment that induced precipitation.

  8. Investigation of the shelf break and continental slope in the Western part of the Black Sea using acoustic methods

    NASA Astrophysics Data System (ADS)

    Dutu, F.; Ion, G.; Jugaru Tiron, L.

    2009-04-01

    The Black Sea is a large marginal sea surrounded by a system of Alpine orogenic chains, including the Balkanides-Pontides, Caucasus, Crimea and North Dobrogea located to the south, northeast, north and northwest, respectively (Dinu et al., 2005). The north-western part of the Black Sea is the main depocentre for sediment supply from Central Europe via the Danube River, but also from Eastern Europe through the Ukrainian rivers Dniepr, Dniestr and Southern Bug (Popescu et al., 2004). The shelfbreak is located at water depths of 120-140 m southward of the Danube Canyon, and up to 170 m northward of the canyon possibly due to recent faulting which is very common in this area. The continental slope is dissected by numerous canyons, each of which is fed by several tributaries. The Danube Canyon (also known as Viteaz Canyon) is a large shelf-indenting canyon located in the north-western Black Sea and connected to the youngest channel-levee system of the Danube Fan (Popescu et al., 2004). The acoustic methods are a useful way for investigate the shelf break and the continental slope giving us information about landslides on the continental slope, the topography of the investigated area, the sedimentary zones affected by instability and to quantify the geometry of the underwater landslides. The measurements made on the continental slope from north-western part of the Black Sea gave us the possibility to make a digital terrain model. After processing the data the model offer information about the main access ways of the sediments through gravitational slide on the submarines canyons, with forming of turbidity currents, debris flows and also other transport/transformation phenomena of the sediments on the continental slope like submarine landslides and submarine collapse. References Dinu, C., Wong, H.K., Tambrea, D., Matenco, L., 2005. Stratigraphic and structural characteristics of the Romanian Black Sea shelf. Tectonophysics 410, 417-435. Popescu, I., Lericolais, G., Panin

  9. A GIS tool to analyze forest road sediment production and stream impacts

    Treesearch

    Ajay Prasad; David G. Tarboton; Charles H. Luce; Thomas A. Black

    2005-01-01

    A set of GIS tools to analyze the impacts of forest roads on streams considering sediment production, mass wasting risk, and fish passage barriers, has been developed. Sediment production for each road segment is calculated from slope, length, road surface condition and road-side drain vegetation gathered by a GPS inventory and by overlaying the road path on a Digital...

  10. The Naga Hills and Andaman ophiolite belt, their setting, nature and collisional emplacement history

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.; Ray, K. K.; Sengupta, Subhasis

    The Indo-Burmese Range and the Andaman-Nicobar Island Arc, form a continuous arcuate trend along which several ophiolite occurrences have been reported. In Naga Hills (NHO) and Andaman (ANO), these ophiolites are represented by dismembered mafic and ultramafic rocks with closely associated oceanic pelagic sediments. They occur as folded thrust slices occupying the highest tectonic levels and are brought to lie over distal shelf sediments of Eocene to Oligocene age. Ophiolites are unconformably overlain by ophiolite-derived clastics of Middle to Late Eocene age. The ophiolites preserved along this belt are remnants of a continuous, narrow, one or several intra-continental ocean basin(s) of broadly comparable age, created during the Late Mesozoic rifting of the Greater India Gondwana continent. Rifting and creation of oceanic crust date between Cretaceous and Early Eocene. In the initial stages, the ocean floor had been deeper than Carbonate Compensation Depth (CCD). Subsequently it had become uneven, when oceanic crust was being added through several seamounts or seamount chains and on top of which calcareous pelagic sediments were deposited. Both tholeiitic and alkaline volcanic rocks are present in these ophiolites. In NHO, the two groups of lavas have generated from different sources in different tectonic settings. The alkalic and some tholeiitic lavas in NHO are similar to off-axis seamount basalts. Tholeiitic lavas from ANO and some NHO resemble MORB or backarc basin basalts and on the basis of certain chemical characters these are suggested to have generated in marginal basin setting. Significant volume of acid differentiates are associated in ANO which also support the marginal basin character of the basalts. The suite of rocks in ANO indicates fractionation in a shallow level magma chamber. Closure of the small ocean basin(s) and emplacement of ophiolites took place in two stages. In the initial stage, the seamount chain brought to the subduction zone

  11. Contourites associated with pelagic mudrocks and distal delta-fed turbidites in the Lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, Patrick G.; Reczko, Boris F. F.

    1998-09-01

    Five genetic facies associations/architectural elements are recognised for the epeiric sea deposits preserved in the Early Proterozoic Timeball Hill Formation, South Africa. Basal carbonaceous mudrocks, interpreted as anoxic suspension deposits, grade up into sheet-like, laminated, graded mudrocks and succeeding sheets of laminated and cross-laminated siltstones and fine-grained sandstones. The latter two architectural elements are compatible with the Te, Td and Tc subdivisions of low-density turbidity current systems. Thin interbeds of stromatolitic carbonate within these first three facies associations support photic water depths up to about 100 m. Laterally extensive sheets of mature, cross-bedded sandstone disconformably overlie the turbidite deposits, and are ascribed to lower tidal flat processes. Interbedded lenticular, immature sandstones and mudrocks comprise the fifth architectural element, and are interpreted as medial to upper tidal flat sediments. Small lenses of coarse siltstone-very fine-grained sandstone, analogous to modern continental rise contourite deposits, occur within the suspension and distal turbidite sediments, and also form local wedges of inferred contourites at the transition from suspension to lowermost turbidite deposits. Blanketing and progressive shallowing of the floor of the Timeball Hill basin by basal suspension deposits greatly reduced wave action, thereby promoting preservation of low-density turbidity current deposits across the basin under stillstand or highstand conditions. A lowstand tidal flat facies tract laid down widespread sandy deposits of the medial Klapperkop Member within the formation. Salinity gradients and contemporaneous cold periglacial water masses were probably responsible for formation of the inferred contourites. The combination of the depositional systems interpreted for the Timeball Hill Formation may provide a provisional model for Early Proterozoic epeiric basin settings.

  12. Continental slope morphology in northern Gulf of Mexico mapped with long-range (GLORIA) side-scan data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, B.A.; Garrison, L.E.; Kenyon, N.H.

    1985-02-01

    GLORIA II long-range side-scan data provide a mosaic of the continental slope in the northern Gulf of Mexico, seaward of the Texas-Louisiana coast. A swath as wide as 30 km and a 10% overlap of the data between parallel track lines provide a continuous picture of the complex slope morphology, which is largely controlled by salt deformation. Morphologic features range from piercement structures approximately 2 km in diameter to basins as much as 30 km across. The GLORIA data delineate the East Breaks submarine slide, where surface lineations are suggestive of deformation features. High-resolution 10 kHz seismic-reflection profiles indicate thatmore » the very irregular surface on the slide has a relief of 10 m. The 3 types of intraslope basins (blocked canyon, interdomal, and collapse) described by A.H. Bouma can be identified on the GLORIA data. The walls of Gyre basin, an example of a blocked canyon, have what are interpreted to be gullies, which are commonly associated with submarine canyons. Another basin downslope has similar gully-like features on the walls, which suggest that it may have been part of the original canyon system. Although many canyon-like features direct the movement of sediment downslope, the present data show that all conduits end in closed basins. No system of basins can be shown to transport sediment across the entire slope between the Mississippi Canyon and the East Breaks slide. Small-scale slumps, which can be identified on the flanks of some of the diapiric structures, also contribute sediments to basins such as Gyre basin.« less

  13. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roberts, Harry H.; Feng, Dong; Joye, Samantha B.

    2010-11-01

    Authigenic carbonates from cold seeps on the middle and lower continental slope of the northern Gulf of Mexico (GOM) exhibit a wide range of mineralogical and stable isotopic compositions. These carbonates consist of concretions and nodules in surface sediments, hardgrounds of crusts and isolated slabs, and mounded buildups of blocks and slabs of up to over 10 meters in relief above the surrounding seafloor. Mineralogically, the carbonates are dominated by high-Mg calcite (HMC) and aragonite. However, low levels (<5 wt%) of dolomite are present in most samples. Petrographically, Mg-calcite peloidal matrix and acicular to botryoidal aragonitic void-filling cements are the most frequent associations. The carbon isotopic compositions of the carbonates range from -60.8 to 14.0‰ PDB, indicating complex carbon sources that include 13C-depleted biogenic and thermogenic methane, biodegraded crude oil, seawater CO2, and 13C-enriched residual CO2 from methanogenesis. A similarly large variability in δ18O values (2.5 to 6.7‰ PDB) demonstrates the geochemical complexity of the slope, with some samples pointing toward an 18O-enriched oxygen source that is possibly related to advection of 18O-enriched formation water and/or to the decomposition of gas hydrate. A considerable range of mineralogical and isotopic variations in cold-seep carbonate composition was noted even within individual study sites. However, common trends occur across multiple geographic areas. This situation suggests that local controls on fluid and gas flux, types of seep hydrocarbons, the presence or absence of gas hydrate in the near-surface sediment, and chemosynthetic communities, as well as the temporal evolution of the local hydrocarbon reservoir, all may play a part in determining carbonate mineralogy and isotope geochemistry. The carbon isotope data clearly indicate that between-site variation is greater than within-site variation. Seep carbonates formed on the middle and lower continental slope

  14. Submarine Pyroclastic Flow Deposits; July 2003 Dome Collapse Event of the Soufrière Hills Volcano, Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Trofimovs, J.; Sparks, S.; Talling, P.

    2006-12-01

    What happens when pyroclastic flows enter the ocean? To date, the subject of submarine pyroclastic flow behaviour has been controversial. Ambiguity arises from inconclusive evidence of a subaqueous depositional environment in ancient successions, to difficulty in sampling the in situ products of modern eruptions. A research voyage of the RRS James Clark Ross (9-18 May 2005) sampled 52 sites offshore from the volcanic island of Montserrat. The Soufrière Hills volcano, Montserrat, has been active since 1995 with eruptive behaviour dominated by andesite lava dome growth and collapse. Over 90% of the pyroclastic material produced has been deposited into the ocean. In July 2003 the Soufrière Hills volcano produced the largest historically documented dome collapse event. 210 x 106 m3 of pyroclastic material avalanched down the Tar River Valley, southeast Montserrat, to be deposited into the ocean. Bathymetric imaging and coring of offshore pyroclastic deposits, with a specific focus on the July 2003 units, reveals that the pyroclastic flows mix rapidly and violently with the water as they enter the ocean. Mixing takes place between the shore and 500 m depth where the deposition of basal coarse-grained parts of the flow initiates on slopes of 15° or less. The coarse components (pebbles to boulders) are deposited proximally from dense basal slurries to form steep sided, near linear ridges that amalgamate to form a kilometer-scale submarine fan. These proximal deposits contain <1% of ash-grade material. The finer components (dominantly ash-grade) are mixed into the overlying water column to form turbidity currents that flow distances >40 km from source. The total volume of pyroclastic material deposited within the submarine environment during this event exceeds 170 x 106 m3, with 65% deposited in proximal lobes and 35% deposited as distal turbidites. This broadly correlates with the block and ash components respectively, of the source subaerial pyroclastic flow. However

  15. Colleges as Shining Cities on a Hill

    ERIC Educational Resources Information Center

    Townsend, Kathleen Kennedy

    2012-01-01

    In this article, the author proposes that the notion of America be reintroduced as the "shining city on a hill," that abiding image from American history. The image of the shining city on a hill captures the imagination because it reflects the abiding truth that people become fully human in society, not outside of it. People need one…

  16. Biogeography of the Shimba Hills ecosystem herpetofauna in Kenya

    PubMed Central

    Malonza, Patrick K.; Mulwa, David M.; Nyamache, Joash O.; Jones, Georgina

    2018-01-01

    The Shimba Hills ecosystem along the south coast of Kenya is a key East African biodiversity hotspot. Historically, it is biogeographically assignable to the East African coastal biome. We examined the current Shimba Hills herpetofauna and their zoogeographical affinities to the coastal forests and nearby Eastern Arc Mountains biodiversity hotspots. The key studied sites included the Shimba Hills National Reserve, forest reserves, Kaya forests, and adjacent private land. Data on herpetofaunal richness were obtained from recent field surveys, literature, and specimens held at the National Museums of Kenya, Herpetology Section Collection, Nairobi. The Makadara, Mwele, and Longo-Mwagandi forests within the Shimba Hills National Reserve hosted the highest number of unique and rare species. Generally, the forest reserves and Kaya forests were important refuges for forest-associated species. On private land, Mukurumudzi Dam riparian areas were the best amphibian habitat and were host to three IUCN (Red List) Endangered-EN amphibian species, namely, Boulengerula changamwensis, Hyperolius rubrovermiculatus, and Afrixalus sylvaticus, as well as one snake species Elapsoidea nigra. Using herpetofauna as zoogeographic indicators, the Shimba Hills were determined to be at a crossroads between the coastal forests (13 endemic species) and the Eastern Arc Mountains (seven endemic species). Most of the Eastern Arc Mountains endemic species were from recent records, and thus more are likely to be found in the future. This ‘hybrid’ species richness pattern is attributable to the hilly topography of the Shimba Hills and their proximity to the Indian Ocean. This has contributed to the Shimba Hills being the richest herpetofauna area in Kenya, with a total of 89 and 38 reptile and amphibian species, respectively. Because of its unique zoogeography, the Shimba Hills ecosystem is undoubtedly a key biodiversity area for conservation investment. PMID:29515091

  17. Biogeography of the Shimba Hills ecosystem herpetofauna in Kenya.

    PubMed

    Malonza, Patrick K; Mulwa, David M; Nyamache, Joash O; Jones, Georgina

    2018-03-18

    The Shimba Hills ecosystem along the south coast of Kenya is a key East African biodiversity hotspot. Historically, it is biogeographically assignable to the East African coastal biome. We examined the current Shimba Hills herpetofauna and their zoogeographical affinities to the coastal forests and nearby Eastern Arc Mountains biodiversity hotspots. The key studied sites included the Shimba Hills National Reserve, forest reserves, Kaya forests, and adjacent private land. Data on herpetofaunal richness were obtained from recent field surveys, literature, and specimens held at the National Museums of Kenya, Herpetology Section Collection, Nairobi. The Makadara, Mwele, and Longo-Mwagandi forests within the Shimba Hills National Reserve hosted the highest number of unique and rare species. Generally, the forest reserves and Kaya forests were important refuges for forest-associated species. On private land, Mukurumudzi Dam riparian areas were the best amphibian habitat and were host to three IUCN (Red List) Endangered-EN amphibian species, namely, Boulengerula changamwensis, Hyperolius rubrovermiculatus, and Afrixalus sylvaticus, as well as one snake species Elapsoidea nigra. Using herpetofauna as zoogeographic indicators, the Shimba Hills were determined to be at a crossroads between the coastal forests (13 endemic species) and the Eastern Arc Mountains (seven endemic species). Most of the Eastern Arc Mountains endemic species were from recent records, and thus more are likely to be found in the future. This 'hybrid' species richness pattern is attributable to the hilly topography of the Shimba Hills and their proximity to the Indian Ocean. This has contributed to the Shimba Hills being the richest herpetofauna area in Kenya, with a total of 89 and 36 reptile and amphibian species, respectively. Because of its unique zoogeography, the Shimba Hills ecosystem is undoubtedly a key biodiversity area for conservation investment.

  18. Audio-magnetotelluric (AMT) study to investigate the genesis of Mujil hill

    NASA Astrophysics Data System (ADS)

    Rahmania, Suryanto, Wiwit

    2017-07-01

    Gunung Mujil is an isolated hill located near Pondoworejo village, Kalibawang sub-district, Kulon Progo district, and Special Province of Yogyakarta. The hill is part of the eastern Kulon Progo mountain range extended relatively in the North-South direction. The lithology of the hill consists of andesite breccia and it's similar with the Old Andesite Formation that built the Kulon Progo Mountains. There are at least two hypothesis about the genesis and the formation mechanism of this hill, (1) it was formed by debris mass from Kulon Progo Mountains, and (2) ) it was formed by an intrusion. Our study intended to determine the subsurface resistivity below the hill and to relating those results to with the scenario of the genesis of the Mujil hill. We conducted Audio-magnetotellurics (AMT) measurements along two lines survey crossing the Mujil hill consisting of 20 measurements. Since the measurements are located near the villages, most of the data has a fair to bad quality and only one station yielded an excellent data. A 1D Forward modeling was then applied to find best-fit model of the AMT data. The results shows that the Mujil hill was built by debris mass of the Old Andesite Formation from Kulon Progo mountain which is represented by a lower resistivity value under the Mujil hill.

  19. Inorganic and organic geochemical fingerprinting of sediment sources and ocean circulation on a complex continental margin (São Paulo Bight, Brazil)

    NASA Astrophysics Data System (ADS)

    Michaelovitch de Mahiques, Michel; Jörg Hanebuth, Till Jens; Hanae Nagai, Renata; Caruso Bícego, Marcia; Lopes Figueira, Rubens Cesar; Mello Sousa, Silvia Helena; Burone, Leticia; Franco-Fraguas, Paula; Taniguchi, Satie; Barbosa Salaroli, Alexandre; Pereira Dias, Gilberto; Menezes Prates, Denise; Fernandes Freitas, Maria Eugenia

    2017-03-01

    In this study, we use inorganic (metal) and organic (bulk and molecular) markers in sediment samples of the south-eastern Brazilian margin to investigate the response of geochemical fingerprints to the complex hydrodynamic processes present in the area. Results indicate the potential of export of terrigenous siliciclastic and organic constituents to the upper slope, even in an area with limited fluvial supply.

    Metal contents and especially the ln(Ti / Al) and ln(Fe / K) ratios make it possible to recognise the extension of shelf sediments toward the upper slope. Potassium, here expressed as ln(K / Sc) and ln(K / Al) ratios used as proxies of illite-kaolinite variations, proved to be an important parameter, especially because it allowed us to decipher the imprint of the northward flow of the Intermediate Western Boundary Current (IWBC) in comparison to the southward flows of the Brazil Current (BC) and Deep Western Boundary Current (DWBC). Using organic matter analyses, we were able to evaluate the extent of terrestrial contributions to the outer shelf and slope, even without the presence of significant fluvial input. In addition, molecular markers signify a slight increase in the input of C4-derived plants to the slope sediments, transported from distant areas by the main alongshore boundary currents, indicating that the terrestrial fraction of the organic matter deposited on the slope has a distinct origin when compared to shelf sediments.

  20. Dispersal of river sediment in the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; Farnsworth, K.L.

    2009-01-01

    The rivers of Southern California deliver episodic pulses of water, sediment, nutrients, and pollutants to the region's coastal waters. Although river-sediment dispersal is observed in positively buoyant (hypopycnal) turbid plumes extending tens of kilometers from river mouths, very little of the river sediment is found in these plumes. Rather, river sediment settles quickly from hypopycnal plumes to the seabed, where transport is controlled by bottom-boundary layer processes, presumably including fluid-mud (hyperpycnal) gravity currents. Here we investigate the geographical patterns of river-sediment dispersal processes by examining suspended-sediment concentrations and loads and the continental shelf morphology offshore river mouths. Throughout Southern California, river sediment is discharged at concentrations adequately high to induce enhanced sediment settling, including negative buoyancy. The rivers draining the Western Transverse Range produce suspended-sediment concentrations that are orders of magnitude greater than those in the urbanized region and Peninsular Range to the south, largely due to differences in sediment yield. The majority of sediment discharge from the Santa Clara River and Calleguas Creek occurs above the theoretical negative buoyancy concentration (>40 g/l). These rivers also produce event sediment loading as great as the Eel River, where fluid-mud gravity currents are observed. The continental shelf of Southern California has variable morphology, which influences the ability to transport via gravity currents. Over half of the rivers examined are adjacent to shelf slopes greater than 0.01, which are adequately steep to sustain auto-suspending gravity currents across the shelf, and have little (<10 m) Holocene sediment accumulation. Shelf settings of the Ventura, Santa Clara, and Tijuana Rivers are very broad and low sloped (less than 0.004), which suggests that fluid-mud gravity currents could transport across these shelves, albeit slowly

  1. Water quality of streams draining abandoned and reclaimed mined lands in the Kantishna Hills area, Denali National Park and Preserve, Alaska, 2008–11

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2013-01-01

    The Kantishna Hills are an area of low elevation mountains in the northwest part of Denali National Park and Preserve, Alaska. Streams draining the Kantishna Hills are clearwater streams that support several species of fish and are derived from rain, snowmelt, and subsurface aquifers. However, the water quality of many of these streams has been degraded by mining. Past mining practices generated acid mine drainage and excessive sediment loads that affected water quality and aquatic habitat. Because recovery through natural processes is limited owing to a short growing season, several reclamation projects have been implemented on several streams in the Kantishna Hills region. To assess the current water quality of streams in the Kantishna Hills area and to determine if reclamation efforts have improved water quality, a cooperative study between the U.S. Geological Survey and the National Park Service was undertaken during 2008-11. High levels of turbidity, an indicator of high concentrations of suspended sediment, were documented in water-quality data collected in the mid-1980s when mining was active. Mining ceased in 1985 and water-quality data collected during this study indicate that levels of turbidity have declined significantly. Turbidity levels generally were less than 2 Formazin Nephelometric Units and suspended sediment concentrations generally were less than 1 milligram per liter during the current study. Daily turbidity data at Rock Creek, an unmined stream, and at Caribou Creek, a mined stream, documented nearly identical patterns of turbidity in 2009, indicating that reclamation as well as natural revegetation in mined streams has improved water quality. Specific conductance and concentrations of dissolved solids and major ions were highest from streams that had been mined. Most of these streams flow into Moose Creek, which functions as an integrator stream, and dilutes the specific conductance and ion concentrations. Calcium and magnesium are the

  2. Scale and processes dominating soil erosion and sediment transport: case studies from Indonesia and Australia

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Bruijnzeel, L. A.

