Science.gov

Sample records for hind limb scaling

  1. Scaling and functional morphology in strigiform hind limbs

    PubMed Central

    Madan, Meena A.; Rayfield, Emily J.; Bright, Jen A.

    2017-01-01

    Strigiformes are an order of raptorial birds consisting exclusively of owls: the Tytonidae (barn owls) and the Strigidae (true owls), united by a suite of adaptations aiding a keen predatory lifestyle, including robust hind limb elements modified for grip strength. To assess variation in hind limb morphology, we analysed how the dimensions of the major hind limb elements in subfossil and modern species scaled with body mass. Comparing hind limb element length, midshaft width, and robusticity index (RI: ratio of midshaft width to maximum length) to body mass revealed that femoral and tibiotarsal width scale with isometry, whilst length scales with negative allometry, and close to elastic similarity in the tibiotarsus. In contrast, tarsometatarsus width shows strong positive allometry with body mass, whilst length shows strong negative allometry. Furthermore, the tarsometatarsi RI scales allometrically to mass0.028, whilst a weak relationship exists in femora (mass0.004) and tibiotarsi (mass0.004). Our results suggest that tarsometatarsi play a more substantial functional role than tibiotarsi and femora. Given the scaling relationship between tarsometatarsal width and robusticity to body mass, it may be possible to infer the body mass of prehistoric owls by analysing tarsometatarsi, an element that is frequently preserved in the fossil record of owls. PMID:28327549

  2. Ontogenetic scaling of fore- and hind limb posture in wild chacma baboons (Papio hamadryas ursinus).

    PubMed

    Patel, Biren A; Horner, Angela M; Thompson, Nathan E; Barrett, Louise; Henzi, S Peter

    2013-01-01

    Large-scale interspecific studies of mammals ranging between 0.04-280 kg have shown that larger animals walk with more extended limb joints. Within a taxon or clade, however, the relationship between body size and joint posture is less straightforward. Factors that may affect the lack of congruence between broad and narrow phylogenetic analyses of limb kinematics include limited sampling of (1) ranges of body size, and/or (2) numbers of individuals. Unfortunately, both issues are inherent in laboratory-based or zoo locomotion research. In this study, we examined the relationship between body mass and elbow and knee joint angles (our proxies of fore- and hind limb posture, respectively) in a cross-sectional ontogenetic sample of wild chacma baboons (Papio hamadryas ursinus) habituated in the De Hoop Nature Reserve, South Africa. Videos were obtained from 33 individuals of known age (12 to ≥ 108 months) and body mass (2-29.5 kg) during walking trials. Results show that older, heavier baboons walk with significantly more extended knee joints but not elbow joints. This pattern is consistent when examining only males, but not within the female sample. Heavier, older baboons also display significantly less variation in their hind limb posture compared to lighter, young animals. Thus, within this ontogenetic sample of a single primate species spanning an order of magnitude in body mass, hind limb posture exhibited a postural scaling phenomenon while the forelimbs did not. These findings may further help explain 1) why younger mammals (including baboons) tend to have relatively stronger bones than adults, and 2) why humeri appear relatively weaker than femora (in at least baboons). Finally, this study demonstrates how field-acquired kinematics can help answer fundamental biomechanical questions usually addressed only in animal gait laboratories.

  3. Ontogenetic Scaling of Fore- and Hind Limb Posture in Wild Chacma Baboons (Papio hamadryas ursinus)

    PubMed Central

    Patel, Biren A.; Horner, Angela M.; Thompson, Nathan E.; Barrett, Louise; Henzi, S. Peter

    2013-01-01

    Large-scale interspecific studies of mammals ranging between 0.04–280 kg have shown that larger animals walk with more extended limb joints. Within a taxon or clade, however, the relationship between body size and joint posture is less straightforward. Factors that may affect the lack of congruence between broad and narrow phylogenetic analyses of limb kinematics include limited sampling of (1) ranges of body size, and/or (2) numbers of individuals. Unfortunately, both issues are inherent in laboratory-based or zoo locomotion research. In this study, we examined the relationship between body mass and elbow and knee joint angles (our proxies of fore- and hind limb posture, respectively) in a cross-sectional ontogenetic sample of wild chacma baboons (Papio hamadryas ursinus) habituated in the De Hoop Nature Reserve, South Africa. Videos were obtained from 33 individuals of known age (12 to ≥108 months) and body mass (2–29.5 kg) during walking trials. Results show that older, heavier baboons walk with significantly more extended knee joints but not elbow joints. This pattern is consistent when examining only males, but not within the female sample. Heavier, older baboons also display significantly less variation in their hind limb posture compared to lighter, young animals. Thus, within this ontogenetic sample of a single primate species spanning an order of magnitude in body mass, hind limb posture exhibited a postural scaling phenomenon while the forelimbs did not. These findings may further help explain 1) why younger mammals (including baboons) tend to have relatively stronger bones than adults, and 2) why humeri appear relatively weaker than femora (in at least baboons). Finally, this study demonstrates how field-acquired kinematics can help answer fundamental biomechanical questions usually addressed only in animal gait laboratories. PMID:23923046

  4. Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings

    PubMed Central

    McGowan, C P; Skinner, J; Biewener, A A

    2008-01-01

    The aim of this study was to examine hind limb scaling of the musculoskeletal system in the Macropodoidea, the superfamily containing wallabies and kangaroos, to re-examine the effect of size on the locomotor mechanics and physiology of marsupial hopping. Morphometric musculoskeletal analyses were conducted of 15 species and skeletal specimens of 21 species spanning a size range from 0.8 to 80 kg that included representatives of 12 of the 16 extant genera of macropodoids. We found that unlike other groups, macropodoids are able to match force demands associated with increasing body size primarily through a combination of positive allometry in muscle area and muscle moment arms. Isometric scaling of primary hind limb bones suggests, however, that larger species experience relatively greater bone stresses. Muscle to tendon area ratios of the ankle extensors scale with strong positive allometry, indicating that peak tendon stresses also increase with increasing body size but to a lesser degree than previously reported. Consistent with previous morphological and experimental studies, large macropodoids are therefore better suited for elastic strain energy recovery but operate at lower safety factors, which likely poses an upper limit to body size. Scaling patterns for extant macropodoids suggest that extinct giant kangaroos (∼250 kg) were likely limited in locomotor capacity. PMID:18086129

  5. Scaling factor relating conduction velocity and diameter for myelinated afferent nerve fibres in the cat hind limb.

    PubMed Central

    Boyd, I A; Kalu, K U

    1979-01-01

    1. Compound action potentials were recorded from certain muscle and cutaneous nerves in normal and chronically de-efferentated hind limbs of cats during stimulation of the appropriate dorsal spinal roots, 2. The peaks for groups I, II and III in the compound action potential were correlated with the corresponding peaks in the fibre-diameter histograms of the same de-efferentated nerve after processing it for light microscopy. 3. The scaling factor (ratio of conduction velocity in m/sec to total diameter in micrometer) was not constant for all sizes of fibre nor did it increase progressively with fibre size. Evidence is presented that a logarithmic relation between conduction velocity and fibre diameter is not appropriate. 4. In muscle nerves the scaling factor for fibres fixed by glutaraldehyde perfusion and embedded in Epon was 5.7 for group I afferent fibres and 4.6 for myelinated fibres in both group II and group III. 5. In cutaneous nerves the scaling factor was 5.6 for large fibres (group I or Abeta) and 4.6 for small fibres (group III or Adelta). 6. The scaling factor for group I fibres is the same as was found previously for alpha-efferent fibres, and that for groups II and III is the same as for gamma-efferent fibres (Boyd & Davey, 1968). 7. The possibility that there is a clear discontinuity in scaling factor between fibres in groups I and alpha, and those in other functional groups, is discussed. 8. It is concluded that there must be some structural feature of alpha and group I fibres which differs from that of smaller myelinated fibres. It is likely that a difference in the relative thickness of the myelin sheath is involved and possibly also in the conductances responsible for generating the action potential. Images Plate 1 PMID:458657

  6. Pelvic and hind limb musculature of Staurikosaurus pricei (Dinosauria: Saurischia).

    PubMed

    Grillo, Orlando N; Azevedo, Sergio A K

    2011-03-01

    The study of pelvic and hind limb bones and muscles in basal dinosaurs is important for understanding the early evolution of bipedal locomotion in the group. The use of data from both extant and extinct taxa placed into a phylogenetic context allowed to make well-supported inferences concerning most of the hind limb musculature of the basal saurischian Staurikosaurus pricei Colbert, 1970 (Santa Maria Formation, Late Triassic of Rio Grande do Sul, Brazil). Two large concavities in the lateral surface of the ilium represent the origin of the muscles iliotrochantericus caudalis plus iliofemoralis externus (in the anterior concavity) and iliofibularis (in the posterior concavity). Muscle ambiens has only one head and originates from the pubic tubercle. The origin of puboischiofemoralis internus 1 possibly corresponds to a fossa in the ventral margin of the pré-acetabular iliac process. This could represent an intermediate stage prior to the origin of a true pré-acetabular fossa. Muscles caudofemorales longus et brevis were likely well developed, and Staurikosaurus is unique in bearing a posteriorly projected surface for the origin of caudofemoralis brevis.

  7. Hind-limb vascular-capacitance responses in anaesthetized dogs.

    PubMed Central

    Hainsworth, R; Karim, F; McGregor, K H; Wood, L M

    1983-01-01

    In anaesthetized dogs a hind limb was vascularly isolated, perfused through the femoral artery at either constant flow or constant pressure and drained from the femoral vein at constant pressure. Inflow and outflow were recorded. Vascular-resistance changes were calculated from changes in pressure or flow and volume changes from the differences between inflow and outflow. During constant-flow perfusion, both changes in carotid sinus pressure and direct stimulation of efferent sympathetic nerves resulted in large resistance responses. However, changes in carotid sinus pressure did not result in changes in limb blood volume and only small decreases were obtained in response to direct stimulation. During constant-pressure perfusion, both reflex and direct stimulation resulted not only in significant changes in resistance but also in significant volume changes which were much larger than those obtained during constant-flow perfusion. Similar responses were obtained when the flow rate was changed by altering the pump speed. These results indicate that changes in pressure to carotid baroreceptors do not result in active capacitance responses in the limb circulation and that only very small responses are obtained even to electrical stimulation of sympathetic nerves. The larger responses occurring during constant-pressure perfusion are thought to be secondary to changes in blood flow. PMID:6875939

  8. Bone morphology of the hind limbs in two caviomorph rodents.

    PubMed

    de Araújo, F A P; Sesoko, N F; Rahal, S C; Teixeira, C R; Müller, T R; Machado, M R F

    2013-04-01

    In order to evaluate the hind limbs of caviomorph rodents a descriptive analysis of the Cuniculus paca (Linnaeus, 1766) and Hydrochoerus hydrochaeris (Linnaeus, 1766) was performed using anatomical specimens, radiography, computed tomography (CT) and full-coloured prototype models to generate bone anatomy data. The appendicular skeleton of the two largest rodents of Neotropical America was compared with the previously reported anatomical features of Rattus norvegicus (Berkenhout, 1769) and domestic Cavia porcellus (Linnaeus, 1758). The structures were analyzed macroscopically and particular findings of each species reported. Features including the presence of articular fibular projection and lunulae were observed in the stifle joint of all rodents. Imaging aided in anatomical description and, specifically in the identification of bone structures in Cuniculus paca and Hydrochoerus hydrochaeris. The imaging findings were correlated with the anatomical structures observed. The data may be used in future studies comparing these animals to other rodents and mammalian species. © 2012 Blackwell Verlag GmbH.

  9. New Australovenator Hind Limb Elements Pertaining to the Holotype Reveal the Most Complete Neovenatorid Leg

    PubMed Central

    White, Matt A.; Benson, Roger B. J.; Tischler, Travis R.; Hocknull, Scott A.; Cook, Alex G.; Barnes, David G.; Poropat, Stephen F.; Wooldridge, Sarah J.; Sloan, Trish; Sinapius, George H. K.; Elliott, David A.

    2013-01-01

    We report new skeletal elements pertaining to the same individual which represents the holotype of Australovenator wintonensis, from the ‘Matilda Site’ in the Winton Formation (Upper Cretaceous) of western Queensland. The discovery of these new elements means that the hind limb of Australovenator is now the most completely understood hind limb among Neovenatoridae. The new hind limb elements include: the left fibula; left metatarsal IV; left pedal phalanges I-2, II-1, III-4, IV-2, IV-3; and right pedal phalanges, II-2 and III-1. The detailed descriptions are supported with three dimensional figures. These coupled with the completeness of the hind limb will increase the utility of Australovenator in comparisons with less complete neovenatorid genera. These specimens and the previously described hind limb elements of Australovenator are compared with other theropods classified as neovenatorids (including Neovenator, Chilantaisaurus, Fukuiraptor, Orkoraptor and Megaraptor). Hind limb length proportion comparisons indicate that the smaller neovenatorids Australovenator and Fukuiraptor possess more elongate and gracile hind limb elements than the larger Neovenator and Chilantaisaurus. Greater stride lengths to body size exist in both Fukuiraptor and Australovenator with the femur discovered to be proportionally shorter the rest of the hind limb length. Additionally Australovenator is identified as possessing the most elongate metatarsus. The metatarsus morphology varies with body size. The larger neoventorids possess a metatarsus with greater width but shorter length compared to smaller forms. PMID:23894328

  10. New Australovenator hind limb elements pertaining to the holotype reveal the most complete Neovenatorid leg.

    PubMed

    White, Matt A; Benson, Roger B J; Tischler, Travis R; Hocknull, Scott A; Cook, Alex G; Barnes, David G; Poropat, Stephen F; Wooldridge, Sarah J; Sloan, Trish; Sinapius, George H K; Elliott, David A

    2013-01-01

    We report new skeletal elements pertaining to the same individual which represents the holotype of Australovenator wintonensis, from the 'Matilda Site' in the Winton Formation (Upper Cretaceous) of western Queensland. The discovery of these new elements means that the hind limb of Australovenator is now the most completely understood hind limb among Neovenatoridae. The new hind limb elements include: the left fibula; left metatarsal IV; left pedal phalanges I-2, II-1, III-4, IV-2, IV-3; and right pedal phalanges, II-2 and III-1. The detailed descriptions are supported with three dimensional figures. These coupled with the completeness of the hind limb will increase the utility of Australovenator in comparisons with less complete neovenatorid genera. These specimens and the previously described hind limb elements of Australovenator are compared with other theropods classified as neovenatorids (including Neovenator, Chilantaisaurus, Fukuiraptor, Orkoraptor and Megaraptor). Hind limb length proportion comparisons indicate that the smaller neovenatorids Australovenator and Fukuiraptor possess more elongate and gracile hind limb elements than the larger Neovenator and Chilantaisaurus. Greater stride lengths to body size exist in both Fukuiraptor and Australovenator with the femur discovered to be proportionally shorter the rest of the hind limb length. Additionally Australovenator is identified as possessing the most elongate metatarsus. The metatarsus morphology varies with body size. The larger neoventorids possess a metatarsus with greater width but shorter length compared to smaller forms.

  11. Treatment of hind limb ischemia using angiogenic peptide nanofibers.

    PubMed

    Kumar, Vivek A; Liu, Qi; Wickremasinghe, Navindee C; Shi, Siyu; Cornwright, Toya T; Deng, Yuxiao; Azares, Alon; Moore, Amanda N; Acevedo-Jake, Amanda M; Agudo, Noel R; Pan, Su; Woodside, Darren G; Vanderslice, Peter; Willerson, James T; Dixon, Richard A; Hartgerink, Jeffrey D

    2016-08-01

    For a proangiogenic therapy to be successful, it must promote the development of mature vasculature for rapid reperfusion of ischemic tissue. Whole growth factor, stem cell, and gene therapies have yet to achieve the clinical success needed to become FDA-approved revascularization therapies. Herein, we characterize a biodegradable peptide-based scaffold engineered to mimic VEGF and self-assemble into a nanofibrous, thixotropic hydrogel, SLanc. We found that this injectable hydrogel was rapidly infiltrated by host cells and could be degraded while promoting the generation of neovessels. In mice with induced hind limb ischemia, this synthetic peptide scaffold promoted angiogenesis and ischemic tissue recovery, as shown by Doppler-quantified limb perfusion and a treadmill endurance test. Thirteen-month-old mice showed significant recovery within 7 days of treatment. Biodistribution studies in healthy mice showed that the hydrogel is safe when administered intramuscularly, subcutaneously, or intravenously. These preclinical studies help establish the efficacy of this treatment for peripheral artery disease due to diminished microvascular perfusion, a necessary step before clinical translation. This peptide-based approach eliminates the need for cell transplantation or viral gene transfection (therapies currently being assessed in clinical trials) and could be a more effective regenerative medicine approach to microvascular tissue engineering.

  12. Architecture of the hind limb muscles of cats: functional significance.

    PubMed

    Sacks, R D; Roy, R R

    1982-08-01

    Force, velocity, and displacement properties of a muscle are determined in large part by its architectural design. The relative effect of muscle architecture on these physiological variables was studied by determining muscle weight, fiber length, average sarcomere length, and approximate angle of pinnation of 24 cat hind limb muscles. Muscle lengths ranged from 28.3 to 144 mm, whereas fiber lengths ranged from 8.4 to 105.5 mm. Generally, fiber to muscle length ratios were similar throughout a muscle. Estimated angles of pinnation of muscle fibers varied from 0 to 21 degrees with most having an angle of less than 10 degrees. The cross-sectional area of the knee extensors was similar to the knee flexors (16.43 vs. 16.83 cm2) whereas the cross-sectional area of the ankle extensors was more than six times greater than the ankle flexors (18.59 vs. 2.83 cm2). There was a 6.7-fold difference in the maximal force between muscles, when normalized to a constant weight, that could be attributed to architectural features. Ratios of wet weight to predicted maximal tetanic tension for each muscle and muscle group were calculated to compare the relative priority of muscle force versus muscle length-velocity for a given mass of muscle. These ratios varied from 0.4 to 4.84. The ratios suggest that velocity and/or displacement is a priority for the hamstrings, whereas force is a priority for the quadriceps and lower leg muscles. As much as a 12.6-fold difference in maximal velocity between muscles can be attributed to differences in fiber lengths. This can be compared to approximately a 2.5-fold difference in maximal velocity reported to occur as a result of biochemical (intrinsic) differences.

  13. Mechanical constraints on the functional morphology of the gibbon hind limb

    PubMed Central

    Channon, Anthony J; Günther, Michael M; Crompton, Robin H; Vereecke, Evie E

    2009-01-01

    Gibbons utilize a number of locomotor modes in the wild, including bipedalism, leaping and, most of all, brachiation. Each locomotor mode puts specific constraints on the morphology of the animal; in some cases these may be complementary, whereas in others they may conflict. Despite several studies of the locomotor biomechanics of gibbons, very little is known about the musculoskeletal architecture of the limbs. In this study, we present quantitative anatomical data of the hind limb for four species of gibbon (Hylobates lar, H. moloch, H. pileatus and Symphalangus syndactylus). Muscle mass and fascicle lengths were obtained from all of the major hind limb muscles and the physiological cross-sectional area was calculated and scaled to remove the effect of body size. The results clearly indicate that, for all of the species studied, the major hip, knee and ankle extensors are short-fascicled and pennate. The major hip and knee flexors, however, are long-fascicled, parallel muscles with relatively small physiological cross-sectional areas. We hypothesize that the short-fascicled muscles could be coupled with a power-amplifying mechanism and are predominantly useful in leaping. The long-fascicled knee and hip flexors are adapted for a wide range of joint postures and can play a role in flexing the legs during brachiation. PMID:19627388

  14. Mechanical constraints on the functional morphology of the gibbon hind limb.

    PubMed

    Channon, Anthony J; Günther, Michael M; Crompton, Robin H; Vereecke, Evie E

    2009-10-01

    Gibbons utilize a number of locomotor modes in the wild, including bipedalism, leaping and, most of all, brachiation. Each locomotor mode puts specific constraints on the morphology of the animal; in some cases these may be complementary, whereas in others they may conflict. Despite several studies of the locomotor biomechanics of gibbons, very little is known about the musculoskeletal architecture of the limbs. In this study, we present quantitative anatomical data of the hind limb for four species of gibbon (Hylobates lar, H. moloch, H. pileatus and Symphalangus syndactylus). Muscle mass and fascicle lengths were obtained from all of the major hind limb muscles and the physiological cross-sectional area was calculated and scaled to remove the effect of body size. The results clearly indicate that, for all of the species studied, the major hip, knee and ankle extensors are short-fascicled and pennate. The major hip and knee flexors, however, are long-fascicled, parallel muscles with relatively small physiological cross-sectional areas. We hypothesize that the short-fascicled muscles could be coupled with a power-amplifying mechanism and are predominantly useful in leaping. The long-fascicled knee and hip flexors are adapted for a wide range of joint postures and can play a role in flexing the legs during brachiation.

  15. Hind limb kinematics during therapeutic exercises in dogs with osteoarthritis of the hip joints.

    PubMed

    Bockstahler, Barbara A; Prickler, Bettina; Lewy, Elisabeth; Holler, Peter J; Vobornik, Angela; Peham, Christian

    2012-09-01

    To assess joint kinematics in dogs with osteoarthritis of the hip joints during walking up an incline or down a decline and over low obstacles and to compare findings with data for nonlame dogs. 10 dogs with osteoarthritis of the hip joints (mean ± SD age, 6.95 ± 3.17 years; mean body weight, 34.33 ± 13.58 kg) and 8 nonlame dogs (3.4 ± 2.0 years; 23.6 ± 4.6 kg). Reflective markers located on the limbs and high-speed cameras were used to record joint kinematics during walking up an incline or down a decline and over low obstacles. Maximal flexion, extension, and range of motion of the hip joints were calculated. Osteoarthritis of the hip joints reduced extension of both hip joints and flexion of the contralateral hind limb, compared with flexion of the lame hind limb, during walking down a decline. Walking up an incline resulted in decreased extension of the stifle joint in both hind limbs of osteoarthritic dogs; extension was significantly decreased for the lame hind limb. During walking over low obstacles, maximal flexion of the stifle joint was increased significantly for the contralateral hind limb. Maximal flexion was increased in both tarsal joints. Osteoarthritis of the hip joints led to complex changes in the gait of dogs, which involved more joints than the affected hip joint alone. Each exercise had specific effects on joint kinematics that must be considered when planning a rehabilitation program.

  16. A case report of partial bilateral hind limb adactyly in a male lamb.

    PubMed

    Rajabioun, Masoud; Kazemi Mehrjerdi, Hossein; Ghasemi, Samaneh

    2016-01-01

    Hemimelia as a congenital anomaly is a failure of development of extremities formation in embryonic period. This anomaly is defined as complete absence of the part of extremities and different forms were explained for hemimelia. Adactyly is an alternative name for transverse hemimelia and is a rare disorder in the most of animal species. A two months old male lamb with normal vital signs was referred to clinic due to both hind limbs shortness and absence of hooves from the birth day. Clinical and radiological examinations were performed and partial hemimelia was confirmed radiographically in both hind limbs. In left hind limb, total absence of the toe indicated presence of adactyly in this limb. No other congenital deformities were diagnosed in skeletal system based on clinical and radiological examinations. According to our knowledge, this is the first report of such rare conditions in a lamb. Clinical findings and radiological signs of this rare anomaly in a lamb were described in this report.

  17. Changes in the composition of hind limb lymph after chemical injury

    PubMed Central

    Boyles, Susan; Lewis, G. P.; Westcott, Barbara

    1970-01-01

    1. Lymph was collected directly from the hind limbs of rabbits and cats anaesthetized with pentobarbitone. 2. Injury to the hind limb was caused by injection of one of two chemicals; either dimethylsulphoxide (DMSO) which produced a mild injury, or croton oil which produced severe injury. 3. After subcutaneous injection (6 × 0·2 ml) into the right hind limb there was a good correlation between the changes in concentration of intracellular enzyme systems in the lymph draining the limb and the histological appearance of the injured tissue. DMSO caused an increase in cytoplasmic enzymes only, while after croton oil, which caused cell necrosis, there was an increase in the concentration of all intracellular enzymes examined. 4. There was an increased lymph flow accompanied by a fall in protein concentration after DMSO, while croton oil caused an increase in protein concentration and a variable effect on lymph flow. PMID:5485152

  18. Therapeutic effect of human adipose-derived stromal cells cluster in rat hind-limb ischemia.

    PubMed

    Park, In-Su; Kang, Jo A; Kang, Jungmi; Rhie, Jong-Won; Kim, Sang-Heon

    2014-12-01

    We investigated whether transplantation of three-dimensional cell masses (3DCM) of human adipose-derived stromal cells (hASCs) cultured on a basic fibroblast growth factor-immobilized substrate improved hind limb functional recovery by stimulating angiogenesis in an immune-competent rat ischemic limb model. In vitro experiments confirmed that cells within 3DCMs differentiate toward the endothelial lineage one day after culture in normal medium. The therapeutic effect of 3DCMs was evaluated by transplanting hASCs, phosphate-buffered saline alone, and the 3DCM into rat ischemic hind limbs. Blood flow was enhanced in the ischemic hind limb in the 3DCM-injected group compared with the other groups. The ratio of human nuclear antigen (HNA) and hVEGF-positive cells was significantly higher in the 3DCM-injected group compared to hASC-injected group. Human VEGF was observed in most HNA-positive cells. Many hCD31 and hSMA-positive cells were observed in vessel-like structures in the 3DCM-injected group. The 3DCM transplantation improved cell retention and angiogenic effects compared with ASC transplantation. These findings suggest that transplantation of 3DCMs may be an effective stem cell therapy for hind limb ischemia.

  19. Evaluation of a New Surgical Treatment for Equine Hind Limb Proximal Suspensory Desmitis.

    PubMed

    Brokken, Matthew T; Schneider, Robert K; Roberts, Gregory D; Holmes, Shannon P; Gavin, Patrick R; Sampson, Sarah N; Farnsworth, Kelly D; Dahlgren, Linda A

    2016-10-01

    To evaluate the effects of a new microfracture and ligament splitting procedure on ligament healing and to examine the usefulness of magnetic resonance (MR) imaging for monitoring ligament healing over time using a collagenase model of hind limb proximal suspensory desmitis. Experimental in vivo study. Healthy adult horses (n=6). Horses were free of lameness with normal hind limb proximal suspensory ligaments (PSL). The origin of both hind limb PSL was injected with collagenase and underwent MR imaging 2 weeks later, followed by the microfracture and ligament splitting procedure on 1 limb, with the opposite limb serving as the sham-operated control. Serial lameness and MR examinations were performed. Horses were euthanatized 210 days after surgery, the PSL harvested, and histology, biochemistry, and gene expression performed on both PSL. Collagenase lesions viewed on MR images appeared similar to those seen clinically. Serial MR images demonstrated resolution of abnormal signal intensity and tissue formation in the microfracture sites within the third metatarsal bone. Treated limbs had histologic evidence of connective tissue appearing to originate from the small perforations and blending into the ligament but no statistical differences were identified. Gene expression for cartilage oligomeric matrix protein and decorin were significantly increased in treated compared to control limbs. The microfracture and ligament splitting procedure did incite a tissue response but further clinical investigation is necessary to determine if this tissue remodeling at the bone-ligament interface translates to improved clinical outcome. MR imaging may be useful to follow healing in horses with hind limb proximal suspensory desmitis. © Copyright 2016 by The American College of Veterinary Surgeons.

  20. Effects of immobilization on rat hind limb muscles under non-weight-bearing conditions

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Fagan, Julie M.; Satarug, Soisungwan; Cook, Paul H.; Tischler, Marc E.

    1988-01-01

    The effect of stretched and unstretched immobilization of a hind limb on the concentration and the metabolism of proteins in the hind-limb muscles of rats was investigated. The animals were divided into three groups: (1) weight-bearing controls, (2) tail-cast-suspended, and (3) suspended, with one hind limb immobilized with the ankle in dorsiflexion (30-40 deg angle) and the other freely moving. It was found that unloading the hind limbs for 6 days by tail cast suspension caused soleus to atrophy and reduced growth of the gastrocnemius and plantaris muscles; unloading resulted in a higher degradation rate and lower synthesis rate in both in vitro and in vivo. Chronic stretch of the unloaded soleus not only prevented its atrophy but led to significant hypertrophy, relative to weight-bearing controls, with increases in both the sarcoplasmic and myofibrillar protein fractions. Immobilizing one ankle in dorsiflexion prevented the inhibition of growth in the plantaris and gastrocnemius muscles due to unloading.

  1. Effects of immobilization on rat hind limb muscles under non-weight-bearing conditions

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Fagan, Julie M.; Satarug, Soisungwan; Cook, Paul H.; Tischler, Marc E.

    1988-01-01

    The effect of stretched and unstretched immobilization of a hind limb on the concentration and the metabolism of proteins in the hind-limb muscles of rats was investigated. The animals were divided into three groups: (1) weight-bearing controls, (2) tail-cast-suspended, and (3) suspended, with one hind limb immobilized with the ankle in dorsiflexion (30-40 deg angle) and the other freely moving. It was found that unloading the hind limbs for 6 days by tail cast suspension caused soleus to atrophy and reduced growth of the gastrocnemius and plantaris muscles; unloading resulted in a higher degradation rate and lower synthesis rate in both in vitro and in vivo. Chronic stretch of the unloaded soleus not only prevented its atrophy but led to significant hypertrophy, relative to weight-bearing controls, with increases in both the sarcoplasmic and myofibrillar protein fractions. Immobilizing one ankle in dorsiflexion prevented the inhibition of growth in the plantaris and gastrocnemius muscles due to unloading.

  2. Hind-limb paresis in a dog with paralumbar solitary T-cell lymphoma.

    PubMed

    Ortega, Maria; Castillo-Alcala, Fernanda

    2010-05-01

    A 2-year-old, neutered, male golden retriever was referred to the Ontario Veterinary College, with a 6-week history of hind limb weakness and back pain. Magnetic resonance imaging of the lumbar vertebral column, and histopathology and immunohistochemistry following euthanasia identified an uncommon solitary T-cell lymphoma in the paralumbar area.

  3. Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab

    PubMed Central

    Crook, T C; Cruickshank, S E; McGowan, C M; Stubbs, N; Wakeling, J M; Wilson, A M; Payne, R C

    2008-01-01

    The Quarter Horse (bred for acceleration) and the Arab (bred for endurance) are situated at either end of the equine athletic spectrum. Studies into the form and function of the leg muscles in human sprint and endurance runners have demonstrated that differences exist in their muscle architecture. It is not known whether similar differences exist in the horse. Six Quarter Horse and six Arab fresh hind limb cadavers were dissected to gain information on the muscle mass and architecture of the following muscles: gluteus medius; biceps femoris; semitendinosus; vastus lateralis; gastrocnemius; tibialis cranialis and extensor digitorum longus. Specifically, muscle mass, fascicle length and pennation angle were quantified and physiological cross-sectional area (PCSA) and maximum isometric force were estimated. The hind limb muscles of the Quarter Horse were of a significantly greater mass, but had similar fascicle lengths and pennation angles when compared with those of the Arab; this resulted in the Quarter Horse hind limb muscles having greater PCSAs and hence greater isometric force potential. This study suggests that Quarter Horses as a breed inherently possess large strong hind limb muscles, with the potential to accelerate their body mass more rapidly than those of the Arab. PMID:18194205

  4. Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab.

    PubMed

    Crook, T C; Cruickshank, S E; McGowan, C M; Stubbs, N; Wakeling, J M; Wilson, A M; Payne, R C

    2008-02-01

    The Quarter Horse (bred for acceleration) and the Arab (bred for endurance) are situated at either end of the equine athletic spectrum. Studies into the form and function of the leg muscles in human sprint and endurance runners have demonstrated that differences exist in their muscle architecture. It is not known whether similar differences exist in the horse. Six Quarter Horse and six Arab fresh hind limb cadavers were dissected to gain information on the muscle mass and architecture of the following muscles: gluteus medius; biceps femoris; semitendinosus; vastus lateralis; gastrocnemius; tibialis cranialis and extensor digitorum longus. Specifically, muscle mass, fascicle length and pennation angle were quantified and physiological cross-sectional area (PCSA) and maximum isometric force were estimated. The hind limb muscles of the Quarter Horse were of a significantly greater mass, but had similar fascicle lengths and pennation angles when compared with those of the Arab; this resulted in the Quarter Horse hind limb muscles having greater PCSAs and hence greater isometric force potential. This study suggests that Quarter Horses as a breed inherently possess large strong hind limb muscles, with the potential to accelerate their body mass more rapidly than those of the Arab.

  5. Use of kinetic gait analysis for detection, quantification, and differentiation of hind limb lameness and spinal ataxia in horses.

    PubMed

    Ishihara, Akikazu; Reed, Stephen M; Rajala-Schultz, Päivi J; Robertson, James T; Bertone, Alicia L

    2009-03-01

    To evaluate use of kinetic gait analysis for detection, quantification, and differentiation of hind limb lameness and spinal ataxia in horses. Prospective clinical study. 36 horses. Procedures-Kinetic gait analysis with a force plate was performed for 12 clinically normal horses, 12 horses with hind limb lameness, and 12 horses with spinal ataxia. Kinetic variables were compared among groups, correlated to subjective grading, and used to build predictive models to assess the accuracy of discrimination. Subsets of kinetic variables were characteristically altered in ataxic and lame gaits. Ataxic horses had significantly increased lateral force peak and variation in vertical force peaks in both hind limbs. Lame horses had significantly decreased vertical force peak and increased variation in vertical force peaks only in the lame hind limb. These variables were used to differentiate between spinal ataxia and hind limb lameness with excellent accuracy. There were significant correlations between a subset of kinetic variables and subjective lameness and neurologic grades. Kinetic gait variables, specifically lateral force peak and the variation in vertical force, can be used to support the differential diagnosis between spinal ataxia and hind limb lameness in horses. Kinetic gait analysis may also be applied for quantification of equine hind limb gait abnormalities as well as confirming lack of lameness and ataxia in soundness examinations.

  6. A case report of partial bilateral hind limb adactyly in a male lamb

    PubMed Central

    Rajabioun, Masoud; Kazemi Mehrjerdi, Hossein; Ghasemi, Samaneh

    2016-01-01

    Hemimelia as a congenital anomaly is a failure of development of extremities formation in embryonic period. This anomaly is defined as complete absence of the part of extremities and different forms were explained for hemimelia. Adactyly is an alternative name for transverse hemimelia and is a rare disorder in the most of animal species. A two months old male lamb with normal vital signs was referred to clinic due to both hind limbs shortness and absence of hooves from the birth day. Clinical and radiological examinations were performed and partial hemimelia was confirmed radiographically in both hind limbs. In left hind limb, total absence of the toe indicated presence of adactyly in this limb. No other congenital deformities were diagnosed in skeletal system based on clinical and radiological examinations. According to our knowledge, this is the first report of such rare conditions in a lamb. Clinical findings and radiological signs of this rare anomaly in a lamb were described in this report. PMID:28144430

  7. Hind limb malformations in free-living northern leopard frogs (Rana pipiens) from Maine, Minnesota, and Vermont suggest multiple etiologies

    USGS Publications Warehouse

    Meteyer, C.U.; Loeffler, I.K.; Fallon, J.F.; Converse, K.A.; Green, E.; Helgen, J.C.; Kersten, S.; Levey, R.; Eaton-Poole, L.; Burkhart, J.G.

    2000-01-01

    Background Reports of malformed frogs have increased throughout the North American continent in recent years. Most of the observed malformations have involved the hind limbs. The goal of this study was to accurately characterize the hind limb malformations in wild frogs as an important step toward understanding the possible etiologies. Methods During 1997 and 1998, 182 recently metamorphosed northern leopard frogs (Rana pipiens) were collected from Minnesota, Vermont, and Maine. Malformed hind limbs were present in 157 (86%) of these frogs, which underwent necropsy and radiographic evaluation at the National Wildlife Health Center. These malformations are described in detail and classified into four major categories: (1) no limb (amelia); (2) multiple limbs or limb elements (polymelia, polydactyly, polyphalangy); (3) reduced limb segments or elements (phocomelia, ectromelia, ectrodactyly, and brachydactyly; and (4) distally complete but malformed limb (bone rotations, bridging, skin webbing, and micromelia). Results Amelia and reduced segments and/or elements were the most common finding. Frogs with bilateral hind limb malformations were not common, and in only eight of these 22 frogs were the malformations symmetrical. Malformations of a given type tended to occur in frogs collected from the same site, but the types of malformations varied widely among all three states, and between study sites within Minnesota. Conclusions Clustering of malformation type suggests that developmental events may produce a variety of phenotypes depending on the timing, sequence, and severity of the environmental insult. Hind limb malformations in free-living frogs transcend current mechanistic explanations of tetrapod limb development.

  8. Reinnervation of hind limb extremity after lumbar dorsal root ganglion injury.

    PubMed

    Liu, Song; Bréjot, Thomas; Cressant, Arnaud; Bacci, Josette; Saïd, Gérard; Tadié, Marc; Heard, Jean Michel

    2005-12-01

    Loss of dorsal root ganglion neuron, or injury to dorsal roots, induces permanent somatosensory defect without therapeutic option. We explored an approach to restoring hind limb somatosensory innervation after elimination of L4, L5 and L6 dorsal root ganglion neurons in rats. Somatosensory pathways were reconstructed by connecting L4, L5 and L6 lumbar dorsal roots to T10, T11 and T12 intercostal nerves, respectively, thus allowing elongation of thoracic ganglion neuron peripheral axons into the sciatic nerve. Connection of thoracic dorsal root ganglion neurons to peripheral tissues was documented 4 and 7 months after injury. Myelinated and unmyelinated fibers regrew in the sciatic nerve. Nerve terminations expressing calcitonin-gene-related-peptide colonized the footpad skin. Retrograde tracing showed that T10, T11 and T12 dorsal root ganglion neurons expressing calcitonin-gene-related-peptide or the neurofilament RT97 projected axons to the sciatic nerve and the footpad skin. Recording of somatosensory evoked potentials in the upper spinal cord indicated connection between the sciatic nerve and the central nervous system. Hind limb retraction in response to nociceptive stimulation of the reinnervated footpads and reversion of skin lesions suggested partial recovery of sensory function. Proprioceptive defects persisted. Delayed somatosensory reinnervation of the hind limb after destruction of lumbar dorsal root neurons in rats indicates potential approaches to reduce chronic disability after severe injury to somatosensory pathways.

  9. A new model for the immobilization of the rat hind limb.

    PubMed

    Coutinho, E L; Gomes, A R S; Franca, C N; Salvini, T F

    2002-11-01

    An alternative device for the immobilization of the hind limb of the rat was developed to study the effects of chronic disuse on the soleus and tibialis anterior muscles, maintained for 3 weeks in the shortening and the stretching positions, respectively. The proposed device is made of steel mesh and cotton materials, and has some advantages when compared to cast or plaster cast: it is cheaper, lighter (12 g or 4% of the body weight of the rat) and the same unit can be easily adjusted and used several times in the same animal or in animals of similar size. Immobilization is also useful to restrain the movements of the hip, knee, and ankle joints. Male rats (291 +/- 35 g and aged 14 +/- 2 weeks) were used to develop and test the model. The soleus muscle of 18 rats was maintained in a shortened position for 21 consecutive days and lost 19 +/- 7% of its length (P = 0.008) and 44 +/- 6% of its weight (P = 0.002) compared to the contralateral intact muscle. No difference (P = 0.67) was found in the stretched tibialis anterior of the same hind limb when compared to the contralateral muscle. No ulcer, sore or foot swelling was observed in the animals. Immobilization was effective in producing chronic muscle disuse in the hind limbs of rats and is an acceptable alternative to the traditional methods of immobilization such as cast or plaster cast.

  10. Insulin resistance of hind-limb tissues in vivo in lactating sheep.

    PubMed Central

    Vernon, R G; Faulkner, A; Hay, W W; Calvert, D T; Flint, D J

    1990-01-01

    1. The effects of varying the plasma insulin concentration by infusion while maintaining euglycaemia by infusion of glucose on nutrient arterio-venous differences across the hind-limb and mammary gland in lactating and non-lactating sheep were investigated. 2. Insulin infusion increased the glucose arterio-venous difference across the hind-limb; this effect of insulin was decreased by lactation, suggesting that lactation induces insulin resistance in skeletal muscle. 3. Lactation increased but insulin infusion decreased the plasma concentrations of acetate, beta-hydroxybutyrate and non-esterified fatty acids. 4. Insulin infusion decreased the arterio-venous differences of acetate and hydroxybutyrate across the hind-limb; this effect of insulin is probably indirect, resulting from the decrease in plasma concentrations of these metabolites. 5. Infusion of insulin had no effect on the glucose arterio-venous difference across the mammary gland, but did decrease the oxygen arterio-venous difference. 6. The results suggest that lactation results in insulin resistance in skeletal muscle, at least with respect to glucose utilization; this should facilitate the preferential utilization of glucose by the mammary gland. PMID:2241910

  11. Identifying risk factors for poor hind limb cleanliness in Danish loose-housed dairy cows.

    PubMed

    Nielsen, B H; Thomsen, P T; Sørensen, J T

    2011-08-01

    The objective of this study was to identify possible risk factors for poor cow hind limb cleanliness in Danish loose-housed, lactating dairy cows. The study was conducted as a cross-sectional study of 1315 cows in 42 commercial Danish dairy herds with primarily Danish Holstein cows. The effect of four cow-level factors (parity, days in milk, daily lying time and lameness) and eight herd-level factors (herd size, milk production, milking system, floor type, access to pasture grazing, floor scraping frequency, hoof bathing frequency and hoof washing frequency) on the risk of having dirtier hind limbs were analysed using ordinal logistic regression fitting a proportional odds model. Cow hind limb cleanliness was scored using an ordinal score from 1 to 4: 1 being clean and 4 being covered in dirt. The odds ratios (ORs) estimated from the proportional odds model depict the effect of a risk factor on the odds of having a higher rather than a lower cleanliness score. First parity cows had an increased risk of being dirtier compared with third parity or older cows (OR=1.70). Compared with late lactation, early and mid lactation were associated with an increased risk of being dirtier (OR=2.07 and 1.33, respectively). Decreasing the daily time lying by 30 min was associated with an increased risk of being dirtier (OR=1.05). Furthermore, an increased risk of being dirtier was found in herds with no pasture access (OR=3.75).

  12. Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2016-08-01

    Remote ischemic preconditioning is a well reported therapeutic strategy that induces cardioprotective effects but the underlying intracellular mechanisms have not been widely explored. The current study was designed to investigate the involvement of TRP and especially TRPV channels in remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 alternate cycles of inflation and deflation of 5 min each) was delivered using a blood pressure cuff tied on the hind limb of the anesthetized rat. Using Langendorff's system, the heart was perfused and subjected to 30-min ischemia and 120-min reperfusion. The myocardial injury was assessed by measuring infarct size, lactate dehydrogenase (LDH), creatine kinase (CK), LVDP, +dp/dtmax, -dp/dtmin, heart rate, and coronary flow rate. Gadolinium, TRP blocker, and ruthenium red, TRPV channel blocker, were employed as pharmacological tools. Remote hind limb preconditioning significantly reduced the infarct size, LDH release, CK release and improved coronary flow rate, hemodynamic parameters including LVDP, +dp/dtmax, -dp/dtmin, and heart rate. However, gadolinium (7.5 and 15 mg kg(-1)) and ruthenium red (4 and 8 mg kg(-1)) significantly attenuated the cardioprotective effects suggesting the involvement of TRP especially TRPV channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus possibly activates TRPV channels on the heart or sensory nerve fibers innervating the heart to induce cardioprotective effects. Alternatively, remote hind limb preconditioning stimulus may also activate the mechanosensitive TRP and especially TRPV channels on the sensory nerve fibers innervating the skeletal muscles to trigger cardioprotective neurogenic signaling cascade. The cardioprotective effects of remote hind limb preconditioning may be mediated via activation of mechanosensitive TRP and especially TRPV channels.

  13. Disparate Igf1 expression and growth in the fore- and hind limbs of a marsupial mammal (Monodelphis domestica).

    PubMed

    Sears, Karen E; Patel, Ankit; Hübler, Merla; Cao, Xiaoyi; Vandeberg, John L; Zhong, Sheng

    2012-06-01

    Proper regulation of growth is essential to all stages of life, from development of the egg into an embryo to the maintenance of normal cell cycle progression in adults. However, despite growth's importance to basic biology and health, little is known about how mammalian growth is regulated. In this study, we investigated the molecular basis of the highly disparate growth of opossum fore- and hind limbs in utero. We first used a novel, opossum-specific microarray to identify several growth-related genes that are differentially expressed in opossum fore- and hind limbs of comparable developmental stages. These genes included Igf1. Given Igf1's role in the growth of other systems, we further investigated the role of Igf1 in opossum limb growth. Supporting the microarray results, RT-PCR indicated that Igf1 levels are approximately two times higher in opossum fore- than hind limbs. Consistent with this, while Igf1 transcripts were readily detectable in opossum forelimbs using whole-mount in situ hybridization, they were not detectable in opossum hind limbs. Furthermore, opossum limbs treated with exogenous Igf1 protein experienced significantly greater cellular proliferation and growth than control limbs in vitro. Taken together, results suggest that the differential expression of Igf1 in developing opossum limbs contributes to their divergent rate of growth, and the unique limb phenotype of opossum newborns. This study establishes the opossum limb as a new mammalian model system for study of organ growth.

  14. Imaging receptor for advanced glycation end product expression in mouse model of hind limb ischemia

    PubMed Central

    2013-01-01

    Background The purpose of this study is to image the effect of diabetes on expression of receptor for advanced glycation endproducts (RAGE) in limb ischemia in live animals. Methods Male wild-type C57BL/6 mice were either made diabetic or left as control. Two months later, diabetic and non-diabetic mice underwent left femoral artery ligation. The right leg served as lesion control. Five days later, mice were injected with 15.1 ± 4.4 MBq 99mTc-anti-RAGE F(ab’)2 and 4 to 5 h later (blood pool clearance) underwent SPECT/CT imaging. At the completion of imaging, mice were euthanized, hind limbs counted and sectioned, and scans reconstructed. Regions of interest were drawn on serial transverse sections comprising the hind limbs and activity in millicuries summed and divided by the injected dose (ID). Quantitative histology was performed for RAGE staining and angiogenesis. Results Uptake of 99mTc-anti-RAGE F(ab')2 as %ID × 10−3 was higher in the left (ischemic) limbs for the diabetic mice (n = 8) compared to non-diabetic mice (n = 8) (1.20 ± 0.44% vs. 0.49 ± 0.40%; P = 0.0007) and corresponded to less angiogenesis in the diabetic mice. Uptake was also higher in the right limbs of diabetic compared to non-diabetic animals (0.82 ± 0.33% vs. 0.40 ± 0.14%; P = 0.0004). Conclusions These data show the feasibility of imaging and quantifying the effect of diabetes on RAGE expression in limb ischemia. PMID:23663412

  15. Hind limb unloading, a model of spaceflight conditions, leads to decreased B lymphopoiesis similar to aging.

    PubMed

    Lescale, Chloé; Schenten, Véronique; Djeghloul, Dounia; Bennabi, Meriem; Gaignier, Fanny; Vandamme, Katleen; Strazielle, Catherine; Kuzniak, Isabelle; Petite, Hervé; Dosquet, Christine; Frippiat, Jean-Pol; Goodhardt, Michele

    2015-02-01

    Within the bone marrow, the endosteal niche plays a crucial role in B-cell differentiation. Because spaceflight is associated with osteoporosis, we investigated whether changes in bone microstructure induced by a ground-based model of spaceflight, hind limb unloading (HU), could affect B lymphopoiesis. To this end, we analyzed both bone parameters and the frequency of early hematopoietic precursors and cells of the B lineage after 3, 6, 13, and 21 d of HU. We found that limb disuse leads to a decrease in both bone microstructure and the frequency of B-cell progenitors in the bone marrow. Although multipotent hematopoietic progenitors were not affected by HU, a decrease in B lymphopoiesis was observed as of the common lymphoid progenitor (CLP) stage with a major block at the progenitor B (pro-B) to precursor B (pre-B) cell transition (5- to 10-fold decrease). The modifications in B lymphopoiesis were similar to those observed in aged mice and, as with aging, decreased B-cell generation in HU mice was associated with reduced expression of B-cell transcription factors, early B-cell factor (EBF) and Pax5, and an alteration in STAT5-mediated IL-7 signaling. These findings demonstrate that mechanical unloading of hind limbs results in a decrease in early B-cell differentiation resembling age-related modifications in B lymphopoiesis.

  16. COORDINATED, MULTI-JOINT, FATIGUE-RESISTANT FELINE STANCE PRODUCED WITH INTRAFASCICULAR HIND LIMB NERVE STIMULATION

    PubMed Central

    Normann, R A; Dowden, B R; Frankel, M A; Wilder, A M; Hiatt, S D; Ledbetter, N M; Warren, D A; Clark, G A

    2012-01-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are bi-articular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve, and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes 1) that activated motor units in the extensor muscles of the hip, knee, and ankle joints, 2) that were able to evoke large extension forces, and 3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee, and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke, or disease. PMID

  17. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation

    NASA Astrophysics Data System (ADS)

    Normann, R. A.; Dowden, B. R.; Frankel, M. A.; Wilder, A. M.; Hiatt, S. D.; Ledbetter, N. M.; Warren, D. A.; Clark, G. A.

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  18. Muscular reconstruction and functional morphology of the hind limb of santacrucian (Early Miocene) sloths (Xenarthra, Folivora) of Patagonia.

    PubMed

    Toledo, Néstor; Bargo, M Susana; Vizcaíno, Sergio F

    2015-05-01

    This article presents a morphofunctional analysis of the hind limb of Santacrucian (Early Miocene) sloths from southernmost Patagonia (Argentina). These fossil sloths were mid sized to large animals, ranging from 40 to 120 kg, and their postcranial skeleton was markedly different in shape compared with that of extant tree sloths, which vary from 2 to 10 kg. The functional anatomy of the hind limb of Santacrucian sloths was compared with that of living xenarthrans (tree sloths, anteaters, and armadillos), which involved reconstruction of the hind limb musculature and comparative and qualitative morphofunctional analyses, and hypotheses on the biological role of the hind limb in terms of preferences in substrate, posture, and strategies of locomotion were formulated. The hind limb of Santacrucian sloths bears strong resemblances to that of living South American anteaters in stoutness of skeletal elements, form of the characteristics related to muscular and ligamentous attachments, and conservative, pentadactylous strong-clawed pes. The musculature was very well developed, allowing powerful forces, principally in entire limb adduction, crus flexion and extension, pes extension, and toe prehension. These functional features, together with those of the forelimb, are congruent with climbing behavior, and support the hypothesis that Santacrucian sloths were good but slow climbing mammals. However, their climbing strategies were limited, owing principally to their comparatively large body size, and they relied to a large extent on their powerful musculature and curved manual and pedal unguals for both moving and standing on the arboreal supports.

  19. The effect of baclofen on the hind limb flexor reflex of the spinal rat.

    PubMed

    Sypniewska, M

    1979-01-01

    The effect of baclofen on the hind limb flexor reflex of the spinal rat was studied. Baclofen inhibited the flexor reflex, this effect not being antagonized by picrotoxin and bicuculline. Baclofen reduced the stimulating action of quipazine and LSD, had no effect on the clonidine-induced reflex stimulation, but inhibited the flexor reflex stimulation induced by amphetamine and fenfluramine. The results obtained bring forth some doubts as to the GABA-mimetic action of baclofen. The action of baclofen on the spinal cord seems to be directed mainly to the presynaptic part of the noradrenergic and serotonergic systems.

  20. Combined effects of soy isoflavones and milk basic protein on bone mineral density in hind-limb unloaded mice

    PubMed Central

    Matsumoto, Yu; Tousen, Yuko; Nishide, Yoriko; Tadaishi, Miki; Kato, Ken; Ishimi, Yoshiko

    2016-01-01

    We examined whether the combination of isoflavone and milk basic protein both are reported to be effective for bone metabolism, prevents bone loss induced by skeletal hind-limb unloading in mice. Female ddY strain mice, aged 8 weeks, were divided into six groups (n = 6–8 each): (1) normally housed group, (2) loading group, (3) hind-limb unloading group fed a control diet, (4) hind-limb unloading group fed a 0.2% isoflavone conjugates diet, (5) hind-limb unloading group fed a 1.0% milk basic protein diet, and (6) hind-limb unloading group fed a 0.2% isoflavone conjugates and 1.0% milk basic protein diet. After 3 weeks, femoral bone mineral density was markedly reduced in unloading mice. The combination of isoflavone and milk basic protein showed cooperative effects in preventing bone loss and milk basic protein inhibited the increased expression of osteogenic genes in bone marrow cells in unloading mice. These results suggest that the combination of soy isoflavone and milk basic protein may be useful for bone health in subjects with disabling conditions as well as astronauts. PMID:27013781

  1. Perivertebral B-cell lymphoma in a Queensland koala (Phascolarctos cinereus adustus) with paralytic symptoms in the hind limbs.

    PubMed

    Kido, Nobuhide; Edamura, Kazuya; Inoue, Naomi; Shibuya, Hisashi; Sato, Tsuneo; Kondo, Masako; Shindo, Izumi

    2012-08-01

    A male Queensland koala (Phascolarctos cinereus adustus) at Kanazawa Zoological Gardens (Kanagawa, Japan) exhibited paralytic symptoms in the hind limbs. Computed tomography and magnetic resonance imaging revealed a mass on the left ventral side of the 11th to 13th thoracic vertebrae, and the presence of myelitis or edema in the spinal cord. The koala was under anesthesia during the examination and suddenly developed ventricular fibrillation and died. Necropsy revealed a firm flat ovoid hemorrhagic mass on the vertebrae. Following a microscopic examination including immunohistochemistry, the perivertebral mass was diagnosed as B cell lymphoma. Therefore, neoplastic cell infiltration into the spinal cord may cause paralytic symptoms in the hind limbs.

  2. The development of functional innervation in the hind limb of the chick embryo.

    PubMed Central

    Landmesser, L; Morris, D G

    1975-01-01

    1. The development of functional motor innervation was studied in the hind limb of chick embryos from Stages 25 to 43 by observing contraction of individual muscles and by recording the resultant tension when individual spinal nerves were electrically stimulated. 2. At later developmental stages (35-43) a given muscle always received functional innervation from specific spinal nerves. This pattern, with respect to the craniocaudal position of motoneurones, was similar to those described for amphibians and mammals. 3. The observed pattern was similar throughout development from the time that movement could first be elicited at Stages 27-28. There was no indication that motoneurones form initial synapses with inappropriate muscles. 4. Recordings from muscle nerves during excitation of individual spinal nerves gave results similar to the tension recordings, showing that even at early developmental stages muscle nerves did not contain substantial numbers of inappropriate axons. 5. Most limb muscles or primitive muscle masses became functionally innervated at the same time with no clearly defined proximo-distal sequence of limb innervation. 6. It appears that chick motoneurones are initially specified with respect to their peripheral destination and grow out selectively to synapse with appropriate muscles from the outset. PMID:1177095

  3. FACS-based Satellite Cell Isolation From Mouse Hind Limb Muscles.

    PubMed

    Gromova, Anastasia; Tierney, Matthew T; Sacco, Alessandra

    2015-08-20

    Fluorescence Activated Cell Sorting (FACS) is a sensitive and accurate method for purifying satellite cells, or muscle stem cells, from adult mouse skeletal muscle (Liu et al., 2013; Sacco et al., 2008; Tierney et al., 2014). Mechanical and enzymatic digestion of hind limb muscles releases mononuclear muscle cells into suspension. This protocol employs fractionation strategies to deplete cells expressing the cell surface markers CD45, CD31, CD11b and Ly-6A/E-Sca1, both by magnetic separation and FACS-based exclusion, and positively select for cells expressing a7-integrin and CD34. This enables the researcher to successfully enrich satellite cells that uniformly express the paired-box transcription factor Pax7 and are capable of long-term self-renewal, skeletal muscle repair and muscle stem cell pool repopulation.

  4. Effect of demedullation on freezing injury in hind limbs of rats

    NASA Astrophysics Data System (ADS)

    Dhingra, Shashi; Bhatia, B.; Chhina, G. S.; Singh, Baldev

    1987-09-01

    Freezing incidence and tissue loss on exposure of hind limbs of female Wistar rats to freezing mixture was reduced by demedullation 6 days prior to cold exposure (p<0.01 and p<0.001 respectively); demedullation 1 h after freezing injury had no effect on tissue loss. Noradrenaline (1 mg/kg i.p.) 5 min before exposure increased the freezing incidence in intact (p<0.05) as well as in demedullated rats (p<0.01), with no effect on tissue loss. Adrenaline (500 mg/kg i.p.) had no effect on either. A sustained fall in plasma adrenaline after demedullation leading to reduced reactivity of the blood vessels to some vasoactive agents is postulated.

  5. Pancreatic Histology and Associated Biochemical Changes in Rats on Hind-Limb Suspension

    NASA Astrophysics Data System (ADS)

    Soulsby, Michael; Johnson, Emily; Akel, Nisreen; Agarwal, Rakhee; Gaddy, Dana; Dobretsov, Maxim; Chowdhury, Parimal

    2011-06-01

    The pancreas plays an important role in regulating many of the key endocrine hormones and digestive enzymes that are required for nutrition and survival of the organism. This study examines the pancreatic histology and associated biochemical changes in rats on hind limb suspension (HLS) after exposure to simulated microgravity. Results show that MDA and glutathione levels were significantly increased in the suspended (HLS) groups as compared to the control group. Plasma insulin levels averaged 2.43±0.32 ng/ml in the control animals and decreased significantly to 1.47±0.24 ng/ml in the suspended group. Histopathology revealed increased vacuolation, pyknosis, membrane thickening, increase of zymogen granules and increase in islets (both in size and number) in the suspended group as compared to the control group.

  6. 3D reconstruction of digitized histological sections for vasculature quantification in the mouse hind limb

    NASA Astrophysics Data System (ADS)

    Xu, Yiwen; Pickering, J. Geoffrey; Nong, Zengxuan; Gibson, Eli; Ward, Aaron D.

    2014-03-01

    In contrast to imaging modalities such as magnetic resonance imaging and micro computed tomography, digital histology reveals multiple stained tissue features at high resolution (0.25μm/pixel). However, the two-dimensional (2D) nature of histology challenges three-dimensional (3D) quantification and visualization of the different tissue components, cellular structures, and subcellular elements. This limitation is particularly relevant to the vasculature, which has a complex and variable structure within tissues. The objective of this study was to perform a fully automated 3D reconstruction of histology tissue in the mouse hind limb preserving the accurate systemic orientation of the tissues, stained with hematoxylin and immunostained for smooth muscle α actin. We performed a 3D reconstruction using pairwise rigid registrations of 5μm thick, paraffin-embedded serial sections, digitized at 0.25μm/pixel. Each registration was performed using the iterative closest points algorithm on blood vessel landmarks. Landmarks were vessel centroids, determined according to a signed distance map of each pixel to a decision boundary in hue-saturation-value color space; this decision boundary was determined based on manual annotation of a separate training set. Cell nuclei were then automatically extracted and corresponded to refine the vessel landmark registration. Homologous nucleus landmark pairs appearing on not more than two adjacent slides were chosen to avoid registrations which force curved or non-sectionorthogonal structures to be straight and section-orthogonal. The median accumulated target registration errors ± interquartile ranges for the vessel landmark registration, and the nucleus landmark refinement were 43.4+/-42.8μm and 2.9+/-1.7μm, respectively (p<0.0001). Fully automatic and accurate 3D rigid reconstruction of mouse hind limb histology imaging is feasible based on extracted vasculature and nuclei.

  7. Engendering Allograft Ignorance in a Mouse Model of Allogeneic Skin Transplantation to the Distal Hind Limb

    PubMed Central

    Agarwal, Shailesh; Loder, Shawn; Wood, Sherri; Cederna, Paul S.; Bishop, D. Keith; Wang, Stewart C.; Levi, Benjamin

    2015-01-01

    Objective The aim of this study was to demonstrate lymphatic isolation in a model of hind limb lymph node (LN) excision, consisting of ipsilateral popliteal and inguinal LN excision and to evaluate the immunologic response to allogeneic skin transplanted onto this region of lymphatic isolation. Methods To study lymphatic flow, C57BL/6 mice underwent lymphadenectomy (n = 5), sham lymphadenectomy (n = 5), or no intervention (n = 5), followed by methylene blue injection. Mice were dissected to determine whether methylene blue traveled to the iliac LN. To study host response to skin transplantation, C57BL/6 mice underwent allogeneic skin transplantation with LN excision (n = 6), allogeneic skin transplantation alone (n = 6), or syngeneic skin transplantation (n = 4). Skin grafts were placed distal to the popliteal fossa and mice were euthanized at day 10. Grafts were stained for endothelial cell and proliferation markers (CD31 and Ki67, respectively). Secondary lymphoid tissues (spleen, ipsilateral axillary LN, and contralateral inguinal LN) were removed and rechallenged with BALB/c alloantigen in vitro with subsequent assay of interferon-γ and interleukin 4 cell expression using ELISPOT technique. Results Mice that underwent LN excision had no evidence of methylene blue in the iliac nodes; mice without surgical intervention or with sham LN excision consistently had methylene blue visible in the ipsilateral iliac nodes. Mice treated with allogeneic skin transplantation and LN excision had lower expression of interferon-γ and interleukin 4 in the secondary lymphoid tissues. Conclusions Lymph node excision completely interrupts lymphatic flow of the hind limb. This model of lymphatic isolation impairs the ability of the transplant recipient to acutely mount a Th1 or Th2 response to allogeneic skin transplants. PMID:24509194

  8. P2Y2 nucleotide receptor mediates arteriogenesis in a murine model of hind limb ischemia.

    PubMed

    McEnaney, Ryan M; Shukla, Ankur; Madigan, Michael C; Sachdev, Ulka; Tzeng, Edith

    2016-01-01

    Arteriogenesis represents the maturation of preformed vascular connections in response to flow changes and shear stress. These collateral vessels can restore up to 60% of the native blood flow. Shear stress and vascular injury can induce the release of nucleotides from vascular smooth muscle cells and platelets that can serve as signaling ligands, suggesting they may be involved in mediating arteriogenesis. The P2Y2 nucleotide receptor (P2Y2R) has also been shown to mediate smooth muscle migration and arterial remodeling. Thus, we hypothesize that P2Y2R mediates arteriogenesis in response to ischemia. Hind limb ischemia was induced by femoral artery ligation (FAL) in C57Bl/6NJ or P2Y2R negative mice (P2Y2(-/-)). Hind limb perfusion was measured with laser Doppler perfusion imaging and compared with the sham-operated contralateral limb immediately and at 3, 7, 14, 21, and 28 days after ligation. Collateral vessel size was measured by Microfil casting. Muscle specimens were harvested and analyzed with immunohistochemistry for Ki67, vascular cell adhesion molecule, macrophages, and muscle viability by hematoxylin and essoin stain. Hind limb ischemia induced by FAL in C57Bl/6NJ mice resulted in significant ischemia as measured by laser Doppler perfusion imaging. There was rapid recovery to nearly normal levels of perfusion by 2 weeks. FAL in P2Y2(-/-) mice resulted in severe ischemia with greater tissue loss. Recovery of perfusion was impaired, achieving only 40% compared with wild-type mice by 28 days. Collateral vessels in the P2Y2(-/-) mice were underdeveloped, with reduced vascular cell proliferation and smaller vessel size. The collaterals were ∼65% the size of wild-type collateral vessels (P = .011). Angiogenesis at 28 days in the ischemic muscle, however, was greater in the P2Y2(-/-) mice (P < .001), possibly related to persistent ischemia leading and angiogenic drive. Early macrophage recruitment was reduced by nearly 70% in P2Y2(-/-) despite significantly

  9. Investigating the involvement of TRPV1 ion channels in remote hind limb preconditioning-induced cardioprotection in rats.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2017-02-01

    Remote ischemic preconditioning (RIPC) treatment strategy is a breakthrough in the field of cardiovascular pharmacology as it has the potential to attenuate myocardial ischemia-reperfusion injury. However, the underlying intracellular pathways have not been widely explored. The present study intends to explore the possible role of TRPV1 channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 cycles in succession) was delivered by tying the blood pressure cuff at the inguinal level of the rat. The Langendorff system was used to perfuse the isolated heart and afterward was subjected to 30 min of global ischemia and 120 min of reperfusion. Sustained ischemia and, thereafter, reperfusion led to cardiac injury that was assessed in terms of infarct size, lactate dehydrogenase (LDH) release, creatine kinase (CK) release, left ventricular end diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), +dp/dtmax, -dp/dtmin, heart rate, rate pressure product, and coronary flow rate. The pharmacological modulators employed included capsaicin as TRPV1 agonist and capsazepine as TRPV1 antagonist. Remote hind limb preconditioning stimulus and capsaicin preconditioning (5 and 10 mg/kg) led to significant reduction in infarct size, LVEDP, LDH release, CK release, and significant improvement in LVDP, +dp/dtmax, -dp/dtmin, heart rate, rate pressure product, and coronary flow rate. However, remote hind limb preconditioning-induced cardioprotective effects were considerably abolished in the presence of capsazepine (2.5 and 5 mg/kg). This indicates that remote hind limb preconditioning stimulus possibly activates TRPV1 channels to produce cardioprotective effects.

  10. The development of motor projection patterns in the chick hind limb.

    PubMed Central

    Landmesser, L

    1978-01-01

    1. Retrograde transport of horseradish peroxidase was used to map the initial projection patterns of lumbosacral motoneurones to the embryonic chick hind limb. 2. The stage 28 segmental projection pattern to each of the four primary muscle masses was characteristic and indistinguishable from the stage 36 projection pattern to the sum of the muscles derived from that mass. In addition, the adductor motoneurone pool was found to be similar in position (both rostro-caudal and mediolateral) at stages 29, 30, 32, 33 1/2 and 36. 3. Therefore axons from lumbosacral motoneurones project for the most part only to appropriate regions from early times shortly after they grow into the limb bud. Furthermore, the attainment of the segmental projection pattern occurs prior to the normal time of, and therefore without the aid of, cell death. This conclusion was supported by electrophysiological recordings made from muscle nerves. 4. A regionalization of the projection patterns within a single muscle mass could be shown both anatomically and physiologically prior to the cleavage of the mass into individual muscles and the projections were in a general way appropriate for the muscles derived from those regions. 5. Therefore the process of muscle cleavage does not in itself create the specific projection patterns observed, and motoneurone axons appear to grow to and to ramify and make synapses only within regions which correspond to their adult muscles. 6. Finally, the termination site of each motoneurone axon in the early limb was found to be tightly correlated in a somatotopic fashion with the position occupied by its soma in the cord. This suggests that some feature of the motoneurone related to its position may be of importance in achieving the specific projection patterns observed. Images Plate 1 PMID:731552

  11. [Effect of two types of intermittent pressure on formation of pressure ulcer in rabbit hind limbs].

    PubMed

    Liu, Jianghui; Wang, Weiping; Wang, Keke; Chen, Xilin; Li, Qiang; Dai, Qiangsheng; Wang, Yongqian; Ji, Zhongliang

    2009-08-01

    To compare the effect of two types of intermittent pressure on formation of pressure ulcer in rabbit hind limbs and to investigate the mechanism of gradually changed intermittent pressure produced by waves bed in the prevention of pressure ulcer. Gracilis (3 cm2) in both hind limbs of 12 adult Japanese white rabbits were randomly loaded with gradually changed intermittent pressure (50-160 mm Hg, 1 mm Hg = 0.133 kPa) and sustained pressure (100 mmHg) serving as the experimental group and the control group, respectively. The experiment was terminated after 4 cycles, and a single cycle included 2 hours of compression and 30 minutes of compression-release. Blood velocity of hind limbs and blood perfusion of wound were detected by bidirectional Doppler blood flow detector and laser Doppler perfusion imaging detection system before compression and at every 10 minutes in compression-release period of each cycle (0, 10, 20 and 30 minutes). After the termination, gross observation of the wound was conducted, pathomorphological changes of tissues from compressed area were observed by HE staining, and contents of NO, malondialdehyde (MDA), and superoxide dismutase (SOD) in muscle tissue were measured using colorimetry method. No significant difference was evident between two groups in terms of blood flow velocity before compression (P > 0.05); the blood flow velocity of two groups decreased significantly at 0 minute in every compression-release period of each cycle, and no significant differences were noted between two groups (P > 0.05); the blood flow velocity of the experimental group was higher than that of the control group at 10, 20 and 30 minutes (P < 0.05). No significant difference was noted between two groups in terms of wound blood perfusion before compression (P > 0.05); the wound blood perfusion of two groups decreased significantly at 0 minute in every compression-release period of each cycle, and no significant differences were noted between two groups (P > 0

  12. A reproducible radiation delivery method for unanesthetized rodents during periods of hind limb unloading

    NASA Astrophysics Data System (ADS)

    Walb, M. C.; Black, P. J.; Payne, V. S.; Munley, M. T.; Willey, J. S.

    2015-07-01

    Exposure to the spaceflight environment has long been known to be a health challenge concerning many body systems. Both microgravity and/or ionizing radiation can cause acute and chronic effects in multiple body systems. The hind limb unloaded (HLU) rodent model is a ground-based analogue for microgravity that can be used to simulate and study the combined biologic effects of reduced loading with spaceflight radiation exposure. However, studies delivering radiation to rodents during periods of HLU are rare. Herein we report the development of an irradiation protocol using a clinical linear accelerator that can be used with hind limb unloaded, unanesthetized rodents that is capable of being performed at most academic medical centers. A 30.5 cm × 30.5 cm × 40.6 cm rectangular chamber was constructed out of polymethyl methacrylate (PMMA) sheets (0.64 cm thickness). Five centimeters of water-equivalent material were placed outside of two PMMA inserts on either side of the rodent that permitted the desired radiation dose buildup (electronic equilibrium) and helped to achieve a flatter dose profile. Perforated aluminum strips permitted the suspension dowel to be placed at varying heights depending on the rodent size. Radiation was delivered using a medical linear accelerator at an accelerating potential of 10 MV. A calibrated PTW Farmer ionization chamber, wrapped in appropriately thick tissue-equivalent bolus material to simulate the volume of the rodent, was used to verify a uniform dose distribution at various regions of the chamber. The dosimetry measurements confirmed variances typically within 3%, with maximum variance <10% indicated through optically stimulated luminescent dosimeter (OSLD) measurements, thus delivering reliable spaceflight-relevant total body doses and ensuring a uniform dose regardless of its location within the chamber. Due to the relative abundance of LINACs at academic medical centers and the reliability of their dosimetry properties, this

  13. A Reproducible Radiation Delivery Method for Unanesthetized Rodents during Periods of Hind Limb Unloading

    PubMed Central

    Walb, M.C.; Black, P.J.; Payne, V.S.; Munley, M.T.; Willey, J.S.

