Sample records for hindlimb motor function

  1. Reliability in the location of hindlimb motor representations in Fischer-344 rats: laboratory investigation.

    PubMed

    Frost, Shawn B; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J

    2013-08-01

    The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for reliably locating cortical motor representations of the hindlimb. Intracortical microstimulation techniques were used to derive detailed maps of the hindlimb motor representations in 6 adult Fischer-344 rats. The organization of the hindlimb movement representation, while variable across individual rats in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and posterolateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 ± 0.50 mm(2). Superimposing individual maps revealed an overlapping area measuring 0.35 mm(2), indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25-3.75 mm posterior to the bregma, with an average center location approximately 2.6 mm posterior to the bregma. Likewise, the hindlimb representation was found 1-3.25 mm lateral to the midline, with an average center location approximately 2 mm lateral to the midline. The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to the bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being increasingly used in the development of brain-computer interfaces for restoration of function after spinal cord injury.

  2. Reliability in the Location of Hindlimb Motor Representations in Fischer-344 Rats

    PubMed Central

    Frost, Shawn B.; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J.

    2014-01-01

    Object The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for locating cortical motor representations of the hindlimb reliably. Methods Intracortical Microstimulation (ICMS) techniques were used to derive detailed maps of the hindlimb motor representations in six adult Fischer-344 rats. Results The organization of the hindlimb movement representation, while variable across individuals in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and postero-lateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 +/− 0.50 mm2. Superimposing individual maps revealed an overlapping area measuring 0.35 mm2, indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25–3.75 mm posterior to Bregma, with an average center location ~ 2.6 mm posterior to Bregma. Likewise, the hindlimb representation was found 1–3.25 mm lateral to the midline, with an average center location ~ 2 mm lateral to midline. Conclusions The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to Bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being used increasingly in the development of brain-computer interfaces for restoration of function after spinal cord injury. PMID:23725395

  3. Transesophageal versus transcranial motor evoked potentials to monitor spinal cord ischemia.

    PubMed

    Tsuda, Kazumasa; Shiiya, Norihiko; Takahashi, Daisuke; Ohkura, Kazuhiro; Yamashita, Katsushi; Kando, Yumi; Arai, Yoshifumi

    2016-02-01

    We have previously reported that transesophageal motor evoked potential is feasible and more stable than transcranial motor evoked potential. This study aimed to investigate the efficacy of transesophageal motor evoked potential to monitor spinal cord ischemia. Transesophageal and transcranial motor evoked potentials were recorded in 13 anesthetized dogs at the bilateral forelimbs, anal sphincters, and hindlimbs. Spinal cord ischemia was induced by aortic balloon occlusion at the 8th to 10th thoracic vertebra level. In the 12 animals with motor evoked potential disappearance, occlusion was maintained for 10 minutes (n = 6) or 40 minutes (n = 6) after motor evoked potential disappearance. Neurologic function was evaluated by Tarlov score at 24 and 48 hours postoperatively. Time to disappearance of bilateral motor evoked potentials was quicker in transesophageal motor evoked potentials than in transcranial motor evoked potentials at anal sphincters (6.9 ± 3.1 minutes vs 8.3 ± 3.4 minutes, P = .02) and hindlimbs (5.7 ± 1.9 minutes vs 7.1 ± 2.7 minutes, P = .008). Hindlimb function was normal in all dogs in the 10-minute occlusion group, and motor evoked potentials recovery (>75% on both sides) after reperfusion was quicker in transesophageal motor evoked potentials than transcranial motor evoked potentials at hindlimbs (14.8 ± 5.6 minutes vs 24.7 ± 8.2 minutes, P = .001). At anal sphincters, transesophageal motor evoked potentials always reappeared (>25%), but transcranial motor evoked potentials did not in 3 of 6 dogs. In the 40-minute occlusion group, hindlimb motor evoked potentials did not reappear in 4 dogs with paraplegia. Among the 2 remaining dogs, 1 with paraparesis (Tarlov 3) showed delayed recovery (>75%) of hindlimb motor evoked potentials without reappearance of anal sphincter motor evoked potentials. In another dog with spastic paraplegia, transesophageal motor evoked potentials from the hindlimbs remained less than 20%, whereas transcranial motor evoked potentials showed recovery (>75%). Transesophageal motor evoked potentials may be superior to transcranial motor evoked potentials in terms of quicker response to spinal cord ischemia and better prognostic value. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  4. A Battery of Motor Tests in a Neonatal Mouse Model of Cerebral Palsy.

    PubMed

    Feather-Schussler, Danielle N; Ferguson, Tanya S

    2016-11-03

    As the sheer number of transgenic mice strains grow and rodent models of pediatric disease increase, there is an expanding need for a comprehensive, standardized battery of neonatal mouse motor tests. These tests can validate injury or disease models, determine treatment efficacy and/or assess motor behaviors in new transgenic strains. This paper presents a series of neonatal motor tests to evaluate general motor function, including ambulation, hindlimb foot angle, surface righting, negative geotaxis, front- and hindlimb suspension, grasping reflex, four limb grip strength and cliff aversion. Mice between the ages of post-natal day 2 to 14 can be used. In addition, these tests can be used for a wide range of neurological and neuromuscular pathologies, including cerebral palsy, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, neurodegenerative diseases, and neuromuscular disorders. These tests can also be used to determine the effects of pharmacological agents, as well as other types of therapeutic interventions. In this paper, motor deficits were evaluated in a novel neonatal mouse model of cerebral palsy that combines hypoxia, ischemia and inflammation. Forty-eight hours after injury, five tests out of the nine showed significant motor deficits: ambulation, hindlimb angle, hindlimb suspension, four limb grip strength, and grasping reflex. These tests revealed weakness in the hindlimbs, as well as fine motor skills such as grasping, which are similar to the motor deficits seen in human cerebral palsy patients.

  5. Numb rats walk - a behavioural and fMRI comparison of mild and moderate spinal cord injury.

    PubMed

    Hofstetter, Christoph P; Schweinhardt, Petra; Klason, Tomas; Olson, Lars; Spenger, Christian

    2003-12-01

    Assessment of sensory function serves as a sensitive measure for predicting the functional outcome following spinal cord injury in patients. However, little is known about loss and recovery of sensory function in rodent spinal cord injury models as most tests of sensory functions rely on behaviour and thus motor function. We used functional magnetic resonance imaging (fMRI) to investigate cortical and thalamic BOLD-signal changes in response to limb stimulation following mild or moderate thoracic spinal cord weight drop injury in Sprague-Dawley rats. While there was recovery of close to normal hindlimb motor function as determined by open field locomotor testing following both degrees of injury, recovery of hindlimb sensory function as determined by fMRI and hot plate testing was only seen following mild injury and not following moderate injury. Thus, moderate injury can lead to near normal hindlimb motor function in animals with major sensory deficits. Recovered fMRI signals following mild injury had a partly altered cortical distribution engaging also ipsilateral somatosensory cortex and the cingulate gyrus. Importantly, thoracic spinal cord injury also affected sensory representation of the upper nonaffected limbs. Thus, cortical and thalamic activation in response to forelimb stimulation was significantly increased 16 weeks after spinal cord injury compared to control animals. We conclude that both forelimb and hindlimb cortical sensory representation is altered following thoracic spinal cord injury. Furthermore tests of sensory function that are independent of motor behaviour are needed in rodent spinal cord injury research.

  6. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    PubMed Central

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  7. A Brain-Machine-Muscle Interface for Restoring Hindlimb Locomotion after Complete Spinal Transection in Rats

    PubMed Central

    Alam, Monzurul; Chen, Xi; Zhang, Zicong; Li, Yan; He, Jufang

    2014-01-01

    A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics. PMID:25084446

  8. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.

    PubMed

    Alam, Monzurul; Chen, Xi; Zhang, Zicong; Li, Yan; He, Jufang

    2014-01-01

    A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.

  9. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    PubMed

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship emphasizes the importance of the behavioral procedure to engage the motor cortex during motor control studies, gait rehabilitation, and locomotor neuroprosthetic developments in rats. Copyright © 2016 the authors 0270-6474/16/3610440-16$15.00/0.