    2009-04-01

    Soil erosion and sediment transport at different scales of space and time are dominated by a variable set of landscape properties and processes. Research results from West Java (Indonesia) and southeast Australia are presented, taking a natural resources management perspective. The dominant role of vegetation and soil health, rainfall infiltration, and connectivity between hillslope and stream are elaborated on. In humid volcanic upland West Java, vegetative cover and associated infiltration capacity are the dominant control on surface runoff and sediment generation, with additional variation attributed to slope and soil surface structure. Use of process models to replicate and upscale field measurements highlighted that a predictive theory to link vegetative cover and infiltration capacity is lacking, and that full knowledge of the covariance between terrain attributes that promote sediment generation is needed for process based modelling. At the hillslope to catchment scale, slope gradient and a less erodible substrate became additional constraints on sediment yield. A conceptual framework relating processes, scale and sediment delivery ratio was developed. In water-limited southeast Australia, measures to reduce erosion and sediment production generally aim to intercept surface runoff, allowing runoff to infiltrate and sediment to settle on vegetated buffer strips or roadsides or in leaky dams. It is illustrated how remote sensing can help to assess the sources of sediment and hydrological connectivity at different scales and to identify opportunities for mitigation.

  3. Lost Hills Subsidence Animation

    NASA Image and Video Library

    2012-02-06

    This frame from an animation depicts ground subsidence resulting from the extraction of oil. The oil fields are located near the community of Lost Hills, California, approximately 100 km northwest of Bakersfield.

  4. Mechanics of dual-mode dilative failure in subaqueous sediment deposits

    NASA Astrophysics Data System (ADS)

    You, Yao; Flemings, Peter; Mohrig, David

    2014-07-01

    We introduce dual-mode dilative failure with flume experiments. Dual-mode dilative failure combines slow and steady release of sediments by breaching with periodic sliding, which rapidly releases an internally coherent wedge of sediments. It occurs in dilative sandy deposits. This periodic slope failure results from cyclic evolution of the excess pore pressure in the deposit. Sliding generates large, transient, negative excess pore pressure that strengthens the deposit and allows breaching to occur. During breaching, negative excess pore pressure dissipates, the deposit weakens, and ultimately sliding occurs once again. We show that the sliding frequency is proportional to the coefficient of consolidation. We find that thicker deposits are more susceptible to dual-mode dilative failure. Discovery of dual-mode dilative failure provides a new mechanism to consider when interpreting the sedimentary deposits linked to submarine slope failures.

  5. High natural erosion rates are the backdrop for present-day soil erosion in the agricultural Middle Hills of Nepal

    NASA Astrophysics Data System (ADS)

    West, A. J.; Arnold, M.; AumaItre, G.; Bourles, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.

    2015-07-01

    Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be challenging to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Catchment-scale erosional fluxes may be similar over short and long timescales if both are dominated by mass wasting sources such as gullies, landslides, and debris flows (e.g., as is evident in the landslide-dominated Khudi Khola of the Nepal High Himalaya, based on compiled data). As a consequence, simple comparison of catchment-scale fluxes will not necessarily pinpoint land use effects on soils where these are only a small part of the total erosion budget, unless rates of mass wasting are also considered. Estimates of the mass wasting contribution to erosion in the Likhu imply catchment-averaged soil production rates on the order of ~ 0.25-0.35 mm yr-1, though rates of mass wasting are

  6. Do deglaciated mountainslopes contribute significantly to paraglacial sediment fluxes?

    NASA Astrophysics Data System (ADS)

    Cossart, Etienne

    2013-04-01

    Current models of paraglacial sediment generation and transport (Ballantyne, 2002 & 2003) are general in nature; they are probably inaccurate for many specific locations because of the wide range in local or regional geomorphic conditions encountered around the globe. One of the conditions that varies from place to place is the pattern of paraglacial landsliding; it varies in both the magnitude, scale, and timing, and therefore has variable influence on sediment generation. Another condition that varies is the sediment connectivity between slopes and the fluvial system; this can vary due to differences in topography, hydrologic regimes, or transient sediment buffers such as landslide dams. In this paper, we examine the extent to which variability in paraglacial landslide patterns and sediment connectivity may affect the applicability of the general paraglacial model. To achieve this we draw on both existing literature and our field experience from the European Alps and Iceland. Sediment generation and pathways, as influenced by post-glacial collapse of mountain slopes in particular, are studied in three steps. First, the processes involved in rock failure are identified and their possible influence on mass-movement locations at different spatial scales in various places is discussed. This comparison reveals a variable pattern of paraglacial landslide distribution, and allows the local/regional controlling parameters to be identified. Second, the rate of triggering of mass-movement over time is roughly assessed in various settings based on a review of recently published data. This comparison aims to identify typical temporal-models for slope evolution through the time elapsed since deglaciation. Third, an attempt is made to assess the contribution of landsliding to the whole paraglacial cascading system by evaluating the somewhat contradictory findings and assertions from previous authors: Some authors have argued for a high sediment yield at catchment sinks in

  7. Paleomagnetism of sedimentary cores from the Ross Sea outer shelf and continental slope (PNRA-ROSSLOPE II Project)

    NASA Astrophysics Data System (ADS)

    Macrì, Patrizia; Sagnotti, Leonardo; Caricchi, Chiara; Colizza, Ester

    2016-04-01

    We carried out a paleomagnetic and rock magnetic study of 4 gravity cores sampled in the Ross Sea continental slope of the area to the east of Pennell-Iselin banks. The cores (RS14-C1, C2, C3 and ANTA99-C20) consist of hemipelagic fine-grained (silty-clays) sediments with an IRD component. Rock magnetic and paleomagnetic measurements were carried out at 1-cm spacing on u-channel samples. The data indicate that the cored sediments carry a well-defined characteristic remanent magnetization (ChRM) and have a valuable potential to reconstruct dynamics and amplitude of the geomagnetic field variation at high southern latitudes (ca. 75°S) during the Holocene and the late Pleistocene. The paleomagnetic and rock magnetic data are integrated in a multidisciplinary context which includes previous geological, geophysical, oceanographic and morpho-bathimetric data obtained in the same area in the frame of the PNRA/ROSSLOPE (Past and present sedimentary dynamic in the ROSS Sea: a multidisciplinary approach to study the continental slope) Project. The main aim of the project is to investigate the relation between present and past water mass circulation and to provide a basis for paleoceanographic reconstructions and for the development of a depositional model of the modern processes active along the continental slope.

  8. Hume, Mill, Hill, and the Sui Generis Epidemiologic Approach to Causal Inference

    PubMed Central

    Morabia, Alfredo

    2013-01-01

    The epidemiologic approach to causal inference (i.e., Hill's viewpoints) consists of evaluating potential causes from the following 2, noncumulative angles: 1) established results from comparative, observational, or experimental epidemiologic studies; and 2) reviews of nonepidemiologic evidence. It does not involve statements of statistical significance. The philosophical roots of Hill's viewpoints are unknown. Superficially, they seem to descend from the ideas of Hume and Mill. Hill's viewpoints, however, use a different kind of evidence and have different purposes than do Hume's rules or Mill's system of logic. In a nutshell, Hume ignores comparative evidence central to Hill's viewpoints. Mill's logic disqualifies as invalid nonexperimental evidence, which forms the bulk of epidemiologic findings reviewed from Hill's viewpoints. The approaches by Hume and Mill cannot corroborate successful implementations of Hill's viewpoints. Besides Hume and Mill, the epidemiologic literature is clueless about a plausible, pre-1965 philosophical origin of Hill's viewpoints. Thus, Hill's viewpoints may be philosophically novel, sui generis, still waiting to be validated and justified. PMID:24071010

  9. Hume, Mill, Hill, and the sui generis epidemiologic approach to causal inference.

    PubMed

    Morabia, Alfredo

    2013-11-15

    The epidemiologic approach to causal inference (i.e., Hill's viewpoints) consists of evaluating potential causes from the following 2, noncumulative angles: 1) established results from comparative, observational, or experimental epidemiologic studies; and 2) reviews of nonepidemiologic evidence. It does not involve statements of statistical significance. The philosophical roots of Hill's viewpoints are unknown. Superficially, they seem to descend from the ideas of Hume and Mill. Hill's viewpoints, however, use a different kind of evidence and have different purposes than do Hume's rules or Mill's system of logic. In a nutshell, Hume ignores comparative evidence central to Hill's viewpoints. Mill's logic disqualifies as invalid nonexperimental evidence, which forms the bulk of epidemiologic findings reviewed from Hill's viewpoints. The approaches by Hume and Mill cannot corroborate successful implementations of Hill's viewpoints. Besides Hume and Mill, the epidemiologic literature is clueless about a plausible, pre-1965 philosophical origin of Hill's viewpoints. Thus, Hill's viewpoints may be philosophically novel, sui generis, still waiting to be validated and justified.

  10. Determining the origin of enigmatic bedrock structures using apatite (U-Th)/He thermochronology: Alabama and Poverty Hills, Owens Valley, California

    NASA Astrophysics Data System (ADS)

    Ali, G. A.; Reiners, P. W.; Ducea, M.

    2008-12-01

    The Alabama and Poverty Hills are enigmatic, topographic highs of crystalline basement surrounded by Neogene sediments in Owens Valley, California. The 150-km long Owens Valley, the westernmost graben of the Basin and Range Province, initiated at about 3 Ma, creating ~2-4 km of vertical relief from the Sierra Nevada and White/Inyos crests to the valley floor. Along the valley, the active right-lateral Owens Valley Fault Zone (OVFZ) accommodates a significant portion of Pacific-North American plate motion, creating an oblique dextral fault zone, with localized transpression along minor left-stepovers. The dominantly granitic Mesozoic rocks of the Alabama Hills are bounded by the OVFZ to the east, and the granitic and metavolcanic Mesozoic rocks of the Poverty Hills are located along an apparent 3-km left stepover of the OVFZ. The tectonic origin and geodynamic significance of both these structures are not known, but previously published hypotheses include: 1) transpressional uplifts as OVFZ-related flower structures; 2) down-dropped normal fault blocks; and 3) giant landslides from adjacent ranges. We measured apatite (U-Th)/He ages on 15 samples from the Alabama and Poverty Hills to understand the history of shallow crustal exhumation of these structures, and to potentially correlate them to rocks from adjacent ranges. Apatite He dating typically yields cooling ages corresponding to closure temperatures of ~55-65 °C, corresponding roughly to depths of ~2-3 km in the crust. The majority of apatite He ages from the Alabama Hills ranged from 58-70 Ma, but the far eastern, and lowest elevation sample showed ages of 51-55 Ma. The Poverty Hills shows younger ages of 40-65 Ma and no recognizable spatial pattern. Although the data do not conclusively rule out a transpressional uplift origin of the Poverty Hills, the rocks within them could not have been exhumed from depths greater than ~2-3 km in Owens Valley. Data from both structures are most consistent with down

  11. Application of dimensionless sediment rating curves to predict suspended-sediment concentrations, bedload, and annual sediment loads for rivers in Minnesota

    USGS Publications Warehouse

    Ellison, Christopher A.; Groten, Joel T.; Lorenz, David L.; Koller, Karl S.

    2016-10-27

    -of-fit that included proximity of the model(s) fitted line to the 95-percent confidence intervals of the site-specific model, Nash-Sutcliffe Efficiency values, model biases, and deviation of annual sediment loads from each model to the annual sediment loads calculated from measured data.Composite plots comparing Pagosa Springs DSRCs, Minnesota DSRCs, site-specific regression models, and measured data indicated that regionally developed DSRCs (Minnesota DSRC models) more closely approximated measured data for nearly every site. Pagosa Springs DSRC models had markedly larger exponents (slopes) when compared to the Minnesota DSRC models and the site-specific regression models, and over-represent SSC and bedload at streamflows exceeding bankfull. The Nash-Sutcliffe Efficiency values for the Minnesota DSRC model for suspended-sediment concentrations closely matched Nash-Sutcliffe Efficiency values of the site-specific regression models for 12 out of 16 sites. Nash-Sutcliffe Efficiency values associated with Minnesota DSRCs were greater than those associated with Pagosa Springs DSRCs for every site except the Whitewater River near Beaver, Minnesota site. Pagosa Springs DSRC models were less accurate than the mean of the measured data at predicting SSC values for one-half of the sites for good/fair stability sites and one-half of the sites for poor stability sites. Relative model biases were calculated and determined to be substantial (greater than 5 percent) for Pagosa Springs and Minnesota models, with Minnesota models having a lower mean model bias. For predicted annual suspended-sediment loads (SSL), the Minnesota DSRC models for good/fair and poor stream stability sites more closely approximated the annual SSLs calculated from the measured data as compared to the Pagosa Springs DSRC model.Results of data analyses indicate that DSRC models developed using data collected in Minnesota were more effective at compensating for differences in individual stream characteristics across a

  12. Geomorphological map and preliminary analysis of Quaternary sediments in the Planica-Tamar valley (Julian Alps, NW Slovenia)

    NASA Astrophysics Data System (ADS)

    Novak, Andrej; Šmuc, Andrej

    2016-04-01

    The Planica-Tamar valley is located in the Julian Alps in north-west Slovenia. The Planica-Tamar valley represents typical mountain glacial valley bounded by steep, mainly carbonate cliffs with some glacial deposits still preserved. The valley is currently being filled with numerous Holocene sediments deposited by rock falls, landslides, mass gravity flows and fluvial flows. These deposits are forming active or inactive interfingering talus slopes, alluvial and debris-flow fans, all of them with a complex history of sedimentation and erosion forming unconformity bounded sedimentary units. In order to make a thorough analysis of these deposits a detailed geomorphological map in a scale of 1:10 000 has been made. Six different types of sedimentary deposits were defined and mapped. These are moraines, lacustrine sediments, fluvio-glacial deposits, talus slopes, debris fans and alluvial fans. Other mapped features also include shape of ravines, their depths, ridges and direction of sedimentary flow. Additionally areas of active, semi-active and inactive sedimentation were marked. Moraines forms a ridge in the bottom of the valleys and are composed of unconsolidated, poorly sorted, subangular grains ranging from clay size to a few cubic meters big blocks. Lacustrine sediments are represented by laminated well sorted sand and silt, while fluvio-glacial deposits are composed of washed out subrounded sands and gravels. Talus slope deposits are characterised by clast-supported poorly sorted very angular gravel. Debris flow fans are represented by extremely poorly sorted matrix-supported gravels with grain size ranging from clay to few cubic meters big blocks. Alluvial fans are composed by variety of sedimentary textures. Sediments at the fan apex are clast-supported poorly sorted very angular gravels with up to a few cubic meters big block. In the middle part of the fan the sieve deposits are common, while in the distal parts a few centimeters thick layers of sand and

  13. A downslope propagating thermal front over the continental slope

    NASA Astrophysics Data System (ADS)

    van Haren, Hans; Hosegood, Phil J.

    2017-04-01

    In the ocean, internal frontal bores above sloping topography have many appearances, depending on the local density stratification, and on the angle and source of generation of the carrier wave. However, their common characteristics are a backward breaking wave, strong sediment resuspension, and relatively cool (denser) water moving more or less upslope underneath warm (less dense) water. In this paper, we present a rare example of a downslope moving front of cold water moving over near-bottom warm water. Large backscatter is observed in the downslope moving front's trailing edge, rather than the leading edge as is common in upslope moving fronts. Time series observations have been made during a fortnight in summer, using a 101 m long array of high-resolution temperature sensors moored with an acoustic Doppler current profiler at 396 m depth in near-homogeneous waters, near a small canyon in the continental slope off the Malin shelf (West-Scotland, UK). Occurring between fronts that propagate upslope with tidal periodicity, the rare downslope propagating one resembles a gravity current and includes strong convective turbulence coming from the interior rather than the more usual frictionally generated turbulence arising from interaction with the seabed. Its turbulence is 3-10 times larger than that of more common upslope propagating fronts. As the main turbulence is in the interior with a thin stratified layer close to the bottom, little sediment is resuspended by a downslope propagating front. The downslope propagating front is suggested to be generated by oblique propagation of internal (tidal) waves and flow over a nearby upstream promontory.

  14. Heterogeneous Landscapes on Steep Slopes at Low Altitudes as Hotspots of Bird Diversity in a Hilly Region of Nepal in the Central Himalayas.

    PubMed

    Basnet, Tej B; Rokaya, Maan B; Bhattarai, Bishnu P; Münzbergová, Zuzana

    2016-01-01

    Understanding factors determining the distribution of species is a key requirement for protecting diversity in a specific area. The aim of this study was to explore the factors affecting diversity and distribution of species of birds on different forested hills in central Nepal. The area is rich in species of birds. Because the area is characterized by steep gradients, we were also interested in the importance of altitude in determining the diversity and species composition of the bird communities. We assessed bird diversity and species composition based on point observations along a gradient of increasing altitude in two valleys (Kathmandu and Palung) in central Nepal. Data on environmental variables were also collected in order to identify the main determinants of bird diversity and species composition of the bird communities. We recorded 6522 individual birds belonging to 146 species, 77 genera and 23 families. Resident birds made up 80% (117 species) of the total dataset. The study supported the original expectation that altitude is a major determinant of species richness and composition of bird communities in the area. More diverse bird communities were found also in areas with steeper slopes. This together with the positive effect of greater heterogeneity suggests that forests on steep slopes intermixed with patches of open habitats on shallow soil at large spatial scales are more important for diverse bird communities than more disturbed habitats on shallow slopes. In addition, we demonstrated that while different habitat characteristics such as presence of forests edges and shrubs play an important role in driving species composition, but they do not affect species richness. This indicates that while habitat conditions are important determinants of the distribution of specific species, the number of niches is determined by large scale characteristics, such as landscape level habitat heterogeneity and altitude. Thus, to protect bird diversity in the mid-hills

  15. Heterogeneous Landscapes on Steep Slopes at Low Altitudes as Hotspots of Bird Diversity in a Hilly Region of Nepal in the Central Himalayas

    PubMed Central

    Basnet, Tej B.; Rokaya, Maan B.; Bhattarai, Bishnu P.; Münzbergová, Zuzana

    2016-01-01

    Understanding factors determining the distribution of species is a key requirement for protecting diversity in a specific area. The aim of this study was to explore the factors affecting diversity and distribution of species of birds on different forested hills in central Nepal. The area is rich in species of birds. Because the area is characterized by steep gradients, we were also interested in the importance of altitude in determining the diversity and species composition of the bird communities. We assessed bird diversity and species composition based on point observations along a gradient of increasing altitude in two valleys (Kathmandu and Palung) in central Nepal. Data on environmental variables were also collected in order to identify the main determinants of bird diversity and species composition of the bird communities. We recorded 6522 individual birds belonging to 146 species, 77 genera and 23 families. Resident birds made up 80% (117 species) of the total dataset. The study supported the original expectation that altitude is a major determinant of species richness and composition of bird communities in the area. More diverse bird communities were found also in areas with steeper slopes. This together with the positive effect of greater heterogeneity suggests that forests on steep slopes intermixed with patches of open habitats on shallow soil at large spatial scales are more important for diverse bird communities than more disturbed habitats on shallow slopes. In addition, we demonstrated that while different habitat characteristics such as presence of forests edges and shrubs play an important role in driving species composition, but they do not affect species richness. This indicates that while habitat conditions are important determinants of the distribution of specific species, the number of niches is determined by large scale characteristics, such as landscape level habitat heterogeneity and altitude. Thus, to protect bird diversity in the mid-hills

  16. Performance evaluation of setback buildings with open ground storey on plain and sloping ground under earthquake loadings and mitigation of failure

    NASA Astrophysics Data System (ADS)

    Ghosh, Rahul; Debbarma, Rama

    2017-06-01

    Setback structures are highly vulnerable during earthquakes due to its vertical geometrical and mass irregularity, but the vulnerability becomes higher if the structures also have stiffness irregularity in elevation. The risk factor of such structure may increase, if the structure rests on sloping ground. In this paper, an attempt has been made to evaluate the seismic performance of setback structures resting on plain ground as well as in the slope of a hill, with soft storey configuration. The analysis has been performed in three individual methods, equivalent static force method, response spectrum method and time history method and extreme responses have been recorded for open ground storeyed setback building. To mitigate this soft storey effect and the extreme responses, three individual mitigation techniques have been adopted and the best solution among these three techniques is presented.

  17. Is there a distinct continental slope fauna in the Antarctic?

    NASA Astrophysics Data System (ADS)

    Kaiser, Stefanie; Griffiths, Huw J.; Barnes, David K. A.; Brandão, Simone N.; Brandt, Angelika; O'Brien, Philip E.

    2011-02-01

    a unique Antarctic slope fauna, but the paucity of our samples could not demonstrate this in the Scotia Sea. It is very likely that various ecological and evolutionary factors (such as topography, water-mass and sediment characteristics, input of particulate organic carbon (POC) and glaciological history) drive slope distinctness. Isopods showed greatest species richness at slope depths, whereas bryozoans and ostracods were more speciose at shelf depths; however, significance varied across Weddell Sea and Scotia Sea and depending on bathymetric vs. geomorphological definitions. Whilst the slope may harbour some source populations for localised shelf recolonisation, the absence of many shelf species, genera and even families (in a poorly dispersing taxon) from the continental slope indicate that it was not a universal refuge for Antarctic shelf fauna.

  18. POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): Long-range atmospheric transport, glacier shrinkage, or local impact of tourism?

    PubMed

    Guzzella, Licia; Salerno, Franco; Freppaz, Michele; Roscioli, Claudio; Pisanello, Francesca; Poma, Giulia

    2016-02-15

    Due to their physico-chemical properties, POPs and PAHs are subjected to long-range atmospheric transport (LRAT) and may be deposited in remote areas. In this study, the contamination with DDx, PCBs, PBDEs, and PAHs was investigated in sediments and soils collected on the southern slopes of Mt. Everest (Himalaya, Nepal) in two different sampling campaigns (2008 and 2012). The results showed a limited contamination with POPs and PAHs in both soil and sediment samples. Therefore, the southern slopes of Mt. Everest can be considered a remote area in almost pristine condition. The LRAT mechanism confirmed its primary role in the transfer of contaminants to remote regions, while the gradual melting of glaciers, due to global warming, and the subsequent release of contaminants was suggested to be a secondary source of pollution of the lake sediments. In addition, the increase of tourism in this area during the last decades might have influenced the present concentrations of PAHs in the sediments and soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Estimating the effect of burrowing shrimp on deep-sea sediment community oxygen consumption.