    2015-01-01

    Exposure to the spaceflight environment has long been known to be a health challenge concerning many body systems. Both microgravity and/or ionizing radiation can cause acute and chronic effects in multiple body systems. The hind limb unloaded (HLU) rodent model is a ground-based analogue for microgravity that can be used to simulate and study the combined biologic effects of reduced loading with spaceflight radiation exposure. However, studies delivering radiation to rodents during periods of HLU are rare. Herein we report the development of an irradiation protocol using a clinical linear accelerator that can be used with hind limb unloaded, unanesthetized rodents that is capable of being performed at most academic medical centers. A 30.5 cm × 30.5 cm × 40.6 cm rectangular chamber was constructed out of polymethyl methacrylate (PMMA) sheets (0.64 cm thickness). Five cm of water-equivalent material were placed outside of two PMMA inserts on either side of the rodent that permitted the desired radiation dose buildup (electronic equilibrium) and helped to achieve a flatter dose profile. Perforated aluminum strips permitted the suspension dowel to be placed at varying heights depending on the rodent size. Radiation was delivered using a medical linear accelerator at an accelerating potential of 10 MV. A calibrated PTW Farmer ionization chamber, wrapped in appropriately thick tissue-equivalent bolus material to simulate the volume of the rodent, was used to verify a uniform dose distribution at various regions of the chamber. The dosimetry measurements confirmed variances typically within 3%, with maximum variance <10% indicated through optically stimulated luminescent dosimeter (OSLD) measurements, thus delivering reliable spaceflight-relevant total body doses and ensuring a uniform dose regardless of its location within the chamber. Due to the relative abundance of LINAC’s at academic medical centers and the reliability of their dosimetry properties, this method

  14. A reproducible radiation delivery method for unanesthetized rodents during periods of hind limb unloading.

    PubMed

    Walb, M C; Black, P J; Payne, V S; Munley, M T; Willey, J S

    2015-07-01

    Exposure to the spaceflight environment has long been known to be a health challenge concerning many body systems. Both microgravity and/or ionizing radiation can cause acute and chronic effects in multiple body systems. The hind limb unloaded (HLU) rodent model is a ground-based analogue for microgravity that can be used to simulate and study the combined biologic effects of reduced loading with spaceflight radiation exposure. However, studies delivering radiation to rodents during periods of HLU are rare. Herein we report the development of an irradiation protocol using a clinical linear accelerator that can be used with hind limb unloaded, unanesthetized rodents that is capable of being performed at most academic medical centers. A 30.5 cm×30.5 cm×40.6 cm30.5 cm×30.5 cm×40.6 cm rectangular chamber was constructed out of polymethyl methacrylate (PMMA) sheets (0.64 cm thickness). Five centimeters of water-equivalent material were placed outside of two PMMA inserts on either side of the rodent that permitted the desired radiation dose buildup (electronic equilibrium) and helped to achieve a flatter dose profile. Perforated aluminum strips permitted the suspension dowel to be placed at varying heights depending on the rodent size. Radiation was delivered using a medical linear accelerator at an accelerating potential of 10 MV. A calibrated PTW Farmer ionization chamber, wrapped in appropriately thick tissue-equivalent bolus material to simulate the volume of the rodent, was used to verify a uniform dose distribution at various regions of the chamber. The dosimetry measurements confirmed variances typically within 3%, with maximum variance <10% indicated through optically stimulated luminescent dosimeter (OSLD) measurements, thus delivering reliable spaceflight-relevant total body doses and ensuring a uniform dose regardless of its location within the chamber. Due to the relative abundance of LINACs at academic medical centers and the reliability of their

  15. Effects of Hind Limb Unloading on Pharmacokinetics of Procainamide in Mice

    NASA Technical Reports Server (NTRS)

    Risin, Semyon A.; Dasgupta, Amitava; Ramesh, Govindarajan T.; Risin, Diana

    2007-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in space. It is prudent to expect that low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration. Among the medications of special interest are the cardiovascular drugs, especially the antiarrhythmic agents. In this study we used hind limb unloaded (HLU) mice as a model to investigate possible changes in the PK of a common antiarrhythmic drug procainamide (PA). Prior to drug administration the experimental animals were tail suspended for 24 hours and the control animals were kept free. PA (150-250 mg per kg) was given orally by a gavage procedure. After that the experimental mice were kept suspended for additional 1, 2, 3 and 6 hours. At these time points the serum concentration of PA and N-acetyl-procainamide (NAPA), an active metabolite which is formed by N-acetyltransferase in the liver, were measured by the fluorescence polarization immunoassay (FPIA) on the AxSYM autoanalyzer (Abbott Laboratories, Abbott Park, IL). The serum level of PA in HLU mice at 1 hour after administration was almost 40% lower than in controls. At 2-3 hours the difference still maintained, however, it was not statistically significant; at 6 hours no difference was detected. The level of NAPA in HLU mice was slightly lower at 1 and 2 hours but the difference did not reach statistical significance. The estimated PA half-life time in HLU mice was almost 55% longer than in control animals. These results confirm that hind limb unloading and related hemodynamic changes significantly alter the PK of PA. The effects are most likely primarily associated with a decrease in the drug absorption, especially within the first two hours after administration. At the same time prolongation of the PA half

  16. Effects of Hind Limb Unloading on Pharmacokinetics of Procainamide in Mice

    NASA Technical Reports Server (NTRS)

    Risin, Semyon A.; Dasgupta, Amitava; Ramesh, Govindarajan T.; Risin, Diana

    2007-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in space. It is prudent to expect that low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration. Among the medications of special interest are the cardiovascular drugs, especially the antiarrhythmic agents. In this study we used hind limb unloaded (HLU) mice as a model to investigate possible changes in the PK of a common antiarrhythmic drug procainamide (PA). Prior to drug administration the experimental animals were tail suspended for 24 hours and the control animals were kept free. PA (150-250 mg per kg) was given orally by a gavage procedure. After that the experimental mice were kept suspended for additional 1, 2, 3 and 6 hours. At these time points the serum concentration of PA and N-acetyl-procainamide (NAPA), an active metabolite which is formed by N-acetyltransferase in the liver, were measured by the fluorescence polarization immunoassay (FPIA) on the AxSYM autoanalyzer (Abbott Laboratories, Abbott Park, IL). The serum level of PA in HLU mice at 1 hour after administration was almost 40% lower than in controls. At 2-3 hours the difference still maintained, however, it was not statistically significant; at 6 hours no difference was detected. The level of NAPA in HLU mice was slightly lower at 1 and 2 hours but the difference did not reach statistical significance. The estimated PA half-life time in HLU mice was almost 55% longer than in control animals. These results confirm that hind limb unloading and related hemodynamic changes significantly alter the PK of PA. The effects are most likely primarily associated with a decrease in the drug absorption, especially within the first two hours after administration. At the same time prolongation of the PA half

  17. Effects of Cold Water Immersion on Edema Formation After Blunt Injury to the Hind Limbs of Rats

    PubMed Central

    Dolan, Michael G.; Thornton, Richard M.; Fish, Dale R.; Mendel, Frank C.

    1997-01-01

    Objective: Despite the long history of using cryotherapy to control edema, we found no randomized, controlled studies providing evidence to substantiate this common clinical practice. The purpose of this study was to determine whether cold water immersion affects edema formation following blunt injuries in rats. Design and Setting: The feet of 16 rats were traumatized after hind limb volumes were determined. Four 30-minute treatments of cold water immersion (12.8°C to 15.6°C, 55°F to 60°F), interspersed with four 30-minute rest periods, began immediately after trauma to one randomly selected hind limb of each rat. The limb remained in a dependent position during all treatments, rest periods, and volumetric measurements. Subjects: Sixteen anesthetized Zucker Lean rats were used in the study. Measurements: Limb volumes were measured after each treatment and rest period for a total of 4 hours. Results: The volume of treated limbs was significantly smaller (p < .05) than the volume of untreated limbs after the first treatment and remained smaller throughout the experiment. Conclusions: Immersing rat limbs in 12.8°C to 15.6°C (55°F to60°F) water immediately after blunt injury was effective in curbing edema formation. ImagesFig 1. PMID:16558455

  18. Three-dimensional kinematics of the pelvis and hind limbs in chimpanzee (Pan troglodytes) and human bipedal walking.

    PubMed

    O'Neill, Matthew C; Lee, Leng-Feng; Demes, Brigitte; Thompson, Nathan E; Larson, Susan G; Stern, Jack T; Umberger, Brian R

    2015-09-01

    The common chimpanzee (Pan troglodytes) is a facultative biped and our closest living relative. As such, the musculoskeletal anatomies of their pelvis and hind limbs have long provided a comparative context for studies of human and fossil hominin locomotion. Yet, how the chimpanzee pelvis and hind limb actually move during bipedal walking is still not well defined. Here, we describe the three-dimensional (3-D) kinematics of the pelvis, hip, knee and ankle during bipedal walking and compare those values to humans walking at the same dimensionless and dimensional velocities. The stride-to-stride and intraspecific variations in 3-D kinematics were calculated using the adjusted coefficient of multiple correlation. Our results indicate that humans walk with a more stable pelvis than chimpanzees, especially in tilt and rotation. Both species exhibit similar magnitudes of pelvis list, but with segment motion that is opposite in phasing. In the hind limb, chimpanzees walk with a more flexed and abducted limb posture, and substantially exceed humans in the magnitude of hip rotation during a stride. The average stride-to-stride variation in joint and segment motion was greater in chimpanzees than humans, while the intraspecific variation was similar on average. These results demonstrate substantial differences between human and chimpanzee bipedal walking, in both the sagittal and non-sagittal planes. These new 3-D kinematic data are fundamental to a comprehensive understanding of the mechanics, energetics and control of chimpanzee bipedalism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Muscle moment arms of the gibbon hind limb: implications for hylobatid locomotion

    PubMed Central

    Channon, Anthony J; Crompton, Robin H; Günther, Michael M; Vereecke, Evie E

    2010-01-01

    Muscles facilitate skeletal movement via the production of a torque or moment about a joint. The magnitude of the moment produced depends on both the force of muscular contraction and the size of the moment arm used to rotate the joint. Hence, larger muscle moment arms generate larger joint torques and forces at the point of application. The moment arms of a number of gibbon hind limb muscles were measured on four cadaveric specimens (one Hylobates lar, one H. moloch and two H. syndactylus). The tendon travel technique was used, utilizing an electro-goniometer and a linear voltage displacement transducer. The data were analysed using a technique based on a differentiated cubic spline and normalized to remove the effect of body size. The data demonstrated a functional differentiation between voluminous muscles with short fascicles having small muscle moment arms and muscles with longer fascicles and comparatively smaller physiological cross-sectional area having longer muscle moment arms. The functional implications of these particular configurations were simulated using a simple geometric fascicle strain model that predicts that the rectus femoris and gastrocnemius muscles are more likely to act primarily at their distal joints (knee and ankle, respectively) because they have short fascicles. The data also show that the main hip and knee extensors maintain a very small moment arm throughout the range of joint angles seen in the locomotion of gibbons, which (coupled to voluminous, short-fascicled muscles) might help facilitate rapid joint rotation during powerful movements. PMID:20447251

  20. Local and distant trauma after hypervelocity ballistic impact to the pig hind limb.

    PubMed

    Chen, Jin; Zhang, Bo; Chen, Wei; Kang, Jian-Yi; Chen, Kui-Jun; Wang, Ai-Min; Wang, Jian-Min

    2016-01-01

    The development of high-energy weapons could increase the velocity of projectiles to well over 1000 m/s. The nature of the injuries caused by the ballistic impact of projectiles at velocities much faster than 1000 m/s is unclear. This study characterizes the mechanical and biochemical alterations caused by high-speed ballistic impact generated by spherical steel ball to the hind limbs of the pig. That the local and distal injuries caused by hypervelocity ballistic impact to the living body are also identified. It is showed that the severity of the injury was positively correlated with the velocity of the projectile. And 4000 m/s seems to be the critical velocity for the 5.6 mm spherical steel ball, which would cause severe damage to either local or distal organs, as below that speed the projectile penetrated the body while above that speed it caused severe damage to the body. In addition, vaporization prevented the projectile from penetrating the body and the consequent pressure wave seems to be the causal factor for the distant damage.

  1. Du-zhong (Eucommia ulmoides) prevents disuse-induced osteoporosis in hind limb suspension rats.

    PubMed

    Pan, Yalei; Niu, Yinbo; Li, Chenrui; Zhai, Yuankun; Zhang, Rong; Guo, Xin; Mei, Qibing

    2014-01-01

    Du-Zhong has a long history of being used in traditional Chinese formulas to treat bone related diseases. The objective of the present study is to systematically investigate the effects of Du-Zhong cortex extract (DZCE) on disuse-induced osteoporosis. Rats were randomly divided into four groups, and three groups were treated with hind limb suspension (HLS). Control and HLS group received deionized distilled water, while the other two groups received alendronate (2.0 mg/kg/day) and DZCE (300 mg/kg/day) respectively by intragastric gavage for six weeks (two weeks prior to and during the four weeks of HLS). Dual-energy X-ray absorptiometry, assay of biochemical markers, and three-point bending test were employed to determine the effect of various treatments on bone mass, turnover, and strength. The trabecular bone microarchitecture was assessed by microCT analysis. DZCE could effectively prevent the bone loss induced by HLS, which was indicated by decreased levels of bone turnover markers as well as the changes in urinary calcium and phosphorus. The DZCE treatment also enhanced the biomechanical strength of bone and prevented the deterioration of trabecular bone microarchitecture. DZCE administration was able to prevent disuse-induced osteoporosis by regulating the bone metabolism, suggesting that DZCE could be used as an alternative therapy for the prevention of disuse-induced osteoporosis.

  2. Influence of 14-day hind limb unloading on isolated muscle spindle activity in rats.

    PubMed

    Zhao, Xue Hong; Fan, Xiao Li; Song, Xin Ai; Wu, Su Di; Ren, Jun Chan; Chen, Ming Xia

    2010-09-01

    During hind limb unloading (HU), the soleus is often in a shortened position and the natural physiological stimulus of muscle spindles is altered, such that muscle spindle activity also changes. Using isolated spindle conditions, the present study investigates the electrophysiological activity and ultrastructure of muscle spindles following HU. Results show that muscle spindle discharges fall into either of two main patterns, single spikes or spike clusters in shortened positions, with a steady frequency of 18-38 spikes/s (mean 29.08 +/- 2.45) in an extended position. Following 14-day HU, afferent discharge activity was significantly altered in soleus muscle spindles. Duration of individual spikes was significantly prolonged, from 0.54 +/- 0.05 ms for control rats to 1.53 +/- 0.25 ms for rats in the HU group. In a shortened position, regular rhythm afferent discharges were obviously depressed, and the majority of muscle spindles became silent, while in an extended position, the discharges remained continuous but with decreased frequency. Results also show that the ultrastructure of muscle spindles experience degenerative changes during HU. Altered muscle spindle afference could possibly modify the activity of motor neurons and further affect the activity of extrafusal fibers.

  3. Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse.

    PubMed

    Ferry, Arnaud; Parlakian, Ara; Joanne, Pierre; Fraysse, Bodvael; Mgrditchian, Takouhie; Roy, Pauline; Furling, Denis; Butler-Browne, Gillian; Agbulut, Onnik

    2015-07-01

    There is fear that mechanical overloading (OVL; ie, high-force contractions) accelerates Duchenne muscular dystrophy. Herein, we determined whether short-term OVL combined with wheel running, short-term OVL combined with irradiation, and long-term OVL are detrimental for hind limb mdx mouse muscle, a murine model of Duchene muscular dystrophy exhibiting milder dystrophic features. OVL was induced by the surgical ablation of the synergic muscles of the plantaris muscle, a fast muscle susceptible to contraction-induced muscle damage in mdx mice. We found that short-term OVL combined with wheel and long-term OVL did not worsen the deficit in specific maximal force (ie, absolute maximal force normalized to muscle size) and histological markers of muscle damage (percentage of regenerating fibers and fibrosis) in mdx mice. Moreover, long-term OVL did not increase the alteration in calcium homeostasis and did not deplete muscle cell progenitors expressing Pax 7 in mdx mice. Irradiation before short-term OVL, which is believed to inhibit muscle regeneration, was not more detrimental to mdx than control mice. Interestingly, short-term OVL combined with wheel and long-term OVL markedly improved the susceptibility to contraction-induced damage, increased absolute maximal force, induced hypertrophy, and promoted a slower, more oxidative phenotype. Together, these findings indicate that OVL is beneficial to mdx muscle, and muscle regeneration does not mask the potentially detrimental effect of OVL. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Morphological changes in hind limb muscles elicited by adjuvant-induced arthritis of the rat knee.

    PubMed

    Ozawa, J; Kurose, T; Kawamata, S; Yamaoka, K

    2010-02-01

    We investigated qualitative and quantitative changes in rat hind limb muscles caused by complete Freund's adjuvant (CFA)-induced knee joint pain. One week after CFA injection, muscle atrophy was induced only on the CFA-injected side. Wet weight of the rectus femoris (RF) and soleus (SOL) muscles were significantly decreased by 20% and 19%, respectively. The reduction in cross-sectional areas by CFA was similar for fast and slow muscle fibers in the RF (10% vs 15%, respectively) and SOL muscles (16% vs 16%, respectively). At the light microscopic level, pathological changes were not found in the RF muscles on both sides, although the infiltration of mononuclear cells and muscle regeneration were found in the SOL muscles on CFA-injected and contralateral control sides. On the other hand, electron microscopy revealed degenerative changes in the RF and SOL muscles on the CFA-injected side. Interestingly, sarcomere hypercontraction, indicating overexercise, was observed to a limited extent in the SOL muscles on the control side. In conclusions, knee joint pain can trigger the rapid development of muscle atrophy with degenerative changes not only in thigh but also calf muscles. This indicates that early interventions to inhibit joint pain or inflammation may prevent muscle atrophy.

  5. Muscle moment arms of the gibbon hind limb: implications for hylobatid locomotion.

    PubMed

    Channon, Anthony J; Crompton, Robin H; Günther, Michael M; Vereecke, Evie E

    2010-04-01

    Muscles facilitate skeletal movement via the production of a torque or moment about a joint. The magnitude of the moment produced depends on both the force of muscular contraction and the size of the moment arm used to rotate the joint. Hence, larger muscle moment arms generate larger joint torques and forces at the point of application. The moment arms of a number of gibbon hind limb muscles were measured on four cadaveric specimens (one Hylobates lar, one H. moloch and two H. syndactylus). The tendon travel technique was used, utilizing an electro-goniometer and a linear voltage displacement transducer. The data were analysed using a technique based on a differentiated cubic spline and normalized to remove the effect of body size. The data demonstrated a functional differentiation between voluminous muscles with short fascicles having small muscle moment arms and muscles with longer fascicles and comparatively smaller physiological cross-sectional area having longer muscle moment arms. The functional implications of these particular configurations were simulated using a simple geometric fascicle strain model that predicts that the rectus femoris and gastrocnemius muscles are more likely to act primarily at their distal joints (knee and ankle, respectively) because they have short fascicles. The data also show that the main hip and knee extensors maintain a very small moment arm throughout the range of joint angles seen in the locomotion of gibbons, which (coupled to voluminous, short-fascicled muscles) might help facilitate rapid joint rotation during powerful movements.

  6. Segmentation of digitized histological sections for quantification of the muscularized vasculature in the mouse hind limb.

    PubMed

    Xu, Yiwen; Pickering, J Geoffrey; Nong, Zengxuan; Ward, Aaron D

    2017-04-01

    Immunohistochemical tissue staining enhances microvasculature characteristics, including the smooth muscle in the medial layer of the vessel walls that is responsible for regulation of blood flow. The vasculature can be imaged in a comprehensive fashion using whole-slide scanning. However, since each such image potentially contains hundreds of small vessels, manual vessel delineation and quantification is not practically feasible. In this work, we present a fully automatic segmentation and vasculature quantification algorithm for whole-slide images. We evaluated its performance on tissue samples drawn from the hind limbs of wild-type mice, stained for smooth muscle using 3,3'-Diaminobenzidine (DAB) immunostain. The algorithm was designed to be robust to vessel fragmentation due to staining irregularity, and artefactual staining of nonvessel objects. Colour deconvolution was used to isolate the DAB stain for detection of vessel wall fragments. Complete vessels were reconstructed from the fragments by joining endpoints of topological skeletons. Automatic measures of vessel density, perimeter, wall area and local wall thickness were taken. The segmentation algorithm was validated against manual measures, resulting in a Dice similarity coefficient of 89%. The relationships observed between these measures were as expected from a biological standpoint, providing further reinforcement of the accuracy of this system. This system provides a fully automated and accurate means of measuring the arteriolar and venular morphology of vascular smooth muscle.

  7. Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration.

    PubMed

    Rinkevich, Yuval; Montoro, Daniel T; Muhonen, Ethan; Walmsley, Graham G; Lo, David; Hasegawa, Masakazu; Januszyk, Michael; Connolly, Andrew J; Weissman, Irving L; Longaker, Michael T

    2014-07-08

    The requirement and influence of the peripheral nervous system on tissue replacement in mammalian appendages remain largely undefined. To explore this question, we have performed genetic lineage tracing and clonal analysis of individual cells of mouse hind limb tissues devoid of nerve supply during regeneration of the digit tip, normal maintenance, and cutaneous wound healing. We show that cellular turnover, replacement, and cellular differentiation from presumed tissue stem/progenitor cells within hind limb tissues remain largely intact independent of nerve and nerve-derived factors. However, regenerated digit tips in the absence of nerves displayed patterning defects in bone and nail matrix. These nerve-dependent phenotypes mimic clinical observations of patients with nerve damage resulting from spinal cord injury and are of significant interest for translational medicine aimed at understanding the effects of nerves on etiologies of human injury.

  8. Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration

    PubMed Central

    Rinkevich, Yuval; Montoro, Daniel T.; Muhonen, Ethan; Walmsley, Graham G.; Lo, David; Hasegawa, Masakazu; Januszyk, Michael; Connolly, Andrew J.; Weissman, Irving L.; Longaker, Michael T.

    2014-01-01

    The requirement and influence of the peripheral nervous system on tissue replacement in mammalian appendages remain largely undefined. To explore this question, we have performed genetic lineage tracing and clonal analysis of individual cells of mouse hind limb tissues devoid of nerve supply during regeneration of the digit tip, normal maintenance, and cutaneous wound healing. We show that cellular turnover, replacement, and cellular differentiation from presumed tissue stem/progenitor cells within hind limb tissues remain largely intact independent of nerve and nerve-derived factors. However, regenerated digit tips in the absence of nerves displayed patterning defects in bone and nail matrix. These nerve-dependent phenotypes mimic clinical observations of patients with nerve damage resulting from spinal cord injury and are of significant interest for translational medicine aimed at understanding the effects of nerves on etiologies of human injury. PMID:24958860

  9. Impact of neonatal asphyxia and hind limb immobilization on musculoskeletal tissues and S1 map organization: implications for cerebral palsy.

    PubMed

    Coq, Jacques-Olivier; Strata, Fabrizio; Russier, Michaël; Safadi, Fayez F; Merzenich, Michael M; Byl, Nancy N; Barbe, Mary F

    2008-03-01

    Cerebral palsy (CP) is a complex disorder of locomotion, posture and movements resulting from pre-, peri- or postnatal damage to the developing brain. In a previous study (Strata, F., Coq, J.O., Byl, N.N., Merzenich, M.M., 2004. Comparison between sensorimotor restriction and anoxia on gait and motor cortex organization: implications for a rodent model of cerebral palsy. Neuroscience 129, 141-156.), CP-like movement disorders were more reliably reproduced in rats by hind limb sensorimotor restriction (disuse) during development rather than perinatal asphyxia (PA). To gain new insights into the underpinning mechanisms of CP symptoms we investigated the long-term effects of PA and disuse on the hind limb musculoskeletal histology and topographical organization in the primary somatosensory cortex (S1) of adult rats. Developmental disuse (i.e. hind limb immobilization) associated with PA induced muscle fiber atrophy, extracellular matrix changes in the muscle, and mild to moderate ankle and knee joint degeneration at levels greater than disuse alone. Sensorimotor restricted rats with or without PA exhibited a topographical disorganization of the S1 cortical hind limb representation with abnormally large, multiple and overlapping receptive fields. This disorganization was enhanced when disuse and PA were associated. Altered cortical neuronal properties included increased cortical responsiveness and a decrease in neuronal selectivity to afferent inputs. These data support previous observations that asphyxia per se can generate the substrate for peripheral tissue and brain damage, which are worsened by aberrant sensorimotor experience during maturation, and could explain the disabling movement disorders observed in children with CP.

  10. A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb

    PubMed Central

    2014-01-01

    Background The shape of the appendicular bones in mammals usually reflects adaptations towards different locomotor abilities. However, other aspects such as body size and phylogeny also play an important role in shaping bone design. We used 3D landmark-based geometric morphometrics to analyse the shape of the hind limb bones (i.e., femur, tibia, and pelvic girdle bones) of living and extinct terrestrial carnivorans (Mammalia, Carnivora) to quantitatively investigate the influence of body size, phylogeny, and locomotor behaviour in shaping the morphology of these bones. We also investigated the main patterns of morphological variation within a phylogenetic context. Results Size and phylogeny strongly influence the shape of the hind limb bones. In contrast, adaptations towards different modes of locomotion seem to have little influence. Principal Components Analysis and the study of phylomorphospaces suggest that the main source of variation in bone shape is a gradient of slenderness-robustness. Conclusion The shape of the hind limb bones is strongly influenced by body size and phylogeny, but not to a similar degree by locomotor behaviour. The slender-robust “morphological bipolarity” found in bone shape variability is probably related to a trade-off between maintaining energetic efficiency and withstanding resistance to stresses. The balance involved in this trade-off impedes the evolution of high phenotypic variability. In fact, both morphological extremes (slender/robust) are adaptive in different selective contexts and lead to a convergence in shape among taxa with extremely different ecologies but with similar biomechanical demands. Strikingly, this “one-to-many mapping” pattern of evolution between morphology and ecology in hind limb bones is in complete contrast to the “many-to-one mapping” pattern found in the evolution of carnivoran skull shape. The results suggest that there are more constraints in the evolution of the shape of the appendicular

  11. A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb.

    PubMed

    Martín-Serra, Alberto; Figueirido, Borja; Palmqvist, Paul

    2014-06-14

    The shape of the appendicular bones in mammals usually reflects adaptations towards different locomotor abilities. However, other aspects such as body size and phylogeny also play an important role in shaping bone design.We used 3D landmark-based geometric morphometrics to analyse the shape of the hind limb bones (i.e., femur, tibia, and pelvic girdle bones) of living and extinct terrestrial carnivorans (Mammalia, Carnivora) to quantitatively investigate the influence of body size, phylogeny, and locomotor behaviour in shaping the morphology of these bones. We also investigated the main patterns of morphological variation within a phylogenetic context. Size and phylogeny strongly influence the shape of the hind limb bones. In contrast, adaptations towards different modes of locomotion seem to have little influence. Principal Components Analysis and the study of phylomorphospaces suggest that the main source of variation in bone shape is a gradient of slenderness-robustness. The shape of the hind limb bones is strongly influenced by body size and phylogeny, but not to a similar degree by locomotor behaviour. The slender-robust "morphological bipolarity" found in bone shape variability is probably related to a trade-off between maintaining energetic efficiency and withstanding resistance to stresses. The balance involved in this trade-off impedes the evolution of high phenotypic variability. In fact, both morphological extremes (slender/robust) are adaptive in different selective contexts and lead to a convergence in shape among taxa with extremely different ecologies but with similar biomechanical demands. Strikingly, this "one-to-many mapping" pattern of evolution between morphology and ecology in hind limb bones is in complete contrast to the "many-to-one mapping" pattern found in the evolution of carnivoran skull shape. The results suggest that there are more constraints in the evolution of the shape of the appendicular skeleton than in that of skull shape

  12. Kinetic, kinematic, magnetic resonance and owner evaluation of dogs before and after the amputation of a hind limb.

    PubMed

    Galindo-Zamora, Vladimir; von Babo, Verena; Eberle, Nina; Betz, Daniela; Nolte, Ingo; Wefstaedt, Patrick

    2016-01-25

    The amputation of a limb is a surgical procedure that is regularly performed in small animal practice. In spite of several clinical reports indicating high owner satisfaction after limb amputation in dogs, an amputation is still very critically seen by the owners, and even by some veterinarians, due to the lack of accurate information about the recovery of amputee patients. Thus, the objective of this study was to prospectively evaluate, both objectively and subjectively, the recovery outcome of dogs undergoing a hind limb amputation. Twelve patients in which a hind limb amputation was scheduled were studied. Kinetic and kinematic gait analyses were performed before the amputation, and 10, 30, 90 and 120 days after surgery. Magnetic resonance (MR) examination of the contralateral stifle joint was performed before and 120 days after amputation. The subjective impressions of the owners were gathered at the same examination times of the gait analyses. Kinetic data showed a redistribution of the load to all remaining limbs after the amputation; ten days after the procedure patients had already established their new locomotory pattern. Kinematic data showed significant differences between sessions in the mean angle progression curves of almost all analyzed joints; however, the ranges of motion were very similar before and after the amputation, and remained constant in the subsequent sessions after the amputation. No changes in the signal intensity of the soft tissues evaluated, and no evidence of cartilage damage or osteoarthritis was seen on the MR examination of the contralateral stifle. Owners evaluated the results of the amputation very positively, both during and at the end of the study. Dogs had a quick adaptation after a hind limb amputation, and the adaptation process began before the amputation was performed. This happened without evidence of morphologic changes in the contralateral stifle joint, and with a very positive evaluation from the owner.

  13. Osteology and radiographic anatomy of the pelvis and hind limb of healthy ring-tailed lemurs (Lemur catta).

    PubMed

    Makungu, M; Groenewald, H B; du Plessis, W M; Barrows, M; Koeppel, K N

    2014-06-01

    In family Lemuridae, anatomical variations exist. Considering its conservation status (near threatened) and presence of similarities between strepsirrhines and primitive animals, it was thought to be beneficial to describe the gross osteology and radiographic anatomy of the pelvis and hind limb of ring-tailed lemurs (Lemur catta) as a reference for clinical use and species identification. Radiography was performed in 14 captive adult ring-tailed lemurs. The radiographic findings were correlated with bone specimens from two adult animals. Additionally, computed tomography of the hind limbs was performed in one animal. The pelvic bone has a well-developed caudal ventral iliac spine. The patella has a prominent tuberosity on the cranial surface. The first metatarsal bone and digit 1 are markedly stouter than the other metatarsal bones and digits with medial divergence from the rest of the metatarsal bones and digits. Ossicles were seen in the lateral meniscus, inter-phalangeal joint of digit 1 and in the infrapatellar fat pad. Areas of mineral opacity were seen within the external genitalia, which are believed to be the os penis and os clitoris. Variations exist in the normal osteology and radiographic appearance of the pelvis and hind limb of different animal species. The use of only atlases from domestic cats and dogs for interpretative purposes may be misleading. © 2013 Blackwell Verlag GmbH.

  14. Effect of recovery mode following hind-limb suspension on soleus muscle composition in the rat

    NASA Technical Reports Server (NTRS)

    McNulty, A. L.; Otto, A. J.; Kasper, C. E.; Thomas, D. P.

    1992-01-01

    The purpose of this study was to compare the effects of two different recovery modes from hind-limb suspension-induced hypodynamia on whole body and muscle (soleus) growth as well as soleus composition and size changes of different fiber types within this same muscle. Following 28 days of tail-suspension, rats were returned to their cages and sedentarily recovered (HS), or were exercised by running on a treadmill 5 days/wk, at progressively increasing workloads (HR) for one month. Sedentary and running control groups of animals (CS, CR) were also evaluated for comparative purposes. The exercise program, which was identical for CR and HR groups, had no effect on body wt., soleus wt., soleus muscle composition or fiber size in CR rats. Atrophied soleus muscle and reduced soleus wt./body wt. ratio (both 60% of control) had returned to control values by day 7 of recovery in both suspended groups despite the fact that whole body wt. gain was significantly reduced (p less than 0.05) in HR as compared to HS rats. Atrophied soleus Type I fiber mean cross-sectional area in both HR and HS groups demonstrated similar and significant (p less than 0.01) increases during recovery. Increases in Type IIa and IIc fiber area during this same period were significant only in the HR group. While the percentage area of muscle composed of Type I fibers increased in both hypodynamic groups during recovery, the reduction in area percentage of muscle made up of Type IIa fibers was again only significant in the HR group.(ABSTRACT TRUNCATED AT 250 WORDS).

  15. Muscle growth and fiber type composition in hind limb muscles during postnatal development in pigs.

    PubMed

    Wank, Veit; Fischer, Martin S; Walter, Bernd; Bauer, Reinhard

    2006-01-01

    Rapid postnatal development in pigs is reflected by differentiation in skeletal muscle. This process depends on muscle function and demands, but a comprehensive overview of individual developmental characteristics of quickly growing leg muscles in pigs is still missing. This study focused on the development of 10 hind limb muscles in pigs. To determine these changes in mass, fiber type patterns and fiber diameters were analyzed 0, 2, 4, 7, 14, 28, 42, 56 and 400 days after birth. Generally, the proportion of slow fibers increased from birth to 8 weeks. Thereafter, only minor changes in muscle fiber type composition were observed. The majority of the muscles contained less then 10% slow-twitch fibers at birth, increasing to between 12 (Musculus vastus lateralis) and 38% (M. gastrocnemius medialis) in adult pigs. By contrast, postural muscles already had 20-30% slow fibers at birth, and this contribution increased up to 65% in adults (i.e. M. vastus intermedius). From birth to the 2nd week, only in slow fibers could activity of oxidative enzymes be detected. A differentiation of fast-twitch fibers into subtypes with high (comparable to type IIA) and low oxidative metabolism (equivalent to type IIB) occurred between the 2nd and 4th week of life. The ratio between type II fibers with high and low oxidative enzyme activity did not change markedly through development in any muscle, although there was a trend towards an increasing proportion of type IIA fibers in the soleus. In the majority of the muscles investigated, the fast-twitch fibers with low oxidative metabolism (IIB) obtained the largest cross-sectional area. In contrast, at birth no remarkable differences in the diameter of fast and slow fibers were found. The rapid increase in muscle mass compared to body mass reflects the high performance in meat production of the cross pig investigated.

  16. A three-dimensional musculoskeletal model of the chimpanzee (Pan troglodytes) pelvis and hind limb.

    PubMed

    O'Neill, Matthew C; Lee, Leng-Feng; Larson, Susan G; Demes, Brigitte; Stern, Jack T; Umberger, Brian R

    2013-10-01

    Musculoskeletal models have become important tools for studying a range of muscle-driven movements. However, most work has been in modern humans, with few applications in other species. Chimpanzees are facultative bipeds and our closest living relatives, and have provided numerous important insights into our own evolution. A chimpanzee musculoskeletal model would allow integration across a wide range of laboratory-based experimental data, providing new insights into the determinants of their locomotor performance capabilities, as well as the origins and evolution of human bipedalism. Here, we described a detailed three-dimensional (3D) musculoskeletal model of the chimpanzee pelvis and hind limb. The model includes geometric representations of bones and joints, as well as 35 muscle-tendon units that were represented using 44 Hill-type muscle models. Muscle architecture data, such as muscle masses, fascicle lengths and pennation angles, were drawn from literature sources. The model permits calculation of 3D muscle moment arms, muscle-tendon lengths and isometric muscle forces over a wide range of joint positions. Muscle-tendon moment arms predicted by the model were generally in good agreement with tendon-excursion estimates from cadaveric specimens. Sensitivity analyses provided information on the parameters that model predictions are most and least sensitive to, which offers important context for interpreting future results obtained with the model. Comparisons with a similar human musculoskeletal model indicate that chimpanzees are better suited for force production over a larger range of joint positions than humans. This study represents an important step in understanding the integrated function of the neuromusculoskeletal systems in chimpanzee locomotion.

  17. A Modified Heterotopic Swine Hind Limb Transplant Model for Translational Vascularized Composite Allotransplantation (VCA) Research

    PubMed Central

    Ibrahim, Zuhaib; Cooney, Damon S.; Shores, Jaimie T.; Sacks, Justin M.; Wimmers, Eric G.; Bonawitz, Steven C.; Gordon, Chad; Ruben, Dawn; Schneeberger, Stefan; Lee, W. P. Andrew; Brandacher, Gerald

    2013-01-01

    Vascularized Composite Allotransplantation (VCA) such as hand and face transplants represent a viable treatment option for complex musculoskeletal trauma and devastating tissue loss. Despite favorable and highly encouraging early and intermediate functional outcomes, rejection of the highly immunogenic skin component of a VCA and potential adverse effects of chronic multi-drug immunosuppression continue to hamper widespread clinical application of VCA. Therefore, research in this novel field needs to focus on translational studies related to unique immunologic features of VCA and to develop novel immunomodulatory strategies for immunomodulation and tolerance induction following VCA without the need for long term immunosuppression. This article describes a reliable and reproducible translational large animal model of VCA that is comprised of an osteomyocutaneous flap in a MHC-defined swine heterotopic hind limb allotransplantation. Briefly, a well-vascularized skin paddle is identified in the anteromedial thigh region using near infrared laser angiography. The underlying muscles, knee joint, distal femur, and proximal tibia are harvested on a femoral vascular pedicle. This allograft can be considered both a VCA and a vascularized bone marrow transplant with its unique immune privileged features. The graft is transplanted to a subcutaneous abdominal pocket in the recipient animal with a skin component exteriorized to the dorsolateral region for immune monitoring. Three surgical teams work simultaneously in a well-coordinated manner to reduce anesthesia and ischemia times, thereby improving efficiency of this model and reducing potential confounders in experimental protocols. This model serves as the groundwork for future therapeutic strategies aimed at reducing and potentially eliminating the need for chronic multi-drug immunosuppression in VCA. PMID:24145603

  18. Effect of thermal injury on the kinin system in rabbit hind limb lymph

    PubMed Central

    Lewis, G. P.; Wawretschek, W. A.

    1971-01-01

    1. The kinin-forming activity of hind limb lymph and of plasma has been examined in rabbits before and after thermal injury. 2. Neither plasma nor lymph contained much active kallikrein activity but the enzyme was evident in samples treated with glass or with acid. 3. There was little or no increase in the activity of enzyme activated by glass after thermal injury, but an increase in the activity of enzyme activated by acid regularly occurred. 4. There were two increases in the activity of enzyme activated by acid—one about 2 h and the other 4-6 h after thermal injury. They corresponded to increases in vascular permeability as indicated by increases in the concentration of lymph protein. 5. There was considerably more kininogen in the lymph and plasma than was used in the assays of kallikrein activity, showing that the increased kinin-forming activity in lymph was not the result of the passage of kininogen from the plasma. 6. The increase in activity in lymph was not usually accompanied by a similar increase in the plasma. However, an increase in the activity of enzyme activated by acid sometimes occurred in the plasma simply as a result of prolonged anaesthesia. 7. It is suggested that whereas the enzyme activated by glass is a measure of prekallikrein, the acid activatable enzyme appears as a result of the dissociation of a kallikrein-inhibitor complex. An increase in the concentration of this complex is therefore an indication of the preceding activation of kallikrein. PMID:5136453

  19. Dynamics of goat distal hind limb muscle–tendon function in response to locomotor grade

    PubMed Central

    McGuigan, M. Polly; Yoo, Edwin; Lee, David V.; Biewener, Andrew A.

    2009-01-01

    Summary The functional roles of the lateral gastrocnemius (LG), medial gastrocnemius (MG) and superficial digital flexor (SDF) muscle–tendon units (MTUs) in domestic goats (N=6) were studied as a function of locomotor grade, testing the hypothesis that changes in distal limb muscle work would reflect changes in mechanical work requirements while goats walked or trotted on the level, 15 deg. decline and 15 deg. incline. As steep terrain-adapted animals, changes in muscle work output are expected to be particularly important for goats. In vivo muscle–tendon forces, fascicle length changes and muscle activation were recorded via tendon force buckles, sonomicrometry and electromyography to evaluate the work performance and elastic energy recovery of the three distal MTUs. These recordings confirmed that fascicle strain and force within goat distal hind limb muscles are adjusted in response to changes in mechanical work demand associated with locomotor grade. In general, muscle work was modulated most consistently by changes in fascicle strain, with increased net shortening (P<0.001) observed as goats switched from decline to level to incline locomotion. Peak muscle stresses increased as goats increased speed from a walk to a trot within each grade condition (P<0.05), and also increased significantly with grade (P<0.05 to P<0.01). Due to the increase in net fascicle shortening and muscle force, net muscle work per cycle also increased significantly (P<0.05 to P<0.005) as goats switched from decline to level to incline conditions (LG work: 20 mJ to 56 mJ to 209 mJ; MG work: –7 mJ to 34 mJ to 179 mJ; SDF work: –42 mJ to 14 mJ to 71 mJ, at a 2.5 ms–1 trot). Although muscle work was modulated in response to changes in grade, the amount of work produced by these three distal pennate muscles was small (being <3%) in comparison with the change in mechanical energy required of the limb as a whole. Elastic energy recovery in the SDF and gastrocnemius (GA) tendons was

  20. Recovery of sympathetic nerve function after lumbar sympathectomy is slower in the hind limbs than in the torso.

    PubMed

    Zheng, Zhi-Fang; Liu, Yi-Shu; Min, Xuan; Tang, Jian-Bing; Liu, Hong-Wei; Cheng, Biao

    2017-07-01

    Local sympathetic denervation by surgical sympathectomy is used in the treatment of lower limb ulcers and ischemia, but the restoration of cutaneous sympathetic nerve functions is less clear. This study aims to explore the recovery of cutaneous sympathetic functions after bilateral L2-4 sympathectomy. The skin temperature of the left feet, using a point monitoring thermometer, increased intraoperatively after sympathectomy. The cytoplasm of sympathetic neurons contained tyrosine hydroxylase and dopamine β-hydroxylase, visualized by immunofluorescence, indicated the accuracy of sympathectomy. Iodine starch test results suggested that the sweating function of the hind feet plantar skin decreased 2 and 7 weeks after lumbar sympathectomy but had recovered by 3 months. Immunofluorescence and western blot assay results revealed that norepinephrine and dopamine β-hydroxylase expression in the skin from the sacrococcygeal region and hind feet decreased in the sympathectomized group at 2 weeks. Transmission electron microscopy results showed that perinuclear space and axon demyelination in sympathetic cells in the L5 sympathetic trunks were found in the sympathectomized group 3 months after sympathectomy. Although sympathetic denervation occurred in the sacrococcygeal region and hind feet skin 2 weeks after lumbar sympathectomy, the skin functions recovered gradually over 7 weeks to 3 months. In conclusion, sympathetic functional recovery may account for the recurrence of hyperhidrosis after sympathectomy and the normalization of sympathetic nerve trunks after incomplete injury. The recovery of sympathetic nerve function was slower in the limbs than in the torso after bilateral L2-4 sympathectomy.

  1. Recovery of sympathetic nerve function after lumbar sympathectomy is slower in the hind limbs than in the torso

    PubMed Central

    Zheng, Zhi-fang; Liu, Yi-shu; Min, Xuan; Tang, Jian-bing; Liu, Hong-wei; Cheng, Biao

    2017-01-01

    Local sympathetic denervation by surgical sympathectomy is used in the treatment of lower limb ulcers and ischemia, but the restoration of cutaneous sympathetic nerve functions is less clear. This study aims to explore the recovery of cutaneous sympathetic functions after bilateral L2–4 sympathectomy. The skin temperature of the left feet, using a point monitoring thermometer, increased intraoperatively after sympathectomy. The cytoplasm of sympathetic neurons contained tyrosine hydroxylase and dopamine β-hydroxylase, visualized by immunofluorescence, indicated the accuracy of sympathectomy. Iodine starch test results suggested that the sweating function of the hind feet plantar skin decreased 2 and 7 weeks after lumbar sympathectomy but had recovered by 3 months. Immunofluorescence and western blot assay results revealed that norepinephrine and dopamine β-hydroxylase expression in the skin from the sacrococcygeal region and hind feet decreased in the sympathectomized group at 2 weeks. Transmission electron microscopy results showed that perinuclear space and axon demyelination in sympathetic cells in the L5 sympathetic trunks were found in the sympathectomized group 3 months after sympathectomy. Although sympathetic denervation occurred in the sacrococcygeal region and hind feet skin 2 weeks after lumbar sympathectomy, the skin functions recovered gradually over 7 weeks to 3 months. In conclusion, sympathetic functional recovery may account for the recurrence of hyperhidrosis after sympathectomy and the normalization of sympathetic nerve trunks after incomplete injury. The recovery of sympathetic nerve function was slower in the limbs than in the torso after bilateral L2–4 sympathectomy. PMID:28852403

  2. Exploring the Role of TRPV and CGRP in Adenosine Preconditioning and Remote Hind Limb Preconditioning-Induced Cardioprotection in Rats.

    PubMed

    Singh, Amritpal; Randhawa, Puneet Kaur; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2017-02-14

    The cardioprotective effects of remote hind limb preconditioning (RIPC) are well known, but mechanisms by which protection occurs still remain to be explored. Therefore, the present study was designed to investigate the role of TRPV and CGRP in adenosine and remote preconditioning-induced cardioprotection, using sumatriptan, a CGRP release inhibitor and ruthenium red, a TRPV inhibitor, in rats. For remote preconditioning, a pressure cuff was tied around the hind limb of the rat and was inflated with air up to 150 mmHg to produce ischemia in the hind limb and during reperfusion pressure was released. Four cycles of ischemia and reperfusion, each consisting of 5 min of inflation and 5 min of deflation of pressure cuff were used to produce remote limb preconditioning. An ex vivo Langendorff's isolated rat heart model was used to induce ischemia reperfusion injury by 30 min of global ischemia followed by 120 min of reperfusion. RIPC demonstrated a significant decrease in ischemia reperfusion-induced significant myocardial injury in terms of increase in LDH, CK, infarct size and decrease in LVDP, +dp/dtmax and -dp/dtmin. Moreover, pharmacological preconditioning with adenosine produced cardioprotective effects in a similar manner to RIPC. Pretreatment with sumatriptan, a CGRP release blocker, abolished RIPC and adenosine preconditioning-induced cardioprotective effects. Administration of ruthenium red, a TRPV inhibitor, also abolished adenosine preconditioning-induced cardioprotection. It may be proposed that the cardioprotective effects of adenosine and remote preconditioning are possibly mediated through activation of a TRPV channels and consequent, release of CGRP.

  3. In Vivo Detection of Macrophage Recruitment in Hind-Limb Ischemia Using a Targeted Near-Infrared Fluorophore

    PubMed Central

    Yoo, Jung Sun; Das, Raj Kumar; Jow, Zhi Yen; Chang, Young-Tae

    2014-01-01

    Macrophages are an essential component of the immune system and have protective and pathogenic functions in various diseases. Imaging of macrophages in vivo could furnish new tools to advance evaluation of disease and therapies. Critical limb ischemia is a disease in which macrophages have considerable pathogenic roles, and are potential targets for cell-based immunotherapy. We sought to develop a new near-infrared fluorescence (NIRF) imaging probe to target macrophages specifically in vivo in various pathological states, including hind-limb ischemia. We rapidly screened the photostable cyanine-based NIRF library against different blood cell lines. The identified monocyte/macrophage-selective hit was tested in vitro in live-cell labeling assay. Non-invasive NIRF imaging was performed with murine models of paw inflammation by lipopolysaccharide challenge and hind-limb ischemia with femoral artery ligation. in vivo macrophage targeting was further evaluated using intravital microscopy with Csf1r-EGFP transgenic mice and immunofluorescent staining with macrophage-specific markers. We discovered MF800, a Macrophage-specific near-infrared Fluorophore, which showed selective live-cell imaging performance in a panel of cell lines and primary human blood samples. MF800 outperforms the clinically-available NIRF contrast agent ICG for in vivo specificity in paw inflammation and hind-limb ischemia models. We observed a marked overlap of MF800-labeled cells and EGFP-expressing macrophages in intravital imaging of Csf1r-EGFP transgenic mice. In the histologic analysis, MF800-positive cells also expressed the macrophage markers CD68 and CD169. NIRF imaging showcased the potential of using MF800 to understand macrophage behavior in vivo, characterize macrophage-associated diseases, and may help in assessing therapeutic responses in the clinic. PMID:25072508

  4. The response of the hind-limb vascular bed of the rabbit to sympathetic stimulation and its modification by pregnancy.

    PubMed Central

    Humphreys, P W; Joels, N

    1982-01-01

    1. Pressure-flow relationships in the hind limb, perfused with blood at a series of constant flows, have been compared in primigravid and virgin rabbits following section of the lumbar sympathetic chain. 2. In the absence of sympathetic stimulation perfusion pressure was lower (P less than 0.05) in the pregnant rabbits at all levels of flow to the leg. 3. It is concluded that pregnancy leads to a reduction in the vascular resistance of the acutely sympathectomized hind limb. 4. The pressure-flow curves of hind limbs from pregnant and non-pregnant rabbits in which the cutaneous circulation had been excluded by skinning the leg and ligating the ankle were also compared. Again, perfusion pressure at each flow level was lower in the limbs from the pregnant animals (P less than 0.05). 5. The sympathetic supply was stimulated at frequencies of 0.3, 1, 3, 7, 15 and 30 Hz. Irrespective of whether the cutaneous circulation was excluded, the pressure-flow curves for the hind limbs of pregnant and non-pregnant rabbits were different at the lower frequencies. As stimulus frequency rose this difference became smaller, and at a stimulus frequency of 7-15 Hz or more there was little difference in the position of the curves in pregnant and non-pregnant rabbits. 6. Examination of the pressure-flow curves suggests that when, as in these experiments, flow is held constant, the ability of sympathetic stimulation to increase the resistance to blood flow is reduced in pregnancy. However, if these pressure-flow curves are used to predict the change of flow that would occur at a constant perfusion pressure, the response to sympathetic stimulation appears to be greater in pregnancy. 7. Further analysis of the findings, based on certain assumptions, suggests that differences between the pressure-flow curves of pregnant and non-pregnant animals during sympathetic stimulation are due in the main to either a differing size of the unstimulated vascular beds or a differing compliance of their

  5. Fucoidan improves bioactivity and vasculogenic potential of mesenchymal stem cells in murine hind limb ischemia associated with chronic kidney disease.

    PubMed

    Lee, Jun Hee; Ryu, Jung Min; Han, Yong-Seok; Zia, Mohammad Farid; Kwon, Hyog Young; Noh, Hyunjin; Han, Ho Jae; Lee, Sang Hun

    2016-08-01

    Chronic kidney disease (CKD) is a significant risk factor for cardiovascular and peripheral vascular disease. Although mesenchymal stem cell (MSC)-based therapy is a promising strategy for treatment of ischemic diseases associated with CKD, the associated pathophysiological conditions lead to low survival and proliferation of transplanted MSCs. To address these limitations, we investigated the effects of fucoidan, a sulfated polysaccharide, on the bioactivity of adipose tissue-derived MSCs and the potential of fucoidan-treated MSCs to improve neovascularization in ischemic tissues of CKD mice. Treatment of MSCs with fucoidan increased their proliferative potential and the expression of cell cycle-associated proteins, such as cyclin E, cyclin dependent kinase (CDK) 2, cyclin D1, and CDK4, via focal adhesion kinase and the phosphatidylinositol-4,5-bisphosphate 3-kinase-Akt axis. Moreover, fucoidan enhanced the immunomodulatory activity of MSCs through the ERK-IDO-1 signal cascade. Fucoidan was found to augment the proliferation, incorporation, and endothelial differentiation of transplanted MSCs at ischemic sites in CKD mice hind limbs. In addition, transplantation of fucoidan-treated MSCs enhanced the ratio of blood flow and limb salvage in CKD mice with hind limb ischemia. To our knowledge, our findings are the first to reveal that fucoidan enhances the bioactivity of MSCs and improves their neovascularization in ischemic injured tissues of CKD. In conclusion, fucoidan-treated MSCs may provide an important pathway toward therapeutic neovascularization in patients with CKD.

  6. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    PubMed

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p < 0.01 for all comparisons). The TOS activity levels in blood samples were significantly higher in Control group and than the other groups (p <  0.01 for all comparison). The OSI were found to be significantly increased in the control group compared to others groups (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in the sham, CUR, DEX, and CUR-DEX groups, compared with the control group (p < 0.01). Rat hind limb ischemia-reperfusion causes histopathological changes in the kidneys. Curcumin and dexmedetomidine administered intraperitoneally was effective in reducing oxidative stress and renal histopathologic injury in an acute hind limb I/R rat model.

  7. Increased androgenic sensitivity in the hind limb muscular system marks the evolution of a derived gestural display

    PubMed Central

    Mangiamele, Lisa A.; Fuxjager, Matthew J.; Schuppe, Eric R.; Taylor, Rebecca S.; Hödl, Walter; Preininger, Doris

    2016-01-01

    Physical gestures are prominent features of many species’ multimodal displays, yet how evolution incorporates body and leg movements into animal signaling repertoires is unclear. Androgenic hormones modulate the production of reproductive signals and sexual motor skills in many vertebrates; therefore, one possibility is that selection for physical signals drives the evolution of androgenic sensitivity in select neuromotor pathways. We examined this issue in the Bornean rock frog (Staurois parvus, family: Ranidae). Males court females and compete with rivals by performing both vocalizations and hind limb gestural signals, called “foot flags.” Foot flagging is a derived display that emerged in the ranids after vocal signaling. Here, we show that administration of testosterone (T) increases foot flagging behavior under seminatural conditions. Moreover, using quantitative PCR, we also find that adult male S. parvus maintain a unique androgenic phenotype, in which androgen receptor (AR) in the hind limb musculature is expressed at levels ∼10× greater than in two other anuran species, which do not produce foot flags (Rana pipiens and Xenopus laevis). Finally, because males of all three of these species solicit mates with calls, we accordingly detect no differences in AR expression in the vocal apparatus (larynx) among taxa. The results show that foot flagging is an androgen-dependent gestural signal, and its emergence is associated with increased androgenic sensitivity within the hind limb musculature. Selection for this novel gestural signal may therefore drive the evolution of increased AR expression in key muscles that control signal production to support adaptive motor performance. PMID:27143723

  8. Activation patterns of embryonic chick hind limb muscles recorded in ovo and in an isolated spinal cord preparation.

    PubMed

    Landmesser, L T; O'Donovan, M J

    1984-02-01

    Muscle activation patterns of embryonic chick hind limb muscles were determined from electromyographic (e.m.g.) recordings in an isolated spinal cord/hind limb preparation of stage 34-36 embryos, and were compared with in ovo e.m.g. activity from similarly staged embryos. Muscle activity in ovo consisted of periodically recurring sequences of bursts during which antagonistic muscles often alternated and synergistic muscles were co-active, as compatible with their mature function. However, more variable behaviour was also observed. Burst sequences in ovo were often initiated by a short-duration, high-amplitude discharge that occurred synchronously in all muscles studied, and which was followed by a period of electrical silence that was longest in the flexor muscles. This type of activity has not been described previously in mature animals. In ovo movement sequences were generally initiated by extensor activity which progressively declined in duration and intensity throughout the sequence, while flexor activity progressively intensified. The onset of activity in extensor muscles was accompanied by an abrupt decrease in flexor activity, whereas the converse was not observed. Spontaneous movement sequences also occurred when the spinal cord and hind limb were isolated and maintained in oxygenated Tyrode solution for several hours. Deafferentation experiments indicated that the motor pattern in this preparation was generated centrally by circuits within the spinal cord. Activity from the isolated cord was less variable than that occurring in ovo, consisting of sequences of highly regular recurring bursts. Each burst began with a brief high-amplitude discharge that occurred synchronously in all muscles and which was similar to that observed in ovo. This was followed by a silent period, which was longest in the flexors, and then by a more prolonged burst. Although its behaviour differs from that in ovo in some respects, it is concluded that the isolated cord maintained in

  9. Activation patterns of embryonic chick hind limb muscles recorded in ovo and in an isolated spinal cord preparation.

    PubMed Central

    Landmesser, L T; O'Donovan, M J

    1984-01-01

    Muscle activation patterns of embryonic chick hind limb muscles were determined from electromyographic (e.m.g.) recordings in an isolated spinal cord/hind limb preparation of stage 34-36 embryos, and were compared with in ovo e.m.g. activity from similarly staged embryos. Muscle activity in ovo consisted of periodically recurring sequences of bursts during which antagonistic muscles often alternated and synergistic muscles were co-active, as compatible with their mature function. However, more variable behaviour was also observed. Burst sequences in ovo were often initiated by a short-duration, high-amplitude discharge that occurred synchronously in all muscles studied, and which was followed by a period of electrical silence that was longest in the flexor muscles. This type of activity has not been described previously in mature animals. In ovo movement sequences were generally initiated by extensor activity which progressively declined in duration and intensity throughout the sequence, while flexor activity progressively intensified. The onset of activity in extensor muscles was accompanied by an abrupt decrease in flexor activity, whereas the converse was not observed. Spontaneous movement sequences also occurred when the spinal cord and hind limb were isolated and maintained in oxygenated Tyrode solution for several hours. Deafferentation experiments indicated that the motor pattern in this preparation was generated centrally by circuits within the spinal cord. Activity from the isolated cord was less variable than that occurring in ovo, consisting of sequences of highly regular recurring bursts. Each burst began with a brief high-amplitude discharge that occurred synchronously in all muscles and which was similar to that observed in ovo. This was followed by a silent period, which was longest in the flexors, and then by a more prolonged burst. Although its behaviour differs from that in ovo in some respects, it is concluded that the isolated cord maintained in

  10. Divergent systemic and local inflammatory response to hind limb demand ischemia in wild-type and ApoE-/- mice.

    PubMed

    Crawford, Robert S; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A; Abularrage, Christopher J; Yoo, Hyung-Jin; Lamuraglia, Glenn M; Watkins, Michael T

    2013-08-01

    We designed studies to determine whether the ApoE-/- phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE-/- phenotype is an experimental model for atherosclerosis in humans. Aged female ApoE-/- and C57BL6 mice underwent femoral artery ligation, then were divided into sedentary and demand ischemia (exercise) groups on day 14. We assessed baseline and postexercise limb perfusion and hind limb function. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, we harvested plasma and skeletal muscle from ischemic limbs from sedentary and exercised mice. We assayed muscle for angiogenic and proinflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Hind limb ischemia was similar in ApoE-/- and C57 mice before the onset of exercise. Under sedentary conditions, plasma vascular endothelial cell growth factor and interleukin-6, but not keratinocyte chemoattractant factor (KC) or macrophage inflammatory protein-2 (MIP-2), were higher in ApoE (P < 0.0001). After exercise, plasma levels of vascular endothelial cell growth factor, KC, and MIP-2, but not IL-6, were lower in ApoE (P < 0.004). The cytokines KC and MIP-2 in muscle were greater in exercised ApoE-/- mice compared with C57BL6 mice (P = 0.01). Increased poly-ADP-ribose activity and mature muscle regeneration were associated with demand ischemia in the C57BL6 mice, compared with the ApoE-/- mice (P = 0.01). Demand limb ischemia in the ApoE-/- phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Divergent Systemic and Local Inflammatory Response to Hind Limb Demand Ischemia in Wild Type And ApoE−/− Mice

    PubMed Central

    Crawford, Robert S.; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A.; Abularrage, Christopher J.; Yoo, Hyung-Jin; LaMuraglia, Glenn M.; Watkins, Michael T.

    2013-01-01

    Introduction Studies were designed to determine whether the ApoE−/− phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE−/− phenotype is an experimental model for atherosclerosis in humans. Methods Aged female ApoE −/− and C57BL6 mice underwent femoral artery ligation, then divided into sedentary and demand ischemia (exercise) groups on day 14. Baseline and post exercise limb perfusion and hind limb function were assessed. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, plasma and skeletal muscle from ischemic limbs were harvested from sedentary and exercised mice. Muscle was assayed for angiogenic and pro-inflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Results Hind limb ischemia was similar in ApoE −/− and C57 mice prior to the onset of exercise. Under sedentary conditions, plasma VEGF, IL-6, but not KC or MIP-2 were higher in ApoE (P<0.0001). Following exercise, plasma levels of VEGF, KC and MIP-2, but not IL-6 were lower in ApoE (P<0.004). The cytokines KC and MIP-2 in muscle was greater in exercised ApoE−/− mice as compared to C57BL6 mice (p=0.01). Increased PAR activity, and mature muscle regeneration was associated with demand ischemia in the C57BL6 mice as compared to the ApoE −/− mice (p=0.01). Conclusion Demand limb ischemia in the ApoE−/− phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. PMID:23528286

  12. Morphology of the pelvis and hind limb of the red panda (Ailurus fulgens) evidenced by gross osteology, radiography and computed tomography.

    PubMed

    Makungu, M; du Plessis, W M; Groenewald, H B; Barrows, M; Koeppel, K N

    2015-12-01

    The red panda (Ailurus fulgens) is a quadrupedal arboreal animal primarily distributed in the Himalayas and southern China. It is a species commonly kept in zoological collections. This study was carried out to describe the morphology of the pelvis and hind limb of the red panda evidenced by gross osteology, radiography and computed tomography as a reference for clinical use and identification of skeletons. Radiography of the pelvis and right hind limb was performed in nine and seven animals, respectively. Radiographic findings were correlated with bone specimens from three adult animals. Computed tomography of the torso and hind limb was performed in one animal. The pelvic bone had a wide ventromedial surface of the ilium. The trochlea of the femur was wide and shallow. The patella was similar to that seen in feline species. The medial fabella was not seen radiographically in any animal. The cochlea grooves of the tibia were shallow with a poorly defined intermediate ridge. The trochlea of the talus was shallow and presented with an almost flattened medial ridge. The tarsal sesamoid bone was always present. The lateral process of the base of the fifth metatarsal (MT) bone was directed laterally. The MT bones were widely spaced. The morphology of the pelvis and hind limb of the red panda indicated flexibility of the pelvis and hind limb joints as an adaptation to an arboreal quadrupedal lifestyle.

  13. p66(ShcA) and oxidative stress modulate myogenic differentiation and skeletal muscle regeneration after hind limb ischemia.

    PubMed

    Zaccagnini, Germana; Martelli, Fabio; Magenta, Alessandra; Cencioni, Chiara; Fasanaro, Pasquale; Nicoletti, Carmine; Biglioli, Paolo; Pelicci, Pier Giuseppe; Capogrossi, Maurizio C

    2007-10-26

    Oxidative stress plays a pivotal role in ischemic injury, and p66(ShcA)ko mice exhibit both lower oxidative stress and decreased tissue damage following hind limb ischemia. Thus, it was investigated whether tissue regeneration following acute hind limb ischemia was altered in p66(ShcA)ko mice. Upon femoral artery dissection, muscle regeneration started earlier and was completed faster than in wild-type (WT) control. Moreover, faster regeneration was associated with decreased oxidative stress. Unlike ischemia, cardiotoxin injury induced similar skeletal muscle damage in both genotypes. However, p66(ShcA)ko mice regenerated faster, in agreement with the regenerative advantage upon ischemia. Since no difference between p66(ShcA)wt and knock-out (ko) mice was found in blood perfusion recovery after ischemia, satellite cells (SCs), a resident population of myogenic progenitors, were examined. Similar SCs numbers were present in WT and ko mice. However, in vitro cultured p66(ShcA)ko SCs displayed lower oxidative stress levels and higher proliferation rate and differentiated faster than WT. Furthermore, when exposed to sublethal H(2)O(2) doses, p66(ShcA)ko SCs were resistant to H(2)O(2)-induced inhibition of differentiation. Finally, myogenic conversion induced by MyoD overexpression was more efficient in p66(ShcA)ko fibroblasts compared with WT. The present work demonstrates that oxidative stress and p66(ShcA) play a crucial role in the regenerative pathways activated by acute ischemia.

  14. Dynamic imaging of allogeneic adipose-derived regenerative cells transplanted in ischemic hind limb of apolipoprotein E mouse model

    PubMed Central

    Zheng, Yi; Qin, Jinbao; Wang, Xin; Peng, Zhiyou; Hou, Peiyong; Lu, Xinwu

    2017-01-01

    Background Transplantation of allogeneic adipose-derived regenerative cells (ADRCs) is a promising treatment modality for severe ischemic diseases. However, minimal information is available on the in vivo effects, fate, and migration of ADRCs, as well as the mechanisms of their therapeutic angiogenesis. Materials and methods In this study, green fluorescent protein-expressing ADRCs (GFP-ADRCs) were obtained, labeled with acetylated 3-aminopropyltrimethoxysilane (APTS)-coated iron oxide nanoparticles (APTS NPs), and injected into an old apolipoprotein E knockout (ApoE-KO) mouse model with hind limb ischemia. Then, 3.0 T magnetic resonance imaging (MRI) was performed to dynamically trace the role of ADRCs targeting hind limb ischemia in the ApoE-KO mice model. Results Labeled cells were visualized as large hypointense spots in ischemic muscles by serial 3.0 T MRI scans during a 4-week follow-up. The presence of labeled GFP-ADRCs was confirmed by Prussian blue staining and fluorescence microscopy on postmortem specimens. Conclusion This study showed that allogeneic ADRCs offer great potential application for therapeutic angiogenesis in severe ischemic disease based on the efficacy and feasibility of ADRC transplantation and on the available amounts of tissue. PMID:28053524

  15. AB296. SPR-23 Aberrant bladder reflexes can drive hind limb locomotor activity following complete suprasacral spinal cord injury

    PubMed Central

    Inouye, Brian M.; Brooks, Jillene M.; Degoski, Danielle J.; Hughes, Francis M.; Purves, J. Todd; Fraser, Matthew O.

    2016-01-01

    Objective Many rats with chronic suprasacral spinal cord injury (SCI) demonstrate hind limb locomotor activity (HLLA) in response to external crede or high pressure contractions during cystometry. We propose that this aberrant, pressure-driven bladder reflex pathway may be harnessed to facilitate walking in SCI patients. As a first step in exploring this possibility, we examined the relationship between intravesical pressure (IVP) and HLLA in chronic suprasacral SCI rats. Methods Female rats (4 weeks post-SCI at T9-10, n=16) were anesthetized with isoflurane and fitted with transvesical catheters and right quadriceps EMG electrodes to monitor bladder and hind limb locomotor activities, respectively. The animals were mounted in Ballman restraint cages to which they had been previously acclimated. The catheter was connected to a pressure transducer, an infusion pump, and a saline-filled reservoir mounted on a metered vertical pole (pressure clamp). After 30 min of recovery from anesthesia, the bladder was filled at 0.1 mL/min with saline to verify bladder-to-bladder reflex activity for 30 min. IVP was then increased in an interrupted stepwise fashion from 0–120 cmH2O at 10 cmH2O increments. Each step consisted of five minutes: 3 minutes at the new pressure followed by 2 minutes at 0 cmH2O. IVP and the number of HLLA events (as defined by rhythmic EMG discharges of 3–10 cycles/event) were recorded for each pressure step. This process was repeated for two more trials for each rat to assess the durability of the reflex. Data were analyzed using ANOVA with repeated measures both within and across pressure escalation trials. P<0.05 was considered significant. Results ANOVA revealed that locomotor events increased with increasing IVP and decreased with the number of escalation trials (P<0.0001 for both effects). The increase in the number of locomotor events with increasing IVP appeared to plateau at ~50–60 cmH2O (P<0.05 for all). The average of the maximal number of

  16. Trimodal rescue of hind limb ischemia with growth factors, cells, and nanocarriers: fundamentals to clinical trials.

    PubMed

    Lakshmanan, Rajesh; Ukani, Gopi; Rishi, Muhammad Tipu; Maulik, Nilanjana

    2017-10-01

    Peripheral artery disease is a severe medical condition commonly characterized by critical or acute limb ischemia. Gradual accumulation of thrombotic plaques in peripheral arteries of the lower limb may lead to intermittent claudication or ischemia in muscle tissue. Ischemic muscle tissue with lesions may become infected, resulting in a non-healing wound. Stable progression of the non-healing wound associated with severe ischemia might lead to functional deterioration of the limb, which, depending on the severity, can result in amputation. Immediate rescue of ischemic muscles through revascularization strategies is considered the gold standard to treat critical limb ischemia. Growth factors offer multiple levels of protection in revascularization of ischemic tissue. In this review, the basic mechanism through which growth factors exert their beneficial properties to rescue the ischemic limb is extensively discussed. Moreover, clinical trials based on growth factor and stem cell therapy to treat critical limb ischemia are considered. The clinical utility of stem cell therapy for the treatment of limb ischemia is explained and recent advances in nanocarrier technology for selective growth factor and stem cell supplementation are summarized.

  17. Accuracy and precision of hind limb foot contact timings of horses determined using a pelvis-mounted inertial measurement unit.

    PubMed

    Starke, Sandra D; Witte, Thomas H; May, Stephen A; Pfau, Thilo

    2012-05-11

    Gait analysis using small sensor units is becoming increasingly popular in the clinical context. In order to segment continuous movement from a defined point of the stride cycle, knowledge about footfall timings is essential. We evaluated the accuracy and precision of foot contact timings of a defined limb determined using an inertial sensor mounted on the pelvis of ten horses during walk and trot at different speeds and in different directions. Foot contact was estimated from vertical velocity events occurring before maximum sensor roll towards the contralateral limb. Foot contact timings matched data from a synchronised hoof mounted accelerometer well when velocity minimum was used for walk (mean (SD) difference of 15 (18)ms across horses) and velocity zero-crossing for trot (mean (SD) difference from -4 (14) to 12 (7)ms depending on the condition). The stride segmentation method also remained robust when applied to movement data of hind limb lame horses. In future, this method may find application in segmenting overground sensor data of various species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Vasomotor responses in the hind limbs of foetal and new-born lambs to asphyxia and aortic chemoreceptor stimulation.

    PubMed

    Dawes, G S; Lewis, B V; Milligan, J E; Roach, M R; Talner, N S

    1968-03-01

    1. Hind limb blood flow was measured in lambs of from 91 days gestation (delivered by Caesarean section) to 1 month after birth (term is about 147 days), under chloralose anaesthesia. Vascular resistance/100 g wet wt. increased progressively with age. There was reflex femoral vascular tone from the earliest age studied, as shown by vasodilatation on cutting the sciatic nerve.2. On asphyxia by cord occlusion reflex femoral vasoconstriction began earlier and was somewhat greater in older foetal lambs. At all ages, and after denervation of the hind limb, there was vasodilatation after local ischaemia, and a vasoconstriction of delayed onset during asphyxia attributed to release of noradrenaline into the circulation. The vasoconstrictor effect of noradrenaline in immature lambs was at least as great as at term or in the new-born.3. Injections of minimal effective doses of cyanide were used to localize possible chemoreceptor sites in foetal lambs. Injection into the left atrium caused a rise of arterial pressure, femoral vasoconstriction and a complex change in heart rate (usually bradycardia) but rarely any respiratory movement. After atropine, cyanide caused a large tachycardia. All responses were much reduced or abolished by cervical vagotomy.4. Injection of the same doses of cyanide into a jugular vein, the right ventricle, pulmonary or common carotid arteries of foetal lambs caused negligible cardiovascular or respiratory effects, whereas injection into the carotids of new-born lambs caused a profound hyperpnoea.5. It is concluded that the aortic chemoreceptors are active in the foetus, are supplied from the left heart, and that they probably represent the primary defence in blood gas homeostasis by their effects on the circulation.

  19. Vasomotor responses in the hind limbs of foetal and new-born lambs to asphyxia and aortic chemoreceptor stimulation

    PubMed Central

    Dawes, G. S.; Lewis, B. V.; Milligan, J. E.; Roach, Margot R.; Talner, N. S.

    1968-01-01

    1. Hind limb blood flow was measured in lambs of from 91 days gestation (delivered by Caesarean section) to 1 month after birth (term is about 147 days), under chloralose anaesthesia. Vascular resistance/100 g wet wt. increased progressively with age. There was reflex femoral vascular tone from the earliest age studied, as shown by vasodilatation on cutting the sciatic nerve. 2. On asphyxia by cord occlusion reflex femoral vasoconstriction began earlier and was somewhat greater in older foetal lambs. At all ages, and after denervation of the hind limb, there was vasodilatation after local ischaemia, and a vasoconstriction of delayed onset during asphyxia attributed to release of noradrenaline into the circulation. The vasoconstrictor effect of noradrenaline in immature lambs was at least as great as at term or in the new-born. 3. Injections of minimal effective doses of cyanide were used to localize possible chemoreceptor sites in foetal lambs. Injection into the left atrium caused a rise of arterial pressure, femoral vasoconstriction and a complex change in heart rate (usually bradycardia) but rarely any respiratory movement. After atropine, cyanide caused a large tachycardia. All responses were much reduced or abolished by cervical vagotomy. 4. Injection of the same doses of cyanide into a jugular vein, the right ventricle, pulmonary or common carotid arteries of foetal lambs caused negligible cardiovascular or respiratory effects, whereas injection into the carotids of new-born lambs caused a profound hyperpnoea. 5. It is concluded that the aortic chemoreceptors are active in the foetus, are supplied from the left heart, and that they probably represent the primary defence in blood gas homeostasis by their effects on the circulation. PMID:4295757

  20. Arboreal Day Geckos (Phelsuma madagascariensis) Differentially Modulate Fore- and Hind Limb Kinematics in Response to Changes in Habitat Structure

    PubMed Central

    Zhuang, Mingna V.; Higham, Timothy E.