  10. Temporary hindlimb paresis following dystocia due to foetal macrosomia in a Celebes crested macaque (Macaca nigra).

    PubMed

    Debenham, John James; Bettembourg, Vanessa; Østevik, Liv; Modig, Michaela; Jâderlund, Karin Hultin; Lervik, Andreas

    2017-04-01

    A multiparous Celebes crested macaque presented with dystocia due to foetal macrosomia, causing foetal mortality and hindlimb paresis. After emergency caesarean section, recovery of motor function took 1 month before hindlimbs were weight bearing and 2 months before re-integration with the troop. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Hindlimb spasticity after unilateral motor cortex lesion in rats is reduced by contralateral nerve root transfer.

    PubMed

    Zong, Haiyang; Ma, Fenfen; Zhang, Laiyin; Lu, Huiping; Gong, Jingru; Cai, Min; Lin, Haodong; Zhu, Yizhun; Hou, Chunlin

    2016-12-01

    Lower extremity spasticity is a common sequela among patients with acquired brain injury. The optimum treatment remains controversial. The aim of our study was to test the feasibility and effectiveness of contralateral nerve root transfer in reducing post stroke spasticity of the affected hindlimb muscles in rats. In our study, we for the first time created a novel animal hindlimb spastic hemiplegia model in rats with photothrombotic lesion of unilateral motor cortex and we established a novel surgical procedure in reducing motor cortex lesion-induced hindlimb spastic hemiplegia in rats. Thirty six rats were randomized into three groups. In group A, rats received sham operation. In group B, rats underwent unilateral hindlimb motor cortex lesion. In group C, rats underwent unilateral hindlimb cortex lesion followed by contralateral L4 ventral root transfer to L5 ventral root of the affected side. Footprint analysis, Hoffmann reflex (H-reflex), cholera toxin subunit B (CTB) retrograde tracing of gastrocnemius muscle (GM) motoneurons and immunofluorescent staining of vesicle glutamate transporter 1 (VGLUT1) on CTB-labelled motoneurons were used to assess spasticity of the affected hindlimb. Sixteen weeks postoperatively, toe spread and stride length recovered significantly in group C compared with group B (P<0.001). H max (H-wave maximum amplitude)/M max (M-wave maximum amplitude) ratio of gastrocnemius and plantaris muscles (PMs) significantly reduced in group C (P<0.01). Average VGLUT1 positive boutons per CTB-labelled motoneurons significantly reduced in group C (P<0.001). We demonstrated for the first time that contralateral L4 ventral root transfer to L5 ventral root of the affected side was effective in relieving unilateral motor cortex lesion-induced hindlimb spasticity in rats. Our data indicated that this could be an alternative treatment for unilateral lower extremity spasticity after brain injury. Therefore, contralateral neurotization may exert a potential therapeutic candidate to improve the function of lower extremity in patients with spastic hemiplegia. © 2016 The Author(s).

  12. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation.

    PubMed

    Takeoka, Aya; Jindrich, Devin L; Muñoz-Quiles, Cintia; Zhong, Hui; van den Brand, Rubia; Pham, Daniel L; Ziegler, Matthias D; Ramón-Cueto, Almudena; Roy, Roland R; Edgerton, V Reggie; Phelps, Patricia E

    2011-03-16

    Reports based primarily on anatomical evidence suggest that olfactory ensheathing glia (OEG) transplantation promotes axon regeneration across a complete spinal cord transection in adult rats. Based on functional, electrophysiological, and anatomical assessments, we found that OEG promoted axon regeneration across a complete spinal cord transection and that this regeneration altered motor responses over time. At 7 months after transection, 70% of OEG-treated rats showed motor-evoked potentials in hindlimb muscles after transcranial electric stimulation. Furthermore, a complete spinal cord retransection performed 8 months after injury demonstrated that this axon regeneration suppressed locomotor performance and decreased the hypersensitive hindlimb withdrawal response to mechanical stimulation. OEG transplantation alone promoted reorganization of lumbosacral locomotor networks and, when combined with long-term training, enhanced some stepping measures. These novel findings demonstrate that OEG promote regeneration of mature axons across a complete transection and reorganization of spinal circuitry, both of which contribute to sensorimotor function.

  13. Axon Regeneration Can Facilitate or Suppress Hindlimb Function after Olfactory Ensheathing Glia Transplantation

    PubMed Central

    Takeoka, Aya; Jindrich, Devin L.; Muñoz-Quiles, Cintia; Zhong, Hui; van den Brand, Rubia; Pham, Daniel L.; Ziegler, Matthias D.; Ramón-Cueto, Almudena; Roy, Roland R.; Edgerton, V. Reggie

    2011-01-01

    Reports based primarily on anatomical evidence suggest that olfactory ensheathing glia (OEG) transplantation promotes axon regeneration across a complete spinal cord transection in adult rats. Based on functional, electrophysiological, and anatomical assessments, we found that OEG promoted axon regeneration across a complete spinal cord transection and that this regeneration altered motor responses over time. At 7 months after transection, 70% of OEG-treated rats showed motor-evoked potentials in hindlimb muscles after transcranial electric stimulation. Furthermore, a complete spinal cord retransection performed 8 months after injury demonstrated that this axon regeneration suppressed locomotor performance and decreased the hypersensitive hindlimb withdrawal response to mechanical stimulation. OEG transplantation alone promoted reorganization of lumbosacral locomotor networks and, when combined with long-term training, enhanced some stepping measures. These novel findings demonstrate that OEG promote regeneration of mature axons across a complete transection and reorganization of spinal circuitry, both of which contribute to sensorimotor function. PMID:21411671

  14. Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats.

    PubMed

    Muramatsu, Ken; Ikutomo, Masako; Tamaki, Toru; Shimo, Satoshi; Niwa, Masatoshi

    2018-02-01

    Motor disorders in patients with diabetes are associated with diabetic peripheral neuropathy, which can lead to symptoms such as lower extremity weakness. However, it is unclear whether central motor system disorders can disrupt motor function in patients with diabetes. In a streptozotocin-induced rat model of type 1 diabetes, we used intracortical microstimulation to evaluate motor representations in the motor cortex, recorded antidromic motor cortex responses to spinal cord stimulation to evaluate the function of corticospinal tract (CST) axons, and used retrograde labeling to evaluate morphological alterations of CST neurons. The diabetic rats exhibited size reductions in the hindlimb area at 4 weeks and in trunk and forelimb areas after 13 weeks, with the hindlimb and trunk area reductions being the most severe. Other areas were unaffected. Additionally, we observed reduced antidromic responses in CST neurons with axons projecting to lumbar spinal segments (CST-L) but not in those with axons projecting to cervical segments (CST-C). This was consistent with the observation that retrograde-labeled CST-L neurons were decreased in number following tracer injection into the spinal cord in diabetic animals but that CST-C neurons were preserved. These results show that diabetes disrupts the CST system components controlling hindlimb and trunk movement. This disruption may contribute to lower extremity weakness in patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The kinematic recovery process of rhesus monkeys after spinal cord injury.

    PubMed

    Wei, Rui-Han; Zhao, Can; Rao, Jia-Sheng; Zhao, Wen; Zhou, Xia; Tian, Peng-Yu; Song, Wei; Ji, Run; Zhang, Ai-Feng; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-05-16

    After incomplete spinal cord injury (SCI), neural circuits may be plastically reconstructed to some degree, resulting in extensive functional locomotor recovery. The present study aimed to observe the post-SCI locomotor recovery of rhesus monkey hindlimbs and compare the recovery degrees of different hindlimb parts, thus revealing the recovery process of locomotor function. Four rhesus monkeys were chosen for thoracic hemisection injury. The hindlimb locomotor performance of these animals was recorded before surgery, as well as 6 and 12 weeks post-lesion. Via principal component analysis, the relevant parameters of the limb endpoint, pelvis, hindlimb segments, and joints were processed and analyzed. Twelve weeks after surgery, partial kinematic recovery was observed at the limb endpoint, shank, foot, and knee joints, and the locomotor performance of the ankle joint even recovered to the pre-lesion level; the elevation angle of the thigh and hip joints showed no obvious recovery. Generally, different parts of a monkey hindlimb had different spontaneous recovery processes; specifically, the closer the part was to the distal end, the more extensive was the locomotor function recovery. Therefore, we speculate that locomotor recovery may be attributed to plastic reconstruction of the motor circuits that are mainly composed of corticospinal tract. This would help to further understand the plasticity of motor circuits after spinal cord injury.