    PubMed

    Leduc, Daniel; Pilditch, Conrad A

    2017-01-01

    Sediment community oxygen consumption (SCOC) is a proxy for organic matter processing and thus provides a useful proxy of benthic ecosystem function. Oxygen uptake in deep-sea sediments is mainly driven by bacteria, and the direct contribution of benthic macro- and mega-infauna respiration is thought to be relatively modest. However, the main contribution of infaunal organisms to benthic respiration, particularly large burrowing organisms, is likely to be indirect and mainly driven by processes such as feeding and bioturbation that stimulate bacterial metabolism and promote the chemical oxidation of reduced solutes. Here, we estimate the direct and indirect contributions of burrowing shrimp ( Eucalastacus cf. torbeni ) to sediment community oxygen consumption based on incubations of sediment cores from 490 m depth on the continental slope of New Zealand. Results indicate that the presence of one shrimp in the sediment is responsible for an oxygen uptake rate of about 40 µmol d -1 , only 1% of which is estimated to be due to shrimp respiration. We estimate that the presence of ten burrowing shrimp m -2 of seabed would lead to an oxygen uptake comparable to current estimates of macro-infaunal community respiration on Chatham Rise based on allometric equations, and would increase total sediment community oxygen uptake by 14% compared to sediment without shrimp. Our findings suggest that oxygen consumption mediated by burrowing shrimp may be substantial in continental slope ecosystems.

  20. Stratigraphic variation in petrographic composition of Nanushuk Group sandstones at Slope Mountain, North Slope, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Johnsson, Mark J.; Sokol, Nikolas K.

    2000-01-01

    Fluvial, deltaic, and marine sediments of the Nanushuk Group (Albian to Cenomanian), North Slope, Alaska, record Early Cretaceous orogenic events in the Brooks Range to the south. The 1,060-m section at Slope Mountain is part of the Lower Cretaceous Umiat Delta, shed from the Endicott and De Long Mountains subterranes in the central Brooks Range. These sandstones are litharenites dominated by metasedimentary lithic fragments. Subtle and previously unrecognized stratigraphic variations in composition (up-section increases in metasedimentary lithic fragments, volcanic lithic fragments, and quartz interpreted to be of metamorphic origin) reflect a combination of facies migration and changes in provenance associated with unroofing of the ancestral Brooks Range. We recognize stratigraphic variation in sandstone composition at Slope Mountain whereas previous workers have not, probably because of our use of finely subdivided point-counting categories. The source of the volcanic lithic fragments in the Nanushuk Group remains enigmatic; the most likely candidate is a now-eroded volcanic arc, perhaps a volcanic superstructure to granitic rocks of the Ruby terrane to the south.

  1. The man and the hill

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1962-01-01

    He was sitting on a large slab of rock. As he looked at the cloud of dust hanging hazily on the horizon, the piece of antler and the block of flint he held in his hand hung as if they were suspended from their previous rapid motion. The man gazed intently across the swaying grass which rose in wave-like billows across the distant hills. What was that dust - a herd of buffalo, a band of hunters, or were coyotes chasing the antelope again? After watching for a while he started again to chip the flint with a rapid twisting motion of the bone in his right hand. The little chips of flint fell in the grass before him. It is the same hill but the scene has changed. Seated on the same rock, holding the reins of a saddle horse, a man dressed in buckskin took the fur cap off his head and wiped his brow. He was looking intently across a brown and desolate landscape at a cloud of dust on the far horizon. Was it the hostile tribe of Indians? It could be buffalo. Nervously he kicked at the ground with the deerhide moccasin, pushing the flint chips out of the way. He wiped the dust from his long rifle. What a terrible place - no water, practically no grass, everything bare and brown. Now at sunset, slanting across the hills green with springtime, a cowman sits on a big rock, pushes his sombrero back on his head, and looks across the valley at a large but quiet herd of stock, moving slowly as each steer walks from one lush patch of grass to another, nibbling. Suddenly he stood up. Far on the horizon some dark objects were moving. Is it the sheepmen? Could it be the stage coach from Baggs to the Sweetwater Crossing?Same hill - a gray truck was grinding slowly toward the summit. It pulled up near a small fenced enclosure where there were some instruments painted a bright silver color. A man stepped out of the truck and turned to his younger companion, "You've never found an arrowhead? Maybe you have never thought about it correctly. If you want to find where an Indian camped long

  2. Rill erosion of mudstone slope-a case study of southern Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, Ci-Jian; Lin, Jiun-chuan; Cheng, Yuan-Chang

    2014-05-01

    Soil erosion has been studied by many scientists for decades (Zingg, 1940; Meyer & Wischmeier, 1969; Foster, 1982; Luk, 1988) and many soil erosion prediction equations have already been developed, such as USLE, RUSLE. In spite of WEEP is based on hydrological physical model, all of the above models are restricted to predict concentrate flow. On the other hand, rill erosion is not understood completely. The amounts of rill erosion are always underestimated. Rill Erosion correlate closely to gradient (Cerda & Garcia-Fayos, 1997; Fox & Bryan, 1999; Fu,et al., 2011; Clarke & Rendell, 2006), slope length (Gabriel, 1999; Yair, 2004), particle distribution (Gabriel, 1999), proportion of clay (Luk,1977; Bryan2000), rainfall intensity (Römkens et al. 2001), and land use (Dotterweich, 2008). However, the effect of micromorphology of mud rock surface, such as mud-cracks, could be studied in more details. This research aims to simulate rill development by hydraulic flume to observe the morphological change caused by rill/erosion process. Mudstone specimens sampled from the mudstone area of Long-Chi, southern Taiwan. The results show that: (1) The erosion pattern of mudstone slope can be divided into four steps: (a) inter-rill erosion, ( b) rill erosion, (c) rill development, (d) slope failure. (2) Slopes with mud-cracks caused 125% soil loss than smooth slopes. (3) Mud-cracks affect spatial distribution of rill development (4) The sediment concentration decreased sharply in the beginning of experiments, however increased due to rill development. This paper demonstrated such a rill development. 1: Department of Geography, National Taiwan University. E-mail:maxpossibilism0929@gmail.com

  3. Experimental study of the effect of grain sizes in a bimodal mixture on bed slope, bed texture, and the transition to washload

    NASA Astrophysics Data System (ADS)

    Hill, Kimberly M.; Gaffney, John; Baumgardner, Sarah; Wilcock, Peter; Paola, Chris

    2017-01-01

    When fine sediment is added to a coarse-grained system, the mobility and composition of the bed can change dramatically. We conducted a series of flume experiments to determine how the size of fine particles introduced to an active gravel bed influences the mobility and composition of the bed. We initiated our experiments using a constant water discharge and feed rate of gravel. After the system reached steady state, we doubled the feed rate by supplying a second sediment of equal or lesser size, creating size ratios from 1:1 to 1:150. As we decreased the relative size of the fine particles, the system transitioned among three regimes: (1) For particle size ratios close to one, the bed slope increased to transport the additional load of similar-sized particles. The bed surface remained planar and unchanged. (2) For intermediate particle size ratios, the bed slope decreased with the additional fines. The bed surface became patchy with regions of fine and coarse grains. (3) For the largest particle size ratios (the smallest fines), the bed slope remained relatively unchanged. The subsurface became clogged with fine sediment, but fine particles were not present in the surface layer. This third regime constitutes washload, defined by those fractions that do not affect bed-material transport conditions. Our results indicate washload should be defined in terms of three conditions: small grain size relative to that of the bed material, full suspension based on the Rouse number, and a small rate of fine sediment supply relative to transport capacity.

  4. Sediment budgets for glacier forefields (Pasterze & Obersulzbachkees, Upper Tauern, Austria) - quantification and temporal variability

    NASA Astrophysics Data System (ADS)

    Geilhausen, M.; Otto, J.-C.; Schrott, L.

    2009-04-01

    In the context of Global Climate Change, magnitudes and frequencies of geomorphic processes are subject to climatic controlled variations leading to significant modifications in land surface topography. A sediment budget approach identifies and quantifies sediment transfer processes and sediment storages and clarifies to what extent these system components are coupled to each other. The relationship between sediment storage volumes and present-day sediment transfer rates can contribute to both, an understanding of previous (postglacial) landscape development and the prediction of future topographic evolution. As retreating Alpine glaciers expose landscapes with partly unconsolidated, loose and potentially unstable landforms (e.g. moraine slopes), which are not in equilibrium with changing environmental conditions, glacier forefields react very sensible to climate change and therefore are susceptible to rapid topographic modification. Due to this accelerated, paraglacial geomorphodynamic, sediment budget studies on relative short time scales within glacier forefield landsystems are of specific scientific interest. Within the collaborative research project SedyMONT (Timescales of Sediment Dynamics, Climate and Topographic Change in Mountain Environments, ESF Top Europe programme), these issues are concerned by an individual project of the University of Salzburg. This paper points out the conceptual approach, aims and objectives of this ongoing research project and presents first results within the glacier forefield of the Pasterze. The methodical approach includes orthophoto-interpretation, geomorphological mapping, GIS analyses and a combination of field geophysics (ERT, GPR, RST) in order to identify sediment storages, sediment transfer processes as well as thickness, volumes and internal structures of sediment bodies. Present sediment fluxes will be monitored by a number of different measurements, including hydrological methods (valley bottom) and repeated

  5. The epistemological function of Hill's criteria.

    PubMed

    Bird, Alexander

    2011-10-01

    This article outlines an epistemological framework for understanding how Hill's criteria may aid us in establishing a causal hypothesis (A causes B) in an observational study. We consider Hill's criteria in turn with respect to their ability or otherwise to exclude alternative hypotheses (B causes A; there is a common cause of A and B; there is no causal connection between A and B). We may classify Hill's criteria according to which of the alternative hypotheses they are able to exclude, and also on the basis of whether they relate to (a) evidence from within observational study or (b) evidence independent of that study. It is noted that no criterion is able to exclude the common cause hypothesis in a systematic way. Observational studies are typically weaker than experimental studies, since the latter can systematically exclude competing hypotheses, whereas observational studies lack a systematic way of ruling out the common cause hypothesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Variability of Sediment Removal in a Semiarid Watershed

    NASA Astrophysics Data System (ADS)

    Graf, William L.

    1983-06-01

    Field and documentary data from Walnut Gulch Watershed, an instrumented semiarid drainage basin of approximately 150 km2 (57 mi2) in southeastern Arizona, show that 83% of the alluvium removed from the basin during a 15-year erosion episode beginning about 1930 was excavated from the highest-order stream. The amount of alluvium removed in the erosion episode would have been equal to a covering of about 4 cm (1.6 in) over the entire basin. The rate of sediment removal during the erosion episode was 18 times greater than the rate of present channel sediment transport. Production of sediment from slopes and channel throughput at present rates are approximately equal, and refilling will not occur under present conditions. The channel forms left by the massive evacuation of sediment impose controls on the spatial distribution of tractive force and total stream power that make renewed storage of sediment likely in only a few restricted locations. Modern instrumented records of a decade or more provide an inadequate perspective on long-term sediment movement.

  7. Analysis of the efficacy and cost-effectiveness of best management practices for controlling sediment yield: A case study of the Joumine watershed, Tunisia.

    PubMed

    Mtibaa, Slim; Hotta, Norifumi; Irie, Mitsuteru

    2018-03-01

    Soil erosion can be reduced through the strategic selection and placement of best management practices (BMPs) in critical source areas (CSAs). In the present study, the Soil Water Assessment Tool (SWAT) model was used to identify CSAs and investigate the effectiveness of different BMPs in reducing sediment yield in the Joumine watershed, an agricultural river catchment located in northern Tunisia. A cost-benefit analysis (CBA) was used to evaluate the cost-effectiveness of different BMP scenarios. The objective of the present study was to determine the most cost-effective management scenario for controlling sediment yield. The model performance for the simulation of streamflow and sediment yield at the outlet of the Joumine watershed was good and satisfactory, respectively. The model indicated that most of the sediment was originated from the cultivated upland area. About 34% of the catchment area consisted of CSAs that were affected by high to very high soil erosion risk (sediment yield >10t/ha/year). Contour ridges were found to be the most effective individual BMP in terms of sediment yield reduction. At the watershed level, implementing contour ridges in the CSAs reduced sediment yield by 59%. Combinations of BMP scenarios were more cost-effective than the contour ridges alone. Combining buffer strips (5-m width) with other BMPs depending on land slope (> 20% slope: conversion to olive orchards; 10-20% slope: contour ridges; 5-10% slope: grass strip cropping) was the most effective approach in terms of sediment yield reduction and economic benefits. This approach reduced sediment yield by 61.84% with a benefit/cost ratio of 1.61. Compared with the cost of dredging, BMPs were more cost-effective for reducing sediment loads to the Joumine reservoir, located downstream of the catchment. Our findings may contribute to ensure the sustainability of future conservation programs in Tunisian regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mapping geomorphic process domains to predict hillslope sediment size distribution using remotely-sensed data and field sampling, Inyo Creek, California

    NASA Astrophysics Data System (ADS)

    Leclere, S.; Sklar, L. S.; Genetti, J. R.

    2014-12-01

    The size distribution of sediments produced on hillslopes and supplied to channels depends on the geomorphic processes that weather, detach and transport rock fragments down slopes. Little in the way of theory or data is available to predict patterns in hillslope size distributions at the catchment scale from topographic and geologic maps. Here we use aerial imagery and a variety of remote sensing techniques to map and categorize geomorphic landscape units (GLUs) by inferred sediment production process regime, across the steep mountain catchment of Inyo Creek, eastern Sierra Nevada, California. We also use field measurements of particle size and local geomorphic attributes to test and refine GLU determinations. Across the 2 km of relief in this catchment, landcover varies from bare bedrock cliffs at higher elevations to vegetated, regolith-covered convex slopes at lower elevations. Hillslope gradient could provide a simple index of sediment production process, from rock spallation and landsliding at highest slopes, to tree-throw and other disturbance-driven soil production processes at lowest slopes. However, many other attributes are needed for a more robust predictive model, including elevation, curvature, aspect, drainage area, and color. We combine tools from ArcGIS, ERDAS Imagine and Envi with groundtruthing field work to find an optimal combination of attributes for defining sediment production GLUs. Key challenges include distinguishing: weathered from freshly eroded bedrock, boulders from intact bedrock, and landslide deposits from talus slopes. We take advantage of emerging technologies that provide new ways of conducting fieldwork and comparing field data to mapping solutions. In particular, cellphone GPS is approaching the accuracy of dedicated GPS systems and the ability to geo-reference photos simplifies field notes and increases accuracy of later map creation. However, the predictive power of the GLU mapping approach is limited by inherent uncertainty

  9. Dunes Streaming through Hills

    NASA Image and Video Library

    2014-02-26

    This dramatic image observed by NASA Mars Reconnaissance Orbiter shows dark rippled bodies of sand, sometimes in the form of dunes, streaming through Ganges Chasma. The floor of the canyon is covered by hills and mesas.

  10. Sediment and organic carbon transport in Cap de Creus canyon, Gulf of Lions (France)

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Puig, P.; Palanques, A.; Goni, M. A.; Miserocchi, S.; Langone, L.

    2009-04-01

    The off-shelf transport of particles in continental margins is responsible for much of the flux of organic matter (OM)and nutrients towards deep-sea ecosystems, playing a key role in the global oceanic biogeochemical cycles. Off-shelf sediment transport mechanism have been well described for many continental margins being triggered by a series of physical forcings such as tides, storms, internal waves, floods, earthquakes, as well as the combination of some of these processes, while topographic structures such as submarine canyons act as preferential sedimentary conduits toward deep ocean. However, the composition of the material supplied to the deep ocean during these events is still poorly understood since most studies have only investigated the magnitude of the down-slope fluxes or limited their analysis to the major bulk components. A special opportunity to characterize the biogeochemical composition of the off-shelf export in the Gulf of Lions (GoL) margin was provided during the winter 2004-2005, when an exceptional dense water cascading event occurred. Dense water overflowing off the shelf in the GoL has been recently recognized as one of the main process affecting particulate shelf-to-slope exchange in northwestern Mediterranean Sea. During the 2004-2005 cascading event, moored instruments were deployed at the Cap de Creus (CdC) canyon head to monitor the physical parameters and to characterize the temporal variability of the exported material. Post-cascading sediment cores were collected along the sediment dispersal system to trace the sediment transport pathway. In this study we developed a source tracing method using elemental compositions, alkaline CuO reaction products (lignin, cutin, lipids, hydroxy benzenes, proteins, lipids, and polysaccharides products), biogenic silica, carbon stable isotope composition, radiocarbon measurements, and grain size as a fingerprint for each sample. The aforementioned analyses were carried out on both sediment trap and

  11. Three depositional states and sedimentary processes of the western Taiwan foreland basin system

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Jung; Wu, Pei-Jen; Yu, Ho-Shing

    2010-05-01

    The western Taiwan foreland basin formed during the Early Pliocene as the flexural response to the loading of Taiwan orogen on the Eurasian plate. What makes Taiwan interesting is the oblique collision, which allows the foreland basin to be seen at different stages in its evolution at the present day. Due to oblique arc-continent collision from north to south, the western Taiwan foreland basin has evolved into three distinct subbasins: an over-filled basin proximal to the Taiwan orogen, mainly distributed in the Western Foothills and Coastal Plain provinces, a filled basin occupying the shallow Taiwan Strait continental shelf west of the Taiwan orogen and an under-filled basin distal to the Taiwan orogen in the deep marine Kaoping Slope offshore southwest Taiwan, respectively. The over-filled depositional phase is dominated by fluvial environments across the structurally controlled piggy-back basins. The filled depositional state in the Taiwan Strait is characterized by shallow marine environments and is filled by Pliocene-Quaternary sediments up to 4,000 m thick derived from the Taiwan orogen with an asymmetrical and wedge-shaped cross section. The under-filled depositional state is characteristic of deep marine environments in the wedge-top basins accompanied by active structures of thrust faults and mud diapers. Sediments derived from the Taiwan orogen have progressively filled the western Taiwan foreland basin across and along the orogen. Sediment dispersal model suggests that orogenic sediments derived from oblique dischronous collisional highlands are transported in two different ways. Transport of fluvial and shallow marine sediments is perpendicular to hill-slope and across-strike in the fluvial and shallow marine environments proximal to the orogen. Fine-grained sediments mainly longitudinally transported into the deep marine environments distal to the orogen. The present sedimentary processes in the over-filled basin on land are dominated by fluvial

  12. The clay mineral and Sr-Nd isotopic composition for fine-grained fraction of sediments from northwestern South China Sea: implications for sediment provenance

    NASA Astrophysics Data System (ADS)

    Cai, G.

    2013-12-01

    *Guanqiang Cai caiguanqiang@sina.com Guangzhou Marine Geological Survey, Guangzhou, 510760, P.R. China As the largest marginal sea in the western pacific, the South China Sea (SCS) receives large amount of terrigenous material annually through numerous rivers from surrounding continents and islands, which make it as the good place for the study of source to sink process. Yet few studies put emphasis on the northwestern continental shelf and slope in the SCS, even though most of the detrital materials derived from the Red River and Hainan Island are deposited in this area, and northwestern shelf plays a significant role in directly linking the South China, the Indochina and the South China Sea and thus controlling the source to sink process of terrestrial sediment. We presented the clay mineral and Sr-Nd isotopic composition of fine-grained fraction for sediments from northwestern SCS, in order to identify sediment source and transportation. The results show that the clay mineral of northwestern SCS sediments are mainly illite (30%~59%), smectite (20%~40%) and kaolinite (8%~35%), with minor chlorite. The illite chemical index varies between 0.19 and 0.75 with an average of 0.49, indicating an intensive hydrolysis in the source region. The 87Sr/86Sr ratios of sediments range from 0.716288 to 0.734416 (average of 0.724659), and ɛ Nd(0) values range from -10.31 to -11.62 (average of -10.93), which suggest that the source rocks of these sediments are derived from continental crust. The Hainan Island is an important source for sediments deposited in the nearshore and western shelf, especially for illite, kaolinite and smectite clay minerals. Furthermore, the relatively high contents of kaolinite and smectite in sediments from eastern shelf and southern slope of Hainan Island are also controlled by the supply of terrigenous materials from Hainan, which cannot be resulted from sedimentary differentiation of the Pearl and Red river sediments. And the correlation analysis

  13. How Connecting Sediment Transport Between Environments Solves First-Order Questions Regarding Construction of the Land- and Seascape Recorded by the Permian Brushy Canyon Fm., West Texas, USA

    NASA Astrophysics Data System (ADS)

    Mohrig, D. C.; Ustipak, K.

    2016-12-01

    Exposures in the Guadalupe and Delaware mountains together with well logs and core from the Delaware Basin capture a system-wide picture of the stratigraphy defining the terrestrial, shallow marine, basin slope and basin floor environments associated with the Permian Brushy Canyon Formation. Patterns of erosion and styles of deposition characterizing any one of these environments cannot be fully understood without explicit consideration of sediment transport in the adjacent environments. Properties of an inherited basin margin and slope are particularly important to unraveling the transport histories in the linked terrestrial - to - deep marine environments defining the Brushy Canyon Fm. A one-dimensional turbidity current model will be used to show that the inherited submarine slope of about six degrees is steep enough that all sand-transporting currents are erosional down its length. This slope segment detaches the terrestrial and shallow marine environments from the deeper marine environments and decreases the potential for sediment accumulation in the former. All sediment transported to the brink of the basin slope is efficiently moved to deeper water, promoting a tendency for very little sediment to be preserved in the terrestrial environment; a property of the Brushy Canyon system that has spurred on considerable debate and speculation amongst geoscientists studying the formation. The steep inherited slope and its ability to generate erosional sandy turbidity currents also provides an explanation for the high relative fraction of thin-bedded, mud-rich deposits that are present in the most proximal deep marine setting. Again, a one-dimensional turbidity current model is used to show that only very dilute, muddy currents are expected to accumulate in significant quantity at this position in the long profile of the system. Coarser sediment load is confined to and efficiently transported through erosionally based channels onto the basin floor. Finally, the

  14. Home page of Hill Air Force Base

    Science.gov Websites

    ; -- Victor Me... Twitter Logo He may only have one arm, but the youth sports director at #HillAFB doesn't let story on controlled burns at #HillAFB. The next one will be mid-June when firefighters will torch the Motorcycle Rodeo 4th Annual Motorcycle Rodeo It's time to ride 4th Annual Motorcycle Rodeo One arm, no sweat

  15. Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany

    NASA Astrophysics Data System (ADS)

    Schrott, Lothar; Hufschmidt, Gabi; Hankammer, Martin; Hoffmann, Thomas; Dikau, Richard

    2003-09-01

    Spatial patterns of sediment storage types and associated volumes using a novel approach for quantifying valley fill deposits are presented for a small alpine catchment (17 km 2) in the Bavarian Alps. The different sediment storage types were analysed with respect to geomorphic coupling and sediment flux activity. The most landforms in the valley in terms of surface area were found to be talus slopes (sheets and cones) followed by rockfall deposits and alluvial fans and plains. More than two-thirds of the talus slopes are relict landforms, completely decoupled from the geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections, seismic refraction, and GIS modelling. A total of, 66 seismic refraction profiles were carried out throughout the valley for a more precise determination of sediment thicknesses and to check the bedrock data generated from geomorphometric analysis. We calculated the overall sediment volume of the valley fill deposits to be 0.07 km 3. This corresponds to a mean sediment thickness of 23.3 m. The seismic refraction data showed that large floodplains and sedimentation areas, which have been developed through damming effects from large rockfalls, are in general characterised by shallow sediment thicknesses (<20 m). By contrast, the thickness of several talus slopes is more than twice as much. For some locations (e.g., narrow sections of valley), the polynomial-generated cross sections resulted in overestimations of up to one order of magnitude; whereas in sections with a moderate valley shape, the modelled cross sections are in good accordance with the obtained seismic data. For the quantification of valley fill deposits, a combined application of bedrock data derived from polynomials and geophysical prospecting is highly recommended.