    2016-01-01

    By using adhesion, geckos can move through incredibly challenging habitats. However, continually changing terrain may necessitate modulation of the adhesive apparatus in order to maximize its effectiveness over a range of challenges. Behaviorally modulating how the adhesive system is applied can occur by altering the alignment of the foot relative to the long axis of the body and/or the angles between the digits (interdigital angle). Given the directionality of the adhesive system, geckos likely vary the application of the system via these mechanisms as they run. We quantified 3D movements (using high-speed video) of the day gecko, Phelsuma madagascariensis, running on a range of ecologically relevant inclines (0°, 45°, 90°) and perch diameters (1.5 cm, 10 cm and broad). We measured the instantaneous sum of interdigital angles and foot alignment relative to the body, as well as other kinematic variables, throughout each stride and across treatments. Modulation of foot alignment at 45° and 90° was similar between the forelimb and hind limb, but differed at 0°, suggesting that P. madagascariensis is able to exert an adhesive force using multiple strategies. Both the sum of interdigital angles and alignment in the fore- and hind foot were modulated. Differences in modulation between the limbs are likely related to the underlying morphology. The modulation of interdigital angle and foot alignment suggests that aspects other than the mechanism of adhesion, such as joint morphology, are important for arboreal movement in geckos. Our study of foot usage in arboreal locomotion reveals patterns that may be widespread across pad-bearing lizards. In addition to understanding the constraints exerted by the adhesive apparatus, we highlight how biomechanical traits may respond to the evolution of novel adaptations and morphologies. PMID:27145027

  1. TLR4 Accessory Molecule RP105 (CD180) Regulates Monocyte-Driven Arteriogenesis in a Murine Hind Limb Ischemia Model

    PubMed Central

    Bastiaansen, Antonius J. N. M.; Karper, Jacco C.; Wezel, Anouk; de Boer, Hetty C.; Welten, Sabine M. J.; de Jong, Rob C. M.; Peters, Erna A. B.; de Vries, Margreet R.; van Oeveren-Rietdijk, Annemarie M.; van Zonneveld, Anton Jan; Hamming, Jaap F.

    2014-01-01

    Aims We investigated the role of the TLR4-accessory molecule RP105 (CD180) in post-ischemic neovascularization, i.e. arteriogenesis and angiogenesis. TLR4-mediated activation of pro-inflammatory Ly6Chi monocytes is crucial for effective neovascularization. Immunohistochemical analyses revealed that RP105+ monocytes are present in the perivascular space of remodeling collateral arterioles. As RP105 inhibits TLR4 signaling, we hypothesized that RP105 deficiency would lead to an unrestrained TLR4-mediated inflammatory response and hence to enhanced blood flow recovery after ischemia. Methods and Results RP105−/− and wild type (WT) mice were subjected to hind limb ischemia and blood flow recovery was followed by Laser Doppler Perfusion Imaging. Surprisingly, we found that blood flow recovery was severely impaired in RP105−/− mice. Immunohistochemistry showed that arteriogenesis was reduced in these mice compared to the WT. However, both in vivo and ex vivo analyses showed that circulatory pro-arteriogenic Ly6Chi monocytes were more readily activated in RP105−/− mice. FACS analyses showed that Ly6Chi monocytes became activated and migrated to the affected muscle tissues in WT mice following induction of hind limb ischemia. Although Ly6Chi monocytes were readily activated in RP105−/− mice, migration into the ischemic tissues was hampered and instead, Ly6Chi monocytes accumulated in their storage compartments, bone marrow and spleen, in RP105−/− mice. Conclusions RP105 deficiency results in an unrestrained inflammatory response and monocyte over-activation, most likely due to the lack of TLR4 regulation. Inappropriate, premature systemic activation of pro-inflammatory Ly6Chi monocytes results in reduced infiltration of Ly6Chi monocytes in ischemic tissues and in impaired blood flow recovery. PMID:24945347

  2. A system identification analysis of neural adaptation dynamics and nonlinear responses in the local reflex control of locust hind limbs.

    PubMed

    Dewhirst, Oliver P; Angarita-Jaimes, Natalia; Simpson, David M; Allen, Robert; Newland, Philip L

    2013-02-01

    Nonlinear type system identification models coupled with white noise stimulation provide an experimentally convenient and quick way to investigate the often complex and nonlinear interactions between the mechanical and neural elements of reflex limb control systems. Previous steady state analysis has allowed the neurons in such systems to be categorised by their sensitivity to position, velocity or acceleration (dynamics) and has improved our understanding of network function. These neurons, however, are known to adapt their output amplitude or spike firing rate during repetitive stimulation and this transient response may be more important than the steady state response for reflex control. In the current study previously used system identification methods are developed and applied to investigate both steady state and transient dynamic and nonlinear changes in the neural circuit responsible for controlling reflex movements of the locust hind limbs. Through the use of a parsimonious model structure and Monte Carlo simulations we conclude that key system dynamics remain relatively unchanged during repetitive stimulation while output amplitude adaptation is occurring. Whilst some evidence of a significant change was found in parts of the systems nonlinear response, the effect was small and probably of little physiological relevance. Analysis using biologically more realistic stimulation reinforces this conclusion.

  3. Low energy shock wave therapy induces angiogenesis in acute hind-limb ischemia via VEGF receptor 2 phosphorylation.

    PubMed

    Holfeld, Johannes; Tepeköylü, Can; Blunder, Stefan; Lobenwein, Daniela; Kirchmair, Elke; Dietl, Marion; Kozaryn, Radoslaw; Lener, Daniela; Theurl, Markus; Paulus, Patrick; Kirchmair, Rudolf; Grimm, Michael

    2014-01-01

    Low energy shock waves have been shown to induce angiogenesis, improve left ventricular ejection fraction and decrease angina symptoms in patients suffering from chronic ischemic heart disease. Whether there is as well an effect in acute ischemia was not yet investigated. Hind-limb ischemia was induced in 10-12 weeks old male C57/Bl6 wild-type mice by excision of the left femoral artery. Animals were randomly divided in a treatment group (SWT, 300 shock waves at 0.1 mJ/mm2, 5 Hz) and untreated controls (CTR), n = 10 per group. The treatment group received shock wave therapy immediately after surgery. Higher gene expression and protein levels of angiogenic factors VEGF-A and PlGF, as well as their receptors Flt-1 and KDR have been found. This resulted in significantly more vessels per high-power field in SWT compared to controls. Improvement of blood perfusion in treatment animals was confirmed by laser Doppler perfusion imaging. Receptor tyrosine kinase profiler revealed significant phosphorylation of VEGF receptor 2 as an underlying mechanism of action. The effect of VEGF signaling was abolished upon incubation with a VEGFR2 inhibitor indicating that the effect is indeed VEGFR 2 dependent. Low energy shock wave treatment induces angiogenesis in acute ischemia via VEGF receptor 2 stimulation and shows the same promising effects as known from chronic myocardial ischemia. It may therefore develop as an adjunct to the treatment armentarium of acute muscle ischemia in limbs and myocardium.

  4. Association of abnormal hind-limb postures and back arch with gait abnormality in dairy cattle.

    PubMed

    Hoffman, A C; Moore, D A; Vanegas, J; Wenz, J R

    2014-01-01

    Detection of lameness in individual cows is important for the prompt treatment of this painful and production-limiting disease. Current methods for lameness detection involve watching cows walk for several strides. If clinical signs predictive of lameness could be observed more conveniently, as cows are undergoing regularly scheduled examinations while standing, detection levels could increase. The objective of this study was to assess the association between postures observed while cows are standing in stanchions and clinical lameness evaluated by locomotion scoring, and to evaluate the observation of these postures as a test for lameness. The study included 1,243 cows from 4 farms. Cows were observed while standing in stanchions for regularly scheduled management procedures and the presence of arched back and cow-hocked, wide-stance, and favored-limb postures were recorded. The same cows were locomotion-scored as they exited the milking parlor. The proportion of cows observed with arched back and cow-hocked and favored-limb postures increased with increasing severity of lameness (higher locomotion score) but did not increase for the wide-stance posture. For the presence of these postures as a test for lameness (locomotion score ≥3), sensitivity and specificity were 0.63 and 0.64 for back arch, 0.54 and 0.57 for cow hocks, and 0.05 and 0.98 for favored limb. Back-arched, cow-hocked, and favored limb postures were associated with lameness but were not highly sensitive or specific as diagnostic tests. However, observation of back arch may be useful to identify cows needing further examination.

  5. Response of lymphatics of canine hind limb to sympathetic nerve stimulation.

    PubMed

    Browse, N L

    1968-07-01

    1. The changes in lymphatic pressure in a limb whose circulation was temporarily arrested with a pneumatic cuff have been studied.2. Stimulation of the lumbar sympathetic chain caused an increase in lymphatic pressure. It has been shown that this is a primary not a secondary phenomenon, due to an active lymphomotor mechanism.3. The increase of lymphatic tone is proportional to the rate of stimulation; peak values are reached between 5 and 9 impulses/sec.

  6. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  7. Study of Hind Limb Tissue Gas Phase Formation in Response to Suspended Adynamia and Hypokinesia

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.

    1996-01-01

    The purpose of this study was to investigate the hypothesis that reduced joint/muscle activity (hypo kinesia) as well as reduced or null loading of limbs (adynamia) in gravity would result in reduced decompression-induced gas phase and symptoms of decompression sickness (DCS). Finding a correlation between the two phenomena would correspond to the proposed reduction in tissue gas phase formation in astronauts undergoing decompression during extravehicular activity (EVA) in microgravity. The observation may further explain the reported low incidence of DCS in space.

  8. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  9. Young's modulus and SEM analysis of leg bones exposed to simulated microgravity by hind limb suspension (HLS)

    SciTech Connect

    Patel, Niravkumar D.; Mehta, Rahul; Ali, Nawab; Soulsby, Michael; Chowdhury, Parimal

    2013-04-19

    The aim of this study was to determine composition of the leg bone tissue of rats that were exposed to simulated microgravity by Hind-Limb Suspension (HLS) by tail for one week. The leg bones were cross sectioned, cleaned of soft tissues, dried and sputter coated, and then placed horizontally on the stage of a Scanning Electron Microscope (SEM) for analysis. Interaction of a 17.5 keV electron beam, incident from the vertical direction on the sample, generated images using two detectors. X-rays emitted from the sample during electron bombardment were measured with an Energy Dispersive Spectroscopy (EDS) feature of SEM using a liquid-nitrogen cooled Si(Li) detector with a resolution of 144 eV at 5.9 keV ({sub 25}Mn K{sub {alpha}} x-ray). K{sub {alpha}}- x-rays from carbon, oxygen, phosphorus and calcium formed the major peaks in the spectrum. Relative percentages of these elements were determined using a software that could also correct for ZAF factors namely Z(atomic number), A(X-ray absorption) and F(characteristic fluorescence). The x-rays from the control groups and from the experimental (HLS) groups were analyzed on well-defined parts (femur, tibia and knee) of the leg bone. The SEM analysis shows that there are definite changes in the hydroxyl or phosphate group of the main component of the bone structure, hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}], due to hind limb suspension. In a separate experiment, entire leg bones (both from HLS and control rats) were subjected to mechanical stress by mean of a variable force. The stress vs. strain graph was fitted with linear and polynomial function, and the parameters reflecting the mechanical strength of the bone, under increasing stress, were calculated. From the slope of the linear part of the graph the Young's modulus for HLS bones were calculated and found to be 2.49 times smaller than those for control bones.

  10. Actions on gamma-motoneurones elicited by electrical stimulation of cutaneous afferent fibres in the hind limb of the cat.

    PubMed

    Johansson, H; Sojka, P

    1985-09-01

    The reflex actions elicited by graded electrical stimulation of hind-limb cutaneous (sural, superficial peroneal and tibial) nerves were investigated with intra- and extracellular micro-electrode recordings in gamma-motoneurones projecting to hind-limb muscles in twenty-four cats anaesthetized with alpha-chloralose. In total, reflex responses of 100 gamma-motoneurones were analysed. 82 of the gamma-cells were classified as dynamic (43) or static (39) using the method of mesencephalic stimulation (Appelberg, Hulliger, Johansson & Sojka, 1982). The general responsiveness (i.e. number of input nerves with effect/number of input nerves tested) of the whole sample of gamma-cells to stimulation of skin nerves was extremely high (94.8%). All negative observations were encountered among static and non-classified gamma-cells. Generally, the stimulation strengths needed for evoking effects in the gamma-cells were very low. A majority of the excitatory effects in the dynamic cells appeared with stimulation intensities below 1.5 threshold (T), while most static cells were excited with stimulation strengths between 1.5 and 2 T. Also a statistical comparison of the populations of stimulation strength thresholds for the excitatory effects revealed a significant difference (P less than 0.0009) between dynamic and static gamma-cells. By contrast, the thresholds for inhibitory effects in dynamic cells were slightly higher than for excitatory effects (P less than 0.0009). As regards excitation of static cells, inhibition of dynamic cells and inhibition of static cells, no statistically significant threshold differences were found. A strong dominance of excitation over inhibition was found in both dynamic and static flexor (posterior biceps and semitendinosus) gamma-motoneurones from all input nerves. In comparison to flexor gamma-motoneurones, there was a much higher incidence of inhibitory and mixed (excitatory and inhibitory) responses in extensor (triceps) gamma-motoneurones, from

  11. Quantitative evaluation of bone development of the distal phalanx of the cow hind limb using computed tomography.

    PubMed

    Tsuka, T; Ooshita, K; Sugiyama, A; Osaki, T; Okamoto, Y; Minami, S; Imagawa, T

    2012-01-01

    Computed tomography (CT) was performed on 400 claws (200 inner and 200 outer claws) of 100 pairs of bovine hind limbs to investigate the etiological theory that an exacerbating factor for ulceration is exostosis of the tuberculum flexorium within the distal phalanx. A variety of morphological changes of the tuberculum flexorium of bovine hind limb claws was visualized by 3-dimensional CT, and the geometry of these claws suggested a growth pattern of bone development with respect to the assumed daily loading patterns. This growth occurs initially at the abaxial caudal aspect of the distal phalanx and is followed by horizontal progression toward the axial aspect. The length of downward bone development on the solar face of the distal phalanx was 2.73±1.32 mm in the outer claws, significantly greater than in the inner claws (2.38±0.96 mm). Ratios of downward (vertical) bone development to the thickness of the subcutis and the corium (VerBD ratios) did not differ between the outer and inner claws (36.7 vs. 38.3%, respectively). Ratios of horizontal bone development to the axial-to-abaxial line of the tuberculum flexorium (HorBD ratios) were approximately 60% for both outer and inner claws. These quantitative measures regarding horizontal and vertical bone development within the distal phalanx were positively correlated with age and VerBD ratios (r=0.53 and r=0.36 for the inner and outer claws, respectively). Correlations between claw width of the outer claw and length of vertical bone development (r=0.43), the HorBD ratio (r=0.51), and the VerBD ratio (r=0.42) suggested that the relative size difference between the inner and outer claws enhances bone development in the outer claw. Correlation coefficients between VerBD and HorBD ratios (r=0.52 and 0.63 for the inner and outer claws, respectively) suggested that horizontal and vertical bone development occurs as a synchronized process within the tuberculum flexorium. This age-related progress of bone development

  12. Young's modulus and SEM analysis of leg bones exposed to simulated microgravity by hind limb suspension (HLS)

    NASA Astrophysics Data System (ADS)

    Patel, Niravkumar D.; Mehta, Rahul; Ali, Nawab; Soulsby, Michael; Chowdhury, Parimal

    2013-04-01

    The aim of this study was to determine composition of the leg bone tissue of rats that were exposed to simulated microgravity by Hind-Limb Suspension (HLS) by tail for one week. The leg bones were cross sectioned, cleaned of soft tissues, dried and sputter coated, and then placed horizontally on the stage of a Scanning Electron Microscope (SEM) for analysis. Interaction of a 17.5 keV electron beam, incident from the vertical direction on the sample, generated images using two detectors. X-rays emitted from the sample during electron bombardment were measured with an Energy Dispersive Spectroscopy (EDS) feature of SEM using a liquid-nitrogen cooled Si(Li) detector with a resolution of 144 eV at 5.9 keV (25Mn Kα x-ray). Kα- x-rays from carbon, oxygen, phosphorus and calcium formed the major peaks in the spectrum. Relative percentages of these elements were determined using a software that could also correct for ZAF factors namely Z(atomic number), A(X-ray absorption) and F(characteristic fluorescence). The x-rays from the control groups and from the experimental (HLS) groups were analyzed on well-defined parts (femur, tibia and knee) of the leg bone. The SEM analysis shows that there are definite changes in the hydroxyl or phosphate group of the main component of the bone structure, hydroxyapatite [Ca10(PO4)6(OH)2], due to hind limb suspension. In a separate experiment, entire leg bones (both from HLS and control rats) were subjected to mechanical stress by mean of a variable force. The stress vs. strain graph was fitted with linear and polynomial function, and the parameters reflecting the mechanical strength of the bone, under increasing stress, were calculated. From the slope of the linear part of the graph the Young's modulus for HLS bones were calculated and found to be 2.49 times smaller than those for control bones.

  13. Effect of picroside II on erythrocyte deformability and lipid peroxidation in rats subjected to hind limb ischemia reperfusion injury

    PubMed Central

    Çomu, Faruk Metin; Kılıç, Yiğit; Özer, Abdullah; Kirişçi, Mehmet; Dursun, Ali Doğan; Tatar, Tolga; Zor, Mustafa Hakan; Kartal, Hakan; Küçük, Ayşegül; Boyunağa, Hakan; Arslan, Mustafa

    2016-01-01

    Background Ischemia reperfusion injury (I/R) in hind limb is a frequent and important clinical phenomenon. Many structural and functional damages are observed in cells and tissues in these kinds of injuries. In this study, we aimed to evaluate the effect of picroside II on lipid peroxidation and erythrocyte deformability during I/R in rats. Methods Rats were randomly divided into four groups – each containing six animals (sham, I/R, sham + picroside II, and I/R + picroside II). The infrarenal section of the abdominal aorta was occluded with an atraumatic microvascular clamp in I/R groups. The clamp was removed after 120 minutes and reperfusion was provided for a further 120 minutes. Picroside II (10 mg·kg−1) was administered intraperitoneally to the animals in the appropriate groups (sham + picroside II, I/R + picroside II groups). All rats were euthanized by intraperitoneal administration of ketamine (100 mg·kg−1) and taking blood from the abdominal aorta. Erythrocytes were extracted from heparinized complete blood samples. Buffer (PT) and then erythrocytes (PE) were passed through the filtration system and the changes in pressure were measured to investigate the role of serum malondialdehyde and nitric oxide (NO) in lipid peroxidation and erythrocyte deformability index. Results Deformability index was significantly increased in the I/R group compared to groups sham, sham + picroside-II, and I/R + picroside-II (P<0.0001, P<0.0001, and P=0.007). Malondialdehyde (MDA) and NO levels were evaluated. MDA level and NO activity were also higher in the I/R group than in the other groups. Picroside II treatment before hind limb I/R prevented these changes. Conclusion These results support that deformability of erythrocytes is decreased in I/R injury and picroside II plays a critical role to prevent these alterations. Further experimental and clinical studies are needed to evaluate and clarify the molecular mechanisms of action and clinical importance of these

  14. Low Energy Shock Wave Therapy Induces Angiogenesis in Acute Hind-Limb Ischemia via VEGF Receptor 2 Phosphorylation

    PubMed Central

    Holfeld, Johannes; Tepeköylü, Can; Blunder, Stefan; Lobenwein, Daniela; Kirchmair, Elke; Dietl, Marion; Kozaryn, Radoslaw; Lener, Daniela; Theurl, Markus; Paulus, Patrick; Kirchmair, Rudolf; Grimm, Michael

    2014-01-01

    Objectives Low energy shock waves have been shown to induce angiogenesis, improve left ventricular ejection fraction and decrease angina symptoms in patients suffering from chronic ischemic heart disease. Whether there is as well an effect in acute ischemia was not yet investigated. Methods Hind-limb ischemia was induced in 10–12 weeks old male C57/Bl6 wild-type mice by excision of the left femoral artery. Animals were randomly divided in a treatment group (SWT, 300 shock waves at 0.1 mJ/mm2, 5 Hz) and untreated controls (CTR), n = 10 per group. The treatment group received shock wave therapy immediately after surgery. Results Higher gene expression and protein levels of angiogenic factors VEGF-A and PlGF, as well as their receptors Flt-1 and KDR have been found. This resulted in significantly more vessels per high-power field in SWT compared to controls. Improvement of blood perfusion in treatment animals was confirmed by laser Doppler perfusion imaging. Receptor tyrosine kinase profiler revealed significant phosphorylation of VEGF receptor 2 as an underlying mechanism of action. The effect of VEGF signaling was abolished upon incubation with a VEGFR2 inhibitor indicating that the effect is indeed VEGFR 2 dependent. Conclusions Low energy shock wave treatment induces angiogenesis in acute ischemia via VEGF receptor 2 stimulation and shows the same promising effects as known from chronic myocardial ischemia. It may therefore develop as an adjunct to the treatment armentarium of acute muscle ischemia in limbs and myocardium. PMID:25093816

  15. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    NASA Astrophysics Data System (ADS)

    Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.

    2013-04-01

    Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.

  16. RIP2-mediated LKB1 deletion causes axon degeneration in the spinal cord and hind-limb paralysis.

    PubMed

    Sun, Gao; Reynolds, Richard; Leclerc, Isabelle; Rutter, Guy A

    2011-03-01

    Axon degeneration is observed in neurodegenerative diseases and neuroinflammatory disorders, such as Alzheimer's disease, Parkinson's disease and multiple sclerosis. The molecular basis of this process remains largely unknown. Here, we show that mice deleted for the tumour suppressor LKB1 (also called STK11) in the spinal cord, some parts of the brain and in the endocrine pancreas (βLKB1KO mice) develop hind-limb dysfunction and axon degeneration at about 7 weeks. Demyelination and macrophage infiltration are observed in the white matter of these mice, predominantly in the bilateral and anterior funiculi of the thoracic segment of the spinal cord, suggesting damage to the ascending sensory signalling pathway owing to LKB1 deletion in the brain. Microtubule structures were also affected in the degenerated foci, with diminished neurofilament and tubulin expression. Deletion of both PRKAA1 genes, whose products AMPKα1 and AMPKα2 are also downstream targets of LKB1, with the same strategy was without effect. We thus define LKB1 as an intrinsic suppressor of axon degeneration and a possible target for strategies that can reverse this process.

  17. Countercurrent compartmental models describe hind limb skeletal muscle helium kinetics at resting and low blood flows in sheep.

    PubMed

    Doolette, D J; Upton, R N; Grant, C

    2005-10-01

    This study evaluated the relative importance of perfusion and diffusion mechanisms in compartmental models of blood : tissue helium exchange in a predominantly skeletal muscle tissue bed in the sheep hind limb. Helium has different physiochemical properties from previously studied gases and is a common diluent gas in underwater diving where decompression schedules are based on theoretical models of inert gas kinetics. Helium kinetics across skeletal muscle were determined during and after 20 min of helium inhalation, at separate resting and low steady-states of femoral vein blood flow in six sheep under isoflurane anaesthesia. Helium concentrations in arterial and femoral vein blood were determined using gas chromatographic analysis and femoral vein blood flow was monitored continuously. Parameters and model selection criteria of various perfusion-limited or perfusion-diffusion compartmental models of skeletal muscle were estimated by simultaneous fitting of the models to the femoral vein helium concentrations for both blood flow states. A model comprising two parallel perfusion-limited compartment models fitted the data well but required a 51-fold difference in relative compartment perfusion that did not seem physiologically plausible. Models that allowed a countercurrent diffusion exchange of helium between arterial and venous vessels outside of the tissue compartments provided better overall fit of the data and credible parameter estimates. These results suggest a role of arterial-venous diffusion in blood : tissue helium equilibration in skeletal muscle.

  18. Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus).

    PubMed

    D'Août, Kristiaan; Aerts, Peter; De Clercq, Dirk; De Meester, Koen; Van Elsacker, Linda

    2002-09-01

    We describe segment angles (trunk, thigh, shank, and foot) and joint angles (hip, knee, and ankle) for the hind limbs of bonobos walking bipedally ("bent-hip bent-knee walking," 17 sequences) and quadrupedally (33 sequences). Data were based on video recordings (50 Hz) of nine subjects in a lateral view, walking at voluntary speed. The major differences between bipedal and quadrupedal walking are found in the trunk, thigh, and hip angles. During bipedal walking, the trunk is approximately 33-41 degrees more erect than during quadrupedal locomotion, although it is considerably more bent forward than in normal human locomotion. Moreover, during bipedal walking, the hip has a smaller range of motion (by 12 degrees ) and is more extended (by 20-35 degrees ) than during quadrupedal walking. In general, angle profiles in bonobos are much more variable than in humans. Intralimb phase relationships of subsequent joint angles show that hip-knee coordination is similar for bipedal and quadrupedal walking, and resembles the human pattern. The coordination between knee and ankle differs much more from the human pattern. Based on joint angles observed throughout stance phase and on the estimation of functional leg length, an efficient inverted pendulum mechanism is not expected in bonobos.

  19. Expression of nestin, desmin and vimentin in intact and regenerating muscle spindles of rat hind limb skeletal muscles.

    PubMed

    Cízková, Dana; Soukup, Tomás; Mokrý, Jaroslav

    2009-02-01

    We describe the expression and distribution patterns of nestin, desmin and vimentin in intact and regenerating muscle spindles of the rat hind limb skeletal muscles. Regeneration was induced by intramuscular isotransplantation of extensor digitorum longus (EDL) or soleus muscles from 15-day-old rats into the EDL muscle of adult female inbred Lewis rats. The host muscles with grafts were excised after 7-, 16-, 21- and 29-day survival and immunohistochemically stained. Nestin expression in intact spindles in host muscles was restricted to Schwann cells of sensory and motor nerves. In transplanted muscles, however, nestin expression was also found in regenerating "spindle fibers", 7 and 16 days after grafting. From the 21st day onwards, the regenerated spindle fibers were devoid of nestin immunoreactivity. Desmin was detected in spindle fibers at all developmental stages in regenerating as well as in intact spindles. Vimentin was expressed in cells of the outer and inner capsules of all muscle spindles and in newly formed myoblasts and myotubes of regenerating spindles 7 days after grafting. Our results show that the expression pattern of these intermediate filaments in regenerating spindle fibers corresponds to that found in regenerating extrafusal fibers, which supports our earlier suggestion that they resemble small-diameter extrafusal fibers.

  20. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    PubMed Central

    Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J

    2013-01-01

    Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062

  1. Implanting iodine-125 seeds into rat dorsal root ganglion for neuropathic pain: neuronal microdamage without impacting hind limb motion.

    PubMed

    Jiao, Ling; Zhang, Tengda; Wang, Huixing; Zhang, Wenyi; Fan, Saijun; Huo, Xiaodong; Zheng, Baosen; Ma, Wenting

    2014-06-15

    The use of iodine-125 ((125)I) in cancer treatment has been shown to relieve patients' pain. Considering dorsal root ganglia are critical for neural transmission between the peripheral and central nervous systems, we assumed that (125)I could be implanted into rat dorsal root ganglia to provide relief for neuropathic pain. (125)I seeds with different radioactivity (0, 14.8, 29.6 MBq) were implanted separately through L4-5 and L5-6 intervertebral foramen into the vicinity of the L5 dorsal root ganglion. von Frey hair results demonstrated the mechanical pain threshold was elevated after implanting (125)I seeds from the high radioactivity group. Transmission electron microscopy revealed that nuclear membrane shrinkage, nucleolar margination, widespread mitochondrial swelling, partial vacuolization, lysosome increase, and partial endoplasmic reticulum dilation were visible at 1,440 hours in the low radioactivity group and at 336 hours in the high radioactivity group. Abundant nuclear membrane shrinkage, partial fuzzy nuclear membrane and endoplasmic reticulum necrosis were observed at 1,440 hours in the high radioactivity group. No significant difference in combined behavioral scores was detected between preoperation and postoperation in the low and high radioactivity groups. These results suggested that the mechanical pain threshold was elevated after implanting (125)I seeds without influencing motor functions of the hind limb, although cell injury was present.

  2. IL-20 is an arteriogenic cytokine that remodels collateral networks and improves functions of ischemic hind limbs

    PubMed Central

    Tritsaris, Katerina; Myren, Maja; Ditlev, Sisse B.; Hübschmann, Martin V.; van der Blom, Ida; Hansen, Anker Jon; Olsen, Uffe B.; Cao, Renhai; Zhang, Junhang; Jia, Tanghong; Wahlberg, Eric; Dissing, Steen; Cao, Yihai

    2007-01-01

    Successful therapeutic angiogenesis for the treatment of ischemic disorders relies on selection of optimal proangiogenic or arteriogenic agents that are able to promote establishment of functional collateral networks. Here, we show that IL-20, a pleiotropic inflammatory cytokine, displays an imperative effect on vascular remodeling. Stimulation of both large and microvascular endothelial cells with IL-20 leads to activation of receptor-dependent multiple intracellular signaling components, including increased phosphorylation levels of JAK2/STAT5, Erk1/2, and Akt; activation of small GTP-binding proteins Rac and Rho; and intracellular release of calcium. Surprisingly, IL-20 significantly promotes endothelial cell tube formation without affecting their proliferation and motility. These findings suggest that the vascular function of IL-20 involves endothelial cell organization, vessel maturation, and remodeling. Consistent with this notion, delivery of IL-20 to the ischemic muscle tissue significantly improves arteriogenesis and blood perfusion in a rat hind-limb model. Our findings provide mechanistic insights on vascular functions of IL-20 and define therapeutic implication of this cytokine for the treatment of ischemic disorders. PMID:17878297

  3. Angiogenesis effect of therapeutic ultrasound on ischemic hind limb in mice

    PubMed Central

    Huang, Jing-Juan; Shi, Yi-Qin; Li, Rui-Lin; Hu, An; Zhou, Hong-Sheng; Cheng, Qian; Xu, Zheng; Yang, Zhi-Ming; Hao, Chang-Ning; Duan, Jun-Li

    2014-01-01

    Although significant progress in bypass surgery and catheter intervention against peripheral artery disease, the number of severe critical limb ischemia (CLI) patients is increasing. Thus, it is crucial to develop new, non-invasive therapeutic strategies. The purpose of this study was to determine the mechanism of therapeutic ultrasound (TUS) on ischemic angiogenesis using mouse model of hindlimb ischemia and the cellular/molecular mechanisms underlying TUS-related neovascularization. The hindlimb ischemic mice were exposed to extracorporeal TUS for 3, 6, 9 minute per day (1 MHz, 0.3 W/cm2) until day 14 after left femoral artery ligation. Increased blood perfusion and capillary density were determined following 9 min of TUS compared with ischemic group. Moreover, TUS treatment increased the protein levels of vascular endothelial growth factor (VEGF), hypoxic inducible factor-1α (HIF-1α), endothelial nitric oxide synthase (eNOS) and p-Akt in vivo. TUS promoted capillary-like tube formation, migration and motility of human umbilical venous endothelial cells (HUVECs). Furthermore, the protein expressions of VEGF, eNOS and p-Akt were increased after TUS treatment. In conclusion, TUS therapy promotes postnatal neovascularization through multiple angiogenic pathways in mice model of ischemic hindlimb. PMID:25628781

  4. Fasting increases palmitic acid incorporation into rat hind-limb intramuscular acylglycerols while short-term cold exposure has no effect.

    PubMed

    Synak, M; Zarzeczny, R; Górecka, M; Langfort, J; Kaciuba-Uściłko, H; Zernicka, Ewa

    2011-09-01

    The aim of the study was to investigate the palmitic acid incorporation into intramuscular acylglycerols in perfused hind-limb skeletal muscles of different fibre types in rats either fasted for 48 h or exposed to cold (6 °C) for 12 h. Hind-limb preparations of fasted and cold exposed rats were perfused with buffers containing tritium labelled and cold palmitic acid. Palmitic acid incorporation into intracellular lipid pools in the soleus, plantaris, red and white gastrocnemius and red and white quadriceps was measured. It was found that fasting increased approximately 2-fold palmitic acid incorporation in all muscles examined regardless of the fibre type composition of the muscle. On the other hand, exposure to cold had no effect on the palmitic acid incorporation into intramuscular acylglycerols regardless the muscle fibre type. The increased incorporation of palmitic acid into acylglycerols in fasted animals is in line with data showing that 48 h fasting stimulates the expression of plasma membrane proteins putatively facilitating fatty acid uptake. It appears that although 12 h cold exposure increases the use of fatty acids as energy substrates it does not alter the incorporation of palmitic acid into intramuscular acylglycerols in the perfused rat hind-limb.

  5. Longitudinal evaluation of mouse hind limb bone loss after spinal cord injury using novel, in vivo, methodology.

    PubMed

    McManus, Madonna M; Grill, Raymond J

    2011-12-07

    Spinal cord injury (SCI) is often accompanied by osteoporosis in the sublesional regions of the pelvis and lower extremities, leading to a higher frequency of fractures. As these fractures often occur in regions that have lost normal sensory function, the patient is at a greater risk of fracture-dependent pathologies, including death. SCI-dependent loss in both bone mineral density (BMD, grams/cm2) and bone mineral content (BMC, grams) has been attributed to mechanical disuse, aberrant neuronal signaling and hormonal changes. The use of rodent models of SCI-induced osteoporosis can provide invaluable information regarding the mechanisms underlying the development of osteoporosis following SCI as well as a test environment for the generation of new therapies. Mouse models of SCI are of great interest as they permit a reductionist approach to mechanism-based assessment through the use of null and transgenic mice. While such models have provided important data, there is still a need for minimally-invasive, reliable, reproducible, and quantifiable methods in determining the extent of bone loss following SCI, particularly over time and within the same cohort of experimental animals, to improve diagnosis, treatment methods, and/or prevention of SCI-induced osteoporosis. An ideal method for measuring bone density in rodents would allow multiple, sequential (over time) exposures to low-levels of X-ray radiation. This study describes the use of a new whole-animal scanner, the IVIS Lumina XR (Caliper Instruments) that can be used to provide low-energy (1-3 milligray (mGy)) high-resolution, high-magnification X-ray images of mouse hind limb bones over time following SCI. Significant bone density loss was seen in the tibiae of mice by 10 days post-spinal transection when compared to uninjured, age-matched control (naïve) mice (13% decrease, p < 0.0005). Loss of bone density in the distal femur was also detectable by day 10 post-SCI, while a loss of density in the proximal

  6. FACS-purified myoblasts producing controlled VEGF levels induce safe and stable angiogenesis in chronic hind limb ischemia.

    PubMed

    Wolff, Thomas; Mujagic, Edin; Gianni-Barrera, Roberto; Fueglistaler, Philipp; Helmrich, Uta; Misteli, Heidi; Gurke, Lorenz; Heberer, Michael; Banfi, Andrea

    2012-01-01

    We recently developed a method to control the in vivo distribution of vascular endothelial growth factor (VEGF) by high throughput Fluorescence-Activated Cell Sorting (FACS) purification of transduced progenitors such that they homogeneously express specific VEGF levels. Here we investigated the long-term safety of this method in chronic hind limb ischemia in nude rats. Primary myoblasts were transduced to co-express rat VEGF-A(164) (rVEGF) and truncated ratCD8a, the latter serving as a FACS-quantifiable surface marker. Based on the CD8 fluorescence of a reference clonal population, which expressed the desired VEGF level, cells producing similar VEGF levels were sorted from the primary population, which contained cells with very heterogeneous VEGF levels. One week after ischemia induction, 12 × 10(6) cells were implanted in the thigh muscles. Unsorted myoblasts caused angioma-like structures, whereas purified cells only induced normal capillaries that were stable after 3 months. Vessel density was doubled in engrafted areas, but only approximately 0.1% of muscle volume showed cell engraftment, explaining why no increase in total blood flow was observed. In conclusion, the use of FACS-purified myoblasts granted the cell-by-cell control of VEGF expression levels, which ensured long-term safety in a model of chronic ischemia. Based on these results, the total number of implanted cells required to achieve efficacy will need to be determined before a clinical application. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  7. Effects of intravenous ibuprofen and lornoxicam on erythrocyte deformability in rats undergoing hind limb ischemia reperfusion injury.

    PubMed

    Sivgin, V; Kucuk, A; Comu, F M; Kosem, B; Kartal, S; Turgut, H C; Arpaci, H; Aydin, M E; Koc, D S; Ozer, A; Arslan, M; Alkan, M

    2016-01-01

    Acute hind limb ischemia reperfusion (I/R) injury is a common consequence of abdominal aorta cross‑clamping during aortic surgery. Erythrocyte deformability is affected by I/R process and may lead to increased tissue and organ injury. Lornoxicam and intravenous ibuprofen are becoming commonly used as non-steroidal anti-inflammatory drugs (NSAID) for postoperative analgesia. In this study, we aimed to investigate the effects of lornoxicam (2 mg/kg iv) and intravenous ibuprofen (30 mg/kg iv) on erythrocyte deformability in I/R model in rats. Four study groups, each containing 6 Wistar rats were created. Laparotomy was performed in all groups under general anesthesia with ketamine and xylazine. In all groups except sham group, ischemia and reperfusion were achieved by clamping and declamping the infrarenal abdominal aorta for 120 minutes. Rats in Group IR+L received intravenous infusion of lornoxicam (2 mg/kg) while rats in Group IR+I received intravenous infusion of ibubrofen (30 mg/kg) following 2 hours of ischemic period. At the end of reperfusion period, erythrocyte packs were prepared from heparinized blood samples. Erythrocyte suspensions with hematocrit at a concentration of 5% in a phosphate‑buffered saline (PBS) were used in order to perform deformability measurements. The value of p<0.05 was considered statistically significant. Relative resistance has increased in ischemia reperfusion group when compared to control group (p < 0.0001). Lornoxicam or ibuprofen intravenous treatments did not change the erythrocyte deformability during ischemia reperfusion period in rats (p=0.851, p=0.690). Intravenous ibuprofen or lornoxicam administrations during ischemia reperfusion period in rats have no negative effect on erythrocyte deformability. The findings of the study should be supported with more detailed and extensive clinical/experimental studies in the future (Fig. 1, Ref. 18).

  8. Calcium-dependent signalling is essential during collateral growth in the pig hind limb-ischemia model.

    PubMed

    Troidl, C; Nef, H; Voss, S; Schilp, A; Kostin, S; Troidl, K; Szardien, S; Rolf, A; Schmitz-Rixen, T; Schaper, W; Hamm, C W; Elsässer, A; Möllmann, H

    2010-07-01

    We investigated the effect of pharmacological activation of the Ca(2+)-channel transient receptor potential cation channel, subfamily V, member 4 (TRPV4) on collateral growth in a pig hind limb-ischemia model thereby identifying subcellular mechanisms. Domestic pigs received femoral artery ligature and were randomly assigned to one of the following groups (each n=6): (1) 4alpha-phorbol 12,13-didecanoate (4alphaPDD) treatment; (2) treatment with an arterio-venous shunt (AV-shunt) distal to the occlusion; or (3) implantation of NaCl-filled minipump. Six sham-operated pigs acted as controls. Aortic and peripheral mean arterial pressure (MAP) measurements were performed to assess the collateral flow index (CFI). Tissue was isolated from M. quadriceps for immunohistochemistry and from isolated collateral arteries for quantitative real time PCR (qRT-PCR). Shortly after ligature the CFI dropped from 0.96+/-0.02 to 0.21+/-0.02 in all ligature-treated groups. In ligature-only-treated pigs CFI increased to 0.56+/-0.03 after 7days. Treatment with 4alphaPDD led to an enhancement of CFI compared with ligature alone (0.73+/-0.03). CD31-staining showed improved arteriolar density. Increased Ki67 staining in collaterals indicated proliferation. qRT-PCR and Western blot analysis showed upregulation or modulation of Ca(2+)-dependent transcription factors nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), Kv channel interacting protein 3, calsenilin (KCNIP3/CSEN/DREAM), and myocyte enhancer factor 2C (MEF2C) in 4alphaPDD- and AV-shunt-treated pigs compared with controls. Improved CFI after 4alphaPDD treatment identifies TRPV4 as an initial fluid shear-stress sensor and collateral remodelling and growth trigger. Subcellularly, modulation of Ca(2+)-dependent transcription factors indicates a pivotal role for Ca(2+)-signalling during arteriogenesis.

  9. MRI-Based Computational Model of Heterogeneous Tracer Transport following Local Infusion into a Mouse Hind Limb Tumor

    PubMed Central

    Magdoom, Kulam Najmudeen; Pishko, Gregory L.; Rice, Lori; Pampo, Chris; Siemann, Dietmar W.; Sarntinoranont, Malisa

    2014-01-01

    Systemic drug delivery to solid tumors involving macromolecular therapeutic agents is challenging for many reasons. Amongst them is their chaotic microvasculature which often leads to inadequate and uneven uptake of the drug. Localized drug delivery can circumvent such obstacles and convection-enhanced delivery (CED) - controlled infusion of the drug directly into the tissue - has emerged as a promising delivery method for distributing macromolecules over larger tissue volumes. In this study, a three-dimensional MR image-based computational porous media transport model accounting for realistic anatomical geometry and tumor leakiness was developed for predicting the interstitial flow field and distribution of albumin tracer following CED into the hind-limb tumor (KHT sarcoma) in a mouse. Sensitivity of the model to changes in infusion flow rate, catheter placement and tissue hydraulic conductivity were investigated. The model predictions suggest that 1) tracer distribution is asymmetric due to heterogeneous porosity; 2) tracer distribution volume varies linearly with infusion volume within the whole leg, and exponentially within the tumor reaching a maximum steady-state value; 3) infusion at the center of the tumor with high flow rates leads to maximum tracer coverage in the tumor with minimal leakage outside; and 4) increasing the tissue hydraulic conductivity lowers the tumor interstitial fluid pressure and decreases the tracer distribution volume within the whole leg and tumor. The model thus predicts that the interstitial fluid flow and drug transport is sensitive to porosity and changes in extracellular space. This image-based model thus serves as a potential tool for exploring the effects of transport heterogeneity in tumors. PMID:24619021

  10. Telomerase mediates vascular endothelial growth factor-dependent responsiveness in a rat model of hind limb ischemia.

    PubMed

    Zaccagnini, Germana; Gaetano, Carlo; Della Pietra, Linda; Nanni, Simona; Grasselli, Annalisa; Mangoni, Antonella; Benvenuto, Roberta; Fabrizi, Manuela; Truffa, Silvia; Germani, Antonia; Moretti, Fabiola; Pontecorvi, Alfredo; Sacchi, Ada; Bacchetti, Silvia; Capogrossi, Maurizio C; Farsetti, Antonella

    2005-04-15

    Telomere dysfunction contributes to reduced cell viability, altered differentiation, and impaired regenerative/proliferative responses. Recent advances indicate that telomerase activity confers a pro-angiogenic phenotype to endothelial cells and their precursors. We have investigated whether telomerase contributes to tissue regeneration following hind limb ischemia and vascular endothelial growth factor 165 (VEGF(165)) treatment. VEGF delivery induced angiogenesis and increased expression of the telomerase reverse transcriptase (TERT) and telomerase activity in skeletal muscles and satellite and endothelial cells. Adenovirus-mediated transfer of wild type TERT but not of a dominant negative mutant, TERTdn, significantly induced capillary but not arteriole formation. However, when co-delivered with VEGF, TERTdn abrogated VEGF-dependent angiogenesis, arteriogenesis, and blood flow increase. This effect was paralleled by in vitro evidence that telomerase inhibition by 3'-azido-3'-deoxythymidine in VEGF-treated endothelial cells strongly reduced capillary density and promoted apoptosis in the absence of serum. Similar results were obtained with adenovirus-mediated expression of TERTdn and AKTdn, both reducing endogenous TERT activity and angiogenesis on Matrigel. Mechanistically, neo-angiogenesis in our system involved: (i) VEGF-dependent activation of telomerase through the nitric oxide pathway and (ii) telomerase-dependent activation of endothelial cell differentiation and protection from apoptosis. Furthermore, detection of TERT in activated satellite cells identified them as VEGF targets during muscle regeneration. Because TERT behaves as an angiogenic factor and a downstream effector of VEGF signaling, telomerase activity appears required for VEGF-dependent remodeling of ischemic tissue at the capillaries and arterioles level.

  11. MRI-based computational model of heterogeneous tracer transport following local infusion into a mouse hind limb tumor.

    PubMed

    Magdoom, Kulam Najmudeen; Pishko, Gregory L; Rice, Lori; Pampo, Chris; Siemann, Dietmar W; Sarntinoranont, Malisa

    2014-01-01

    Systemic drug delivery to solid tumors involving macromolecular therapeutic agents is challenging for many reasons. Amongst them is their chaotic microvasculature which often leads to inadequate and uneven uptake of the drug. Localized drug delivery can circumvent such obstacles and convection-enhanced delivery (CED)--controlled infusion of the drug directly into the tissue--has emerged as a promising delivery method for distributing macromolecules over larger tissue volumes. In this study, a three-dimensional MR image-based computational porous media transport model accounting for realistic anatomical geometry and tumor leakiness was developed for predicting the interstitial flow field and distribution of albumin tracer following CED into the hind-limb tumor (KHT sarcoma) in a mouse. Sensitivity of the model to changes in infusion flow rate, catheter placement and tissue hydraulic conductivity were investigated. The model predictions suggest that 1) tracer distribution is asymmetric due to heterogeneous porosity; 2) tracer distribution volume varies linearly with infusion volume within the whole leg, and exponentially within the tumor reaching a maximum steady-state value; 3) infusion at the center of the tumor with high flow rates leads to maximum tracer coverage in the tumor with minimal leakage outside; and 4) increasing the tissue hydraulic conductivity lowers the tumor interstitial fluid pressure and decreases the tracer distribution volume within the whole leg and tumor. The model thus predicts that the interstitial fluid flow and drug transport is sensitive to porosity and changes in extracellular space. This image-based model thus serves as a potential tool for exploring the effects of transport heterogeneity in tumors.

  12. Pig specific vascular anatomy allows acute infrarenal aortic occlusion without hind limb ischemia and stepwise occlusion without clinical signs.

    PubMed

    Haacke, N; Unger, J K; Haidenhein, C; Russ, M; Hiebl, B; Niehues, S M

    2011-01-01

    EGAs for a partial collateral support of an infrarenal aortic occlusion the pig's EGA is a naturally sufficient collateral system capable to cover immediately for an acute infrarenal aortic occlusion. Further collateral enlargement even provides a permanent, sufficient hind limb perfusion in pigs. As the sufficient collateral system probably reduce pressure and shear rates in the infrarenal aortic segment after cross clamping, pigs might have a higher predisposition to produce early thrombosis related graft occlusions tan humans.

  13. Treatment effect with anti-RAGE F(ab')2 antibody improves hind limb angiogenesis and blood flow in Type 1 diabetic mice with left femoral artery ligation.

    PubMed

    Tekabe, Yared; Anthony, Tamykah; Li, Qing; Ray, Rashmi; Rai, Vivek; Zhang, Geping; Schmidt, Ann Marie; Johnson, Lynne L

    2015-06-01

    We investigated treatment with a receptor for advanced glycation endproduct (RAGE) blocking antibody on angiogenic response to hind limb ischemia in diabetic mice. Streptozotocin treated C57BL/6 mice received either murine monoclonal anti-RAGE F(ab')2 intraperitoneally (n=10) or saline (n=9) for 9 weeks. Diabetic plus 10 non-diabetic C57BL/6 mice underwent left femoral artery ligation and 5 days later angiogenesis imaging with (99m)Tc-Arg-Gly-Asp (RGD) nanoSPECT/CT. Twenty-four days later, hind limb blood flow was measured with ultrasound, the mice were euthanized, and tissue was taken for immunohistochemistry. The angiogenic imaging signal in ischemic limbs was higher in RAGE-ab treated versus saline treated mice at day 5 (3.1±1.4 vs 1.68±0.35, p=0.02) and blood flow was higher at day 24 (1.49±0.5 vs 0.61±0.39, p=0.04). Immunohistochemistry of ischemic muscles showed greater capillary density in the RAGE-ab treated group versus the vehicle-treated group (p<0.001) (NS from non-diabetic mice). In conclusion, treatment with anti-RAGE F(ab')2 in diabetic mice improves neovascularization in the ischemic leg. © The Author(s) 2015.

  14. GM-CSF treated F4/80+ BMCs improve murine hind limb ischemia similar to M-CSF differentiated macrophages.

    PubMed

    Kuwahara, Go; Nishinakamura, Hitomi; Kojima, Daibo; Tashiro, Tadashi; Kodama, Shohta

    2014-01-01

    Novel cell therapy is required to treat critical limb ischemia (CLI) as many current approaches require repeated aspiration of bone marrow cells (BMCs). The use of cultured BMCs can reduce the total number of injections required and were shown to induce therapeutic angiogenesis in a murine model of hind limb ischemia. Blood flow recovery was significantly improved in mice treated with granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent BMCs that secreted inflammatory cytokines. Angiogenesis, lymphangiogenesis, and blood flow recovery ratio were significantly higher in the GM-CSF-cultured F4/80+ macrophage (GM-Mø)-treated group compared with controls. Furthermore, Foxp3+ cell numbers and tissue IL-10 concentrations were significantly increased compared with controls. There was no significant difference in blood flow recovery between GM-Mø and M-CSF-cultured F4/80+ macrophages (M-Mø). Thus, GM-Mø were associated with improved blood flow in hind limb ischemia similar to M-Mø. The selective methods of culturing and treating GM-Mø cells similar to M-Mø cells could be used clinically to help resolve the large number of cells required for BMC treatment of CLI. This study demonstrates a novel cell therapy for CLI that can be used in conjunction with conventional therapy including percutaneous intervention and surgical bypass.

  15. Effects of N-acetylcysteine and pentoxifylline on remote lung injury in a rat model of hind-limb ischemia/reperfusion injury.

    PubMed

    Takhtfooladi, Hamed Ashrafzadeh; Hesaraki, Saeed; Razmara, Foad; Takhtfooladi, Mohammad Ashrafzadeh; Hajizadeh, Hadi

    2016-01-01

    To investigate the effects of N-acetylcysteine (NAC) and pentoxifylline in a model of remote organ injury after hind-limb ischemia/reperfusion (I/R) in rats, the lungs being the remote organ system. Thirty-five male Wistar rats were assigned to one of five conditions (n = 7/group), as follows: sham operation (control group); hind-limb ischemia, induced by clamping the left femoral artery, for 2 h, followed by 24 h of reperfusion (I/R group); and hind-limb ischemia, as above, followed by intraperitoneal injection (prior to reperfusion) of 150 mg/kg of NAC (I/R+NAC group), 40 mg/kg of pentoxifylline (I/R+PTX group), or both (I/R+NAC+PTX group). At the end of the trial, lung tissues were removed for histological analysis and assessment of oxidative stress. In comparison with the rats in the other groups, those in the I/R group showed lower superoxide dismutase activity and glutathione levels, together with higher malondialdehyde levels and lung injury scores (p < 0.05 for all). Interstitial inflammatory cell infiltration of the lungs was also markedly greater in the I/R group than in the other groups. In addition, I/R group rats showed various signs of interstitial edema and hemorrhage. In the I/R+NAC, I/R+PTX, and I/R+NAC+PTX groups, superoxide dismutase activity, glutathione levels, malondialdehyde levels, and lung injury scores were preserved (p < 0.05 for all). The differences between the administration of NAC or pentoxifylline alone and the administration of the two together were not significant for any of those parameters (p > 0.05 for all). Our results suggest that NAC and pentoxifylline both protect lung tissue from the effects of skeletal muscle I/R. However, their combined use does not appear to increase the level of that protection.

  16. A flexible electrode array for muscle impedance measurements in the mouse hind limb: A tool to speed research in neuromuscular disease

    NASA Astrophysics Data System (ADS)

    Li, J.; Rutkove, S. B.

    2013-04-01

    Electrical impedance myography (EIM) is a bioelectrical impedance technique focused on the assessment of neuromuscular diseases using tetrapolar surface arrays. Recently, we have shown that reproducible and sensitive EIM measurements can be made on the gastrocnemius muscle of the mouse hind limb and that these are sensitive to disease alterations. A dedicated array would help speed data acquisition and provide additional sensitivity to disease-induced alterations. A flexible electrode array was developed with electrode sizes of 1mm × 1mm by Parlex, Inc. Tetrapolar electrode sets were arranged both parallel to (longitudinal) and orthogonally to (transverse) the major muscle fiber direction of the gastrocnemius muscle. Measurements were made with a dedicated EIM system. A total of 11 healthy animals and 7 animals with spinal muscular atrophy (a form of motor neuron disease) were evaluated after the fur was completely removed with a depilatory agent from the hind limb. Standard electrophysiologic testing (compound motor action potential amplitude and motor unit number estimation) was also performed. The flexible electrode array demonstrated high repeatability in both the longitudinal and transverse directions in the healthy and diseased animals (with intraclass correlation coefficients of 0.94 and 0.89, respectively, for phase angle measured transversely). In addition, differences between healthy and diseased animals were identifiable. For example, the 50 kHz transverse phase angle was higher in the healthy as compared to the SMA animals (16.8° ± 0.5 vs. 14.3° ± 0.7, respectively) at 21 weeks of age (p = 0.01). Differences in anisotropy were also identifiable. Correlations to several standard neurophysiologic parameters also appeared promising. This novel flexible tetrapolar electrode array can be used on the mouse hind limb and provides multidirectional data that can be used to assess muscle health. This technique has the potential of finding widespread use in

  17. Effects of N-acetylcysteine and pentoxifylline on remote lung injury in a rat model of hind-limb ischemia/reperfusion injury

    PubMed Central

    Takhtfooladi, Hamed Ashrafzadeh; Hesaraki, Saeed; Razmara, Foad; Takhtfooladi, Mohammad Ashrafzadeh; Hajizadeh, Hadi

    2016-01-01

    Objective : To investigate the effects of N-acetylcysteine (NAC) and pentoxifylline in a model of remote organ injury after hind-limb ischemia/reperfusion (I/R) in rats, the lungs being the remote organ system. Methods : Thirty-five male Wistar rats were assigned to one of five conditions (n = 7/group), as follows: sham operation (control group); hind-limb ischemia, induced by clamping the left femoral artery, for 2 h, followed by 24 h of reperfusion (I/R group); and hind-limb ischemia, as above, followed by intraperitoneal injection (prior to reperfusion) of 150 mg/kg of NAC (I/R+NAC group), 40 mg/kg of pentoxifylline (I/R+PTX group), or both (I/R+NAC+PTX group). At the end of the trial, lung tissues were removed for histological analysis and assessment of oxidative stress. Results : In comparison with the rats in the other groups, those in the I/R group showed lower superoxide dismutase activity and glutathione levels, together with higher malondialdehyde levels and lung injury scores (p < 0.05 for all). Interstitial inflammatory cell infiltration of the lungs was also markedly greater in the I/R group than in the other groups. In addition, I/R group rats showed various signs of interstitial edema and hemorrhage. In the I/R+NAC, I/R+PTX, and I/R+NAC+PTX groups, superoxide dismutase activity, glutathione levels, malondialdehyde levels, and lung injury scores were preserved (p < 0.05 for all). The differences between the administration of NAC or pentoxifylline alone and the administration of the two together were not significant for any of those parameters (p > 0.05 for all). Conclusions : Our results suggest that NAC and pentoxifylline both protect lung tissue from the effects of skeletal muscle I/R. However, their combined use does not appear to increase the level of that protection. PMID:26982035

  18. Delivery system for autologous growth factors fabricated with low-molecular-weight heparin and protamine to attenuate ischemic hind-limb loss in a mouse model.

    PubMed

    Nakamura, Shingo; Takikawa, Megumi; Ishihara, Masayuki; Nakayama, Takefumi; Kishimoto, Satoko; Isoda, Susumu; Ozeki, Yuichi; Sato, Masahiro; Maehara, Tadaaki

    2012-12-01

    Frozen and thawed platelet-rich plasma (PRP) contains high concentrations of various growth factors, such as fibroblast growth factor (FGF)-2, vascular endothelial growth factor, and hepatocyte growth factor. We previously reported that low-molecular-weight heparin/protamine microparticles (LH/P MPs) are useful as biodegradable carriers for the controlled release of FGF-2. In this study, we examined the ability of PRP/LH/P MPs to prevent limb loss in an induced ischemic hind-limb model that used adult BALB/c-nu/nu male mice. One day after inducing ischemia, intramuscular injections of a PRP/LH/P MPs solution were administered into several sites of the ischemic hind limb. Seven days and onward after the injections, the PRP/LH/P MPs-treated and PRP-treated groups recovered from ischemia, as reflected by the improved oxygen saturation. In the PRP-treated group, however, the level of recovery of oxygen saturation after ischemia decreased after 14 days. From the 21st day onward, there was a significant difference between those two groups. In the LH/P MPs-treated group, a partial recovery occurred only in the early period. The saline-treated group (i.e., the control) and the noninjection group (i.e., ischemia only) exhibited no recovery. The limb survival rate at 1 year in the ischemia-induced mice injected with PRP/LH/P MPs was approximately 25 % (two of eight mice) but was absent in the other groups.

  19. Co-injection of mesenchymal stem cells with endothelial progenitor cells accelerates muscle recovery in hind limb ischemia through an endoglin-dependent mechanism.

    PubMed

    Rossi, Elisa; Smadja, David; Goyard, Celine; Cras, Audrey; Dizier, Blandine; Bacha, Nour; Lokajczyk, Anna; Guerin, Coralie L; Gendron, Nicolas; Planquette, Benjamin; Mignon, Virginie; Bernabéu, Carmelo; Sanchez, Olivier; Smadja, David M

    2017-10-05

    Endothelial colony-forming cells (ECFCs) are progenitor cells committed to endothelial lineages and have robust vasculogenic properties. Mesenchymal stem cells (MSCs) have been described to support ECFC-mediated angiogenic processes in various matrices. However, MSC-ECFC interactions in hind limb ischemia (HLI) are largely unknown. Here we examined whether co-administration of ECFCs and MSCs bolsters vasculogenic activity in nude mice with HLI. In addition, as we have previously shown that endoglin is a key adhesion molecule, we evaluated its involvement in ECFC/MSC interaction. Foot perfusion increased on day 7 after ECFC injection and was even better at 14 days. Co-administration of MSCs significantly increased vessel density and foot perfusion on day 7 but the differences were no longer significant at day 14. Analysis of mouse and human CD31, and in situ hybridization of the human ALU sequence, showed enhanced capillary density in ECFC+MSC mice. When ECFCs were silenced for endoglin, coinjection with MSCs led to lower vessel density and foot perfusion at both 7 and 14 days (p<0.001). Endoglin silencing in ECFCs did not affect MSC differentiation into perivascular cells or other mesenchymal lineages. Endoglin silencing markedly inhibited ECFC adhesion to MSCs. Thus, MSCs, when combined with ECFCs, accelerate muscle recovery in a mouse model of hind limb ischemia, through an endoglin-dependent mechanism.

  20. VEGF and IGF Delivered from Alginate Hydrogels Promote Stable Perfusion Recovery in Ischemic Hind Limbs of Aged Mice and Young Rabbits.

    PubMed

    Anderson, Erin M; Silva, Eduardo A; Hao, Yibai; Martinick, Kathleen D; Vermillion, Sarah A; Stafford, Alexander G; Doherty, Elisabeth G; Wang, Lin; Doherty, Edward J; Grossman, Paul M; Mooney, David J

    2017-09-21

    Biomaterial-based delivery of angiogenic growth factors restores perfusion more effectively than bolus delivery methods in rodent models of peripheral vascular disease, but the same success has not yet been demonstrated in clinically relevant studies of aged or large animals. These studies explore, in clinically relevant models, a therapeutic angiogenesis strategy for the treatment of peripheral vascular disease that overcomes the challenges encountered in previous clinical trials. Alginate hydrogels providing sustained release of vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF) were injected into ischemic hind limbs in middle-aged and old mice, and also in young rabbits, as a test of the scalability of this local growth factor treatment. Spontaneous perfusion recovery diminished with increasing age, and only the combination of VEGF and IGF delivery from gels significantly rescued perfusion in middle-aged (13 months) and old (20 months) mice. In rabbits, the delivery of VEGF alone or in combination with IGF from alginate hydrogels, at a dose 2 orders of magnitude lower than the typical doses used in past rabbit studies, enhanced perfusion recovery when given immediately after surgery, or as a treatment for chronic ischemia. Capillary density measurements and angiographic analysis demonstrated the benefit of gel delivery. These data together suggest that alginate hydrogels providing local delivery of low doses of VEGF and IGF constitute a safe and effective treatment for hind-limb ischemia in clinically relevant animal models, thereby supporting the potential clinical translation of this concept. © 2017 S. Karger AG, Basel.

  1. Coadministration of adipose-derived stem cells and control-released basic fibroblast growth factor facilitates angiogenesis in a murine ischemic hind limb model.

    PubMed

    Horikoshi-Ishihara, Hisako; Tobita, Morikuni; Tajima, Satoshi; Tanaka, Rica; Oshita, Takashi; Tabata, Yasuhiko; Mizuno, Hiroshi

    2016-12-01

    Adipose-derived stem cells (ASCs) have angiogenic potential owing to their differentiation into endothelial cells and their release of angiogenic growth factors to elicit paracrine effects. In addition, control-released basic fibroblast growth factor (bFGF) sustained with a gelatin hydrogel also supports effective angiogenesis. We sought to determine if coadministration of ASCs and control-released bFGF into murine ischemic limbs facilitates angiogenesis. Levels of growth factors in the conditioned media of ASCs cultured with or without control-released bFGF were measured by enzyme-linked immunosorbent assays. A murine ischemic hind limb model was generated and intramuscularly injected with the following: gelatin hydrogel (group 1), a high number of ASCs (group 2), control-released bFGF (group 3), a small number of ASCs and control-released bFGF (group 4), and a high number of ASCs and control-released bFGF (group 5). Macroscopic and microscopic vascular changes were evaluated until day 7 by laser Doppler perfusion imaging and histologic analyses, respectively. Secretion of hepatocyte growth factor, vascular endothelial growth factor, and transforming growth factor-β1 was enhanced by control-released bFGF. Vascular improvement was achieved in groups 4 and 5 according to laser Doppler perfusion imaging. Hematoxylin and eosin staining and CD31 immunohistochemical staining demonstrated an increase in the vascular density, vessel diameter, and thickness of vessel walls in groups 4 and 5. Cells positively stained for CD146, α-smooth muscle actin, and transforming growth factor-β1 were observed around vessel walls in groups 4 and 5. These findings suggest that coadministration of ASCs and control-released bFGF facilitates angiogenesis in terms of vessel maturation in a murine ischemic hind limb model. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  2. The Effects of Inclination (Up and Down) of the Treadmill on the Electromyogram Activities of the Forelimb and Hind limb Muscles at a Walk and a Trot in Thoroughbred Horses

    PubMed Central

    TAKAHASHI, Toshiyuki; MATSUI, Akira; MUKAI, Kazutaka; OHMURA, Hajime; HIRAGA, Atsushi; AIDA, Hiroko

    2014-01-01

    ABSTRACT It is important to know the effects of the inclination of a slope on the activity of each muscle, because training by running on a sloped track is commonly used for Thoroughbred racehorses. The effects of incline (from −6 to +6%) on the forelimbs and hind limbs during walking and trotting on a treadmill were evaluated by an integrated electromyogram (iEMG). The muscle activities in the forelimbs (5 horses) and hind limbs (4 horses) were measured separately. Two stainless steel wires were inserted into each of the brachiocephalicus (Bc), biceps brachii (BB), splenius (Sp), and pectoralis descendens (PD) in the forelimb experiment and into the longissimus dorsi (LD), vastus lateralis (VL), gluteus medius (GM), and biceps femoris (BF) in the hind limb experiment. The EMG recordings were taken at a sampling rate of 1,000 Hz. At a walk, the iEMG values for the forelimb were not significantly different under any of the inclinations. In the hind limb, the iEMG values for the GM and BF significantly decreased as the inclination decreased. At a trot, the iEMG values for the Bc in the forelimb significantly decreased as the inclination of the treadmill decreased. In the hind limb, the iEMG values for the LD, GM, and BF significantly decreased as the inclination decreased. Uphill exercise increased the iEMG values for the Bc, LD, GM, and BF, while downhill exercise resulted in little increase in the iEMG values. It was concluded that the effects of inclination on the muscle activities were larger for the uphill exercises, and for the hind limb muscles compared with the forelimb muscles. PMID:25558180

  3. The Effects of Inclination (Up and Down) of the Treadmill on the Electromyogram Activities of the Forelimb and Hind limb Muscles at a Walk and a Trot in Thoroughbred Horses.

    PubMed

    Takahashi, Toshiyuki; Matsui, Akira; Mukai, Kazutaka; Ohmura, Hajime; Hiraga, Atsushi; Aida, Hiroko

    2014-01-01

    It is important to know the effects of the inclination of a slope on the activity of each muscle, because training by running on a sloped track is commonly used for Thoroughbred racehorses. The effects of incline (from -6 to +6%) on the forelimbs and hind limbs during walking and trotting on a treadmill were evaluated by an integrated electromyogram (iEMG). The muscle activities in the forelimbs (5 horses) and hind limbs (4 horses) were measured separately. Two stainless steel wires were inserted into each of the brachiocephalicus (Bc), biceps brachii (BB), splenius (Sp), and pectoralis descendens (PD) in the forelimb experiment and into the longissimus dorsi (LD), vastus lateralis (VL), gluteus medius (GM), and biceps femoris (BF) in the hind limb experiment. The EMG recordings were taken at a sampling rate of 1,000 Hz. At a walk, the iEMG values for the forelimb were not significantly different under any of the inclinations. In the hind limb, the iEMG values for the GM and BF significantly decreased as the inclination decreased. At a trot, the iEMG values for the Bc in the forelimb significantly decreased as the inclination of the treadmill decreased. In the hind limb, the iEMG values for the LD, GM, and BF significantly decreased as the inclination decreased. Uphill exercise increased the iEMG values for the Bc, LD, GM, and BF, while downhill exercise resulted in little increase in the iEMG values. It was concluded that the effects of inclination on the muscle activities were larger for the uphill exercises, and for the hind limb muscles compared with the forelimb muscles.

  4. Connexions from large, ipsilateral hind limb muscle and skin afferents to the rostral main cuneate nucleus and to the nucleus X region in the cat.

    PubMed Central

    Johansson, H; Silfvenius, H

    1977-01-01

    1. Evidence is presented for an input from ipsilateral hind limb group I muscle afferents and low threshold cutaneous afferents, to cells in the rostral division of the main cuneate nucleus (rMCN) and in the region of the descending vestibular nucleus and the nucleus X of Brodal & Pompeiano (1957a), the (DV-X). 2. Thirteen group I-rMCN cells were recorded from. The functional properties of these cells were similar to those of nueleus Z (Landgren & Silfvenius, 1971; Johansson & Silfvenius, 1977a, b). The cells were monosynaptically linked to spinal dorsolateral fascicle (DLF) fibres. Nine cells projected to the contralateral thalamus, i.e. a second group I hind limb bulbothalamic tract is described. Ten cells were synaptically activated from the ipsilateral cerebellum from the anterior projection zone of the dorsal spinocerebellar tract (DSCT). Axon-collateral activation by DSCT fibres was established for two of these cells. They were both bulbothalamic relay cells. For the remaining eight cells, activated from the cerebellum, this was not proven. These cells could, however, either be linked to DSCT fibres or to short axon-collaterals of a cell body of unknown location. A projection from the rMCN to the cerebellum is described and agrees with recent anatomical findings. Two cells were not excited from the cerebellum. 3. Four rMCN cells were activated by cutaneous afferents with their secondary axons in the DLF. Suggestive evidence for a bulbothalamic cutaneous hind limb path via the rMCN is presented. Two cells were activated from the cerebellum, presumably via axon-collaterals of nonsegmental cells. 4. Eight group I-DV-X cells were recorded from. They were monosynaptically linked to spinal DLF fibres and resembled functionally the nucleus Z and rMCN cells when stimulated from the periphery. Two cells projected to the contralateral thalamus, and two others were synaptically excited. Seven cells were activated from the ipsilateral cerebellum. Two of them projected to

  5. Comparative Anatomy of the Hind Limb Vessels of the Bearded Capuchins (Sapajus libidinosus) with Apes, Baboons, and Cebus capucinus: With Comments on the Vessels' Role in Bipedalism

    PubMed Central

    Aversi-Ferreira, Roqueline A. G. M. F.; de Abreu, Tainá; Pfrimer, Gabriel A.; Silva, Sylla F.; Ziermann, Janine M.; Carneiro-e-Silva, Frederico O.; Tomaz, Carlos; Tavares, Maria Clotilde H.; Maior, Rafael S.; Aversi-Ferreira, Tales A.

    2013-01-01

    Capuchin monkeys are known to exhibit sporadic bipedalism while performing specific tasks, such as cracking nuts. The bipedal posture and locomotion cause an increase in the metabolic cost and therefore increased blood supply to lower limbs is necessary. Here, we present a detailed anatomical description of the capuchin arteries and veins of the pelvic limb of Sapajus libidinosus in comparison with other primates. The arterial pattern of the bearded capuchin hind limb is more similar to other quadrupedal Cebus species. Similarities were also found to the pattern observed in the quadruped Papio, which is probably due to a comparable pelvis and the presence of the tail. Sapajus' traits show fewer similarities when compared to great apes and modern humans. Moreover, the bearded capuchin showed unique patterns for the femoral and the short saphenous veins. Although this species switches easily from quadrupedal to bipedal postures, our results indicate that the bearded capuchin has no specific or differential features that support extended bipedal posture and locomotion. Thus, the explanation for the behavioral differences found among capuchin genera probably includes other aspects of their physiology. PMID:24396829

  6. Development of a twenty-one-component finite element distal hind limb model: stress and strain in bovine digit structures as a result of loading on different floorings.

    PubMed

    Hinterhofer, C; Haider, H; Apprich, V; Ferguson, J C; Collins, S N; Stanek, C

    2009-03-01

    Finite element modeling is a unique way of introducing technical and material research into medical science. A bovine distal hind limb was scanned using computed tomography for geometric image capture and the data were subsequently divided (segmented) into 4 tissue types: bone, bone marrow, soft tissue, and the horn capsule. Material data from previous studies were integrated into the model. Flexor tendons were assembled as longitudinal structures starting at their cross-sectional areas at the height of the metatarsophalangeal joint, proceeding in the plantaro-distal direction and meeting the distal phalanx at the tuberculum flexorium. Three different flooring situations (full support floor, bearing weight in the abaxial half of the lateral claw and in the dorsal halves of both claws, respectively) were created to evaluate the effects of loading. Full support resulted in von Mises stress levels between 3.5 and 1.5 MPa for the osseous structures and some regions of the segmented soft tissue; stress patterns in the bulb and sole of the claw capsule (1.5 MPa) and in the floor (0.5 MPa) were similar to pressure plate data in vivo and in vitro, with corresponding strain values of 2.4%. Reduced support resulted in higher stresses (up to approximately 8 MPa) in bones, claw capsules, and tendons; high strains ( approximately 11%) were found in the soft tissue, depending on how the floor was constructed. Although the models may still be anatomically improved, stress and strain calculations are possible with results comparable to related research, and the model shows interaction between the 2 digits. This possibly will help with further understanding of the biomechanical function of this 2-digit structure. With respect to clinical interpretation, reduced support to the bovine hind limb increases focal stress peaks in the different tissues, which may indicate a location of potential injury.