  16. Analysis on bilateral hindlimb mapping in motor cortex of the rat by an intracortical microstimulation method.

    PubMed

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-04-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%± 11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.

  17. Is the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex important for motor recovery in rats with photochemically induced cortical lesions?

    PubMed

    Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro

    2006-01-01

    To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.

  18. Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury.

    PubMed

    Shah, Prithvi K; Garcia-Alias, Guillermo; Choe, Jaehoon; Gad, Parag; Gerasimenko, Yury; Tillakaratne, Niranjala; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie

    2013-11-01

    Can lower limb motor function be improved after a spinal cord lesion by re-engaging functional activity of the upper limbs? We addressed this issue by training the forelimbs in conjunction with the hindlimbs after a thoracic spinal cord hemisection in adult rats. The spinal circuitries were more excitable, and behavioural and electrophysiological analyses showed improved hindlimb function when the forelimbs were engaged simultaneously with the hindlimbs during treadmill step-training as opposed to training only the hindlimbs. Neuronal retrograde labelling demonstrated a greater number of propriospinal labelled neurons above and below the thoracic lesion site in quadrupedally versus bipedally trained rats. The results provide strong evidence that actively engaging the forelimbs improves hindlimb function and that one likely mechanism underlying these effects is the reorganization and re-engagement of rostrocaudal spinal interneuronal networks. For the first time, we provide evidence that the spinal interneuronal networks linking the forelimbs and hindlimbs are amenable to a rehabilitation training paradigm. Identification of this phenomenon provides a strong rationale for proceeding toward preclinical studies for determining whether training paradigms involving upper arm training in concert with lower extremity training can enhance locomotor recovery after neurological damage.

  19. Right vs. left sensorimotor cortex suction-ablation in the rat: no difference in beam-walking recovery.

    PubMed

    Goldstein, L B

    1995-03-13

    The ability of rats to traverse a narrow elevated beam has been used to quantitate recovery of hindlimb motor function after unilateral injury to the sensorimotor cortex. We tested the hypothesis that the rate of spontaneous beam-walking recovery varies with the side of the cortex lesion. Groups of rats that were trained at the beam-walking task underwent suction-ablation of either the right or left hindlimb sensorimotor cortex. There was no difference in hindlimb motor function between the groups on the first post-operative beam-waking trial carried out the day after cortex ablation and no difference between the groups in overall recovery rates over the next two weeks. Subsequent analyses of lesion surface parameters showed no differences in lesion size or extent. Regardless of the side of the lesion, there were also no differences between the right and left hemispheres in norepinephrine content of the lesioned or contralateral cortex. We conclude that the side of sensorimotor cortex ablation injury does not differentially affect the rate of spontaneous motor recovery as measured with the beam-walking task.

  20. Properties of primary motor cortex output to hindlimb muscles in the macaque monkey

    PubMed Central

    Hudson, Heather M.; Griffin, Darcy M.; Belhaj-Saïf, Abderraouf

    2014-01-01

    The cortical control of forelimb motor function has been studied extensively, especially in the primate. In contrast, cortical control of the hindlimb has been relatively neglected. This study assessed the output properties of the primary motor cortex (M1) hindlimb representation in terms of the sign, latency, magnitude, and distribution of effects in stimulus-triggered averages (StTAs) of electromyography (EMG) activity recorded from 19 muscles, including hip, knee, ankle, digit, and intrinsic foot muscles, during a push-pull task compared with data reported previously on the forelimb. StTAs (15, 30, and 60 μA at 15 Hz) of EMG activity were computed at 317 putative layer V sites in two rhesus macaques. Poststimulus facilitation (PStF) was distributed equally between distal and proximal muscles, whereas poststimulus suppression (PStS) was more common in distal muscles than proximal muscles (51/49%, respectively, for PStF; 72/28%, respectively, for PStS) at 30 μA. Mean PStF and PStS onset latency generally increased the more distal the joint of a muscle's action. Most significantly, the average magnitude of hindlimb poststimulus effects was considerably weaker than the average magnitude of effects from forelimb M1. In addition, forelimb PStF magnitude increased consistently from proximal to distal joints, whereas hindlimb PStF magnitude was similar at all joints except the intrinsic foot muscles, which had a magnitude of approximately double that of all of the other muscles. The results suggest a greater monosynaptic input to forelimb compared with hindlimb motoneurons, as well as a more direct synaptic linkage for the intrinsic foot muscles compared with the other hindlimb muscles. PMID:25411454

  1. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    PubMed

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. Copyright © 2016. Published by Elsevier Inc.

  2. Decoding bipedal locomotion from the rat sensorimotor cortex.

    PubMed

    Rigosa, J; Panarese, A; Dominici, N; Friedli, L; van den Brand, R; Carpaneto, J; DiGiovanna, J; Courtine, G; Micera, S

    2015-10-01

    Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds, are likely to provide more robust control strategies for the design of such neuroprostheses.

  3. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.

    PubMed

    Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan

    2017-01-15

    Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Decoding bipedal locomotion from the rat sensorimotor cortex

    NASA Astrophysics Data System (ADS)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds, are likely to provide more robust control strategies for the design of such neuroprostheses.

  5. Can the mammalian lumbar spinal cord learn a motor task?

    PubMed

    Hodgson, J A; Roy, R R; de Leon, R; Dobkin, B; Edgerton, V R

    1994-12-01

    Progress toward restoring locomotor function in low thoracic spinal transected cats and the application of similar techniques to patients with spinal cord injury is reviewed. Complete spinal cord transection (T12-T13) in adult cats results in an immediate loss of locomotor function in the hindlimbs. Limited locomotor function returns after several months in cats that have not received specific therapies designed to restore hindlimb stepping. Training transected cats to step on a treadmill for 30 min.d-1 and 5 d.wk-1 greatly improves their stepping ability. The most successful outcome was in cats where training began early, i.e., 1 wk after spinal transection. Cats trained to stand instead of stepping had great difficulty using the hindlimbs for locomotion. These effects were reversible over a 20-month period such that cats unable to step as a result of standing training could be trained to step and, conversely, locomotion in stepping-trained cats could be abolished by standing training. These results indicate that the spinal cord is capable of learning specific motor tasks. It has not been possible to elicit locomotion in patients with clinically complete spinal injuries, but appropriately coordinated EMG activity has been demonstrated in musculature of the legs during assisted locomotion on a treadmill.

  6. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    PubMed

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  7. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats

    PubMed Central

    Dunham, Caleb L.; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K.; Guggenmos, David J.; Nudo, Randolph J.

    2015-01-01

    Abstract The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9–T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury. PMID:26406381

  8. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.

    PubMed

    Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang

    2014-07-03

    Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.

  9. Cortical Effects on Ipsilateral Hindlimb Muscles Revealed with Stimulus-Triggered Averaging of EMG Activity

    PubMed Central

    Messamore, William G.; Van Acker, Gustaf M.; Hudson, Heather M.; Zhang, Hongyu Y.; Kovac, Anthony; Nazzaro, Jules; Cheney, Paul D.