  16. Channel responses to varying sediment input: A flume experiment modeled after Redwood Creek, California

    USGS Publications Warehouse

    Madej, Mary Ann; Sutherland, D.G.; Lisle, T.E.; Pryor, B.

    2009-01-01

    At the reach scale, a channel adjusts to sediment supply and flow through mutual interactions among channel form, bed particle size, and flow dynamics that govern river bed mobility. Sediment can impair the beneficial uses of a river, but the timescales for studying recovery following high sediment loading in the field setting make flume experiments appealing. We use a flume experiment, coupled with field measurements in a gravel-bed river, to explore sediment transport, storage, and mobility relations under various sediment supply conditions. Our flume experiment modeled adjustments of channel morphology, slope, and armoring in a gravel-bed channel. Under moderate sediment increases, channel bed elevation increased and sediment output increased, but channel planform remained similar to pre-feed conditions. During the following degradational cycle, most of the excess sediment was evacuated from the flume and the bed became armored. Under high sediment feed, channel bed elevation increased, the bed became smoother, mid-channel bars and bedload sheets formed, and water surface slope increased. Concurrently, output increased and became more poorly sorted. During the last degradational cycle, the channel became armored and channel incision ceased before all excess sediment was removed. Selective transport of finer material was evident throughout the aggradational cycles and became more pronounced during degradational cycles as the bed became armored. Our flume results of changes in bed elevation, sediment storage, channel morphology, and bed texture parallel those from field surveys of Redwood Creek, northern California, which has exhibited channel bed degradation for 30??years following a large aggradation event in the 1970s. The flume experiment suggested that channel recovery in terms of reestablishing a specific morphology may not occur, but the channel may return to a state of balancing sediment supply and transport capacity.

  17. Using Zircon Geochronology to Unravel the History of the Naga Hills Ophiolite

    NASA Astrophysics Data System (ADS)

    Roeder, T.; Aitchison, J. C.; Clarke, G. L.; Ireland, T. R.; Ao, A.; Bhowmik, S. K.

    2014-12-01

    Outcrops of the Naga Hills Ophiolite (NHO), a possible eastern extension of the ophiolitic belt running along the India-Asia suture, in Northeast India include a full suite of ophiolitic rocks. The ophiolite has been dated Upper Jurassic based on radiolarian studies of the unit (Baxter et al., 2011) but details of its emplacement onto the Indian margin have not been the subject of detailed investigation. Conglomerates of the Phokphur Formation unconformably overlie an eroded surface on top of dismembered ophiolite fragments and include sediments sourced from both the ophiolite and the margin of the Indian subcontinent. Notably no Asian margin-derived detritus is recognised (similar to the Liuqu conglomerates of Tibet (Davis et al., 2002)). Thus, a detailed study of the Phokphur sediments can produce valuable details of the NHO history, including constraining the timing of ophiolite emplacement. Studies of detrital sandstone petrography confirm a recycled orogen provenance for the Phokphur Formation and thus serve as validation of the methods of Dickinson and Suczek (1979) and Garzanti et al. (2007). Detrital zircon data provides further insight as to the age of source rocks of Phokphur sediments and help to further constrain the timing of ophiolite emplacement. We present results of sedimentary and detrital zircon geochronology analyses of Phokphur sediments from outcrops near the villages of Salumi and Wazeho as a contribution to furthering research on aspects of the India-Asia collision. Baxter, A.T., et al. 2011. Upper Jurassic radiolarians from the Naga Ophiolite, Nagaland, northeast India. Gondwana Research, 20: 638-644. Davis, A.M., et al. 2002. Paleogene island arc collision-related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sedimentary Geology, 150: 247-273. Dickinson, W.R. and Suczek, C.A., 1979. Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull., 63, 2164-2182, (1979). Garzanti, E., et al., 2007. Orogenic belts and orogenic

  18. Sediment sorting at a side channel bifurcation

    NASA Astrophysics Data System (ADS)

    van Denderen, Pepijn; Schielen, Ralph; Hulscher, Suzanne

    2017-04-01

    Side channels have been constructed to reduce the flood risk and to increase the ecological value of the river. In various Dutch side channels large aggradation in these channels occurred after construction. Measurements show that the grain size of the deposited sediment in the side channel is smaller than the grain size found on the bed of the main channel. This suggest that sorting occurs at the bifurcation of the side channel. The objective is to reproduce with a 2D morphological model the fining of the bed in the side channel and to study the effect of the sediment sorting on morphodynamic development of the side channel. We use a 2D Delft3D model with two sediment fractions. The first fraction corresponds with the grain size that can be found on the bed of the main channel and the second fraction corresponds with the grain size found in the side channel. With the numerical model we compute several side channel configurations in which we vary the length and the width of the side channel, and the curvature of the upstream channel. From these computations we can derive the equilibrium state and the time scale of the morphodynamic development of the side channel. Preliminary results show that even when a simple sediment transport relation is used, like Engelund & Hansen, more fine sediment enters the side channel than coarse sediment. This is as expected, and is probably related to the bed slope effects which are a function of the Shields parameter. It is expected that by adding a sill at the entrance of the side channel the slope effect increases. This might reduce the amount of coarse sediment which enters the side channel even more. It is unclear whether the model used is able to reproduce the effect of such a sill correctly as modelling a sill and reproducing the correct hydrodynamic and morphodynamic behaviour is not straightforward in a 2D model. Acknowledgements: This research is funded by STW, part of the Dutch Organization for Scientific Research under

  19. Modeling subglacial sediment discharge in 1-dimension: comparison with measurments and implications for glacial retreat

    NASA Astrophysics Data System (ADS)

    Delaney, I. A.; Werder, M.; Farinotti, D.

    2017-12-01

    In recent decades increased sedimentation rates have been observed in reservoirs downstream of some retreating glaciers. This material either originates from slopes recently exposed by glacier retreat and no longer stabilized by ice, or subglacially, where pressurized melt water transports sediments from the glacier bed. Some evidence suggests that recently exposed periglacial areas can stablize relatively quickly and in some catchments provides a smaller precentage of the total sediment compared to the subglacial environment. As a result, in order predict and forecast sediment yield from glaciated catchments as glaciers thin and thier hydrology evolves, a subglacial sediment transport model must be implemented. Here a simple 1-dimensional glacio-hydraulic model uses the Darcy-Weissbach relationship to determine shear-stress of presurized water on the glacier bed. This is coupled with a sediment transport relationship to determine quantity of discharged material from the glacier snout. Several tuning factors allow calibration and the model to reproduces processes known to occur subglacially, including seasonal evolution of sediment expulsion and deposition of sediment on adverse slopes of overdeepenings. To asses the model's application to real glaciers, sediment flux data has been collected from Gornergletscher, Aletschgletscher and Griesgletscher in the Swiss Alps over time-scales of up to decades. By calibrating to these data, the skill of the model in recreating sediment trends and volumes is assesed. The outputs capture annual erosion quanities relatively well, however, challenges exist in capturing inter-annual variations in sediment discharge. Many of the model's short comings relate to caputuring the spatial distribution of sediment throughout the glacier bed, which is particularing difficult in 1-dimension. However, this work suggests that a simple models can be used to predict subglacial sediment transport with reasonable ability. Additionally, further

  20. The Saguenay Fjord, Quebec, Canada: Integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment

    USGS Publications Warehouse

    Urgeles, R.; Locat, J.; Lee, H.J.; Martin, F.

    2002-01-01

    In 1996 a major flood occurred in the Saguenay region, Quebec, Canada, delivering several km3 of sediment to the Saguenay Fjord. Such sediments covered large areas of the, until then, largely contaminated fjord bottom, thus providing a natural capping layer. Recent swath bathymetry data have also shown that sediment landslides are widely present in the upper section of the Saguenay Fjord, and therefore, should a new event occur, it would probably expose the old contaminated sediments. Landslides in the Upper Saguenay Fjord are most probably due to earthquakes given its proximity to the Charlevoix seismic region and to that of the 1988 Saguenay earthquake. In consequence, this study tries to characterize the permanent ground deformations induced by different earthquake scenarios from which shallow sediment landslides could be triggered. The study follows a Newmark analysis in which, firstly, the seismic slope performance is assessed, secondly, the seismic hazard analyzed, and finally an evaluation of the seismic landslide hazard is made. The study is based on slope gradients obtained from EM1000 multibeam bathymetry data as well as water content and undrained shear strength measurements made in box and gravity cores. Ground motions integrating local site conditions were simulated using synthetic time histories. The study assumes the region of the 1988 Saguenay earthquake as the most likely source area for earthquakes capable of inducing large ground motions in the Upper Saguenay region. Accordingly, we have analyzed several shaking intensities to deduce that generalized sediment displacements will begin to occur when moment magnitudes exceed 6. Major displacements, failure, and subsequent landslides could occur only from earthquake moment magnitudes exceeding 6.75. ?? 2002 Elsevier Science B.V. All rights reserved.

  1. Syn-eruptive, soft-sediment deformation of dilute pyroclastic density current deposits: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, È.; Müller, S. K.; Kueppers, U.; Dingwell, D. B.

    2014-12-01

    Soft-sediment deformation produces intriguing sedimentary structures and can occur in diverse environments and from a variety of triggers. From the observation of such structures and their interpretation in terms of trigger mechanisms, valuable information can be extracted about former conditions. Here we document examples of syn-eruptive deformation in dilute pyroclastic density current deposits. Outcrops from 6 different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Ubehebe craters (USA), Tungurahua (Ecuador), Soufrière Hills (Montserrat), Laacher See (Germany), Tower Hill and Purrumbete lake (both Australia). Isolated slumps as well as sinking pseudonodules are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. Isolated, cm-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. The occurrence of degassing pipes together with basal intrusive dikes suggest fluidization during flow stages, and can facilitate the development of Kelvin-Helmholtz structures. The occurrence at the base of flow units of injection dikes in some outcrops compared with suction-driven local uplifts in others indicates the role of dynamic pore pressure. Variations of the latter are possibly related to local changes between depletive and accumulative dynamics of flows. Ballistic impacts can trigger unconventional sags producing local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called "chute and pool" structures. Finally

  2. Episodic Sediment Failure in Northern Flemish Pass, Eastern Canadian Margin: Interplay of Seismicity, Contour Current Winnowing, and Excess Pore Pressures

    NASA Astrophysics Data System (ADS)

    Piper, D.

    2015-12-01

    Episodic sediment failures are recognised on continental slopes around Flemish Pass and Orphan Basin from multibeam bathymetry, seismic reflection profiles and piston cores. Seismic stratigraphy is tied to published long cores with O-isotope data back to before MIS 6 and carbonate rich Heinrich layers in places produce marker reflections in high-resolution sparker profiles. Heinrich layers, radiocarbon dates and peaks in diatom abundance provide core chronology. Slope sedimentation was strongly influenced by the Labrador Current and the silty muds show architecture characteristic of contourites. Variation in Labrador Current strength is known from the sortable silt proxy over the past 125 ka. Large slope failures were mapped from seismic reflection profiles and their age estimated from seismic stratigraphy (3-5 ka resolution) and in some cases refined from cores (1-3 ka resolution). Large slope failures occurred apparently synchronously over margin lengths of 50-350 km. Such failures were earthquake triggered: other mechanisms for producing laterally extensive synchronous failure do not apply. Triaxial shear measurements show a Su/σ' ratio of typical slope sediment of 0.48, implying considerable stability. However, some silty muds have Atterberg limits that suggest susceptibility to liquefaction under cyclic loading, particularly in Holocene deposits and by analogy those of past full interglacials. Basal failure planes of some large failures correspond with either the last interglacial or the MIS 6 glacial maximum. Comparison with seismological models suggests that the observed slope failures represent earthquakes ranging from Mw ~5.6 to ~7.6. Mean recurrence interval of M = 7 earthquakes at any point on the margin is estimated at 30 ka from seismological models and 40 ka from the sediment failure record. In northern Flemish Pass, a spatial cluster of several failures over 30 ka preceded by a long interval with no failures suggests that some other mechanism has

  3. A giant, submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands (South China Sea)

    NASA Astrophysics Data System (ADS)

    Li, Wei; Alves, Tiago M.; Wu, Shiguo; Rebesco, Michele; Zhao, Fang; Mi, Lijun; Ma, Benjun

    2016-10-01

    A giant submarine creep zone exceeding 800 km2 on the continental slope offshore the Dongsha Islands, South China Sea, is investigated using bathymetric and 3D seismic data tied to borehole information. The submarine creep zone is identified as a wide area of seafloor undulations with ridges and troughs. The troughs form NW- and WNW-trending elongated depressions separating distinct seafloor ridges, which are parallel or sub-parallel to the continental slope. The troughs are 0.8-4.7 km-long and 0.4 to 2.1 km-wide. The ridges have wavelengths of 1-4 km and vertical relief of 10-30 m. Slope strata are characterised by the presence of vertically stacked ridges and troughs at different stratigraphic depths, but remaining relatively stationary in their position. The interpreted ridges and troughs are associated with large-scale submarine creep, and the troughs can be divided into three types based on their different internal characters and formation processes. The large-scale listric faults trending downslope below MTD 1 and horizon T0 may be the potential glide planes for the submarine creep movement. High sedimentation rates, local fault activity and the frequent earthquakes recorded on the margin are considered as the main factors controlling the formation of this giant submarine creep zone. Our results are important to the understanding of sediment instability on continental slopes as: a) the interpreted submarine creep is young, or even active at present, and b) areas of creeping may evolve into large-scale slope instabilities, as recorded by similar large-scale events in the past.

  4. Sedimentary Signatures of Submarine Earthquakes: Deciphering the Extent of Sediment Remobilization from the 2011 Tohoku Earthquake and Tsunami and 2010 Haiti Earthquake

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Seeber, L.; Moernaut, J.; Strasser, M.; Kanamatsu, T.; Ikehara, K.; Bopp, R.; Mustaque, S.; Usami, K.; Schwestermann, T.; Kioka, A.; Moore, L. M.

    2017-12-01

    The 2004 Sumatra-Andaman Mw9.3 and the 2011 Tohoku (Japan) Mw9.0 earthquakes and tsunamis were huge geological events with major societal consequences. Both were along subduction boundaries and ruptured portions of these boundaries that had been deemed incapable of such events. Submarine strike-slip earthquakes, such as the 2010 Mw7.0 in Haiti, are smaller but may be closer to population centers and can be similarly catastrophic. Both classes of earthquakes remobilize sediment and leave distinct signatures in the geologic record by a wide range of processes that depends on both environment and earthquake characteristics. Understanding them has the potential of greatly expanding the record of past earthquakes, which is critical for geohazard analysis. Recent events offer precious ground truth about the earthquakes and short-lived radioisotopes offer invaluable tools to identify sediments they remobilized. In the 2011 Mw9 Japan earthquake they document the spatial extent of remobilized sediment from water depths of 626m in the forearc slope to trench depths of 8000m. Subbottom profiles, multibeam bathymetry and 40 piston cores collected by the R/V Natsushima and R/V Sonne expeditions to the Japan Trench document multiple turbidites and high-density flows. Core tops enriched in xs210Pb,137Cs and 134Cs reveal sediment deposited by the 2011 Tohoku earthquake and tsunami. The thickest deposits (2m) were documented on a mid-slope terrace and trench (4000-8000m). Sediment was deposited on some terraces (600-3000m), but shed from the steep forearc slope (3000-4000m). The 2010 Haiti mainshock ruptured along the southern flank of Canal du Sud and triggered multiple nearshore sediment failures, generated turbidity currents and stirred fine sediment into suspension throughout this basin. A tsunami was modeled to stem from both sediment failures and tectonics. Remobilized sediment was tracked with short-lived radioisotopes from the nearshore, slope, in fault basins including the

  5. Influence of the sediment transport threshold on a river network (Invited)

    NASA Astrophysics Data System (ADS)

    Devauchelle, O.; Petroff, A.; Seybold, H. F.; Rothman, D.

    2010-12-01

    In order to transport sediment as bedload, a river must impose a sufficient shear stress on its bed. Conversely, a river far above the threshold for bedload would quickly erode its bed and decrease its slope, thus returning towards the threshold. In 1961, F. M. Henderson first used this hypothesis to derive theoretically Lacey's law (which states that the width of a river scales with the square root of its discharge). His reasoning can be extended to demonstrate that, under similar conditions, the product of the water discharge with the square of its slope is constant (Q S2 = const.), the value of this constant depending on the sediment properties. The steephead ravines of the Florida panhandle, formed by seepage erosion in a homogeneous sand plateau, fall remarkably close to Henderson's equilibrium. Thanks to the uniformity of the sediment and to the steady input of groundwater, the hundreds of streams which drain this landscape are ideal field cases to understand how the quasi-equilibrium hypothesis constrains the network structure. Indeed, both Lacey's equation and the above discharge-slope relation are satisfied in the field. The slope-discharge relation Q S2 = const. is a boundary condition for both the aquifer and the landscape itself, as it relates the flux of water drained by the streams to their longitudinal profile. A direct illustration of this coupling is the shape of the longitudinal profile of rivers in the neighborhood of their springs, which we predict theoretically. The boundary condition Q S2 = const. also holds further downstream, and raises delicate theoretical questions concerning the architecture of the entire network. In particular, we address the limitation of the distance between a spring and the first confluence of a stream.

  6. Effects of land disturbance on runoff and sediment yield after natural rainfall events in southwestern China.

    PubMed

    Guo, Xiaomeng; Li, Tianyang; He, Binghui; He, Xiaorong; Yao, Yun

    2017-04-01

    Severe soil erosion occurs in southwestern China owing to the large expanses of urbanization and sloping land. This field monitoring study was conducted to record the rainfall events, runoff, and sediment yield in 20-, 40-, and 60-m plots under conditions of artificial disturbance or natural restoration in the purple soil area of southwestern China. The study took place during the rainy season, and the plots were situated on a 15° slope. The results showed that rainstorms and heavy rainstorms generated runoff and sediment yield. Rainfall intensity had a significantly positive power relationship with runoff rate and sediment yield rate in artificially disturbed plots but not in naturally restored plots. Plot length had a significant effect on runoff rate under artificial disturbance but not natural restoration. Within the same land disturbance category, there was no significant effect of plot length on sediment yield rate but there was a significant effect on sediment concentration. Overall, runoff rate, sediment yield rate, and sediment concentration showed remarkable effects of land disturbance across all plot lengths: naturally restored plots had 62.8-77.5% less runoff, 95.1-96.3% less sediment yield, and 63.1-73.5% lower sediment concentration than artificially disturbed plots. The relationship between runoff rate and sediment rate under the different land disturbances could be described by an exponential function. The results not only demonstrate the effectiveness of natural restoration for controlling runoff and sediment yield but also provide useful information for the design of field studies, taking into consideration the complexity of terrestrial systems.

  7. Effects of Chinese Deforestation and Reforestation Policies on Sediment Sourcing in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Henck Schmidt, A. C.; Bierman, P. R.; Sosa-Gonzalez, V.; Neilson, T. B.; Singleton, A.; Qiu, Y.; Bower, J.; Rood, D. H.

    2015-12-01

    Widespread deforestation from the 1960s through 1980s, blamed for catastrophic flooding in the lower Yangtze in 1998, prompted bans on logging and agriculture on steep slopes in western China. However, despite reports of extensive erosion resulting from the deforestation, sediment yield data show no corresponding increase during this time. Prior work suggested that if the deforestation increased erosion, the sediment is stored in floodplains, terraces, and alluvial fans throughout the region. In order to test this hypothesis, we sampled in-channel and overbank sediments at 38 locations, 19 of which are co-located with Chinese hydrology stations with at least five years of daily sediment yield data. Sediments were analyzed for meteoric and in situ 10-Be, unsupported 210-Pb, and 137-Cs. Unsupported 210-Pb activity is uniformly low throughout the study area and 137-Cs was found only in a few high-altitude, low-relief watersheds. Modern sediment yields, determined from Chinese data, are higher than long term in situ 10-Be-derived erosion rates in all but four watersheds, where we hypothesize sediment is being stored in alluvial features and agricultural terraces or that stochastic events such as landslides were not captured in the sediment yield data. Overall there is no relationship between topographic or climatic metrics, including slope, relief, or mean annual rainfall for any of the four isotopes except for a weak but statistically significant negative relationship between in situ 10-Be derived erosion rate and rainfall. Although paired in-channel and overbank samples are statistically indistinguishable for meteoric and in situ 10-Be, the overbank samples have lower unsupported 210-Pb activity, suggesting deeper sediment sourcing during the monsoon. In summary, in addition to suggesting differences between wet- and dry-season sediment sources, preliminary results support previous hypotheses regarding increased contemporary erosion and low hillslope

  8. Quantification of Gravel Rural Road Sediment Production

    NASA Astrophysics Data System (ADS)

    Silliman, B. A.; Myers Toman, E.