  7. Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl

    PubMed Central

    2014-01-01

    Background To gain insight into what differences might restrict the capacity for limb regeneration in Xenopus froglets, we used High Performance Liquid Chromatography (HPLC)/double mass spectrometry to characterize protein expression during fibroblastema formation in the amputated froglet hindlimb, and compared the results to those obtained previously for blastema formation in the axolotl limb. Results Comparison of the Xenopus fibroblastema and axolotl blastema revealed several similarities and significant differences in proteomic profiles. The most significant similarity was the strong parallel down regulation of muscle proteins and enzymes involved in carbohydrate metabolism. Regenerating Xenopus limbs differed significantly from axolotl regenerating limbs in several ways: deficiency in the inositol phosphate/diacylglycerol signaling pathway, down regulation of Wnt signaling, up regulation of extracellular matrix (ECM) proteins and proteins involved in chondrocyte differentiation, lack of expression of a key cell cycle protein, ecotropic viral integration site 5 (EVI5), that blocks mitosis in the axolotl, and the expression of several patterning proteins not seen in the axolotl that may dorsalize the fibroblastema. Conclusions We have characterized global protein expression during fibroblastema formation after amputation of the Xenopus froglet hindlimb and identified several differences that lead to signaling deficiency, failure to retard mitosis, premature chondrocyte differentiation, and failure of dorsoventral axial asymmetry. These differences point to possible interventions to improve blastema formation and pattern formation in the froglet limb. PMID:25063185

  8. Effect of prolonged ischaemic time on muscular atrophy and regenerating nerve fibres in transplantation of the rat hind limb.

    PubMed

    Tsuji, Naoko; Yamashita, Shuji; Sugawara, Yasushi; Kobayashi, Eiji

    2012-09-01

    Our aim was to test the influence of cold ischaemia on replanted limbs, focusing on muscular atrophy and neurological recovery. Inbred wild-type and green fluorescent protein (GFP) transgenic (Tg) Lewis rats aged 8-10 weeks were used. The amputated limbs were transplanted at several cold ischaemic times (0, 1, 8, 12, 24, 48, and 72 hours). An arterial ischaemic model and a denervation model were used as controls. To study nerve regeneration, a GFP limb was transplanted on to the syngenic wild Lewis rat. These animals were evaluated histologically, electrophysiologically, and immunohistochemically. The longer the ischaemic time, the more evident was atrophy of the muscles. Electrophysiological investigation showed that the latency at 3 weeks was longer in the transplantation models than in the normal controls, particularly in the longer ischaemia group. Larger numbers of migrating Schwann cells were seen in the group with no delay than in the group that had been preserved for 12 hours. Ischaemia after amputation of a limb causes muscle cells to necrose and atrophy, and these changes worsen in proportion to the ischaemic preservation time. A delay in nerve regeneration and incomplete paralysis caused by malregeneration also affect muscular atrophy.

  9. Transfection of VEGF(165) genes into endothelial progenitor cells and in vivo imaging using quantum dots in an ischemia hind limb model.

    PubMed

    Yang, Han Na; Park, Ji Sun; Woo, Dae Gyun; Jeon, Su Yeon; Park, Keun-Hong

    2012-11-01

    Endothelial progenitor cells (EPCs) were transfected with fluorescently labeled quantum dot nanoparticles (QD NPs) with or without VEGF(165) plasmid DNA (pDNA) to probe the EPCs after in vivo transplantation and to test whether they presented as differentiated endothelial cells (ECs). Bare QD NPs and QD NPs coated with PEI or PEI + VEGF(165) genes were characterized by dynamic light scattering, scanning electron microscopy, and atomic force microscopy. Transfection of EPCs with VEGF(165) led to the expression of specific genes and proteins for mature ECs. A hind limb ischemia model was generated in nude mice, and VEGF(165) gene-transfected EPCs were transplanted intramuscularly into the ischemic limbs. At 28 days after transplantation, the VEGF(165) gene-transfected EPCs significantly increased the number of differentiated ECs compared with the injection of medium or bare EPCs without VEGF(165) genes. Laser Doppler imaging revealed that blood perfusion levels were increased significantly by VEGF(165) gene-transfected EPCs compared to EPCs without VEGF(165). Moreover, the transplantation of VEGF(165) gene-transfected EPCs increased the specific gene and protein expression levels of mature EC markers and angiogenic factors in the animal model.

  10. Data set incongruence and correlated character evolution: An example of functional convergence in the hind-limbs of stifftail diving ducks

    USGS Publications Warehouse

    McCracken, K.G.; Harshman, J.; Mcclellan, D.A.; Afton, A.D.

    1999-01-01

    The unwitting inclusion of convergent characters in phylogenetic estimates poses a serious problem for efforts to recover phylogeny. Convergence is not inscrutable, however, particularly when one group of characters tracks phylogeny and another set tracks adaptive history. In such cases, convergent characters may be correlated with one or a few functional anatomical units and readily identifiable by using comparative methods. Stifftail ducks (Oxyurinae) offer one such opportunity to study correlated character evolution and function in the context of phylogenetic reconstruction. Morphological analyses place stifftail ducks as part of a large clade of diving ducks that includes the sea ducks (Mergini), Hymenolaimus, Merganetta, and Tachyeres, and possibly the pochards (Aythyini). Molecular analyses, on the other hand, place stifftails far from other diving ducks and suggest, moreover, that stifftails are polyphyletic. Mitochondrial cytochrome b gene sequences of eight stifftail species traditionally supposed to form a clade were compared with each other and with sequences from 50 other anseriform and galliform species. Stifftail ducks are not the sister group of sea ducks but lie outside the typical ducks (Anatinae). Of the four traditional stifftail genera, monophyly of Oxyura and its sister group relationship with Nomonyx are strongly supported. Heteronetta probably is the sister group of that clade, but support is weak. Biziura is not a true stifftail. Within Oxyura, Old World species (O. australis, O. leucocephala, O. mnccoa) appear to form a clade, with New World species (O. jamaicensis, O. vittata) branching basally. Incongruence between molecules and morphology is interpreted to be the result of adaptive specialization and functional convergence in the hind limbs of Biziura and true stifftails. When morphological characters are divided into classes, only hind-limb characters are significantly in conflict with the molecular tree. Likewise, null models of

  11. Data set incongruence and correlated character evolution: an example of functional convergence in the hind-limbs of stifftail diving ducks.

    PubMed

    McCracken, K G; Harshman, J; McClellan, D A; Afton, A D

    1999-12-01

    The unwitting inclusion of convergent characters in phylogenetic estimates poses a serious problem for efforts to recover phylogeny. Convergence is not inscrutable, however, particularly when one group of characters tracks phylogeny and another set tracks adaptive history. In such cases, convergent characters may be correlated with one or a few functional anatomical units and readily identifiable by using comparative methods. Stifftail ducks (Oxyurinae) offer one such opportunity to study correlated character evolution and function in the context of phylogenetic reconstruction. Morphological analyses place stifftail ducks as part of a large clade of diving ducks that includes the sea ducks (Mergini), Hymenolaimus, Merganetta, and Tachyeres, and possibly the pochards (Aythyini). Molecular analyses, on the other hand, place stifftails far from other diving ducks and suggest, moreover, that stifftails are polyphyletic. Mitochondrial cytochrome b gene sequences of eight stifftail species traditionally supposed to form a clade were compared with each other and with sequences from 50 other anseriform and galliform species. Stifftail ducks are not the sister group of sea ducks but lie outside the typical ducks (Anatinae). Of the four traditional stifftail genera, monophyly of Oxyura and its sister group relationship with Nomonyx are strongly supported. Heteronetta probably is the sister group of that clade, but support is weak. Biziura is not a true stifftail. Within Oxyura, Old World species (O. australis, O. leucocephala, O. maccoa) appear to form a clade, with New World species (O. jamaicensis, O. vittata) branching basally. Incongruence between molecules and morphology is interpreted to be the result of adaptive specialization and functional convergence in the hind limbs of Biziura and true stifftails. When morphological characters are divided into classes, only hind-limb characters are significantly in conflict with the molecular tree. Likewise, null models of

  12. Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle.

    PubMed

    Hiebert, G W; Whelan, P J; Prochazka, A; Pearson, K G

    1996-03-01

    1. In this investigation, we tested the hypothesis that muscle spindle afferents signaling the length of hind-leg flexor muscles are involved in terminating extensor activity and initiating flexion during walking. The hip flexor muscle iliopsoas (IP) and the ankle flexors tibialis anterior (TA) and extensor digitorum longus (EDL) were stretched or vibrated at various phases of the step cycle in spontaneously walking decerebrate cats. Changes in electromyogram amplitude, duration, and timing were then examined. The effects of electrically stimulating group I and II afferents in the nerves to TA and EDL also were examined. 2. Stretch of the individual flexor muscles (IP, TA, or EDL) during the stance phase reduced the duration of extensor activity and promoted the onset of flexor burst activity. The contralateral step cycle also was affected by the stretch, the duration of flexor activity being shortened and extensor activity occurring earlier. Therefore, stretch of the flexor muscles during the stance phase reset the locomotor rhythm to flexion ipsilaterally and extension contralaterally. 3. Results of electrically stimulating the afferents from the TA and EDL muscles suggested that different groups of afferents were responsible for the resetting of the step cycle. Stimulation of the TA nerve reset the locomotor step cycle when the stimulus intensity was in the group II range (2-5 xT). By contrast, stimulation of the EDL nerve generated strong resetting of the step cycle in the range of 1.2-1.4 xT, where primarily the group Ia afferents from the muscle spindles would be activated. 4. Vibration of IP or EDL during stance reduced the duration of the extensor activity by similar amounts to that produced by muscle stretch or by electrical stimulation of EDL at group Ia strengths. This suggests that the group Ia afferents from IP and EDL are capable of resetting the locomotor pattern generator. Vibration of TA did not affect the locomotor rhythm. 5. Stretch of IP or

  13. Periostin enhances adipose-derived stem cell adhesion, migration, and therapeutic efficiency in Apo E deficient mice with hind limb ischemia.

    PubMed

    Qin, Jinbao; Yuan, Fukang; Peng, Zhiyou; Ye, Kaichuang; Yang, Xinrui; Huang, Lijia; Jiang, Mier; Lu, Xinwu

    2015-07-24

    Therapeutic angiogenesis by transplantation of autologous/allogeneic adipose-derived stem cells (ADSCs) is a potential approach for severe ischemic diseases. However, poor viability, adhesion, migration and differentiation limit the therapeutic efficiency after the cells were transplanted into the targeted area. Periostin, an extracellular matrix protein, exhibits a critical role in wound repair as well as promotes cell adhesion, survival, and angiogenesis. ADSCs were obtained and genetically engineered with periostin gene (P-ADSCs). The viability, proliferation, migration, and apoptosis of P-ADSCs under hypoxia were analyzed. Moreover, P-ADSCs were implanted into Apo E deficient mice with hind limb ischemia. The Laser Doppler perfusion index, immunofluorescence, and histological pathology assay were tested to evaluate the therapeutic effects. The associated molecular mechanism of periostin on the proliferation, adhesion, migration, and differentiation of ADSCs was also analyzed. The in vitro studies have shown that periostin-transfected ADSCs (P-ADSCs) promoted viability, proliferation, and migration of ADSCs. Apoptosis of ADSCs was inhibited under hypoxic conditions. The Laser Doppler perfusion index was significantly higher in the P-ADSCs group compared with that in the ADSC and control groups after 4 weeks. Immunofluorescence and histological pathology assay showed that the P-ADSCs were in and around the ischemic sites, and some cells differentiated into capillaries and endothelium. Microvessel densities were significantly improved in P-ADSCs group compared with those in the control group. The molecular mechanisms that provide the beneficial effects of periostin were connected with the upregulated expression of integrinβ1/FAK/PI3K/Akt/eNOS signal pathway and the increased secretion of growth factors. Overexpression of periostin by gene transfection on ADSCs promotes survival, migration, and therapeutic efficiency, which will bring new insights into the

  14. Involvement of spinal α2 -adrenoceptors in prolonged modulation of hind limb withdrawal reflexes following acute noxious stimulation in the anaesthetized rabbit.

    PubMed

    Harris, John

    2016-03-01

    The role of spinal α2 -adrenoceptors in mediating long-lasting modulation of hind limb withdrawal reflexes following acute noxious chemical stimulation of distant heterotopic and local homotopic locations has been investigated in pentobarbitone-anaesthetized rabbits. Reflexes evoked in the ankle extensor muscle medial gastrocnemius (MG) by electrical stimulation of the ipsilateral heel, and reflexes elicited in the ankle flexor tibialis anterior and the knee flexor semitendinosus by stimulation at the base of the ipsilateral toes, could be inhibited for over 1 h after mustard oil (20%) was applied to either the snout or into the contralateral MG. The heel-MG response was also inhibited after applying mustard oil across the plantar metatarsophalangeal joints of the ipsilateral foot, whereas this homotopic stimulus facilitated both flexor responses. Mustard oil also caused a significant pressor effect when applied to any of the three test sites. The selective α2 -adrenoceptor antagonist, RX 821002 (100-300 μg, intrathecally), had no effect on reflexes per se, but did cause a decrease in mean arterial blood pressure. In the presence of the α2 -blocker, inhibitory and facilitatory effects of mustard oil on reflexes were completely abolished. These data imply that long-lasting inhibition of spinal reflexes following acute noxious stimulation of distant locations involves activation of supraspinal noradrenergic pathways, the effects of which are dependent on an intact α2 -adrenoceptor system at the spinal level. These pathways and receptors also appear to be involved in facilitation (sensitization) as well as inhibition of reflexes following a noxious stimulus applied to the same limb.

  15. Combination of anti-ICAM-1 and anti-LFA-1 monoclonal antibody therapy prolongs allograft survival in rat hind-limb transplants.

    PubMed

    Ozer, K; Siemionow, M

    2001-10-01

    Immunosuppressive effects of monoclonal antibodies against adhesion molecules were validated in solid organ transplants. There have been only a few reports on the effect of these antibodies on limb transplantation. In this study, the authors investigated the effects of anti-ICAM-1 and anti-LFA-1 therapy in the rat hind-limb-cremaster transplantation model. Twenty transplantations were performed across a major histocompatibility barrier between Lewis Brown Norway (LBN, RT-1(l+n)) and Lewis (LEW, RT-1(l)) rats in four experimental groups of five animals each. Group 1 animals received only vehicle solution; Groups 2 and 3 received monoclonal antibodies against ICAM-1 and LFA-1, respectively; Group 4 received a combination dose. Treatments were continued for 7 days. Clinical signs of rejection were noted daily, and correlated with in vivo microcirculatory measurements. The activation of adhering leukocytes was significantly lower in rats treated with anti-ICAM-1, anti-LFA-1, and combination than in controls (p < 0.05). Transmigrating leukocytes were also reduced in antibody-treated groups, when compared to the control group (p < 0.05). The mean number of rolling lymphocytes was significantly reduced only in the combination group (p < 0.05). Endothelial edema index, a measure of endothelial swelling, was lowest in the combination group (p < 0.05). The first clinical signs of rejection were noted between the 5(th) and 9(th) days in the control group, on the 9(th) day in the anti-ICAM-1 or anti-LFA-1 groups, and on the 13(th) day with combination therapy. Monoclonal antibodies against LFA-1 or ICAM-1 alone inhibit the activation of leukocytes at the microcirculatory level but do not prolong graft survival. However, the combination of anti-ICAM-1 and anti-LFA-1 monoclonal antibodies significantly prolonged allograft survival in this composite tissue transplantation model.

  16. Protective effects of erdosteine, vitamin E, and vitamin C on renal injury induced by the ischemia-reperfusion of the hind limbs in rats.

    PubMed

    Sirmali, Rana; Armağan, Abdullah; Öktem, Faruk; Uz, Efkan; Kirbas, Aynur; Dönmezs, Soner; Yilmaz, Hacı Ramazan; Silay, Mesrur Selçuk; Sirmali, Mehmet

    2015-01-01

    To compare the protective efficacy of erdosteine and vitamins C and E against renal injury caused by hind limb ischemia-reperfusion (I/R). Rats were split into 4 groups: group I as the control, group II as I/R, group III as I/R + erdosteine, and group IV as I/R + vitamins C and E. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA) tissue levels were determined. MDA levels were found comparable with the control group in groups II and III. However, they were considerably decreased in group IV when compared to group II (P < 0.01). Additionally, SOD, CAT, and GSH-Px activities were considerably (P < 0.05) decreased in group II. While CAT and GSH-Px activities were restored (P <0.01) by vitamin E and C treatment, SOD activity was not significantly affected. While GSH-Px activities were higher (P < 0.05) with erdosteine administration, SOD and CAT activities were unchanged. The protective effect of vitamins C and E is higher than that of erdosteine treatment in reducing the oxidative stress after renal ischemia in this animal model.

  17. Pharmacokinetics of Acetaminophen in Hind Limbs Unloaded Mice: A Model System Simulating the Effects of Low Gravity on Astronauts in Space

    NASA Technical Reports Server (NTRS)

    Peterson, Amanda; Risin, Semyon A.; Ramesh, Govindarajan T.; Dasgupta, Amitava; Risin, Diana

    2008-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in Space. Low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration in astronauts. Acquiring of such knowledge has inherent difficulties due to limited opportunities for experimenting in Space. One of the approaches is to use model systems that simulate some of the Space conditions on Earth. In this study we used hind limbs unloaded mice (HLU) to investigate the possible changes in PK of acetaminophen, a widely used analgesic with high probability of use by astronauts. The HLU is recognized as an appropriate model for simulating the effects of low gravity on hemodynamic parameters. Mice were tail suspended (n = 24) for 24-96 hours prior to introduction of acetaminophen (150 - 300 mg/kg). The drug (in aqueous solution containing 10% ethyl alcohol by volume) was given orally by a gavage procedure and after the administration of acetaminophen mice were additionally suspended for 30 min, 1 and 2 hours. Control mice (n = 24) received the same dose of acetaminophen and were kept freely all the time. Blood specimens were obtained either from retroorbital venous sinuses or from heart. Acetaminophen concentration was measured in plasma by the fluorescent polarization immunoassay and the AxSYM analyzer (Abbott Laboratories). In control mice peak acetaminophen concentration was achieved at 30 min. By 1 hour the concentration decreased to less than 50% of the peak level and at 2 hours the drug was almost undetectable in the serum. HLU for 24 hours significantly altered the acetaminophen pharmacokinetic: at 30 min the acetaminophen concentrations were significantly (both statistically and medically significant) lower than in control mice. The concentrations also reduced less

  18. Pharmacokinetics of Acetaminophen in Hind Limbs Unloaded Mice: A Model System Simulating the Effects of Low Gravity on Astronauts in Space

    NASA Technical Reports Server (NTRS)

    Peterson, Amanda; Risin, Semyon A.; Ramesh, Govindarajan T.; Dasgupta, Amitava; Risin, Diana

    2008-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in Space. Low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration in astronauts. Acquiring of such knowledge has inherent difficulties due to limited opportunities for experimenting in Space. One of the approaches is to use model systems that simulate some of the Space conditions on Earth. In this study we used hind limbs unloaded mice (HLU) to investigate the possible changes in PK of acetaminophen, a widely used analgesic with high probability of use by astronauts. The HLU is recognized as an appropriate model for simulating the effects of low gravity on hemodynamic parameters. Mice were tail suspended (n = 24) for 24-96 hours prior to introduction of acetaminophen (150 - 300 mg/kg). The drug (in aqueous solution containing 10% ethyl alcohol by volume) was given orally by a gavage procedure and after the administration of acetaminophen mice were additionally suspended for 30 min, 1 and 2 hours. Control mice (n = 24) received the same dose of acetaminophen and were kept freely all the time. Blood specimens were obtained either from retroorbital venous sinuses or from heart. Acetaminophen concentration was measured in plasma by the fluorescent polarization immunoassay and the AxSYM analyzer (Abbott Laboratories). In control mice peak acetaminophen concentration was achieved at 30 min. By 1 hour the concentration decreased to less than 50% of the peak level and at 2 hours the drug was almost undetectable in the serum. HLU for 24 hours significantly altered the acetaminophen pharmacokinetic: at 30 min the acetaminophen concentrations were significantly (both statistically and medically significant) lower than in control mice. The concentrations also reduced less

  19. Protective effects of erdosteine and vitamins C and E combination on ischemia-reperfusion-induced lung oxidative stress and plasma copper and zinc levels in a rat hind limb model.

    PubMed

    Sirmali, Mehmet; Uz, Efkan; Sirmali, Rana; Kilbaş, Aynur; Yilmaz, H Ramazan; Altuntaş, Irfan; Naziroğlu, Mustafa; Delibaş, Namik; Vural, Hüseyin

    2007-07-01

    The aim of this study was to investigate the protective effects of erdosteine and vitamins C and E (VCE) on the lungs after performing hind limb ischemia-reperfusion (I/R) by assessing oxidative stress, plasma copper (Cu), and zinc (Zn) analysis. The animals were divided randomly into four groups as nine rats each as follows: control, I/R, I/R plus erdosteine, and I/R plus VCE combination. I/R period for 60 min was performed on the both hind limbs of all the rats in the groups of I/R, erdosteine with I/R, VCE with I/R allowing 120 min of reperfusion. The animals received orally erdosteine one time in a day and 3 days before I/R in the erdosteine group. In the VCE group, the animals VCE combination received one time in a day and 3 days before I/R, although placebo was given to control and I/R group animals. Lung lipid peroxidation (malondialdehyde [MDA]) level, superoxide dismutase (SOD), and catalase activities were increased, although lung glutathione (GSH) and plasma Zn levels decreased in I/R group in lung tissue compared with the control group. Serum MDA level, creatine kinase, and lactate dehydrogenase activities were increased in I/R group compared with the control. Lung MDA and plasma Zn levels and lung SOD activity were decreased by erdosteine administration, whereas lung GSH levels after I/R increased. The plasma Zn levels and lung SOD activity were decreased by VCE administration, although the plasma Cu and lung GSH levels increased after I/R. In conclusion, erdosteine has an antioxidant role on the values in the rat model, and it has more protective affect than in VCE in attenuating I/R-induced lung injury in rats.

  20. Whole-bone scaling of the avian pelvic limb

    PubMed Central

    Doube, Michael; Yen, Stephanie C W; Kłosowski, Michał M; Farke, Andrew A; Hutchinson, John R; Shefelbine, Sandra J

    2012-01-01

    Birds form the largest extant group of bipedal animals and occupy a broad range of body masses, from grams to hundreds of kilograms. Additionally, birds occupy distinct niches of locomotor behaviour, from totally flightless strong runners such as the ratites (moa, kiwi, ostrich) to birds that may walk, dabble on water or fly. We apply a whole-bone approach to investigate allometric scaling trends in the pelvic limb bones (femur, tibiotarsus, tarsometatarsus) from extant and recently extinct birds of greatly different size, and compare scaling between birds in four locomotor groups; flightless, burst-flying, dabbling and flying. We also compare scaling of birds’ femoral cross-sectional properties to data previously collected from cats. Scaling exponents were not significantly different between the different locomotor style groups, but elevations of the scaling relationships revealed that dabblers (ducks, geese, swans) have particularly short and slender femora compared with other birds of similar body mass. In common with cats, but less pronounced in birds, the proximal and distal extrema of the bones scaled more strongly than the diaphysis, and in larger birds the diaphysis occupied a smaller proportion of bone length than in smaller birds. Cats and birds have similar femoral cross-sectional area (CSA) for the same body mass, yet birds’ bone material is located further from the bone’s long axis, leading to higher second and polar moments of area and a greater inferred resistance to bending and twisting. The discrepancy in the relationship between outer diameter to CSA may underlie birds’ reputation for having ‘light’ bones. PMID:22606941

  1. Whole-bone scaling of the avian pelvic limb.

    PubMed

    Doube, Michael; Yen, Stephanie C W; Kłosowski, Michał M; Farke, Andrew A; Hutchinson, John R; Shefelbine, Sandra J

    2012-07-01

    Birds form the largest extant group of bipedal animals and occupy a broad range of body masses, from grams to hundreds of kilograms. Additionally, birds occupy distinct niches of locomotor behaviour, from totally flightless strong runners such as the ratites (moa, kiwi, ostrich) to birds that may walk, dabble on water or fly. We apply a whole-bone approach to investigate allometric scaling trends in the pelvic limb bones (femur, tibiotarsus, tarsometatarsus) from extant and recently extinct birds of greatly different size, and compare scaling between birds in four locomotor groups; flightless, burst-flying, dabbling and flying. We also compare scaling of birds' femoral cross-sectional properties to data previously collected from cats. Scaling exponents were not significantly different between the different locomotor style groups, but elevations of the scaling relationships revealed that dabblers (ducks, geese, swans) have particularly short and slender femora compared with other birds of similar body mass. In common with cats, but less pronounced in birds, the proximal and distal extrema of the bones scaled more strongly than the diaphysis, and in larger birds the diaphysis occupied a smaller proportion of bone length than in smaller birds. Cats and birds have similar femoral cross-sectional area (CSA) for the same body mass, yet birds' bone material is located further from the bone's long axis, leading to higher second and polar moments of area and a greater inferred resistance to bending and twisting. The discrepancy in the relationship between outer diameter to CSA may underlie birds' reputation for having 'light' bones.

  2. Scale effects between body size and limb design in quadrupedal mammals.

    PubMed

    Kilbourne, Brandon M; Hoffman, Louwrens C

    2013-01-01

    Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties--limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency--were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass(0.40)); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass(1.0)), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry.

  3. Scale Effects between Body Size and Limb Design in Quadrupedal Mammals

    PubMed Central

    Kilbourne, Brandon M.; Hoffman, Louwrens C.

    2013-01-01

    Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties – limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency – were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass0.40); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass1.0), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry. PMID:24260117

  4. Interspecific scaling of the morphology and posture of the limbs during the locomotion of cats (Felidae).

    PubMed

    Day, Lisa M; Jayne, Bruce C

    2007-02-01

    For phylogenetically diverse mammals, ranging from small rodents to large ungulates, the generalization that limb erectness increases with increased size is supported by some size-dependent scaling relationships of appendicular skeletal anatomy as well as a limited number of direct observations of limb posture during locomotion. If size alone is the causal basis for different limb posture, then the erectness of limbs should increase significantly with increased size within a phylogenetically narrow lineage, but such data are sparse. Thus, to better establish the correlation between size and posture of mammalian limbs, we quantified the scaling relationships between mass and limb dimensions and kinematics during walking of nine species within the felid (cat) clade, which has qualitatively similar limb design. We studied the domestic cat, serval, ocelot, lynx, leopard, cheetah, cougar, lion and tiger, which had masses ranging from <4 kg to nearly 200 kg. Apart from variation associated with overall size, the lengths of the appendicular skeletal structures of most of the felid species were morphologically very similar in multivariate space. The kinematics of the limbs were also relatively uniform, and size had little predictive value for limb posture among felid species. Only three out of a total of 24 angular variables at footfall and midstance changed significantly (0.02limbs than smaller species.

  5. Assessing upper limb function: transcultural adaptation and validation of the Portuguese version of the Stroke Upper Limb Capacity Scale.

    PubMed

    Branco, João Paulo; Oliveira, Sandra; Páscoa Pinheiro, João; L Ferreira, Pedro

    2017-01-01

    Brachial hemiparesis is one of the most frequent sequelae of stroke, leading to important functional disability given the role of the upper limb in executing activities of daily living (ADL). The Stroke Upper Limb Capacity Scale (SULCS) is a stroke-specific assessment instrument that evaluates functional capacity of the upper limb based on the execution of 10 tasks. The objective of this study is the transcultural adaptation and psychometric validation of the Portuguese version of the SULCS. A Portuguese version of the SULCS was developed, using the process of forward-backward translation, after authorisation from the author of the original scale. Then, a multicentre study was conducted in Portuguese stroke patients (n = 122) to validate the psychometric properties of the instrument. The relationship between sociodemographic and clinical characteristics was used to test construct validity. The relationship between SULCS scores and other instruments was used to test criterion validity. Semantic and linguistic adaptation of the SULCS was executed without substantial issues and allowed the development of a Portuguese version. The application of this instrument suggested the existence of celling effect (19.7% of participants with maximum score). Reliability was demonstrated through the intraclass correlation coefficient of 0.98. As for construct validity, SULCS was sensible to muscle tonus and aphasia. SULCS classification impacted the scores of the Motor Evaluation Scale for Upper Extremity in Stroke (MESUPES) and the Stroke Impact Scale (SIS). The present version of SULCS shows valid and reliable cultural adaptation, with good reliability and stability.

  6. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

    PubMed Central

    2012-01-01

    Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial

  7. Reliability, agreement, and validity of digital weighing scale with MatScan in limb load measurement.

    PubMed

    Kumar, Senthil N S; Omar, Baharudin; Htwe, Ohnmar; Joseph, Leonard H; Krishnan, Jagannathan; Jafarzedah Esfehani, Ali; Min, Lee L

    2014-01-01

    Limb loading measurements serve as an objective evaluation of asymmetrical weight bearing in the lower limb. Digital weighing scales (DWSs) could be used in clinical settings for measurement of static limb loading. However, ambiguity exists whether limb loading measurements of DWSs are comparable with a standard tool such as MatScan. A cross-sectional study composed of 33 nondisabled participants was conducted to investigate the reliability, agreement, and validity of DWSs with MatScan in static standing. Amounts of weight distribution and plantar pressure on the individual lower limb were measured using two DWSs (A, B) and MatScan during eyes open (EO) and eyes closed (EC) conditions. The results showed that intra- and interrater reliability (3, 1) were excellent (0.94-0.97) within and between DWS A and B. Bland-Altman plot revealed good agreement between DWS and MatScan in EO and EC conditions. The area under the receiver operating characteristic curve was significant and identified as 0.68 (p = 0.01). The measurements obtained with DWSs are valid and in agreement with MatScan measurements. Hence, DWSs could be used interchangeably with MatScan and could provide clinicians an objective measurement of limb loading suitable for clinical settings.

  8. Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones.

    PubMed

    Skedros, John G; Knight, Alex N; Clark, Gunnar C; Crowder, Christian M; Dominguez, Victoria M; Qiu, Shijing; Mulhern, Dawn M; Donahue, Seth W; Busse, Björn; Hulsey, Brannon I; Zedda, Marco; Sorenson, Scott M

    2013-06-01

    Studies of secondary osteons in ribs have provided a great deal of what is known about remodeling dynamics. Compared with limb bones, ribs are metabolically more active and sensitive to hormonal changes, and receive frequent low-strain loading. Optimization for calcium exchange in rib osteons might be achieved without incurring a significant reduction in safety factor by disproportionally increasing central canal size with increased osteon size (positive allometry). By contrast, greater mechanical loads on limb bones might favor reducing deleterious consequences of intracortical porosity by decreasing osteon canal size with increased osteon size (negative allometry). Evidence of this metabolic/mechanical dichotomy between ribs and limb bones was sought by examining relationships between Haversian canal surface area (BS, osteon Haversian canal perimeter, HC.Pm) and bone volume (BV, osteonal wall area, B.Ar) in a broad size range of mature (quiescent) osteons from adult human limb bones and ribs (modern and medieval) and various adult and subadult non-human limb bones and ribs. Reduced major axis (RMA) and least-squares (LS) regressions of HC.Pm/B.Ar data show that rib and limb osteons cannot be distinguished by dimensional allometry of these parameters. Although four of the five rib groups showed positive allometry in terms of the RMA slopes, nearly 50% of the adult limb bone groups also showed positive allometry when negative allometry was expected. Consequently, our results fail to provide clear evidence that BS/BV scaling reflects a rib versus limb bone dichotomy whereby calcium exchange might be preferentially enhanced in rib osteons. Copyright © 2013 Wiley Periodicals, Inc.

  9. Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis.

    PubMed

    Allen, Vivian; Elsey, Ruth M; Jones, Nicola; Wright, Jordon; Hutchinson, John R

    2010-04-01

    Crocodylians exhibit a fascinating diversity of terrestrial gaits and limb motions that remain poorly described and are of great importance to understanding their natural history and evolution. Their musculoskeletal anatomy is pivotal to this diversity and yet only qualitative studies of muscle-tendon unit anatomy exist. The relative masses and internal architecture (fascicle lengths and physiological cross-sectional areas) of muscles of the pectoral and pelvic limbs of American alligators (Alligator mississippiensis Daudin 1801) were recorded for an ontogenetic series of wild specimens (n = 15, body masses from 0.5 to 60 kg). The data were analysed by reduced major axis regression to determine scaling relationships with body mass. Physiological cross-sectional areas and therefore muscle force-generating capacity were found to be greater in the extensor (anti-gravity) muscles of the pelvic limb than in the pectoral limb, reflecting how crocodylians differ from mammals in having greater loading of the hindlimbs than the forelimbs. Muscle masses and architecture were generally found to scale isometrically with body mass, suggesting an ontogenetic decrease in terrestrial athleticism. This concurs with the findings of previous studies showing ontogenetic decreases in limb bone length and the general scaling principle of a decline of strength : weight ratios with increasing size in animals. Exceptions to isometric scaling found included positive allometry in fascicle length for extensor musculature of both limbs, suggesting an ontogenetic increase in working range interpreted as increasing postural variability - in particular the major hip extensors - the interpretation of which is complicated by previous described ontogenetic increase of moment arms for these muscles.

  10. Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis

    PubMed Central

    Allen, Vivian; Elsey, Ruth M; Jones, Nicola; Wright, Jordon; Hutchinson, John R

    2010-01-01

    Crocodylians exhibit a fascinating diversity of terrestrial gaits and limb motions that remain poorly described and are of great importance to understanding their natural history and evolution. Their musculoskeletal anatomy is pivotal to this diversity and yet only qualitative studies of muscle-tendon unit anatomy exist. The relative masses and internal architecture (fascicle lengths and physiological cross-sectional areas) of muscles of the pectoral and pelvic limbs of American alligators (Alligator mississippiensis Daudin 1801) were recorded for an ontogenetic series of wild specimens (n = 15, body masses from 0.5 to 60 kg). The data were analysed by reduced major axis regression to determine scaling relationships with body mass. Physiological cross-sectional areas and therefore muscle force-generating capacity were found to be greater in the extensor (anti-gravity) muscles of the pelvic limb than in the pectoral limb, reflecting how crocodylians differ from mammals in having greater loading of the hindlimbs than the forelimbs. Muscle masses and architecture were generally found to scale isometrically with body mass, suggesting an ontogenetic decrease in terrestrial athleticism. This concurs with the findings of previous studies showing ontogenetic decreases in limb bone length and the general scaling principle of a decline of strength : weight ratios with increasing size in animals. Exceptions to isometric scaling found included positive allometry in fascicle length for extensor musculature of both limbs, suggesting an ontogenetic increase in working range interpreted as increasing postural variability – in particular the major hip extensors – the interpretation of which is complicated by previous described ontogenetic increase of moment arms for these muscles. PMID:20148991

  11. Limb-bone scaling indicates diverse stance and gait in quadrupedal ornithischian dinosaurs.

    PubMed

    Maidment, Susannah C R; Linton, Deborah H; Upchurch, Paul; Barrett, Paul M

    2012-01-01

    The most primitive ornithischian dinosaurs were small bipeds, but quadrupedality evolved three times independently in the clade. The transition to quadrupedality from bipedal ancestors is rare in the history of terrestrial vertebrate evolution, and extant analogues do not exist. Constraints imposed on quadrupedal ornithischians by their ancestral bipedal bauplan remain unexplored, and consequently, debate continues about their stance and gait. For example, it has been proposed that some ornithischians could run, while others consider that none were cursorial. Drawing on biomechanical concepts of limb bone scaling and locomotor theory developed for extant taxa, we use the largest dataset of ornithischian postcranial measurements so far compiled to examine stance and gait in quadrupedal ornithischians. Differences in femoral midshaft eccentricity in hadrosaurs and ceratopsids may indicate that hadrosaurs placed their feet on the midline during locomotion, while ceratopsids placed their feet more laterally, under the hips. More robust humeri in the largest ceratopsids relative to smaller taxa may be due to positive allometry in skull size with body mass in ceratopsids, while slender humeri in the largest stegosaurs may be the result of differences in dermal armor distribution within the clade. Hadrosaurs are found to display the most cursorial morphologies of the quadrupedal ornithischian cades, indicating higher locomotor performance than in ceratopsids and thyreophorans. Limb bone scaling indicates that a previously unrealised diversity of stances and gaits were employed by quadrupedal ornithischians despite apparent convergence in limb morphology. Grouping quadrupedal ornithischians together as a single functional group hides this disparity. Differences in limb proportions and scaling are likely due to the possession of display structures such as horns, frills and dermal armor that may have affected the center of mass of the animal, and differences in locomotor

  12. Limb-Bone Scaling Indicates Diverse Stance and Gait in Quadrupedal Ornithischian Dinosaurs

    PubMed Central

    Maidment, Susannah C. R.; Linton, Deborah H.; Upchurch, Paul; Barrett, Paul M.

    2012-01-01

    Background The most primitive ornithischian dinosaurs were small bipeds, but quadrupedality evolved three times independently in the clade. The transition to quadrupedality from bipedal ancestors is rare in the history of terrestrial vertebrate evolution, and extant analogues do not exist. Constraints imposed on quadrupedal ornithischians by their ancestral bipedal bauplan remain unexplored, and consequently, debate continues about their stance and gait. For example, it has been proposed that some ornithischians could run, while others consider that none were cursorial. Methodology/Principal Findings Drawing on biomechanical concepts of limb bone scaling and locomotor theory developed for extant taxa, we use the largest dataset of ornithischian postcranial measurements so far compiled to examine stance and gait in quadrupedal ornithischians. Differences in femoral midshaft eccentricity in hadrosaurs and ceratopsids may indicate that hadrosaurs placed their feet on the midline during locomotion, while ceratopsids placed their feet more laterally, under the hips. More robust humeri in the largest ceratopsids relative to smaller taxa may be due to positive allometry in skull size with body mass in ceratopsids, while slender humeri in the largest stegosaurs may be the result of differences in dermal armor distribution within the clade. Hadrosaurs are found to display the most cursorial morphologies of the quadrupedal ornithischian cades, indicating higher locomotor performance than in ceratopsids and thyreophorans. Conclusions/Significance Limb bone scaling indicates that a previously unrealised diversity of stances and gaits were employed by quadrupedal ornithischians despite apparent convergence in limb morphology. Grouping quadrupedal ornithischians together as a single functional group hides this disparity. Differences in limb proportions and scaling are likely due to the possession of display structures such as horns, frills and dermal armor that may have affected

  13. Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae)

    PubMed Central

    Main, Russell P.; Hutchinson, John R.

    2014-01-01

    Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive, as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area (PCSA) and average tendon cross sectional area from emus across three ontogenetic stages (n = 17, body masses from 3.6 to 42 kg). The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively) and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length, and two others (femur and first phalanx of digit III) had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle–tendon units in emus. PMID:25551028

  14. Hinds Community College MSEIP program

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Student Assistant Antoinette Davis (left) of Utica; Carmella Forsythe, 13, of Clinton; Terri Henderson, 14, of Clinton; Tyra Greer, 12, of Port Gibson; and Kala Battle, 14, of Edwards, answer curriculum questions about NASA's Return to Flight mission exhibit at StenniSphere, the visitor center at NASA's Stennis Space Center (SSC) near Bay St. Louis, Miss. The girls were on a field trip to StenniSphere with fellow participants in Hinds Community College's MSEIP (Minority Science Engineering Improvement Program) summer program. MSEIP encourages students to pursue and prepare for careers in science, technology, engineering and math.

  15. Hinds Community College MSEIP program

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Student Assistant Antoinette Davis (left) of Utica; Carmella Forsythe, 13, of Clinton; Terri Henderson, 14, of Clinton; Tyra Greer, 12, of Port Gibson; and Kala Battle, 14, of Edwards, answer curriculum questions about NASA's Return to Flight mission exhibit at StenniSphere, the visitor center at NASA's Stennis Space Center (SSC) near Bay St. Louis, Miss. The girls were on a field trip to StenniSphere with fellow participants in Hinds Community College's MSEIP (Minority Science Engineering Improvement Program) summer program. MSEIP encourages students to pursue and prepare for careers in science, technology, engineering and math.

  16. Hinds Community College MSEIP program

    NASA Image and Video Library

    2005-06-24

    Student Assistant Antoinette Davis (left) of Utica; Carmella Forsythe, 13, of Clinton; Terri Henderson, 14, of Clinton; Tyra Greer, 12, of Port Gibson; and Kala Battle, 14, of Edwards, answer curriculum questions about NASA's Return to Flight mission exhibit at StenniSphere, the visitor center at NASA's Stennis Space Center (SSC) near Bay St. Louis, Miss. The girls were on a field trip to StenniSphere with fellow participants in Hinds Community College's MSEIP (Minority Science Engineering Improvement Program) summer program. MSEIP encourages students to pursue and prepare for careers in science, technology, engineering and math.

  17. Construction and pilot assessment of the Lower Limb Function Assessment Scale.

    PubMed

    Allart, Etienne; Paquereau, Julie; Rogeau, Caroline; Daveluy, Walter; Kozlowski, Odile; Rousseaux, Marc

    2014-01-01

    Stroke often leads to upright standing and walking impairments. Clinical assessments do not sufficiently address ecological aspects and the patient's subjective evaluation of function. To perform a pilot assessment of the psychometric properties of the Lower Limb-Function Assessment Scale (LL-FAS). The LL-FAS includes 30 items assessing the patient's perception (in a questionnaire) and the examiner's perception (in a practical test) of upright standing and walking impairments and their impact on activities of daily living. We analyzed the LL-FAS's reliability, construct validity, internal consistency, predictive validity and feasibility. Thirty-five stroke patients were included. The scale's mean ± SD completion time was 25 ± 6 min. Intra-observer reliability was good to excellent (intraclass correlation coefficients (ICC >0.82). Interobserver reliability was moderate (0.67 < ICC < 0.9). The questionnaire and test items showed excellent construct validity for neuromotor disabilities (p < 0.05), postural ability (Postural Assessment Scale for Stroke; p < 10-5), severity of gait disorders (Gait Assessment and Intervention Tool; p < 10-3), walking ability (New Functional Ambulation Categories, 10 m walk test, Rivermead Mobility Index; p < 10-3) and functional level (Barthel Index; p < 10-3). Internal consistency (Cronbach-α >0.9) and predictive validity were excellent. The LL-FAS showed fair psychometric properties in this pilot study and may be of value for evaluating post-stroke lower limb impairment.

  18. Convergent evidence for construct validity of a 7-point likert scale of lower limb muscle soreness.

    PubMed

    Impellizzeri, Franco M; Maffiuletti, Nicola A

    2007-11-01

    The aim of this study was to examine the construct validity of the 7-point Likert scale of muscle soreness, assessing its relationship with Visual Analogue Scale (VAS). An additional aim was to examine its sensitivity as measure of symptom of eccentric-contraction muscle damage. Correlational study. Self-administered questionnaires collected in field setting. Twenty-six soccer players. 4-week preseason training camp, which included high-intensity plyometric training sessions. Players self-reported the perceived muscle soreness of the lower limbs using the VAS (criterion measure) and the 7-point Likert scale of muscle soreness. Significant individual correlations were found between the 2 muscle soreness scales (mean r=0.80+/-0.07; range, 0.65 to 0.94). The correlation using the pooled data was 0.81. No significant muscle soreness scale x time interaction was found for standardized measures of muscle soreness (P=0.98). The main factor for time (24, 48, 72, and 96 hours after the first plyometric training session) was significant (P=0.0001). Effect sizes for the changes in the Likert and VAS absolute scores during the first 96 hours were similar (partial eta=0.13). The results of this study provide further convergent evidence for the construct validity of the 7-point Likert scale of muscle soreness. The 2 scales showed similar sensitivity to muscle soreness caused by eccentric contractions during the first 96 hours after plyometric exercises.

  19. SMALL-SCALE STRUCTURING OF ELLERMAN BOMBS AT THE SOLAR LIMB

    SciTech Connect

    Nelson, C. J.; Doyle, J. G.; Scullion, E. M.; Freij, N.; Erdélyi, R.

    2015-01-01

    Ellerman bombs (EBs) have been widely studied in recent years due to their dynamic, explosive nature and apparent links to the underlying photospheric magnetic field implying that they may be formed by magnetic reconnection in the photosphere. Despite a plethora of researches discussing the morphologies of EBs, there has been a limited investigation of how these events appear at the limb, specifically, whether they manifest as vertical extensions away from the disk. In this article, we make use of high-resolution, high-cadence observations of an Active Region at the solar limb, collected by the CRisp Imaging SpectroPolarimeter (CRISP) instrument, to identify EBs and infer their physical properties. The upper atmosphere is also probed using the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). We analyze 22 EB events evident within these data, finding that 20 appear to follow a parabolic path away from the solar surface at an average speed of 9 km s{sup –1}, extending away from their source by 580 km, before retreating back at a similar speed. These results show strong evidence of vertical motions associated with EBs, possibly explaining the dynamical ''flaring'' (changing in area and intensity) observed in on-disk events. Two in-depth case studies are also presented that highlight the unique dynamical nature of EBs within the lower solar atmosphere. The viewing angle of these observations allows for a direct linkage between these EBs and other small-scale events in the Hα line wings, including a potential flux emergence scenario. The findings presented here suggest that EBs could have a wider-reaching influence on the solar atmosphere than previously thought, as we reveal a direct linkage between EBs and an emerging small-scale loop, and other near-by small-scale explosive events. However, as previous research found, these extensions do not appear to impact upon the Hα line core, and are not observed by the SDO/AIA EUV filters.

  20. Small-scale Structuring of Ellerman Bombs at the Solar Limb

    NASA Astrophysics Data System (ADS)

    Nelson, C. J.; Scullion, E. M.; Doyle, J. G.; Freij, N.; Erdélyi, R.

    2015-01-01

    Ellerman bombs (EBs) have been widely studied in recent years due to their dynamic, explosive nature and apparent links to the underlying photospheric magnetic field implying that they may be formed by magnetic reconnection in the photosphere. Despite a plethora of researches discussing the morphologies of EBs, there has been a limited investigation of how these events appear at the limb, specifically, whether they manifest as vertical extensions away from the disk. In this article, we make use of high-resolution, high-cadence observations of an Active Region at the solar limb, collected by the CRisp Imaging SpectroPolarimeter (CRISP) instrument, to identify EBs and infer their physical properties. The upper atmosphere is also probed using the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). We analyze 22 EB events evident within these data, finding that 20 appear to follow a parabolic path away from the solar surface at an average speed of 9 km s-1, extending away from their source by 580 km, before retreating back at a similar speed. These results show strong evidence of vertical motions associated with EBs, possibly explaining the dynamical "flaring" (changing in area and intensity) observed in on-disk events. Two in-depth case studies are also presented that highlight the unique dynamical nature of EBs within the lower solar atmosphere. The viewing angle of these observations allows for a direct linkage between these EBs and other small-scale events in the Hα line wings, including a potential flux emergence scenario. The findings presented here suggest that EBs could have a wider-reaching influence on the solar atmosphere than previously thought, as we reveal a direct linkage between EBs and an emerging small-scale loop, and other near-by small-scale explosive events. However, as previous research found, these extensions do not appear to impact upon the Hα line core, and are not observed by the SDO/AIA EUV filters.

  1. Measurement of lower-limb muscle spasticity: intrarater reliability of Modified Modified Ashworth Scale.

    PubMed

    Ghotbi, Nastaran; Nakhostin Ansari, Noureddin; Naghdi, Soofia; Hasson, Scott

    2011-01-01

    The Modified Modified Ashworth Scale (MMAS) is a clinical instrument for measuring spasticity. Few studies have been performed on the reliability of the MMAS. The aim of the present study was to investigate the intrarater reliability of the MMAS for the assessment of spasticity in the lower limb. We conducted a test-retest study on spasticity in the hip adductors, knee extensors, and ankle plantar flexors. Each patient was measured by a hospital-based clinical physiotherapist. Twenty-three patients with stroke or multiple sclerosis (fourteen women, nine men) and a mean +/- standard deviation age of 37.3 +/- 14.1 years participated. The weighted kappa was moderate for the hip adductors (weighted kappa = 0.45, standard error [SE] = 0.16, p = 0.007), good for the knee extensors (weighted kappa = 0.62, SE = 0.12, p < 0.001), and very good for the ankle plantar flexors (weighted kappa = 0.85, SE = 0.05, p < 0.001). The kappa value for overall agreement was very good (weighted kappa = 0.87, SE = 0.03, p < 0.001). The reliability for the ankle plantar flexors was significantly higher than that for the hip adductors. The intrarater reliability of the MMAS in patients with lower-limb muscle spasticity was very good, and it can be used as a measure of spasticity over time.

  2. Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation.

    PubMed

    Amend, Sarah R; Valkenburg, Kenneth C; Pienta, Kenneth J

    2016-04-14

    Investigation of the bone and the bone marrow is critical in many research fields including basic bone biology, immunology, hematology, cancer metastasis, biomechanics, and stem cell biology. Despite the importance of the bone in healthy and pathologic states, however, it is a largely under-researched organ due to lack of specialized knowledge of bone dissection and bone marrow isolation. Mice are a common model organism to study effects on bone and bone marrow, necessitating a standardized and efficient method for long bone dissection and bone marrow isolation for processing of large experimental cohorts. We describe a straightforward dissection procedure for the removal of the femur and tibia that is suitable for downstream applications, including but not limited to histomorphologic analysis and strength testing. In addition, we outline a rapid procedure for isolation of bone marrow from the long bones via centrifugation with limited handling time, ideal for cell sorting, primary cell culture, or DNA, RNA, and protein extraction. The protocol is streamlined for rapid processing of samples to limit experimental error, and is standardized to minimize user-to-user variability.

  3. [Upper limb functional assessment scale for children with Duchenne muscular dystrophy and Spinal muscular atrophy].

    PubMed

    Escobar, Raúl G; Lucero, Nayadet; Solares, Carmen; Espinoza, Victoria; Moscoso, Odalie; Olguín, Polín; Muñoz, Karin T; Rosas, Ricardo

    2017-02-01

    Duchenne muscular dystrophy (DMD) and Spinal muscular atrophy (SMA) causes significant disability and progressive functional impairment. Readily available instruments that assess functionality, especially in advanced stages of the disease, are required to monitor the progress of the disease and the impact of therapeutic interventions. To describe the development of a scale to evaluate upper limb function (UL) in patients with DMD and SMA, and describe its validation process, which includes self-training for evaluators. The development of the scale included a review of published scales, an exploratory application of a pilot scale in healthy children and those with DMD, self-training of evaluators in applying the scale using a handbook and video tutorial, and assessment of a group of children with DMD and SMA using the final scale. Reliability was assessed using Cronbach and Kendall concordance and with intra and inter-rater test-retest, and validity with concordance and factorial analysis. A high level of reliability was observed, with high internal consistency (Cronbach a = 0.97), and inter-rater (Kendall W = 0.96) and intra-rater concordance (r = 0.97 to 0.99). The validity was demonstrated by the absence of significant differences between results by different evaluators with an expert evaluator (F = 0.023, p > .5), and by the factor analysis that showed that four factors account for 85.44% of total variance. This scale is a reliable and valid tool for assessing UL functionality in children with DMD and SMA. It is also easily implementable due to the possibility of self-training and the use of simple and inexpensive materials.

  4. [Upper limb functional assessment scale for children with Duchenne muscular dystrophy and Spinal muscular atrophy].

    PubMed

    Escobar, Raúl G; Lucero, Nayadet; Solares, Carmen; Espinoza, Victoria; Moscoso, Odalie; Olguín, Polín; Muñoz, Karin T; Rosas, Ricardo

    2016-08-16

    Duchenne muscular dystrophy (DMD) and Spinal muscular atrophy (SMA) causes significant disability and progressive functional impairment. Readily available instruments that assess functionality, especially in advanced stages of the disease, are required to monitor the progress of the disease and the impact of therapeutic interventions. To describe the development of a scale to evaluate upper limb function (UL) in patients with DMD and SMA, and describe its validation process, which includes self-training for evaluators. The development of the scale included a review of published scales, an exploratory application of a pilot scale in healthy children and those with DMD, self-training of evaluators in applying the scale using a handbook and video tutorial, and assessment of a group of children with DMD and SMA using the final scale. Reliability was assessed using Cronbach and Kendall concordance and with intra and inter-rater test-retest, and validity with concordance and factorial analysis. A high level of reliability was observed, with high internal consistency (Cronbach α=0.97), and inter-rater (Kendall W=0.96) and intra-rater concordance (r=0.97 to 0.99). The validity was demonstrated by the absence of significant differences between results by different evaluators with an expert evaluator (F=0.023, P>.5), and by the factor analysis that showed that four factors account for 85.44% of total variance. This scale is a reliable and valid tool for assessing UL functionality in children with DMD and SMA. It is also easily implementable due to the possibility of self-training and the use of simple and inexpensive materials. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Scaling and kinematics optimisation of the scapula and thorax in upper limb musculoskeletal models.

    PubMed

    Prinold, Joe A I; Bull, Anthony M J

    2014-08-22

    Accurate representation of individual scapula kinematics and subject geometries is vital in musculoskeletal models applied to upper limb pathology and performance. In applying individual kinematics to a model's cadaveric geometry, model constraints are commonly prescriptive. These rely on thorax scaling to effectively define the scapula's path but do not consider the area underneath the scapula in scaling, and assume a fixed conoid ligament length. These constraints may not allow continuous solutions or close agreement with directly measured kinematics. A novel method is presented to scale the thorax based on palpated scapula landmarks. The scapula and clavicle kinematics are optimised with the constraint that the scapula medial border does not penetrate the thorax. Conoid ligament length is not used as a constraint. This method is simulated in the UK National Shoulder Model and compared to four other methods, including the standard technique, during three pull-up techniques (n=11). These are high-performance activities covering a large range of motion. Model solutions without substantial jumps in the joint kinematics data were improved from 23% of trials with the standard method, to 100% of trials with the new method. Agreement with measured kinematics was significantly improved (more than 10° closer at p<0.001) when compared to standard methods. The removal of the conoid ligament constraint and the novel thorax scaling correction factor were shown to be key. Separation of the medial border of the scapula from the thorax was large, although this may be physiologically correct due to the high loads and high arm elevation angles. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Scaling and kinematics optimisation of the scapula and thorax in upper limb musculoskeletal models

    PubMed Central

    Prinold, Joe A.I.; Bull, Anthony M.J.

    2014-01-01

    Accurate representation of individual scapula kinematics and subject geometries is vital in musculoskeletal models applied to upper limb pathology and performance. In applying individual kinematics to a model׳s cadaveric geometry, model constraints are commonly prescriptive. These rely on thorax scaling to effectively define the scapula׳s path but do not consider the area underneath the scapula in scaling, and assume a fixed conoid ligament length. These constraints may not allow continuous solutions or close agreement with directly measured kinematics. A novel method is presented to scale the thorax based on palpated scapula landmarks. The scapula and clavicle kinematics are optimised with the constraint that the scapula medial border does not penetrate the thorax. Conoid ligament length is not used as a constraint. This method is simulated in the UK National Shoulder Model and compared to four other methods, including the standard technique, during three pull-up techniques (n=11). These are high-performance activities covering a large range of motion. Model solutions without substantial jumps in the joint kinematics data were improved from 23% of trials with the standard method, to 100% of trials with the new method. Agreement with measured kinematics was significantly improved (more than 10° closer at p<0.001) when compared to standard methods. The removal of the conoid ligament constraint and the novel thorax scaling correction factor were shown to be key. Separation of the medial border of the scapula from the thorax was large, although this may be physiologically correct due to the high loads and high arm elevation angles. PMID:25011621

  7. Ontogenetic changes in limb postures and their impact on effective limb length in baboons (Papio cynocephalus).

    PubMed

    Zeininger, Angel; Shapiro, Liza J; Raichlen, David A

    2017-06-01

    Digitigrade hand and foot postures and extended elbows and knees are considered adaptations to running in cursorial mammals because they increase effective limb lengths (ELLs). However, the relationship between digitigrady and ELL in primates is not well understood. We documented the ontogeny of limb postures in baboons to better understand the function of digitigrady during walking. We hypothesized that the hand and foot would become more elevated and the elbow and knee more extended, leading to increased relative ELLs throughout ontogeny. Longitudinal kinematic data were collected on four infant yellow baboons (Papio cynocephalus) as they aged from two to nine months, and again at two to three years. Hand/foot postures, elbow/knee angles, relative fore/hind limb ELLs, and dimensionless velocity were measured for 404 symmetrical walking strides. Digitigrade hand and foot postures were preferred at all ages. The elbow extended slightly and the knee flexed slightly with age. Elevated proximal hands, extended elbows, and extended knees were associated with long relative ELLs. For a given age, relative hind limb ELL was longer than relative forelimb ELL. In the forelimb, digitigrade hand postures and extended elbows function to increase relative ELL at slow walking velocity. Increased forelimb ELL may be an attempt to equalize forelimb and hind limb ELLs in baboons with an absolutely longer hind limb. Pedal digitigrady is not a main contributing factor to hind limb ELL. Results suggest that manual and pedal digitigrady in terrestrial cercopithecoids does not function to increase velocity. © 2017 Wiley Periodicals, Inc.

  8. Kinect One-based biomechanical assessment of upper-limb performance compared to clinical scales in post-stroke patients.

    PubMed

    Scano, Alessandro; Caimmi, Marco; Chiavenna, Andrea; Malosio, Matteo; Tosatti, Lorenzo Molinari

    2015-08-01

    This paper presents a Kinect One sensor-based protocol for the evaluation of the motor-performances of the upper limb of neurological patients during rehabilitative sessions. The assessment provides evaluations of kinematic, dynamic, motor and postural control variables. A pilot study was conducted on three post-stroke neurological patients, comparing Kinect-One biomechanical assessment with the outcomes of some of the most common clinical scales for the evaluation of the upper-limb functionality. Preliminary results indicate coherency between the clinical and instrumental evaluation. Moreover, the Kinect-One assessment seems to provide some complementary quantitative information, consistently integrating the clinical assessment.

  9. Increased SCE levels in Mediterranean Italian buffaloes affected by limb malformation (transversal hemimelia).

    PubMed

    Peretti, V; Ciotola, F; Albarella, S; Restucci, B; Meomartino, L; Ferretti, L; Barbieri, V; Iannuzzi, L

    2008-01-01

    In recent years some buffalo farms in Campania have reported the birth of calves with limb malformation, especially with transversal hemimelia. We investigated 20 Mediterranean Italian buffaloes (8 males and 12 females) from one day to six months of age, of which 10 were affected by transversal hemimelia (group 1) and 10 were healthy controls (group 2). The following clinical and radiological patterns were observed in the malformed animals: hind limbs amputated, the right amputated off the second tarsus bones and the left amputated off the proximal epiphysis metatarsus, and the right thoracic limb hypoplasic (1 female); left hind limb amputated off the proximal epiphysis metatarsus (2 females and 1 male); left hind limb amputated off the third tarsus bones (1 female); left hind limb amputated off the tibia (1 female and 1 male); left hind limb amputated off the distal epiphysis metatarsus (1 female); left hind limb amputated off the first phalanx (1 male); right hind limb amputated off the proximal epiphysis metatarsus (1 male). In their malformed limbs all the animals presented more or less developed outlines of claws. The mean rate of SCE/cell in animals with transversal hemimelia was 8.80 +/- 3.19, that of the controls 6.61 +/- 2.73. The difference was statistically significant (P < 0.001).

  10. The Global-Scale Observations of the Limb and Disk (GOLD) Mission

    NASA Astrophysics Data System (ADS)

    Eastes, R. W.; McClintock, W. E.; Burns, A. G.; Anderson, D. N.; Andersson, L.; Codrescu, M.; Correira, J. T.; Daniell, R. E.; England, S. L.; Evans, J. S.; Harvey, J.; Krywonos, A.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Solomon, S. C.; Strickland, D. J.; Woods, T. N.; Aksnes, A.; Budzien, S. A.; Dymond, K. F.; Eparvier, F. G.; Martinis, C. R.; Oberheide, J.

    2017-08-01

    The Earth's thermosphere and ionosphere constitute a dynamic system that varies daily in response to energy inputs from above and from below. This system can exhibit a significant response within an hour to changes in those inputs, as plasma and fluid processes compete to control its temperature, composition, and structure. Within this system, short wavelength solar radiation and charged particles from the magnetosphere deposit energy, and waves propagating from the lower atmosphere dissipate. Understanding the global-scale response of the thermosphere-ionosphere (T-I) system to these drivers is essential to advancing our physical understanding of coupling between the space environment and the Earth's atmosphere. Previous missions have successfully determined how the "climate" of the T-I system responds. The Global-scale Observations of the Limb and Disk (GOLD) mission will determine how the "weather" of the T-I responds, taking the next step in understanding the coupling between the space environment and the Earth's atmosphere. Operating in geostationary orbit, the GOLD imaging spectrograph will measure the Earth's emissions from 132 to 162 nm. These measurements will be used image two critical variables—thermospheric temperature and composition, near 160 km—on the dayside disk at half-hour time scales. At night they will be used to image the evolution of the low latitude ionosphere in the same regions that were observed earlier during the day. Due to the geostationary orbit being used the mission observes the same hemisphere repeatedly, allowing the unambiguous separation of spatial and temporal variability over the Americas.

  11. Large-scale Extreme-Ultraviolet Disturbances Associated with a Limb Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Auchère, F.; Vial, J.-C.; Tang, Y. H.; Zong, W. G.

    2010-01-01

    We present composite observations of a coronal mass ejection (CME) and the associated large-scale extreme-ultraviolet (EUV) disturbances on 2007 December 31 by the Extreme-ultraviolet Imager (EUVI) and COR1 coronagraph on board the recent Solar Terrestrial Relations Observatory mission. For this limb event, the EUV disturbances exhibit some typical characteristics of EUV Imaging Telescope waves: (1) in the 195 Å bandpass, diffuse brightenings are observed propagating oppositely away from the flare site with a velocity of ~260 km s-1, leaving dimmings behind; (2) when the brightenings encounter the boundary of a polar coronal hole, they stop there to form a stationary front. Multi-temperature analysis of the propagating EUV disturbances favors a heating process over a density enhancement in the disturbance region. Furthermore, the EUVI-COR1 composite display shows unambiguously that the propagation of the diffuse brightenings coincides with a large lateral expansion of the CME, which consequently results in a double-loop-structured CME leading edge. Based on these observational facts, we suggest that the wave-like EUV disturbances are a result of magnetic reconfiguration related to the CME liftoff rather than true waves in the corona. Reconnections between the expanding CME magnetic field lines and surrounding quiet-Sun magnetic loops account for the propagating diffuse brightenings; dimmings appear behind them as a consequence of volume expansion. X-ray and radio data provide us with complementary evidence.

  12. Cellular basis of differential limb growth in postnatal gray short-tailed opossums (Monodelphis domestica).

    PubMed

    Beiriger, Anastasia; Sears, Karen E

    2014-06-01

    While growth has been studied extensively in invertebrates, the mechanisms by which it is controlled in vertebrates, particularly in mammals, remain poorly understood. In this study, we investigate the cellular basis of differential limb growth in postnatal Monodelphis domestica, the gray short-tailed opossum, to gain insights into the mechanisms regulating mammalian growth. Opossums are an ideal model for the study of growth because they are born with relatively large, well-developed forelimbs and small hind limbs that must "catch up" to the forelimb before the animal reaches adulthood. Postnatal Days 1-17 were identified as a key period of growth for the hind limbs, during which they undergo accelerated development and nearly quadruple in length. Histology performed on fore- and hind limbs from this period indicates a higher rate of cellular differentiation in the long bones of the hind limbs. Immunohistochemical assays indicate that cellular proliferation is also occurring at a significantly greater rate in the long bones of the hind limb at 6 days after birth. Taken together, these results suggest that a faster rate of cellular proliferation and differentiation in the long bones of the hind limb relative to those of the forelimb generates a period of accelerated growth through which the adult limb phenotype of M. domestica is achieved. Assays for gene expression suggest that the molecular basis of this differential growth differs from that previously identified for differential pre-natal growth in opossum fore- and hind limbs. © 2014 Wiley Periodicals, Inc.

  13. Relationships among the Y balance test, Berg Balance Scale, and lower limb strength in middle-aged and older females

    PubMed Central

    Lee, Dong-Kyu; Kang, Min-Hyeok; Lee, Tae-Sik; Oh, Jae-Seop

    2015-01-01

    Background: Older females have less dynamic postural control and muscle strength than do middle-aged females. Aging-related strength losses may limit balancing performance. Objective: The purpose of this study was to investigate the ability of the Y Balance Test (YBT) and lower limb strength to discriminate between females in 2 age groups, the relationship between YBT distance and the Berg Balance Scale (BBS), and the degree to which performance on YBT distance is related to lower limb strength in middle-aged and older females. Method: The 40 healthy, independently active females were divided into 2 groups: older and middle-aged. The participants underwent measurements of YBT distance using the YBT, maximal muscular strength of the lower limbs using a handheld dynamometer, and the BBS. Results: The YBT distance in 3 directions and lower limb muscle strength for both lower limbs were significantly lower in the older adults than in the middle-aged group. A moderate correlation but insignificant correlation was found between the YBT composite distance and the BBS score. In the older females, YBT distance was significantly positively correlated with strength of the knee flexor and hip abductor. In the middle-aged group, YBT distance was significantly positively correlated with strength of the knee flexor and hip extensor. Conclusions: Performance on the YBT was influenced by the strength of lower limb. We suggested that YBT can be used to alternative as a measurement of dynamic balance. Proper training programs for older people could include not only strengthening exercises but also YBT performance to improve balance. PMID:26039033

  14. Goal Attainment Scaling in Individuals with Upper Limb Spasticity Post Stroke.

    PubMed

    Eftekhar, Parvin; Mochizuki, George; Dutta, Tilak; Richardson, Denyse; Brooks, Dina

    2016-12-01

    Focusing on rehabilitation goals is an effective approach for improving function in individuals with spasticity after stroke. The objectives of this study were to examine and map goals of post-stroke individuals with spasticity using the Goal Attainment Scale (GAS) and International Classification of Functioning, Disability and Health (ICF), and to evaluate the impact of botulinum toxin A (BoNTA) on occupational performance based on the type of rehabilitation goals. Thirty-one patients were recruited from an outpatient spasticity management clinic. Each patient set one goal, was injected with BoNTA in their spastic upper limb muscles and received standard rehabilitation services twice a week for four weeks. Twenty-seven participants achieved the expected level, and four exceeded the expected level of their rehabilitation goals. Fifty-five percent of the goals were related to Activity/Participation, and 45% of the goals were categorized in the Body Structures and Function domain of the ICF. Fifteen goals focused on positioning, while 16 goals focused on (independent) activities of daily living (ADL/IADL). Both the positioning and ADL/IADL groups experienced a reduction in MAS following the administration of BoNTA. The positioning group was older and more impaired. Mapping goals to ICF identifies specific targets for intervention, establishes a common language within the interdisciplinary team and contextualizes the ways disability impacts goals. This study is limited by a relatively small sample size and absence of a functional measure. Further studies can explore the development of goal/item banks to advance the use of GAS for spasticity management. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Exploring the putative role of TRPV1 -dependent CGRP release in remote hind preconditioning-induced cardioprotection.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2017-10-01

    Remote ischemic preconditioning (RIPC) is a phenomenon whereby transient nonlethal ischemia and reperfusion episodes confer protection against prolonged ischemia reperfusion-induced injury. However, the underlying intracellular signaling has not been extensively explored. This study aimed to inspect the putative involvement of TRPV1 -dependent CGRP release in mediating remote hind limb preconditioning-induced cardioprotection. In this study, remote hind limb preconditioning stimulus was delivered (four consecutive episodes of 5 minutes of ischemia reperfusion) using a blood pressure cuff tied at the inguinal level of the rat. The isolated rat hearts were perfused on the Langendorff's system and were subjected to 30-minutes global ischemia and 120-minutes reperfusion. Prolonged ischemia and subsequent reperfusion led to myocardial injury that was evaluated in terms of infarct size, LDH release, CK release, LVDP, +dp/dtmax , -dp/dtmin , and coronary flow rate. The pharmacological agents used in this study included capsaicin as TRPV1 channel activator, sumatriptan and CGRP8-37 as CGRP blockers. Remote hind limb and capsaicin preconditioning (10 mg/kg(-1) ) significantly reduced the infarct size, LDH release, CK release and significantly improved LVDP, +dp/dtmax , -dp/dtmin , and coronary flow rate. However, remote hind limb and capsaicin preconditioning-induced cardioprotective effects were remarkably reduced in the presence of sumatriptan (8 mg/kg(-1) ) and CGRP8-37 (1 mg/kg(-1) ). This indicates that remote hind limb preconditioning stimulus probably activates TRPV1 channels which subsequently induces CGRP release to produce cardioprotective effects. © 2017 John Wiley & Sons Ltd.

  16. 4. EAST ELEVATION OF HINDS PLANT. NOTE BUTTRESSING AS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EAST ELEVATION OF HINDS PLANT. NOTE BUTTRESSING AS ON EAGLE MOUNTAIN FOR SEISMIC REINFORCEMENT. - Hinds Pump Plant, East of Joshua Tree National Monument, 5 miles north of Route 10, Hayfield, Riverside County, CA

  17. 8. MAIN INLET FROM FILTER GALLERY AND CANAL INTO HINDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. MAIN INLET FROM FILTER GALLERY AND CANAL INTO HINDS PLANT. VIEW LOOKING DUE WEST OF HINDS COMPLEX IN BACKGROUND OF SAND FILTERS. - Hinds Pump Plant, East of Joshua Tree National Monument, 5 miles north of Route 10, Hayfield, Riverside County, CA

  18. Hind, John R (1823-1895)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    English astronomer, discovered in 1852 a small nebula in Taurus which, in 1861, was found by HEINRICH D'ARREST to have disappeared. By the end of the year, D'Arrest and OTTO WILHELM STRUVE had recovered it. Hind's variable nebula, as it came to be called, demonstrated that at least some nebulae were small, as nothing larger than a light year in dimension can disappear in a year. The nebula is a ...

  19. Suppression of morphogenesis in embryonic mouse limbs exposed in vitro to excess gravity

    NASA Technical Reports Server (NTRS)

    Duke, Jackie C.

    1983-01-01

    The effect of excess gravity on in vitro mammalian limb chondrogenesis is studied. Limb buds from mice of various gestational stages were exposed to excess gravity (2.6G) using a culture centrifuge. Both forelimbs and hind limbs were cultured, and the development of various limb elements was scored after four to six days. The 2.6G force significantly depressed the development of limb elements when applied during the teratogen-sensitive period of chondrogenesis.

  20. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

    PubMed

    Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J

    2016-10-03

    Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods.

  1. Global-scale Observations of the Limb and Disk (GOLD): From Simulations to Observations

    NASA Astrophysics Data System (ADS)

    Eastes, R.; McClintock, W. E.; Anderson, D. N.; Burns, A. G.; England, S.; Solomon, S. C.; Jones, S.; Talaat, E. R.; Aksnes, A.; Andersson, L.; Codrescu, M.; Daniell, R. E.; Harvey, J.; Krywonos, A.; Lumpe, J. D., Jr.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Strickland, D. J.; Woods, T. N.; Budzien, S. A.; Dymond, K.; Eparvier, F. G.; Lieberman, R. S.; Martinis, C. R.; Oberheide, J.