    2016-01-01

    While a large body of evidence supports the view that ipsilateral motor cortex may make an important contribution to normal movements and to recovery of function following cortical injury (Chollet et al. 1991; Fisher 1992; Caramia et al. 2000; Feydy et al. 2002), relatively little is known about the properties of output from motor cortex to ipsilateral muscles. Our aim in this study was to characterize the organization of output effects on hindlimb muscles from ipsilateral motor cortex using stimulus-triggered averaging of EMG activity. Stimulus-triggered averages of EMG activity were computed from microstimuli applied at 60–120 μA to sites in both contralateral and ipsilateral M1 of macaque monkeys during the performance of a hindlimb push–pull task. Although the poststimulus effects (PStEs) from ipsilateral M1 were fewer in number and substantially weaker, clear and consistent effects were obtained at an intensity of 120 μA. The mean onset latency of ipsilateral poststimulus facilitation was longer than contralateral effects by an average of 0.7 ms. However, the shortest latency effects in ipsilateral muscles were as short as the shortest latency effects in the corresponding contralateral muscles suggesting a minimal synaptic linkage that is equally direct in both cases. PMID:26088970

  10. Contralateral peripheral neurotization for a hemiplegic hindlimb after central neurological injury.

    PubMed

    Zheng, Mou-Xiong; Hua, Xu-Yun; Jiang, Su; Qiu, Yan-Qun; Shen, Yun-Dong; Xu, Wen-Dong

    2018-01-01

    OBJECTIVE Contralateral peripheral neurotization surgery has been successfully applied to rescue motor function of the hemiplegic upper extremity in patients with central neurological injury (CNI). It may contribute to strengthened neural pathways between the contralesional cortex and paretic limbs. However, the effect of this surgery in the lower extremities remains unknown. In the present study the authors explored the effectiveness and safety of contralateral peripheral neurotization in treating a hemiplegic lower extremity following CNI in adult rats. METHODS Controlled cortical impact (CCI) was performed on the hindlimb motor cortex of 36 adult Sprague-Dawley rats to create severe unilateral traumatic brain injury models. These CCI rats were randomly divided into 3 groups. At 1 month post-CCI, the experimental group (Group 1, 12 rats) underwent contralateral L-6 to L-6 transfer, 1 control group (Group 2, 12 rats) underwent bilateral L-6 nerve transection, and another control group (Group 3, 12 rats) underwent an L-6 laminectomy without injuring the L-6 nerves. Bilateral L-6 nerve transection rats without CCI (Group 4, 12 rats) and naïve rats (Group 5, 12 rats) were used as 2 additional control groups. Beam and ladder rung walking tests and CatWalk gait analysis were performed in each rat at baseline and at 0.5, 1, 2, 4, 6, 8, and 10 months to detect the skilled walking functions and gait parameters of both hindlimbs. Histological and electromyography studies were used at the final followup to verify establishment of the traumatic brain injury model and regeneration of the L6-L6 neural pathway. RESULTS In behavioral tests, comparable motor injury in the paretic hindlimbs was observed after CCI in Groups 1-3. Group 1 started to show significantly lower slip and error rates in the beam and ladder rung walking tests than Groups 2 and 3 at 6 months post-CCI (p < 0.05). In the CatWalk analysis, Group 1 also showed a higher mean intensity and swing speed after 8 months post-CCI and a longer stride length after 6 months post-CCI than Groups 2 and 3 (p < 0.05). Transection of L-6 resulted in transient skilled walking impairment in the intact hindlimbs in Groups 1 and 2 (compared with Group 3) and in the bilateral hindlimbs in Group 4 (compared with Group 5). All recovered to baseline level within 2 months. Histological study of the rat brains verified comparable injured volumes among Groups 1-3 at final examinations, and electromyography and toluidine blue staining indicated successful regeneration of the L6-L6 neural pathways in Group 1. CONCLUSIONS Contralateral L-6 neurotization could be a promising and safe surgical approach for improving motor recovery of the hemiplegic hindlimb after unilateral CNI in adult rats. Further investigations are needed before extrapolating the present conclusions to humans.

  11. Effects of Spaceflight and Hindlimb Suspension on the Posture and Gait of Rats

    NASA Technical Reports Server (NTRS)

    Fox, R. A.; Corcoran, M.; Daunton, N. G.; Morey-Holton, E.

    1994-01-01

    Instability of posture and gait in astronauts following spaceflight (SF) is thought to result from muscle atrophy and from changes in sensory-motor integration in the CNS (central nervous system) that occur during adaptation to microgravity (micro-G). Individuals are thought to have developed, during SF, adaptive changes for the processing of proprioceptive, vestibular and visual sensory inputs with reduced weighting of gravity-based signals and increased weighting of visual and tactile cues. This sensory-motor rearrangement in the CNS apparently occurs to optimize neuromuscular system function for effective movement and postural control in micro-G. However, these adaptive changes are inappropriate for the 1 g environment and lead to disruptions in posture and gait on return to Earth. Few reports are available on the effects of SF on the motor behavior of animals. Rats studied following 18.5 - 19.5 days of SF in the COSMOS program were described as being ..'inert, apathetic, slow'.. and generally unstable. The hindlimbs of these rats were ..'thrust out from the body with fingers pulled apart and the shin unnaturally pronated'. On the 6th postflight day motor behavior was described as similar to that observed in preflight observations. Improved understanding of the mechanisms leading to these changes can be obtained in animal models through detailed analysis of neural and molecular mechanisms related to gait. To begin this process the posture and gait of rats were examined following exposure to either SF or hindlimb suspension (HLS), and during recovery from these conditions.

  12. A THREE-DIMENSIONAL MAP OF THE HINDLIMB MOTOR REPRESENTATION IN THE LUMBAR SPINAL CORD IN SPRAGUE DAWLEY RATS

    PubMed Central

    Borrell, Jordan A.; Frost, Shawn; Peterson, Jeremy; Nudo, Randolph J.

    2016-01-01

    Objective Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282,000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a three-dimensional (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and EMG activity. Via fine wire electromyographic (EMG) electrodes, Stimulus-Triggered Averaging (StTA) was used on rectified EMG data to determine response latency. Main results Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance The derived motor map provides insight into the parameters needed for future neuromodulatory devices. PMID:27934789

  13. A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats

    NASA Astrophysics Data System (ADS)

    Borrell, Jordan A.; Frost, Shawn B.; Peterson, Jeremy; Nudo, Randolph J.

    2017-02-01

    Objective. Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282 000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach. Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a 3D (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and electromyographic (EMG) activity. Via fine wire EMG electrodes, stimulus-triggered averaging (StTA) was used on rectified EMG data to determine response latency. Main results. Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance. The derived motor map provides insight into the parameters needed for future neuromodulatory devices.

  14. Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition

    PubMed Central

    2014-01-01

    Background Rats exhibit extremely limited motor function recovery after total transection of the spinal cord (SCT). We previously reported that SM-216289, a semaphorin3A inhibitor, enhanced axon regeneration and motor function recovery in SCT adult rats. However, these effects were limited because most regenerated axons likely do not connect to the right targets. Thus, rebuilding the appropriate connections for regenerated axons may enhance recovery. In this study, we combined semaphorin3A inhibitor treatment with extensive treadmill training to determine whether combined treatment would further enhance the “rewiring” of regenerated axons. In this study, which aimed for clinical applicability, we administered a newly developed, potent semaphorin3A inhibitor, SM-345431 (Vinaxanthone), using a novel drug delivery system that enables continuous drug delivery over the period of the experiment. Results Treatment with SM-345431 using this delivery system enhanced axon regeneration and produced significant, but limited, hindlimb motor function recovery. Although extensive treadmill training combined with SM-345431 administration did not further improve axon regeneration, hindlimb motor performance was restored, as evidenced by the significant improvement in the execution of plantar steps on a treadmill. In contrast, control SCT rats could not execute plantar steps at any point during the experimental period. Further analyses suggested that this strategy reinforced the wiring of central pattern generators in lumbar spinal circuits, which, in turn, led to enhanced motor function recovery (especially in extensor muscles). Conclusions This study highlights the importance of combining treatments that promote axon regeneration with specific and appropriate rehabilitations that promote rewiring for the treatment of spinal cord injury. PMID:24618249

  15. Effect of early and late rehabilitation onset in a chronic rat model of ischemic stroke- assessment of motor cortex signaling and gait functionality over time.