    2014-12-01

    Unbound rural roads are thought to be one of the largest anthropogenic sources of sediment reaching stream channels in small watersheds. This sediment deposition can reduce water quality in the streams negatively impacting aquatic habitat as well as impacting municipal drinking water sources. These roads are thought to see an increase in construction and use in southeast Ohio due to the expansion of shale gas development in the region. This study set out to quantify the amount of sediment these rural roads are able to produce. A controlled rain event of 12.7 millimeters of rain over a half hour period was used to drive sediment production over a 0.03 kilometer section of gravel rural road. These 8 segments varied in many characteristics and produced from 2.0 to 8.4 kilograms of sediment per 0.03 kilometers of road with the average production over the 8 segments being 5.5 kilograms of sediment. Sediment production was not strongly correlated with road segment slope but traffic was found to increase sediment production from 1.1 to 3.9 times as much sediment after traffic use. These results will help inform watershed scale sediment budgeting, and inform best management practices for road maintenance and construction. This study also adds to the understanding of the impacts of rural road use and construction associated with the changing land use from agricultural to natural gas extraction.

  9. Quantum theory of rotational isomerism and Hill equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugulava, A.; Toklikishvili, Z.; Chkhaidze, S.

    2012-06-15

    The process of rotational isomerism of linear triatomic molecules is described by the potential with two different-depth minima and one barrier between them. The corresponding quantum-mechanical equation is represented in the form that is a special case of the Hill equation. It is shown that the Hill-Schroedinger equation has a Klein's quadratic group symmetry which, in its turn, contains three invariant subgroups. The presence of these subgroups makes it possible to create a picture of energy spectrum which depends on a parameter and has many merging and branch points. The parameter-dependent energy spectrum of the Hill-Schroedinger equation, like Mathieu-characteristics, containsmore » branch points from the left and from the right of the demarcation line. However, compared to the Mathieu-characteristics, in the Hill-Schroedinger equation spectrum the 'right' points are moved away even further for some distance that is the bigger, the bigger is the less deep well. The asymptotic wave functions of the Hill-Schroedinger equation for the energy values near the potential minimum contain two isolated sharp peaks indicating a possibility of the presence of two stable isomers. At high energy values near the potential maximum, the height of two peaks decreases, and between them there appear chaotic oscillations. This form of the wave functions corresponds to the process of isomerization.« less

  10. Evaluation of the efficiency of some sediment trapping methods after a Mediterranean forest fire.

    PubMed

    Fox, D M

    2011-02-01

    Forest fires are common in Mediterranean environments and may become increasingly more frequent as the climate changes. Destruction of the forest cover and litter layer leads to greater overland flow and increased erosion rates. The greatest risk occurs during the first rainstorms following a major fire, so local authorities must act quickly to put erosion control methods in place in order to avoid excessive post-fire sediment loads in river channels. Deciding on which methods to use requires accurate knowledge of their impact on sediment load and an estimate of their cost efficiency. The objective of this study was to evaluate the efficiency of Log Debris Dams (LDDs) and a sedimentation basin for their effectiveness in trapping sediments. Paired sub-catchments were studied to quantify the amount of sediments trapped in stream channels by a series of LDDs and a sedimentation basin. Cost efficiency was evaluated for each of the measures as a function of the cost per unit volume of sediments trapped. In addition, grain size analyses were performed to characterise the nature of the sediments trapped. A third sediment trapping method, Log Erosion Barriers (LEBs) was evaluated more superficially than the first two and conclusions regarding this method are tentative. LDDs trapped a mean volume of 1.57 m³ per unit (median=1.28 m³); mean LDD height was 105.4 cm (std. dev.=21.9 cm), and mean height of trapped sediments was only 50.0 cm (std. dev.=22.9 cm), showing that the traps were only half filled. Sediment height was limited by the presence of gaps between logs or branches that allowed runoff to flow through. Comparison of the textural characteristics of slope and trapped sediments showed distinct sorting: particles greater than 20mm were not mobilised from the slopes during the study period, sediments in the medium to coarse sand size fractions were trapped preferentially by the LDDs, and sediments in the sedimentation basin were enriched by clay and silt sized (< 0

  11. Immediate propagation of deglacial environmental change to turbidite systems along the Chilean continental slope

    NASA Astrophysics Data System (ADS)

    Bernhardt, Anne; Schwanghart, Wolfgang; Hebbeln, Dierk; Stuut, Jan-Berend; Strecker, Manfred

    2017-04-01

    Understanding how Earth-surface processes respond to past climatic perturbations is crucial for making informed predictions about future impacts of climate change on sediment fluxes. Sedimentary records provide the archives for inferring these processes but their interpretation is compromised by our incomplete understanding of how sediment-routing systems respond to millennial-scale climate cycles. We analyzed seven sediment cores recovered from turbidite depositional sites along the continental slope of the Chile convergent margin. These depositional systems represent the ultimate sedimentary archives before sediment gets recycled during subduction processes and provide relatively continuous and well-dated records. The study sites span a pronounced arid-to-humid gradient with variable topographic gradients and related connectivity of terrestrial and marine landscapes on the continental slope. This setting allowed us to study event-related depositional processes from the Last Glacial Maximum to present in different climatic and geomorphic settings. The turbidite record was quantified in terms of turbidite thickness and frequency. The three studied sites show a steep decline of turbidite deposition during deglaciation. High rates of sea-level rise significantly lag the decline in turbidite deposition by 3-6.5 kyrs. However, comparison to paleoclimate proxies shows that this spatio-temporal sedimentary pattern mirrors the deglacial humidity decrease and concomitant warming with little to no lag times. Our results suggest that the deglacial humidity decrease resulted in a decrease of fluvial sediment supply, which propagated rapidly through the highly connected systems into the marine sink in north-central Chile. In contrast, in south-central Chilean systems, connectivity between the Andean erosional zone and the fluvial transfer zone probably decreased abruptly by the deglaciation of piedmont lakes, resulting in a significant and rapid decrease of sediment supply to

  12. Assessment of Slope Stability of Various Cut Slopes with Effects of Weathering by Using Slope Stability Probability Classification (SSPC)

    NASA Astrophysics Data System (ADS)

    Ersöz, Timur; Topal, Tamer

    2017-04-01

    Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering

  13. Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Calder, E.S.; Cole, P.D.; Dade, W.B.; Druitt, T.H.; Hoblitt, R.P.; Huppert, H.E.; Ritchie, L.; Sparks, R.S.J.; Young, S.R.

    1999-01-01

    The Soufriere Hills Volcano on Montserrat has produced avalanche-like pyroclastic flows formed by collapse of the unstable lava dome or explosive activity. Pyroclastic flows associated with dome collapse generate overlying dilute surges which detach from and travel beyond their parent flows. The largest surges partially transform by rapid sedimentation into dense secondary pyroclastic flows that pose significant hazards to distal areas. Different kinds of pyroclastic density currents display contrasting mobilities indicated by ratios of total height of fall H, run-out distance L, area inundated A and volume transported V. Dome-collapse flow mobilities (characterised by either L/H or A/V 2/3) resemble those of terrestrial and extraterrestrial cold-rockfalls (Dade and Huppert, 1998). In contrast, fountain-fed pumice flows and fine-grained, secondary pyroclastic flows travel slower but, for comparable initial volumes and heights, can inundate greater areas.

  14. A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000-0 cal years BP

    NASA Astrophysics Data System (ADS)

    Jessen, Simon P.; Rasmussen, Tine L.; Nielsen, Tove; Solheim, Anders

    2010-05-01

    Data have been compiled from eleven sediment cores from 76° to 80°N on the western Svalbard slope. The cores are from water depths between 630 and 1880 m and show clear similarities in lithology and magnetic susceptibility. All cores penetrated into mass transported sediments from glacigenic debris flow events and turbidity flow events. The mass transport probably occurred when the ice reached the shelf edge. The deposits date between 24,080 ± 150 and 23,550 ± 185 calibrated (cal) years BP. The records also include laminated, fine grained sediments interpreted as deposits from sediment-laden meltwater plumes dated between 14,780 ± 220 and 14,300 ± 260 cal years BP. In Holocene sediments a diatom-rich fine grained layer dates 10,100 ± 150 to 9840 ± 200 cal years BP. The eleven cores have been stacked into one record with absolute age control from 35 AMS 14C dates. Together with oxygen isotope stratigraphy and contents of ice rafted detritus the stacked record provides a useful chronology tool for cores on the western Svalbard slope. Our study improves the age control of earlier well documented glacial events and shows that the maximum glacial state and the onset of the deglaciation both occurred 2500-3000 years earlier than previously reconstructed for the western Svalbard margin. The results indicate that during the last 30,000 years advance and retreat of the Svalbard-Barents Sea Ice Sheet was closely linked to the flow of Atlantic Water and Polar Water over the margin.

  15. 75 FR 63465 - Hill-Lake Gas Storage, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-137-000] Hill-Lake Gas Storage, LLC; Notice of Filing October 7, 2010. Take notice that on September 30, 2010, Hill-Lake Gas Storage, LLC (Hill-Lake) filed a revised Statement of Operating Conditions (SOC) for its Storage Services...

  16. Estuarine sediment transport by gravity-driven movement of the nepheloid layer, Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; McMullen, K.Y.; Williams, S.J.; Crocker, J.M.; Doran, E.F.

    2008-01-01

    Interpretation of sidescan-sonar imagery provides evidence that down-slope gravity-driven movement of the nepheloid layer constitutes an important mode of transporting sediment into the basins of north-central Long Island Sound, a major US East Coast estuary. In the Western Basin, this transport mechanism has formed dendritic drainage systems characterized by branching patterns of low backscatter on the seafloor that exceed 7.4 km in length and progressively widen down-slope, reaching widths of over 0.6 km at their southern distal ends. Although much smaller, dendritic patterns of similar morphology are also present in the northwestern part of the Central Basin. Because many contaminants display affinities for adsorption onto fine-grained sediments, and because the Sound is affected by seasonal hypoxia, mechanisms and dispersal pathways by which inorganic and organic sediments are remobilized and transported impact the eventual fate of the contaminants and environmental health of the estuary. 

  17. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    NASA Astrophysics Data System (ADS)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  18. Assessment of sediment sources throughout the proglacial area of a small Arctic catchment based on high-resolution digital elevation models

    NASA Astrophysics Data System (ADS)

    Kociuba, Waldemar

    2017-06-01

    The article presents calculations of quantitative modifications of the morphology of selected subsystems of a glacial valley through: (i) identification of the spatial distribution of important sources of sediment, (ii) assessment of the spatiotemporal variety of sediment volume and landform morphology, and (iii) assessment of the role of particular subsystems in sediment distribution. The study involved a comparison of the results of field measurements from 2010 to 2013 performed in the Scott Glacier catchment (10.1 km2) in NW Wedel Jarlsberg Land (Spitsbergen). The assessment of the landform surface changes was performed by means of a precise Terrestrial Laser Scanning (TLS) survey. The applied field and post-processing techniques for oblique laser scanning permitted the acquisition of digital elevation data at a resolution 0.01 m and density > 500 pt m- 2. This allowed the development of a detailed terrain model, and balancing spatial quantitative changes in six research test areas (10,000 m2) located within two subsystems of the catchment in a cascade arrangement. In the alluvial valley-floor subsystem, the survey covered: 1) the glacier terminus, 2) the intramarginal outwash plain, 3) the extramarginal braid-plain and 4) the alluvial fan, and in the slope subsystem: 5) the erosional-depositional slope in the gorge through terminal moraines, and 6) the solifluction slope. Three zones differing in terms of the spatiotemporal dynamics of geomorphic processes were distinguished within the two analysed valley subsystems. In the valley floor subsystem, these are: (i) the zone of basic supply (distribution throughout the melting season) and (ii) the redeposition zone (distribution particularly during floods), and in the slope subsystem: (iii) zone of periodical supply (distributed mainly in periods of increased precipitation and rapid increases in temperature in summer and during snow avalanches in winter). The glacier and the landforms of the channel and valley

  19. Slope-apron deposition in an ordovician arc-related setting: The Vuelta de Las Tolas Member (Suri Formation), Famatina Basin, northwest Argentina

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.

    1997-01-01

    The Ordovician Suri Formation is part of the infill of the Famatina Basin of northwest Argentina, which formed in an active setting along the western margin of early Paleozoic Gondwana. The lower part of this formation, the Vuelta de Las Tolas Member, records sedimentation on a slope apron formed in an intra-arc basin situated on a flooded continental arc platform. The coincidence of a thick Arenig-Llanvirn sedimentary succession and volcanic-plutonic arc rocks suggests an extensional or transtensional arc setting, and is consistent with evidence of an extensional regime within the volcanic arc in the northern Puna region. The studied stratigraphic sections consist of volcanic rocks and six sedimentary facies. The facies can be clustered into four facies associations. Association 1, composed of facies A (laminated siltstones and mudstones) and B (massive mudstones and siltstones), is interpreted to have accumulated from silty-muddy high-and low-density turbidity currents and highly fluid, silty debris flows, with subsequent reworking by bottom currents, and to a lesser extent, hemipelagic suspension in an open-slope setting. Facies association 2 is dominated by facies C (current-rippled siltstones) strata. These deposits are interpreted to record overbank sedimentation from fine-grained turbidity currents. Facies E (matrix-supported volcanic breccias) interbedded with andesitic lava units comprises facies association 3. Deposition was contemporaneous with subaqueous volcanic activity, and accumulated from cohesive debris flows in a coarse-grained wedge at the base of slope. Facies association 4 is typified by facies D (vitric fine-grained sandstones and siltstones) and F (channelized and graded volcanic conglomerates and breccias) deposits. These strata commonly display thinning-and fining-upward trends, indicating sedimentation from highly-concentrated volcaniclastic turbidity currents in a channelized system. The general characteristics of these deposits of fresh

  20. Modeling river discharge and sediment transport in the Wax Lake-Atchafalaya basin with remote sensing parametrization.

    NASA Astrophysics Data System (ADS)

    Simard, M.; Liu, K.; Denbina, M. W.; Jensen, D.; Rodriguez, E.; Liao, T. H.; Christensen, A.; Jones, C. E.; Twilley, R.; Lamb, M. P.; Thomas, N. A.

    2017-12-01

    Our goal is to estimate the fluxes of water and sediments throughout the Wax Lake-Atchafalaya basin. This was achieved by parametrization of a set of 1D (HEC-RAS) and 2D (DELFT3D) hydrology models with state of the art remote sensing measurements of water surface elevation, water surface slope and total suspended sediment (TSS) concentrations. The model implementations are spatially explicit, simulating river currents, lateral flows to distributaries and marshes, and spatial variations of sediment concentrations. Three remote sensing instruments were flown simultaneously to collect data over the Wax Lake-Atchafalaya basin, and along with in situ field data. A Riegl Lidar was used to measure water surface elevation and slope, while the UAVSAR L-band radar collected data in repeat-pass interferometric mode to measure water level change within adjacent marshes and islands. These data were collected several times as the tide rose and fell. AVRIS-NG instruments measured water surface reflectance spectra, used to estimate TSS. Bathymetry was obtained from sonar transects and water level changes were recorded by 19 water level pressure transducers. We used several Acoustic Doppler Current Profiler (ADCP) transects to estimate river discharge. The remotely sensed measurements of water surface slope were small ( 1cm/km) and varied slightly along the channel, especially at the confluence with bayous and the intra-coastal waterway. The slope also underwent significant changes during the tidal cycle. Lateral fluxes to island marshes were mainly observed by UAVSAR close to the distributaries. The extensive remote sensing measurements showed significant disparity with the hydrology model outputs. Observed variations in water surface slopes were unmatched by the model and tidal wave propagation was much faster than gauge measurements. The slope variations were compensated for in the models by tuning local lateral fluxes, bathymetry and riverbed friction. Overall, the simpler 1D

  1. North Slope (Wahluke Slope) expedited response action cleanup plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part ofmore » the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.« less

  2. RFID tags as a direct tracer for water and sediment dynamics

    NASA Astrophysics Data System (ADS)

    Sommerer, Erik; Plate, Simon; Güntner, Andreas

    2014-05-01

    RFID (Radio Frequency IDentification) is a wireless automatic identification system to track objects with widespread application in industrial operations, but also selected applications in ecological research (animal tracking) and for hydro-sedimentological studies (sediment transport with RFID tags embedded in bedload material). In this study, for the first time, we test and apply RFID tags as a direct tracer to track water pathways, erosion patterns and sediment transport on the surface at the hillslope and headwater scale. The RFID system used here consists of tags with a size of 12 x 2 mm and a combination of mobile and stationary antennas. The transport pathways and velocities of the RFID tags can be individually assessed due to their unique identification numbers. The study area is a badland of easily erodible marls and carbonates located in the Villacarli catchment (42 km²) in the Central Spanish Pyrenees. The badlands have been identified as one of the main sediment sources for siltation of the downstream Barasona Reservoir. More than 700 tags were placed in different terrain units using three experimental setups, including lab experiments: (i) intensive feasibility tests ranging from laboratory flume experiments to tracer studies under natural channel and slope conditions to compare the transport of RFID tags relative to colored particles of the natural sediment; (ii) several transects across the badland to investigate sediment transfer characteristics on different morphological units (i.e. channel, rills, slopes); (iii) a raster of 99 RFID tags covering a slope flank with vegetated and unvegetated parts to reveal the influence of vegetation to erosion and transport processes. The detection of transported tags was carried out with a mobile antenna system to map the spatial distribution of tags after selected rainfall events and with two stationary antennas in channel cross-sections for time-continuous observation of tag passage. From the observations, we

  3. Improving understanding of the underlying physical process of sediment wash-off from urban road surfaces

    NASA Astrophysics Data System (ADS)

    Muthusamy, Manoranjan; Tait, Simon; Schellart, Alma; Beg, Md Nazmul Azim; Carvalho, Rita F.; de Lima, João L. M. P.

    2018-02-01

    Among the urban aquatic pollutants, the most common is sediment which also acts as a transport medium for many contaminants. Hence there is an increasing interest in being able to better predict the sediment wash-off from urban surfaces. The exponential wash-off model is the most widely used method to predict the sediment wash-off. Although a number of studies proposed various modifications to the original exponential wash-off equation, these studies mostly looked into one parameter in isolation thereby ignoring the interactions between the parameters corresponding to rainfall, catchment and sediment characteristics. Hence in this study we aim (a) to investigate the effect of rainfall intensity, surface slope and initial load on wash-off load in an integrated and systematic way and (b) to subsequently improve the exponential wash-off equation focusing on the effect of the aforementioned three parameters. A series of laboratory experiments were carried out in a full-scale setup, comprising of a rainfall simulator, a 1 m2 bituminous road surface, and a continuous wash-off measuring system. Five rainfall intensities ranging from 33 to 155 mm/h, four slopes ranging from 2 to 16% and three initial loads ranging from 50 to 200 g/m2 were selected based on values obtained from the literature. Fine sediment with a size range of 300-600 μm was used for all of the tests. Each test was carried out for one hour with at least 9 wash-off samples per test collected. Mass balance checks were carried out for all the tests as a quality control measure to make sure that there is no significant loss of sand during the tests. Results show that the washed off sediment load at any given time is proportional to initial load for a given combination of rainfall intensity and surface slope. This indicates the importance of dedicated modelling of build-up so as to subsequently predict wash-off load. It was also observed that the maximum fraction that is washed off from the surface increases

  4. Seismic evidence of Quaternary faulting in the Benton Hills area, southeast Missouri

    USGS Publications Warehouse

    Palmer, J.R.; Shoemaker, M.; Hoffman, D.; Anderson, N.L.; Vaughn, J.D.; Harrison, R.W.

    1997-01-01

    Two reflection seismic profiles at English Hill, across the southern edge of the Benton Hills escarpment, southeast Missouri, establish that geologic structures at English Hill are of tectonic origin. The lowland area to the south of the escarpment is relatively undisturbed. The geology at English Hill is structurally complex, and reflection seismic and geologic data indicate extensive and episodic faulting of Paleozoic, Cretaceous, Tertiary, and Quaternary strata. The individual faults have near-vertical fault surfaces with maximum vertical separations on the order of 15 m. They appear to be clustered in north-northeast trending zones that essentially parallel one of the dominant Benton Hills structural trends. These observations suggest that previously mapped Quaternary faults at English Hill are deep-seated and tectonic in origin. This paper documents recent faulting at English Hill and is the first time late Quaternary, surface-rupture faulting has been recognized in the middle Mississippi River Valley region outside of the New Madrid seismic zone. This has important implications for earthquake assessment in the midcontinent.

  5. Physical Properties and Microstructural Response of Sediments to Accretion-Subduction: Barbados Forearc

    DTIC Science & Technology

    1991-01-01

    of major and minor stress directions ik associated with 40-m-thick zone. The bedding-subparallel fabric results in accretion (Moran and Christian , 1990...Carson, B., and T.R. Bruns, 1980. Physical properties of sediments from the Moran, K., and H.A. Christian , 1990. Strength and deformation behavior of...Geotechnical properties of lower Cowan, D.S., J.C. Moore, S.M. Roeske , N. Lundberg, and S.E. Lucas, 1984. trench inner slope sediments. Tectonophysics

  6. Bottom sediments and nutrients in the tidal Potomac system, Maryland and Virginia

    USGS Publications Warehouse

    Glenn, Jerry L.