    2015-12-01

    The GOLD mission is scheduled to launch a far ultraviolet (FUV), imaging spectrograph into geostationary orbit over the Americas in late 2017. Laboratory observations by an optical breadboard of the GOLD imager show performance that matches the expected performance of the flight instrument and that exceeds the requirements. Excellent agreement is seen between these laboratory observations and model calculations of the N2 LBH spectrum. Such laboratory data, as well as model simulations of the expected observations, will be used in the development and testing of the data processing to be used during flight. Simulated observations of increasing realism are being developed. These simulations are a valuable tool for developing and understanding GOLD's observations of the neutral temperatures on the disk and limb, neutral composition (O/N2 density) on the disk, molecular oxygen density profile and the nighttime ionosphere at low latitudes. Simulations will also be used test observing plans and software for data reduction. The contract for accommodation of the GOLD instrument on the SES-14 satellite was signed in April 2015. That made GOLD the first NASA mission of opportunity to establish a contract for commercial launch into geostationary orbit. The host satellite, a Eurostar 3000 built by Airbus Defence & Space for SES, will use electric propulsion for transfer to geostationary orbit. Securing a contract for hosting has allowed the interfaces to the spacecraft to be defined and the instrument design to be completed. This presentation describes the current status of the GOLD instrument, the future development of the mission, and the simulations of the GOLD measurements.

  2. Measuring upper limb capacity in poststroke patients: development, fit of the monotone homogeneity model, unidimensionality, fit of the double monotonicity model, differential item functioning, internal consistency, and feasibility of the stroke upper limb capacity scale, SULCS.

    PubMed

    Roorda, Leo D; Houwink, Annemieke; Smits, Wendy; Molenaar, Ivo W; Geurts, Alexander C

    2011-02-01

    To develop an easy-to-use scale that measures upper limb capacity, according to the International Classification of Functioning, Disability and Health definition, in patients after stroke, and to investigate certain psychometric properties of this scale. Cohort study. Inpatient department of a rehabilitation center. Patients (N=546; mean age ± SD, 60.1±11.2y; 56% men) undergoing rehabilitation after stroke. Not applicable. Mokken scale analysis was used to investigate the following psychometric properties: (1) fit of the monotone homogeneity model, indicating that the items form a scale; (2) unidimensionality, indicating that the items measure only 1 concept (or construct); (3) fit of the double monotonicity model, indicating invariant (hierarchical) item ordering; (4) differential item functioning (DIF), indicating the validity of comparison between subgroups; and (5) internal consistency, indicating the degree of interrelatedness of the items. The mean time needed to complete the scale was calculated to indicate (6) feasibility. The Stroke Upper Limb Capacity Scale (SULCS) was developed on the basis of interviews with experts. Ten of 15 items had (1) good fit of the monotone homogeneity model (coefficient H=.88), were (2) unidimensional, and had (3) good fit of the double monotonicity model (coefficient H(T)=.71), (4) absence of DIF (Crit-values <40), and (5) good internal consistency (coefficient ρ=.96). When applying start-and-stop rules, the (6) feasibility of the SULCS was good (6min). The SULCS is an easy-to-use, unidimensional, hierarchical, and internally consistent scale that assesses upper limb capacity in patients after stroke. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. 5. HINDS PUMPING FLOOR FROM WEST END TOP OF UNIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. HINDS PUMPING FLOOR FROM WEST END TOP OF UNIT #9 (LENS STOPPED DOWN ALL THE WAY FOR DEPTH OF FIELD ENHANCEMENT). - Hinds Pump Plant, East of Joshua Tree National Monument, 5 miles north of Route 10, Hayfield, Riverside County, CA

  4. How do the substrate reaction forces acting on a gecko's limbs respond to inclines?

    NASA Astrophysics Data System (ADS)

    Wang, Zhouyi; Dai, Zhendong; Li, Wei; Ji, Aihong; Wang, Wenbao

    2015-02-01

    Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.

  5. Ontogeny of joint mechanics in squirrel monkeys (Saimiri boliviensis): functional implications for mammalian limb growth and locomotor development

    PubMed Central

    Young, Jesse W.

    2009-01-01

    Summary Juvenile animals must often compete against adults for common resources, keep pace during group travel and evade common predators, despite reduced body size and an immature musculoskeletal system. Previous morphometric studies of a diverse array of mammals, including jack rabbits, cats and capuchin monkeys, have identified growth-related changes in anatomy, such as negative allometry of limb muscle mechanical advantage, which should theoretically permit young mammals to overcome such ontogenetic limits on performance. However, it is important to evaluate the potential impact of such `compensatory' growth trajectories within the context of developmental changes in locomotor behavior. I used standard kinematic and kinetic techniques to investigate the ontogenetic scaling of joint postures, substrate reaction forces, joint load arm lengths and external joint moments in an ontogenetic sample of squirrel monkeys (Saimiri boliviensis). Results indicated that young squirrel monkeys were frequently able to limit forelimb and hind limb joint loading via a combination of changes in limb posture and limb force distribution, potentially compensating for limited muscularity at younger ages. These results complement previous morphometric studies and suggest that immature mammals may utilize a combination of behavioral and anatomical mechanisms to mitigate ontogenetic limits on locomotor performance. However, ontogenetic changes in joint posture, not limb length per se, explained most of the variation in load arm lengths and joint loading in growing squirrel monkeys, indicating the importance of incorporating both anatomical and performance measures when studying the ontogeny of limb joint mechanics. PMID:19411552

  6. John Bowlby and ethology: an annotated interview with Robert Hinde.

    PubMed

    Bowlby, John

    2007-12-01

    From the 1950s, John Bowlby, one of the founders of attachment theory, was in personal and scientific contact with leading European scientists in the field of ethology (e.g., Niko Tinbergen, Konrad Lorenz, and especially Robert Hinde). In constructing his new theory on the nature of the bond between children and their caregivers, Bowlby profited highly from their new approach to (animal) behavior. Hinde and Tinbergen in their turn were influenced and inspired by Bowlby's new thinking. On the basis of extensive interviews with bowlby's colleague and lifelong friend Robert Hinde and on the basis of archival materials, both the relationship between John Bowlby and Robert Hinde and the cross-fertilization of ethology and attachment theory are described.

  7. Artificial Limbs

    MedlinePlus

    ... you are missing an arm or leg, an artificial limb can sometimes replace it. The device, which is ... activities such as walking, eating, or dressing. Some artificial limbs let you function nearly as well as before.

  8. LIMB Demonstration Project Extension

    SciTech Connect

    Not Available

    1988-03-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  9. LIMB Demonstration Project Extension

    SciTech Connect

    Not Available

    1988-09-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  10. Global-scale Observations of the Limb and Disk (GOLD): Hosted Payload Accommodation on a Commercial Satellite

    NASA Astrophysics Data System (ADS)

    Lankton, M.; Eastes, R.; McClintock, W. E.; Pang, R.; Caffrey, R.; Krywonos, A.

    2013-12-01

    The Global-Scale Observations of the Limb and Disk (GOLD) mission will perform unprecedented imaging of the Earth's thermosphere and ionosphere (TI) system from geostationary (GEO) orbit. Flying as a hosted payload on a commercial communications satellite, GOLD takes advantage of the resource margins available in the early years of the commercial mission's planned 15-year life. This hosted payload approach is a pathfinder for cost-effective NASA science missions. The affordable ride to GEO makes it possible for an Explorer-class Mission of Opportunity to perform Far UltraViolet (FUV) imaging of nearly a complete hemisphere on a 30-minute cadence. This global-scale, high cadence imaging will enable GOLD to distinguish between spatial and temporal variations in the TI system caused by geomagnetic storms, variations in solar EUV, and forcing from the lower atmosphere. The most significant difference between developing instrumentation for a NASA-owned mission and accomplishing the same task for a commercial satellite is that communications satellites are procured on a faster schedule - 24 to 36 months from satellite contract to launch - than the instrument development. GOLD has partnered with SES Government Solutions (SES-GS), the comsat mission owner-operator, to define instrument interfaces and requirements that will be included in the eventual Request for Proposal to candidate spacecraft vendors. SES-GS launches 3 to 4 missions per year, which allows the GOLD-SES-GS partnership to match the instrument's launch readiness date with a suitable mission. In addition to making geostationary orbit accessible to a science instrument at relatively low cost, commercial communications satellites provides a host platform with very high reliability and long life, easy access to continuous high-speed data downlink and near-real-time data delivery, and stable pointing. SES-GS operates their satellite from established Telemetry, Tracking and Control (TT&C) centers. The GOLD Science

  11. Differences in the timing of prechondrogenic limb development in mammals: the marsupial-placental dichotomy resolved.

    PubMed

    Sears, Karen E

    2009-08-01

    In contrast to placentals, marsupials are born with forelimbs that are greatly developmentally advanced relative to their hind limbs. Despite significant interest, we still do not know why this is the case, or how this difference is achieved developmentally. Studies of prechondrogenic and chondrogenic limbs have supported the traditional hypothesis that marsupial forelimb development is accelerated in response to the functional requirements of the newborn's crawl to the teat. However, limb ossification studies have concluded that, rather than the forelimb being accelerated, hind limb development is delayed. By increasing the taxonomic coverage and number of prechondrogenic events relative to previous studies, and combining traditional phylogenetic analyses of event sequences with novel analyses of relative developmental rates, this study demonstrates that the timing of limb development in marsupials is more complex than commonly thought. The marsupial phenotype was derived through two independent evolutionary changes in developmental rate: (1) an acceleration of the forelimb's first appearance and (2) a delay of hind limb development from the bud stage onward. Surprisingly, this study also provides some support for an evolutionary acceleration of the marsupial hind limb's first appearance. Further study is needed on the developmental and genetic mechanisms driving these major evolutionary transitions.

  12. Mitochondrial DNA pattern of the fine shrimp Metapenaeus elegans (De Man, 1907) in the lagoon of Segara Anakan, Central Java, using Hind III

    NASA Astrophysics Data System (ADS)

    Nugraha, Fitra Arya Dwi; Holil, Kholifah; Kurniawan, Nia

    2017-05-01

    Ecological damages to the Lagoon of Segara Anakan, Central Java, as well as large-scale and continuous exploitation are threatening the sustainability of fine shrimp, Metapenaeus elegans, and resources. Information in regards to genetic resources is crucial to establish long-term conservation programs and to preserve germplasm quality. This study aims to evaluate the number and size of the fragment which is digested with restriction enzyme Hind III. Seven individuals of Metapenaeus elegans from the Lagoon of Segara Anakan were examined using Hind III. Amplification of mitochondrial DNA resulted in 950 bp, and the digestion using Hind III generated four fragments consisting of 114 bp, 200 bp, 250 bp, and 386 bp, which formed a monomorphic pattern. The restriction pattern showed the probability of homozygosity of alleles that restricted using Hind III. Homozygosity indicates no variation of DNA sequence.

  13. HD 38451 - J. R. Hind's star that changed colour

    NASA Astrophysics Data System (ADS)

    Warner, Brian; Sneden, Christopher

    1988-09-01

    In 1851, John Russell Hind announced that a star previously observed by him to be very red had become bluish white in color. It is shown that this star, HD 38451, is a ninth magnitude shell star which presumably was ejecting a shell when Hind first observed it. From high dispersion coude spectra, low dispersion IUE spectra, and ground-based photometry, HD 38451 is found to be a normal A21V shell star. Its current values of E(B-V) of about 0.14 is probably caused by interstellar rather than circumstellar reddening. There remains a problem to reconcile the large amount of reddening present when Hind first observed the star with its evidently small diminution in visual brightness at that time.

  14. HD 38452 - J. R. Hind's star that changed colour

    NASA Technical Reports Server (NTRS)

    Warner, Brian; Sneden, Christopher

    1988-01-01

    In 1851, John Russell Hind announced that a star previously observed by him to be very red had become bluish white in color. It is shown that this star, HD 38451, is a ninth magnitude shell star which presumably was ejecting a shell when Hind first observed it. From high dispersion coude spectra, low dispersion IUE spectra, and ground-based photometry, HD 38451 is found to be a normal A21V shell star. Its current values of E(B-V) of about 0.14 is probably caused by interstellar rather than circumstellar reddening. There remains a problem to reconcile the large amount of reddening present when Hind first observed the star with its evidently small diminution in visual brightness at that time.

  15. Limb Loss

    MedlinePlus

    ... limb. Learning how to use it takes time. Physical therapy can help you adapt. Recovery from the loss of a limb can be hard. Sadness, anger, and frustration are common. If you are having a tough time, talk to your doctor. Treatment with medicine or counseling can help.

  16. Use of the Houghton Scale to Classify Community and Household Walking Ability in People With Lower-Limb Amputation: Criterion-Related Validity.

    PubMed

    Wong, Christopher Kevin; Gibbs, William; Chen, Elizabeth Sell

    2016-07-01

    To examine the criterion-related validity of using the self-reported Houghton Scale to classify community-dwelling people with lower-limb amputation according to the suggested score ranges for independent community (Houghton Scale score ≥9), household and limited community (Houghton Scale scores 6-8), and limited household (Houghton Scale score ≤5) walking ability categories as referenced to performance-based balance ability and walking speed criteria. Cross-sectional cohort study. Community-based wellness walking programs in 8 states in the Mid-Atlantic, Midwest, and Southeast regions of the U.S. Volunteers (N=180; 66.5% men, n=118; mean age, 55.5±16y) 7.1±13.1 years since amputation, with transtibial-level amputation in 47% (n=79) and amputation caused by vascular disease in 49.4% (n=89). None. Self-reported data: Houghton Scale, Prosthetic Evaluation Questionnaire mobility subscale, and Activities-specific Balance Confidence (ABC) Scale. Clinical performance-based measures: balance ability assessed with 3 Berg Balance Scale (BBS) items and walking ability assessed with the timed Up and Go (TUG) test and 2-minute walk test (2MWT). The primary reference criteria were performance-based balance ability measured with the 3 BBS items and gait speed calculated from the 2MWT. On the Houghton Scale, 45.9% (78/170) of the participants scored ≥9, 30.6% (52/170) of the participants scored between 6 and 8, and 23.5% (40/170) of the participants scored ≤5. The Houghton Scale correlated with the Prosthetic Evaluation Questionnaire mobility subscale (r=.73), ABC Scale (r=.76), balance ability (r=.67), TUG test (r=-.67), and 2MWT (r=.73). The 3 Houghton Scale ability categories differed significantly from each other (P<.05) for all outcome measures: Prosthetic Evaluation Questionnaire mobility subscale, ABC Scale, balance ability, TUG test, and 2MWT. The Houghton Scale demonstrated criterion-related validity by differentiating community-dwelling people with lower-limb

  17. Animal Productivity and Health Responses to Hind-Gut Acidosis

    USDA-ARS?s Scientific Manuscript database

    Microbial fermentation of carbohydrates in the large intestine of dairy cattle is responsible for 5 to 10% of total tract carbohydrate digestion. When dietary, animal, and/or environmental factors contribute to abnormal, excessive flow of fermentable carbohydrates to the large intestine, hind-gut ac...

  18. Conditional effect of selenium on the mammalian hind gut microbiota

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) status is linked to cancer risk in humans and other mammals. Because Se is used by certain microbial species which contain selenoproteins, and because hind gut microfloral composition is linked to cancer development, we proposed that supranutritional Se could reduce tumorigenisis by af...

  19. Boots on horses: limb protection or hyperflexion training aids in the showjumping horse.

    PubMed

    Murphy, Jack

    2008-01-01

    Showjumping riders regularly employ various schooling strategies to control the horse's jump stride kinematics (JSK). Strategies include plyometric training regimes with fences of different heights and widths set at specific distances. Gymnastic grids teach the horse to jump cleanly. Rapping, once used almost routinely, is no longer in vogue. However, the use of performance enhancing (PE) boots on the distal hind limbs to alter equine JSK has become popular. There are two broad categories of PE boots: weighted and pressure. Some riders use so-called weighted boots on the horses' hind limbs during training and in competition to improve the jump stride. The application of so-called pressure boots may be little more than an adaptation of this technique. It appears that the PE boots induce hyperflexion of the hind limbs and incline the horse to jump fences cleanly. In the absence of scientific appraisal, it is unclear if such boots are acceptable and innovative training aids within equitation.

  20. Intraspecific scaling of the minimum metabolic cost of transport in leghorn chickens (Gallus gallus domesticus): links with limb kinematics, morphometrics and posture

    PubMed Central

    Rose, Kayleigh A.; Nudds, Robert L.; Codd, Jonathan R.

    2015-01-01

    ABSTRACT The minimum metabolic cost of transport (CoTmin; J kg−1 m−1) scales negatively with increasing body mass (∝Mb−1/3) across species from a wide range of taxa associated with marked differences in body plan. At the intraspecific level, or between closely related species, however, CoTmin does not always scale with Mb. Similarity in physiology, dynamics of movement, skeletal geometry and posture between closely related individuals is thought to be responsible for this phenomenon, despite the fact that energetic, kinematic and morphometric data are rarely collected together. We examined the relationship between these integrated components of locomotion in leghorn chickens (Gallus gallus domesticus) selectively bred for large and bantam (miniature) varieties. Interspecific allometry predicts a CoTmin ∼16% greater in bantams compared with the larger variety. However, despite 38% and 23% differences in Mb and leg length, respectively, the two varieties shared an identical walking CoTmin, independent of speed and equal to the allometric prediction derived from interspecific data for the larger variety. Furthermore, the two varieties moved with dynamic similarity and shared geometrically similar appendicular and axial skeletons. Hip height, however, did not scale geometrically and the smaller variety had more erect limbs, contrary to interspecific scaling trends. The lower than predicted CoTmin in bantams for their Mb was associated with both the more erect posture and a lower cost per stride (J kg−1 stride−1). Therefore, our findings are consistent with the notion that a more erect limb is associated with a lower CoTmin and with the previous assumption that similarity in skeletal shape, inherently linked to walking dynamics, is associated with similarity in CoTmin. PMID:25657211

  1. Intraspecific scaling of the minimum metabolic cost of transport in leghorn chickens (Gallus gallus domesticus): links with limb kinematics, morphometrics and posture.

    PubMed

    Rose, Kayleigh A; Nudds, Robert L; Codd, Jonathan R

    2015-04-01

    The minimum metabolic cost of transport (CoTmin; J kg(-1) m(-1)) scales negatively with increasing body mass (∝Mb (-1/3)) across species from a wide range of taxa associated with marked differences in body plan. At the intraspecific level, or between closely related species, however, CoTmin does not always scale with Mb. Similarity in physiology, dynamics of movement, skeletal geometry and posture between closely related individuals is thought to be responsible for this phenomenon, despite the fact that energetic, kinematic and morphometric data are rarely collected together. We examined the relationship between these integrated components of locomotion in leghorn chickens (Gallus gallus domesticus) selectively bred for large and bantam (miniature) varieties. Interspecific allometry predicts a CoTmin ∼16% greater in bantams compared with the larger variety. However, despite 38% and 23% differences in Mb and leg length, respectively, the two varieties shared an identical walking CoTmin, independent of speed and equal to the allometric prediction derived from interspecific data for the larger variety. Furthermore, the two varieties moved with dynamic similarity and shared geometrically similar appendicular and axial skeletons. Hip height, however, did not scale geometrically and the smaller variety had more erect limbs, contrary to interspecific scaling trends. The lower than predicted CoTmin in bantams for their Mb was associated with both the more erect posture and a lower cost per stride (J kg(-1) stride(-1)). Therefore, our findings are consistent with the notion that a more erect limb is associated with a lower CoTmin and with the previous assumption that similarity in skeletal shape, inherently linked to walking dynamics, is associated with similarity in CoTmin. © 2015. Published by The Company of Biologists Ltd.

  2. A possible function of the preference for hind nipples in prairie voles (Microtus ochrogaster).

    PubMed

    McGuire, B

    2001-12-01

    Prairie vole pups (Microtus ochrogaster) in laboratory cages prefer hind nipples. In this research, the author observed 8 litters of prairie voles in a seminatural environment to confirm the preference for hind nipples and to determine if young on hind nipples were groomed more frequently or dislodged less frequently than were young on other nipples. Prairie vole pups in seminatural environments preferred hind nipples; this preference was illustrated by the progressive use of more anterior nipples only as litter size increased and by the reluctance of pups to voluntarily release their hold on hind nipples. Maternal grooming of young did not vary with suckling location. Prairie vole young on hind nipples, however, were dislodged less frequently than were young on other nipples. Less frequent dislodgment from hind nipples during maternal movements may play a role in the preference for hind nipples in prairie voles.

  3. Morphological changes in neurons of the hind limb reflex arc during long term immobilization

    NASA Technical Reports Server (NTRS)

    Tkachenko, Z. Y.

    1980-01-01

    Twelve adult rabbits were immobilized for 9 to 31 days, followed by histological study of the nerve processes of lumbar vertebra 7 and sacral vertebra 1, the sciatic nerve and the motor endings of the thigh muscles. In the spinal ganglia, dystrophic changes of increasing severity with immobilization time were found, including pericellular edema, vacuolized neuroplasm, pycnotic changes, cytolysis and destruction. Chromatophilic matter decreased and was partly bleached, and amitotic division occurred. A portion of the sciatic nerve fibers were argentophilic, and some fragmentary decomposition occurred. Considerable dystrophic changes occurred in the motor nerve endings.

  4. Functional MMP-10 is required for efficient tissue repair after experimental hind limb ischemia.

    PubMed

    Gomez-Rodriguez, Violeta; Orbe, Josune; Martinez-Aguilar, Esther; Rodriguez, Jose A; Fernandez-Alonso, Leopoldo; Serneels, Jens; Bobadilla, Miriam; Perez-Ruiz, Ana; Collantes, Maria; Mazzone, Massimiliano; Paramo, Jose A; Roncal, Carmen

    2015-03-01

    We studied the role of matrix metalloproteinase-10 (MMP-10) during skeletal muscle repair after ischemia using a model of femoral artery excision in wild-type (WT) and MMP-10 deficient (Mmp10(-/-)) mice. Functional changes were analyzed by small animal positron emission tomography and tissue morphology by immunohistochemistry. Gene expression and protein analysis were used to study the molecular mechanisms governed by MMP-10 in hypoxia. Early after ischemia, MMP-10 deficiency resulted in delayed tissue reperfusion (10%, P < 0.01) and in increased necrosis (2-fold, P < 0.01), neutrophil (4-fold, P < 0.01), and macrophage (1.5-fold, P < 0.01) infiltration. These differences at early time points resulted in delayed myotube regeneration in Mmp10(-/-) soleus at later stages (regenerating myofibers: 30 ± 9% WT vs. 68 ± 10% Mmp10(-/-), P < 0.01). The injection of MMP-10 into Mmp10(-/-) mice rescued the observed phenotype. A molecular analysis revealed higher levels of Cxcl1 mRNA (10-fold, P < 0.05) and protein (30%) in the ischemic Mmp10(-/-) muscle resulting from a lack of transcriptional inhibition by MMP-10. This was further confirmed using siRNA against MMP-10 in vivo. Our results demonstrate an important role of MMP-10 for proper muscle repair after ischemia, and suggest that chemokine regulation such as Cxcl1 by MMP-10 is involved in muscle regeneration. © FASEB.

  5. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  6. The spatial organization of central sensitization of hind limb flexor reflexes in the decerebrated, spinalized rabbit.

    PubMed

    Clarke, R W; Harris, J

    2001-01-01

    This study was designed to investigate the relationship between the location of a noxious stimulus and the magnitude and duration of the plastic effects induced by that stimulus in withdrawal reflexes acting about the knee and the ankle, in rabbits. Reflexes were evoked in the nerves to the anterior tibial and semitendinosus flexor muscles by electrical stimulation at the toes. Repetitive, high intensity electrical stimulation of nerve trunks (sural, medial gastrocnemius, superficial peroneal, tibial, 100 pulses, 20 V, 1 ms at 0.5 Hz) was generally found to be a poor method for inducing central sensitization in these flexor reflexes. 'Natural' noxious stimulation induced more reliable enhancement of both reflexes. Mechanical (clamp) or chemical (mustard oil) stimulation of the heel induced prolonged (median duration >30 min) increases in reflexes to both muscles. Mechanical (clamp and superficial pinch) or chemical (mustard oil) stimulation of the toes, and injection of bradykinin into the gastrocnemius muscles or into the soft tissues of the sole of the foot, also led to enhancement of both reflexes, with the median duration of potentiation between 7 and 30 min. The effects obtained from deep tissue stimulation were generally weaker than those obtained after stimulation of superficial structures. These data show that there were no major differences in the effects obtained from the heel vs the toes, or between the two reflexes. It appears that the spatial organization of the spinal mechanisms underlying central sensitization of flexor withdrawal reflexes is rather more crudely drawn than that pertaining to the reflexes themselves. Furthermore, the data indicate that in the present preparation, afferents from deep tissues are no more effective in generating central sensitization than those from superficial structures.

  7. Effect of Endotoxin on Oxygen Consumption By a Flow-Controlled Canine Hind-Limb Preparation

    DTIC Science & Technology

    1980-10-01

    a reduction in the cardiac metabolic units of the periphery, (3) the red bloodq output and a widening of the central arteriovenous cell or...explained readily by the reduction in takeoff of the profunda femoris artery; the internal + SNum ber Volume 88 Effect of endotoxin on oxygen

  8. The Impact of Prophylactic Fasciotomy Following Porcine (Sus scrofa) Hind Limb Ischemia/Reperfusion Injury

    DTIC Science & Technology

    2012-03-23

    the 14-day survival period to calculate the composite physiologic model of recovery ( PMR ). Necropsy was performed for evaluation of nerve and...muscle histology. Results: In hemorrhage alone, according to the PMR the recovery was 94+/-28%, 63+/- 37% and 55+/-44% at 0, 3 and 6 hours of ischemia...hours. , , . v w and compared to baseline to create the Physiologic Model of Recovery ( PMR ). On day 14, necropsy was performed and

  9. Capillary-to-fiber ratio of hind limb muscles in the male Syrian golden hamster.

    PubMed

    Swisher, Anne K; Alway, Stephen E; Yeater, Rachel

    2004-04-01

    The hamster has been the accepted model of emphysema since the 1970s, demonstrating disease-related effects on respiratory skeletal muscle. However, there is scant information available about the model's ability to replicate the peripheral skeletal muscle changes seen in human disease, such as alterations in capillarity. The present study described the capillary-to-fiber ratio (C/F) of normal hamster plantaris, gastrocnemius, and soleus muscles in eight animals. C/F was 1.72 +/- 0.38 for plantaris, 1.95 +/- 0.40 for gastrocnemius, and 2.22 +/- 0.43 for soleus. C/F of soleus was significantly greater (P < 0.01) than plantaris. The C/F of hamster hindlimb muscles varies from those seen in rat species, and having baseline data on hamsters makes it possible to determine the effects of emphysema on C/F in this model.

  10. Edge detection of red hind grouper vocalizations in the littorals

    NASA Astrophysics Data System (ADS)

    Matthews, Cameron A.; Beaujean, Pierre-Philippe

    2016-05-01

    Littoral regions typically present to passive sensors as a high noise acoustic environment, particularly with respect to port and harbor regions where tidal variation, often characterized as pink, mixes with reverberation from on-shore business and commercial shipping, often characterized as white. Some fish in these regions, in particular epiphenalius Guttatus or more commonly the red hind grouper, emit relatively narrowband tones in low frequencies to communicate with other fish in such regions. The impact of anthropogenic noise sources on the red Hind and other fish is a topical area of interest for wildlife fisheries, private sportsmen and military offices that is not considered here; the fact that fish species continue to populate and communicate in these regions in the presence of high noise content lends some study to the signal content and modeling of a potential biologically inspired receiver structure.

  11. Acoustic Tonal and Vector Properties of Red Hind Grouper Vocalizations

    NASA Astrophysics Data System (ADS)

    Matthews, Cameron Anthony

    Vertebrates are the most prodigious vocalizing animals in existence, and the most diverse methods of acoustic communication among vertebrates can be found in the ocean. Relatively many teleost fish are gifted with the ability to communicate acoustically, and the family of serranidae often performs this as a function of the swim bladder. Epinephelus Guttatus (E. guttatus), or more commonly the red hind grouper, is equipped with a drum shaped swim bladder acting as a monopole under typical ocean conditions. This configuration allows for what is understood to be omnidirectional projection of tones approximately centered between 40 and 440 Hz and spanning anywhere from 40 to 200 Hz of bandwidth and modulation effects based on observed data provided by researchers. Prior studies on many other fish show correlation in acoustic communication profile with length, size and sexual identity. In the red hind, sexual dimorphism leads to an inherent female identity in all juvenile fish which converts to male according to environmental factors, recommending at least consistent organs across both sexes be assumed even if not in use. Much research has been performed on male fish vocalization in terms of spectral content. Communication in fish is a complex multi-modal process, with acoustic communication being important for many of the species, particularly those in the littoral regions of the worlds' oceans. If identifying characteristics of the red hind vocalization can be isolated based on detection, classification, tracking and localizing methodologies, then these identifying characteristics may indeed lead to passive feature identification that allows for estimation of individual fish mass. Hypotheses based on vector, cyclostationary and classical tonal mechanics are presented for consideration. A battery of test data collection events, applying pre-recorded fish vocalizations to a geolocated undersea sound source were conducted. The results are supplied with the intent of

  12. Hind Right Approach Pancreaticoduodenectomy: From Skill to Indications

    PubMed Central

    Georgescu, Stefan; Ursulescu, Corina

    2014-01-01

    Background. Pancreaticoduodenectomy is the potentially curative treatment for malignant and several benign conditions of the pancreatic head and periampullary region. While performing pancreaticoduodenectomy, early neck division may be impossible or inadequate in case of hepatic artery anatomic variants, suspected involvement of the superior mesenteric vessels, intraductal papillary mucinous neoplasm, and pancreatic head bleeding pseudoaneurysm. Our work aims to highlight a particular hind right approach pancreaticoduodenectomy in selected indications and assess the preliminary results. Methods. We describe our early hind right approach to the retropancreatic vasculature during pancreaticoduodenectomy by mesopancreas dissection before any pancreatic or digestive transection. Results. We used this approach in 52 patients. Thirty-two had hepatic artery anatomic variant and 2 had bleeding pancreatic head pseudoaneurysm. The hepatic artery variant was preserved in all cases out of 2 in which arterial reconstruction was performed. In nine patients with intraductal papillary mucinous neoplasms the pancreaticoduodenectomy was extended to the body in 6 and totalized in 3 patients. Seven patients with adenocarcinoma involving the portomesenteric axis required venous resection and reconstruction. Conclusions. Early hind right approach is advocated in selected cases of pancreaticoduodenectomy to improve locoregional vascular control and determine, safely and early, whether there is mesopancreas involvement. PMID:25221601

  13. Ubx Regulates Differential Enlargement and Diversification of Insect Hind Legs

    PubMed Central

    Mahfooz, Najmus; Turchyn, Nataliya; Mihajlovic, Michelle; Hrycaj, Steven; Popadić, Aleksandar

    2007-01-01

    Differential enlargement of hind (T3) legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s) responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug) and Acheta domesticus (house cricket). In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx) is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs. PMID:17848997

  14. Cellular proliferation in the skin of X-rayed newt limbs (with a note on x-ray-induced limb regression)

    SciTech Connect

    Wertz, R.L.

    1982-07-01

    Left hind limbs, including the pelvis, of adult newts (Notophthalmus viridescens) were locally irradiated with a dose of x-rays that inhibited regeneration (2,000 R). This x-ray dose and other doses (700-2,000 R) capable of inhibiting limb regeneration also cause limb regression prior to amputation. Before limb regression occurred, there was a latent period of 3 to 6 weeks. Limb regression was characterized by necrotic wasting and resorption of distal elements. The degree of loss was variable and dependent upon dosage. After this further degenerative changes were not noted. Proliferation of epidermal cells was examined 4 days after irradiation prior to limb regression or after x-ray-induced degeneration of the limbs had ended. Proliferative activity in x-rayed limbs was also compared at various stages of contralateral control limb regeneration. Limbs examined after x-ray-induced limb regression had ended showed levels of (/sup 3/H)-thymidine incorporation into DNA comparable to normal epidermis. In contrast, limbs examined 4 days after irradiation had lower levels of DNA synthesis (P much less than 0.01). Amputation of limbs in both groups caused an increase in DNA synthesis (P much less than 0.01). Histological examination showed that cellular proliferation was associated primarily with the epidermis. These results indicate that epidermal cell proliferation was not resistant to x-rays. However, levels of normal cell division were observed after amputation of after cessation of x-ray-induced limb regression.

  15. 5-AZA-2'-DEOXYCYTIDINE INDUCED CYTOTOXICITY AND LONG BONE REDUCTION DEFECTS IN THE MURINE LIMB

    EPA Science Inventory

    The antineoplastic drug 5-aza-2'-deoxycytidine (dAZA) is a DNA hypomethylating agent that can be used to induce hind limb phocomelia in the offspring of CD-1 Swiss Webster mice. Previously, our laboratory investigated the possibility that dAZA induced alterations in gene express...

  16. 5-AZA-2'-DEOXYCYTIDINE INDUCED CYTOTOXICITY AND LONG BONE REDUCTION DEFECTS IN THE MURINE LIMB

    EPA Science Inventory

    The antineoplastic drug 5-aza-2'-deoxycytidine (dAZA) is a DNA hypomethylating agent that can be used to induce hind limb phocomelia in the offspring of CD-1 Swiss Webster mice. Previously, our laboratory investigated the possibility that dAZA induced alterations in gene express...

  17. Gram-scale production of plasmid pUDK-HGF with current good manufacturing practices for gene therapy of critical limb ischemia.

    PubMed

    Hu, ChunSheng; Cheng, XiaoChen; Lu, YuXin; Wu, ZuZe; Zhang, QingLin

    2016-11-16

    The demand of a plasmid encoding human hepatocyte growth factor gene (pUDK-HGF) in large quantities at high purity and concentration has increased for gene therapy of critical limb ischemia (CLI) in clinical trials. In this article, we produced pUDK-HGF in compliance with current good manufacturing practices at gram scale. The process included a 50-L batch fermentation, continuous alkaline lysis, and integrated three-step chromatography on Sepharose 6 Fast Flow, PlasmidSelect Xtra, and Source 15Q. The production process has been scaled up to yield 4.24 ± 0.41 g of pharmaceutical pUDK-HGF from 1.0 kg bacterial cell paste and the overall yield reached range from 58.37 to 66.70%. The final pUDK-HGF product exhibited high purity with supercoiled percentage of > 95.8% and undetectable residual RNA, contaminated protein, and bacterial endotoxin. The phase I clinical study indicates that intramuscular injection of pUDK-HGF is safe, well tolerated, and may provide symptomatic relief to CLI patients. These results show that our manufacturing process of pUDK-HGF is efficient in producing pharmaceutical-grade plasmid DNA and is safe for clinical applications.

  18. The foot posture index, ankle lunge test, Beighton scale and the lower limb assessment score in healthy children: a reliability study.

    PubMed

    Evans, Angela M; Rome, Keith; Peet, Lauren

    2012-01-09

    Outcome measures are important when evaluating treatments and physiological progress in paediatric populations. Reliable, relevant measures of foot posture are important for such assessments to be accurate over time. The aim of the study was to assess the intra- and inter-rater reliability of common outcome measures for paediatric foot conditions. A repeated measures, same-subject design assessed the intra- and inter-rater reliability of measures of foot posture, joint hypermobility and ankle range: the Foot Posture Index (FPI-6), the ankle lunge test, the Beighton scale and the lower limb assessment scale (LLAS), used by two examiners in 30 healthy children (aged 7 to 15 years). The Oxford Ankle Foot Questionnaire (OxAFQ-C) was completed by participants and a parent, to assess the extent of foot and ankle problems. The OxAFQ-C demonstrated a mean (SD) score of 6 (6) in adults and 7(5) for children, showing good agreement between parents and children, and which indicates mid-range (transient) disability. Intra-rater reliability was good for the FPI-6 (ICC = 0.93 - 0.94), ankle lunge test (ICC = 0.85-0.95), Beighton scale (ICC = 0.96-0.98) and LLAS (ICC = 0.90-0.98). Inter-rater reliability was largely good for each of the: FPI-6 (ICC = 0.79), ankle lunge test (ICC = 0.83), Beighton scale (ICC = 0.73) and LLAS (ICC = 0.78). The four measures investigated demonstrated adequate intra-rater and inter-rater reliability in this paediatric sample, which further justifies their use in clinical practice.

  19. Improved decoding of limb-state feedback from natural sensors.

    PubMed

    Wagenaar, J B; Ventura, V; Weber, D J

    2009-01-01

    Limb state feedback is of great importance for achieving stable and adaptive control of FES neuroprostheses. A natural way to determine limb state is to measure and decode the activity of primary afferent neurons in the limb. The feasibility of doing so has been demonstrated by [1] and [2]. Despite positive results, some drawbacks in these works are associated with the application of reverse regression techniques for decoding the afferent neuronal signals. Decoding methods that are based on direct regression are now favored over reverse regression for decoding neural responses in higher regions in the central nervous system [3]. In this paper, we apply a direct regression approach to decode the movement of the hind limb of a cat from a population of primary afferent neurons. We show that this approach is more principled, more efficient, and more generalizable than reverse regression.

  20. Stereotaxic Device for Optical Imaging of Mice Hind Feet

    PubMed Central

    Cole, Richard; Hoffman, Timothy; Smith, Jason; Herron, Bruce

    2013-01-01

    Imaging of in vivo model systems, especially mouse models, has revolutionized our understanding of normal and pathological developments. However, mice present several challenges for imaging. They are living and therefore breathing organisms with a fast heart rate (>500 beat/min), which necessitates the need for restraints and positioning controls that do not compromise their normal physiology. We present here a device that immobilizes the rear legs of a mouse while retaining the ability to position both the hind feet and legs for reproducible imaging deep below the skin's surface. The device is highly adjustable to accommodate mice, 5 weeks of age and older. The function of this device is demonstrated by imaging the vasculature ∼250 μm beneath the skin in the hind leg. Whereas the overall dimensions are for a motorized stage (Märzhäuser Wetzlar GmbH, Wetzlar, Germany), minor modifications would allow it to be customized for use with most commercially available stages that accept an insert. PMID:23997660

  1. Postnatal allometry of the skeleton in Tupaia glis (Scandentia: Tupaiidae) and Galea musteloides (Rodentia: Caviidae)--a test of the three-segment limb hypothesis.

    PubMed

    Schilling, Nadja; Petrovitch, Alexander

    2006-01-01

    During the evolution of therian mammals, the two-segmented, sprawled tetrapod limbs were transformed into three-segmented limbs in parasagittal zig-zag configuration (three-segment limb hypothesis). As a consequence, the functional correspondence of limb segments has changed (now: scapula to thigh, upper arm to shank, fore arm plus hand to foot). Therefore, the scapula was taken into account in the current study of the postnatal growth of the postcranial skeleton in two small mammalian species (Tupaia glis, Galea musteloides). Comparisons were made between the functionally equivalent elements and not in the traditional way between serially homologous segments. This study presents a test of the three-segment limb hypothesis which predicts a greater ontogenetic congruence in the functionally equivalent elements in fore and hind limbs than in the serially homologous elements. A growth sequence, with decreasing regression coefficients from proximal to distal, was observed in both species under study. This proximo-distal growth sequence is assumed to be ancestral in the ontogeny of eutherian mammals. Different reproductive modes have evolved within eutherian mammals. To test the influence of different life histories on ontogenetic scaling during postnatal growth, one species with altricial juveniles (Tupaia glis) assumed to be the ancestral mode of development for eutherians and one species with derived, precocial young (Galea musteloides) were selected. The growth series covered postnatal development from the first successive steps with a lifted belly to the adult locomotory pattern; thus, functionally equivalent developmental stages were compared. The higher number of allometrically positive or isometrically growing segments in the altricial mammalian species was interpreted as a remnant of the fast growth period in the nest without great locomotor demands, and the clearly negative allometry in nearly all segments in the precocial young was interpreted as a response

  2. How well can interannual to decadal-scale variability in stratospheric ozone and water vapor be quantified using limb-based satellite measurements?

    NASA Astrophysics Data System (ADS)

    Davis, S. M.; Rosenlof, K. H.; Hurst, D. F.; Hassler, B.; Read, W. G.

    2015-12-01

    Vertical profiles of ozone and humidity from the upper troposphere to stratosphere have been retrieved from a number of limb sounding and solar occultation satellite instruments since the 1980's. In particular, measurements from the SAGE instruments, UARS MLS, UARS HALOE, and most recently Aura MLS, have provided overlapping data since 1984. In order to quantify interannual- to decadal-scale variability in water vapor and ozone, it is necessary to have a uniform and homogenous record over the period of interest. With this in mind, we merged the aforementioned satellite measurements to create the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set, which contains vertically resolved zonal-mean (2.5°) monthly-mean water vapor and ozone concentration at levels covering the stratosphere. In this presentation, we describe the process of merging the satellite data sets, which involves adjusting the data to a reference measurement using offsets calculated from coincident observations taken during instrument overlap periods. Uncertainties associated with individual measurement precision, geophysical variability, and the merging process are quantified and compared to one another. We show that while the SWOOSH data can be used to quantify interannual variability, quantifying long-term trends in SWOOSH is complicated by the various sources of uncertainty, as well as by potential drifts of individual instruments. The issue of satellite-derived trends is discussed in relation to the long-term record of balloon-borne frostpoint hygrometer measurements from Boulder, CO.

  3. Analysis of the accuracy of the Wells scale in assessing the probability of lower limb deep vein thrombosis in primary care patients practice.

    PubMed

    Dybowska, Małgorzata; Tomkowski, Witold Z; Kuca, Paweł; Ubysz, Rafał; Jóźwik, Adam; Chmielewski, Dariusz

    2015-01-01

    The clinical picture of deep vein thrombosis (DVT) is nonspecific. Therefore assessment of the probability of occurrence of DVT plays a very important part in making a correct diagnosis of DVT. The aim of our prospective study was to assess the accuracy of the Wells scale in primary care setting in diagnostic procedure of suspected deep vein thrombosis. In the period of 20 - months (from 2007 to 2009) a group of residents from one of the urban districts of Warsaw, who reported to family doctors (22 primary care physicians were involved in the study) with symptoms of DVT were assessed on the probability of occurrence of deep vein thrombosis using the Wells scale. Family doctors were aware of symptoms of DVT and inclusion patients to this study was based on clinical suspicion of DVT. Patients were divided into three groups, reflecting probability of DVT of the lower limbs. To confirm DVT a compression ultrasound (CUS) test was established. We analyzed the relationship between a qualitative variable and a variable defined on an original scale (incidence of DVT versus Wells scale count) using the Mann-Whitney test. Chi-square test compared rates of DVT events in all clinical probability groups. Patient were follow up during 3 months in primary care setting. In the period of 20 months (from 2007 to 2009) a total number of 1048 patients (male: 250 , female: 798 mean age: 61.4) with symptoms suggestive of DVT of the lower extremities entered the study. Among the 100 patients classified in the group with a high probability of DVT of the lower extremities, 40 (40%) patients (proximal DVT - 13; distal DVT - 27) were diagnosed with it (95% CI [30.94% -49.80%]). In the group with a moderate probability consisting of 302 patients, DVT of the lower extremities was diagnosed in 19 (6.29%) patients (95% CI [4.06% -9.62%]), (proximal DVT - 1; distal DVT - 18). Of the 646 patients with a low probability of DVT of the lower extremities distal DVT was diagnosed in 1 (0.15%) patient

  4. Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land.

    PubMed

    Kawano, Sandy M; Blob, Richard W

    2013-08-01

    The invasion of land was a pivotal event in vertebrate evolution that was associated with major appendicular modifications. Although fossils indicate that the evolution of fundamentally limb-like appendages likely occurred in aquatic environments, the functional consequences of using early digited limbs, rather than fins, for terrestrial propulsion have had little empirical investigation. Paleontological and experimental analyses both have led to the proposal of an early origin of "hind limb-driven" locomotion among tetrapods or their ancestors. However, the retention of a pectoral appendage that had already developed terrestrial adaptations has been proposed for some taxa, and few data are available from extant functional models that can provide a foundation for evaluating the relative contributions of pectoral and pelvic appendages to terrestrial support among early stem tetrapods. To examine these aspects of vertebrate locomotor evolution during the invasion of land, we measured three-dimensional ground reaction forces (GRFs) produced by isolated pectoral fins of mudskipper fishes (Periophthalmus barbarus) during terrestrial crutching, and compared these to isolated walking footfalls by the forelimbs and hind limbs of tiger salamanders (Ambystoma tigrinum), a species with subequally-sized limbs that facilitate comparisons to early tetrapods. Pectoral appendages of salamanders and mudskippers exhibited numerous differences in GRFs. Compared with salamander forelimbs, isolated fins of mudskippers bear lower vertical magnitudes of GRFs (as a proportion of body weight), and had GRFs that were oriented more medially. Comparing the salamanders' forelimbs and hind limbs, although the peak net GRF occurs later in stance for the forelimb, both limbs experience nearly identical mediolateral and vertical components of GRF, suggesting comparable contributions to support. Thus, forelimbs could also have played a significant locomotor role among basal tetrapods that had limbs

  5. Effects of Ibuprofen and High-Voltage Electric Stimulation on Acute Edema Formation After Blunt Trauma to Limbs of Rats

    PubMed Central

    Dolan, Michael G; Graves, Paul; Nakazawa, Chika; Delano, Teresa; Hutson, Alan; Mendel, Frank C

    2005-01-01

    Context: Ibuprofen is widely used to manage pain and inflammation after orthopaedic trauma, but its effect on acute swelling has not been investigated. Cathodal high-voltage pulsed current (CHVPC) at 120 pulses per second and 90% of visible motor threshold is known to curb edema formation after blunt trauma to the hind limbs of rats. Objective: To examine the effects of ibuprofen, continuous CHVPC, and simultaneous ibuprofen and CHVPC on acute edema formation after blunt trauma to the hind limbs of rats. Design: Randomized, parallel-group, repeated-measures design. Setting: Laboratory animal facility. Participants: A total of 21 3-month-old Zucker Lean rats (mass = 288 ± 55 g) were studied. Intervention(s): We assessed the effects of ibuprofen, continuous CHVPC, and simultaneous ibuprofen and CHVPC on acute edema formation after blunt trauma to the hind limbs of rats. Main Outcome Measure(s): Limb volumes were measured immediately before and after trauma and every 30 minutes over the 4 hours of the experiment. Results: Volumes of treated limbs of all 3 experimental groups were smaller (P < .05) than those of untreated limbs, but no treatment was more effective than another. Conclusions: Ibuprofen, CHVPC, and simultaneous ibuprofen and CHVPC effectively curbed edema after blunt injury by roughly 50% relative to untreated but similarly injured control limbs of rats. PMID:15970957

  6. [Limb apraxia].

    PubMed

    Hödl, Anna K; Bonelli, Raphael M; Kapfhammer, Hans-Peter

    2006-01-15

    Apraxia is the disturbance of planning and of execution of motor activity. It is not caused by a lesion or a disturbance of the motor or sensory nervous system, it is elicited by a dysfunction of an area in the left cortex of the brain. This area in the left fronto-parietotemporal hemisphere is located right beside the area for speech. Therefore it is not unusual that patients with apraxia suffer from aphasia as well. The two different types of limb apraxia are ideomotor apraxia and ideational apraxia. Ideomotor apraxia is apraxia without tool use, it includes imitation of positions of hands and fingers, performance of gestures on demand, and pantomime of object use. Ideational apraxia is apraxia with tool use like cutting with a knife or utilizing a pencil.

  7. Population characteristics of a recovering US Virgin Islands red hind spawning aggregation following protection

    PubMed Central

    Nemeth, Richard S.

    2006-01-01

    Many species of groupers form spawning aggregations, dramatic events where 100s to 1000s of individuals gather annually at specific locations for reproduction. Spawning aggregations are often targeted by local fishermen, making them extremely vulnerable to over fishing. The Red Hind Bank Marine Conservation District located in St. Thomas, United States Virgin Islands, was closed seasonally in 1990 and closed permanently in 1999 to protect an important red hind Epinephelus guttatus spawning site. This study provides some of the first information on the population response of a spawning aggregation located within a marine protected area. Tag-and-release fishing and fish transects were used to evaluate population characteristics and habitat utilization patterns of a red hind spawning aggregation between 1999 and 2004. Compared with studies conducted before the permanent closure, the average size of red hind increased mostly during the seasonal closure period (10 cm over 12 yr), but the maximum total length of male red hind increased by nearly 7 cm following permanent closure. Average density and biomass of spawning red hind increased by over 60% following permanent closure whereas maximum spawning density more than doubled. Information from tag returns indicated that red hind departed the protected area following spawning and migrated 6 to 33 km to a ca. 500 km2 area. Protection of the spawning aggregation site may have also contributed to an overall increase in the size of red hind caught in the commercial fishery, thus increasing the value of the grouper fishery for local fishermen. PMID:16612415

  8. DUE AvalRS: Remote Sensing Derive Avalanche Inventory Data for Decision Support and Hind-Cast After Avalanche Events

    NASA Astrophysics Data System (ADS)

    Frauenfelder, Regula; Kronholm, Kalle; Solberg, Rune; Larsen, Siri Oyen; Salberg, Arnt-Borre; Larsen, Jan Otto; Bjordal, Heidi

    2010-12-01

    Each year, snow avalanches hit populated areas and parts of the transport network in the Norwegian mountain regions, leading to loss of lives and the damaging of buildings and infrastructure. We present the results of a feasibility study on the operation of a service providing the National Public Roads Administration (NPRA) with hind-cast avalanche inventory data on a local-to-regional scale during the course of the winter season, and as soon as possible after major avalanche events. We have explored the use of imagery from high-resolution and very-high-resolution space-borne satellites applying manual mapping and automated image segmentation.

  9. A comparison of the moment arms of pelvic limb muscles in horses bred for acceleration (Quarter Horse) and endurance (Arab).

    PubMed

    Crook, T C; Cruickshank, S E; McGowan, C M; Stubbs, N; Wilson, A M; Hodson-Tole, E; Payne, R C

    2010-07-01

    Selective breeding for performance has resulted in distinct breeds of horse, such as the Quarter Horse (bred for acceleration) and the Arab (bred for endurance). Rapid acceleration, seen during Quarter Horse racing, requires fast powerful muscular contraction and the generation of large joint torques, particularly by the hind limb muscles. This study compared hind limb moment arm lengths in the Quarter Horse and Arab. We hypothesized that Quarter Horse hind limb extensor muscles would have longer moment arms when compared to the Arab, conferring a greater potential for torque generation at the hip, stifle and tarsus during limb extension. Six Quarter Horse and six Arab hind limbs were dissected to determine muscle moment arm lengths for the following muscles: gluteus medius, biceps femoris, semitendinosus, vastus lateralis, gastrocnemius (medialis and lateralis) and tibialis cranialis. The moment arms of biceps femoris (acting at the hip) and gastrocnemius lateralis (acting at the stifle) were significantly longer in the Quarter Horse, although the length of the remaining muscle moment arms were similar in both breeds of horse. All the Quarter Horse muscles were capable of generating greater muscle moments owing to their greater physiological cross-sectional area (PCSA) and therefore greater isometric force potential, which suggests that PCSA is a better determinant of muscle torque than moment arm length in these two breeds of horse. With the exception of gastrocnemius and tibialis cranialis, the observed muscle fascicle length to moment arm ratio (MFL : MA ratio) was greater for the Arab horse muscles. It appears that the Arab muscles have the potential to operate at slower velocities of contraction and hence generate greater force outputs when compared to the Quarter Horse muscles working over a similar range of joint motion; this would indicate that Arab hind limb muscles are optimized to function at maximum economy rather than maximum power output.

  10. A comparison of the moment arms of pelvic limb muscles in horses bred for acceleration (Quarter Horse) and endurance (Arab)

    PubMed Central

    Crook, T C; Cruickshank, S E; McGowan, C M; Stubbs, N; Wilson, A M; Hodson-Tole, E; Payne, R C

    2010-01-01

    Selective breeding for performance has resulted in distinct breeds of horse, such as the Quarter Horse (bred for acceleration) and the Arab (bred for endurance). Rapid acceleration, seen during Quarter Horse racing, requires fast powerful muscular contraction and the generation of large joint torques, particularly by the hind limb muscles. This study compared hind limb moment arm lengths in the Quarter Horse and Arab. We hypothesized that Quarter Horse hind limb extensor muscles would have longer moment arms when compared to the Arab, conferring a greater potential for torque generation at the hip, stifle and tarsus during limb extension. Six Quarter Horse and six Arab hind limbs were dissected to determine muscle moment arm lengths for the following muscles: gluteus medius, biceps femoris, semitendinosus, vastus lateralis, gastrocnemius (medialis and lateralis) and tibialis cranialis. The moment arms of biceps femoris (acting at the hip) and gastrocnemius lateralis (acting at the stifle) were significantly longer in the Quarter Horse, although the length of the remaining muscle moment arms were similar in both breeds of horse. All the Quarter Horse muscles were capable of generating greater muscle moments owing to their greater physiological cross-sectional area (PCSA) and therefore greater isometric force potential, which suggests that PCSA is a better determinant of muscle torque than moment arm length in these two breeds of horse. With the exception of gastrocnemius and tibialis cranialis, the observed muscle fascicle length to moment arm ratio (MFL : MA ratio) was greater for the Arab horse muscles. It appears that the Arab muscles have the potential to operate at slower velocities of contraction and hence generate greater force outputs when compared to the Quarter Horse muscles working over a similar range of joint motion; this would indicate that Arab hind limb muscles are optimized to function at maximum economy rather than maximum power output. PMID

  11. Lymph pump mechanics in the rabbit hind leg.

    PubMed

    Ikomi, F; Schmid-Schönbein, G W

    1996-07-01

    The mechanisms that govern fluid uptake by the initial lymphatics and adjustment of lymph flow rates remain to a large degree uncertain. The aim of this study was to examine how passive tissue movement contributes to lymph flow rates. Lymph fluid was collected via a cannula inserted into one of the popliteal prenodal lymphatics in the rabbit hind leg. Lymph flow rates were measured during periodic whole leg rotation and controlled oscillatory massage of the dorsal skin of the foot. Without whole leg rotation, lymph flow remained at low values (< 0.01 ml/h). Introduction of whole leg passive rotation caused a frequency-dependent increase in lymph flow rates, which were increased linearly with the log of frequency between 0.03 and 1.0 Hz. Local skin massage in the region of the initial lymphatics also led to a similar increase of lymph flow rates dependent on frequency as well as amplitude of skin displacement. Lymph flow rates during local skin massage reached a comparable order of magnitude regardless of whether the animal was alive or the heart had been arrested, suggesting that local lymph flow rates can be adjusted by periodic tissue motion independently of capillary fluid filtration pressures. The results indicate that periodic expansion and compression of initial lymphatics provide a mechanism for lymph pumping.

  12. Energy storage and synchronisation of hind leg movements during jumping in planthopper insects (Hemiptera, Issidae).

    PubMed

    Burrows, M

    2010-02-01

    The hind legs of Issus (Hemiptera, Issidae) move in the same plane underneath the body, an arrangement that means they must also move synchronously to power jumping. Moreover, they move so quickly that energy must be stored before a jump and then released suddenly. High speed imaging and analysis of the mechanics of the proximal joints of the hind legs show that mechanical mechanisms ensure both synchrony of movements and energy storage. The hind trochantera move first in jumping and are synchronised to within 30 micros. Synchrony is achieved by mechanical interactions between small protrusions from each trochantera which fluoresce bright blue under specific wavelengths of ultra-violet light and which touch at the midline when the legs are cocked before a jump. In dead Issus, a depression force applied to a cocked hind leg, or to the tendon of its trochanteral depressor muscle causes a simultaneous depression of both hind legs. The protrusion of the hind leg that moves first nudges the other hind leg so that both move synchronously. Contractions of the trochanteral depressor muscles that precede a jump bend the metathoracic pleural arches of the internal skeleton. Large areas of these bow-shaped structures fluoresce bright blue in ultraviolet light, and the intensity of this fluorescence depends on the pH of the bathing saline. These are key signatures of the rubber-like protein resilin. The remainder of a pleural arch consists of stiff cuticle. Bending these composite structures stores energy and their recoil powers jumping.

  13. Earth's Dynamo: Fore- and Hind- casting Limits from a Variational Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Dimitrova, L. L.; Egbert, G. D.; Kuang, W.; Tangborn, A.

    2010-12-01

    In the last decade, fully 3-D, nonlinear numerical dynamo models have allowed for the study of many geomagnetic field features. As the ultimate goal of geodynamo simulations is to explain the features of the real geomagnetic field, variational data assimilation (DA) techniques, in which observations are combined with the underlying dynamical principles governing the system, are a logical next step. A variational approach to DA allows inputs (e.g., initial and boundary data, and forcing) to be adjusted to simultaneously fit dynamical equations and observational data by minimizing a cost functional. The increased resolution and accuracy of geomagnetic field models and observations in recent years can be used to, on one hand, improve estimates of the geodynamo state in earlier years and, on the other hand, to produce better forecasts. Consequently, of interest is the time scales on which such fore- and hind- predictions are appropriate. Recently, Hullot et al. [2010] used a series of perturbed numerical dynamo simulations to estimate a time limit for predictability (time for forecast errors to grow to 100 nT) of 50-70 years for the geodynamo. We present our ongoing effort to develop modern variational DA methods (based on the representers, potentially allowing for weak constraint DA) for the Modular Scalable Self-consistent Three-dimensional (MoSST) geodynamo simulator. An implementation of variational DA requires developing tangent linear (TL) and adjoint (ADJ) codes for the nonlinear forcing and the three different time stepping schemes. The adjoint of the numerical time-stepping schemes is calculated in terms of adjoints of the discrete spatial operators. Because the linear parts of these operators are explicitly formed matrices, adjoints of these spatial operators are essentially matrix transposes. The non-linear terms, which must be linearized around a background state, require more care. The TL and the adjoint can be furthermore used to characterize (1) the

  14. The developmental bases of limb reduction and body elongation in squamates.

    PubMed

    Sanger, Thomas J; Gibson-Brown, Jeremy J

    2004-09-01

    Employing an integrative approach to investigate the evolution of morphology can yield novel perspectives not attainable from a single field of study. Studies of limb loss and body elongation in squamates (snakes and lizards) present a good example in which integrating studies of systematics and ecology with genetics and development can provide considerable new insight. In this comment we address several misunderstandings of the developmental genetic literature presented in a paper by Wiens and Slingluff (2001) to counter their criticism of previous work in these disciplines and to clarify the apparently contradictory data from different fields of study. Specifically, we comment on (1) the developmental mechanisms underlying axial regionalization, body elongation, and limb loss; (2) the utility of presacral vertebral counts versus more specific partitioning of the primary body axis; (3) the independent, modular nature of limbs and limb girdles and their utility in diagnosing genetic changes in development; and (4) the causal bases of hind limb reduction in ophidian and nonophidian squamates.

  15. Structures of restriction endonuclease HindIII in complex with its cognate DNA and divalent cations.

    PubMed

    Watanabe, Nobuhisa; Takasaki, Yozo; Sato, Chika; Ando, Shoji; Tanaka, Isao

    2009-12-01

    The three-dimensional crystal structures of HindIII bound to its cognate DNA with and without divalent cations were solved at 2.17 and 2.00 A resolution, respectively. HindIII forms a dimer. The structures showed that HindIII belongs to the EcoRI-like (alpha-class) subfamily of type II restriction endonucleases. The cognate DNA-complex structures revealed the specific DNA-recognition mechanism of HindIII by which it recognizes the palindromic sequence A/AGCTT. In the Mg(2+) ion-soaked structure the DNA was cleaved and two ions were bound at each active site, corresponding to the two-metal-ion mechanism.

  16. [Phantom limb pain].

    PubMed

    Steffen, Peter

    2006-06-01

    Almost everyone who has amputated a limb will experience a phantom limb. They have the vivid impression, that the limb is still present. 60 to 70% of these amputees will suffer from phantom limb pain. The present paper gives an overview of the incidence and the characteristics of the so called "post amputation syndrome". Possible mechanism of this phenomena are presented, including peripheral, spinal, and central theories. Treatment of phantom limb pain is sometimes very difficult. It includes drug therapy, psychological therapy, physiotherapy as well as the prevention of phantom limb pain with regional analgesia techniques.

  17. Cholesterol metabolism: the main pathway acting downstream of cytochrome P450 oxidoreductase in skeletal development of the limb.

    PubMed

    Schmidt, Katy; Hughes, Catherine; Chudek, J A; Goodyear, Simon R; Aspden, Richard M; Talbot, Richard; Gundersen, Thomas E; Blomhoff, Rune; Henderson, Colin; Wolf, C Roland; Tickle, Cheryll

    2009-05-01

    Cytochrome P450 oxidoreductase (POR) is the obligate electron donor for all microsomal cytochrome P450 enzymes, which catalyze the metabolism of a wide spectrum of xenobiotic and endobiotic compounds. Point mutations in POR have been found recently in patients with Antley-Bixler-like syndrome, which includes limb skeletal defects. In order to study P450 function during limb and skeletal development, we deleted POR specifically in mouse limb bud mesenchyme. Forelimbs and hind limbs in conditional knockout (CKO) mice were short with thin skeletal elements and fused joints. POR deletion occurred earlier in forelimbs than in hind limbs, leading additionally to soft tissue syndactyly and loss of wrist elements and phalanges due to changes in growth, cell death, and skeletal segmentation. Transcriptional analysis of E12.5 mouse forelimb buds demonstrated the expression of P450s involved in retinoic acid, cholesterol, and arachidonic acid metabolism. Biochemical analysis of CKO limbs confirmed retinoic acid excess. In CKO limbs, expression of genes throughout the whole cholesterol biosynthetic pathway was upregulated, and cholesterol deficiency can explain most aspects of the phenotype. Thus, cellular POR-dependent cholesterol synthesis is essential during limb and skeletal development. Modulation of P450 activity could contribute to susceptibility of the embryo and developing organs to teratogenesis.

  18. Sex and the single (-eared) female: leg function, limb autotomy and mating history trade-offs in field crickets (Gryllus bimaculatus)

    PubMed Central

    Bateman, Philip W; Fleming, Patricia A

    2005-01-01

    Both male and female field crickets (Gryllus bimaculatus) autotomize front (tympanal) limbs more slowly than hind limbs. Arguably, this pattern could reflect possible differences in the mechanism of limb autotomy. However, we demonstrate that, for females, limb autotomy is also dependent on their mating status: virgin females autotomize front legs significantly more slowly than mated females. This response suggests a central control for leg autotomy in these animals, and less readiness to autotomize a front leg, possibly because the tympanum is crucial for mate location. PMID:17148319

  19. Critical Limb Ischemia (CLI)

    MedlinePlus

    ... High blood pressure Family history of vascular disease Warning Signs You may have critical limb ischemia if ... blood flow to the limb. Other treatments include laser atherectomy, where small bits of plaque are vaporized ...

  20. Phantom limb pain

    MedlinePlus

    Amputation - phantom limb ... Bang MS, Jung SH. Phantom limb pain. In: Frontera, WR, Silver JK, Rizzo TD, eds. Essentials of Physical Medicine and Rehabilitation . 3rd ed. Philadelphia, PA: Elsevier ...

  1. Skeletal limb abnormalities

    MedlinePlus

    ... medlineplus.gov/ency/article/003170.htm Skeletal limb abnormalities To use the sharing features on this page, please enable JavaScript. Skeletal limb abnormalities refers to a variety of bone structure problems ...

  2. Artificial insemination following observational versus electronic methods of estrus detection in red deer hinds (Cervus elephus).

    PubMed

    Bowers, S D; Brown, C G; Strauch, T A; Gandy, B S; Neuendorff, D A; Randel, R D; Willard, S T

    2004-08-01

    The objectives were to determine the efficacy of the HeatWatch (HW) electronic estrus detection system for monitoring behavioral estrus (including duration and intensity) in red deer hinds and to evaluate pregnancy rate to AI after detected estrus. Red deer hinds (Cervus elephus; n = 50) were allocated into two treatment groups: AI following synchronization (CIDR/PMSG) and observed estrus (induced estrus group: IE; n = 25) or AI following the detection of natural estrus (NE; n = 25) without hormonal treatment. Hinds were fitted with two HeatWatch (HW) electronic estrus detection transmitters, one above the tail (bottom) and one between the tuber coxae of the pelvic girdle (top), and visual observations for mounting activity began with the aid of young sterile red deer stags (18 months old) fitted with marking harnesses. Hinds in both groups were inseminated (10-12h after observed estrus) with frozen-thawed red deer semen using a transvaginal/cervical AI approach. Following a 26-day period of AI, hinds were placed with a mature fertile stag for an additional 30-day natural breeding period. Pregnancy diagnosis was performed 57 and 86 days after the start of AI. While the hinds were housed with the young stags, 82% were detected in estrus by visual appraisal of stag crayon marks, but only 32% of these were detected by HW. In contrast, in the hinds housed with the mature stag, 93% detected in estrus by crayon marks were also detected by HW. The top HW transmitter consistently recorded more mounts (P < 0.05) than the bottom transmitter. The pregnancy rate was numerically better in IE versus NE hinds (42% versus 29%, P > 0.10). In summary, there were no differences (P > 0.10) in the intensity (number) or duration of mounts (detected by HW) during estrus in IE versus NE hinds, and HW was most effective in detecting estrus in the presence of a heavier, mature stag versus a younger stag. When used in combination with transvaginal AI, an overall first-service pregnancy rate

  3. Permanent antibiotic impregnated intramedullary nail in diabetic limb salvage: a case report and literature review.

    PubMed

    Woods, Jason B; Lowery, Nicholas J; Burns, Patrick R

    2012-01-01

    Managing complications after attempted hind foot and ankle arthrodesis with intramedullary nail fixation is a challenge. This situation becomes more problematic in the patient with diabetes mellitus and multiple comorbidities. Infection and subsequent osteomyelitis can be a devastating, limb threatening complication associated with these procedures. The surgeon must manage both the infectious process and the skeletal instability concurrently. This article provides a literature review and detailed management strategies for a modified technique of employing antibiotic impregnated polymethylmethacrylate-coated intramedullary nailing.

  4. Effect of Limb Demand Ischemia on Autophagy and Morphology in Mice

    PubMed Central

    Albadawi, Hassan; Oklu, Rahmi; Milner, John D.; Uong, Thuy P.; Yoo, Hyung-Jin; Austen, William G.; Watkins, Michael T.

    2015-01-01

    Background Obesity is a major risk factor for diabetes and peripheral arterial disease (PAD), which frequently leads to lower limb demand ischemia. Skeletal muscle autophagy and mitochondrial biogenesis are important processes for proper oxidative capacity and energy metabolism which are compromised in diabetes. This study compares autophagy, mitochondrial biogenesis, energy metabolism, and morphology in the hind limbs of obese diabetic mice subjected to demand or sedentary ischemia. Materials and Methods Unilateral hind limb demand ischemia was created in a group of diet induced obese mice following femoral artery ligation (FAL) and 4 weeks of daily exercise. A parallel group of mice underwent FAL but remained sedentary for 4 weeks. Hind limbs muscles were analyzed for markers of autophagy, mitochondrial biogenesis, ATP, and muscle tissue morphology. Results At the end of the 4-week exercise period, demand ischemia increased the autophagy mediator Beclin-1, but it did not alter the autophagy indicator LC3B-II/I ratio, or markers of mitochondrial biogenesis, Opa-1/Drp-1. In contrast, exercise significantly increased the level of mitochondrial protein-SDHA and reduced adipocyte accumulation and the percentage of centrally nucleated myofibers in the demand ischemia limb. In addition, demand ischemia resulted in decreased uncoupling protein-3 levels without altering muscle ATP or pS473-Akt levels. Conclusions Limb demand ischemia markedly decreased adipocyte accumulation and enhanced muscle regeneration in obese mice but it did not appear to enhance autophagy, mitochondrial biogenesis, energy metabolism, or insulin sensitivity. Future studies aimed at evaluating novel therapies that enhance autophagy and mitochondrial biogenesis in diabetes with PAD are warranted. PMID:25959834

  5. Effect of limb demand ischemia on autophagy and morphology in mice.

    PubMed

    Albadawi, Hassan; Oklu, Rahmi; Milner, John D; Uong, Thuy P; Yoo, Hyung-Jin; Austen, William G; Watkins, Michael T

    2015-10-01

    Obesity is a major risk factor for diabetes and peripheral arterial disease, which frequently leads to lower limb demand ischemia. Skeletal muscle autophagy and mitochondrial biogenesis are important processes for proper oxidative capacity and energy metabolism, which are compromised in diabetes. This study compares autophagy, mitochondrial biogenesis, energy metabolism, and morphology in the hind limbs of obese diabetic mice subjected to demand or sedentary ischemia. Unilateral hind limb demand ischemia was created in a group of diet-induced obese mice after femoral artery ligation and 4 wk of daily exercise. A parallel group of mice underwent femoral artery ligation but remained sedentary for 4 wk. Hind limb muscles were analyzed for markers of autophagy, mitochondrial biogenesis, adenosine triphosphate, and muscle tissue morphology. At the end of the 4-wk exercise period, demand ischemia increased the autophagy mediator Beclin-1, but it did not alter the autophagy indicator, LC3B-II/I ratio, or markers of mitochondrial biogenesis, optic atrophy/dynamin-related protein. In contrast, exercise significantly increased the level of mitochondrial protein-succinate dehydrogenase subunit-A and reduced adipocyte accumulation and the percentage of centrally nucleated myofibers in the demand ischemia limb. In addition, demand ischemia resulted in decreased uncoupling protein-3 levels without altering muscle adenosine triphosphate or pS473-Akt levels. Limb demand ischemia markedly decreased adipocyte accumulation and enhanced muscle regeneration in obese mice, but it did not appear to enhance autophagy, mitochondrial biogenesis, energy metabolism, or insulin sensitivity. Future studies aimed at evaluating novel therapies that enhance autophagy and mitochondrial biogenesis in diabetes with peripheral arterial disease are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Regeneration of Limb Joints in the Axolotl (Ambystoma mexicanum)

    PubMed Central

    Lee, Jangwoo; Gardiner, David M.

    2012-01-01

    In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints. PMID:23185640

  7. Regeneration of limb joints in the axolotl (Ambystoma mexicanum).

    PubMed

    Lee, Jangwoo; Gardiner, David M

    2012-01-01

    In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.

  8. Accuracy and precision of equine gait event detection during walking with limb and trunk mounted inertial sensors.

    PubMed

    Olsen, Emil; Andersen, Pia Haubro; Pfau, Thilo

    2012-01-01

    The increased variations of temporal gait events when pathology is present are good candidate features for objective diagnostic tests. We hypothesised that the gait events hoof-on/off and stance can be detected accurately and precisely using features from trunk and distal limb-mounted Inertial Measurement Units (IMUs). Four IMUs were mounted on the distal limb and five IMUs were attached to the skin over the dorsal spinous processes at the withers, fourth lumbar vertebrae and sacrum as well as left and right tuber coxae. IMU data were synchronised to a force plate array and a motion capture system. Accuracy (bias) and precision (SD of bias) was calculated to compare force plate and IMU timings for gait events. Data were collected from seven horses. One hundred and twenty three (123) front limb steps were analysed; hoof-on was detected with a bias (SD) of -7 (23) ms, hoof-off with 0.7 (37) ms and front limb stance with -0.02 (37) ms. A total of 119 hind limb steps were analysed; hoof-on was found with a bias (SD) of -4 (25) ms, hoof-off with 6 (21) ms and hind limb stance with 0.2 (28) ms. IMUs mounted on the distal limbs and sacrum can detect gait events accurately and precisely.