    PubMed

    Nielsen, Rasmus K; Samson, Katrine L; Simonsen, Daniel; Jensen, Winnie

    2013-11-01

    The aim of the present study was to investigate the effects of ischemic stroke and onset of subsequent rehabilitation of gait function in rats. Nine male Sprague-Dawley rats were instrumented with a 16-channel intracortical (IC) electrode array. An ischemic stroke was induced within the hindlimb area of the left motor cortex. The rehabilitation consisted of a repetitive training paradigm over 28 days, initiated on day one ("Early-onset", 5 rats) and on day seven, ("Late-onset", 4 rats). Data were obtained from IC microstimulation tests, treadmill walking tests, and beam walking tests. Results revealed an expansion of the hindlimb representation within the motor cortex area and an increased amount of cortical firing rate modulation for the "Early-onset" group but not for the "Late-onset" group. Kinematic data revealed a significant change for both intervention groups. However, this difference was larger for the "Early-onset" group. Results from the beam walking test showed functional performance deficits following stroke which returned to pre-stroke level after the rehabilitative training. The results from the present study indicate the existence of a critical time period following stroke where onset of rehabilitative training may be more effective and related to a higher degree of true recovery.

  16. Fractionated radiation facilitates repair and functional motor recovery after spinal cord transection in rat.

    PubMed

    Kalderon, N; Xu, S; Koutcher, J A; Fuks, Z

    2001-06-22

    Previous studies suggest that motor recovery does not occur after spinal cord injury because reactive glia abort the natural repair processes. A permanent wound gap is left in the cord and the brain-cord circuitry consequently remains broken. Single-dose x-irradiation destroys reactive glia at the damage site in transected adult rat spinal cord. The wound then heals naturally, and a partially functional brain-cord circuitry is reconstructed. Timing is crucial; cell ablation is beneficial only within the third week after injury. Data presented here point to the possibility of translating these observations into a clinical therapy for preventing the paralysis following spinal cord injury in the human. The lesion site (at low thoracic level) in severed adult rat spinal cord was treated daily, over the third week postinjury, with protocols of fractionated radiation similar to those for treating human spinal cord tumors. This resulted, as with the single-dose protocol, in wound healing and restoration of some hindquarter motor function; in addition, the beneficial outcome was augmented. Of the restored hindlimb motor functions, weight-support and posture in stance was the only obvious one. Recovery of this motor function was partial to substantial and its incidence was 100% instead of about 50% obtained with the single-dose treatment. None of the hindlimbs, however, regained frequent stepping or any weight-bearing locomotion. These data indicate that the therapeutic outcome may be further augmented by tuning the radiation parameters within the critical time-window after injury. These data also indicate that dose-fractionation is an effective strategy and better than the single-dose treatment for targeting of reactive cells that abort the natural repair, suggesting that radiation therapy could be developed into a therapeutic procedure for repairing injured spinal cord.

  17. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    PubMed Central

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  18. Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat.

    PubMed

    Baev, K V; Esipenko, V B; Shimansky, Y P

    1991-01-01

    Systematic quantitative analysis of changes in the spinal scratching generator motor activity evoked by tonic and phasic peripheral afferent signals during "fictitious" scratching was carried out in the cat. Correlations between the kinematics of hindlimb scratching movement, sensory inflow, and primary afferent depolarization were investigated. Reliable correlations between the parameters of generator motor activity during fictitious scratching were revealed: they depended on tonic peripheral afferent inflow. The functional role of these dependencies consists of providing stability for aiming the hindlimb to the itch site. It was shown that scratching generator reaction to a phasic sensory signal depended significantly on afferent input, signal intensity, and its arrival phase in the cycle of motor activity. Phase correction of "scratching" rhythm was performed by inhibition of the current stage of "scratching" cycle, the inhibition magnitude depending on the intensity of a sensory signal run along high threshold afferent fibers. The moments in the scratching cycle, in which the afferent signal caused no rearrangement in scratching generator activity, were discovered for all investigated afferent inputs. These moments corresponded to the transitions from one scratching cycle phase to another. Integral afferent activity was distributed unevenly in the cycle during real scratching. The main part of it was observed just in that scratching cycle part which included the above mentioned no rearrangement phase points. The data obtained allowed us to conclude that the scratching generator should be considered as a working program for the motor optimal control system containing the intrinsic model of the controlled object dynamics (e.g. hindlimb scratching movement dynamics), which produces an inner analog of peripheral flow. This inner flow interacts with peripheral afferent inflow just as one of the latter components. Centrally originated modulation of primary afferent depolarization is a result of affecting the depolarization generating system by this inner "sensory" activity. It is the model, with the aid of which the generator can work after deafferentation. The functional organization of a central pattern generator is considered.

  19. Effects of hindlimb unloading on neuromuscular development of neonatal rats

    NASA Technical Reports Server (NTRS)

    Huckstorf, B. L.; Slocum, G. R.; Bain, J. L.; Reiser, P. M.; Sedlak, F. R.; Wong-Riley, M. T.; Riley, D. A.

    2000-01-01

    We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.

  20. Tissue inhibitor of metalloproteinase-2(TIMP-2)-deficient mice display motor deficits.

    PubMed

    Jaworski, Diane M; Soloway, Paul; Caterina, John; Falls, William A

    2006-01-01

    The degradation of the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Matrix components of the basement membrane play critical roles in the development and maintenance of the neuromuscular junction (NMJ), yet almost nothing is known about the regulation of MMP and TIMP expression in either the pre- or postsynaptic compartments. Here, we demonstrate that TIMP-2 is expressed by both spinal motor neurons and skeletal muscle. To determine whether motor function is altered in the absence of TIMP-2, motor behavior was assessed using a battery of tests (e.g., RotaRod, balance beam, hindlimb extension, grip strength, loaded grid, and gait analysis). TIMP-2(-/-) mice fall off the RotaRod significantly faster than wild-type littermates. In addition, hindlimb extension is reduced and gait is both splayed and lengthened in TIMP-2(-/-) mice. Motor dysfunction is more pronounced during early postnatal development. A preliminary analysis revealed NMJ alterations in TIMP-2(-/-) mice. Juvenile TIMP-2(-/-) mice have increased nerve branching and acetylcholine receptor expression. Adult TIMP-2(-/-) endplates are enlarged and more complex. This suggests a role for TIMP-2 in NMJ sculpting during development. In contrast to the increased NMJ nerve branching, cerebellar Purkinje cells have decreased neurite outgrowth. Thus, the TIMP-2(-/-) motor phenotype is likely due to both peripheral and central defects. The tissue specificity of the nerve branching phenotype suggests the involvement of different MMPs and/or extracellular matrix molecules underlying the TIMP-2(-/-) motor phenotype.

  1. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    PubMed

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just working regimes of a general spinal motor optimal control system containing the intrinsic model of limb movement dynamics. The consequences of this concept and ways of further research are discussed.

  2. Zika virus-induced acute myelitis and motor deficits in adult interferon αβ/γ receptor knockout mice.

    PubMed

    Zukor, Katherine; Wang, Hong; Siddharthan, Venkatraman; Julander, Justin G; Morrey, John D

    2018-06-01

    Zika virus (ZIKV) has received widespread attention because of its effect on the developing fetus. It is becoming apparent, however, that severe neurological sequelae, such as Guillian-Barrë syndrome (GBS), myelitis, encephalitis, and seizures can occur after infection of adults. This study demonstrates that a contemporary strain of ZIKV can widely infect astrocytes and neurons in the brain and spinal cord of adult, interferon α/β receptor knockout mice (AG129 strain) and cause progressive hindlimb paralysis, as well as severe seizure-like activity during the acute phase of disease. The severity of hindlimb motor deficits correlated with increased numbers of ZIKV-infected lumbosacral spinal motor neurons and decreased numbers of spinal motor neurons. Electrophysiological compound muscle action potential (CMAP) amplitudes in response to stimulation of the lumbosacral spinal cord were reduced when obvious motor deficits were present. ZIKV immunoreactivity was high, intense, and obvious in tissue sections of the brain and spinal cord. Infection in the brain and spinal cord was also associated with astrogliosis as well as T cell and neutrophil infiltration. CMAP and histological analysis indicated that peripheral nerve and muscle functions were intact. Consequently, motor deficits in these circumstances appear to be primarily due to myelitis and possibly encephalitis as opposed to a peripheral neuropathy or a GBS-like syndrome. Thus, acute ZIKV infection of adult AG129 mice may be a useful model for ZIKV-induced myelitis, encephalitis, and seizure activity.