    1988-01-01

    The characteristics and distributions of near-surface bottom sediments and of nutrients in the sediments provide information on modern sediment and nutrient sources, sedimentation environments, and geochemical reactions in the tidal Potomac system, Maryland and Virginia. This information is fundamental to an improved understanding of sedimentation and eutrophication problems in the tidal Potomac system. The tidal Potomac system consists of 1,230 square kilometers of intertidal to subtidal Potomac mainstem and tributary streambed from the heads-of-tides to Chesapeake Bay. Tidal Potomac sediments are dominantly silt and clay except in local areas. An average sediment sample is about two-thirds silt and clay (fine) particles and one-third sand (coarse) particles. The mean of the median size of all samples is 6.60 phi, or 0.010 millimeters. Sorting generally is poor and the average sediment is skewed toward the fine tail of the size-distribution curve. Mean particle-size measures have large standard deviations. Among geomorphic units, two distinctly different size populations are found; fine (median phi about 9), and poorly sorted (sorting about 3) sediments in the channel and the smooth flat, and coarse (median phi about 2), and well sorted (sorting about 1) sediments in the shoreline flat and the irregular slope. Among mainstem hydrologic divisions, an average sediment from the river and the estuary division is coarser and more variable than an average sediment from the transition division. Substantial concentrations of total carbon, total nitrogen, and total phosphorus, and limited amounts of inorganic carbon, ammonia nitrogen and nitrite plus nitrate nitrogen occur in tidal Potomac sediments. An average tidal Potomac sediment sample weighing 1 kilogram contains about 21,000 milligrams of total carbon, 2,400 milligrams of total nitrogen, 1,200 milligrams of total phosphorus, 600 milligrams of inorganic carbon, 170 milligrams of ammonia nitrogen, and 2 milligrams of

  7. Organic geochemistry of sediments of the Deep Gulf of Mexico Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassen, R.; Fang Jiasong

    1990-05-01

    Analysis of 716 core samples cored at DSDP (Deep Sea Drilling Project) Leg 96 in the Mississippi submarine fan and the Orca and Pigmy basins in the Louisiana continental slope using a Rock-Eval pyrolysis unit with a TOC (total organic carbon) module allows computations of hydrogen index (HI), total organic carbon, kerogen type, and oil generative capacity assessment. No samples are obviously oil prone. TOC content ranges from 0.12 to 2.29%, with an overall average of 9.82%. HI values are generally less than 150 mg HC/g TOC. T{sub max} (maximum temperature of S{sub 2}) values (average = 425{degree}C) show themore » sediments are thermally immature through-out the study area. Hydrocarbon generative potential of the sediments ranges from 492 to 1,107 ppm, with an average of 854 ppm. Higher PI (Production index) values, ranging from 0.12 to 0.32 and averaging 0.15, suggest the presence of hydrocarbon seepage. Because of organically lean, thermally immature, and gas-prone terrestrial kerogen, there is little reason to assume that the sediments of the Mississippi fan can provide oil source rock for the Gulf of Mexico Basin, or that sediments of anoxic basins in the Louisiana continental slope are analogs to past environments where source rocks for crude oil have been deposited.« less

  8. [Runoff loss of soil mineral nitrogen and its relationship with grass coverage on Loess slope land].

    PubMed

    Zhang, Yali; Li, Huai'en; Zhang, Xingchang; Xiao, Bo

    2006-12-01

    In a simulated rainfall experiment on Loess slope land, this paper determined the rainfall, surface runoff and the effective depth of interaction (EDI) between rainfall and soil mineral nitrogen, and studied the effects of grass coverage on the EDI and the runoff loss of soil mineral nitrogen. The results showed that with the increase of EDI, soil nitrogen in deeper layers could be released into surface runoff through dissolution and desorption. The higher the grass coverage, the deeper the EDI was. Grass coverage promoted the interaction between surface runoff and surface soil. On the slope land with 60%, 80% and 100% of grass coverage, the mean content of runoff mineral nitrogen increased by 34.52%, 32.67% and 6.00%, while surface runoff decreased by 4.72%, 9.84% and 12.89%, and eroded sediment decreased by 83.55%, 87.11% and 89.01%, respectively, compared with bare slope land. The total runoff loss of soil mineral nitrogen on the lands with 60%, 80%, and 100% of grass coverage was 95.73%, 109.04%, and 84.05% of that on bare land, respectively. Grass cover had dual effects on the surface runoff of soil mineral nitrogen. On one hand, it enhanced the influx of soil mineral nitrogen to surface runoff, and on the other hand, it markedly decreased the runoff, resulting in the decrease of soil mineral nitrogen loss through runoff and sediment. These two distinct factors codetermined the total runoff loss of soil mineral nitrogen.

  9. Why the New Gully Deposits are Not Dry Dust Slope Streaks

    NASA Image and Video Library

    2006-12-06

    The light-toned deposits that formed in two gully sites on Mars during the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) mission in the 1999 to 2005 period are considered to be the result of sediment transport by a fluid with the physical properties of liquid water. The young, light-toned gully deposits were found in a crater in Terra Sirenum (see PIA09027 or MOC2-1618) and in a crater east of the Hellas basin in the Centauri Montes region (see PIA09028 or MOC2-1619). In their study of how the light-toned gully deposits may have formed, the MOC team considered their resemblance to light- and dark-toned slope streaks found elsewhere on Mars. Slope streaks are most commonly believed to have formed by downslope movement of extremely dry, very fine-grained dust, through processes thought by some to be analogous to terrestrial snow avalanche formation. http://photojournal.jpl.nasa.gov/catalog/PIA09030

  10. Geology and geochemistry of gas-charged sediment on Kodiak Shelf, Alaska

    USGS Publications Warehouse

    Hampton, M.A.; Kvenvolden, K.A.

    1981-01-01

    Methane concentrations in some sediment cores from the Kodiak Shelf and adjacent continental slope increase with depth by three or four orders of magnitude and exceed the solubility in water at ambient conditions. Acoustic anomalies in seismic-reflection records imply that methane-rich sediment is widespread. Molecular composition of hydrocarbon gases and isotopic composition of methane indicate gas formation by shallow biogenic processes. Stratigraphic positions of acoustic anomalies in Quaternary glacial and posttransgressive sediments suggest that these units are likely sources of gas. A seep along the extension of a fault may be gas venting from a deeper thermogenic source. ?? 1981 A.M. Dowden, Inc.

  11. Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling

    USGS Publications Warehouse

    Miller, K.G.; Mountain, Gregory S.; Browning, J.V.; Kominz, M.; Sugarman, P.J.; Christie-Blick, N.; Katz, M.E.; Wright, J.D.

    1998-01-01

    The New Jersey Sea Level Transect was designed to evaluate the relationships among global sea level (eustatic) change, unconformity-bounded sequences, and variations in subsidence, sediment supply, and climate on a passive continental margin. By sampling and dating Cenozoic strata from coastal plain and continental slope locations, we show that sequence boundaries correlate (within ??0.5 myr) regionally (onshore-offshore) and interregionally (New Jersey-Alabama-Bahamas), implicating a global cause. Sequence boundaries correlate with ??18O increases for at least the past 42 myr, consistent with an ice volume (glacioeustatic) control, although a causal relationship is not required because of uncertainties in ages and correlations. Evidence for a causal connection is provided by preliminary Miocene data from slope Site 904 that directly link ??18O increases with sequence boundaries. We conclude that variation in the size of ice sheets has been a primary control on the formation of sequence boundaries since ~42 Ma. We speculate that prior to this, the growth and decay of small ice sheets caused small-amplitude sea level changes (<20 m) in this supposedly ice-free world because Eocene sequence boundaries also appear to correlate with minor ??18O increases. Subsidence estimates (backstripping) indicate amplitudes of short-term (million-year scale) lowerings that are consistent with estimates derived from ??18O studies (25-50 m in the Oligocene-middle Miocene and 10-20 m in the Eocene) and a long-term lowering of 150-200 m over the past 65 myr, consistent with estimates derived from volume changes on mid-ocean ridges. Although our results are consistent with the general number and timing of Paleocene to middle Miocene sequences published by workers at Exxon Production Research Company, our estimates of sea level amplitudes are substantially lower than theirs. Lithofacies patterns within sequences follow repetitive, predictable patterns: (1) coastal plain sequences consist

  12. Sediment Budget Analysis and Hazard Assessment in the Peynin, a Small Alpine Catchment (Upper Guil River, Southern Alps, France)

    NASA Astrophysics Data System (ADS)

    Carlier, Benoit; Arnaud-Fassetta, Gilles; Fort, Monique; Bouccara, Fanny; Sourdot, Grégoire; Tassel, Adrien; Lissak, Candide; Betard, François; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier

    2014-05-01

    The upper Guil catchment (Southern Alps) is prone to hydro-geomorphic hazards. Major hazards are related to catastrophic floods, with an amplification of their impacts due to strong hillslope-channel connectivity as observed in 1957 and 2000. In both cases, the rainfall intensity, aggravated by the pre-existing saturated soils, explained the instantaneous response of the fluvial system, such as destabilisation of slopes, high sediment discharge, and subsequent damages to exposed structures and settlements present in the floodplain and at confluence sites. The Peynin junction with the Guil River is one of these sites, where significant land-use change during the last decades in relation to the development of handicraft and tourism economy has increased debris flow threat to population. Here, we adopt a sediment budget analysis aimed at better understanding the functioning of this small subcatchment. This latter offers a combination of factors that favour torrential and gravitational activity. It receives abundant and intense rainfall during "Lombarde" events (moist air mass from Mediterranean Sea). Its elongated shape and small surface area (15 km²) together with asymmetric slopes (counter dip slope on the left bank) accelerate runoff on a short response time. In addition highly tectonised shaly schists supply a large volume of debris (mostly platy clasts and fine, micaceous sediment). The objectives of this study, carried out in the frame of SAMCO (ANR) project, are threefold: Identify the different sediment storages; Characterise the processes that put sediment into motion; Quantify volumes of sediment storages. We produced a geomorphic map using topographic surveys and aerial photos in order to locate the different sediment storage types and associated processes. This analysis was made with respect to geomorphic coupling and sediment flux activity. In terms of surface area, the dominant landforms in the valley were found to be mass wasting, talus slopes and

  13. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion

    NASA Astrophysics Data System (ADS)

    Maldonado, Sergio; Borthwick, Alistair G. L.

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119, 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  14. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion.

    PubMed

    Maldonado, Sergio; Borthwick, Alistair G L

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  15. "This Delightfull Garden": "Rabbit Hill" and the Pastoral Tradition.

    ERIC Educational Resources Information Center

    Jordan, Anne Devereaux

    1997-01-01

    Contends that Robert Lawson's children's book "Rabbit Hill" (1944) falls within the genre of pastoral literature, in the tradition of Edmund Spenser's "Faerie Queen." Examines the history of the genre and finds reasons for classifying Lawson's book as pastoral. Cites classic elements in "Rabbit Hill." Gives five…

  16. Inclined, collisional sediment transport

    NASA Astrophysics Data System (ADS)

    Berzi, Diego; Fraccarollo, Luigi

    2013-10-01

    We apply the constitutive relations of kinetic theory of granular gases to the transport of cohesionless sediments driven by a gravitational liquid turbulent stream in steady uniform conditions. The sediment-laden flow forms self-equilibrated mechanisms of resistance at the bed surface, below which the sediments are at rest. This geo-physical process takes place quite often in streams at moderate slope and may be interpreted through tools common to fluid mechanics and particle physics. Taking into account the viscous dissipation of the fluctuation energy of the particles, and using approximate methods of integration of the governing differential equations, permit to obtain a set of simple formulas for predicting how depths and flow rates adjust to the angle of inclination of the bed, without requiring additional tuning parameters besides the particle and fluid properties. The agreement with laboratory experiments performed with either plastic cylinders or gravel in water is remarkable. We also provide quantitative criteria to determine the range of validity of the theory, i.e., the values of the Shields number and the angle of inclination of the bed for which the particle stresses can be mostly ascribed to collisional exchange of momentum.

  17. Nose Hill Artifacts

    ERIC Educational Resources Information Center

    Hansen, Vivian

    2008-01-01

    A Blackfoot woman, caught in the act of adultery, was condemned at this site to have her nose cut off as a penalty for her actions. People do not know her story. The tribe cast it on the ground. And so She, Nose Hill, was named. John Laurie Boulevard holds her mound in a circlet of asphalt, defining the map of her "terra incognita." She…

  18. Mapping of buried river terraces on the Kopite Hill, Gerecse Mts., Northern Hungary

    NASA Astrophysics Data System (ADS)

    Kiss, Dániel; Szőts, Gergely K.; Ruszák, Zsófia; Bereczki, László; Molnár, Gábor; Timár, Gábor; Fodor, László; Csillag, Gábor; Lantos, Zoltán

    2015-04-01

    The Gerecse Mountains is a part of the Transdanubian Mountain Range. The Kopite Hill located on the northern part of the Gerecse Mountains, on the southern side of the Danube and the Hungarian-Slovakian border. At the southern side of the Danube (100 m a.s.l.) a 290 m high hill of Pannonian (Miocene) marine clay, silt and sand can be found. These Pannonian strata are covered with Pliocene-Pleistocene alluvial sediments, loess and travertine. On the Kopite Hill some small outcrops of gravel can be found, which thought to be one of the highest river terrace levels, but it is not proved. To the northwest there is 270-300 m high plateau of the 'Roman-quarry' with a formerly mined travertine-body. According to a recent discovery a Mammoth-tooth and other fossils of mammals were found there, which were dated and correlated. Because the travertine body is at lower height than the assumed terrace level, a maximum rate of uplift can be given. The aim of our fieldwork was to determine the geometry of gravel strata and the connections between the distinct outcrops and the travertine body. We used multielectrode measurements with supplementary VES measurements. We found that on the north side of Kopite Hill and to south from the Roman-quarry there is an almost horizontal 300*100 m large, 8-13 m thick pebble stratum. Direct connection to the travertine body is not possible, because there is a few tens of meters gap between the two bodies, filled with loess. We assume the gravel stratum with its 258-252 m height (gently dips to the south) is a river terrace. On the southest point of this river terrace the thickness of the gravel suddenly increases to 22 meters. To the south there are also some gravel outcrops, and also a drill which suggest that the bottom of these gravels are higher on higher level, about at 265 m a.s.l.. We interpret this phenomenon as a higher terrace level. With the use of geoelectrical methods we could determine the geometry of gravel stratum on the Kopite

  19. Microhabitat selection by bobcats in the badlands and Black Hills of South Dakota, USA: a comparison of Prairie and forested habitats

    USGS Publications Warehouse

    Mosby, Cory E.; Grovenburg, Troy W.; Klaver, Robert W.; Schroeder, Greg M.; Schmitz, Lowell E.; Jenks, Jonathan A.

    2012-01-01

    An understanding of habitat selection is important for management of wildlife species. Although bobcat (Lynx rufus) resource selection has been addressed in many regions of the United States, little work has been conducted in the Northern Great Plains. From 2006–2008 we captured and radiocollared 20 bobcats in the Badlands (n = 10) and Black Hills (n = 10) regions of South Dakota. During the summers of 2008 and 2009 we collected habitat measurements at 349 (176 Badlands, 176 Black Hills) bobcat locations and 321 (148 Badlands, 173 Black Hills) random sites. Microhabitat characteristics at bobcat use sites varied with region (P < 0.001) and sex of bobcat (P < 0.001). Percent slope, shrub, low cover, medium cover, and total cover were greater (P ≤ 0.017) at bobcat locations in the Black Hills than in the Badlands whereas distance to drainage was greater (P < 0.001) at locations in the Badlands than in the Black Hills. In the Badlands, male bobcat locations were closer (P ≤ 0.002) to prairie dog towns and drainages and had greater (P < 0.05) percent forbs and forb height than random sites, whereas females were closer to badland formations (P < 0.001) than random sites. In the Black Hills, male locations were at greater elevation (P < 0.001) and female locations were characterized by greater (P ≤ 0.02) grass height, shrub height, low cover, and total cover than random sites. Logistic regression indicated that microhabitat selection was similar between study areas; odds ratios indicated that odds of bobcat use increased by 0.998 (95% CI = 0.997–0.999) per 1 m increase in distance to drainage, 0.986 (95% CI = 0.978–0.993) per 1.0% increase in grass cover, by 1.024 (95% CI = 1.011–1.036) per 1 cm increase in grass height, by 1.013 (95% CI = 1.003–1.024) per 1% increase in forb cover, and by 1.028 (95% CI = 1.017–1.039) per 1% increase in medium cover. Our results were similar to other bobcat microhabitat selection studies, where bobcat relocations were

  20. Polycyclic aromatic hydrocarbon concentrations across the Florida Panhandle continental shelf and slope after the BP MC 252 well failure.

    PubMed

    Snyder, Richard A; Ederington-Hagy, Melissa; Hileman, Fredrick; Moss, Joseph A; Amick, Lauren; Carruth, Rebecca; Head, Marie; Marks, Joel; Tominack, Sarah; Jeffrey, Wade H

    2014-12-15

    The Florida Panhandle continental shelf environment was exposed to oil from the BP oil well failure in the Gulf of Mexico during 2010. Floating mats of oil were documented by satellite, but the distribution of dissolved components of the oil in this region was unknown. Shipek® grab samples of sediments were taken during repeated cruises between June 2010 and June 2012 to test for selected polycyclic aromatic hydrocarbons (PAHs) as indicators of this contamination. Sediments were collected as composite samples, extracted using standard techniques, and PAHs were quantified by GC/MS-SIM. PAHs in samples from the continental slope in May 2011 were highest near to the failed well site and were reduced in samples taken one year later. PAHs from continental shelf sediments during the spill (June 2010) ranged from 10 to 165 ng g(-1). Subsequent cruises yielded variable and reduced amounts of PAHs across the shelf. The data suggest that PAHs were distributed widely across the shelf, and their subsequent loss to background levels suggests these compounds were of oil spill origin. PAH half-life estimates by regression were 70-122 days for slope and 201 days for shelf stations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Clay mineralogical record on the upper continental slope of the northwestern South China Sea since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    CHEN, Q.; Liu, Z.; Stattegger, K.

    2012-12-01

    Clay mineralogy of two gravity cores (18428 and 18429) on the upper continental slope of the northwestern South China Sea was investigated in order to understand terrigenous sediment sources and to evaluate the contribution from the Red River since the Late Glacial Maximum. Planktonic foraminiferal oxygen isotope and carbonate stratigraphies suggest that Core 18428 is constrained in Holocene while Core 18429 covers the period of MIS 1-2. Clay mineral assemblages of two cores are composed mainly of smectite (18-57%) and illite (21-41%), with minor chlorite (12-21%) and kaolinite (8-26%). In despite of relatively constant values of illite crystallinity, ranging among 0.14°-0.20° Δ2θ, the time series variation in clay mineral distributions indicates a strong glacial-interglacial shift. Contents of illite, chlorite, and kaolinite (Core 18429) in the Holocene are lower than in the glacial period, and vice versa for the smectite content. The provenance analysis based on clay mineralogy suggests the Red River as a predominant sedimentary source of illite, chlorite, and kaolinite during all the depositional period of MIS 1-2. The sea level change actually controlled the variations of clay mineral assemblages on the upper slope since the Last Glacial Maximum. When the sea level was low during the last glacial period, more terrigenous sediments from the Red River could reach the continental slope in the northwestern South China Sea. However, when the sea level is closed to the present situation during the Holocene, most of Red River sediments could be trapped in the Gulf of Tonkin, instead of draining in the deep South China Sea.

  2. Ice dynamics of the Allan Hills meteorite concentration sites revealed by satellite aperture radar interferometry

    NASA Astrophysics Data System (ADS)

    Coren, F.; Delisle, G.; Sterzai, P.

    2003-09-01

    The ice flow conditions of a 100 x 100 km area of Victoria Land, Antarctica were analyzed with the synthetic aperture radar (SAR) technique. The area includes a number of meteorite concentration sites, in particular the Allan Hills ice fields. Regional ice flow velocities around the Mid- western and Near-western ice fields and the Allan Hills main ice field are shown to be 2.5 m yr-1. These sites are located on a horseshoe-shaped area that bounds an area characterized by higher ice flow velocities of up to 5 m yr-1. Meteorite find locations on the Elephant Moraine are located in this "high ice flow" area. The SAR derived digital elevation model (DEM) shows atypical low surface slopes for Antarctic conditions, which are the cause for the slow ice movements. Numerous ice rises in the area are interpreted to cap sub-ice obstacles, which were formed by tectonic processes in the past. The ice rises are considered to represent temporary features, which develop only during warm stages when the regional ice stand is lowered. Ice depressions, which develop in warm stages on the lee side of ice rises, may act as the sites of temporary build-up of meteorite concentrations, which turn inoperative during cold stages when the regional ice level rises and the ice rises disappear. Based on a simplified ice flow model, we argue that the regional ice flow in cold stages is reduced by a factor of at least 3.

  3. Pesticides, Neurodevelopmental Disagreement, and Bradford Hill's Guidelines.

    PubMed

    Shrader-Frechette, Kristin; ChoGlueck, Christopher

    2016-06-27

    Neurodevelopmental disorders such as autism affect one-eighth of all U.S. newborns. Yet scientists, accessing the same data and using Bradford-Hill guidelines, draw different conclusions about the causes of these disorders. They disagree about the pesticide-harm hypothesis, that typical United States prenatal pesticide exposure can cause neurodevelopmental damage. This article aims to discover whether apparent scientific disagreement about this hypothesis might be partly attributable to questionable interpretations of the Bradford-Hill causal guidelines. Key scientists, who claim to employ Bradford-Hill causal guidelines, yet fail to accept the pesticide-harm hypothesis, fall into errors of trimming the guidelines, requiring statistically-significant data, and ignoring semi-experimental evidence. However, the main scientists who accept the hypothesis appear to commit none of these errors. Although settling disagreement over the pesticide-harm hypothesis requires extensive analysis, this article suggests that at least some conflicts may arise because of questionable interpretations of the guidelines.

  4. Characterization of bedload transport in steep-slope streams

    NASA Astrophysics Data System (ADS)

    Mettra, F.; Heyman, J.; Ancey, C.

    2012-04-01

    Large fluctuations in the sediment transport rate are observed in rivers, particularly in mountain streams at intermediate flow rates. These fluctuations seem to be, to some degree, correlated to the formation and migration of bedforms. Today the central question is still how to understand and account for the strong bedload variability. Recent experimental studies shed new light on the processes. The objective of this presentation is to show some of our results. To understand the behavior and the origins of sediment transport rate fluctuations in the case of steep-slope streams, we conducted laboratory experiments in a 3-m long, 8-cm wide, transparent flume. The experimental parameters are the flume inclination, flow rate and sediment input rate. Well-sorted natural gravel (8.5 mm mean diameter) were used. We focused on two-dimensional flows and incipient bedforms (i.e., for flow rates just above the threshold of incipient motion). A technique based on accelerometers was developed to record every particle passing through the flume outlet (more specifically, we measured the vibrations of a metallic slab, which was impacted by the falling particles). Analysis of bedload transport rates was then possible on all time scales. Moreover, the bed and flow were monitored using 2 cameras. We computed bed elevation, water depth and erosion/deposition at high temporal and spatial rates from camera shots (one image per second during several hours or days). In our laboratory experiments, the fluctuations of the sediment rate were large even for steady flow conditions involving well-sorted particles. Time series exhibited fluctuations at all scales and displayed long range correlations with a Hurst exponent close to 0.8. The results were compared for different input solid discharges. The main bedforms observed in our flume were anti-dunes migrating upstream. Bedform formation and propagation showed intermittency with pulses (high activity) followed by long sequences of low

  5. Sedimentology and preservation of aeolian sediments on steep terrains: Incipient sand ramps on the Atacama coast (northern Chile)

    NASA Astrophysics Data System (ADS)

    Ventra, Dario; Rodríguez-López, Juan Pedro; de Boer, Poppe L.