  9. Hind Limb Unloading Model Alters Nuclear Factor kappa B and Activator Protein-1 Signaling in Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Vani, Vani; Renard, Renard; Vera, Vera; Wilosn, Wilosn; Ramesh, Govindarajan

    Microgravity induces inflammatory response and also modulates immune functions, which may increase oxidative stress. Exposure to the microgravity environment induces adverse neurological effects. However, there is little research exploring the etiology of neurological effects of exposure to this environment. To explore this area we evaluated changes in Nuclear Factor kappa B, Activator Protein 1, MAPP kinase and N terminal c-Jun kinase in mouse brain exposed to a simulated microgravity environment using the hindlimb unloading model. BALB/c male mice were randomly assigned to hindlimb unloading group (n=12) and control group (n=12) to simulate a microgravity environment, for 7 days. Changes observed in NF-κB, AP- 1 DNA binding, MAPKK and N terminal c-Jun kinase were measured using electrophoretic mobility shift assay (EMSA) and western blot analysis and compared to unexposed brain regions. Hindlimb unloading exposed mice showed significant increases in generated NF-κB, AP-1, MAPKK and Kinase in all regions of the brain exposed to hindlimb unloading as compared to the control brain regions. Results suggest that exposure to simulated microgravity can induce expression of certain transcription factors and protein kinases. This work was supported by funding from NASA NCC 9-165. 504b030414000600080000002100828abc13fa0000001c020000130000005b436f6e74656e745f54797065735d2e78

  10. Anatomical organization of the spinal paths to the soleus and gastrocnemius muscles of the rat hind limb.

    PubMed

    Tredici, G; Migliorini, C; Barajon, I; Cavaletti, G; Cece, R

    1996-01-01

    The anatomical organization of the motoneuronal columns of the soleus and lateral gastrocnemius muscle and of the related premotor interneurons was studied in rats, using the retrograde transneuronal transport of WGA-HRP. Motoneurons of the gastrocnemius muscle have a well-developed dendritic arborization which spreads into the transverse plane of the spinal cord extending to the intermediate region of the grey matter, while dendrites of the soleus muscle motoneurons spread mainly in the rosto-caudal plane, where they remain inside the border of the motoneuronal column and form small dendritic bundles, suggesting a coupling of neuronal activity as is to be expected in the motoneurons of a tonically active postural muscle such as the soleus. Gastrocnemial premotor interneurons are located close to the motoneuronal column, while the soleus premotor interneurons are scattered all over the ventral horn and intermediate grey. The number of labelled premotor interneurons is greater when the WGA-HRP is injected into the soleus muscle. In both cases, the premotor interneurons could be classified as four different types on the basis of the shape and size of the neuronal somata. The differences in the anatomical organization of the spinal paths to the gastrocnemius and soleus muscles reflect the different tasks performed by these two synergic muscles in normal motor behaviour: fast phasic activity by the gastrocnemius muscle, slow tonic anti-gravity activity by the soleus muscle.

  11. Correlative Imaging of the Murine Hind Limb Vasculature and Muscle Tissue by MicroCT and Light Microscopy

    PubMed Central

    Schaad, Laura; Hlushchuk, Ruslan; Barré, Sébastien; Gianni-Barrera, Roberto; Haberthür, David; Banfi, Andrea; Djonov, Valentin

    2017-01-01

    A detailed vascular visualization and adequate quantification is essential for the proper assessment of novel angiomodulating strategies. Here, we introduce an ex vivo micro-computed tomography (microCT)-based imaging approach for the 3D visualization of the entire vasculature down to the capillary level and rapid estimation of the vascular volume and vessel size distribution. After perfusion with μAngiofil®, a novel polymerizing contrast agent, low- and high-resolution scans (voxel side length: 2.58–0.66 μm) of the entire vasculature were acquired. Based on the microCT data, sites of interest were defined and samples further processed for correlative morphology. The solidified, autofluorescent μAngiofil® remained in the vasculature and allowed co-registering of the histological sections with the corresponding microCT-stack. The perfusion efficiency of μAngiofil® was validated based on lectin-stained histological sections: 98 ± 0.5% of the blood vessels were μAngiofil®-positive, whereas 93 ± 2.6% were lectin-positive. By applying this approach we analyzed the angiogenesis induced by the cell-based delivery of a controlled VEGF dose. Vascular density increased by 426% mainly through the augmentation of medium-sized vessels (20–40 μm). The introduced correlative and quantitative imaging approach is highly reproducible and allows a detailed 3D characterization of the vasculature and muscle tissue. Combined with histology, a broad range of complementary structural information can be obtained. PMID:28169309

  12. Passive Exercise of the Hind Limbs after Complete Thoracic Transection of the Spinal Cord Promotes Cortical Reorganization

    PubMed Central

    Knudsen, Eric B.; Shumsky, Jed; Moxon, Karen A.

    2013-01-01

    Physical exercise promotes neural plasticity in the brain of healthy subjects and modulates pathophysiological neural plasticity after sensorimotor loss, but the mechanisms of this action are not fully understood. After spinal cord injury, cortical reorganization can be maximized by exercising the non-affected body or the residual functions of the affected body. However, exercise per se also produces systemic changes – such as increased cardiovascular fitness, improved circulation and neuroendocrine changes – that have a great impact on brain function and plasticity. It is therefore possible that passive exercise therapies typically applied below the level of the lesion in patients with spinal cord injury could put the brain in a more plastic state and promote cortical reorganization. To directly test this hypothesis, we applied passive hindlimb bike exercise after complete thoracic transection of the spinal cord in adult rats. Using western blot analysis, we found that the level of proteins associated with plasticity – specifically ADCY1 and BDNF – increased in the somatosensory cortex of transected animals that received passive bike exercise compared to transected animals that received sham exercise. Using electrophysiological techniques, we then verified that neurons in the deafferented hindlimb cortex increased their responsiveness to tactile stimuli delivered to the forelimb in transected animals that received passive bike exercise compared to transected animals that received sham exercise. Passive exercise below the level of the lesion, therefore, promotes cortical reorganization after spinal cord injury, uncovering a brain-body interaction that does not rely on intact sensorimotor pathways connecting the exercised body parts and the brain. PMID:23349859

  13. Critical Limb Ischemia in Association with Charcot Neuroarthropathy: Complex Endovascular Therapy for Limb Salvage

    SciTech Connect

    Palena, Luis Mariano; Brocco, Enrico; Manzi, Marco

    2013-05-09

    Charcot neuroarthropathy is a low-incidence complication of diabetic foot and is associated with ankle and hind foot deformity. Patients who have not developed deep ulcers are managed with offloading and supportive bracing or orthopedic arthrodesis. In patients who have developed ulcers and severe ankle instability and deformity, below-the-knee amputation is often indicated, especially when deformity and cutaneous involvement result in osteomyelitis. Ischemic association has not been described but can be present as a part of peripheral arterial disease in the diabetic population. In this extreme and advanced stage of combined neuroischemic diabetic foot disease, revascularization strategies can support surgical and orthopedic therapy, thus preventing osteomyelitis and leading to limb and foot salvage.

  14. Critical limb ischemia in association with Charcot neuroarthropathy: complex endovascular therapy for limb salvage.

    PubMed

    Palena, Luis Mariano; Brocco, Enrico; Manzi, Marco

    2014-02-01

    Charcot neuroarthropathy is a low-incidence complication of diabetic foot and is associated with ankle and hind foot deformity. Patients who have not developed deep ulcers are managed with offloading and supportive bracing or orthopedic arthrodesis. In patients who have developed ulcers and severe ankle instability and deformity, below-the-knee amputation is often indicated, especially when deformity and cutaneous involvement result in osteomyelitis. Ischemic association has not been described but can be present as a part of peripheral arterial disease in the diabetic population. In this extreme and advanced stage of combined neuroischemic diabetic foot disease, revascularization strategies can support surgical and orthopedic therapy, thus preventing osteomyelitis and leading to limb and foot salvage.

  15. The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera)

    PubMed Central

    Wu, Wei; Ling, Mingze; Tong, Jin

    2016-01-01

    Summary The diving beetles (Dytiscidae, Coleoptera) are families of water beetles. When they see light, they fly to the light source directly from the water. Their hind wings are thin and fragile under the protection of their elytra (forewings). When the beetle is at rest the hind wings are folded over the abdomen of the beetle and when in flight they unfold to provide the necessary aerodynamic forces. In this paper, the unfolding process of the hind wing of Cybister japonicus Sharp (order: Coleoptera) was investigated. The motion characteristics of the blood in the veins of the structure system show that the veins have microfluidic control over the hydraulic mechanism of the unfolding process. A model is established, and the hind wing extending process is simulated. The blood flow and pressure changes are discussed. The driving mechanism for hydraulic control of the folding and unfolding actions of beetle hind wings is put forward. This can assist the design of new deployable micro air vehicles and bioinspired deployable systems. PMID:27547607

  16. Analysis of the HindIII-catalyzed reaction by time-resolved crystallography

    SciTech Connect

    Kawamura, Takashi; Kobayashi, Tomoki; Watanabe, Nobuhisa

    2015-02-01

    A time-resolved study using the freeze-trap method elucidates the mechanism of the DNA-cleaving reaction of HindIII. In order to investigate the mechanism of the reaction catalyzed by HindIII, structures of HindIII–DNA complexes with varying durations of soaking time in cryoprotectant buffer containing manganese ions were determined by the freeze-trap method. In the crystal structures of the complexes obtained after soaking for a longer duration, two manganese ions, indicated by relatively higher electron density, are clearly observed at the two metal ion-binding sites in the active site of HindIII. The increase in the electron density of the two metal-ion peaks followed distinct pathways with increasing soaking times, suggesting variation in the binding rate constant for the two metal sites. DNA cleavage is observed when the second manganese ion appears, suggesting that HindIII uses the two-metal-ion mechanism, or alternatively that its reactivity is enhanced by the binding of the second metal ion. In addition, conformational change in a loop near the active site accompanies the catalytic reaction.

  17. The hydraulic mechanism of the unfolding of hind wings in Dorcus titanus platymelus (order: Coleoptera).

    PubMed

    Sun, Jiyu; Ling, Mingze; Wu, Wei; Bhushan, Bharat; Tong, Jin

    2014-04-09

    In most beetles, the hind wings are thin and fragile; when at rest, they are held over the back of the beetle. When the hind wing unfolds, it provides the necessary aerodynamic forces for flight. In this paper, we investigate the hydraulic mechanism of the unfolding process of the hind wings in Dorcus titanus platymelus (Oder: Coleoptera). The wing unfolding process of Dorcus titanus platymelus was examined using high speed camera sequences (400 frames/s), and the hydraulic pressure in the veins was measured with a biological pressure sensor and dynamic signal acquisition and analysis (DSA) during the expansion process. We found that the total time for the release of hydraulic pressure during wing folding is longer than the time required for unfolding. The pressure is proportional to the length of the wings and the body mass of the beetle. A retinal camera was used to investigate the fluid direction. We found that the peak pressures correspond to two main cross-folding joint expansions in the hind wing. These observations strongly suggest that blood pressure facilitates the extension of hind wings during unfolding.

  18. The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera).

    PubMed

    Sun, Jiyu; Wu, Wei; Ling, Mingze; Bhushan, Bharat; Tong, Jin

    2016-01-01

    The diving beetles (Dytiscidae, Coleoptera) are families of water beetles. When they see light, they fly to the light source directly from the water. Their hind wings are thin and fragile under the protection of their elytra (forewings). When the beetle is at rest the hind wings are folded over the abdomen of the beetle and when in flight they unfold to provide the necessary aerodynamic forces. In this paper, the unfolding process of the hind wing of Cybister japonicus Sharp (order: Coleoptera) was investigated. The motion characteristics of the blood in the veins of the structure system show that the veins have microfluidic control over the hydraulic mechanism of the unfolding process. A model is established, and the hind wing extending process is simulated. The blood flow and pressure changes are discussed. The driving mechanism for hydraulic control of the folding and unfolding actions of beetle hind wings is put forward. This can assist the design of new deployable micro air vehicles and bioinspired deployable systems.

  19. Understanding muscle markers: lower limbs.

    PubMed

    Weiss, Elizabeth

    2004-11-01

    Musculoskeletal markers are frequently used to reconstruct past lifestyles and activity patterns. Yet the reliability of muscle marker measurements has been called into question because they may be confounded by body size. In this study, an aggregate muscle marker variable was calculated using 20 insertion sites (14 femoral, 6 tibial), and I examined their effects on lower limb size (as a proxy for body size), age, and sex. Analyses were made of a sample of 77 (57 males, 20 females) Native British Columbians (3,500-1,500 years BP) and 18th century Quebec prisoners. Muscle markers were measured using two-point observer rating scales; size was measured by standard methods; and age and sex were determined through pelvic, cranial, and dental morphology. Lower limb muscle markers correlated with: age, r=0.61; lower limb size, r=0.52; and sex, r=0.49; P <0.001. Older individuals had higher muscle marker scores, as did larger individuals and males. Based on partial correlations and regression analyses, age was the best overall predictor of lower limb muscle markers. (c) 2004 Wiley-Liss, Inc.

  20. Hox gene expression leads to differential hind leg development between honeybee castes.

    PubMed

    Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Moda, Livia Maria; Simoes, Zila Luz Paulino

    2012-01-01

    Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx), whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period.

  1. Hox Gene Expression Leads to Differential Hind Leg Development between Honeybee Castes

    PubMed Central

    Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Moda, Livia Maria; Simoes, Zila Luz Paulino

    2012-01-01

    Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx), whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period. PMID:22848371

  2. Ontogenetic changes in limb bone structural proportions in mountain gorillas (Gorilla beringei beringei).

    PubMed

    Ruff, Christopher B; Burgess, M Loring; Bromage, Timothy G; Mudakikwa, Antoine; McFarlin, Shannon C

    2013-12-01

    Behavioral studies indicate that adult mountain gorillas (Gorilla beringei) are the most terrestrial of all nonhuman hominoids, but that infant mountain gorillas are much more arboreal. Here we examine ontogenetic changes in diaphyseal strength and length of the femur, tibia, humerus, radius, and ulna in 30 Virunga mountain gorillas, including 18 immature specimens and 12 adults. Comparisons are also made with 14 adult western lowland gorillas (Gorilla gorilla gorilla), which are known to be more arboreal than adult mountain gorillas. Infant mountain gorillas have significantly stronger forelimbs relative to hind limbs than older juveniles and adults, but are nonsignificantly different from western lowland gorilla adults. The change in inter-limb strength proportions is abrupt at about two years of age, corresponding to the documented transition to committed terrestrial quadrupedalism in mountain gorillas. The one exception is the ulna, which shows a gradual increase in strength relative to the radius and other long bones during development, possibly corresponding to the gradual adoption of stereotypical fully pronated knuckle-walking in older juvenile gorillas. Inter-limb bone length proportions show a contrasting developmental pattern, with hind limb/forelimb length declining rapidly from birth to five months of age, and then showing no consistent change through adulthood. The very early change in length proportions, prior to significant independent locomotion, may be related to the need for relatively long forelimbs for climbing in a large-bodied hominoid. Virunga mountain gorilla older juveniles and adults have equal or longer forelimb relative to hind limb bones than western lowland adults. These findings indicate that both ontogenetically and among closely related species of Gorilla, long bone strength proportions better reflect actual locomotor behavior than bone length proportions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Three-dimensional simulations of near-surface convection in main-sequence stars. IV. Effect of small-scale magnetic flux concentrations on centre-to-limb variation and spectral lines

    NASA Astrophysics Data System (ADS)

    Beeck, B.; Schüssler, M.; Cameron, R. H.; Reiners, A.

    2015-09-01

    Context. Magnetic fields affect the local structure of the photosphere of stars. They can considerably influence the radiative properties near the optical surface, flow velocities, and the temperature and pressure profiles. This has an impact on observables such as limb darkening and spectral line profiles. Aims: We aim at understanding qualitatively the influence of small magnetic flux concentrations in unipolar plage regions on the centre-to-limb variation of the intensity and its contrast and on the shape of spectral line profiles in cool main-sequence stars. Methods: We analyse the bolometric and continuum intensity and its angular dependence of 24 radiative magnetohydrodynamic simulations of the near-surface layers of main-sequence stars with six different sets of stellar parameters (spectral types F to early M) and four different average magnetic field strengths (including the non-magnetic case). We also calculated disc-integrated profiles of three spectral lines. Results: The small magnetic flux concentrations formed in the magnetic runs of simulations have a considerable impact on the intensity and its centre-to-limb variation. In some cases, the difference in limb darkening between magnetic and non-magnetic runs is larger than the difference between the spectral types. Spectral lines are not only broadened owing to the Zeeman effect, but are also strongly affected by the modified thermodynamical structure and flow patterns. This indirect magnetic impact on the line profiles is often bigger than that of the Zeeman effect. Conclusions: The effects of the magnetic field on the radiation leaving the star can be considerable and is not restricted to spectral line broadening and polarisation by the Zeeman effect. The inhomogeneous structure of the magnetic field on small length scales and its impact on (and spatial correlation with) the local thermodynamical structure and the flow field near the surface influence the measurement of the global field properties

  4. An analysis of epipubic bone function in mammals using scaling theory.

    PubMed

    White, T D

    1989-08-09

    Linear dimensions of epipubic bones in 61 species of metatherians and monotremes scale to mass differently in groups with or without marsupia, presumably reflecting emphasis on different but non-mutually exclusive functions. Sexual dimorphism of epipubic form exists. However, the allometric relationships of the epipubic bones of taxa that possess marsupia do not conform to the hypothesis that epipubic bones support the marsupium nearly as well as those without a marsupium. This observation renders a new hypothesis relating litter mass to epipubic form in taxa without marsupia. It appears that support of the marsupium is not the primary function or, at least, not the most proximate determinate of epipubic form in taxa with marsupia. The scaling of epipubic bone dimensions is consistent with the hypothesis that predicts epipubic bones serve to assist in locomotion by acting with the hypaxial muscles of the trunk and pectineus to protract the pelvic limbs. Epipubic length is shown to scale to maintain a mechanical advantage between these opposing muscle groups that approximates the rate that inertia of the hind limbs increases with total mass and speed of locomotion. This hypothesis provides an explanation for a skeletal element scaling significantly above geometric similarity. This observation has important theoretical significance as it suggests that skeletal architecture may, within limits, scale independently of mass-related stress.

  5. 78 FR 54512 - Illinois Central Railroad Company-Abandonment Exemption-in Hinds County, Miss.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Illinois Central Railroad Company--Abandonment Exemption--in Hinds County, Miss. Illinois Central Railroad Company (IC) \\1\\ has filed a verified notice of exemption under 49 CFR...

  6. Limb length discrepancies.

    PubMed

    Blake, R L; Ferguson, H

    1992-01-01

    Examining for a possible limb length discrepancy is an important part of the podiatric biomechanical examination. The authors present a review of the literature pertaining to the definition of and examination for a limb length discrepancy. They present a typical rationale for lift therapy in the treatment of this pathology.

  7. Effects of varying inter-limb spacing to limb length ratio in metachronal swimming

    NASA Astrophysics Data System (ADS)

    Lai, Hong Kuan; Merkel, Rachael; Santhanakrishnan, Arvind

    2016-11-01

    Crustaceans such as shrimp, krill and crayfish swim by rhythmic paddling of four to five pairs of closely spaced limbs. Each pair is phase-shifted in time relative to the neighboring pair, resulting in a metachronal wave that travels in the direction of animal motion. The broad goal of this study is to investigate how the mechanical design of the swimming limbs affect scalability of metachronal swimming in terms of limb-based Reynolds number (Re). A scaled robotic model of metachronal paddling was developed, consisting of four pairs of hinged acrylic plates actuated using stepper motors that were immersed in a rectangular tank containing water-glycerin fluid medium. 2D PIV measurements show that the propulsive jets transition from being primarily horizontal (thrust-producing direction) at Re of order 10 to angled vertically at Re of order 100. The ratio of inter-limb spacing to limb length among metachronal swimming organisms ranges between 0.2 to 0.65. 2D PIV will be used to examine the jets generated between adjacent limbs for varying inter-limb spacing to limb length ratios. The effect of increasing this ratio to beyond the biologically observed range will be discussed.

  8. Production of prostaglandins in placentae and corpus luteum in pregnant hinds of red deer (Cervus elaphus).

    PubMed

    Korzekwa, A J; Szczepańska, A; Bogdaszewski, M; Nadolski, P; Malż, P; Giżejewski, Z

    2016-03-01

    Prostaglandins (PGs) are synthesized from arachidonic acid by prostaglandin synthase 2 (PTGS2) and specific terminal PG synthases such as PGES and PGFS. The role of PGs in the reproductive processes of domestic ruminants is well recognized, whereas in cervidae, it is almost unknown, although it is noteworthy because some species of this family are valued in meat production and trophies. The aim of this study was to determine an effective marker of pregnancy and investigate the production and secretion of PGs in placenta and CL tissue in pregnancy. In the preliminary experiment, the levels of progesterone and 17-β estradiol (RIA; N = 14 divided into seven pregnant and seven nonpregnant hinds) were measured in the peripheral blood. In the main experiment, a comparison of messenger RNA (real-time polymerase chain reaction) and protein expression (Western blotting) of PTGS2, PGES, and PGFS, the level of prostaglandin E2 (PGE2) and PGF2α in the placentae and CL in pregnant hinds (aged 3-4 years, ca. 100 days of pregnancy, N = 6). In pregnant hinds, the level of progesterone in the blood was higher than that in nonpregnant hinds (P < 0.05), whereas the level of E2 was similar in all animals (P > 0.05). The highest messenger RNA expression of PTGS2, PGES, and PGFS was observed in the placentae than in the CL (P < 0.05). The protein expression of PTGS2 and PGES was elevated in the placentae compared with the CL (P < 0.05). The PGE2 output was the highest in cotyledonary tissue (P < 0.05). Pregnancy development in hinds around 100 days is regulated by arachidonic acid metabolites, especially PGE2 produced by the placentae, which production increases in pregnancy. Further studies are required to unravel the mechanisms involved in the regulation of PG and biosynthetic enzymes in uteroplacental and ovarian tissues during pregnancy in red deer females.

  9. Netrin-1 promotes mesenchymal stem cell revascularization of limb ischaemia.

    PubMed

    Ke, Xianjin; Liu, Chenxiao; Wang, Ying; Ma, Jianhua; Mao, Xiaoming; Li, Qian

    2016-03-01

    This study examines the effect and mechanism of action of Netrin-1 on bone marrow mesenchymal stem cells in angiogenesis. Tube formation and migration of bone marrow mesenchymal stem cells were observed in cell culture. Bone marrow mesenchymal stem cells or Netrin-1-bone marrow mesenchymal stem cells were injected into the ischaemic area of the rat hind limb on the first day after surgery. Laser Doppler perfusion imaging was performed to analyse the levels of vascular endothelial growth factor in plasma and muscles, and immunohistochemistry and immunofluorescence were used to analyse angiogenesis. Bone marrow mesenchymal stem cells in medium containing Netrin-1 markedly increased the number of tubes formed and the migration of bone marrow mesenchymal stem cells compared with the untreated control group. The function of Netrin-1 in tube formation and migration is similar to vascular endothelial growth factor, and combined with vascular endothelial growth factor, Netrin-1 has more enhanced effect than in the other three groups. The Netrin-1-bone marrow mesenchymal stem cell group had better augmented blood-perfusion scores and vessel densities, as well as improved function of the ischaemic limb than that of the group injected with bone marrow mesenchymal stem cells (treated with bone marrow mesenchymal stem cells individually) or the control group (treated with medium). These results suggest that Netrin-1 has the ability to augment the angiogenesis of bone marrow mesenchymal stem cells and improve the function of the ischaemic hind limb by increasing the level of vascular endothelial growth factor. © The Author(s) 2016.

  10. Global-scale Observations of the Limb and Disk (GOLD) Mission - A New Approach to Ultraviolet Remote Sensing of Earth's Space Environment

    NASA Astrophysics Data System (ADS)

    Eastes, R.; McClintock, W. E.; Anderson, D. N.; Andersson, L.; Burns, A. G.; Codrescu, M.; Daniell, R. E.; England, S.; Krywonos, A.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Solomon, S. C.; Strickland, D. J.; Woods, T. N.; Budzien, S. A.; Dymond, K.; Eparvier, F. G.; Jones, S.; Martinis, C. R.; Oberheide, J.; Talaat, E. R.; Barrett, R.; Harvey, J.

    2016-12-01

    The GOLD mission of opportunity will fly a far ultraviolet imaging spectrograph in geostationary (GEO) orbit as a hosted payload. The mission is scheduled for launch in late 2017 on SES-14, a commercial communications satellite that will be stationed over eastern South America at 47.5 degrees west longitude. GOLD is on schedule to be the first NASA science mission to fly as a hosted payload on a commercial communications satellite. The GOLD imager has two identical channels. Each channel can scan the full disk at a 30 minute cadence, making spectral images of Earth's UV emission from 132 to 162 nm, as well as make a measurement on the Earth's limb. Remote sensing techniques that have been proven on previous Low Earth Orbit (LEO) missions will be used to derive fundamental parameters for the neutral and ionized space environment. Parameters that will be derived include composition (O/N2 ratio) and temperature of the neutral atmosphere on the dayside disk. On the nightside, peak electron densities will be obtained in the low latitude ionosphere. Similar imaging of atmospheric composition from LEO, at only a daily cadence for revisiting locations, has already provided many new insights into the behavior of Earth's Thermosphere-Ionosphere (T-I) system. From geostationary orbit, GOLD can repeatedly image the same geographic locations over most of the hemisphere at a cadence comparable to that of the T-I system (order of an hour). Such time resolution and spatial coverage will allow the mission to track the changes due to geomagnetic storms, variations in solar extreme ultraviolet radiation, and forcing from the lower atmosphere. In addition to providing a new perspective by being able to repeatedly remotely sense the same hemisphere at a high cadence, GOLD's simultaneous measurements of not only composition but also temperatures across the disk will provide a valuable, new parameter for understanding of how the T-I system responds to forcing from the sun and the lower

  11. Drastic decrease in isoflurane minimum alveolar concentration and limb movement forces after thoracic spinal cooling and chronic spinal transection in rats.

    PubMed

    Jinks, Steven L; Dominguez, Carmen L; Antognini, Joseph F

    2005-03-01

    Individuals with spinal cord injury may undergo multiple surgical procedures; however, it is not clear how spinal cord injury affects anesthetic requirements and movement force under anesthesia during both acute and chronic stages of the injury. The authors determined the isoflurane minimum alveolar concentration (MAC) necessary to block movement in response to supramaximal noxious stimulation, as well as tail-flick and hind paw withdrawal latencies, before and up to 28 days after thoracic spinal transection. Tail-flick and hind paw withdrawal latencies were measured in the awake state to test for the presence of spinal shock or hyperreflexia. The authors measured limb forces elicited by noxious mechanical stimulation of a paw or the tail at 28 days after transection. Limb force experiments were also conducted in other animals that received a reversible spinal conduction block by cooling the spinal cord at the level of the eighth thoracic vertebra. A large decrease in MAC (to hind paw withdrawal latencies were facilitated or unchanged, whereas reflex latencies under isoflurane were depressed or absent. However, at 80-90% of MAC, noxious stimulation of the hind paw elicited ipsilateral limb withdrawals in all animals. Hind limb forces were reduced (by >/= 90%) in both chronic and acute cold-block spinal animals. The immobilizing potency of isoflurane increases substantially after spinal transection, despite the absence of a baseline motor depression, or "spinal shock." Therefore, isoflurane MAC is determined by a spinal depressant action, possibly counteracted by a supraspinal facilitatory action. The partial recovery in MAC at later time points suggests that neuronal plasticity after spinal cord injury influences anesthetic requirements.

  12. Earth Limb Radiance Transformation.

    DTIC Science & Technology

    1981-03-02

    AD-A097 523 AEROSPACE CORP EL SEGUNDO CA CHEMISTRY AND PHYSICS LAB F/G 4/1 EARTH LIMB RADIANCE TRANSFORMATION (U) MAR AI S 4 YOUNG F0701-80 -C-0081... Earth Limb Radiance Trafisformation Prepared by S. J. YOUNG Chemistr and Physics Laboratory Laboratory Operations The Aerospace Corporation S.El...ITLEK (and Subtitle) TYPE OF REPORT & P53100 COVERED Earth Limb Radiance Transformation. ( Interim ./ / /TR-OJ081(697j7-g4)-l-- i7.Step hen J. Young

  13. Out on a Limb: Investigating the Anatomy of Tree Limbs

    ERIC Educational Resources Information Center

    Shaw, Edward L.

    2008-01-01

    The author presents several upper elementary science activities involving tree limbs that were collected after severe weather conditions. The activities involved 3rd-grade students arranging tree limb pieces in the correct order from the trunk to the tip of the limb, measuring the pieces, determining the age of a tree limb by its rings,…

  14. Out on a Limb: Investigating the Anatomy of Tree Limbs

    ERIC Educational Resources Information Center

    Shaw, Edward L.

    2008-01-01

    The author presents several upper elementary science activities involving tree limbs that were collected after severe weather conditions. The activities involved 3rd-grade students arranging tree limb pieces in the correct order from the trunk to the tip of the limb, measuring the pieces, determining the age of a tree limb by its rings,…

  15. Innervation mapping of the hind paw of the rat using Evans Blue extravasation, Optical Surface Mapping and CASAM.

    PubMed

    Kambiz, S; Baas, M; Duraku, L S; Kerver, A L; Koning, A H J; Walbeehm, E T; Ruigrok, T J H

    2014-05-30

    Although numerous studies investigate sensory regeneration and reinnervation of the hind paw of the rat after nerve damage, no comprehensive overview of its normal innervation is present in literature. The Evans Blue extravasation technique is a well-known technique to study patterns of skin innervation. This technique has been performed differently by various groups but was never used to study the entire skin innervation in rats' hind paw including all three branches of the sciatic nerve and the saphenous nerve in detail. In this paper, we have used the Evans Blue extravasation technique to chart the skin areas innervated by the sural, peroneal, tibial and/or saphenous nerves, which together innervate the entire hind paw of the rat, and use a new technique to analyze the distribution, overlap and variability of the results. The technique is based on analysis of whole hind paws using Optical Surface Mapping (OSM) in combination with the Computer Assisted Surgical Anatomy Mapping (CASAM) technology. While the plantar hind paw is mainly innervated by the tibial nerve, the dorsal hind paw is supplied by the sural, peroneal and the saphenous nerve. Although our results basically concur with the general nerve-specific innervation of the rat hind paw, they show considerable detail in their areas of overlap as well as in the amount of variability between animals. These results will be invaluable to study and evaluate patterns of innervation and reinnervation of intact and damaged nerve fibers. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Critical Limb Ischemia (CLI)

    MedlinePlus

    ... Get Involved Get Involved Resources Educational Flyers Video Library Types of Vascular Diseases Papers & Presentations News News Items Press Releases Newsletters Events Donate Donate Now Ways to Give Individual Donors Corporate Sponsors Donor Privacy Policy Critical Limb Ischemia (CLI) ...

  17. Hyaluronan in limb morphogenesis.

    PubMed

    Li, Yingcui; Toole, Bryan P; Dealy, Caroline N; Kosher, Robert A

    2007-05-15

    Hyaluronan (HA) is a large glycosaminoglycan that is not only a structural component of extracellular matrices, but also interacts with cell surface receptors to promote cell proliferation, migration, and intracellular signaling. HA is a major component of the extracellular matrix of the distal subapical mesenchymal cells of the developing limb bud that are undergoing proliferation, directed migration, and patterning in response to the apical ectodermal ridge (AER), and has the functional potential to be involved in these processes. Here we show that the HA synthase Has2 is abundantly expressed by the distal subridge mesodermal cells of the chick limb bud and also by the AER itself. Has2 expression and HA production are downregulated in the proximal central core of the limb bud during the formation of the precartilage condensations of the skeletal elements, suggesting that downregulation of HA may be necessary for the close juxtaposition of cells and the resulting cell-cell interactions that trigger cartilage differentiation during condensation. Overexpression of Has2 in the mesoderm of the chick limb bud in vivo results in the formation of shortened and severely malformed limbs that lack one or more skeletal elements. Skeletal elements that do form in limbs overexpressing Has2 are reduced in length, exhibit abnormal morphology, and are positioned inappropriately. We also demonstrate that sustained HA production in micromass cultures of limb mesenchymal cells inhibits formation of precartilage condensations and subsequent chondrogenesis, indicating that downregulation of HA is indeed necessary for formation of the precartilage condensations that trigger cartilage differentiation. Taken together these results suggest involvement of HA in various aspects of limb morphogenesis.

  18. Unsteady aerodynamics of flapping flight - A fluid-structure interaction study of fore-hind wing phase difference

    NASA Astrophysics Data System (ADS)

    Rasani, M. R.; Shamsudeen, A.; Sulaiman, M. N.

    2016-11-01

    Flights of dragonflies, various insects and birds have been a subject of active research that may offer insight towards enhanced aerodynamic performance at low Reynolds numbers. To that end, we mimick the flapping biomechanics of a dragonfly by two thin flat airfoils plunging in tandem with each other. In the present study, we aim to investigate the effect of difference in flapping phase between fore and hind wings towards their aerodynamic performances. We computationally simulate incompressible, viscous, laminar flow around two thin flat airfoils that are purely plunging, at a Strouhal number of 0.25 and Reynolds number of 6500, using a flow solver in an Arbitrary Lagrangian-Eulerian framework. Kinematics of both fore and hind wing flapping followed a similar sinusoidal function but with relative phase angle difference to each other, that were varied between -50° to +50° including two cases were phase difference is 0° (i.e. in-phase fore-hind wing flapping) and +90° (i.e. fore wing lags hind wing by 90°). Numerical results indicate that maximum lift and drag forces for each fore and hind wings occur at phase angle of -40° and that power efficiency of tandem wings are better at phase angles when hind wing leads the fore wing, with maximum power efficiency occurring at a fore-hind wing phase difference of +30°. The complex fore-hind wing vortex interaction indicate likely benefit on the hind wing as it interacts with the fore wing at different phase angles.

  19. Limb regeneration: a new development?

    PubMed

    Nacu, Eugen; Tanaka, Elly M

    2011-01-01

    Salamander limb regeneration is a classical model of tissue morphogenesis and patterning. Through recent advances in cell labeling and molecular analysis, a more precise, mechanistic understanding of this process has started to emerge. Long-standing questions include to what extent limb regeneration recapitulates the events observed in mammalian limb development and to what extent are adult- or salamander- specific aspects deployed. Historically, researchers studying limb development and limb regeneration have proposed different models of pattern formation. Here we discuss recent data on limb regeneration and limb development to argue that although patterning mechanisms are likely to be similar, cell plasticity and signaling from nerves play regeneration-specific roles.

  20. Interaction between the fore- and hind-wings in hovering flight of modelled dragonfly

    NASA Astrophysics Data System (ADS)

    Kweon, Jihoon; Choi, Haecheon

    2009-11-01

    In the present study, we investigate the interaction between the fore- and hind-wings in hovering flight of modelled dragonfly using 3D numerical simulation. The three-dimensional wing shape is based on that of Aeschna juncea (Norberg 1972) and numerically realized using an immersed boundary method (Kim et al. 2001). The wing flapping motion is modelled using a sinusoidal function and the stroke plane angle is 60^o. We consider 12 different phase differences between the fore- and hind-wings (φ=0^o ˜ 330^o). The Reynolds number is 1,000 based on the maximum translational velocity and mean chord length. In counter stroke (φ=180^o), the wing-tip vortices from both wings are connected, generating an entangled wing-tip vortex (e-WTV). A strong downward motion induced by this vortex decreases the vertical force in the following stroke (Kweon & Choi 2008). In parallel stroke (φ=0^o), both wings meet e-WTV during the upstroke and thus the decrease of vertical force is small. At φ=270^o, although e-WTV is generated on a relatively narrow region, the hind-wing moves downward along with e-WTV, resulting in a significant reduction of vertical force on the hind-wing. Therefore, the sum of vertical forces on both wings is maximum with parallel stroke and minimum at φ=270^o. The power required has a similar trend to the vertical force and thus the efficiency does not show a large variation with the phase difference.

  1. Cloning and genetic variability of a HindIII repetitive DNA in Acrossocheilus paradoxus (Cyprinidae).

    PubMed

    Wu, W L; Wang, J P; Tseng, M C; Chiang, T Y

    1999-08-01

    Thirty clones of a highly repetitive HindIII fragment of DNA from seven populations of Acrossocheilus paradoxus (Cyprinidae) were isolated and sequenced. The fragment represents a tandemly repeated sequence, with a monomeric unit of 270 bp, amounting to 0.08-0.10% of the fish genome. Higher units of this monomer appear as a ladder in Southern blots. The HindIII satellite DNA family is conserved in three genera of the Cyprinidae. Variation in nucleotide sequences of this repetitive fragment, which is A+T-rich, is distributed both within individuals and among populations. High overall nucleotide divergence (dij = 0.056 +/- 0.001) was detected among clones of the HindIII satellite DNAs of Acrossocheilus paradoxus. Based on the molecular clock hypothesis, the maximum evolutionary rate was estimated to be 5.3 x 10(-7) substitutions per site per year. Lineage sorting may have contributed to the genetic heterogeneity within individuals and populations. Cladistic analyses indicated a closer phylogeographic relationship between populations of the central and south regions in Taiwan.

  2. HindSight: Encouraging Exploration through Direct Encoding of Personal Interaction History.

    PubMed

    Feng, Mi; Deng, Cheng; Peck, Evan M; Harrison, Lane

    2017-01-01

    Physical and digital objects often leave markers of our use. Website links turn purple after we visit them, for example, showing us information we have yet to explore. These "footprints" of interaction offer substantial benefits in information saturated environments - they enable us to easily revisit old information, systematically explore new information, and quickly resume tasks after interruption. While applying these design principles have been successful in HCI contexts, direct encodings of personal interaction history have received scarce attention in data visualization. One reason is that there is little guidance for integrating history into visualizations where many visual channels are already occupied by data. More importantly, there is not firm evidence that making users aware of their interaction history results in benefits with regards to exploration or insights. Following these observations, we propose HindSight - an umbrella term for the design space of representing interaction history directly in existing data visualizations. In this paper, we examine the value of HindSight principles by augmenting existing visualizations with visual indicators of user interaction history (e.g. How the Recession Shaped the Economy in 255 Charts, NYTimes). In controlled experiments of over 400 participants, we found that HindSight designs generally encouraged people to visit more data and recall different insights after interaction. The results of our experiments suggest that simple additions to visualizations can make users aware of their interaction history, and that these additions significantly impact users' exploration and insights.

  3. Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice.

    PubMed

    Xie, Nanzi; Li, Zhihong; Adesanya, Timothy M; Guo, Weixin; Liu, Yang; Fu, Minghuan; Kilic, Ahmet; Tan, Tao; Zhu, Hua; Xie, Xiaoyun

    2016-01-01

    Mesenchymal stem cell-based therapy has emerged as a promising approach for the treatment of peripheral arterial disease. The purpose of this study was to examine the potential effects of human placenta-derived mesenchymal stem cells (PMSCs) on mouse hindlimb ischemia. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. An in vivo surgical ligation-induced murine limb ischemia model was generated with fluorescent dye (CM-DiI) labelled PMSCs delivered via intramuscular injection. Our data show that PMSCs treatment significantly enhanced microvessel density, improved blood perfusion and diminished pathologies in ischemic mouse hindlimbs as compared to those in the control group. Further immunostaining studies suggested that injected PMSCs can incorporate into the vasculature and differentiate into endothelial and smooth muscle cells to enhance angiogenesis in ischemic hind limbs. This may in part explain the beneficial effects of PMSCs treatment. Taken together, we found that PMSCs treatment might be an effective treatment modality for treatment of ischemia-induced injury to mouse hind limbs by enhancement of angiogenesis. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Limb development and evolution: a frog embryo with no apical ectodermal ridge (AER)

    PubMed Central

    RICHARDSON, MICHAEL K.; CARL, TIMOTHY F.; HANKEN, JAMES; ELINSON, RICHARD P.; COPE, CELIA; BAGLEY, PETER

    1998-01-01

    The treefrog Eleutherodactylus coqui is a direct developer — it has no tadpole stage. The limb buds develop earlier than in metamorphosing species (indirect developers, such as Xenopus laevis). Previous molecular studies suggest that at least some mechanisms of limb development in E. coqui are similar to those of other vertebrates and we wished to see how limb morphogenesis in this species compares with that in other vertebrates. We found that the hind limb buds are larger and more advanced than the forelimbs at all stages examined, thus differing from the typical amniote pattern. The limb buds were also small compared to those in the chick. Scanning and transmission electron microscopy showed that although the apical ectoderm is thickened, there was no apical ectodermal ridge (AER). In addition, the limb buds lacked the dorsoventral flattening seen in many amniotes. These findings could suggest a mechanical function for the AER in maintaining dorsoventral flattening, although not all data are consistent with this view. Removal of distal ectoderm from E. coqui hindlimb buds does not stop outgrowth, although it does produce anterior defects in the skeletal pattern. The defects are less severe when the excisions are performed earlier. These results contrast with the chick, in which AER excision leads to loss of distal structures. We suggest that an AER was present in the common ancestor of anurans and amniotes and has been lost in at least some direct developers including E. coqui. PMID:9688504

  5. Punitive limb amputation.

    PubMed

    Mavroforou, Anna; Malizos, Konstantinos; Karachalios, Theofilos; Chatzitheofilou, Konstantinos; Giannoukas, Athanasios D

    2014-10-01

    Limb amputation has been carried out through the ages as a punitive method in various parts of the world. This article highlights the historical and societal background associated with the use of punitive limb amputation. We performed an extensive electronic search of the pertinent literature augmented with a hand-search of additional sources. Evidence for punitive amputation is available as early as the court of the Babylonian Code of King Hammurabi (circa 1750 Before the Common Era [BCE]), which imposed punitive limb amputations on slaves who used force against free citizens. Other reports provided evidence that punitive amputation was used as early as the 4th century BCE in ancient Peru. Limb amputation restored law and order during the Roman and Byzantine periods. Amputation as a punitive instrument prevailed in Europe throughout the 17th century. During the Enlightenment, the intellectual movement in Europe approached criminal law from a humanistic perspective, incorporated it into societal practice, and promoted its preventive dimensions. Punitive limb amputation still exists in several Arab and African countries. Amputation as a punitive or correctional method has its roots in old civilizations. It has been used through the ages in various parts of the world. While it has been abandoned in modern western societies, punitive amputation is still used in several third-world countries.

  6. Reliability and validity of the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower limb musculoskeletal disorders.

    PubMed

    Negahban, Hossein; Hessam, Masumeh; Tabatabaei, Saeid; Salehi, Reza; Sohani, Soheil Mansour; Mehravar, Mohammad

    2014-01-01

    The aim was to culturally translate and validate the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower extremity musculoskeletal disorders (n = 304). This is a prospective methodological study. After a standard forward-backward translation, psychometric properties were assessed in terms of test-retest reliability, internal consistency, construct validity, dimensionality, and ceiling or floor effects. The acceptable level of intraclass correlation coefficient >0.70 and Cronbach's alpha coefficient >0.70 was obtained for the Persian LEFS. Correlations between Persian LEFS and Short-Form 36 Health Survey (SF-36) subscales of Physical Health component (rs range = 0.38-0.78) were higher than correlations between Persian LEFS and SF-36 subscales of Mental Health component (rs range = 0.15-0.39). A corrected item--total correlation of >0.40 (Spearman's rho) was obtained for all items of the Persian LEFS. Horn's parallel analysis detected a total of two factors. No ceiling or floor effects were detected for the Persian LEFS. The Persian version of the LEFS is a reliable and valid instrument that can be used to measure functional status in Persian-speaking patients with different musculoskeletal disorders of the lower extremity. Implications for Rehabilitation The Persian lower extremity functional scale (LEFS) is a reliable, internally consistent and valid instrument, with no ceiling or floor effects, to determine functional status of heterogeneous patients with musculoskeletal disorders of the lower extremity. The Persian version of the LEFS can be used in clinical and research settings to measure function in Iranian patients with different musculoskeletal disorders of the lower extremity.

  7. Impact of walking surface on the range of motion of equine distal limb joints for rehabilitation purposes.

    PubMed

    Mendez-Angulo, Jose L; Firshman, Anna M; Groschen, Donna M; Kieffer, Philip J; Trumble, Troy N

    2014-03-01

    The aim of this study was to evaluate the effect of three footing surfaces on the flexion/extension, and range of motion (ROM) of the carpus, tarsus and fetlocks in the horse. The percentage of stride spent in the stance phase of sound horses at the walk was also measured. Nine sound horses were walked on hard ground (HD), soft ground (SF) and a land treadmill (LT), and five complete gait cycles were recorded by a digital video camera. Retro-reflective markers were placed on the skin at four anatomical locations on the left fore and hind limbs, and data were analyzed using two-dimensional (2D) motion-analysis software. Maximal flexion/extension angles and range of motion were calculated for each joint, and the percentage of the stride spent in stance phase was determined for each stride. Maximal flexion of the tarsus and hind fetlock was greater on LT and SF compared to HD, while maximal flexion of the carpus was greater on LT compared to HD and SF. Maximal extension of the carpus was greater on HD compared to SF and LT, maximal extension of the tarsus was greater on HD and SF compared to LT, and maximal extension of the forelimb and hind limb fetlocks was greater on LT compared to HD and SF. The greatest overall ROM of the carpus and fetlocks was achieved on LT, while the greatest overall ROM of the tarsus was achieved on SF. The stance percentage of the stride for the hind limb was significantly different between all surfaces. In conclusion, walking surface influences flexion/extension of the carpus, tarsus and fetlocks in healthy horses, which should be considered when walking equine rehabilitation cases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Interaction of the elytra and hind wing of a rhinoceros beetle (Trypoxylus dichotomus) during a take-off mode

    NASA Astrophysics Data System (ADS)

    Oh, Seungyoung; Oh, Sehyeong; Choi, Haecheon; Lee, Boogeon; Park, Hyungmin; Kim, Sun-Tae

    2015-11-01

    The elytra are a pair of hardened wings that cover the abdomen of a beetle to protect beetle's hind wings. During the take-off, these elytra open and flap in phase with the hind wings. We investigate the effect of the elytra flapping on beetle's aerodynamic performance. Numerical simulations are performed at Re=10,000 (based on the wingtip mean velocity and mean chord length of the hind wing) using an immersed boundary method. The simulations are focused on a take-off, and the wing kinematics used is directly obtained from the experimental observations using high speed cameras. The simulation result shows three-dimensional vortical structures generated by the hind wing of the beetle and their interaction with the elytra. The presence of elytra has a negative effect on the lift generation by the hind wings, but the lift force on the elytra themselves is negligible. Further discussions on the elytra - hind wing interaction will be provided during the presentation. Supported by UD130070ID.

  9. A comparative study of trabecular bone mass distribution in cursorial and non-cursorial limb joints.

    PubMed

    Chirchir, Habiba

    2015-05-01

    Skeletal design among cursorial animals is a compromise between a stable body that can withstand locomotor stress and a light design that is energetically inexpensive to grow, maintain, and move. Cursors have been hypothesized to reduce distal musculoskeletal mass to maintain a balance between safety and energetic cost due to an exponential increase in energetic demand observed during the oscillation of the distal limb. Additionally, experimental research shows that the cortical bone in distal limbs experiences higher strains and remodeling rates, apparently maintaining lower mass at the expense of a smaller safety factor. This study tests the hypothesis that the trabecular bone mass in the distal limb epiphyses of cursors is relatively lower than that in the proximal limb epiphyses to minimize the energetic cost of moving the limb. This study utilized peripheral quantitative computed tomography scanning to measure the trabecular mass in the lower and upper limb epiphyses of hominids, cercopithecines, and felids that are considered cursorial and non-cursorial. One-way ANOVA with Tukey post hoc corrections was used to test for significant differences in trabecular mass across limb epiphyses. The results indicate that overall, both cursors and non-cursors exhibit varied trabecular mass in limb epiphyses and, in certain instances, conform to a proximal-distal decrease in mass irrespective of cursoriality. Specifically, hominid and cercopithecine hind limb epiphyses exhibit a proximal-distal decrease in mass irrespective of cursorial adaptations. These results suggest that cursorial mammals employ other energy saving mechanisms to minimize energy costs during running. © 2014 Wiley Periodicals, Inc.

  10. Nifedipine improves blood flow and oxygen supply, but not steady-state oxygenation of tumours in perfusion pressure-controlled isolated limb perfusion.

    PubMed

    Thews, O; Hummel, M; Kelleher, D K; Lecher, B; Vaupel, P

    2002-12-02

    Isolated limb perfusion allows the direct application of therapeutic agents to a tumour-bearing extremity. The present study investigated whether the dihydropyridine-type Ca(2+)-channel blocker nifedipine could improve blood flow and oxygenation status of experimental tumours during isolated limb perfusion. Perfusion was performed by cannulation of the femoral artery and vein in rats bearing DS-sarcoma on the hind foot dorsum. Perfusion rate was adjusted to maintain a perfusion pressure of 100-140 mmHg throughout the experiment. Following equilibration, nifedipine was continuously infused for 30 min (8.3 microg min(-1) kg(-1) BW). During constant-pressure isolated limb perfusion, nifedipine can significantly increase perfusion rate (+100%) and RBC flux (+60%) through experimental leg tumours. "Steal phenomena" in favour of the surrounding normal tissue and oedema formation were not observed. Despite the increased oxygen availability (+63%) seen upon application of this calcium channel blocker, nifedipine does not result in a substantial reduction of tumour hypoxia, most probably due to an increase in O(2) uptake with rising O(2) supply to the tumour-bearing hind limb. Nifedipine application during isolated limb perfusion can enhance tumour microcirculation and may therefore promote the delivery (pharmacokinetics) of anti-cancer drugs to the tumour and by this improve the efficacy of pressure-controlled isolated limb perfusion.

  11. Limb salvage surgery

    PubMed Central

    Kadam, Dinesh

    2013-01-01

    The threat of lower limb loss is seen commonly in severe crush injury, cancer ablation, diabetes, peripheral vascular disease and neuropathy. The primary goal of limb salvage is to restore and maintain stability and ambulation. Reconstructive strategies differ in each condition such as: Meticulous debridement and early coverage in trauma, replacing lost functional units in cancer ablation, improving vascularity in ischaemic leg and providing stable walking surface for trophic ulcer. The decision to salvage the critically injured limb is multifactorial and should be individualised along with laid down definitive indications. Early cover remains the standard of care, delayed wound coverage not necessarily affect the final outcome. Limb salvage is more cost-effective than amputations in a long run. Limb salvage is the choice of procedure over amputation in 95% of limb sarcoma without affecting the survival. Compound flaps with different tissue components, skeletal reconstruction; tendon transfer/reconstruction helps to restore function. Adjuvant radiation alters tissue characters and calls for modification in reconstructive plan. Neuropathic ulcers are wide and deep often complicated by osteomyelitis. Free flap reconstruction aids in faster healing and provides superior surface for offloading. Diabetic wounds are primarily due to neuropathy and leads to six-fold increase in ulcerations. Control of infections, aggressive debridement and vascular cover are the mainstay of management. Endovascular procedures are gaining importance and have reduced extent of surgery and increased amputation free survival period. Though the standard approach remains utilising best option in the reconstruction ladder, the recent trend shows running down the ladder of reconstruction with newer reliable local flaps and negative wound pressure therapy. PMID:24501463

  12. JKTLD: Limb darkening coefficients

    NASA Astrophysics Data System (ADS)

    Southworth, John

    2015-11-01

    JKTLD outputs theoretically-calculated limb darkening (LD) strengths for equations (LD laws) which predict the amount of LD as a function of the part of the star being observed. The coefficients of these laws are obtained by bilinear interpolation (in effective temperature and surface gravity) in published tables of coefficients calculated from stellar model atmospheres by several researchers. Many observations of stars require the strength of limb darkening (LD) to be estimated, which can be done using theoretical models of stellar atmospheres; JKTLD can help in these circumstances.

  13. [Limb edema and lymphoscintigraphy].

    PubMed

    Bourgeois, P; Munck, D; Belgrado, J P; Leduc, O; Leduc, A

    2003-02-01

    Lymphoscintigraphic investigations represent techniques of nuclear medicine very contributive for the management and treatment of the limb edemas, either primary or secundary. Their principle is presented and methodologies proposed in the literature are reviewed. Their diagnostic contributions are detailed. The sensitivities and specificities of several protocols of investigation are reported. Some limitations of these examinations are analyzed and discussed. Clinical indications for their use are proposed and their interest with regard to the various treatments that can be applied to these limb edemas is discussed.

  14. Differentiation of cartilaginous anlagen in entire embryonic mouse limbs cultured in a rotating bioreactor

    NASA Astrophysics Data System (ADS)

    Montufar-Solis, D.; Oakley, C. R.; Jefferson, Y.; Duke, P. J.

    2003-10-01

    Mechanisms involved in development of the embryonic limb have remained the same throughout eons of genetic and environmental evolution under Earth gravity (lg). During the spaceflight era it has been of interest to explore the ancient theory that form of the skeleton develops in response to gravity, and that changes in gravitational forces can change the developmental pattern of the limb. This has been shown in vivo and in vitro, allowing the hypergravity of centrifugation and microgravity of space to be used as tools to increase our knowledge of limb development. In recapitulations of spaceflight experiments, premetatarsals were cultured in suspension in a bioreactor, and found to be shorter and less differentiated than those cultured in standard culture dishes. This study only measured length of the metatarsals, and did not account for possible changes due to the skeletal elements having a more in vivo 3D shape while in suspension vs. flattened tissues compressed by their own weight. A culture system with an outcome closer to in vivo and that supports growth of younger limb buds than traditional systems will allow studies of early Hox gene expression, and contribute to the understanding of very early stages of development. The purpose of the current experiment was to determine if entire limb buds could be cultured in the bioreactor, and to compare the growth and differentiation with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were cultured for six days, either in the bioreactor or in center-well organ culture dishes, fixed, and embedded for histology. E13 specimens grown in culture dishes were flat, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections showed excellent cartilage differentiation in both culture systems, with more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Younger limb buds fused together during culture, so an additional set of El 1

  15. Spinal Cord Stimulation Therapy for the Treatment of Concomitant Phantom Limb Pain and Critical Limb Ischemia.

    PubMed

    De Caridi, Giovanni; Massara, Mafalda; Serra, Raffaele; Risitano, Claudia; Giardina, Massimiliano; Acri, Ignazio Eduardo; Volpe, Pietro; David, Antonio

    2016-04-01

    Phantom limb pain (PLP) is a chronic condition experienced by about 80% of patients who have undergone amputation. In most patients, both the frequency and the intensity of pain attacks diminish with time, but severe pain persists in about 5-10%. Probably, factors in both the peripheral and central nervous system play a role in the occurrence and persistence of pain in the amputated lower limb. The classical treatment of PLP can be divided into pharmacologic, surgical, anesthetic, and psychological modalities. Spinal cord stimulation (SCS) does not represent a new method of treatment for this condition. However, the concomitant treatment of PLP and critical lower limb ischemia by using SCS therapy has not yet been described in the current literature. The aim of the present article is to highlight the possibility of apply SCS for the simultaneous treatment of PLP and critical lower limb ischemia on the contralateral lower limb after failure of medical therapy in a group of 3 patients, obtaining pain relief in both lower limbs, delaying an endovascular or surgical revascularization. After SCS implantation and test stimulation, the pain was reduced by 50% on both the right and the left side in all our patients. The main indications for permanent SCS therapy after 1 week of test stimulation were represented by transcutaneous oxygen (TcPO2) increase >75%, decrease of opioids analgesics use of at least 50% and a pain maintained to within 20-30/100 mm on visual analog scale.

  16. Spatial Distribution and Conservation of Speckled Hind and Warsaw Grouper in the Atlantic Ocean off the Southeastern U.S.

    PubMed Central

    Farmer, Nicholas A.; Karnauskas, Mandy

    2013-01-01

    There is broad interest in the development of efficient marine protected areas (MPAs) to reduce bycatch and end overfishing of speckled hind (Epinephelus drummondhayi) and warsaw grouper (Hyporthodus nigritus) in the Atlantic Ocean off the southeastern U.S. We assimilated decades of data from many fishery-dependent, fishery-independent, and anecdotal sources to describe the spatial distribution of these data limited stocks. A spatial classification model was developed to categorize depth-grids based on the distribution of speckled hind and warsaw grouper point observations and identified benthic habitats. Logistic regression analysis was used to develop a quantitative model to predict the spatial distribution of speckled hind and warsaw grouper as a function of depth, latitude, and habitat. Models, controlling for sampling gear effects, were selected based on AIC and 10-fold cross validation. The best-fitting model for warsaw grouper included latitude and depth to explain 10.8% of the variability in probability of detection, with a false prediction rate of 28–33%. The best-fitting model for speckled hind, per cross-validation, included latitude and depth to explain 36.8% of the variability in probability of detection, with a false prediction rate of 25–27%. The best-fitting speckled hind model, per AIC, also included habitat, but had false prediction rates up to 36%. Speckled hind and warsaw grouper habitats followed a shelf-edge hardbottom ridge from North Carolina to southeast Florida, with speckled hind more common to the north and warsaw grouper more common to the south. The proportion of habitat classifications and model-estimated stock contained within established and proposed MPAs was computed. Existing MPAs covered 10% of probable shelf-edge habitats for speckled hind and warsaw grouper, protecting 3–8% of speckled hind and 8% of warsaw grouper stocks. Proposed MPAs could add 24% more probable shelf-edge habitat, and protect an additional 14–29% of

  17. Spatial distribution and conservation of speckled hind and warsaw grouper in the Atlantic Ocean off the southeastern U.S.

    PubMed

    Farmer, Nicholas A; Karnauskas, Mandy

    2013-01-01

    There is broad interest in the development of efficient marine protected areas (MPAs) to reduce bycatch and end overfishing of speckled hind (Epinephelus drummondhayi) and warsaw grouper (Hyporthodus nigritus) in the Atlantic Ocean off the southeastern U.S. We assimilated decades of data from many fishery-dependent, fishery-independent, and anecdotal sources to describe the spatial distribution of these data limited stocks. A spatial classification model was developed to categorize depth-grids based on the distribution of speckled hind and warsaw grouper point observations and identified benthic habitats. Logistic regression analysis was used to develop a quantitative model to predict the spatial distribution of speckled hind and warsaw grouper as a function of depth, latitude, and habitat. Models, controlling for sampling gear effects, were selected based on AIC and 10-fold cross validation. The best-fitting model for warsaw grouper included latitude and depth to explain 10.8% of the variability in probability of detection, with a false prediction rate of 28-33%. The best-fitting model for speckled hind, per cross-validation, included latitude and depth to explain 36.8% of the variability in probability of detection, with a false prediction rate of 25-27%. The best-fitting speckled hind model, per AIC, also included habitat, but had false prediction rates up to 36%. Speckled hind and warsaw grouper habitats followed a shelf-edge hardbottom ridge from North Carolina to southeast Florida, with speckled hind more common to the north and warsaw grouper more common to the south. The proportion of habitat classifications and model-estimated stock contained within established and proposed MPAs was computed. Existing MPAs covered 10% of probable shelf-edge habitats for speckled hind and warsaw grouper, protecting 3-8% of speckled hind and 8% of warsaw grouper stocks. Proposed MPAs could add 24% more probable shelf-edge habitat, and protect an additional 14-29% of speckled

  18. Artificial limb connection

    NASA Technical Reports Server (NTRS)

    Owens, L. J.

    1974-01-01

    Connection simplifies and eases donning and removing artificial limb; eliminates harnesses and clamps; and reduces skin pressures by allowing bone to carry all tensile and part of compressive loads between prosthesis and stump. Because connection is modular, it is easily modified to suit individual needs.

  19. Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane.

    PubMed

    Ha, N S; Jin, T L; Goo, N S; Park, H C

    2011-12-01

    Biomimetics is one of the most important paradigms as researchers seek to invent better engineering designs over human history. However, the observation of insect flight is a relatively recent work. Several researchers have tried to address the aerodynamic performance of flapping creatures and other natural properties of insects, although there are still many unsolved questions. In this study, we try to answer the questions related to the mechanical properties of a beetle's hind wing, which consists of a stiff vein structure and a flexible membrane. The membrane of a beetle's hind wing is small and flexible to the point that conventional methods cannot adequately quantify the material properties. The digital image correlation method, a non-contact displacement measurement method, is used along with a specially designed mini-tensile testing system. To reduce the end effects, we developed an experimental method that can deal with specimens with as high an aspect ratio as possible. Young's modulus varies over the area in the wing and ranges from 2.97 to 4.5 GPa in the chordwise direction and from 1.63 to 2.24 GPa in the spanwise direction. Furthermore, Poisson's ratio in the chordwise direction is 0.63-0.73 and approximately twice as large as that in the spanwise direction (0.33-0.39). From these results, we can conclude that the membrane of a beetle's hind wing is an anisotropic and non-homogeneous material. Our results will provide a better understanding of the flapping mechanism through the formulation of a fluid-structure interaction analysis or aero-elasticity analysis and meritorious data for biomaterial properties database as well as a creative design concept for a micro aerial flapper that mimics an insect.

  20. Anatomy of the hind legs and actions of their muscles during jumping in leafhopper insects.

    PubMed

    Burrows, Malcolm

    2007-10-01

    The rapid and simultaneous depression of the trochantera about the coxae of both hind legs of leafhoppers are the key joint movements powering a jump. The present study analyses the structure of these joints and the actions of the muscles that move them. The hind coxae are huge and are linked to each other at the midline by a protrusion from one coxa that inserts in a socket of the other and acts like a press-stud (popper) fastener. This asymmetry is not reflected in any left- or right-handed preference either within one species or between species. The movements of the joints in a jump are monitored by a number of possible proprioceptors that should be activated when a hind leg is fully levated in preparation for a jump: a hair row and two hair plates on the coxa, a hair plate on a trochanteral pivot with a coxa, and femoral spines at the femoro-tibial joint. The depressor and levator muscles that move the trochanter are of similar size and together occupy the greater part of the metathorax. Their lever arms are similar when the leg is fully levated, but the lever arm of the depressor increases with initial depression of the coxo-trochanteral joint while that of the levator declines. A jump is preceded by activity in the trochanteral depressor and levator muscles, which results in a forward movement of the coxa and metathorax with the trochanter fully levated. This period of co-contraction could result in storage of energy in skeletal structures in the thorax. Just before the rapid depression of the trochanter in the jump movement the frequency of depressor spikes increases while that in the levator declines, releasing any force stored by the preceding muscle contractions. These bursts of depressor spikes occur at the same time in the left and right muscles but none of the individual motor spikes appeared to be synchronous on the two sides.

  1. Proteomic analysis of blastema formation in regenerating axolotl limbs

    PubMed Central

    2009-01-01

    Background Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post amputation (dpa) through the mid-tibia/fibula of axolotl hind limbs. Results We identified 309 unique proteins with significant fold change relative to controls (0 dpa), representing 10 biological process categories: (1) signaling, (2) Ca2+ binding and translocation, (3) transcription, (4) translation, (5) cytoskeleton, (6) extracellular matrix (ECM), (7) metabolism, (8) cell protection, (9) degradation, and (10) cell cycle. In all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5), a cell cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special interest because its fold change was exceptionally high throughout blastema formation. Conclusion Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+ signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein response (UPR). Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5 function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated under the wound epidermis and enter mitosis in response to neural and

  2. Proteomic analysis of blastema formation in regenerating axolotl limbs.

    PubMed

    Rao, Nandini; Jhamb, Deepali; Milner, Derek J; Li, Bingbing; Song, Fengyu; Wang, Mu; Voss, S Randal; Palakal, Mathew; King, Michael W; Saranjami, Behnaz; Nye, Holly L D; Cameron, Jo Ann; Stocum, David L

    2009-11-30

    Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post amputation (dpa) through the mid-tibia/fibula of axolotl hind limbs. We identified 309 unique proteins with significant fold change relative to controls (0 dpa), representing 10 biological process categories: (1) signaling, (2) Ca2+ binding and translocation, (3) transcription, (4) translation, (5) cytoskeleton, (6) extracellular matrix (ECM), (7) metabolism, (8) cell protection, (9) degradation, and (10) cell cycle. In all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5), a cell cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special interest because its fold change was exceptionally high throughout blastema formation. Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+ signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein response (UPR). Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5 function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated under the wound epidermis and enter mitosis in response to neural and epidermal factors. Our findings

  3. Scales

    MedlinePlus

    Skin flaking; Scaly skin; Papulosquamous disorders ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that can cause scales include: Eczema Fungal infections such as ringworm , tinea versicolor ...

  4. Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms.

    PubMed

    Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G

    2016-02-01

    Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain.

  5. A new technique using roentgen stereophotogrammetry to measure changes in the spatial conformation of bovine hind claws in response to external loads.

    PubMed

    Ouweltjes, W; Gussekloo, S W S; Spoor, C W; van Leeuwen, J L

    2016-02-01

    Claw and locomotion problems are widespread in ungulates. Although it is presumed that mechanical overload is an important contributor to claw tissue damage and impaired locomotion, deformation and claw injury as a result of mechanical loading has been poorly quantified and, as a result, practical solutions to reduce such lesions have been established mostly through trial and error. In this study, an experimental technique was developed that allowed the measurement under controlled loading regimes of minute deformations in the lower limbs of dissected specimens from large ungulates. Roentgen stereophotogrammetric analysis (RSA) was applied to obtain 3D marker coordinates with an accuracy of up to 0.1 mm with optimal contrast and to determine changes in the spatial conformation. A force plate was used to record the applied forces in three dimensions. The results obtained for a test sample (cattle hind leg) under three loading conditions showed that small load-induced deformations and translations as well as small changes in centres of force application could be measured. Accuracy of the order of 0.2-0.3 mm was feasible under practical circumstances with suboptimal contrast. These quantifications of claw deformation during loading improve understanding of the spatial strain distribution as a result of external loading and the risks of tissue overload. The method promises to be useful in determining load-deformation relationships for a wide variety of specimens and circumstances.

  6. Planar covariance of upper and lower limb elevation angles during hand-foot crawling in healthy young adults.

    PubMed

    MacLellan, M J; Catavitello, G; Ivanenko, Y P; Lacquaniti, F

    2017-08-11

    Habitual quadrupeds have been shown to display a planar covariance of segment elevation angle waveforms in the fore and hind limbs during many forms of locomotion. The purpose of the current study was to determine if humans generate similar patterns in the upper and lower limbs during hand-foot crawling. Nine healthy young adults performed hand-foot crawling on a treadmill at speeds of 1, 2, and 3 km/h. A principal component analysis (PCA) was applied to the segment elevation angle waveforms for the upper (upper arm, lower arm, and hand) and lower (thigh, shank, and foot) limbs separately. The planarity of the elevation angle waveforms was determined using the sum of the variance explained by the first two PCs and the orientation of the covariance plane was quantified using the direction cosines of the eigenvector orthogonal to the plane, projected upon each of the segmental semi-axes. Results showed that planarity of segment elevation angles was maintained in the upper and lower limbs (explained variance >97%), although a slight decrease was present in the upper limb when crawling at 3 km/h. The orientation of the covariance plane was highly limb-specific, consistent with animal studies and possibly related to the functional neural control differences between the upper and lower limbs. These results may suggest that the motor patterns stored in the central nervous system for quadrupedal locomotion may be retained through evolution and may still be exploited when humans perform such tasks.

  7. Retinoic Acid Receptor α Function in Vertebrate Limb Skeletogenesis: a Modulator of Chondrogenesis

    PubMed Central

    Cash, David E.; Bock, Cheryl B.; Schughart, Klaus; Linney, Elwood; Underhill, T. Michael

    1997-01-01

    Retinoic acid is a signaling molecule involved in the regulation of growth and morphogenesis during development. There are three types of nuclear receptors for all-trans retinoic acid in mammals, RARα, RARβ, and RARγ, which transduce the retinoic acid signal by inducing or repressing the transcription of target genes (Leid, M., P. Kastner, and P. Chambon. 1992. Trends Biochem. Sci. 17:427–433). While RARα, RARβ, and RARγ are expressed in distinct but overlapping patterns in the developing mouse limb, their exact role in limb development remains unclear. To better understand the role of retinoic acid receptors in mammalian limb development, we have ectopically expressed a modified RARα with constitutive activity (Balkan, W., G.K. Klintworth, C.B. Bock, and E. Linney. 1992. Dev. Biol. 151:622–625) in the limbs of transgenic mice. Overexpression of the transgene was associated with marked pre- and postaxial limb defects, particularly in the hind limb, where expression of the transgene was consistently seen across the whole anteroposterior axis. The defects displayed in these mice recapitulate, to a large degree, many of the congenital limb malformations observed in the fetuses of dams administered high doses of retinoic acid (Kochhar, D.M. 1973. Teratology. 7:289–295). Further analysis of these transgenic animals showed that the defect in skeletogenesis resided at the level of chondrogenesis. Comparison of the expression of the transgene relative to that of endogenous RARα revealed that downregulation of RARα is important in allowing the chondrogenic phenotype to be expressed. These results demonstrate a specific function for RARα in limb development and the regulation of chondroblast differentiation. PMID:9015314

  8. Diversity of limb-bone safety factors for locomotion in terrestrial vertebrates: evolution and mixed chains.

    PubMed

    Blob, Richard W; Espinoza, Nora R; Butcher, Michael T; Lee, Andrew H; D'Amico, Angela R; Baig, Faraz; Sheffield, K Megan

    2014-12-01

    During locomotion over land, vertebrates' limb bones are exposed to loads. Like most biological structures, limb bones have a capacity to withstand greater loads than they usually experience, termed a safety factor (SF). How diverse are limb-bone SFs, and what factors correlate with such variation? We have examined these questions from two perspectives. First, we evaluated locomotor SF for the femur in diverse lineages, including salamanders, frogs, turtles, lizards, crocodilians, and marsupials (opossums). Comparisons with values for hind-limb elements in running birds and eutherian mammals indicate phylogenetic diversity in limb-bone SF. A high SF (∼7) is primitive for tetrapods, but low magnitudes of load and elevated strength of bones contribute to different degrees across lineages; moreover, birds and eutherians appear to have evolved lower SFs independently. Second, we tested the hypothesis that SFs would be similar across limb bones within a taxon by comparing data from the humerus and femur of alligators. Both in bending and in torsion, we found a higher SF for the humerus than for the femur. Such a "mixed chain" of different SFs across elements has been predicted if bones have differing variabilities in load, different costs to maintain, or high SF values in general. Although variability in load is similar for the humerus and femur, a high SF may be less costly for the humerus because it is smaller than the femur. The high SFs of alligators also might facilitate differences in SF among their limb bones. Beyond these specific findings, however, a more general implication of our results is that evaluations of the diversity of limb-bone SFs can provide important perspective to direct future research. In particular, more complete understanding of variation in SF could provide insight into factors that promoted the evolutionary radiation of terrestrial locomotor function in vertebrates.