  3. Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion

    PubMed Central

    Hayes, Heather Brant; Chang, Young-Hui

    2012-01-01

    Presynaptic inhibition is a powerful mechanism for selectively and dynamically gating sensory inputs entering the spinal cord. We investigated how hindlimb mechanics influence presynaptic inhibition during locomotion using pioneering approaches in an in vitro spinal cord–hindlimb preparation. We recorded lumbar dorsal root potentials to measure primary afferent depolarization-mediated presynaptic inhibition and compared their dependence on hindlimb endpoint forces, motor output, and joint kinematics. We found that stance-phase force on the opposite limb, particularly at toe contact, strongly influenced the magnitude and timing of afferent presynaptic inhibition in the swinging limb. Presynaptic inhibition increased in proportion to opposite limb force, as well as locomotor frequency. This form of presynaptic inhibition binds the sensorimotor states of the two limbs, adjusting sensory inflow to the swing limb based on forces generated by the stance limb. Functionally, it may serve to adjust swing-phase sensory transmission based on locomotor task, speed, and step-to-step environmental perturbations. PMID:22442562

  4. Secondary damage in the spinal cord after motor cortex injury in rats.

    PubMed

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  5. Generating level-dependent models of cervical and thoracic spinal cord injury: Exploring the interplay of neuroanatomy, physiology, and function.

    PubMed

    Wilcox, Jared T; Satkunendrarajah, Kajana; Nasirzadeh, Yasmin; Laliberte, Alex M; Lip, Alyssa; Cadotte, David W; Foltz, Warren D; Fehlings, Michael G

    2017-09-01

    The majority of spinal cord injuries (SCI) occur at the cervical level, which results in significant impairment. Neurologic level and severity of injury are primary endpoints in clinical trials; however, how level-specific damages relate to behavioural performance in cervical injury is incompletely understood. We hypothesized that ascending level of injury leads to worsening forelimb performance, and correlates with loss of neural tissue and muscle-specific neuron pools. A direct comparison of multiple models was made with injury realized at the C5, C6, C7 and T7 vertebral levels using clip compression with sham-operated controls. Animals were assessed for 10weeks post-injury with numerous (40) outcome measures, including: classic behavioural tests, CatWalk, non-invasive MRI, electrophysiology, histologic lesion morphometry, neuron counts, and motor compartment quantification, and multivariate statistics on the total dataset. Histologic staining and T1-weighted MR imaging revealed similar structural changes and distinct tissue loss with cystic cavitation across all injuries. Forelimb tests, including grip strength, F-WARP motor scale, Inclined Plane, and forelimb ladder walk, exhibited stratification between all groups and marked impairment with C5 and C6 injuries. Classic hindlimb tests including BBB, hindlimb ladder walk, bladder recovery, and mortality were not different between cervical and thoracic injuries. CatWalk multivariate gait analysis showed reciprocal and progressive changes forelimb and hindlimb function with ascending level of injury. Electrophysiology revealed poor forelimb axonal conduction in cervical C5 and C6 groups alone. The cervical enlargement (C5-T2) showed progressive ventral horn atrophy and loss of specific motor neuron populations with ascending injury. Multivariate statistics revealed a robust dataset, rank-order contribution of outcomes, and allowed prediction of injury level with single-level discrimination using forelimb performance and neuron counts. Level-dependent models were generated using clip-compression SCI, with marked and reliable differences in forelimb performance and specific neuron pool loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Study of adaptation to altered gravity through systems analysis of motor control.

    PubMed

    Fox, R A; Daunton, N G; Corcoran, M L

    1998-01-01

    Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.

  7. Study of adaptation to altered gravity through systems analysis of motor control

    NASA Astrophysics Data System (ADS)

    Fox, R. A.; Daunton, N. G.; Corcoran, M. L.

    Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.

  8. 6-Shogaol, a natural product, reduces cell death and restores motor function in rat spinal cord injury.

    PubMed

    Kyung, Kang Soo; Gon, Jeon Hyo; Geun, Kim Yong; Sup, Jung Jin; Suk, Woo Jae; Ho, Kim Jae

    2006-08-01

    Spinal cord injury (SCI) results in progressive waves of secondary injuries, which via the activation of a barrage of noxious pathological mechanisms exacerbate the injury to the spinal cord. Secondary injuries are associated with edema, inflammation, excitotoxicity, excessive cytokine release, caspase activation and cell apoptosis. This study was aimed at investigating the possible neuroprotective effects of 6-shogaol purified from Zingiber officinale by comparing an experimental SCI rat group with SCI control rats. Shogaol attenuated apoptotic cell death, including poly(ADP-ribose) polymerase activity, and reduced astrogliosis and hypomyelination which occurs in areas of active cell death in the spinal cords of SCI rats. The foremost protective effect of shogaol in SCI would therefore be manifested in the suppression of the acute secondary apoptotic cell death. However, it does not attenuate active microglia and macrophage infiltration. This finding is supported by a lack of histopathological changes in the areas of the lesion in the shogaol-treated SCI rats. Moreover, shogaol-mediated neuroprotection has been linked with shogaol's attenuation of p38 mitogen-activated protein kinase, p-SAPK/JNK and signal transducer, and with transcription-3 activation. Our results demonstrate that shogaol administrated immediately after SCI significantly diminishes functional deficits. The shogaol-treated group recovered hindlimb reflexes more rapidly and a higher percentage of these rats regained responses compared with the untreated injured rats. The overall hindlimb functional improvement of hindlimbs, as measured by the Basso, Beattie and Bresnahan scale, was significantly enhanced in the shogaol-treated group relative to the SCI control rats. Our data show that the therapeutic outcome of shogaol probably results from its comprehensive effects of blocking apoptotic cell death, resulting in the protection of white matter, oligodendrocytes and neurons, and inhibiting astrogliosis. Our finding that the administration of shogaol prevents secondary pathological events in traumatic SCIs and promotes recovery of motor functions in an animal model raises the issue of whether shogaol could be used therapeutically in humans after SCI.

  9. Changes in gravity influence rat postnatal motor system development: from simulation to space flight

    NASA Technical Reports Server (NTRS)

    Walton, K.; Heffernan, C.; Sulica, D.; Benavides, L.

    1997-01-01

    Our research examines the role of the environment in postnatal nervous system development. Recently we have been studying the effects of changes in gravity on the motor system of rats from postnatal day (P) 2 to 31 using kinematic analysis of swimming, walking, and righting reflexes. Using the tail suspension model of weightlessness we identified sensitive and critical periods of motor system development corresponding to the time during which a motor skill is first achieved. Motor performance in suspended animals was marked by slow swimming, walking, and air-righting, all of which were characterized by hindlimb extension. (Walton et al, Neurosci. 52,763,1992). The critical periods identified in these studies contributed to determining the age of animals for a small payload, NIH.R3. This 9-day mission (STS-72) included 2 litters at P5, P7, or P15 at launch. The P7-16 and P15-24 groups were studied post-flight. On the landing day (R+0) surface righting, swimming and walking were slower in flight compared to control animals. Differences were more marked in the younger animals and the hindlimbs were more affected than the forelimbs with marked, prolonged extension of, at least, the ankle joint angle. Readaptation to 1G was slower in the P7-16 group with righting reflexes adapting first, walking last. We have shown that gravity is an important factor in postnatal nervous system development and that its affect depends on the age of the animal, duration of the perturbation, and the motor function studied.