    2017-05-01

    The origin of topographically controlled aeolian landforms in high-relief settings is difficult to synthesize under general models, given the dependence of such accumulations on local morphology. Quaternary sand ramps have been linked to palaeoclimate, regional geomorphology and wind patterns; however, controls on the early development and preservation of such landforms are poorly known. This study describes the morphology and sedimentology of complex sedimentary aprons along steep coastal slopes in the Atacama Desert (Chile). Direct slope accessibility and continuous stratigraphic exposures enable comparisons between active processes and stratigraphic signatures. Stratigraphic facies distribution and its links with patterns of aeolian deposition show that the preservation of wind-laid sediments depends on the morphology and processes of specific slope sectors. The spatial organization of runoff depends on bedrock configuration and directly controls the permanence or erosion of aeolian sediment. The occurrence of either water or mass flows depends on the role of aeolian fines in the rheology of flash floods. In turn, the establishment of a rugged surface topography controlled by patterns of mass-flow deposition creates local accommodation for aeolian fines, sustaining the initial aggradation of a colluvial-aeolian system. By contrast, slopes subject to runoff develop a thin, extensive aeolian mantle whose featureless surface is subject mostly to sediment bypass down- and across-slope; the corresponding stratigraphic record comprises almost exclusively thin debris-flow and sheetflood deposits. Slope morphology and processes are fundamental in promoting or inhibiting aeolian aggradation in mountain settings. Long-term sand-ramp construction depends on climate and regional topography, but the initial development is probably controlled by local geomorphic factors. The observed interactions between wind and topography in the study area may also represent a process

  6. 1. HISTORIC PHOTOGRAPH, VIEW OF ROUND HILL ROAD BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. HISTORIC PHOTOGRAPH, VIEW OF ROUND HILL ROAD BRIDGE, LOOKING WEST, CA. 1940. CONNECTICUT DEPARTMENT OF TRANSPORTATION. - Merritt Parkway, Round Hill Road Bridge, Spanning Merritt Parkway at 3.5 mile mark, Greenwich, Fairfield County, CT

  7. Quantifying sediment connectivity in an actively eroding gully complex, Waipaoa catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Taylor, Richard J.; Massey, Chris; Fuller, Ian C.; Marden, Mike; Archibald, Garth; Ries, William

    2018-04-01

    Using a combination of airborne LiDAR (2005) and terrestrial laser scanning (2007, 2008, 2010, 2011), sediment delivery processes and sediment connectivity in an 20-ha gully complex, which significantly contributes to the Waipaoa sediment cascade, are quantified over a 6-year period. The acquisition of terrain data from high-resolution surveys of the whole gully-fan system provides new insights into slope processes and slope-channel linkages operating in the complex. Raw terrain data from the airborne and ground-based laser scans were converted into raster DEMs with a vertical accuracy between surveys of <±0.1 m. Grid elevations in each successive DEM were subtracted from the previous DEM to provide models of change across the gully and fan complex. In these models deposition equates to positive and erosion to negative vertical change. Debris flows, slumping, and erosion by surface runoff (gullying in the conventional sense) generated on average 95,232 m3 of sediment annually, with a standard deviation of ± 20,806 m3. The volumes of debris eroded from those areas dominated by surface erosion processes were higher than in areas dominated by landslide processes. Over the six-year study period, sediment delivery from the source zones to the fan was a factor of 1.4 times larger than the volume of debris exported from the fan into Te Weraroa Stream. The average annual volume of sediment exported to Te Weraroa Stream varies widely from 23,195 to 102,796 m3. Fluctuations in the volume of stored sediment within the fan, rather than external forcing by rainstorms or earthquakes, account for this annual variation. No large rainfall events occurred during the monitoring period; therefore, sediment volumes and transfer processes captured by this study are representative of the background conditions that operate in this geomorphic system.

  8. Selected hydrologic data, through water year 1994, Black Hills Hydrology Study, South Dakota

    USGS Publications Warehouse

    Driscoll, D.G.; Bradford, W.L.; Neitzert, K.M.

    1996-01-01

    This report presents water-level, water-quality, and spring data that have been collected or compiled, through water year 1994, for the Black Hills Hydrology Study. This study is a long-term cooperative effort between the U.S. Geological Survey, the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District (which represents various local and county cooperators). This report is the second in a series of biennial project data reports produced for the study. Daily water-level data are presented for 39 observation wells and 2 cave sites in the Black Hills area of western South Dakota. The wells are part of a network of observation wells maintained by the Department of Environment and Natural Resources and are completed in various bedrock formations that are utilized as aquifers in the Black Hills area. Both cave sites are located within outcrops of the Madison Limestone. Data presented include site descriptions, hydrographs, and tables of daily water levels. Annual measurements of water levels collected during water years 1993-94 from a network of 20 additional, miscellaneous wells are presented. These wells are part of a Statewide network of wells completed in bedrock aquifers that was operated from 1959 through 1989 in cooperation with the Department of Environment and Natural Resources. Site descriptions and hydrographs for the entire period of record for each site also are presented. Drawdown and recovery data are presented for five wells that were pumped (or flowed) for collection of water-quality samples. These wells are part of the network of observation wells for which daily water-level records are compiled. Water-quality data are presented for 20 surface-water sites and 22 ground-water sites. Data presented include field parameters, bacteria counts, and concentrations of common ions, solids, nutrients, trace elements, radiometrics and isotopes, cyanide, phenols, and suspended sediment. Spring data are

  9. Classification of Broken Hill-Type Pb-Zn-Ag Deposits: A Refinement

    NASA Astrophysics Data System (ADS)

    Spry, P. G.; Teale, G. S.; Steadman, J. A.

    2009-05-01

    Broken Hill Hill-type Pb-Zn-Ag (BHT) deposits constitute some of the largest ore deposits in the world. The Broken Hill deposit is the largest accumulation of Pb, Zn, and Ag on Earth and the Cannington deposit is currently the largest silver deposit. Characteristic features of BHT deposits include: 1. high Pb+Zn+Ag values with Pb > Zn; 2. Metamorphism to amphibolite-granulite facies; 3. Paleo-to Mesoprotoerozoic clastic metasedimentary host rocks; 4. Sulfides that are spatially associated with bimodal (felsic and mafic) volcanic rocks, and stratabound gahnite- and garnet-bearing rocks and iron formations, 5. Stacked orebodies with characteristic Pb:Zn:Ag ratios and skarn-like Fe-Mn-Ca-F gangue assemblages, and the presence of Cu, Au, Bi, As, and Sb; and 6. Sulfur-poor assemblages. Broken Hill (Australia) has a prominent footwall feeder zone whereas other BHT deposits have less obvious alteration zones (footwall garnet spotting and stratabound alteration haloes). Deposits previously regarded in the literature as BHT deposits are Broken Hill, Cannington, Oonagalabie, Menninie Dam, and Pegmont (Australia), Broken Hill, Swartberg, Big Syncline, and Gamsberg (South Africa), Zinkgruvan (Sweden), Sullivan, Cottonbelt, and Foster River (Canada), and Boquira (Brazil). Of these deposits, only the Broken Hill (Australia, South Africa), Pinnacles, Cannington, Pegmont, and Swartberg deposits are BHT deposits. Another BHT deposit includes the Green Parrot deposit, Jervois Ranges (Northern Territory). The Foster River, Gamsberg, and Sullivan deposits are considered to be "SEDEX deposits with BHT affinities", and the Oonagalabie, Green Mountain (Colorado), and Zinkgruvan are "VMS deposits with BHT affinities". In the Broken Hill area (Australia), Corruga-type Pb-Zn-Ag deposits occur in calc-silicate rocks and possess some BHT characteristics; the Big Syncline, Cottonbelt, Menninie Dam, and Saxberget deposits are Corruga-type deposits. SEDEX deposits with BHT affinities, VMS

  10. Faulting and instability of shelf sediments: eastern Gulf of Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.R.; Molnia, B.F.

    1976-04-01

    Faults and submarine slides or slumps are potential environmental hazards on the outer continental shelf of the northern Gulf of Alaska. Submarine slides or slumps have been found in two places in the OCS region: (1) seaward of the Malaspina Glacier and Icy Bay, an area of 1770 square kilometers, that has a slope of less than one-half degree, and (2) across the entire span of the Copper River prodelta, an area of 1730 square kilometers, that has a slope of about one-half degree. Seismic profiles across these areas show disrupted reflectors and irregular topography commonly associated with submarine slidesmore » or slumps. Other potential slide or slum areas have been delineated in areas of thick sediment accumulation and relatively steep slopes. These areas include Kayak Trough, parts of Hinchinbrook Entrance and Sea Valley, parts of the outer shelf and upper slope between Kayak Island and Yakutat Bay and Bering Trough.« less

  11. Persistence of oxyfluorfen in soil, runoff water, sediment and plants of a sunflower cultivation.

    PubMed

    Mantzos, N; Karakitsou, A; Hela, D; Patakioutas, G; Leneti, E; Konstantinou, I

    2014-02-15

    A field dissipation and transport study of oxyfluorfen in a sunflower cultivation under Mediterranean conditions have been conducted in silty clay plots (cultivated and uncultivated) with two surface slopes (1% and 5%). The soil dissipation and transport of oxyfluorfen in runoff water and sediment, as well as the uptake by sunflower plants, were investigated over a period of 191 days. Among different kinetic models assayed, soil dissipation rate of oxyfluorfen was better described by first-order kinetics. The average half-life was 45 and 45.5 days in cultivated plots with soil slopes 5% and 1% respectively, and 50.9 and 52.9 days in uncultivated plots with soil slopes 5% and 1%. The herbicide was detected below the 10 cm soil layer 45 days after application (DAA). Limited amounts of oxyfluorfen were moved with runoff water and the cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.007% and 0.005% of the initial applied active ingredient, while for the plots with slope of 1%, the respective values were 0.002% and 0.001%. The maximum concentration of oxyfluorfen in sediment ranged from 1.46 μg g(-1) in cultivated plot with soil slope 1% to 2.33 μg g(-1) in uncultivated plot with soil slope 5%. The cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.217% and 0.170% while for the plots with slope of 1%, the respective values were 0.055% and 0.025%. Oxyfluorfen was detected in sunflower plants until the day of harvest; maximum concentrations in stems and leaves (0.042 μg g(-1)) were observed 33 DAA and in roots (0.025 μg g(-1)) 36 DAA. In conclusion, oxyfluorfen hardly moves into silty clay soil and exhibited low run-off potential so it represents a low risk herbicide for the contamination of ground and adjacent water resources. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Estimates of velocity structure and source depth using multiple P waves from aftershocks of the 1987 Elmore Ranch and Superstition Hills, California, earthquakes

    USGS Publications Warehouse

    Mori, J.

    1991-01-01

    Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequencs appear to have similar depth distribution in the range of 4 to 10 km. -Author

  13. Slopes, Fans, Terraces and their Soils - A three Systems Approach for Estimating Future Climate and Land-Use Change

    NASA Astrophysics Data System (ADS)

    Voelkel, J.; Bens, O.; Eden, M.; Ramisch, A.

    2015-12-01

    Semiarid and arid landscapes in Namibia and the South African Republic (RAS) are sensitive to changes in the vegetation that covers and protects the surface. Climatic changes or anthropogenic influences such as farming, grazing and ploughing can degrade the landscape if the natural stability of the landscape and its capacity potential is exceeded. This will directly cause sediment mobilisation and deposition. We intend to examine the connections between earth-surface processes on slopes such as sheet wash, colluvial sediment transport, and eolian movements and their links to the fluvial system via three major geomorphic forms: slopes, fans, and terraces. This novel approach will be undertaken at three study sites in Namibia and RSA In their combination the geomorphic forms have the potential of being high-resolution geoarchives of surface changes ranging from the local to the regional scale. The source and depositional environments of the sediments will be characterised and a chronology of the erosion and deposition within these three geomorphic systems will be established using absolute dating techniques. Thus, activity and stability phases will be worked out mainly for the last three centuries up to a maximum of ~ 1000 years. This offers the possibility to compare the time scales with low human impact to those with intensive human impact (farming/grazing) on the landscape together with known climatic variation and analyze major forcings of the formation of slopes-fans-terraces-systems. Our results will provide answers on how much ecosystem services are and have been influenced either by climate or land use changes in the example regions, to better enable the decision and policy makers to select better managerial options and development plans. - The project "GeoArchives" is funded within the "SPACES" program (Science Partnerships for the Assessment of Complex Earth System Processes) by the Federal Ministry of Education and Research BMBF.

  14. OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP BUILDINGS, LOOKING SOUTH SOUTHEAST. THE FUNCTION OF THE FLAT AREA AT CENTER RIGHT IS UNKNOWN. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  15. Ecology, silviculture, and management of Black Hills ponderosa pine

    Treesearch

    Wayne D. Shepperd; Michael A. Battaglia

    2002-01-01

    This paper presents a broad-based synthesis of the general ecology of the ponderosa pine ecosystem in the Black Hills. This synthesis contains information and results of research on ponderosa pine from numerous sources within the Black Hills ecosystem. We discuss the silvical characteristics of ponderosa pine, natural disturbances that govern ecosystem processes,...

  16. Beryllium-7 in vegetation, soil, sediment and runoff on the northern Loess Plateau.

    PubMed

    Zhang, Fengbao; Yang, Mingyi; Zhang, Jiaqiong

    2018-06-01

    Beryllium-7 ( 7 Be), as a potentially powerful tracer, was widely used to document soil redistribution and identify sediment sources in recent decades, but the quantity and distribution of 7 Be in vegetation, soil, sediment and runoff on the Loess Plateau have not been fully described. In this study, we measured 7 Be in vegetation, soil, sediment and runoff on the northern Loess Plateau of China and analyzed its variations during the rainy season to assess the potential of the 7 Be method for documenting soil redistribution and identifying sediment sources in a wide range of environments. The results indicated that vegetation, soil, and sediment samples showed higher levels and larger variations of 7 Be activities during the rainy season. The drying plants showed 7 Be mass activity that was more than three times higher than that of living and semi-decomposed plants. 7 Be mass activity in plants and sediment was much higher than in the soil. 7 Be activity in runoff water with a few submicron suspended particles varied slightly and was far lower than in plant, soil and sediment samples. The cumulative precipitation generally determined 7 Be inventory held by plants and soil. An inverse relationship was found between the 7 Be mass activity in sediment and the sediment amount. Globally, approximate 30% of the total 7 Be was held by plants in both the herbaceous and subshrub plots. Approximate 10% of the total 7 Be was lost with sediment from the bare plot. A very small proportion of 7 Be (1.18%-3.20%) was lost with runoff, and the vast majority of 7 Be was retained in the slope soil at the end of rainy season. Vegetation cover and soil erosion significantly affected the spatial distribution and variations of the 7 Be inventory in soil, providing a necessary condition for the development of a 7 Be method to document soil erosion on slopes with vegetation. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Formation of stationary alternate bars in a steep channel with mixed-size sediment: a flume experiment

    Treesearch

    Thomas E. Lisle; Hiroshi Ikeda; Fujiko Iseya

    1991-01-01

    Abstract - Alternate bars were formed by sediment transport in a flume with Froude-modelled flow and relative roughness characteristic of gravel-boulder channels with steep slopes. The flume (0.3 m wide x 7.5 m long) was filled with a sand-gravel mixture, which was also fed into the top of the flume at a constant rate under constant discharge. Channel slope was set at...

  18. Understanding sediment sources in a peri-urban Mediterranean catchment using geochemical tracers

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Kikuchi, Ryunosuke; Blake, Will

    2016-04-01

    One of the main physical environmental impacts of urbanization is an increase in suspended sediment concentrations and loads, particularly in the constructional phase. Impacts in peri-urban catchments characterized by a mosaic of urban and non-urban landscape elements with varying roles in acting as sources and sinks of overland flow and slope wash have received little attention, particularly in Mediterranean environments. The present study uses a sediment 'fingerprinting' approach to determine the main sediment sources in the peri-urban Ribeira dos Covões catchment (6.2km2) in Portugal and how they change during storm events following contrasting antecedent weather. The catchment, rural until 1972, underwent discontinuous urbanization in 1973-1993, followed by an urban consolidation phase. Currently, its land-use is a complex mosaic of woodland (56%), urban (40%) and agricultural (4%) land parcels. Distinct urban patterns include some well-defined urban residential centres, but also areas of discontinuous urban sprawl. Since 2010, a major road was built and an enterprise park has been under construction, covering 1% and 5% of the catchment, respectively. The catchment has a Mediterranean climate. The geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils are generally deep (>3.0m), but shallow (<0.4m) on steeper limestone terrain. The catchment has an average slope of 9° , but includes steep slopes of up to 46° . The sediment fingerprinting methodology involved characterizing the chemical properties of sediments from individual upstream sub-catchments and comparing these to the properties of downstream transported fluvial material. Three fine bed-sediment sampling surveys were carried out after (i) a long dry period (21/09/2012), (ii) a winter storm of relatively high rainfall intensity (23.2mm day-1) (19/02/2015), and (iii) after several storms in Spring (22/04/2015). All samples were oven-dried (at 38° C) and sieved to obtain

  19. Heterogeneous distribution of pelagic sediments incoming the Japan Trench possibly controlling slip propagation on shallow plate boundary fault

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Nakamura, Y.; Fukuchi, R.; Kurano, H.; Ikehara, K.; Kanamatsu, T.; Arai, K.; Usami, K.; Ashi, J.

    2017-12-01

    Catastrophic tsunami of the 2011 Tohoku Earthquake was triggered by large coseismic slip reached to the Japan Trench axis (e.g. Fujiwara et al., 2011, Science; Kodaira et al., 2012, Nature Geoscience). Results of the IODP Expedition 343 (JFAST) suggest that small friction of smectite-rich pelagic clay caused slip propagation on shallow plate boundary fault (Ujiie et al., 2013, Science; Kameda et al., 2015, Geology; Moore et al., 2015, Geosphere). On the other hand, JAMSTEC high-resolution seismic profiles show that incoming sediments have large heterogeneities in thicknesses, and two areas of extremely thin sediments on the Pacific Plate (thickness less than 100 m) were found at around 39°N (Nakamura et al., AGU 2017, this session). To reconcile whether the smectite-rich pelagic clay even exists in these areas, we sampled surface sediments during the R/V Shinsei Maru KS-15-3 cruise. Seven piston cores were retrieved from seaward trench slope, horst, graben, and graben edge. Core lithologies are mainly diatomaceous ooze/clay including tephra layers, not resemble to pelagic clays discovered in JFAST. Ages of tephra layers were estimated by correlating mineral assemblages and refractive indices of volcanic glasses to Japanese widespread tephras. Averaged sedimentation rates of seaward trench slope, horst, graben, and graben edge are estimated to be 25-30, 6.5-20, 45, 0.9 cm/kyr, respectively. These sedimentation rates imply that sediments on seaward trench slope and horst have been deposited in the last 160-500 kyr, suggesting that entire pelagic sediments, including smectite-rich pelagic clay, have been removed by some reasons in the last 0.5 million years. Possible reason for such modification of sediment is near-trench igneous activity known as petit-spot volcanism (Hirano et al., 2006, Science). The lack of smectite-rich pelagic clay near 39°N of the Japan Trench is consistent with results of tsunami inversions proposing shallow large coseismic slip propagated

  20. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe)

    NASA Astrophysics Data System (ADS)

    Zhou, Liangyong; Liu, Jian; Saito, Yoshiki; Gao, Maosheng; Diao, Shaobo; Qiu, Jiandong; Pei, Shaofeng

    2016-08-01

    Since 1976, the main channel of the Yellow River (Huanghe) has been on the east side of the delta complex, and the river has prograded a broad new delta lobe in Laizhou Bay of the Bohai Sea. In 2012, extensive bathymetric and high-resolution seismic profiles were conducted and sediment cores were collected off the new delta lobe. This study examined delta sedimentation and morphology along a profile across the modern subaqueous Yellow River delta and into Laizhou Bay, by analyzing sediment radionuclides (137Cs, 210Pb and 7Be), sedimentary structure, grain-size composition, organic carbon content, and morphological changes between 1976 and 2012. The change in the bathymetric profile, longitudinal to the river's course, reveals subaqueous delta progradation during this period. The subbottom boundary between the new delta lobe sediment and the older seafloor sediment (before the 1976 course shift) was identified in terms of lithology and radionuclide distributions, and recognized as a downlap surface in the seismic record. The accumulation rate of the new delta lobe sediment is estimated to be 5-18.6 cm year-1 on the delta front slope, 2 cm year-1 at the toe of the slope, and 1-2 cm year-1 in the shelf areas of Laizhou Bay. Sediment facies also change offshore, from alternations of gray and brown sediment in the proximal area to gray bioturbated fine sediment in the distal area. Based on 7Be distribution, the shorter-term deposition rate was at least 20 cm year-1 in the delta front.

  1. Elementary theory of bed-sediment entrainment by debris flows and avalanches

    USGS Publications Warehouse

    Iverson, Richard M.

    2012-01-01

    Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.

  2. Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect

    NASA Astrophysics Data System (ADS)

    Schumer, Rina; Taloni, Alessandro; Furbish, David Jon

    2017-03-01

    Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.

  3. Geologic Map of The Volcanoes Quadrangle, Bernalillo and Sandoval Counties, New Mexico

    USGS Publications Warehouse

    Thompson, Ren A.; Shroba, Ralph R.; Menges, Christopher M.; Schmidt, Dwight L.; Personius, Stephen F.; Brandt, Theodore R.