  9. Glutaminase Increases in Rat Dorsal Root Ganglion Neurons after Unilateral Adjuvant-Induced Hind Paw Inflammation.

    PubMed

    Hoffman, E Matthew; Zhang, Zijia; Schechter, Ruben; Miller, Kenneth E

    2016-01-13

    Glutamate is a neurotransmitter used at both the peripheral and central terminals of nociceptive primary sensory neurons, yet little is known concerning regulation of glutamate metabolism during peripheral inflammation. Glutaminase (GLS) is an enzyme of the glutamate-glutamine cycle that converts glutamine into glutamate for neurotransmission and is implicated in producing elevated levels of glutamate in central and peripheral terminals. A potential mechanism for increased levels of glutamate is an elevation in GLS expression. We assessed GLS expression after unilateral hind paw inflammation by measuring GLS immunoreactivity (ir) with quantitative image analysis of L4 dorsal root ganglion (DRG) neurons after one, two, four, and eight days of adjuvant-induced arthritis (AIA) compared to saline injected controls. No significant elevation in GLS-ir occurred in the DRG ipsilateral to the inflamed hind paw after one or two days of AIA. After four days AIA, GLS-ir was elevated significantly in all sizes of DRG neurons. After eight days AIA, GLS-ir remained elevated in small (<400 µm²), presumably nociceptive neurons. Western blot analysis of the L4 DRG at day four AIA confirmed the elevated GLS-ir. The present study indicates that GLS expression is increased in the chronic stage of inflammation and may be a target for chronic pain therapy.

  10. Glutaminase Increases in Rat Dorsal Root Ganglion Neurons after Unilateral Adjuvant-Induced Hind Paw Inflammation

    PubMed Central

    Hoffman, E. Matthew; Zhang, Zijia; Schechter, Ruben; Miller, Kenneth E.

    2016-01-01

    Glutamate is a neurotransmitter used at both the peripheral and central terminals of nociceptive primary sensory neurons, yet little is known concerning regulation of glutamate metabolism during peripheral inflammation. Glutaminase (GLS) is an enzyme of the glutamate-glutamine cycle that converts glutamine into glutamate for neurotransmission and is implicated in producing elevated levels of glutamate in central and peripheral terminals. A potential mechanism for increased levels of glutamate is an elevation in GLS expression. We assessed GLS expression after unilateral hind paw inflammation by measuring GLS immunoreactivity (ir) with quantitative image analysis of L4 dorsal root ganglion (DRG) neurons after one, two, four, and eight days of adjuvant-induced arthritis (AIA) compared to saline injected controls. No significant elevation in GLS-ir occurred in the DRG ipsilateral to the inflamed hind paw after one or two days of AIA. After four days AIA, GLS-ir was elevated significantly in all sizes of DRG neurons. After eight days AIA, GLS-ir remained elevated in small (<400 µm2), presumably nociceptive neurons. Western blot analysis of the L4 DRG at day four AIA confirmed the elevated GLS-ir. The present study indicates that GLS expression is increased in the chronic stage of inflammation and may be a target for chronic pain therapy. PMID:26771651

  11. Nerve growth factor induced hyperalgesia in the rat hind paw is dependent on circulating neutrophils.

    PubMed

    Bennett, G; al-Rashed, S; Hoult, J R; Brain, S D

    1998-09-01

    The mechanisms by which nerve growth factor (NGF) induces thermal hyperalgesia and neutrophil accumulation have been investigated in the rat. Thermal nociceptive thresholds in rat hind paw were measured as the time taken for paw withdrawal from a heat source and neutrophil accumulation was measured in hind paw and dorsal skin samples using a myeloperoxidase assay. NGF (23-80 pmol intraplantar (i.pl.) injection) induced a significant (P < 0.05, n = 6-16) thermal hyperalgesia at 5 h after injection and significant neutrophil accumulation (P < 0.05, n = 6) was observed with NGF (40 pmol). In dorsal skin, where multiple samples can be assessed, intradermal (i.d.) NGF was 10-30 times less potent than interleukin-1beta in inducing neutrophil accumulation. The 5-lipoxygenase inhibitor ZM230487 (10 nmol co-injected with NGF) significantly attenuated neutrophil accumulation and hyperalgesia induced by NGF; unlike the histamine and 5-hydroxytryptamine antagonists (mepyramine and methysergide) which were without effect at the times measured. Furthermore, depletion of circulating neutrophils (using a rabbit anti-rat neutrophil antibody) abolished NGF induced hyperalgesia. These results indicate that neutrophils, which accumulate in response to a 5-lipoxygenase product, play a crucial role in NGF-induced hyperalgesia.

  12. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila

    PubMed Central

    Pitmon, E.; Stephens, G.; Parkhurst, S. J.; Wolf, F. W.; Kehne, G.; Taylor, M.

    2016-01-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH‐positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. PMID:26749475

  13. Whole body vibration induces forepaw and hind paw behavioral sensitivity in the rat.

    PubMed

    Baig, Hassam A; Guarino, Benjamin B; Lipschutz, Daniel; Winkelstein, Beth A

    2013-11-01

    Whole body vibration (WBV) has been linked to neck and back pain, but the biomechanical and physiological mechanisms responsible for its development and maintenance are unknown. A rodent model of WBV was developed in which rats were exposed to different WBV paradigms, either daily for 7 consecutive days (repeated WBV) or two single exposures at Day 0 and 7 (intermittent WBV). Each WBV session lasted for 30 min and was imposed at a frequency of 15 Hz and RMS platform acceleration of 0.56 ± 0.07 g. Changes in the withdrawal response of the forepaw and hind paw were measured, and were used to characterize the onset and maintenance of behavioral sensitivity. Accelerations and displacements of the rat and deformations in the cervical and lumbar spines were measured during WBV to provide mechanical context for the exposures. A decrease in withdrawal threshold was induced at 1 day after the first exposure in both the hind paw and forepaw. Repeated WBV exhibited a sustained reduction in withdrawal threshold in both paws and intermittent WBV induced a sustained response only in the forepaw. Cervical deformations were significantly elevated which may explain the more robust forepaw response. Findings suggest that a WBV exposure leads to behavioral sensitivity. © 2013 Orthopaedic Research Society.

  14. Oestrous red deer hinds prefer male roars with higher fundamental frequencies

    PubMed Central

    Reby, David; Charlton, Benjamin D.; Locatelli, Yann; McComb, Karen

    2010-01-01

    Across vertebrates, the observation that lower-pitched vocalizations are typically associated with larger and/or higher quality males has lead to the widespread belief that inter- and intra-sexual selection will produce male calls with low fundamental frequencies (F0). Here we investigated the response of oestrous red deer hinds to playback of re-synthesized male roars characterized by either higher than average or lower than average F0. We found that hinds prefer higher rather than lower ‘pitched’ roars, providing, to our knowledge, the first evidence of such a bias in nonhuman mammals. Our findings can be interpreted in relation to previous observations that the minimum F0 of roars is positively correlated with male reproductive success in free-ranging red deer stags, and that across Cervids the F0 of male mating calls shows extreme variability. Females showing preferences for higher-pitched roars might derive genetic benefits through more competitive male offspring. Our results emphasize the need for further investigations of female preferences in mammals in order to better understand the extreme variation of F0 values observed in male sexual calls. PMID:20427342

  15. Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb

    PubMed Central

    Ache, Jan M.

    2012-01-01

    Limb movements can be driven by muscle contractions, external forces, or intrinsic passive forces. For lightweight limbs like those of insects or small vertebrates, passive forces can be large enough to overcome the effects of gravity and may even generate limb movements in the absence of active muscle contractions. Understanding the sources and actions of such forces is therefore important in understanding motor control. We describe passive properties of the femur-tibia joint of the locust hind leg. The resting angle is determined primarily by passive properties of the relatively large extensor tibiae muscle and is influenced by the history of activation of the fast extensor tibiae motor neuron. The resting angle is therefore better described as a history-dependent resting state. We selectively stimulated different flexor tibiae motor neurons to generate a range of isometric contractions of the flexor tibiae muscle and then stimulated the fast extensor tibiae motor neuron to elicit active tibial extensions. Residual forces in the flexor muscle have only a small effect on subsequent active extensions, but the effect is larger for distal than for proximal flexor motor neurons and varies with the strength of flexor activation. We conclude that passive properties of a lightweight limb make substantial and complex contributions to the resting state of the limb that must be taken into account in the patterning of neuronal control signals driving its active movements. Low variability in the effects of the passive forces may permit the nervous system to accurately predict their contributions to behavior. PMID:22357791

  16. Radiographic features of the limbs of juvenile and subadult loggerhead sea turtles (Caretta caretta)

    PubMed Central

    Valente, Ana Luisa; Marco, Ignasi; Zamora, Maria Angeles; Parga, Maria Luz; Lavín, Santiago; Alegre, Ferran; Cuenca, Rafaela

    2007-01-01

    This study aimed to provide the normal radiographic anatomic appearance of the limbs of the loggerhead sea turtle, Caretta caretta. Dorsopalmar and dorsoplantar radiographs were taken of the forelimbs and hindlimbs of 15 juvenile and 15 subadult loggerhead sea turtles, 17 alive and 13 dead. For comparison, computed tomographic, gross anatomic, osteologic, and histologic studies were performed on the limbs of 5 of the sea turtles. Bones from the distal part of the fore and hind flippers were seen in detail with a mammographic film–screen combination. The pectoral and pelvic girdles, superimposed by the carapace, were better seen on standard radiographs with the use of rare-earth intensifying screens. Mammographic radiographs of the manus of 5 small juvenile turtles showed active growth zones. Visualization of bone contours in the distal part of the limbs was clearer than in mammals owing to the very few superimpositions. The presence of a substantial amount of cartilage in the epiphyses produced better visibility of limb ends. We conclude that use of a mammography film–screen combination is the best way to evaluate the bony and joint structures of the limbs of sea turtles. Radiography provides reliable images for clinical purposes. Considering the low cost and logistics of this technique, it is a practical ancillary test for marine animal rehabilitation centers to use. PMID:17955906

  17. Experimental investigation of crustacean swimming with variation of limb structures

    NASA Astrophysics Data System (ADS)

    Lai, Hong Kuan; Samaee, Milad; Donnell, Geoffrey; Santhanakrishnan, Arvind; Guy, Robert; Lewis, Timothy

    2015-11-01

    Crustaceans such as crayfish and krill swim by rhythmically paddling a set of four to five limbs (known as swimmerets or pleopods) originating from their abdomen. The limb motion in these animals has been observed to follow tail-to-head metachronal wave pattern with an approximate quarter-period inter-limb phase difference. The goal of this study is to investigate the hydrodynamics of this swimming mechanism as a function of inter-limb phase difference, inclusion of hinges in the limbs, and Reynolds number (Re). 2D PIV measurements were conducted on a scaled robotic model of metachronal paddling, consisting of a rectangular tank fitted with stepper motors coupled to a four-bar linkage that actuated four paddles immersed in water-glycerin fluid medium. The inter-limb phase difference was varied from 0% (synchronous paddling) through 50% across Re range of O(10-1000). Two types of limb models were used, including a simple flat plate and a `split-paddle' structure with two flat plates connected halfway with hinges. The results of the study show that limb models with hinges generated increased horizontal (thrust-producing direction) fluid velocity compared to the simple flat plate paddles, suggesting that asymmetry between power and return strokes is important to augment thrust.

  18. CRISM Limb Observations of Aerosols and Water Vapor

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, M.J.; Clancy, R.T.; Seelos, F.; Murchie, S.L.

    2009-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.

  19. Regeneration inducers in limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Makanae, Aki

    2015-08-01

    Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.

  20. Claw and limb disorders in 12 Norwegian beef-cow herds

    PubMed Central

    Fjeldaas, Terje; Nafstad, Ola; Fredriksen, Bente; Ringdal, Grethe; Sogstad, Åse M

    2007-01-01

    Background The main aim of the study was to assess the prevalence of claw and limb disorders in Norwegian beef-cow herds. Methods Twenty-six herds with ≥15 cow-years were selected by computerized systematic assignment from the three most beef cattle-dense regions of Norway. The study population consisted of 12 herds with 28 heifers and 334 cows. The animals were trimmed and examined once by claw trimmers during the late winter and spring of 2003. The seven claw trimmers had been taught diagnosing and recording of claw lesions. Environment, feeding and management routines, age and breed, culling and carcass characteristics were also recorded. Results Lameness was recorded in 1.1% of the animals, and only in hind claws. Pericarpal swellings were recorded in one animal and peritarsal lesions in none. In total, claw and limb disorders including lameness were recorded in 29.6% of the animals, 4.1% with front and 28.2% with hind limb disorders, respectively. Most lesions were mild. Laminitis-related claw lesions were recorded in 18.0% of the animals and infectious lesions in 16.6%. The average claw length was 84 mm in front claws and 89 mm in hind claw. Both laminitis-related and infectious claw lesions were more prevalent with increasing age. Carcasses from animals with claw and limb disorders were on average 34 kg heavier than carcasses from animals without such disorders (p = 0.02). Our results also indicate association between some management factors and claw lesions. Conclusion The study shows that the prevalence of lameness was low in 12 Norwegian beef-cow herds compared to beef-cattle herds in other countries and also that there were less claw and limb disorders in these herds compared to foreign dairy-cattle herds. The prevalence of lameness and white-line fissures was approximately the same as in Norwegian dairy herds whereas less dermatitis, heel-horn erosions, haemorrhages of the sole and the white line and sole ulcers were recorded. PMID:17892582

  1. Anti-endotoxin hyperimmune globulin attenuates portal cytokinaemia, phagocytic cell priming, and acute lung injury after lower limb ischaemia-reperfusion injury.

    PubMed

    Harkin, D W; Arnold, R; Hoper, M

    2007-03-01

    Acute limb ischaemia is a common and often lethal clinical event. Reperfusion of an ischaemic limb has been shown to induce a remote gut injury associated with transmigration of endotoxin into the portal and systemic circulation, which in turn has been implicated in the conversion of the sterile inflammatory response to a sepsis syndrome, after lower torso ischaemia-reperfusion injury. This study tests the hypothesis that an anti-endotoxin hyperimmune globulin attenuates ischaemia-reperfusion (I/R) associated sepsis syndrome. Prospective, randomised placebo controlled trial, animal experiment. Experimental porcine model, bilateral hind limb I/R injury, randomised to receive anti-endotoxin hyperimmune globulin or placebo. Bilateral hind limb I/R injury significantly increased intestinal mucosal acidosis, portal endotoxaemia, plasma cytokine (TNF-alpha, IL-6, IL-8) concentrations, circulating phagocytic cell priming and pulmonary leukosequestration, oedema, and capillary-alveolar protein leak. Conversely, pigs treated with anti-endotoxin hyperimmune globulin (IgG) 20mg/kg at onset of reperfusion had significantly reduced portal endotoxaemia, early circulating phagocytic cell priming, plasma cytokinaemia and attenuation of acute lung injury. Endotoxin translocation across a hyperpermeable gut barrier, phagocytic cell priming and cytokinaemia are key events of limb I/R injury induced systemic inflammation and acute lung injury. This study shows that an anti-endotoxin hyperimmune globulin attenuates portal endotoxaemia, which may reduce early phagocytic cell activation, cytokinaemia and ultimately acute lung injury.

  2. The hind wing of the desert locust (Schistocerca gregaria Forskål). I. Functional morphology and mode of operation.

    PubMed

    Wootton, R J; Evans, K E; Herbert, R; Smith, C W

    2000-10-01

    Detailed morphological investigation, mechanical testing and high-speed cinematography and stroboscopic examination of desert locusts, Schistocerca gregaria, in flight show that their hind wings are adapted to deform cyclically and automatically through the wing stroke and that the deformations are subtly dependent on the wings' structure: their shape, venation and vein design and the local properties of the membrane. The insects predominantly fly fast forwards, generating most force on the downstroke, and the hind wings generate extra lift by peeling apart at the beginning of the downstroke and by developing a cambered section during the stroke's translation phase through the 'umbrella effect' - an automatic consequence of the active extension of the wings' expanded posterior fan. Bending experiments indicate that most of the hind wing is more rigid to forces from below than from above and demonstrate that the membrane acts as a stressed skin to stiffen the structure.

  3. The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis

    PubMed Central

    Boehm, Bernd; Westerberg, Henrik; Lesnicar-Pucko, Gaja; Raja, Sahdia; Rautschka, Michael; Cotterell, James; Swoger, Jim; Sharpe, James

    2010-01-01

    Although the vertebrate limb bud has been studied for decades as a model system for spatial pattern formation and cell specification, the cellular basis of its distally oriented elongation has been a relatively neglected topic by comparison. The conventional view is that a gradient of isotropic proliferation exists along the limb, with high proliferation rates at the distal tip and lower rates towards the body, and that this gradient is the driving force behind outgrowth. Here we test this hypothesis by combining quantitative empirical data sets with computer modelling to assess the potential role of spatially controlled proliferation rates in the process of directional limb bud outgrowth. In particular, we generate two new empirical data sets for the mouse hind limb—a numerical description of shape change and a quantitative 3D map of cell cycle times—and combine these with a new 3D finite element model of tissue growth. By developing a parameter optimization approach (which explores spatial patterns of tissue growth) our computer simulations reveal that the observed distribution of proliferation rates plays no significant role in controlling the distally extending limb shape, and suggests that directional cell activities are likely to be the driving force behind limb bud outgrowth. This theoretical prediction prompted us to search for evidence of directional cell orientations in the limb bud mesenchyme, and we thus discovered a striking highly branched and extended cell shape composed of dynamically extending and retracting filopodia, a distally oriented bias in Golgi position, and also a bias in the orientation of cell division. We therefore provide both theoretical and empirical evidence that limb bud elongation is achieved by directional cell activities, rather than a PD gradient of proliferation rates. PMID:20644711

  4. Complete mitochondrial genome of the sixblotch hind Cephalopholis sexmaculata (Pisces: Perciformes).

    PubMed

    Hsiao, Sheng-Tai; Chen, Kao-Sung; Tseng, Chen-Te; Wu, Chi-Lun

    2016-01-01

    The complete mitogenome of the sixblotch hind, Cephalopholis sexmaculata was presented in this study. This mitochondrial genome consists of 16,589 bp, with 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a noncoding control region (CR), and its gene arrangement is identical to most vertebrates. The overall base composition of the heavy strand is A, 29.35%; G, 16.08%; C, 28.56%; and T, 26.01%. The COI gene started with GTG codon and the ATP6 gene started with CTG codon. The complete mitogenomic data may provide informative for further phylogenetic approach of species of Cephalopholis and related genera belong to the Epinephelidae groupers.

  5. Determining the size of American alligators using hind-foot track length

    USGS Publications Warehouse

    Wilkinson, Philip M.; Rice, Kenneth G.

    2000-01-01

    Size distribution information is useful for crocodilian management, but can be hard to obtain. Indirect and less costly demographic inferences made from track measurements may be valuable for management decisions. We related hind-foot lengths (HF) with total length (TL) to determine if we could indirectly assess alligator size using track length. Regression showed that HF was an excellent predictor (F1,246= 15722.9, R2=0.98, P<0.01) of TL and track length was an exceptional predictor of HF (F1,14=7520.3, R2= 1.00, P<0.01). The correlation between track length and HF length also was significant (N= 15, r=0.99, P <0.01). Thus, alligator size can be accurately estimated from measures of track length at sites where capture and direct measurement is impractical.

  6. [Therapy of phantom limb pain].

    PubMed

    Schwarzer, Andreas; Zenz, Michael; Maier, Christoph

    2009-03-01

    About 80 % of all extremity amputations suffer from phantom limb pain following the operation. In this context, it is important to differentiate between painful phantom limb sensations, non-painful phantom limb sensations and residual limb pain. The pathophysiology of phantom limb pain is not fully understood. Current research findings ascribe a major pathophysiological role to cortical changes as well as a disturbed body perception. Peripheral and spinal mechanisms appear less relevant in the development of phantom limb pain. An essential part of the therapy is the pharmacological treatment with antidepressants, anticonvulsives and opioids. Another significant aspect of therapy is senso-motory training, important to mention here would be mirror therapy, lateralisation and motor imaging. In case of an elective amputation, an epidural or axiliar plexus catheter should be considered prior to the amputation. The perioperative treatment with ketamine is debated.

  7. Limb lengthening in achondroplasia

    PubMed Central

    Chilbule, Sanjay K; Dutt, Vivek; Madhuri, Vrisha

    2016-01-01

    Background: Stature lengthening in skeletal dysplasia is a contentious issue. Specific guidelines regarding the age and sequence of surgery, methods and extent of lengthening at each stage are not uniform around the world. Despite the need for multiple surgeries, with their attendant complications, parents demanding stature lengthening are not rare, due to the social bias and psychological effects experienced by these patients. This study describes the outcome and complications of extensive stature lengthening performed at our center. Materials and Methods: Eight achondroplasic and one hypochondroplasic patient underwent bilateral transverse lengthening for tibiae, humeri and femora. Tibia lengthening was carried out using a ring fixator and bifocal corticotomy, while a monolateral pediatric limb reconstruction system with unifocal corticotomy was used for the femur and humerus. Lengthening of each bone segment, height gain, healing index and complications were assessed. Subgroup analysis was carried out to assess the effect of age and bone segment on the healing index. Results: Nine patients aged five to 25 years (mean age 10.2 years) underwent limb lengthening procedures for 18 tibiae, 10 femora and 8 humeri. Four patients underwent bilateral lengthening of all three segments. The mean length gain for the tibia, femur and humerus was 15.4 cm (100.7%), 9.9 cm (52.8%) and 9.6 cm (77.9%), respectively. Healing index was 25.7, 25.6 and 20.6 days/cm, respectively, for the tibia, femur and humerus. An average of 33.3% height gain was attained. Lengthening of both tibia and femur added to projected height achieved as the 3rd percentile of standard height in three out of four patients. In all, 33 complications were encountered (0.9 complications per segment). Healing index was not affected by age or bone segment. Conclusion: Extensive limb lengthening (more than 50% over initial length) carries significant risk and should be undertaken only after due consideration. PMID

  8. Association of lipoprotein lipase Hind III and Ser 447 Ter polymorphisms with dyslipidemia in Asian Indians.

    PubMed

    Radha, Venkatesan; Mohan, Viswanathan; Vidya, Ramprakash; Ashok, Ayyappa K; Deepa, Raj; Mathias, Rasika A

    2006-05-01

    Studies have shown an association between the lipoprotein lipase gene and dyslipidemia and atherosclerosis in some populations. The aim of this study was to investigate the association between the common lipoprotein lipase HindIII (T-G) and Ser447Ter (C-G) polymorphisms with dyslipidemia in Asian Indians, who are known to have very high rates of premature coronary artery disease. A total of 1,015 subjects, comprising 550 normal glucose-tolerant subjects and 465 patients with type 2 diabetes, were randomly selected from the Chennai Urban Rural Epidemiology Study. The total serum cholesterol, high-density lipoprotein (HDL) cholesterol, and serum triglyceride levels were assayed using enzymatic methods. Low-density lipoprotein cholesterol was calculated using the Friedewald formula. Genotyping was done using the polymerase chain reaction-restriction fragment length polymorphism method. A significant association was found between the H+ allele of HindIII with low HDL cholesterol and elevated triglyceride levels. The Ser allele of Ser447Ter was also strongly associated with low HDL cholesterol levels. No association was found between the H+ allele and Ser Allele with the total or low-density lipoprotein cholesterol levels. Group-wise haplotype frequencies were generated using the expectation-maximization algorithm to detect differences in overall haplotype frequency profiles between the case-control groups. The haplotype analysis showed that the H+ Ser and H- Ter were the "high-risk" and "low-risk" haplotypes for low HDL cholesterol and elevated triglyceride levels, respectively. In conclusion, the H+ Ser haplotype of the lipoprotein lipase gene was associated with low HDL cholesterol levels and hypertriglyceridemia in Asian Indians.

  9. White Earth Limb

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Edward H. White II, pilot of the Gemini 4 spacecraft, floats in the zero gravity of space with an earth limb backdrop. The extravehicular activity was performed during the third revolution of the Gemini 4 spacecraft and represents the first time an American has stepped outside the confines of his spacecraft. White is attached to the spacecraft by a 25-ft. umbilical line and a 23-ft. tether line, both wrapped in gold tape to form one cord. In his right hand White carries a Hand-Held Self-Maneuvering Unit (HHSMU). The visor of his helmet is gold plated to protect him from the unfiltered rays of the sun.

  10. Lipotyphla limb myology comparison.

    PubMed

    Neveu, Pauline; Gasc, Jean-Pierre

    2002-05-01

    Fore- and hindlimb muscles were dissected in four species of Lipotyphla: the western European hedgehog Erinaceus europaeus (Erinaceidae, Erinaceinae); the moonrat Echinosorex gymnura (Erinaceidae, Hylomyinae or Galericinae); the tailless tenrec Tenrec ecaudatus (Tenrecidae, Tenrecinae); and the common European white-toothed shrew Crocidura russula (Soricidae, Soricinae). This work completely reviews the limb musculature of these walking mammals. Twelve myological characters were evaluated in order to disclose phylogenetic relationships. The cladogram obtained supported previous ones based on cranial and dental characters. This study shows that myological characters are valuable in phylogenetic analyses.

  11. Microscopic observations show invasion of inflammatory cells in the limb blastema and epidermis in pre-metamorphic frog tadpoles which destroy the Apical Epidermal CAP and impede regeneration.

    PubMed

    Alibardi, Lorenzo

    2017-03-01

    Some limb regeneration in tadpoles of Rana dalmatina occurs at stages 44-48 when small hind-limbs are present while scarring occurs at stages 51-52 when forelimbs have developed and metamorphosis is approaching. Ultrastructural analysis of cells forming the regenerating blastema detects mesenchymal cells and an Apical Epidermal Cap (AEC) in regenerating limb blastema 5-6 days post-amputation at stages 46-48. In contrast, granulocytes and numerous macrophages and lymphocytes prevail over mesenchymal cells in limb blastema at stages 51-52, which are destined to form scars. An increase in inflammatory cells in limb blastema prior to metamorphosis suggests a negative influence of immune cells on limb regeneration. Inflammatory cells invade the apical wound epidermis where stem keratinocytes are likely destroyed, impeding the formation of an AEC, the microregion which leads to limb regeneration. The invasion of immune cells, however, may also represent a physiological consequence of the death of cell populations in the tadpoles occurring with approaching metamorphosis. The passage from an aquatic to a terrestrial life in this frog elicits the typical amniote scarring reaction after wounding, and the limb cannot regenerate. The present observations sustain the hypothesis that the evolution of the adaptive immunity in tetrapods while efficiently preserving adult self-condition, determined the loss of tissue regeneration since the embryonic antigens evocated in blastema cells are removed by immune cells of the adult. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. LDTK: Limb Darkening Toolkit

    NASA Astrophysics Data System (ADS)

    Parviainen, H.; Aigrain, S.

    2015-11-01

    We present a PYTHON package LDTK that automates the calculation of custom stellar limb-darkening (LD) profiles and model-specific limb-darkening coefficients using the library of PHOENIX-generated specific intensity spectra by Husser et al. The aim of the package is to facilitate analyses requiring custom generated LD profiles, such as the studies of exoplanet transits - especially transmission spectroscopy, where the transit modelling is carried out for custom narrow passbands - eclipsing binaries, interferometry, and microlensing events. First, LDTK can be used to compute custom LD profiles with uncertainties propagated from the uncertainties in the stellar parameter estimates. Secondly, LDTK can be used to estimate the LD-model-specific coefficients with uncertainties for the most common LD models. Thirdly, LDTK can be directly integrated into the log posterior computation of any pre-existing modelling code with minimal modifications. The last approach can be used to constrain the LD model parameter space directly by the LD profile, allowing for the marginalization over the LD parameter space without the need to approximate the constraint from the LD profile using a prior.

  13. LIMB Demonstration Project Extension

    SciTech Connect

    Not Available

    1989-08-15

    The subject of this report is progress during the quarter for Phase I -- Design and Permitting, Phase II -- Coolside/LIMB Construction, Start-Up and Phase III -- Operation, Data Collection, Reporting and Disposition. Under Phase I, Task 2, Consol Technology Transfer, Consol R D continued to review the status of the Coolside installation and identified construction details which required additional action. Activities in Task 4.0 -- Permitting and Licensing have focused on finalizing a subcontract agreement for trucking the DOE Coolside/LIMB ash to a solid waste landfill. Under Phase II, Task 1, Project Management, purchase orders were placed with two (2) lime suppliers for supplying the specified hydrated lime to be used for the Coolside test program. For Subtask 2.2 -- Sorbent Feed System Installation, the construction and installation of the sorbent feed system has been completed. Under Phase III, Subtask 2.1, Optimization of the Coolside sorbent feed system, the ash recycle system and the caustic injection system were initiated. 3 figs.

  14. Vasospastic Limb Ischemia Presenting Acute and Chronic Limb Ischemia

    PubMed Central

    2014-01-01

    Vasospastic limb ischemia might have been underappreciated compared to vasospasm in other territories such as heart and brain. However, an increasing awareness of this vascular disorder can be translated to an improved patients’ care. Herein, we report a case of vasospasm presenting acute and chronic limb ischemia in four extremities. PMID:24995065

  15. Niacin promotes revascularization and recovery of limb function in diet-induced obese mice with peripheral ischemia.

    PubMed

    Pang, Dominic K T; Nong, Zengxuan; Sutherland, Brian G; Sawyez, Cynthia G; Robson, Debra L; Toma, Jelena; Pickering, J Geoffrey; Borradaile, Nica M

    2016-06-01

    Niacin can reduce vascular disease risk in individuals with metabolic syndrome, but in light of recent large randomized controlled trials outcomes, its biological actions and clinical utility remain controversial. Niacin can improve endothelial function, vascular inflammation, and vascular regeneration, independent of correcting dyslipidemia, in various lean rodent models of vascular injury. Here, we tested whether niacin could directly improve endothelial cell angiogenic function during combined exposure to excess fatty acids and hypoxia, and whether intervention with niacin during continued feeding of western diet could improve revascularization and functional recovery in obese, hyperlipidemic mice with peripheral ischemia. Treatment with niacin (10 μmol/L) increased human microvascular endothelial cell angiogenic function during exposure to high fatty acids and hypoxia (2% oxygen), as determined by tube formation on Matrigel. To assess revascularization in vivo, we used western diet-induced obese mice with unilateral hind limb femoral artery ligation and excision. Treatment for 14 days postinjury with once daily i.p. injections of a low dose of niacin (50 mg/kg) improved recovery of hind limb use, in association with enhanced revascularization and decreased inflammation of the tibialis anterior muscle. These effects were concomitant with decreased plasma triglycerides, but not increased plasma apoAI. Thus, niacin improves endothelial tube formation under lipotoxic and hypoxic conditions, and moreover, promotes revascularization and functional hind limb recovery following ischemic injury in diet-induced obese mice with hyperlipidemia. These data may have implications for niacin therapy in the treatment of peripheral ischemic vascular disease associated with metabolic syndrome.

  16. Scale

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2009-01-01

    The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to…

  17. Critical Limb Ischemia: Cell and Molecular Therapies for Limb Salvage

    PubMed Central

    2012-01-01

    There is a growing interest in developing new limb salvage therapies for patients with severe peripheral artery disease who have no alternative to amputation. Cell and gene therapy studies are showing promise in controlling pain and minor ulceration in patients with significant critical limb ischemia. Among cardiovascular cell and molecular therapy programs, The Methodist Hospital is one of the leading centers in both gene and cell therapy for critical limb ischemia. Randomized controlled trials continue to be performed, and these experimental therapies will move from research to pharmacy within the decade. In conjunction with aggressive medical and surgical management, these emergent therapies may help patients with critical limb ischemia avoid a major amputation and are one of the foundations of any advanced limb salvage program. PMID:23342184

  18. Phantom limb pain after lower limb trauma: origins and treatments.

    PubMed

    Foell, Jens; Bekrater-Bodmann, Robin; Flor, Herta; Cole, Jonathan

    2011-12-01

    Phantom sensations, that is, sensations perceived in a body part that has been lost, are a common consequence of accidental or clinical extremity amputations. Most amputation patients report a continuing presence of the limb, with some describing additional sensations such as numbness, tickling, or cramping of the phantom limb. The type, frequency, and stability of these phantom sensations can vary immensely. The phenomenon of painful phantom sensations, that is, phantom limb pain, presents a challenge for practitioners and researchers and is often detrimental to the patient's quality of life. In addition to the use of conventional therapies for chronic pain disorders, recent years have seen the development of novel treatments for phantom limb pain, based on an increasing body of research on neurophysiological changes after amputation. This article describes the current state of research in regard to the demographics, causal factors, and treatments of phantom limb pain.

  19. Optimal freezing and thawing for the survival of peripheral nerves in severed rabbit limbs.

    PubMed

    Zhu, Zexing; Qiao, Lin; Zhao, Yandong; Zhang, Shuming

    2014-01-01

    This study aimed to investigate the optimal freezing and thawing procedures for the survival of peripheral nerves in severed rabbit limbs. Twenty New Zealand White rabbits were randomized into four groups: normal control, slow-freezing fast-thawing, slow-freezing slow-thawing, fast-freezing fast-thawing, with five animals in each group. The hind limbs of the rabbits were severed at 1 cm above the knee joint. The severed limbs were cryopreserved with various freezing and thawing procedures. The sciatic nerves were harvested and trypsinized into single nerve fibers for morphological evaluation. The cell viability of the nerve fibers was examined by staining with Calcein-AM and propidium iodide. The fluorescent intensity of the nerve fibers was measured with a laser scanning confocal microscope. The morphology of the nerve fibers in the slow-freezing fast-thawing group was very similar with that of the normal control group, with only mild demyelination. The slow-freezing fast-thawing group and slow-freezing slow-thawing group showed severely damaged nerve fibers. The fluorescent intensities of the nerve fibers was significantly different among the four groups, with a decreasing order of normal control, slow-freezing fast-thawing, slow-freezing slow-thawing, and fast-freezing fast-thawing (P < 0.05). Of the various cryopreservative procedures, slow-freezing fast thawing has the minimal effects on the survival of nerve fibers in severed rabbit limbs.

  20. Elevated vacuum suspension preserves residual-limb skin health in people with lower-limb amputation: Randomized clinical trial.

    PubMed

    Rink, Cameron; Wernke, Matthew M; Powell, Heather M; Gynawali, Surya; Schroeder, Ryan M; Kim, Jayne Y; Denune, Jeffrey A; Gordillo, Gayle M; Colvin, James M; Sen, Chandan K

    2016-01-01

    A growing number of clinical trials and case reports support qualitative claims that use of an elevated vacuum suspension (EVS) prosthesis improves residual-limb health on the basis of self-reported questionnaires, clinical outcomes scales, and wound closure studies. Here, we report first efforts to quantitatively assess residual-limb circulation in response to EVS. Residual-limb skin health and perfusion of people with lower-limb amputation (N = 10) were assessed during a randomized crossover study comparing EVS with nonelevated vacuum suspension (control) over a 32 wk period using noninvasive probes (transepidermal water loss, laser speckle imaging, transcutaneous oxygen measurement) and functional hyperspectral imaging approaches. Regardless of the suspension system, prosthesis donning decreased perfusion in the residual limb under resting conditions. After 16 wk of use, EVS improved residual-limb oxygenation during treadmill walking. Likewise, prosthesis-induced reactive hyperemia was attenuated with EVS following 16 wk of use. Skin barrier function was preserved with EVS but disrupted after control socket use. Taken together, outcomes suggest chronic EVS use improves perfusion and preserves skin barrier function in people with lower-limb amputation.

  1. Evaluation of Limb-Girdle Muscular Dystrophy

    ClinicalTrials.gov

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  2. Sunrise, Earth Limb

    NASA Image and Video Library

    1992-11-01

    STS052-23-022 (22 Oct.-1 Nov. 1992) --- As the Space Shuttle Columbia orbited Earth in an easterly direction over the Indian Ocean, moonrise was followed quickly by sunrise. The photograph was taken from an altitude of 285 kilometers (154 nautical miles), over Lake Tanganyika in central Africa. The Sun was still 28 degrees below the horizon and not yet illuminating the dark band of low-level clouds on the limb 1,850 kilometers (l,000 nautical miles) away. Ranging from 13--18 kilometers above these low-level clouds is a brown layer at the tropical tropopause. A tropopause is a major atmospheric temperature inversion which isolates the troposphere from the stratosphere and effectively concentrates particulate from both above and below this level.

  3. Peripheral muscle dysfunction in COPD: lower limbs versus upper limbs.

    PubMed

    Miranda, Eduardo Foschini; Malaguti, Carla; Corso, Simone Dal

    2011-01-01

    In patients with COPD, the degree of functional impairment appears to differ between the upper and lower limbs. Significant dyspnea and fatigue have been reported by these patients when performing tasks with unsupported upper limbs and two mechanisms have been proposed to explain this fact: neuromechanical dysfunction of respiratory muscles; and changes in lung volume during such activities. The neuromechanical dysfunction seen in COPD patients during this type of exercise is related to changes in the breathing pattern, as well as to the simultaneity of afferent and efferent muscle stimuli, resulting in respiratory muscle asynchrony. In addition, the increased ventilation during upper limb exercise in patients with COPD leads to dynamic hyperinflation at different workloads. During lower limb exercises, the strength and endurance of the quadriceps muscle is lower in COPD patients than in healthy subjects. This could by explained by abnormal muscle metabolism (decreased aerobic capacity), dependence on glycolytic metabolism, and rapid accumulation of lactate during exercise. In comparison with lower limb exercises, upper limb exercises result in higher metabolic and ventilatory demands, as well as in a more intense sensation of dyspnea and greater fatigue. Because there are differences between the upper and lower limb muscles in terms of the morphological and functional adaptations in COPD patients, specific protocols for strength training and endurance should be developed and tested for the corresponding muscle groups.

  4. Scales

    ScienceCinema

    Murray Gibson

    2016-07-12

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  5. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  6. Revising Australian Pristomerus (Hymenoptera, Ichneumonidae, Cremastinae): species with a tooth on the hind femur.

    PubMed

    Klopfstein, Seraina

    2016-09-15

    The Australian insect fauna is among the least-well studied in the world, and conservative estimates state that 75% of the species still await description. In the more species-rich groups, this percentage might be even larger, which is certainly the case in parasitoid wasps which have received very little attention by taxonomists. The genus Pristomerus of the family Ichneumonidae is distributed worldwide, with most species found in the tropics. Its members attack concealed larvae of small Lepidoptera, and several species are used in biocontrol. Five species have been reported from Australia, all of them endemic, but many more undescribed species are present in various collections.        I here revise Australian Pristomerus, focussing on the species that bear a tooth on the ventral side of the hind femur. Twenty-two species are recorded, 19 of which are described as new: Pristomerus australiensis n. sp., P. bertschmanni n. sp., P. callitrinus n. sp., P. dundeei n. sp., P. flavicephalus n. sp., P. fourecksensis n. sp., P. gracilis n. sp., P. kakaduensis n. sp., P. laetus n. sp., P. luculentus n. sp., P. lunatus n. sp., P. mangiferus n. sp., P. merus n. sp., P. nedkellyi n. sp., P. pellicius n. sp., P. periculosus n. sp., P. stellatus n. sp., P. tenebrosus n. sp., and P. venustus n. sp. A dichotomous key and an online interactive key to the known Australian species with a tooth on the hind femur are provided, including photographs of all the species.        The origin of the considerable number of Australian Pristomerus species remains unclear. They might represent Southern relict elements with affinities to South American taxa, or their ancestors might have immigrated from the Paleotropics in more recent times; this question can only be solved with a dated phylogeny of the genus. However, support for a Palaeotropic origin of at least a good portion of the taxa comes from their current distribution, as the Australian Pristomerus are found to be most

  7. Multiscale models for vertebrate limb development.

    PubMed

    Newman, Stuart A; Christley, Scott; Glimm, Tilmann; Hentschel, H G E; Kazmierczak, Bogdan; Zhang, Yong-Tao; Zhu, Jianfeng; Alber, Mark

    2008-01-01

    Dynamical systems in which geometrically extended model cells produce and interact with diffusible (morphogen) and nondiffusible (extracellular matrix) chemical fields have proved very useful as models for developmental processes. The embryonic vertebrate limb is an apt system for such mathematical and computational modeling since it has been the subject of hundreds of experimental studies, and its normal and variant morphologies and spatiotemporal organization of expressed genes are well known. Because of its stereotypical proximodistally generated increase in the number of parallel skeletal elements, the limb lends itself to being modeled by Turing-type systems which are capable of producing periodic, or quasiperiodic, arrangements of spot- and stripe-like elements. This chapter describes several such models, including, (i) a system of partial differential equations in which changing cell density enters into the dynamics explicitly, (ii) a model for morphogen dynamics alone, derived from the latter system in the "morphostatic limit" where cell movement relaxes on a much slower time-scale than cell differentiation, (iii) a discrete stochastic model for the simplified pattern formation that occurs when limb cells are placed in planar culture, and (iv) several hybrid models in which continuum morphogen systems interact with cells represented as energy-minimizing mesoscopic entities. Progress in devising computational methods for handling 3D, multiscale, multimodel simulations of organogenesis is discussed, as well as for simulating reaction-diffusion dynamics in domains of irregular shape.

  8. Enriched housing enhances recovery of limb placement ability and reduces aggrecan-containing perineuronal nets in the rat somatosensory cortex after experimental stroke.

    PubMed

    Madinier, Alexandre; Quattromani, Miriana Jlenia; Sjölund, Carin; Ruscher, Karsten; Wieloch, Tadeusz

    2014-01-01

    Stroke causes life long disabilities where few therapeutic options are available. Using electrical and magnetic stimulation of the brain and physical rehabilitation, recovery of brain function can be enhanced even late after stroke. Animal models support this notion, and housing rodents in an enriched environment (EE) several days after experimental stroke stimulates lost brain function by multisensory mechanisms. We studied the dynamics of functional recovery of rats with a lesion to the fore and hind limb motor areas induced by photothrombosis (PT), and with subsequent housing in either standard (STD) or EE. In this model, skilled motor function is not significantly enhanced by enriched housing, while the speed of recovery of sensori-motor function substantially improves over the 9-week study period. In particular, this stroke lesion completely obliterates the fore and hind limb placing ability when visual and whisker guidance is prevented, a deficit that persists for up to 9 weeks of recovery, but that is markedly restored within 2 weeks by enriched housing. Enriched housing after stroke also leads to a significant loss of perineuronal net (PNN) immunoreactivity; detection of aggrecan protein backbone with AB1031 antibody was decreased by 13-22%, and labelling of a glycan moiety of aggrecan with Cat-315 antibody was reduced by 25-30% in the peri-infarct area and in the somatosensory cortex, respectively. The majority of these cells are parvalbumin/GABA inhibitory interneurons that are important in sensori-information processing. We conclude that damage to the fore and hind limb motor areas provides a model of loss of limb placing response without visual guidance, a deficit also seen in more than 50% of stroke patients. This loss is amenable to recovery induced by multiple sensory stimulation and correlates with a decrease in aggrecan-containing PNNs around inhibitory interneurons. Modulating the PNN structure after ischemic damage may provide new therapies

  9. A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot.

    PubMed

    González Riga, Bernardo J; Lamanna, Matthew C; Ortiz David, Leonardo D; Calvo, Jorge O; Coria, Juan P

    2016-01-18

    Titanosauria is an exceptionally diverse, globally-distributed clade of sauropod dinosaurs that includes the largest known land animals. Knowledge of titanosaurian pedal structure is critical to understanding the stance and locomotion of these enormous herbivores and, by extension, gigantic terrestrial vertebrates as a whole. However, completely preserved pedes are extremely rare among Titanosauria, especially as regards the truly giant members of the group. Here we describe Notocolossus gonzalezparejasi gen. et sp. nov. from the Upper Cretaceous of Mendoza Province, Argentina. With a powerfully-constructed humerus 1.76 m in length, Notocolossus is one of the largest known dinosaurs. Furthermore, the complete pes of the new taxon exhibits a strikingly compact, homogeneous metatarsus--seemingly adapted for bearing extraordinary weight--and truncated unguals, morphologies that are otherwise unknown in Sauropoda. The pes underwent a near-progressive reduction in the number of phalanges along the line to derived titanosaurs, eventually resulting in the reduced hind foot of these sauropods.

  10. HindIII polymorphism in the human c-sis proto-oncogene

    SciTech Connect

    Fourney, R.M.; Dietrich, K.D.; Aubin, R.A.; Paterson, M.C. )

    1988-08-25

    The 2.0 kb BamH1 restriction fragment corresponding to a cDNA insert encoding the human c-sis PDGF A chain and nucleotide sequences homologous to the v-sis gene was isolated from plasmid pSM-1. An identical polymorphism was noted using the 1.2 kb PstI fragment or the 1.0 kb PstI/XbaI fragment isolated from the v-sis sequence subcloned in the plasmid pV-sis. HindIII identifies a single bi-allelic polymorphism with bands at 22.6 kb and 19.4 kb. Co-dominant segregation was demonstrated in 1 family. This polymorphism is not easily detected unless the restricted DNA is separated on 0.6-0.8% agarose gels. Resolution was optimal if gels were run until the bromophenol blue tracking dye had migrated 14 cm from the origin and Southern blotting was performed under alkaline conditions.

  11. A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot

    PubMed Central

    González Riga, Bernardo J.; Lamanna, Matthew C.; Ortiz David, Leonardo D.; Calvo, Jorge O.; Coria, Juan P.

    2016-01-01

    Titanosauria is an exceptionally diverse, globally-distributed clade of sauropod dinosaurs that includes the largest known land animals. Knowledge of titanosaurian pedal structure is critical to understanding the stance and locomotion of these enormous herbivores and, by extension, gigantic terrestrial vertebrates as a whole. However, completely preserved pedes are extremely rare among Titanosauria, especially as regards the truly giant members of the group. Here we describe Notocolossus gonzalezparejasi gen. et sp. nov. from the Upper Cretaceous of Mendoza Province, Argentina. With a powerfully-constructed humerus 1.76 m in length, Notocolossus is one of the largest known dinosaurs. Furthermore, the complete pes of the new taxon exhibits a strikingly compact, homogeneous metatarsus—seemingly adapted for bearing extraordinary weight—and truncated unguals, morphologies that are otherwise unknown in Sauropoda. The pes underwent a near-progressive reduction in the number of phalanges along the line to derived titanosaurs, eventually resulting in the reduced hind foot of these sauropods. PMID:26777391

  12. A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot

    NASA Astrophysics Data System (ADS)

    González Riga, Bernardo J.; Lamanna, Matthew C.; Ortiz David, Leonardo D.; Calvo, Jorge O.; Coria, Juan P.

    2016-01-01

    Titanosauria is an exceptionally diverse, globally-distributed clade of sauropod dinosaurs that includes the largest known land animals. Knowledge of titanosaurian pedal structure is critical to understanding the stance and locomotion of these enormous herbivores and, by extension, gigantic terrestrial vertebrates as a whole. However, completely preserved pedes are extremely rare among Titanosauria, especially as regards the truly giant members of the group. Here we describe Notocolossus gonzalezparejasi gen. et sp. nov. from the Upper Cretaceous of Mendoza Province, Argentina. With a powerfully-constructed humerus 1.76 m in length, Notocolossus is one of the largest known dinosaurs. Furthermore, the complete pes of the new taxon exhibits a strikingly compact, homogeneous metatarsus—seemingly adapted for bearing extraordinary weight—and truncated unguals, morphologies that are otherwise unknown in Sauropoda. The pes underwent a near-progressive reduction in the number of phalanges along the line to derived titanosaurs, eventually resulting in the reduced hind foot of these sauropods.

  13. Management of Major Limb Injuries

    PubMed Central

    Langer, Vijay

    2014-01-01

    Management of major limb injuries is a daunting challenge, especially as many of these patients have severe associated injuries. In trying to save life, often the limb is sacrificed. The existing guidelines on managing such trauma are often confusing. There is scope to lay down such protocols along with the need for urgent transfer of such patients to a multispecialty center equipped to salvage life and limb for maximizing outcome. This review article comprehensively deals with the issue of managing such major injuries. PMID:24511296

  14. Simulation of Upper Limb Movements

    NASA Astrophysics Data System (ADS)

    Uherčík, Filip; Hučko, Branislav

    2011-12-01

    The paper deals with controlling an upper limb prosthesis based on the measurement of myoelectric signals (MES) while drinking. MES signals have been measured on healthy limbs to obtain the same response for the prosthesis. To simulate the drinking motion of a healthy upper limb, the program ADAMS was used, with all degrees of freedom and a hand after trans-radial amputation with an existing hand prosthesis. Modification of the simulation has the exact same logic of control, where the muscle does not have to be strenuous all the time, but it is the impulse of the muscle which drives the motor even though the impulse disappears and passed away.

  15. Quality Measures That Address the Upper Limb.

    PubMed

    2016-11-01

    Physicians, health care systems, and payers use quality measures to judge performance and monitor the outcomes of interventions. Practicing upper-limb surgeons desire quality measures that are important to patients and feasible to use, and for which it is fair to hold them accountable. Nine academic upper-limb surgeons completed a RAND/University of California-Los Angeles Delphi Appropriateness process to evaluate the importance, feasibility, and accountability of 134 quality measures identified from systematic review. Panelists rated measures on an ordinal scale between 1 (definitely not valid) and 9 (definitely valid) in 2 rounds (preliminary round and final round) with an intervening face-to-face discussion. Ratings from 1 to 3 were considered not valid, 4 to 6 were equivocal or uncertain, and 7 to 9 were valid. If no more than 2 of the 9 ratings were outside the 3-point range that included the median (1-3, 4-6, or 7-9), panelists were considered to be in agreement. If 3 or more ratings of a measure were within the 1 to 3 range whereas 3 or more ratings were in the 7 to 9 range, panelists were considered to be in disagreement. There was agreement that 58 of the measures are important (43%), 74 are feasible (55%), and surgeons can be held accountable for 39 (29%). All 3 thresholds were met for 33 measures (25%). A total of 36 reached agreement for being unimportant (48%) and 57 were not suited for surgeon accountability (43%). A minority of upper-limb quality measures were rated as important for care, feasible to complete, and suitable for upper-limb surgeon accountability. Before health systems and payers implement quality measures, we recommend ensuring their importance and feasibility to safeguard against measures that may not improve care and might misappropriate attention and resources. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  16. Influence of level of nutrition during late pregnancy on reproductive productivity of red deer (2) Adult hinds gestating wapitixred deer crossbred calves.

    PubMed

    Asher, G W; Scott, I C; O'Neill, K T; Littlejohn, R P

    2005-04-01

    The present study aimed to relate feed intake of red deer hinds in the later stages of gestating wapitixred deer crossbred foetuses on dam body condition, gestation length, birth weight and calf growth. Multiparous hinds (N=18) conceiving at known dates to either wapiti (n=12) or red deer (n=6) sires were housed in individual pens from days 150-220 of pregnancy, during which time they were offered either ad libitum access to pelletised rations (n=6 crossbred-bearing hinds [HH] and n=6 red deer-bearing hinds [RH]) or a restricted offer (n=6 crossbred-bearing hinds [HL]) set at 70% of the average ad libitum intake of HH hind in the previous week. Hinds were returned to pasture at day 220 and calving was closely monitored. Liveweights, body condition score (BCS), and lactation score (LS) of hinds were recorded weekly from day 130 of pregnancy until calves were weaned at 12 weeks of age. Calves were tagged and weighed at birth, and subsequently weighed at 7 and 12 weeks of age. HH and RH hinds exhibited similar patterns and levels of MEI/kg0.75, which peaked at 7.8 MJME/kg0.75 at day 220. HL hinds peaked at approximately 5 MJME/kg0.75 and showed significantly lower rates of liveweight gain during pregnancy. Interestingly, both crossbred-bearing groups initiated mammary development in advance of the RH hinds. While there were significant effects of foetal genotype on mean gestation length (239 days versus 234 days for crossbred versus red deer) and mean birth weight (14.5 kg versus 10 kg), the nutritional contrast for gestation length of crossbred-bearing hinds (i.e. HH versus HL) was not significant but approached significance for birth weight (14.5 kg versus 11.9 kg; P=0.06). Regression analysis revealed weak relationships between changes in hind liveweight and gestation length (P>0.05) but a significant relationship with birth weight (P<0.05). However, change in hind BCS was significantly related to both gestation length and birth weight. Crossbred calves reared by

  17. β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats

    PubMed Central

    Hao, Yanlei; Jackson, Janna R.; Wang, Yan; Edens, Neile; Pereira, Suzette L.

    2011-01-01

    β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling. PMID:21697520

  18. Mice Hemizygous for a Pathogenic Mitofusin-2 Allele Exhibit Hind Limb/Foot Gait Deficits and Phenotypic Perturbations in Nerve and Muscle

    PubMed Central

    Bannerman, Peter; Burns, Travis; Xu, Jie; Miers, Laird; Pleasure, David

    2016-01-01

    Charcot-Marie-Tooth disease type 2A (CMT2A), the most common axonal form of hereditary sensory motor neuropathy, is caused by mutations of mitofusin-2 (MFN2). Mitofusin-2 is a GTPase required for fusion of mitochondrial outer membranes, repair of damaged mitochondria, efficient mitochondrial energetics, regulation of mitochondrial-endoplasmic reticulum calcium coupling and axonal transport of mitochondria. We knocked T105M MFN2 preceded by a loxP-flanked STOP sequence into the mouse Rosa26 locus to permit cell type-specific expression of this pathogenic allele. Crossing these mice with nestin-Cre transgenic mice elicited T105M MFN2 expression in neuroectoderm, and resulted in diminished numbers of mitochondria in peripheral nerve axons, an alteration in skeletal muscle fiber type distribution, and a gait abnormality. PMID:27907123

  19. Low-Level Laser Therapy (904 nm) Counteracts Motor Deficit of Mice Hind Limb following Skeletal Muscle Injury Caused by Snakebite-Mimicking Intramuscular Venom Injection

    PubMed Central

    Vieira, Willians Fernando; Kenzo-Kagawa, Bruno; Cogo, José Carlos; da Cruz-Höfling, Maria Alice

    2016-01-01

    Myotoxins present in Bothrops venom disrupt the sarcolemma of muscle fibers leading to the release of sarcoplasmic proteins and loss of muscle homeostasis. Myonecrosis and tissue anoxia induced by vascularization impairment can lead to amputation or motor functional deficit. The objective of this study was to investigate the dynamic behavior of motor function in mice subjected to injection of Bothrops jararacussu venom (Bjssu) and exposed to low-level laser therapy (LLLT). Male Swiss mice received Bjssu injection (830 μg/kg) into the medial portion of the right gastrocnemius muscle. Three hours later the injected region was irradiated with diode semiconductor Gallium Arsenide (GaAs– 904 nm, 4 J/cm²) laser following by irradiation at 24, 48 and 72 hours. Saline injection (0.9% NaCl) was used as control. Gait analysis was performed 24 hours before Bjssu injection and at every period post-Bjssu using CatWalk method. Data from spatiotemporal parameters Stand, Maximum Intensity, Swing, Swing Speed, Stride Length and Step Cycle were considered. The period of 3 hours post venom-induced injury was considered critical for all parameters evaluated in the right hindlimb. Differences (p<0.05) were concentrated in venom and venom + placebo laser groups during the 3 hours post-injury period, in which the values of stand of most animals were null. After this period, the gait characteristics were re-established for all parameters. The venom + laser group kept the values at 3 hours post-Bjssu equal to that at 24 hours before Bjssu injection indicating that the GaAs laser therapy improved spatially and temporally gait parameters at the critical injury period caused by Bjssu. This is the first study to analyze with cutting edge technology the gait functional deficits caused by snake envenoming and gait gains produced by GaAs laser irradiation. In this sense, the study fills a gap on the field of motor function after laser treatment following snake envenoming. PMID:27392016

  20. Experimental measurements of the temperature variation along artery-vein pairs from 200 to 1000 microns diameter in rat hind limb.

    PubMed

    He, Qinghong; Zhu, Liang; Lemons, Daniel E; Weinbaum, Sheldon

    2002-12-01

    Theoretical studies have indicated that a significant fraction of all blood-tissue heat transfer occurs in artery-vein pairs whose arterial diameter varies between 200 and 1000 microns. In this study, we have developed a new in vivo technique in which it is possible to make the first direct measurements of the countercurrent thermal equilibration that occurs along thermally significant vessels of this size. Fine wire thermocouples were attached by superglue to the femoral arteries and veins and their subsequent branches in rats and the axial temperature variation in each vessel was measured under different physiological conditions. Unlike the blood vessels < 200 microns in diameter, where the blood rapidly equilibrates with the surrounding tissue, we found that the thermal equilibration length of blood vessels between 200 microns and 1000 microns in diameter is longer than or at least equivalent to the vessel length. It is shown that the axial arterial temperature decays from 44% to 76% of the total core-skin temperature difference along blood vessels of this size, and this decay depends strongly on the local blood perfusion rate and the vascular geometry. Our experimental measurements also showed that the SAV venous blood recaptured up to 41% of the total heat released from its countercurrent artery under normal conditions. The contribution of countercurrent heat exchange is significantly reduced in these larger thermally significant vessels for hyperemic conditions as predicted by previous theoretical analyses. Results from this study, when combined with previous analyses of vessel pairs less than 200 microns diameter, enable one estimate the arterial supply temperature and the correction coefficient in the modified perfusion source term developed by the authors.

  1. Low-Level Laser Therapy (904 nm) Counteracts Motor Deficit of Mice Hind Limb following Skeletal Muscle Injury Caused by Snakebite-Mimicking Intramuscular Venom Injection.

    PubMed

    Vieira, Willians Fernando; Kenzo-Kagawa, Bruno; Cogo, José Carlos; Baranauskas, Vitor; Cruz-Höfling, Maria Alice da

    2016-01-01

    Myotoxins present in Bothrops venom disrupt the sarcolemma of muscle fibers leading to the release of sarcoplasmic proteins and loss of muscle homeostasis. Myonecrosis and tissue anoxia induced by vascularization impairment can lead to amputation or motor functional deficit. The objective of this study was to investigate the dynamic behavior of motor function in mice subjected to injection of Bothrops jararacussu venom (Bjssu) and exposed to low-level laser therapy (LLLT). Male Swiss mice received Bjssu injection (830 μg/kg) into the medial portion of the right gastrocnemius muscle. Three hours later the injected region was irradiated with diode semiconductor Gallium Arsenide (GaAs- 904 nm, 4 J/cm²) laser following by irradiation at 24, 48 and 72 hours. Saline injection (0.9% NaCl) was used as control. Gait analysis was performed 24 hours before Bjssu injection and at every period post-Bjssu using CatWalk method. Data from spatiotemporal parameters Stand, Maximum Intensity, Swing, Swing Speed, Stride Length and Step Cycle were considered. The period of 3 hours post venom-induced injury was considered critical for all parameters evaluated in the right hindlimb. Differences (p<0.05) were concentrated in venom and venom + placebo laser groups during the 3 hours post-injury period, in which the values of stand of most animals were null. After this period, the gait characteristics were re-established for all parameters. The venom + laser group kept the values at 3 hours post-Bjssu equal to that at 24 hours before Bjssu injection indicating that the GaAs laser therapy improved spatially and temporally gait parameters at the critical injury period caused by Bjssu. This is the first study to analyze with cutting edge technology the gait functional deficits caused by snake envenoming and gait gains produced by GaAs laser irradiation. In this sense, the study fills a gap on the field of motor function after laser treatment following snake envenoming.

  2. Prevalence and Characteristics of Phantom Limb Pain and Residual Limb Pain in the Long Term after Upper Limb Amputation

    ERIC Educational Resources Information Center

    Desmond, Deirdre M.; MacLachlan, Malcolm

    2010-01-01

    This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence…

  3. Prevalence and Characteristics of Phantom Limb Pain and Residual Limb Pain in the Long Term after Upper Limb Amputation

    ERIC Educational Resources Information Center

    Desmond, Deirdre M.; MacLachlan, Malcolm

    2010-01-01

    This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence…

  4. Differentiation of cartilaginous anlage in entire embryonic mouse limbs cultured in a rotating bioreactor.

    NASA Astrophysics Data System (ADS)

    Duke, P.; Oakley, C.; Montufar-Solis, D.

    The embryonic mammalian limb is sensitive both in vivo and in vitro to changes in gravitational force. Hypergravity of centrifugation and microgravity of space decreased size of elements due to precocious or delayed chondrogenesis respectively. In recapitulating spaceflight experiments, premetatarsals were cultured in suspension in a low stress, low sheer rotating bioreactor, and found to be shorter than those cultured in standard culture dishes, and cartilage development was delayed. This study only measured length of the metatarsals, and did not account for possible changes in width and/or in form of the skeletal elements. Shorter cartilage elements in limbbuds cultured in the bioreactor may be due to the ability of the system to reproduce a more in vivo 3D shape than traditional organ cultures. Tissues subjected to traditional organ cultures become flattened by their own weight, attachment to the filter, and restrictions imposed by nutrient diffusion. The purpose of the current experiment was to determine if entire limb buds could be successfully cultured in the bioreactor, and to compare the effects on 3D shape with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were placed either in the bioreactor, in Trowell culture, or fixed as controls. Limbbuds were cultured for six days, fixed, and processed either as whole mounts or embedded for histology. Qualitative analysis revealed that the Trowell culture specimens were flattened, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections of limbbuds from both types of cultures had excellent cartilage differentiation, with apparently more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Morphometric quantitation of the cartilaginous elements for comparisons of the two culture systems was complicated due to some limb buds fusing together during culture. This problem was especially noticeable in the younger limbs, and

  5. Limb displacement and brightness seismology

    NASA Astrophysics Data System (ADS)

    Emilio, Marcelo; Cunnyngham, Ian; Kuhn, Jeff; Mehret, Leandro; Bush, Rock; Scholl, Isabelle

    2015-08-01

    The Helioseismic and Magnetic Imager (HMI) abord the Solar Dynamics Observatory (SDO) has been used to obtain the most sensitive spectrally resolved observation of individual p-modes at the extreme solar limb. Such oscillation observations of the limb displacement and brightness for some spatial and temporal regimes are even competitive in signal-to-noise to full-disk doppler measurements of the p-mode spectrum. Limb measurements of 5-min p-modes, while having many similarities to full-disk doppler observations, have significantly different sensitivities to the solar rotation and the 5-min mode solar atmospheric structure. These may provide information about the solar structure which is complementary to full-disk measurements. In this work we present results from Individual spherical harmonic p-modes that were detected around solar limb with amplitudes at the micro-arcsecond level.

  6. Atmospheric Waves in MGS TES Limb-Scan Temperatures

    NASA Astrophysics Data System (ADS)

    Banfield, D. J.; Conrath, B. J.; Kaelberer, M. S.; Smith, M. D.

    2014-12-01

    We have quantified the expression of the lowest zonal wavenumber forced and traveling waves evident in the MGS TES Limb-scan temperature retrievals. The results were found to be broadly consistent with the vertically limited and vertically smoothed (although better spatially and temporally resolved) results from the more numerous MGS TES nadir temperature retrievals (e.g., Wilson et al., 2002, Banfield et al., 2003, Banfield et al. 2004). The MGS TES Limb-scan retrievals were used to compute a measure of the Diurnal Kelvin Waves (DK1 And DK2). The structures revealed are consistent with theory, and indicative of the importance of these wave modes at aerobraking altitudes (e.g., Wilson 2000, Forbes & Hagan, 2000, Wilson, 2002). The stationary wave structures revealed in the limb retrievals show the winter polar waves in both hemispheres continue to have their maximum amplitude aligned along the polar vortices, even for altitudes above 4 scale heights. The phase structures in and above the stationary waves revealed by the limb retrievals are consistent with the nadir results and the heat fluxes computed in those analyses (Banfield et al., 2003). The winter polar vortex zonal wavenumber 1 traveling waves continue along the edge of the polar vortex, reaching to 6 or more scale heights altitude in the northern winter and extending between 60N and the north pole. The peak amplitudes for these zonal wavenumber 1 traveling waves were found to lie at about 4 scale heights altitude. The limb retrievals revealed more clear evidence of a northern fall equinoctial global traveling wave mode having expression not only in the mid-latitudes in both hemispheres, but also out of phase above the tropics at altitudes above 4 scale heights. Zonal wavenumber 2 & 3 traveling waves could not be reliably retrieved from the limb retrievals.

  7. Possible living fossil in Bolivia: A new genus of flea beetles with modified hind legs (Coleoptera, Chrysomelidae, Galerucinae, Alticini)

    PubMed Central

    Konstantinov, Alexander S.

    2016-01-01

    Abstract A new genus (Chanealtica) with three new species (Chanealtica cuevas, Chanealtica ellimon, and Chanealtica maxi) from Bolivia is described and illustrated. It is compared with Aphthonoides Jacoby, 1885, Argopistes Motschulsky, 1860, Metroserrapha Bechyne, 1958, Psylliodes Berthold, 1827 and Psyllototus Nadein, 2010. Remarkably, based on the available characters, among all the flea beetles, Chanealtica is mostly similar to an extinct genus Psyllototus. A discussion of diversity and function of the hind leg in flea beetles is provided. PMID:27408546

  8. Benefits for dominant red deer hinds under a competitive feeding system: food access behavior, diet and nutrient selection.

    PubMed

    Ceacero, Francisco; García, Andrés J; Landete-Castillejos, Tomás; Bartošová, Jitka; Bartoš, Ludek; Gallego, Laureano

    2012-01-01

    Social dominance is widely known to facilitate access to food resources in many animal species such as deer. However, research has paid little attention to dominance in ad libitum access to food because it was thought not to result in any benefit for dominant individuals. In this study we assessed if, even under ad libitum conditions, social rank may allow dominant hinds to consume the preferred components of food. Forty-four red deer hinds (Cervus elaphus) were allowed to consume ad libitum meal consisting of pellets of sunflower, lucerne and orange, and seeds of cereals, corn, cotton, and carob tree. The meal was placed only in one feeder, which reduced accessibility to a few individuals simultaneously. During seven days, feeding behavior (order of access, time to first feeding bout, total time spent feeding, and time per feeding bout) were assessed during the first hour. The relative abundance of each meal component was assessed at times 0, 1 and 5 h, as well as its nutritional composition. Social rank was positively related to the amount of time spent feeding during the 1(st) h (P = 0.048). Selection indices were positively correlated with energy (P = 0.018 during the 1(st) h and P = 0.047 from 1(st) to 5(th)) and fat (only during the 1(st) h; P = 0.036), but also negatively with certain minerals. Thus, dominant hinds could select high energy meal components for longer time under an ad libitum but restricted food access setting. Selection indices showed a higher selectivity when food availability was higher (1(st) hour respect to 1(st) to 5(th)). Finally, high and low ranking hinds had longer time per feeding bout than mid ones (P = 0.011), suggesting complex behavioral feeding tactics of low ranking social ungulates.

  9. Cloning and characterization of a repetitive DNA detected by HindIII in the genome of Raja montagui (Batoidea, Chondrichthyes).

    PubMed

    Rocco, L; Stingo, V; Bellitti, M

    1996-10-17

    A repetitive HindIII fragment of DNA from Raja montagui (Rajiformes) was cloned and sequenced for the first time in cartilaginous fishes. This element, which comprises approximately 5% of the whole genome of the spotted ray, is absent in long tandem arrays, being typical of satellite DNA. It appeared constituted by 311 AT-rich bp (61%). The clone was hybridized to the genomic DNA of species with varying phyletic distances, revealing a high degree of conservation.

  10. Benefits for Dominant Red Deer Hinds under a Competitive Feeding System: Food Access Behavior, Diet and Nutrient Selection

    PubMed Central

    Ceacero, Francisco; García, Andrés J.; Landete-Castillejos, Tomás; Bartošová, Jitka; Bartoš, Ludek; Gallego, Laureano

    2012-01-01

    Social dominance is widely known to facilitate access to food resources in many animal species such as deer. However, research has paid little attention to dominance in ad libitum access to food because it was thought not to result in any benefit for dominant individuals. In this study we assessed if, even under ad libitum conditions, social rank may allow dominant hinds to consume the preferred components of food. Forty-four red deer hinds (Cervus elaphus) were allowed to consume ad libitum meal consisting of pellets of sunflower, lucerne and orange, and seeds of cereals, corn, cotton, and carob tree. The meal was placed only in one feeder, which reduced accessibility to a few individuals simultaneously. During seven days, feeding behavior (order of access, time to first feeding bout, total time spent feeding, and time per feeding bout) were assessed during the first hour. The relative abundance of each meal component was assessed at times 0, 1 and 5 h, as well as its nutritional composition. Social rank was positively related to the amount of time spent feeding during the 1st h (P = 0.048). Selection indices were positively correlated with energy (P = 0.018 during the 1st h and P = 0.047 from 1st to 5th) and fat (only during the 1st h; P = 0.036), but also negatively with certain minerals. Thus, dominant hinds could select high energy meal components for longer time under an ad libitum but restricted food access setting. Selection indices showed a higher selectivity when food availability was higher (1st hour respect to 1st to 5th). Finally, high and low ranking hinds had longer time per feeding bout than mid ones (P = 0.011), suggesting complex behavioral feeding tactics of low ranking social ungulates. PMID:22403707

  11. Pediatric limb differences and amputations.

    PubMed

    Le, Joan T; Scott-Wyard, Phoebe R

    2015-02-01

    Congenital limb differences are uncommon birth defects that may go undetected even with prenatal screening ultrasound scans and often go undetected until birth. For children with congenital limb differences, a diagnostic evaluation should be done to rule out syndromes involving other organ systems or known associations. The most common etiology of acquired amputation is trauma. Postamputation complications include pain and terminal bony overgrowth. A multidisciplinary approach to management with the child and family can lead to a successful, functional, and fulfilling life.

  12. Novel phenanthridine (PHE-4i) derivative inhibits carrageenan-induced rat hind paw oedema through suppression of hydrogen sulfide.

    PubMed

    George, Leema; Ramasamy, Tamizhselvi; Manickam, Venkatraman; Iyer, Sathiyanarayanan Kulathu; Radhakrishnan, Vidya

    2016-08-01

    This study was conducted to assess the anti-inflammatory effect of a novel synthesized phenanthridine alkaloid (PHE-4i) and to examine the possible involvement of hydrogen sulfide (H2S) in anti-inflammatory mechanism. The synthesized phenanthridine derivative PHE-4i (2, 5, and 10 mg/kg) was administered intraperitoneally to rats. One hour following treatment, inflammation was induced by intraplantar injection of carrageenan (1 %), in the hind paw. Paw volume as the index of inflammation was measured before and after carrageenan injection. Neutrophil sequestration into the hind paw was quantified by measuring tissue myeloperoxidase (MPO) activity and was compared for the inhibition of H2S production. Pretreatment with PHE-4i significantly reduced carrageenan-induced hind paw weight, MPO activity, leukocyte infiltration, and H2S production in a dose-dependent manner (p < 0.001). These results indicate that the anti-inflammatory effect of PHE-4i on carrageenan-induced rat paw oedema could be via the inhibition of the gaseous mediator H2S.

  13. Influence of adjustments to amputation and artificial limb on quality of life in patients following lower limb amputation.

    PubMed

    Sinha, Richa; van den Heuvel, Wim J A; Arokiasamy, Perianayagam; van Dijk, Jitse P

    2014-03-01

    The objectives of this study are to investigate the relationship between adjustments to amputation and artificial limb, and quality of life (QoL), and to analyse the influence of sociodemographic, medical and amputation-related factors on this relationship. Patients with unilateral and noncongenital lower limb amputation who were using artificial limb were interviewed (n=368) using structured questionnaires. The Trinity Amputation and Prosthesis Experience Scales (TAPES) were used to assess adjustments to amputation and artificial limb and the MOS Short-Form Health Survey (SF-36) was used to assess the physical (PCS) and mental (MCS) component summary of QoL. Absence of comorbidity and residual stump pain, being employed, young age, less functional restriction, being more adjusted to limitation, increased social adjustment and less restriction in athletic activity were related to better PCS scores. Absence of comorbidity and phantom limb pain, nonuse of assistive device, being more adjusted to limitation, increased social adjustment and being less functionally restricted were related to higher MCS scores. Comorbidity had a modifying effect on both PCS and MCS scores. In addition, age, being employed and residual stump pain had a modifying influence on PCS, whereas assistive device use and phantom limb pain had a modifying influence on MCS. Our findings show that TAPES subscales have a modifying effect on the associations between several background (sociodemographic and amputation characteristics) and QoL (PCS and MCS). This indicates that adjustments to amputation and artificial limb are the key determinants of QoL in individuals following lower limb amputation.