  10. Two chronic motor training paradigms differentially influe nce acute instrume ntal learning in spinally transected rats

    PubMed Central

    Bigbee, Allison J.; Crown, Eric D.; Ferguson, Adam R.; Roy, Roland R.; Tillakaratne, Niranjala J.K.; Grau, James W.; Edgerton, V. Reggie

    2008-01-01

    The effect of two chronic motor training paradigms on the ability of the lumbar spinal cord to perform an acute instrumental learning task was examined in neonatally (postnatal day 5; P5) spinal cord transected (i.e., spinal) rats. At ∼P30, rats began either unipedal hindlimb stand training (Stand-Tr; 20-25 min/day, 5 days/wk), or bipedal hindlimb step training (Step-Tr; 20 min/day; 5 days/wk) for 7 wks. Non-trained spinal rats (Non-Tr) served as controls. After 7 wks all groups were tested on the flexor-biased instrumental learning paradigm. We hypothesized that 1) Step-Tr rats would exhibit an increased capacity to learn the flexor-biased task relative to Non-Tr subjects, as locomotion involves repetitive training of the tibialis anterior (TA), the ankle flexor whose activation is important for successful instrumental learning, and 2) Stand-Tr rats would exhibit a deficit in acute motor learning, as unipedal training activates the ipsilateral ankle extensors, but not flexors. Results showed no differences in acute learning potential between Non-Tr and Step-Tr rats, while the Stand-Tr group showed a reduced capacity to learn the acute task. Further investigation of the Stand-Tr group showed that, while both the ipsilateral and contralateral hindlimbs were significantly impaired in their acute learning potential, the contralateral, untrained hindlimbs exhibited significantly greater learning deficits. These results suggest that different types of chronic peripheral input may have a significant impact on the ability to learn a novel motor task, and demonstrate the potential for experience-dependent plasticity in the spinal cord in the absence of supraspinal connectivity. PMID:17434606

  11. Disorganization of Oligodendrocyte Development in the Layer II/III of the Sensorimotor Cortex Causes Motor Coordination Dysfunction in a Model of White Matter Injury in Neonatal Rats.

    PubMed

    Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki

    2018-01-01

    We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.

  12. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    PubMed

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  13. A comparative study of single-leg ground reaction forces in running lizards.

    PubMed

    McElroy, Eric J; Wilson, Robbie; Biknevicius, Audrone R; Reilly, Stephen M

    2014-03-01

    The role of different limbs in supporting and propelling the body has been studied in many species with animals appearing to have either similarity in limb function or differential limb function. Differential hindlimb versus forelimb function has been proposed as a general feature of running with a sprawling posture and as benefiting sprawled postured animals by enhancing maneuvering and minimizing joint moments. Yet only a few species have been studied and thus the generality of differential limb function in running animals with sprawled postures is unknown. We measured the limb lengths of seven species of lizard and their single-limb three-dimensional ground reaction forces during high-speed running. We found that all species relied on the hindlimb for producing accelerative forces. Braking forces were forelimb dominated in four species and equally distributed between limbs in the other three. Vertical forces were dominated by the hindlimb in three species and equally distributed between the forelimb and hindlimb in the other four. Medial forces were dominated by the hindlimb in four species and equally distributed in the other three, with all Iguanians exhibiting hindlimb-biased medial forces. Relative hindlimb to forelimb length of each species was related to variation in hindlimb versus forelimb medial forces; species with relatively longer hindlimbs compared with forelimbs exhibited medial forces that were more biased towards the hindlimbs. These results suggest that the function of individual limbs in lizards varies across species with only a single general pattern (hindlimb-dominated accelerative force) being present.

  14. Bilateral Cervical Contusion Spinal Cord Injury in Rats

    PubMed Central

    Anderson, Kim D.; Sharp, Kelli G.; Steward, Oswald

    2009-01-01

    There is increasing motivation to develop clinically relevant experimental models for cervical SCI in rodents and techniques to assess deficits in forelimb function. Here we describe a bilateral cervical contusion model in rats. Female Sprague-Dawley rats received mild or moderate cervical contusion injuries (using the Infinite Horizons device) at C5, C6, or C7/8. Forelimb motor function was assessed using a Grip Strength Meter (GSM); sensory function was assessed by the von Frey hair test; the integrity of the corticospinal tract (CST) was assessed by biotinylated dextran amine (BDA) tract tracing. Mild contusions caused primarily dorsal column (DC) and gray matter (GM) damage while moderate contusions produced additional damage to lateral and ventral tissue. Forelimb and hindlimb function was severely impaired immediately post-injury, but all rats regained the ability to use their hindlimbs for locomotion. Gripping ability was abolished immediately after injury but recovered partially, depending upon the spinal level and severity of the injury. Rats exhibited a loss of sensation in both fore- and hindlimbs that partially recovered, and did not exhibit allodynia. Tract tracing revealed that the main contingent of CST axons in the DC was completely interrupted in all but one animal whereas the dorsolateral CST (dlCST) was partially spared, and dlCST axons gave rise to axons that arborized in the GM caudal to the injury. Our data demonstrate that rats can survive significant bilateral cervical contusion injuries at or below C5 and that forepaw gripping function recovers after mild injuries even when the main component of CST axons in the dorsal column is completely interrupted. PMID:19559699

  15. Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle

    NASA Technical Reports Server (NTRS)

    Rankin, Lucinda L.; Enoka, Roger M.; Volz, Kathryn A.; Stuart, Douglas G.

    1988-01-01

    The effect of whole-muscle fatigue on the isometric twitch was investigated in various hindlimb muscles of anesthetized rats, using an experimental protocol designed to assess the levels of fatigability in motor units. The results of EMG and force measurements revealed the existence of a linear relationship between fatigability and the magnitude of the twitch force following the fatigue test in both soleus and extensor digitorum longus muscles.

  16. Effects of space flight conditions on the function of the immune system and catecholamine production simulated in a rodent model of hindlimb unloading

    NASA Technical Reports Server (NTRS)

    Aviles, Hernan; Belay, Tesfaye; Vance, Monique; Sonnenfeld, Gerald

    2005-01-01

    The rodent model of hindlimb unloading has been successfully used to simulate some of the effects of space flight conditions. Previous studies have indicated that mice exposed to hindlimb-unloading conditions have decreased resistance to infections compared to restrained and normally housed control mice. OBJECTIVE: The purpose of this study was to clarify the mechanisms involved in resistance to infection in this model by examining the effects of hindlimb unloading on the function of the immune system and its impact on the production of catecholamines. METHODS: Female Swiss Webster mice were hindlimb-unloaded during 48 h and the function of the immune system was assessed in spleen and peritoneal cells immediately after this period. In addition, the kinetics of catecholamine production was measured throughout the hindlimb-unloading period. RESULTS: The function of the immune system was significantly suppressed in the hindlimb-unloaded group compared to restrained and normally housed control mice. Levels of catecholamines were increased in the hindlimb-unloaded group and peaked at 12 h following the commencement of unloading. CONCLUSION: These results suggest that physiological responses of mice are altered early after hindlimb unloading and that catecholamines may play a critical role in the modulation of the immune system. These changes may affect the ability of mice to resist infections. Copyright (c) 2005 S. Karger AG, Basel.

  17. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    PubMed Central

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  18. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Restoration of Hindlimb Movements after Complete Spinal Cord Injury Using Brain-Controlled Functional Electrical Stimulation.

    PubMed

    Knudsen, Eric B; Moxon, Karen A

    2017-01-01

    Single neuron and local field potential signals recorded in the primary motor cortex have been repeatedly demonstrated as viable control signals for multi-degree-of-freedom actuators. Although the primary source of these signals has been fore/upper limb motor regions, recent evidence suggests that neural adaptation underlying neuroprosthetic control is generalizable across cortex, including hindlimb sensorimotor cortex. Here, adult rats underwent a longitudinal study that included a hindlimb pedal press task in response to cues for specific durations, followed by brain machine interface (BMI) tasks in healthy rats, after rats received a complete spinal transection and after the BMI signal controls epidural stimulation (BMI-FES). Over the course of the transition from learned behavior to BMI task, fewer neurons were responsive after the cue, the proportion of neurons selective for press duration increased and these neurons carried more information. After a complete, mid-thoracic spinal lesion that completely severed both ascending and descending connections to the lower limbs, there was a reduction in task-responsive neurons followed by a reacquisition of task selectivity in recorded populations. This occurred due to a change in pattern of neuronal responses not simple changes in firing rate. Finally, during BMI-FES, additional information about the intended press duration was produced. This information was not dependent on the stimulation, which was the same for short and long duration presses during the early phase of stimulation, but instead was likely due to sensory feedback to sensorimotor cortex in response to movement along the trunk during the restored pedal press. This post-cue signal could be used as an error signal in a continuous decoder providing information about the position of the limb to optimally control a neuroprosthetic device.