    2009-01-01

    This geologic map, in support of the U.S. Geological Survey Middle Rio Grande Basin Geologic Mapping Project, shows the spatial distribution of surficial deposits, lava flows, and related sediments of the Albuquerque volcanoes, upper Santa Fe Group sediments, faults, and fault-related structural features. These deposits are on, along, and beneath the Llano de Albuquerque (West Mesa) west of Albuquerque, New Mexico. Some of these deposits are in the western part of Petroglyph National Monument. Artificial fill deposits are mapped chiefly beneath and near the City of Albuquerque Soil Amendment Facility and the Double Eagle II Airport. Alluvial deposits were mapped in and along stream channels, beneath terrace surfaces, and on the Llano de Albuquerque and its adjacent hill slopes. Deposits composed of alluvium and colluvium are also mapped on hill slopes. Wedge-shaped deposits composed chiefly of sandy sheetwash deposits, eolian sand, and intercalated calcic soils have formed on the downthrown-sides of faults. Deposits of active and inactive eolian sand and sandy sheetwash deposits mantle the Llano de Albuquerque. Lava flows and related sediments of the Albuquerque volcanoes were mapped near the southeast corner of the map area. They include eleven young lava flow units and, where discernable, associated vent and near-vent pyroclastic deposits associated with cinder cones. Upper Santa Fe Group sediments are chiefly fluvial in origin, and are well exposed near the western boundary of the map area. From youngest to oldest they include a gravel unit, pebbly sand unit, tan sand and mud unit, tan sand unit, tan sand and clay unit, and silty sand unit. Undivided upper Santa Fe Group sediments are mapped in the eastern part of the map area. Faults were identified on the basis of surface expression determined from field mapping and interpretation of aeromagnetic data where concealed beneath surficial deposits. Fault-related structural features are exposed and were mapped near

  4. Slope Streaks or RSL?

    NASA Image and Video Library

    2016-12-14

    The image shows a region we see many slope streaks, typically dark features on slopes in the equatorial regions on Mars. They may extend for tens of meters in length and gradually fade away with time as new ones form. The most common hypothesis is that they are generated by dust avalanches that regularly occur on steep slopes exposing fresh dark materials from underneath the brighter dust. There are many types of slope streaks but one of the most recent and significant findings using HiRISE was the discovery of a new type called "recurring slope lineae," or RSL for short. Recent studies suggest that RSL may form through the flow of briny (extremely salty) liquid water that can be stable on the surface of Mars even under current climatic conditions for a limited time in summer when it is relatively warm. How can we distinguish between conventional slope streaks like the ones we see here and RSL? There are many criteria. For instance, RSL are usually smaller in size than regular slope streaks. However, one of the most important conditions is seasonal behavior, since RSL appear to be active only in summer while regular slope streaks can be active anytime of the year. This site is monitored regularly by HiRISE scientists because of the high density of slope streaks and their different sizes and orientations. If we look at a time-lapse sequence, we will see that a new slope streak has indeed formed in the period since April 2016 (and we can note how dark it is in comparison to the others indicating its freshness). However, this period corresponds mainly to the autumn season in this part of Mars, whereas we do not see any major changes in the summer season. This suggests that the feature that developed is a regular slope streak just like all the others in the area. http://photojournal.jpl.nasa.gov/catalog/PIA21272

  5. Residual β activity of particulate (234)Th as a novel proxy for tracking sediment resuspension in the ocean.

    PubMed

    Lin, Wuhui; Chen, Liqi; Zeng, Shi; Li, Tao; Wang, Yinghui; Yu, Kefu

    2016-06-02

    Sediment resuspension occurs in the global ocean, which greatly affects material exchange between the sediment and the overlying seawater. The behaviours of carbon, nutrients, heavy metals, and other pollutants at the sediment-seawater boundary will further link to climate change, eutrophication, and marine pollution. Residual β activity of particulate (234)Th (RAP234) is used as a novel proxy to track sediment resuspension in different marine environments, including the western Arctic Ocean, the South China Sea, and the Southern Ocean. Sediment resuspension identified by high activity of RAP234 is supported by different lines of evidence including seawater turbidity, residence time of total (234)Th, Goldschmidt's classification, and ratio of RAP234 to particulate organic carbon. A conceptual model is proposed to elucidate the mechanism for RAP234 with dominant contributions from (234)Th-(238)U and (212)Bi-(228)Th. The 'slope assumption' for RAP234 indicated increasing intensity of sediment resuspension from spring to autumn under the influence of the East Asian monsoon system. RAP234 can shed new light on (234)Th-based particle dynamics and should benefit the interpretation of historical (234)Th-(238)U database. RAP234 resembles lithophile elements and has broad implications for investigating particle dynamics in the estuary-shelf-slope-ocean continuum and linkage of the atmosphere-ocean-sediment system.

  6. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean

    PubMed Central

    Lin, Wuhui; Chen, Liqi; Zeng, Shi; Li, Tao; Wang, Yinghui; Yu, Kefu

    2016-01-01

    Sediment resuspension occurs in the global ocean, which greatly affects material exchange between the sediment and the overlying seawater. The behaviours of carbon, nutrients, heavy metals, and other pollutants at the sediment-seawater boundary will further link to climate change, eutrophication, and marine pollution. Residual β activity of particulate 234Th (RAP234) is used as a novel proxy to track sediment resuspension in different marine environments, including the western Arctic Ocean, the South China Sea, and the Southern Ocean. Sediment resuspension identified by high activity of RAP234 is supported by different lines of evidence including seawater turbidity, residence time of total 234Th, Goldschmidt’s classification, and ratio of RAP234 to particulate organic carbon. A conceptual model is proposed to elucidate the mechanism for RAP234 with dominant contributions from 234Th-238U and 212Bi-228Th. The ‘slope assumption’ for RAP234 indicated increasing intensity of sediment resuspension from spring to autumn under the influence of the East Asian monsoon system. RAP234 can shed new light on 234Th-based particle dynamics and should benefit the interpretation of historical 234Th-238U database. RAP234 resembles lithophile elements and has broad implications for investigating particle dynamics in the estuary-shelf-slope-ocean continuum and linkage of the atmosphere-ocean-sediment system. PMID:27252085

  7. VIEW TO SOUTHEAST TOWARD QUARTERMASTER BUILDINGS GROUP AND RESERVOIR HILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO SOUTHEAST TOWARD QUARTERMASTER BUILDINGS GROUP AND RESERVOIR HILL, FROM AMMUNITION (IGLOO) HILL. (Part 2 of a 3 view panorama; see also CA-2398-J-1 and CA-2398-16.) - Hamilton Field, East of Nave Drive, Novato, Marin County, CA

  8. Rocks of the Columbia Hills

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.

  9. Drought in the Black Hills

    NASA Image and Video Library

    2005-05-18

    Despite good rainfall and record-setting snowstorms in the spring of 2005, most of northeastern Wyoming, the Black Hills, and western South Dakota remained in the midst of a severe drought. These images are from NASA Terra spacecraft.

  10. The lowering of Glacial Lake Hitchcock in the Upper Connecticut Valley (New Hampshire and Vermont) as registered by varved sediments

    NASA Astrophysics Data System (ADS)

    Bigl, M.; Kelly, M. A.

    2012-12-01

    Subsequent to the last glacial maximum, the Laurentide Ice Sheet retreated northward through New England and New York and large glacial lakes formed in the Hudson, Connecticut and Merrimack Valleys. Varved sediments in these former lake basins preserve an incredible record of the timing and rates of ice sheet recession as well as regional climatic conditions. Here, we test the hypothesis that these varves also preserve a history of the lowering and drainage of the lakes. We present evidence of sudden increases in varve thicknesses within the former Glacial Lake Hitchcock (GLH) basin in the Connecticut River Valley of New Hampshire and Vermont and test the hypothesis that these result from lake-level lowering events. GLH existed in the Connecticut Valley due to a sediment dam at its southern end near Rocky Hill, CT. At its maximum, it may have extended from Rocky Hill to near Lyndon, VT. A breach of the Rocky Hill dam at ~13.5 ka caused the drainage of the southern basin of GLH, located south of the Holyoke Range in Massachusetts, but the northern basin of GLH (in the Upper Valley region of New Hampshire and Vermont) retained water until ~11.5 ka (Stone, 1999). However, no studies have focused on lake level fluctuation, exact timing of GLH drainage, and whether the lake drained in one episode or as a longer sequence of drainage events. We use sediment cores from modern lake basins to examine the lowering and final drainage of GLH in the Upper Valley region. As GLH lowered, these modern basins emerged (with higher elevation basins emerging first) and deposition in each basin transitioned from glacial varves to non-varved and organic-rich sediments. We hypothesize that during a lowering event a basin submerged by GLH would have received an increase in sediment flux from deposits exposed at the lakeshore and, thus, a sudden thickening of varves would occur. We test this hypothesis by comparing the age of the transition from glacial varves to non-varved and organic

  11. Terrestrial organic carbon contributions to sediments on the Washington margin

    NASA Astrophysics Data System (ADS)

    Prahl, F. G.; Ertel, J. R.; Goni, M. A.; Sparrow, M. A.; Eversmeyer, B.

    1994-07-01

    Elemental and stable carbon isotopic compositions and biomarker concentrations were determined in sediments from the Columbia River basin and the Washington margin in order to evaluate geochemical approaches for quantifying terrestrial organic matter in marine sediments. The biomarkers include: an homologous series of long-chain n-alkanes derived from the surface waxes of higher plants; phenolic and hydroxyalkanoic compounds produced by CuO oxidation of two major vascular plant biopolymers, lignin and cutin. All marine sediments, including samples collected from the most remote sites in Cascadia Basin, showed organic geochemical evidence for the presence of terrestrial organic carbon. Using endmember values for the various biomarkers determined empirically by two independent means, we estimate that the terrestrial contribution to the Washington margin is ~ 60% for shelf sediments, ~ 30% for slope sediments, and decreases further to ≤15% in basin sediments. Results from the same geochemical measurements made with depth in gravity core 6705-7 from Cascadia Seachannel suggest that our approach to assess terrestrial organic carbon contributions to contemporary deposits on the Washington margin can be applied to the study of sediments depositing in this region since the last glacial period.

  12. Benthic Foraminifers identify the source of displaced sediment from a sediment density flow at 1840 m near the Seafloor Instrument Node of the Monterey Coordinated Canyon Experiment

    NASA Astrophysics Data System (ADS)

    McGann, M.; Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Barry, J.; Carvajal, C.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Parsons, D. R.; O'Reilly, T. C.; Rosenberger, K. J.; Wolfson-Schwehr, M.; Simmons, S.; Sumner, E.; Talling, P.; Xu, J.

    2017-12-01

    Submarine canyons are found along the slopes of most continental margins and turbidity currents are thought to be the primary mechanism responsible for transporting sediment through them to deep-sea fans. The initiation sites of these flows are difficult to locate with any degree of precision from lithology alone. Fortunately, the presence of allochthonous microscopic remains, such as benthic foraminifers, can aid in the identification of the source of the displaced sediments. In Monterey Canyon, offshore California, a Seafloor Instrument Node (SIN) and adjacent mooring in the Coordinated Canyon Experiment indicate that a February 2017 turbidity current reached 1840 m water depth. In April 2017, one push core was obtained on each of four sides of the SIN just outside its frame and six others from 30-100 m away. Each was cut into 1 cm slices, stained with rose Bengal, washed, and analyzed for their microscopic constituents. Material recovered included terrestrial debris (wood, leaves, seeds, highway safety spheres, and volcanic glass) as well as foraminiferal tests. Dead benthic foraminifers from the estuarine (0-10 m), inner shelf (0-50 m), outer shelf (50-150 m), slope break (150 m), upper bathyal (150-500 m), and middle bathyal (500-2000 m) biofacies were present, suggesting a staged progression of sediment downslope from the continental shelf and slope. Living (rose Bengal stained) foraminifers recovered represent estuarine (Ammonia tepida, Elphidium excavatum), inner shelf (Buccella frigida, B. tenerrima, Buliminella elegantissima, Cibicides fletcheri, Nonionella spp., Rotorbinella turbinata), and upper bathyal (Bolivina pacifica, B. spissa, Epistominella exigua, Uvigerina peregrina) species as well as an in-situ middle bathyal biofacies (Bolivina argentea, B. spissa, Buliminella tenuata, Epistominella pacifica, Globobulimina spp., Uvigerina peregrina, U. hispida). The presence of living allochthonous benthic foraminifers from these shallower biofacies suggests

  13. Methods for Estimating Adsorbed Uranium(VI) and Distribution Coefficients of Contaminated Sediments

    USGS Publications Warehouse

    Kohler, M.; Curtis, G.P.; Meece, D.E.; Davis, J.A.

    2004-01-01

    Assessing the quantity of U(VI) that participates in sorption/desorption processes in a contaminated aquifer is an important task when investigating U migration behavior. U-contaminated aquifer sediments were obtained from 16 different locations at a former U mill tailings site at Naturita, CO (U.S.A.) and were extracted with an artificial groundwater, a high pH sodium bicarbonate solution, hydroxylamine hydrochloride solution, and concentrated nitric acid. With an isotopic exchange method, both a KD value for the specific experimental conditions as well as the total exchangeable mass of U(VI) was determined. Except for one sample, KD values determined by isotopic exchange with U-contaminated sediments that were in equilibrium with atmospheric CO2 agreed within a factor of 2 with KD values predicted from a nonelectrostatic surface complexation model (NEM) developed from U(VI) adsorption experiments with uncontaminated sediments. The labile fraction of U(VI) and U extracted by the bicarbonate solution were highly correlated (r2 = 0.997), with a slope of 0.96 ?? 0.01. The proximity of the slope to one suggests that both methods likely access the same reservoir of U(VI) associated with the sediments. The results indicate that the bicarbonate extraction method is useful for estimating the mass of labile U(VI) in sediments that do not contain U(IV). In-situ KD values calculated from the measured labile U(VI) and the dissolved U(VI) in the Naturita alluvial aquifer agreed within a factor of 3 with in-situ K D values predicted with the NEM and groundwater chemistry at each well.

  14. Sensitive Analysis of Protein Adsorption to Colloidal Gold by Differential Centrifugal Sedimentation

    PubMed Central

    2017-01-01

    It is demonstrated that the adsorption of bovine serum albumin (BSA) to aqueous gold colloids can be quantified with molecular resolution by differential centrifugal sedimentation (DCS). This method separates colloidal particles of comparable density by mass. When proteins adsorb to the nanoparticles, both their mass and their effective density change, which strongly affects the sedimentation time. A straightforward analysis allows quantification of the adsorbed layer. Most importantly, unlike many other methods, DCS can be used to detect chemisorbed proteins (“hard corona”) as well as physisorbed proteins (“soft corona”). The results for BSA on gold colloid nanoparticles can be modeled in terms of Langmuir-type adsorption isotherms (Hill model). The effects of surface modification with small thiol-PEG ligands on protein adsorption are also demonstrated. PMID:28513153

  15. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part I. Amino acids, carbohydrates and lignin

    NASA Technical Reports Server (NTRS)

    Steinberg, S. M.; Venkatesan, M. I.; Kaplan, I. R.

    1987-01-01

    Total organic carbon (TOC), lignin, amino acids, sugars and amino sugars were measured in recent sediments for the continental margin off southern New England. The various organic carbon fractions decreased in concentration with increasing distance from shore. The fraction of the TOC that was accounted for by these major components also decreased with increasing distance from shore. The concentration of lignin indicated that only about 3-5% of the organic carbon in the nearshore sediment was of terrestrial origin. The various fractions were highly correlated, which was consistent with a simple linear mixing model of shelf organic matter with material form the slope and rise and indicated a significant transport of sediment from the continental shelf to the continental slope and rise.

  16. Hypolithic Biocrust in the Larsemann Hills of East Antarctica: Spatial Patterns, Organic Matter Stabilization, Comparison with Endolithic Systems

    NASA Astrophysics Data System (ADS)

    Mergelov, Nikita; Dolgikh, Andrey; Shorkunov, Ilya; Zazovskaya, Elya; Shishkov, Vasily; Pochikalov, Alexander

    2017-04-01

    The survey conducted in the Larsemann Hills oasis of East Antarctica (69°24'S, 76°14'E) revealed that hypolithic and endolithic bio-abiotic systems occupy from 20 to 60% of the wet valleys floors and slopes area. As in many other parts of Antarctica a significant portion of organic matter in Larsemann Hills is produced in cryptic niches inside the fissure network of hard rocks or under the stone pavements on loose sediments. The dominant autotrophic components of such ecosystems are cyanobacteria and green algae, mainly in the form of biofilms. However moss dominated communities could form distinct patterns within hypolithic biocrust. The spatial distribution of various types of hypolithic biocrusts, its thickness, moisture content, carbon and nitrogen content/stocks, as well as C/N ratios were studied at a detailed scale at several key sites along the grid of 10x10 m with a step of 1 m (121 sampling points each). The data received are evident that microbial and cryptogamic photoautotrophs activity in hidden habitats under the stone pavements could lead to the substantial organic matter accumulation in extreme environment of East Antarctica - up to 5% of C and 0.4% of N. However the radiocarbon data indicate that in many cases the values of fraction modern (F14C) exceed "1" which means that organic matter in hypolithic biocrust is not preserved in a long-term period. This contrasts with 14C "ages" of endolithic systems on surrounding slopes of the valley exceeding 500 and sometimes 1000 yr BP. We found that once hypolithic organogenous material is buried under sand and gravel 2-5 cm deeper than common hypolithic biocrust it could preserve for a dramatically longer periods and have the 14C "age" up to 1100 yr BP. As evidenced by optical and scanning electron microscopy with EDX this old organogenous material of hypolithic origin still retains clear filamentous structure of cyanobacteria biofilm as well as remnants of EPS stabilized mainly by amorphous Si and Al

  17. Continental margin sedimentation: From sediment transport to sequence stratigraphy

    USGS Publications Warehouse

    Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P. M.; Wiberg, Patricia L.

    2007-01-01

    This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins.- Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes- Explores timescales ranging from particle transport at one extreme, to deep burial at the other- Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy- Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation- Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy

  18. A mountain river sediment cascade and its controls: the Schöttlbach torrent, Styria

    NASA Astrophysics Data System (ADS)

    Lutzmann, Silke; Stangl, Johannes; Sass, Oliver

    2017-04-01

    Steep alpine headwater torrents are characterized by episodic heavy floods and bedload pulses triggered by local high-intensity mountain rainstorms. They frequently pose serious risks and damage in the densely populated East Alpine Region. It is important to understand where critical sediments are mobilized, how much bedload is delivered to the outlet and what controls the variability. We present a concept to quantify the sediment cascade's components and influencing factors for the Schöttlbach torrent - a 71 km2 non-glaciated catchment in the Niedere Tauern mountain Range in Styria, Austria. Geomorphic mapping is used to identify primary bedload sources on slope as well as patterns of lithology, slope-channel coupling and vegetation conditioning erosion intensity. We apply modern near-range measuring techniques (TLS, Structure from Motion) to monitor erosion rates from representative erosion sites and sediment delivery rates at the outlet since 2014. These measurements are interpreted based on the geomorphic map to derive a catchment-wide seasonal sediment budget. To explain seasonal variations we evaluate precipitation and discharge data from a dense station network as storm precipitation and runoff events are the main triggers of torrent sediment mobilization. Torrent reaches in instable glaciofluvial sediments of the last glaciation show high average erosion rates of ca. 0.08 m/a from 2014 to 2016 surpassing rates in deeply weathered bedrock reaches by an order of magnitude (approx. 0.006 m/a). We model a torrent-wide erosion volume of 2000 m3/a opposing an output of 7000 m3/a in that period. We attribute parts of this discrepancy to a sediment wave reworking signal of an extreme flood event in 2011.

  19. Determining the palaeodrainage of the Nile river from a provenance study of the Nile delta cone sediments: an on-going geochemical study

    NASA Astrophysics Data System (ADS)

    Fielding, Laura; Najman, Yani; Millar, Ian; Butterworth, Peter; Kneller, Ben; Garzanti, Eduardo

    2013-04-01

    This study documents the palaeodrainage history of the Nile River, in particular the time of transition from a small locally sourced drainage network to the initiation of an extensive Nile catchment, by conducting a provenance study of the well-dated Nile cone sediments. The identification of specific source inputs into the Nile cone has important implications for the prediction of reservoir quality and connectivity in hydrocarbon reservoirs. Presently, the Nile river drains as far south as south of Lake Victoria, with the White Nile draining largely Cratonic basement rocks of Archean to Proterozoic ages and the Blue Nile draining Cenozoic continental flood basalts and Neoproterozoic basement in Ethiopia. However, the timing of catchment expansion to its current extent is highly debated. There are a number of proposed palaeodrainage reconstructions, two of which are: A) The Blue Nile did not connect with the main (lower) Nile until the Late Messinian, and the White Nile did not connect with the lower Nile until at 0.5 Ma (e.g. Issawi and McCauley, 1992). In this model, the pre-Messinian Nile cone sediments are derived exclusively from the northern part of the present drainage basin, from the Red Sea Hills. B) The Blue Nile and Atbara Rivers have been connected to the main (lower) Nile since the Oligocene, simultaneous with large scale regional uplift and volcanism in the Ethiopian Highlands; with the river following a similar course to present day (Burke and Wells 1989). The palaeo-Nile cone sediments have the capacity to provide a unique archive of the river's highly debated palaeodrainage history. Our first objective was to characterise petrographically, geochemically and isotopically each possible source area (Ethiopian Flood Basalts, African Craton and Red Sea Hills) using a multidisciplinary approach in order to identify the presence (if any) of sediment from these sources in the delta core samples. Heavy mineral, petrographic, U-Pb zircon and rutile analyses

  20. Morphological processes in permeable sediment traps with check dams

    NASA Astrophysics Data System (ADS)

    Schwindt, S.; Franca, M. J.; Schleiss, A. J.

    2017-12-01

    Sediment traps serve for the retention of sediment in the case of major floods, but the retention of sediment is not wanted up to smaller frequent floods which are important to the morphodynamics of rivers. A new concept for the sediment traps that enables sediment transfer for frequent floods and safely retains sediment in the case of important floods was recently developed and experimentally tested. The tests were performed using a standardized hydrograph and different barrier types for the mechanically or hydraulically controlled retention of sediments. The deposition pattern was measured at the end of every experimental run using a motion sensing camera. These measurements show that the shape of the deposits varies as a function of the retention control type (mechanical or hydraulic) and particularly as a function of the barrier height. Deposits were large when a high barrier was applied that was not overflown, and when both control types were combined. The deposition slope was shallow in the case of the high barrier, steeper for combined controls and steepest when mechanical control only was tested. The study enables a better understanding for the optimization of the shape of artificial deposition areas upstream of partially permeable check dams to enhance the tradeoff between eco-morphological and economical aspects of flood protection.