  14. Leptin receptor of the hind brain nuclei is involved in the conditioned taste preference of rats.

    PubMed

    Lin, Cai-xia; Zhang, Shao-yun; Chen, Ke; Luo, Xiao; Sun, Bo; Kang, Yu-ming; Yan, Jian-qun

    2015-11-01

    Conditioned taste preference (CTP) is a taste learning reflex by which an animal learns to prefer a substance which tastes not well and has been studied with much interest in recent years. However, the neural substrates of CTP are less known. This study aimed to determine the possible neural path- ways of CTP and whether serum leptin level and the leptin receptor (OB-Rb) in the hind brain are involved following CTP formation. We established CTP of quinine in rats with a 2-bottle preference test. The serum leptin concentrations were detected, the expression of c-fos in the rat brain was tested to determine the nuclei in relation with establishment of CTR Finally, the OB-Rb mRNA expression was examined by RT-qPCR assay in parabrachial nucleus (PBN) and the nucleus of the solitary tract (NST) of the hind brain. Compared with control group, the level of serum leptin was higher in the CTP group (4.58 ± 0.52 vs 1.67 ± 0.25 µg/L, P < 0.01); increased c-fos positive cells were found in the anterior hypothalamus (AH, 221.75 ± 4.96 vs. 178.50 ± 6.63 cells/mm², P < 0.05), the basal lateral amygdala (BLA, 70.75 ± 6.17 vs 56.50 ± 3.62 cells/ mm², P < 0.05) and the nucleus of the solitary tract (NST, 41.25 ± 1.32 vs 32.50 ± 1.02 cells/mm², P < 0.05). But in ventromedial nucleus of the hypothalamus (VMH, 20.75 ± 2.73 vs 38.5 ± 1.54 per 1 mm², P < 005), PBN (21.50 ± 2.24 vs 36.25 ± 1.49 cells/mm², P < 0.05) and the central nucleus of the amygdala (CeA, 22.25 ± 1.53 vs 35.50 ± 2.11 cells/mm², P < 0.05), the number of c-fos positive cells was decreased in the CTP group. In addition, we found OB-Rb mRNA expression in PBN of CTP group rats was higher than that of control group (0.95 ± 0.055 vs 0.57 ± 0.034, P < 0.05), while there was no significant difference of OB-Rb mRNA expression in NST between the two groups. Nuclei AH, BLA, NST, VMH, PBN and CeA participate in the formation of CTP. Leptin and its receptor in PBN may be involved in the formation and

  15. Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae).

    PubMed

    Bai, Ming; McCullough, Erin; Song, Ke-Qing; Liu, Wan-Gang; Yang, Xing-Ke

    2011-01-01

    paper sheds new light on the evolution of dung beetle hind wings.

  16. Evolutionary Constraints in Hind Wing Shape in Chinese Dung Beetles (Coleoptera: Scarabaeinae)

    PubMed Central

    Bai, Ming; McCullough, Erin; Song, Ke-Qing; Liu, Wan-Gang; Yang, Xing-Ke

    2011-01-01

    paper sheds new light on the evolution of dung beetle hind wings. PMID:21738727

  17. Effect of Royal Jelly on Formalin Induced-Inflammation in Rat Hind Paw

    PubMed Central

    Arzi, Ardeshir; Olapour, Samaneh; Yaghooti, Hamid; Sistani Karampour, Neda

    2015-01-01

    Background: Royal Jelly (RJ), a food item secreted by worker honeybees, is a mixture that contains protein, glucose, lipid, vitamins, and minerals; it is widely used as a commercial medical product. Previous studies have shown that RJ has a number of physiological effects, such as anti-inflammatory, antitumor, antiallergic and antioxidant activities. Objectives: In the present study, the anti-inflammatory properties of RJ were investigated in formalin-induced rat paw edema. Materials and Methods: In this study, 30 male Wistar albino rats were divided into five equal groups (n = 6) as follows: test groups received different doses (25, 50 and 100 mg/kg, ip) of RJ and a negative control group received normal saline (5 mL/kg) and a positive control group received aspirin (300 mg/kg, i.p). Edema was induced on the right hind paw of the rat by a subplantar injection of 100 µL of formalin (2.5%) after 30 minutes. Paw edema was measured in the rats received the drugs, saline and aspirin before and after the formalin injection during 5 hours, using a plethysmometer. Results: The results showed that RJ has a dose-dependent anti-inflammatory effect and the highest anti-inflammatory effect was observed in the doses of 50 and 100 mg/kg. Conclusions: Royal jelly has potent anti-inflammatory effects compared to aspirin and it could be used in the treatment of inflammation. However, further studies are required to determine the active components in RJ responsible for this effect and its mechanism of action. PMID:25866724

  18. Factors Associated with Recently Transmitted Mycobacterium tuberculosis strain MS0006 in Hinds County, Mississippi

    PubMed Central

    Temple, Brian; Kwara, Awewura; Sunesara, Imran; Mena, Leandro; Dobbs, Thomas; Henderson, Harold; Holcomb, Mike; Webb, Risa

    2011-01-01

    Objective The objective of this study was to investigate risk factors associated with tuberculosis (TB) transmission that was caused by Mycobacterium tuberculosis strain MS0006 from 2004 to 2009 in Hinds County, Mississippi. Methods DNA fingerprinting using spoligotyping, mycobacterial interspersed repetitive unit, and IS6110-based restriction fragment length polymorphism of culture-confirmed cases of TB was performed. Clinical and demographic factors associated with strain MS0006 were analyzed by univariate and multivariate analysis. Results Of the 144 cases of TB diagnosed during the study period, 117 were culture positive with fingerprints available. There were 48 different strains, of which 6 clustered strains were distributed among 74 patients. The MS0006 strain accounted for 46.2% of all culture-confirmed cases. Risk factors for having the MS0006 strain in a univariate analysis included homelessness, HIV co-infection, sputum smear negativity, tuberculin skin test negativity, and noninjectable drug use. Multivariate analysis identified homelessness (odds ratio 7.88, 95% confidence interval 2.90-21.35) and African American race (odds ratio 5.80, 95% confidence interval 1.37-24.55) as independent predictors of having TB caused by the MS0006 strain of M tuberculosis. Conclusions Our findings suggest that a majority of recently transmitted TB in the studied county was caused by the MS0006 strain. African American race and homelessness were significant risk factors for inclusion in the cluster. Molecular epidemiology techniques continue to provide in-depth analysis of disease transmission and play a vital role in effective contact tracing and interruption of ongoing transmission. PMID:22089361

  19. [Treatment of limbs lymphedema].

    PubMed

    Vaillant, Loïc; Müller, Christine; Goussé, Pascal

    2010-12-01

    The treatment of lymphedema aims to reduce the volume and prevent infectious and joints mobility complications. This treatment rarely cure and is usually symptomatic; thus it should be continued throughout the life. The erysipelas and lymphangitis are common complications of lymphedema. Erysipela is always of streptococcal origin and requires systemic antibiotics. The risk of recurrent erysipelas on lymphedema is high. In case of large swelling associated with significant dermal sclerosis, it may lead to decrease joint mobility and functional impairment. The skin cares, manual lymph drainage, compression therapy with bandages and exercises are the four pillars of the complex decongestive therapy of limb lymphedema. Compression is the most important treatment. Lymphedema can be improved by only bandages, but a sustained improvement of lymphedema cannot be seen without bandages. The effectiveness of treatment must be evaluated by objective methods, measuring the perimeters of members or volumes. The management of lymphedema includes three phases: attack or initial treatment that aims to reduce volume of the lymphedema and maintenance phase to maintain the result and finally withdrawal phase. In the attack phase, we use complex decongestive therapy, mainly multilayer inelastic bandaging and manual lymphatic drainage (MLD). In the maintenance phase, we use elastic compression (stockings or sleeves) possibly associated with MLD. At all stages skin care and exercises are used. Adjuvant treatments may be useful (intermittent pneumatic compression, drug treatment). Surgery is rarely used except for genital lymphedema. The therapeutic management of lymphedema is difficult but has a variety of techniques. The complex decongestive therapy is very effective to restore a better quality of life even though it does not provide a cure for lymphedema.

  20. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization

    NASA Technical Reports Server (NTRS)

    Tucker, K. R.; Seider, M. J.; Booth, F. W.

    1981-01-01

    Noting that protein synthesis declines in the gastrocnemius 6 hr after immobilization, the study sought to detect an increase of protein synthesis when the limb was freed, and to examine the effects of exercise on the rate of increase. Rats were used as subjects, with their hind legs in plaster of Paris in plantar flexion to eliminate strain on the gastrocnemius. Periods of immobilization were varied and samples of blood from the muscle were taken to track protein synthesis rates for different groups in immobilization and exercise regimens (running and weightlifting). Synthesis rates declined 3.6% during time in the cast, then increased 6.3%/day after the casts were removed. Both running and weightlifting were found to increase the fractional rate of protein formation in the gastrocnemius muscle when compared with contralateral muscles that were not exercised and were used as controls, suggesting that the mechanism controlling protein synthesis in skeletal muscles is rapidly responsive to changes in muscular contractile activity.

  1. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization

    NASA Technical Reports Server (NTRS)

    Tucker, K. R.; Seider, M. J.; Booth, F. W.

    1981-01-01

    Noting that protein synthesis declines in the gastrocnemius 6 hr after immobilization, the study sought to detect an increase of protein synthesis when the limb was freed, and to examine the effects of exercise on the rate of increase. Rats were used as subjects, with their hind legs in plaster of Paris in plantar flexion to eliminate strain on the gastrocnemius. Periods of immobilization were varied and samples of blood from the muscle were taken to track protein synthesis rates for different groups in immobilization and exercise regimens (running and weightlifting). Synthesis rates declined 3.6% during time in the cast, then increased 6.3%/day after the casts were removed. Both running and weightlifting were found to increase the fractional rate of protein formation in the gastrocnemius muscle when compared with contralateral muscles that were not exercised and were used as controls, suggesting that the mechanism controlling protein synthesis in skeletal muscles is rapidly responsive to changes in muscular contractile activity.

  2. Limb apraxia in multiple sclerosis.

    PubMed

    Rapaić, Dragan; Medenica, Veselin; Kozomara, Ruzica; Ivanović, Lidija

    2014-09-01

    There are almost no studies on apraxia in people with multiple sclerosis. Although the white matter is damaged in MS, it is not the only location in which the pathological changes are present. Demyelinated lesions in the cortex have recently been recognized as important components of multiple sclerosis pathology. The aim of this study was to determine whether apraxia is present among people with MS, and the importance of demographic characteristics and impairment of functional systems at conceptualization and execution of movements. The experimental group consisted of 30 patients, mean age 51.34 +/- 7.70 years. The patients in the experimental group were diagnosed with MS according to the McDonald criteria. The control group consisted of 30 healthy subjects, mean age 50.30 +/- 10.47 years. For research purposes, we used the following instruments: Questionnaire for Collecting Demographic Data, Kurtzke Functional Systems Scores, Waterloo-Sunnybrook Apraxia Battery (WatAB). Execution of motion tasks that are a part of the WatAB were incorporated in the System for the Observation and Analysis of Motor Behavior. Our study showed that limb apraxia was common in people with MS. Apraxia was present during pantomime in 26.70% of the patients, and during the imitation of movements in 44.80% of the patients. Gender, age, education level, duration of disease and a form of MS did not determine the quality of conceptualization and execution of movements. The time elapsed from the last exacerbation was a determinant of quality of executed movements. Impairments of functional systems predicted impairments of movement execution. The expanded disability scale score correlated with the severity of apraxia. Our study confirm the presence of apraxia in MS. It is necessary to carry out further studies using functional magnetic resonance imaging, as well as the conduct longitudinal studies to determine the precise structure of motor behavior in people with MS.

  3. The effects of topical oxygen therapy on equine distal limb dermal wound healing

    PubMed Central

    Tracey, Alexandra K.; Alcott, Cody J.; Schleining, Jennifer A.; Safayi, Sina; Zaback, Peter C.; Hostetter, Jesse M.; Reinertson, Eric L.

    2014-01-01

    Topical oxygen therapy (TOT) has been used in human medicine to promote healing in chronic wounds. To test the efficacy and safety of TOT in horses, an experimental wound model was created by making 1 standardized dermal wound on each limb of 4 healthy horses (n = 16). Each wound was fitted with an oxygen delivery cannula and covered with a bandage. One limb of each front and hind pair was randomly assigned to the treatment group (fitted with an oxygen concentrator device), with the contralateral limb assigned to the control group (no device). Wound area, epithelial area, and contraction were measured every 3 to 4 d. Biopsy samples and culture swabs were taken on days 16 and 32 to evaluate angiogenesis, fibroplasia, epithelial hyperplasia, inflammation and bacterial growth. Mean healing time in treated wounds (45 d, range: 38 to 52 d) was not significantly different from that in the paired control wounds (50 d, range: 38 to 62 d). Topical oxygen therapy had little effect on dermal wound healing in this experimental wound model in healthy horses. PMID:25477541

  4. Asteroid Lightcurve Analysis at Riverland Dingo Observatory (RDO): 501 Urhixidur, 1897 Hind, 1928 Summa, 6261 Chione, and (68216) 2001 CV 26.

    NASA Astrophysics Data System (ADS)

    Hills, Kevin

    2013-01-01

    Lightcurves for five asteroids selected from the Collaborative Asteroid Lightcurve Link (CALL) were obtained at Riverland Dingo Observatory (RDO) from 2012 July-September: 501 Urhixidur, 1897 Hind, 1928 Summa, 6261 Chione, and (68216) 2001 CV26.

  5. HindIII(+/-) polymorphism of the Y chromosome, blood pressure, and serum lipids: no evidence of association in three white populations.

    PubMed

    Russo, Paola; Venezia, Antonella; Lauria, Fabio; Strazzullo, Pasquale; Cappuccio, Francesco P; Iacoviello, Licia; Barba, Gianvincenzo; Siani, Alfonso

    2006-04-01

    Male sex is associated with elevated levels of cardiovascular risk factors, including higher blood pressure (BP). Genetic variants on the Y chromosome may contribute to explain the sexual dimorphism in cardiovascular diseases. Among them, the HindIII(+/-) polymorphism of the male-specific region of the Y chromosome has been associated with BP and serum cholesterol levels, with conflicting results. We evaluated the association between the HindIII(+/-) polymorphism, prevalence of hypertension, BP, and serum lipid levels in a large sample of white men and the previously reported epistatic interaction between HindIII(+/-) and the -344C/T polymorphism of the aldosterone synthase gene (CYP11B2) on BP. From three European populations (UK n = 422; Belgium n = 313; Italy n = 1248) 1983 white men were phenotyped for BP and serum lipids and genotyped for HindIII(+/-) site and for -344C/T polymorphism in the promoter of CYP11B2 by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). A higher frequency of the HindIII (+) was found in Italians (63%) as compared to both British (31%) and Belgians (28%) (P < .0001). We found no evidence of association of the HindIII(+/-) site with prevalence of hypertension, BP, and serum lipids in any of the three European populations examined and in the entire sample. Finally, we did not observe any interaction between the HindIII(+/-) polymorphism and the -344C/T variant of CYP11B2 on BP. Our data do not support the hypothesis that the HindIII(+/-) site of the Y chromosome is a marker of cardiovascular risk in white men, highlighting the need for replication in genetic association studies.

  6. Cross-limb vascular shunting for major limb replantation.

    PubMed

    Lee, Yao-Chou; Lee, Jing-Wei

    2009-02-01

    In the management of traumatic major limb amputation, rapid re-establishment of circulation to the amputated part is imperative so as to prevent complications related to reperfusion injury, especially for those already suffering from prolonged ischemia. A temporary, extra-anatomic cross limb shunting with infusion lines can be used to perfuse the amputated part almost instantaneously. This allows the surgeon to carry out skeletal fixation and other reparative works in an unhurried manner. The cannulation site is targeted at intact vessels far away from the injury zone, obviating the need to explore and handle traumatized vessels at the mangled stump ends, thus greatly simplifying and expediting the revascularization process. Such a method had been successfully applied in 2 young people suffering traumatic arm amputation and thigh amputation, respectively. We suggested that such a procedure could be a useful adjunct in the field of major limb replantation.

  7. Lack of association between the HindIII RFLP of the osteocalcin (BGP) gene and bone mineral density (BMD) in healthy pre- and postmenopausal Chinese women.

    PubMed

    Mo, Xiao-Yang; Cao, Chi-Ke; Xu, Fu-Hua; Liu, Man-Yuan; Li, Miao-Xin; Qin, Yue-Juan; Zhou, Qi; Zhang, Yuan-Yuan; Deng, Hong-Wen

    2004-01-01

    In Caucasian populations, the polymorphic restriction endonuclease HindIII marker of the osteocalcin (also known as BGP, for bone Gla protein) gene has recently been reported to be associated with bone mass, a major risk determinant of osteoporosis. In this study, we investigated the relationship between the BGP HindIII polymorphism and bone mineral density (BMD) in 388 premenopausal (31.18 +/- 5.92 years) and 169 postmenopausal (58.90 +/- 6.27 years) Chinese women. The BMD of spine and hip was measured by dual-energy X-ray absorptiometry (DEXA). All the study subjects were genotyped at the HindIII site of the BGP gene by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) detecting methods. The BGP alleles were designated according to the absence ( H) or presence ( h) of the HindIII restriction site. We did not find any significant difference in spine and hip BMD across BGP genotypes in either pre- or postmenopausal women or the combined group. Our result is not consistent with recent reports that the HindIII marker of the BGP gene is associated with osteoporosis. The different findings may reflect inter-population differences in the association (i.e., linkage disequilibrium) of molecular markers with BMD, and indicate the limit of using the HindIII marker of the BGP gene as a genetic marker to discern women susceptible to low BMD and thus osteoporosis in Chinese.

  8. The phantom limb in dreams.

    PubMed

    Brugger, Peter

    2008-12-01

    Mulder and colleagues [Mulder, T., Hochstenbach, J., Dijkstra, P. U., Geertzen, J. H. B. (2008). Born to adapt, but not in your dreams. Consciousness and Cognition, 17, 1266-1271.] report that a majority of amputees continue to experience a normally-limbed body during their night dreams. They interprete this observation as a failure of the body schema to adapt to the new body shape. The present note does not question this interpretation, but points to the already existing literature on the phenomenology of the phantom limb in dreams. A summary of published investigations is complemented by a note on phantom phenomena in the dreams of paraplegic patients and persons born without a limb. Integration of the available data allows the recommendation for prospective studies to consider dream content in more detail. For instance, "adaptation" to the loss of a limb can also manifest itself by seeing oneself surrounded by amputees. Such projective types of anosognosia ("transitivism") in nocturnal dreams should also be experimentally induced in normally-limbed individuals, and some relevant techniques are mentioned.

  9. Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons.

    PubMed

    Newland, P L; Kondoh, Y

    1997-06-01

    Imposed movements of the apodeme of the femoral chordotonal organ (FeCO) of the locust hind leg elicit resistance reflexes in extensor and flexor tibiae motor neurons. The synaptic responses of the fast and slow extensor tibiae motor neurons (FETi and SETi, respectively) and the spike responses of SETi were analyzed with the use of the Wiener kernel white noise method to determine their response properties. The first-order Wiener kernels computed from soma recordings were essentially monophasic, or low passed, indicating that the motor neurons were primarily sensitive to the position of the tibia about the femorotibial joint. The responses of both extensor motor neurons had large nonlinear components. The second-order kernels of the synaptic responses of FETi and SETi had large on-diagonal peaks with two small off-diagonal valleys. That of SETi had an additional elongated valley on the diagonal, which was accompanied by two off-diagonal depolarizing peaks at a cutoff frequency of 58 Hz. These second-order components represent a half-wave rectification of the position-sensitive depolarizing response in FETi and SETi, and a delayed inhibitory input to SETi, indicating that both motor neurons were directionally sensitive. Model predictions of the responses of the motor neurons showed that the first-order (linear) characterization poorly predicted the actual responses of FETi and SETi to FeCO stimulation, whereas the addition of the second-order (nonlinear) term markedly improved the performance of the model. Simultaneous recordings from the soma and a neuropilar process of FETi showed that its synaptic responses to FeCO stimulation were phase delayed by about -30 degrees at 20 Hz, and reduced in amplitude by 30-40% when recorded in the soma. Similar configurations of the first and second-order kernels indicated that the primary process of FETi acted as a low-pass filter. Cross-correlation between a white noise stimulus and a unitized spike discharge of SETi again

  10. Limbs' postischemic revascularization is not improved by losartan treatment in diabetic rats.

    PubMed

    Fallahzadeh, A; Khazaei, M

    2014-01-01

    Most physiological actions of angiotensin II (Ang II) on cardiovascular system are mediated by angiotensin type 1 receptor (AT1R). Since peripheral artery disease is one of the most important complications of diabetes, in this study, we aimed to investigate the effect of losartan, an AT1R blocker, on skeletal muscle angiogenesis in diabetic hind limb ischemic rats. Twenty four male Wistar rats were randomly divided into four groups as follow: diabetic sham; diabetic sham + losartan (15 mg/kg/day); diabetic hindlimb ischemia; diabetic hindlimb ischemia + losartan. For induction of diabetes, streptozotocin was injected (55 mg/kg; i.p.). The animals were sacrificed after 21 days and the serum concentrations of vascular endothelial growth factor (VEGF), soluble VEGF receptor-1 (sFlt-1), nitric oxide (NO), capillary density, and capillary to fiber (cap⁄fib) ratio in ischemic legs were evaluated. The serum NO concentrations were significantly decreased, sFlt-1 concentrations increased, and VEGF concentrations did not significantly change after experiment in diabetic sham and diabetic hind limb ischemic rats. Administration of losartan did not induce significant changes in serum NO, sFlt-1, and VEGF concentrations (p>0.05). Capillary density and cap⁄fib ratio in ischemic leg of diabetic rats were not affected by losartan treatment (p>0.05). AT1R blocker, losartan, was not able to restore neovascularization in the ischemic leg of diabetic animals. Therefore, based on the present data, the losartan cannot be considered for treatment or prevention of peripheral artery disease in diabetic subjects.

  11. [Mirror therapy for phantom limb pain--a systematic review].

    PubMed

    Seidel, Stefan; Kasprian, Gregor; Sycha, Thomas; Auff, Eduard

    2009-01-01

    The aim of this review was to evaluate the evidence for the treatment of phantom limb pain with mirror therapy. Randomised controlled studies were identified by a systematic search strategy in the databases "Medline" and "The Cochrane Library". The studies were evaluated using the quality criteria of the JADAD-scale. Three small-sized randomised controlled studies were identified. Unfortunately, these studies lacked methodological quality. One of them found a significant decrease of phantom pain after four weeks of daily mirror therapy sessions. Two other studies could not find a significant difference in the reduction of phantom limb pain between intervention- and control-groups. To date, there is only circumstantial evidence for mirror therapy in phantom pain. Hence, no firm recommendations regarding this treatment option are possible. More sufficiently powered randomised controlled studies with high methodological quality are mandatory to investigate the analgesic effect of mirror therapy in phantom limb pain.

  12. Phantom limb syndrome: a review.

    PubMed

    Chahine, Lama; Kanazi, Ghassan

    2007-06-01

    Phantom limb syndrome is a condition in which patients experience sensations, whether painful or otherwise, in a limb that does not exist. It has been reported to occur in 80-100% of amputees, and typically has a chronic course, often resistant to treatment. Risk factors include the presence of preoperative pain, traumatic amputation, and the type of anesthetic procedure used during amputation. Several pathophysiologic theories have been proposed, including spinal mechanisms, central sensitization, and somatosensory cortical rearrangements, and while recent studies have shed light on some interesting and significant data, a lot remains to be understood. Treatments include pharmacologic, mechanical, and behavioral modalities, but substantial efficacy in well-designed, randomized controlled trials has yet to be demonstrated. Phantom limb syndrome continues to be a difficult condition to both understand and treat.

  13. Automated lower limb prosthesis design

    NASA Astrophysics Data System (ADS)

    Bhatia, Gulab H.; Commean, Paul K.; Smith, Kirk E.; Vannier, Michael W.

    1994-09-01

    The design of lower limb prostheses requires definitive geometric data to customize socket shape. Optical surface imaging and spiral x-ray computed tomography were applied to geometric analysis of limb residua in below knee (BK) amputees. Residua (limb remnants after amputation) of BK amputees were digitized and measured. Surface (optical) and volumetric (CT) data of the residuum were used to generate solid models and specify socket shape in (SDRC I-DEAS) CAD software. Volume measurements on the solid models were found to correspond within 2% of surface models and direct determinations made using Archimedean weighing. Anatomic 3D reconstruction of the residuum by optical surface and spiral x-ray computed tomography imaging are feasible modalities for prosthesis design.

  14. Primary upper-limb lymphoedema.

    PubMed

    Vignes, S; Arrault, M; Yannoutsos, A; Blanchard, M

    2013-02-01

    Lymphoedema is a general term used to designate pathological, regional accumulation of protein-rich fluid. It can be either primary or secondary, and mainly occurs after cancer treatment. To analyse the clinical and lymphoscintigraphic characteristics of primary upper-limb lymphoedema (ULL). All of the patients with ULL were recruited at a single Department of Lymphology between January 2007 and December 2011. In total, 60 patients (33 female, 27 male) were enrolled. For the 54 noncongenital lymphoedemas, the mean age at onset was 38·5 (range 3-82) years. Lymphoedema was unilateral in 51 patients (85%). It always affected the hand, and less often the forearm (55%) or upper arm (23%). Eleven patients (18%) developed cellulitis after onset of lymphoedema, and 21 patients (35%) had associated lower-limb lymphoedema (LLL). Forty-six patients (with 49 lymphoedematous limbs) underwent lymphoscintigraphy: axillary lymph node uptake was diminished in 18 (37%), absent in 24 (49%) and normal in seven limbs (14%). Among the 43 patients with unilateral lymphoedema and lymphoscintigraphy, 28 had epitrochlear node visualization, suggesting a rerouting through the deep lymphatic system, with 15 only on the lymphoedematous limb and 22 on the contralateral nonlymphoedematous limb. The median follow-up period was 103 months, and 57/60 patients (95%) considered their lymphoedema to be stable. Primary ULL appears later in life than LLL, without predominance in either sex. Infectious complications are rare and patients considered the lymphoedema volume stable throughout life. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  15. Apparatus for determining changes in limb volume

    NASA Technical Reports Server (NTRS)

    Bhagat, P. K.; Wu, V. C. (Inventor)

    1981-01-01

    Measuring apparatus for determining changes in the volume of limbs or other boty extremities by determining the cross-sectional area of such limbs many comprise a transmitter including first and second transducers for positioning on the surface of the limb at a predetermined distance there between, and a receiver including a receiver crystal for positioning on the surface of the limb. The distance between the receiver crystal and the first and second transducers are represented by respective first and second chords of the cross-section of the limb and the predetermined distance between the first and second transducers is represented by a third chord of the limb cross section.

  16. Comparison of models to identify lame cows based on gait and lesion scores, and limb movement variables.

    PubMed

    Rajkondawar, P G; Liu, M; Dyer, R M; Neerchal, N K; Tasch, U; Lefcourt, A M; Erez, B; Varner, M A

    2006-11-01

    Bovine lameness results in pain and suffering in cattle and economic loss for producers. A system for automatically detecting lame cows was developed recently that measures vertical force components attributable to individual limbs. These measurements can be used to calculate a number of limb movement variables. The objective of this investigation was to explore whether gait scores, lesion scores, or combined gait and lesion scores were more effectively captured by a set of 5 limb movement variables. A set of 700 hind limb examinations was used to create gait-based, lesion-based, and combined (gait- and lesion-based) models. Logistic regression models were constructed using 1, 2, or 3 d of measurements. Resulting models were tested on cows not used in modeling. The accuracy of lesion-score models was superior to that of gait-score models; lesion-based models generated greater values of areas under the receiving operating characteristic curves (range 0.75 to 0.84) and lower mean-squared errors (0.13 to 0.16) compared with corresponding values for the gait-based models (0.63 to 0.73 and 0.26 to 0.31 for receiving operating characteristic and mean-squared errors, respectively). These results indicate that further model development and investigation could generate automated and objective methods of lameness detection in dairy cattle.

  17. Formation and ossification of limb elements in Trachemys scripta and a discussion of autopodial elements in turtles.

    PubMed

    Sheil, Christopher A; Portik, Daniel

    2008-06-01

    Though sequences of formation and ossification of bony elements have been described for many taxa, controversy surrounds the formation of limb elements in turtles. Three hypotheses for patterns of formation of autopodial elements have been proposed, differing primarily in the origin of Distal Carpal/Tarsal 3, the digital arch, and Centrale 4. Patterns of formation and ossification of limb elements are described for Trachemys scripta. These patterns are compared to similar data for representatives of four families of turtles (Cheloniidae, Chelydridae, Emydidae, and Trionychidae). Hypotheses of limb formation are compared in the context of new and published data. Three species (Trachemys scripta, Chrysemys picta, and Chelydra serpentina) suggest that Distal Carpal 3 forms by branching from the ulnare, whereas Distal Carpal 3 may branch from Distal Carpal 4 in Macrochelys temminckii and Chelonia mydas; data from Graptemys nigrinoda, Apalone spinifera, and Eretmochelys imbricata did not provide evidence for the origin of Distal Carpal 3. Centrale 4 was not observed to branch from the ulnare and apparently arises by de-novo condensation. Distal Carpal 4 did not branch from Centrale 4 in any species. Until the developmental origins of Distal Carpal 3 and Centrale 4 are understood, interspecific variation in the origin of these elements remains, and may explain some of the observed differences. Trends of ossification in the fore- and hind limb autopodium also are summarized. Homology of elements in pedal Digit V is discussed, and we suggest that the hooked proximal element of this digit be recognized as Distal Tarsal 5.

  18. Technical note: Effects of attachment of hind teats before cleaning and attachment of front teats on milking characteristics in automatic milking systems.

    PubMed

    Besier, J; Schüpbach-Regula, G; Wellnitz, O; Bruckmaier, R M

    2017-04-01

    Milking characteristics differ between the 4 quarters of a dairy cow udder. In particular, milking time is mostly prolonged in hind quarters compared with front quarters because of the usually higher amount of stored milk. The standard milking routine (STDMR) in both conventional and automatic milking systems (AMS) consists of teat preparation of all 4 quarters, followed by attachment of the 4 teat cups, regardless of the distribution of milk between quarters. In the current study, an alternative teat preparation and milking routine (ALTMR) in AMS was tested, which consisted of cleaning and starting the milking of hind teats before cleaning and attachment of front teats. The hypothesis was based on the fact that hind quarters have usually a longer milking time than front quarters. Starting the milking of hind quarters while the front teats are being cleaned may reduce the difference in the end of milking between front and hind quarters and thus reduce total milking time. Both routines were tested on 5 Swedish dairy farms equipped with AMS in a 4-wk experiment in which treatments were alternated weekly. Total milk yield did not differ between treatments. Machine-on time (MOT) was longer in ALTMR than in STDMR because the difference in milking time between hind and front quarters was less than the time needed to prepare the front teats. However, the longer MOT in ALTMR was compensated by a shorter total preparation time, including the attachment of the first teat cup, as only the hind teats (instead of all 4 teats) were cleaned before milking was started. This resulted in a similar total milking time from start of cleaning of the first quarter until the end of milking of the last quarter in both treatments. Because of the prolonged MOT, average milk flow rate was lower in ALTMR than STDMR. Peak flow rate was higher in ALTMR than STDMR, but only in teat cups 1 (first attached, hind quarter) and 3 (third attached, front quarter), whereas main milk flow was higher in

  19. The migration and loss of human primordial germ stem cells from the hind gut epithelium towards the gonadal ridge.

    PubMed

    Mamsen, Linn Salto; Brøchner, Christian Beltoft; Byskov, Anne Grete; Møllgard, Kjeld

    2012-01-01

    Human primordial germ cells (PGCs) can be recognized in the yolk sac wall, from 3-4 weeks post conception (wpc), in the hind gut epithelium from week 4 and in the gonadal area from early week 5. The objective of this study was to map the migration route of PGCs and elucidate the role of the nervous system in this process. Sixteen human specimens, 5-14 wpc obtained from legal abortions were included. On serial paraffin sections, PGCs were detected immunohistochemically by expression of OCT4 and c-Kit, nerve fibers by β-III-tubulin and stem cell factor (SCF) as a possible chemoattractive cue for PGC migration. PGCs were present in the hind gut epithelium, in the mesenchyme of the dorsal mesentery and in the developing gonadal ridge of 4-6 wpc embryos, prior to connections between the enteric and the sympathetic nervous system. From 6 wpc onwards, the PGCs travelled along the developing nerve fibers from the wall of the hind gut via the dorsal mesentery to the midline of the dorsal wall and laterally into the gonads. Numerous PGCs were still present in the nervous system by 14 wpc. PGCs in 4-5 wpc embryos are suggested to leave the gut epithelium by EMT-like transition. SCF may facilitate further migration, but after establishment of connections between the enteric and sympathetic nervous systems. PGCs follow sympathetic nerve fibers towards the gonads. PGCs failing to exit the nerve branches at the gonadal site, may continue along the sympathetic trunk ending up in other organs where they may form germ cell tumors if not eliminated by apoptosis.

  20. Distorting limb design for dynamically similar locomotion.

    PubMed Central

    Bullimore, Sharon R.; Burn, Jeremy F.

    2004-01-01

    Terrestrial mammals of different sizes tend to move in a dynamically similar manner when travelling at speeds corresponding to equal values of the Froude number. This means that certain dimensionless locomotor parameters, including peak vertical ground reaction force relative to body weight, stride length relative to leg length and duty factor, are independent of animal size. The Froude number is consequently used to define equivalent speeds for mammals of different sizes. However, most musculoskeletal-tissue properties, including tendon elastic modulus, do not scale in a dynamically similar manner. Therefore, mammals could not be completely dynamically similar, even if perfectly geometrically similar. We argue that, for mammals to move in a dynamically similar manner, they must exhibit systematic 'distortions' of limb structure with size that compensate for the size independence of the tendon elastic modulus. An implication of this is that comparing mammals at equal Froude numbers cannot remove all size-dependent effects. We show that the previously published allometry of limb moment arms is sufficient to compensate for size-independent tendon properties. This suggests that it is an important factor in allowing mammals of different sizes to move in a dynamically similar manner. PMID:15058440

  1. Learning about Vertebrate Limb Development

    ERIC Educational Resources Information Center

    Liang, Jennifer O.; Noll, Matthew; Olsen, Shayna

    2014-01-01

    We have developed an upper-level undergraduate laboratory exercise that enables students to replicate a key experiment in developmental biology. In this exercise, students have the opportunity to observe live chick embryos and stain the apical ectodermal ridge, a key tissue required for development of the vertebrate limb. Impressively, every…

  2. Learning about Vertebrate Limb Development

    ERIC Educational Resources Information Center

    Liang, Jennifer O.; Noll, Matthew; Olsen, Shayna

    2014-01-01

    We have developed an upper-level undergraduate laboratory exercise that enables students to replicate a key experiment in developmental biology. In this exercise, students have the opportunity to observe live chick embryos and stain the apical ectodermal ridge, a key tissue required for development of the vertebrate limb. Impressively, every…

  3. Psychophysical correlates of phantom limb experience.

    PubMed

    Katz, J

    1992-09-01

    Phantom limb phenomena were correlated with psychophysiological measures of peripheral sympathetic nervous system activity measured at the amputation stump and contralateral limb. Amputees were assigned to one of three groups depending on whether they reported phantom limb pain, non-painful phantom limb sensations, or no phantom limb at all. Skin conductance and skin temperature were recorded continuously during two 30 minute sessions while subjects continuously monitored and rated the intensity of any phantom limb sensation or pain they experienced. The results from both sessions showed that mean skin temperature was significantly lower at the stump than the contralateral limb in the groups with phantom limb pain and non-painful phantom limb sensations, but not among subjects with no phantom limb at all. In addition, stump skin conductance responses correlated significantly with the intensity of non-painful phantom limb paresthesiae but not other qualities of sensation or pain. Between-limb measures of pressure sensitivity were not significantly different in any group. The results suggest that the presence of a phantom limb, whether painful or painless, is related to the sympathetic-efferent outflow of cutaneous vasoconstrictor fibres in the stump and stump neuromas. The hypothesis of a sympathetic-efferent somatic-afferent mechanism involving both sudomotor and vasoconstrictor fibres is proposed to explain the relationship between stump skin conductance responses and non-painful phantom limb paresthesiae. It is suggested that increases in the intensity of phantom limb paresthesiae follow bursts of sympathetic activity due to neurotransmitter release onto apposing sprouts of large diameter primary afferents located in stump neuromas, and decreases correspond to periods of relative sympathetic inactivity. The results of the study agree with recent suggestions that phantom limb pain is not a unitary syndrome, but a symptom class with each class subserved by

  4. Characterizing the Evolution of Wide-Gauge Features in Stylopodial Limb Elements of Titanosauriform Sauropods via Geometric Morphometrics.

    PubMed

    Ullmann, Paul V; Bonnan, Matthew F; Lacovara, Kenneth J

    2017-09-01

    Wide-gauge posture of titanosauriform sauropods remains an enigmatic peculiarity among terrestrial vertebrates. Here, two-dimensional geometric morphometrics and thin plate splines analyses were used to quantitatively analyze shape differences among sauropodomorph humeri and femora to identify how these elements may differ according to body gauge. Results demonstrate that titanosauriforms generally possess proportionately gracile humeri in comparison to other sauropods, with relatively more medially oriented humeral heads and proximally located deltopectoral crests. Myological repercussions of these features demonstrate a relative sacrificing of muscular torque for forelimb abduction/adduction in exchange for minimization of necessary muscle contraction to generate the same degree of limb excursion. Regarding femora, titanosauriforms possess significantly broader femora mediolaterally than other sauropods, with comparatively proximomedially placed fourth trochanters. Canonical variates results also identify a trend for titanosauriform femora to present distal condyles that are more frequently perpendicular to the long axis of the shaft or beveled medially. All of these femoral shape characteristics are expressed to the greatest degree by titanosaurians. Myologically, mediolateral femoral broadening increases relative mechanical advantages for hind limb abductor and adductor musculature. This supports previous hypotheses that suggested titanosauriforms were capable of a greater degree of hind limb abduction and adduction. This capability may have been necessary to maintain dynamic stability during wide-gauge locomotion over uneven terrain. Overall, our results corroborate previous qualitative assessments of wide-gauge attributes, afford new insights into statistically significant but obscure shape patterns, and add new clarity to aspects of the functional morphology of wide-gauge posture. Anat Rec, 300:1618-1635, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  5. Construction and validation of a microprocessor controlled extracorporal circuit in rats for the optimization of isolated limb perfusion.

    PubMed

    Gürtler, Ulrich; Fuchs, Peter; Stangelmayer, Achim; Bernhardt, Günther; Buschauer, Armin; Spruss, Thilo

    2004-12-01

    Although a few experimental approaches to isolated limb perfusion (ILP) are described in the literature, none of these animal models mimics the clinical perfusion techniques adequately to improve the technique of ILP on the basis of valid preclinical data. Therefore, we developed an ILP setup in rats allowing online monitoring of essential perfusion parameters such as temperature (in perfusate, various tissues, and rectum), pH (perfusate), perfusion pressure, and O(2) concentration (in perfusate, tissue), by a tailor-made data acquisition system. This setup permits close supervision of vital parameters during ILP. Various interdependencies, concerning the flow rate and the pressure of perfusate as well as tissue oxygenation were registered. For the measurement of pO(2) values in the perfusate and in different regions of the perfused hind limb, a novel type of microoptode based on quenching of a fluorescent dye was devised. Stable normothermic (37 degrees C) perfusion conditions were maintained at a constant perfusion pressure in the range of 40-60 mm Hg by administration of the spasmo lytic moxaverine (0.5 mg/mL of perfusate as initial dose) at a perfusate flow rate of 0.5 mL/min for 60 min. At the end of an ILP, there were no signs of tissue damage, neither concerning laboratory data (K(+), myoglobin, creatine kinase, lactic dehydrogenase) nor histopathological criteria. The reported ILP model is not only well suited to investigate the effects of hyperthermia but also to assess the efficacy of new antineoplastic approaches, when nude rats, bearing human tumours in the hind limbs, are used.

  6. Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning.

    PubMed

    Ren, C; Gao, X; Steinberg, G K; Zhao, H

    2008-02-19

    Remote ischemic preconditioning is an emerging concept for stroke treatment, but its protection against focal stroke has not been established. We tested whether remote preconditioning, performed in the ipsilateral hind limb, protects against focal stroke and explored its protective parameters. Stroke was generated by a permanent occlusion of the left distal middle cerebral artery (MCA) combined with a 30 min occlusion of the bilateral common carotid arteries (CCA) in male rats. Limb preconditioning was generated by 5 or 15 min occlusion followed with the same period of reperfusion of the left hind femoral artery, and repeated for two or three cycles. Infarct was measured 2 days later. The results showed that rapid preconditioning with three cycles of 15 min performed immediately before stroke reduced infarct size from 47.7+/-7.6% of control ischemia to 9.8+/-8.6%; at two cycles of 15 min, infarct was reduced to 24.7+/-7.3%; at two cycles of 5 min, infarct was not reduced. Delayed preconditioning with three cycles of 15 min conducted 2 days before stroke also reduced infarct to 23.0+/-10.9%, but with two cycles of 15 min it offered no protection. The protective effects at these two therapeutic time windows of remote preconditioning are consistent with those of conventional preconditioning, in which the preconditioning ischemia is induced in the brain itself. Unexpectedly, intermediate preconditioning with three cycles of 15 min performed 12 h before stroke also reduced infarct to 24.7+/-4.7%, which contradicts the current dogma for therapeutic time windows for the conventional preconditioning that has no protection at this time point. In conclusion, remote preconditioning performed in one limb protected against ischemic damage after focal cerebral ischemia.

  7. The accessory limb model: an alternative experimental system of limb regeneration.

    PubMed

    Endo, Tetsuya; Gardiner, David M; Makanae, Aki; Satoh, Akira

    2015-01-01

    Accessory limb model (ALM) was developed as an experimental model and functional assay for limb regeneration. The ALM provides several ways to identify pathways and test for signaling molecules that regulate limb regeneration. Here, we summarize the history of the ALM and describe the specific details involved in inducing ectopic blastemas and limbs from a skin wound on the side of the arm.

  8. Gait changes in a line of mice artificially selected for longer limbs

    PubMed Central

    Sparrow, Leah M.; Pellatt, Emily; Yu, Sabrina S.; Raichlen, David A.; Pontzer, Herman

    2017-01-01

    In legged terrestrial locomotion, the duration of stance phase, i.e., when limbs are in contact with the substrate, is positively correlated with limb length, and negatively correlated with the metabolic cost of transport. These relationships are well documented at the interspecific level, across a broad range of body sizes and travel speeds. However, such relationships are harder to evaluate within species (i.e., where natural selection operates), largely for practical reasons, including low population variance in limb length, and the presence of confounding factors such as body mass, or training. Here, we compared spatiotemporal kinematics of gait in Longshanks, a long-legged mouse line created through artificial selection, and in random-bred, mass-matched Control mice raised under identical conditions. We used a gait treadmill to test the hypothesis that Longshanks have longer stance phases and stride lengths, and decreased stride frequencies in both fore- and hind limbs, compared with Controls. Our results indicate that gait differs significantly between the two groups. Specifically, and as hypothesized, stance duration and stride length are 8–10% greater in Longshanks, while stride frequency is 8% lower than in Controls. However, there was no difference in the touch-down timing and sequence of the paws between the two lines. Taken together, these data suggest that, for a given speed, Longshanks mice take significantly fewer, longer steps to cover the same distance or running time compared to Controls, with important implications for other measures of variation among individuals in whole-organism performance, such as the metabolic cost of transport. PMID:28243533

  9. Noninvasive Multimodal Imaging to Predict Recovery of Locomotion after Extended Limb Ischemia.

    PubMed

    Radowsky, Jason S; Caruso, Joseph D; Luthra, Rajiv; Bradley, Matthew J; Elster, Eric A; Forsberg, Jonathan A; Crane, Nicole J

    2015-01-01

    Acute limb ischemia is a common cause of morbidity and mortality following trauma both in civilian centers and in combat related injuries. Rapid determination of tissue viability and surgical restoration of blood flow are desirable, but not always possible. We sought to characterize the response to increasing periods of hind limb ischemia in a porcine model such that we could define a period of critical ischemia (the point after which irreversible neuromuscular injury occurs), evaluate non-invasive methods for characterizing that ischemia, and establish a model by which we could predict whether or not the animal's locomotion would return to baselines levels post-operatively. Ischemia was induced by either application of a pneumatic tourniquet or vessel occlusion (performed by clamping the proximal iliac artery and vein at the level of the inguinal ligament). The limb was monitored for the duration of the procedure with both 3-charge coupled device (3CCD) and infrared (IR) imaging for tissue oxygenation and perfusion, respectively. The experimental arms of this model are effective at inducing histologically evident muscle injury with some evidence of expected secondary organ damage, particularly in animals with longer ischemia times. Noninvasive imaging data shows excellent correlation with post-operative functional outcomes, validating its use as a non-invasive means of viability assessment, and directly monitors post-occlusive reactive hyperemia. A classification model, based on partial-least squares discriminant analysis (PLSDA) of imaging variables only, successfully classified animals as "returned to normal locomotion" or "did not return to normal locomotion" with 87.5% sensitivity and 66.7% specificity after cross-validation. PLSDA models generated from non-imaging data were not as accurate (AUC of 0.53) compared the PLSDA model generated from only imaging data (AUC of 0.76). With some modification, this limb ischemia model could also serve as a means on which

  10. Revascularization and Muscle Adaptation to Limb Demand Ischemia in Diet Induced Obese Mice

    PubMed Central

    Albadawi, Hassan; Tzika, Aria; Rask-Madsen, Christian; Crowley, Lindsey M.; Koulopoulos, Michael W.; Yoo, Hyung-Jin; Watkins, Michael T.

    2016-01-01

    Background Obesity and type 2 diabetes are major risk factors for peripheral arterial disease (PAD) in humans which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). Materials and Methods DIO mice (n=7) underwent unilateral femoral artery ligation (FAL) and recovered for 2-weeks followed by 4-weeks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia group (n=7) had FAL without exercise. The contralateral limb muscles of sedentary ischemia served as control. Muscles were examined for capillary density, myofiber cross-sectional area (CSA), cytokine levels, and phosphorylation of STAT3 and ERK1/2. Results Exercise significantly enhanced capillary density (p<0.01) and markedly lowered CSA (p<0.001) in demand ischemia compared to sedentary ischemia. These findings coincided with a significant increase in G-CSF (p<0.001) and IL-7 (p<0.01) levels. In addition, phosphorylation of STAT3 and ERK1/2 (p<0.01) were increased while UCP-1 and MCP-1 protein levels were lower (p<0.05) without altering VEGF and TNFα protein levels. Demand ischemia increased the PGC1α mRNA (p<0.001) without augmenting PGC1α protein levels. Conclusions Exercise induced limb demands ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in TNFα, lower VEGF and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. PMID:27620999

  11. Spectroscopy at the solar limb. I. Average off-limb profiles and Doppler shifts of Ca II H

    NASA Astrophysics Data System (ADS)

    Beck, C. A. R.; Rezaei, R.

    2011-07-01

    Aims: We present constraints on the thermodynamical structure of the chromosphere from ground-based observations of the Ca ii H line profile near and off the solar limb. Methods: We obtained a slit-spectrograph data set of the Ca ii H line with a high signal-to-noise ratio in a field of view extending 20'' across the limb. We analyzed the spectra for the characteristic properties of average and individual off-limb spectra. We used various tracers of the Doppler shifts, such as the location of the absorption core, the ratio of the two emission peaks H2V and H2R, and intensity images at a fixed wavelength. Results: The average off-limb profiles show a smooth variation with increasing limb distance. The line width increases up to a height of about 2 Mm above the limb. The profile shape is fairly symmetric with nearly identical H2V and H2R intensities; at a height of 5 Mm, it changes into a single Gaussian without emission peaks. We find that all off-limb spectra show large Doppler shifts that fluctuate on the smallest resolved spatial scales. The variation is more prominent in cuts parallel to the solar limb than on those perpendicular to it. As far as individual structures can be unequivocally identified at our spatial resolution, we find a specific relation between intensity enhancements and Doppler shifts: elongated brightenings are often flanked all along their extension by velocities in opposite directions. Conclusions: The average off-limb spectra of Ca ii H present a good opportunity to test static chromospheric atmosphere models because they lack the photospheric contribution that is present in disk-center spectra. We suggest that the observed relation between intensity enhancements and Doppler shifts could be caused by waves propagating along the surfaces of flux tubes: an intrinsic twist of the flux tubes or a wave propagation inclined to the tube axis would cause a helical shape of the Doppler excursions, visible as opposite velocity at the sides of the

  12. Thermographic evaluation of hind paw skin temperature and functional recovery of locomotion after sciatic nerve crush in rats

    PubMed Central

    Z. Sacharuk, Viviane; A. Lovatel, Gisele; Ilha, Jocemar; Marcuzzo, Simone; Severo do Pinho, Alexandre; L. Xavier, Léder; A. Zaro, Milton; Achaval, Matilde

    2011-01-01

    INTRODUCTION: Peripheral nerves are often damaged by direct mechanical injury, diseases, and tumors. The peripheral nerve injuries that result from these conditions can lead to a partial or complete loss of motor, sensory, and autonomic functions, which in turn are related to changes in skin temperature, in the involved segments of the body. The aim of this study was to evaluate the changes in hind paw skin temperature after sciatic nerve crush in rats in an attempt to determine whether changes in skin temperature correlate with the functional recovery of locomotion. METHODS: Wistar rats were divided into three groups: control (n = 7), sham (n = 25), and crush (n = 25). All groups were subjected to thermographic, functional, and histological assessments. RESULTS: ΔT in the crush group was different from the control and sham groups at the 1st, 3rd and 7rd postoperative days (p<0.05). The functional recovery from the crush group returned to normal values between the 3rd and 4th week post-injury, and morphological analysis of the nerve revealed incomplete regeneration at the 4th week after injury. DISCUSSION: This study is the first demonstration that sciatic nerve crush in rats induces an increase in hind paw skin temperature and that skin temperature changes do not correlate closely with functional recovery PMID:21876984

  13. No evidence of association of the osteocalcin gene HindIII polymorphism with bone mineral density in Chinese women.

    PubMed

    Jiang, D K; Xu, F H; Liu, M Y; Chen, X D; Li, M X; Liu, Y J; Shen, H; Deng, H W

    2007-01-01

    Osteoporosis is a major health problem, mainly characterized by low bone mineral density (BMD). Osteocalcin (also known as BGP, for bone Gla protein) is a significant biomarker of bone turnover and thus the BGP gene has been considered as an important candidate gene for osteoporosis. A few studies on the relationship between variants of the BGP gene and BMD variation, via traditional association and/or linkage methods, have yielded conflicting results. In the present study, we simultaneously tested linkage and/or association of the BGP HindIII polymorphism with BMD in a large cohort of pre-menopausal Chinese women. A total of 1,263 subjects from 402 Chinese nuclear families were examined. Each family consists of both parents and at least one daughter aged between 20-45 years. BMDs at the lumbar spine and hip were measured by dual-energy X-ray absorptiometry (DXA). Using the QTDT (quantitative transmission disequilibrium test) program, we did not detect significant evidence of linkage or association between the BGP HindIII polymorphisms and the BMD variation at any skeletal site. Our data do not support the BGP gene having a major effect on BMD variation in pre-menopausal Chinese women.

  14. LIMB Demonstration Project Extension. Quarterly report no. 5, May, June and July 1988

    SciTech Connect

    Not Available

    1988-09-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  15. LIMB Demonstration Project Extension. Quarterly report no. 3, November, December 1987--January 1988

    SciTech Connect

    Not Available

    1988-03-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  16. Limb development in a primitive crustacean, Triops longicaudatus: subdivision of the early limb bud gives rise to multibranched limbs.

    PubMed

    Williams, T A; Müller, G B

    1996-11-01

    Recent advances in developmental genetics of Drosophila have uncovered some of the key molecules involved in the positioning and outgrowth of the leg primordia. Although expression patterns of these molecules have been analyzed in several arthropod species, broad comparisons of mechanisms of limb development among arthropods remain somewhat speculative since no detailed studies of limb development exist for crustaceans, the postulated sister group of insects. As a basis for such comparisons, we analysed limb development in a primitive branchiopod crustacean, Triops longicaudatus. Adults have a series of similar limbs with eight branches or lobes that project from the main shaft. Phalloidin staining of developing limbs buds shows the distal epithelial ridge of the early limb bud exhibits eight folds that extend in a dorsal ventral (D/V) arc across the body. These initial folds subsequently form the eight lobes of the adult limb. This study demonstrates that, in a primitive crustacean, branched limbs do not arise via sequential splitting. Current models of limb development based on Drosophila do not provide a mechanism for establishing eight branches along the D/V axis of a segment. Although the events that position limbs on a body segment appear to be conserved between insects and crustaceans, mechanisms of limb branching may not.

  17. Technologies Assessing Limb Bradykinesia in Parkinson's Disease.

    PubMed

    Hasan, Hasan; Athauda, Dilan S; Foltynie, Thomas; Noyce, Alastair J

    2017-01-01

    The MDS-UPDRS (Movement Disorders Society - Unified Parkinson's Disease Rating Scale) is the most widely used scale for rating impairment in PD. Subscores measuring bradykinesia have low reliability that can be subject to rater variability. Novel technological tools can be used to overcome such issues. To systematically explore and describe the available technologies for measuring limb bradykinesia in PD that were published between 2006 and 2016. A systematic literature search using PubMed (MEDLINE), IEEE Xplore, Web of Science, Scopus and Engineering Village (Compendex and Inspec) databases was performed to identify relevant technologies published until 18 October 2016. 47 technologies assessing bradykinesia in PD were identified, 17 of which offered home and clinic-based assessment whilst 30 provided clinic-based assessment only. Of the eligible studies, 7 were validated in a PD patient population only, whilst 40 were tested in both PD and healthy control groups. 19 of the 47 technologies assessed bradykinesia only, whereas 28 assessed other parkinsonian features as well. 33 technologies have been described in additional PD-related studies, whereas 14 are not known to have been tested beyond the pilot phase. Technology based tools offer advantages including objective motor assessment and home monitoring of symptoms, and can be used to assess response to intervention in clinical trials or routine care. This review provides an up-to-date repository and synthesis of the current literature regarding technology used for assessing limb bradykinesia in PD. The review also discusses the current trends with regards to technology and discusses future directions in development.

  18. Limb development: a paradigm of gene regulation.

    PubMed

    Petit, Florence; Sears, Karen E; Ahituv, Nadav

    2017-04-01

    The limb is a commonly used model system for developmental biology. Given the need for precise control of complex signalling pathways to achieve proper patterning, the limb is also becoming a model system for gene regulation studies. Recent developments in genomic technologies have enabled the genome-wide identification of regulatory elements that control limb development, yielding insights into the determination of limb morphology and forelimb versus hindlimb identity. The modulation of regulatory interactions - for example, through the modification of regulatory sequences or chromatin architecture - can lead to morphological evolution, acquired regeneration capacity or limb malformations in diverse species, including humans.

  19. Managing residual limb hyperhidrosis in wounded warriors.

    PubMed

    Pace, Sarah; Kentosh, Joshua

    2016-06-01

    Residual limb dermatologic problems are a common concern among young active traumatic amputee patients who strive to maintain an active lifestyle. Hyperhidrosis of residual limbs is a recognized inciting factor that often contributes to residual limb dermatoses and is driven by the design of the prosthetic liner covering the residual limb. Treatment of hyperhidrosis in this population presents a unique challenge. Several accepted treatments of hyperhidrosis can offer some relief but have been limited by lack of results or side-effect profiles. Microwave thermal ablation has presented an enticing potential for residual limb hyperhidrosis.

  20. Allometric scaling for chemical restraint in greater Rheas (Rhea americana) with Tiletamine and Zolazepam

    PubMed Central

    2014-01-01

    Background Chemical restraint is of great importance in the clinical practice of wildlife animals. In such, interspecific allometric scaling proposes pharmacological doses to a wide range of species, based on previously known doses for domestic animals and the target animal’s body mass. The objective was to compare chemical restraint responses in the greater rhea (Rhea americana) with conventional doses of tiletamine/zolazepam, found in the literature for the species, and with doses calculated through interspecific allometric scaling extrapolation. From the Federal University of Piauí, six adult greater rheas (Rhea americana), three males and three females, were randomly selected to be subjects in this research. All six animals were submitted to two chemical restraint protocols with tiletamine and zolazepam, per intramuscular injection in the hind limb. The first protocol was composed of doses found on the literature for the species, while the second protocol used doses calculated by interspecific allometric scaling, with the domestic dog as model animal. Heart and respiratory rates, body temperature, eyelid reflex, digital pinch and metatarsal reflex were registered along with latency and ambulation times. Results The use of interspecific allometric scaling for chemical restraint with the combination tiletamine and zolazepam showed satisfying results, with great similarity to results obtained with conventional doses in Greater rheas. Conclusions Literature on chemical restraint and use of tiletamine and zolazepam in rheas is scarce. Chemical restraint is of extreme importance on these animals, due to their aggressive nature and low level of domesticity. This research may further establish the interspecific allometric scaling method as a viable tool for the veterinary physician in formulating anesthetic and chemical restraint protocols for wildlife animals. PMID:24625103

  1. BAG3 (Bcl-2-Associated Athanogene-3) Coding Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing Autophagy.

    PubMed

    McClung, Joseph M; McCord, Timothy J; Ryan, Terence E; Schmidt, Cameron A; Green, Tom D; Southerland, Kevin W; Reinardy, Jessica L; Mueller, Sarah B; Venkatraman, Talaignair N; Lascola, Christopher D; Keum, Sehoon; Marchuk, Douglas A; Spangenburg, Espen E; Dokun, Ayotunde; Annex, Brian H; Kontos, Christopher D

    2017-07-18

    Critical limb ischemia is a manifestation of peripheral artery disease that carries significant mortality and morbidity risk in humans, although its genetic determinants remain largely unknown. We previously discovered 2 overlapping quantitative trait loci in mice, Lsq-1 and Civq-1, that affected limb muscle survival and stroke volume after femoral artery or middle cerebral artery ligation, respectively. Here, we report that a Bag3 variant (Ile81Met) segregates with tissue protection from hind-limb ischemia. We treated mice with either adeno-associated viruses encoding a control (green fluorescent protein) or 2 BAG3 (Bcl-2-associated athanogene-3) variants, namely Met81 or Ile81, and subjected the mice to hind-limb ischemia. We found that the BAG3 Ile81Met variant in the C57BL/6 (BL6) mouse background segregates with protection from tissue necrosis in a shorter congenic fragment of Lsq-1 (C.B6-Lsq1-3). BALB/c mice treated with adeno-associated virus encoding the BL6 BAG3 variant (Ile81; n=25) displayed reduced limb-tissue necrosis and increased limb tissue perfusion compared with Met81- (n=25) or green fluorescent protein- (n=29) expressing animals. BAG3(Ile81), but not BAG3(Met81), improved ischemic muscle myopathy and muscle precursor cell differentiation and improved muscle regeneration in a separate, toxin-induced model of injury. Systemic injection of adeno-associated virus-BAG3(Ile81) (n=9), but not BAG3(Met81) (n=10) or green fluorescent protein (n=5), improved ischemic limb blood flow and limb muscle histology and restored muscle function (force production). Compared with BAG3(Met81), BAG3(Ile81) displayed improved binding to the small heat shock protein (HspB8) in ischemic skeletal muscle cells and enhanced ischemic muscle autophagic flux. Taken together, our data demonstrate that genetic variation in BAG3 plays an important role in the prevention of ischemic tissue necrosis. These results highlight a pathway that preserves tissue survival and muscle

  2. Continuum limbed robots for locomotion

    NASA Astrophysics Data System (ADS)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  3. Norepinephrine stimulates mobilization of endothelial progenitor cells after limb ischemia.

    PubMed

    Jiang, Qijun; Ding, Shifang; Wu, Jianxiang; Liu, Xing; Wu, Zonggui

    2014-01-01

    During several pathological processes such as cancer progression, thermal injury, wound healing and hindlimb ischemia, the mobilization of endothelial progenitor cells (EPCs) mobilization was enhanced with an increase of sympathetic nerve activity and norepinephrine (NE) secretion, yet the cellular and molecular mechanisms involved in the effects of NE on EPCs has less been investigated. EPCs from BMs, peripheral circulation and spleens, the VEGF concentration in BM, skeletal muscle, peripheral circulation and spleen and angiogenesis in ischemic gastrocnemius were quantified in mice with hindlimbs ischemia. Systemic treatment of NE significantly increased EPCs number in BM, peripheral circulation and spleen, VEGF concentration in BM and skeletal muscle and angiogenesis in ischemic gastrocnemius in mice with hind limb ischemia, but did not affair VEGF concentration in peripheral circulation and spleen. EPCs isolated from healthy adults were cultured with NE in vitro to evaluate proliferation potential, migration capacity and phosphorylations of Akt and eNOS signal moleculars. Treatment of NE induced a significant increase in number of EPCs in the S-phase in a dose-dependent manner, as well as migrative activity of EPCs in vitro (p<0.05). The co-treatment of Phentolamine, I127, LY294002 and L-NAME with NE blocked the effects of NE on EPCs proliferation and migration. Treatment with NE significantly increased phosphorylation of Akt and eNOS of EPCs. Addition of phentolamine and I127 attenuated the activation of Akt/eNOS pathway, but metoprolol could not. Pretreatment of mice with either Phentolamine or I127 significantly attenuated the effects of NE on EPCs in vivo, VEGF concentration in BM, skeletal muscle and angiogenesis in ischemic gastrocnemius, but Metoprolol did not. These results unravel that sympathetic nervous system regulate EPCs mobilization and their pro-angiogenic capacity via α adrenoceptor, β 2 adrenoceptor and meanwhile Akt/eNOS signaling pathway.

  4. LIMB demonstration project extension and Coolside demonstration: A DOE assessment

    SciTech Connect

    National Energy Technology Laboratory

    2000-04-30

    The goal of the US Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have already reached the proof-of-concept stage. This document serves as a DOE post-project assessment of the CCT Round 1 project ``LIMB Demonstration Project Extension and Coolside Demonstration'', described in a report to Congress (Babcock and Wilcox 1987), a paper by DePero et al. (1992), and in a report by Goots et al. (1992). The original limestone injection multistage burner (LIMB) demonstration work was conducted by Babcock and Wilcox Company (B and W) beginning in 1984, under the sponsorship of the US Environmental Protection Agency (EPA) and the State of Ohio Coal Development Office (OCDO). In 1987, B and W and the Ohio Edison Company agreed to extend the full-scale demonstration of LIMB technology under the sponsorship of DOE through its CCT Program, and with support from OCDO and Consolidation Coal Company, now known as CONSOL. In a separate effort, CONSOL had been developing another flue gas desulfurization (FGD) technology known as the Coolside process. Both LIMB and Coolside use sorbent injection to remove SO{sub 2}. The LIMB process injects the sorbent into the furnace and the Coolside injects the sorbent into the flue gas duct. In addition, LIMB uses low-NO{sub x} burners to reduce NO{sub x} emissions; hence it is categorized as a combination SO{sub 2}/NO{sub x} control technology. To take advantage of synergism between the two processes, the CCT project was structured to incorporate demonstration of both the LIMB and Coolside processes. Coolside testing was accomplished between July 1989 and February 1990, and the LIMB Extension test program was conducted between April 1990 and August

  5. Development of body condition in hinds of Iberian red deer during gestation and its effects on calf birth weight and milk production.

    PubMed

    Carrión, Déborah; García, Andrés José; Gaspar-López, Enrique; Landete-Castillejos, Tomás; Gallego, Laureano

    2008-01-01

    Reproductive effort affects body reserves and subsequent ability to reproduce. In fact, the energy costs of gestation and lactation in hinds of red deer have a marked effect on maternal condition. The objectives of this study were to examine the development of hind monthly body condition during gestation in relation to reproductive rest, age and age class, just as its effects on total milk yield and calf birth weight. Eighty hinds of Iberian red deer were used as subjects during 2 years of study. They had ad libitum access to food and water. Animals were weighed weekly, and body condition was individually assessed. Milking was carried out under anesthesia with a milking machine followed by hand milking to collect the remaining milk. Age and reproductive rest influenced body condition, improving with age (coefficient: 0.10+/-0.01; P<0.001) and reproductive rest (mean+/-SEM, 3.75+/-0.05 vs. 3.25+/-0.02, with and without rest respectively; P<0.001). Hind age correlated positively with her body condition (R=0.62, P<0.001), however, when age class was included in the model, age was not significant. The greater the age class (up to age class 4) the greater the body condition; however, hinds of age class 5 had a lower body condition, but no significant differences were observed. Development of the body condition during gestation was different to age class 1 with respect to the others, just as between hinds that rested the preceding year and those that did not.

  6. Exposure of the cat limb to @5C for 5 hours increases capillary permeability

    SciTech Connect

    Zhang, J.X.; Porter, L.P.; Wolf, M.B. )

    1991-03-11

    The authors previous study showed that 1 hr exposure to {approximately}5C temperatures did not decrease the solvent drag reflection coefficient ({sigma}{sub f}) for total plasma proteins in the isolated, constant-flow perfused cat hind limb. The present study determined if 5 hrs of cold exposure could increase permeability (decrease {sigma}{sub f}). {sigma}{sub f} was measured with their IMB method after lowering limb temperature to 3-6C by cooling the perfusing blood and the ambient air. To prevent edema at this low temperature, venous pressure had to be lowered to just above venous collapse and flow to {lt}2 ml/min/100g. 1 hr exposure to {approximately}5C did not reduce {sigma}{sub f} from the 37C control, but 5 hrs of exposure at {approximately}5C significantly reduced {sigma}{sub f} from 0.87 to 0.69. Hence, 5 hrs of perfusion at these low temperatures can cause a non-freezing cold injury with an increase in capillary permeability and edema formation. Also, the edema is enhanced by an increase in capillary hydrostatic pressure secondary to a venous resistance increase.

  7. Dose Response in Rodents and Nonhuman Primates After Hydrodynamic Limb Vein Delivery of Naked Plasmid DNA

    PubMed Central

    Hegge, Julia O.; Zhang, Guofeng; Sebestyén, Magdolna G.; Noble, Mark; Griffin, Jacob B.; Pfannes, Loretta V.; Herweijer, Hans; Hagstrom, James E.; Braun, Serge; Huss, Thierry; Wolff, Jon A.

    2011-01-01

    Abstract The efficacy of gene therapy mediated by plasmid DNA (pDNA) depends on the selection of suitable vectors and doses. Using hydrodynamic limb vein (HLV) injection to deliver naked pDNA to skeletal muscles of the limbs, we evaluated key parameters that affect expression in muscle from genes encoded in pDNA. Short-term and long-term promoter comparisons demonstrated that kinetics of expression differed between cytomegalovirus (CMV), muscle creatine kinase, and desmin promoters, but all gave stable expression from 2 to 49 weeks after delivery to mouse muscle. Expression from the CMV promoter was highest. For mice, rats, and rhesus monkeys, the linear range for pDNA dose response could be defined by the mass of pDNA relative to the mass of target muscle. Correlation between pDNA dose and expression was linear between a threshold dose of 75 μg/g and maximal expression at approximately 400 μg/g. One HLV injection into rats of a dose of CMV-LacZ yielding maximal expression resulted in an average transfection of 28% of all hind leg muscle and 40% of the gastrocnemius and soleus. Despite an immune reaction to the reporter gene in monkeys, a single injection transfected an average of 10% of all myofibers in the targeted muscle of the arms and legs and an average of 15% of myofibers in the gastrocnemius and soleus. PMID:21338336

  8. Responsiveness of outcome measures for upper limb prosthetic rehabilitation.

    PubMed

    Resnik, Linda; Borgia, Matthew

    2016-02-01

    There is limited research on responsiveness of prosthetic rehabilitation outcome measures. To examine responsiveness of the Box and Block test, Jebsen-Taylor Hand Function tests, Upper Extremity Functional Scale, University of New Brunswick skill and spontaneity tests, Activity Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale. This was a quasi-experimental study with repeated measurements in a convenience sample of upper limb amputees. Measures were collected before, during, and after training with the DEKA Arm. Largest effect sizes were observed for Patient-Specific Functional Scale (effect size: 1.59, confidence interval: 1.00, 2.14), Activity Measure for Upper Limb Amputation (effect size: 1.33, confidence interval: 0.73, 1.90), and University of New Brunswick skill test (effect size: 1.18, confidence interval: 0.61, 1.73). Other measures that were responsive to change were Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, and University of New Brunswick spontaneity test. Responsiveness and pattern of responsiveness varied by prosthetic level. The Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, University of New Brunswick skill and spontaneity tests, Activities Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale were responsive to change during prosthetic training. These findings have implications for choice of measures for research and practice and inform clinicians about the amount of training necessary to maximize outcomes with the DEKA Arm. Findings on responsiveness of outcome measures have implications for the choice of measures for clinical trials and practice. Findings regarding the responsiveness to change over the course of training can inform clinicians about the amount of training that may be necessary to maximize specific outcomes with the DEKA Arm. © The International Society for Prosthetics and Orthotics 2014.

  9. Rehabilitation of patients with war-related lower limb amputations.

    PubMed

    Osmani-Vllasolli, Teuta; Hundozi, Hajrije; Bytyçi, Cen; Kalaveshi, Ariana; Krasniqi, Blerim

    2011-01-01

    To investigate the influence of factors: the amputation type and the time lag between last surgery and prosthetic rehabilitation, on the rehabilitation duration and outcome, in patients with war-related lower limb amputations. We reviewed the records of 101 war-related lower limb amputees who had inpatient rehabilitation at the National Ortho-Prosthetic Centre (NOPC) of Kosovo in Pristina, from July 1999 to June 2001, a retrospective observational study. Assessment of rehabilitation outcome-ambulation grade with prosthesis, is made on a 3-point scale. The amputation type was shown as an important predictor for the rehabilitation duration and outcome. The analysis by comparative groups has confirmed the amputation type to be of biggest importance. Earlier prosthetic rehabilitation, was shown as a factor of influence on the rehabilitation duration in all cases (r=0.22, P=0.027). This predictor was not relevant for the rehabilitation outcome. The most frequent type of prosthesis manufactured for the amputees, was the patellar tendon bearing below-knee prosthesis with suspension band (36.9%). Amputation of the limb should be performed as low as possible. If there are possibilities for prosthetic rehabilitation, any delays must be avoided, particularly in war-related lower limb amputees.

  10. Effect of external lymph drainage and of coumarin treatment on thermal injury in the rat hind leg

    PubMed Central

    Földi-Börcsök, Ethel

    1972-01-01

    1. External lymph drainage brings about a significant protective effect in thermal oedema of the rat hind leg. It is suggested that external lymph drainage prevents vasoactive substances drained from the site of injury from passing into the blood stream, which would further increase permeability of the injured blood capillaries. 2. Coumarin (5,6-benzo-alpha-pyron) brings about a significant protective effect against the same injury in sham-operated rats. 3. The strongest protective effect may be attained by combining external lymph drainage with the administration of coumarin. 4. The additional therapeutic effect brought about by coumarin treatment in rats with external lymph drainage is not mediated by an increased flow. The possible mechanisms are discussed. PMID:4651772

  11. Fatty acid profile of hind leg muscle in female and male nutria (Myocastor coypus Mol.), fed green forage diet.

    PubMed