  20. Behavioral and Physiological Effects of Hindlimb Unloading in Rats

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1998-01-01

    The overarching objective of this project was to identify changes in neural and biochemical systems of the central and peripheral nervous systems (the CNS and PNS) that are related to disruptions of functional motor responses, or motor control. The identification of neural and biochemical changes that are related to sensory-motor adaptation elicited as animals react to changes in the gravitational field was of particular interest. Thus, the major objective of this work was to study disruptions of motor responses that arise after (sic. due to) chronic exposure to altered gravity (G). To do this, parallel studies investigating changes in neural, sensory, and neuromuscular systems were conducted after animals (rats) experienced chronic exposure to conditions of altered-G. Conditions of altered-G included hyper-G produced by centrifugation, micro-G produced by orbital flight, and simulated micro-G produced by hind limb suspension. A second major interest was to examine the contribution of putative changes in sensory systems to disruptions of motor responses. To do this, motor responses and reflexes of rats were studied following chronic treatment with streptomycin sulfate (STP, an ototoxic chemical) to damage the vestibular hair cells.

  1. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.

  2. Intermittent fasting in mice does not improve hindlimb motor performance after spinal cord injury.

    PubMed

    Streijger, Femke; Plunet, Ward T; Plemel, Jason Ryan; Lam, Clarrie K; Liu, Jie; Tetzlaff, Wolfram

    2011-06-01

    Previously, we reported that every-other-day-fasting (EODF) in Sprague-Dawley rats initiated after cervical spinal cord injury (SCI) effectively promoted functional recovery, reduced lesion size, and enhanced sprouting of the corticospinal tract. More recently, we also showed improved behavioral recovery with EODF after a moderate thoracic contusion injury in rats. In order to make use of transgenic mouse models to study molecular mechanisms of EODF, we tested here whether this intermittent fasting regimen was also beneficial in mice after SCI. Starting after SCI, C57BL/6 mice were fed a standard rodent chow diet either with unrestricted access or feeding every other day. Over a 14-week post-injury period, we assessed hindlimb locomotor function with the Basso Mouse Scale (BMS) open-field test and horizontal ladder, and the spinal cords were evaluated histologically to measure white and grey matter sparing. EODF resulted in an overall caloric restriction of 20% compared to animals fed ad libitum (AL). The EODF-treated animals exhibited a ∼ 14% reduction in body weight compared to AL mice, and never recovered to their pre-operative body weight. In contrast to rats on an intermittent fasting regimen, mice exhibited no increase in blood ketone bodies by the end of the second, third, and fourth day of fasting. EODF had no beneficial effect on tissue sparing and failed to improve behavioral recovery of hindlimb function. Hence this observation stands in stark contrast to our earlier observations in Sprague-Dawley rats. This is likely due to the difference in the metabolic response to intermittent fasting as evidenced by different ketone levels during the first week of the EODF regimen.

  3. NORADRENERGIC INNERVATION OF THE RAT SPINAL CORD CAUDAL TO A COMPLETE SPINAL CORD TRANSECTION: EFFECTS OF OLFACTORY ENSHEATHING GLIA

    PubMed Central

    Takeoka, Aya; Kubasak, Marc D.; Zhong, Hui; Kaplan, Jennifer; Roy, Roland R.; Phelps, Patricia E.

    2010-01-01

    Transplantation of olfactory bulb-derived olfactory ensheathing glia (OEG) combined with step training improves hindlimb locomotion in adult rats with a complete spinal cord transection. Spinal cord injury studies use the presence of noradrenergic (NA) axons caudal to the injury site as evidence of axonal regeneration and we previously found more NA axons just caudal to the transection in OEG- than media-injected spinal rats. We therefore hypothesized that OEG transplantation promotes descending coeruleospinal regeneration that contributes to the recovery of hindlimb locomotion. Now we report that NA axons are present throughout the caudal stump of both media- and OEG-injected spinal rats and they enter the spinal cord from the periphery via dorsal and ventral roots and along large penetrating blood vessels. These results indicate that the presence of NA fibers in the caudal spinal cord is not a reliable indicator of coeruleospinal regeneration. We then asked if NA axons appose cholinergic neurons associated with motor functions, i.e., central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more NA varicosities adjacent to central canal cluster cells, partition cells, and SMNs in the lumbar enlargement of OEG- than media-injected rats. As non-synaptic release of NA is common in the spinal cord, more associations between NA varicosities and motor-associated cholinergic neurons in the lumbar spinal cord may contribute to the improved treadmill stepping observed in OEG-injected spinal rats. This effect could be mediated through direct association with SMNs and/or indirectly via cholinergic interneurons. PMID:20025875

  4. Physiological changes in fast and slow muscle with simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Dettbarn, W. D.; Misulis, K. E.

    1984-01-01

    A rat hindlimb suspension model of simulated weightlessness was used to examine the physiological characteristics of skeletal muscle. The physiological sequelae of hindlimb suspension were compared to those of spinal cord section, denervation by sciatic nerve crush, and control. Muscle examined were the predominantly slow (Type 1) soleus (SOL) and the predominantly fast (Type 2) extensor digitorum longus (EDL). Two procedures which alter motor unit activity, hindlimb suspension and spinal cord section, produce changes in characteristics of skeletal muscles that are dependent upon fiber type. The SOL develops characteristics more representative of a fast muscle, including smaller Type 1 fiber proportion and higher AChE activity. The EDL, which is already predominantly fast, loses most of its few Type 1 fibers, thus also becoming faster. These data are in agreement with the studies in which rats experienced actual weightlessness.

  5. Effects of chronic hindlimb suspension on landing performance in response to head-down drop in rats.

    PubMed

    Kawano, Fuminori; Nomura, Takeshi; Ishihara, Akihiko; Nonaka, Ikuya; Ohira, Yoshinobu

    2002-06-01

    Effects of hindlimb unloading and reloading on the patterns of landing and posture adjustment in response to head-down drop from a height of approximately 30 cm were investigated in rats. Seven weeks old male Wistar rats were hindlimb-unloaded by tail suspension for 9 consecutive weeks. Motor tests were performed immediately after the termination of suspension and recovery patterns were checked during 8 weeks of ambulation recovery. Although all of the control rats were able to land smoothly by using the four limbs as the shock absorber, the unloaded rats landed by hitting their abdomen. The hindlimb-unloaded, but not control, rats dorsi-flexed their trunk during fall. The mean angle of abdominal side was approximately 145 degrees in control and approximately 215 degrees in unloaded rats. Even though such phenomena were maintained for approximately 12 hours, the response of the trunk angle recovered significantly 2 days later. However, it was not normalized completely even after 8 weeks. Hyper-extension of ankle joints and eversion of hindlimbs at landing were also noted in the unloaded rats. These phenomena were not recovered at all. It was generally suggested that severe detrimental effects on the landing performance of rats are induced following 9-weeks of suspension. And some of the responses are irreversible.

  6. Distinguishing synchronous and time-varying synergies using point process interval statistics: motor primitives in frog and rat

    PubMed Central

    Hart, Corey B.; Giszter, Simon F.

    2013-01-01

    We present and apply a method that uses point process statistics to discriminate the forms of synergies in motor pattern data, prior to explicit synergy extraction. The method uses electromyogram (EMG) pulse peak timing or onset timing. Peak timing is preferable in complex patterns where pulse onsets may be overlapping. An interval statistic derived from the point processes of EMG peak timings distinguishes time-varying synergies from synchronous synergies (SS). Model data shows that the statistic is robust for most conditions. Its application to both frog hindlimb EMG and rat locomotion hindlimb EMG show data from these preparations is clearly most consistent with synchronous synergy models (p < 0.001). Additional direct tests of pulse and interval relations in frog data further bolster the support for synchronous synergy mechanisms in these data. Our method and analyses support separated control of rhythm and pattern of motor primitives, with the low level execution primitives comprising pulsed SS in both frog and rat, and both episodic and rhythmic behaviors. PMID:23675341

  7. Neural mechanisms of single corrective steps evoked in the standing rabbit

    PubMed Central

    Hsu, L.-J.; Zelenin, P. V.; Lyalka, V. F.; Vemula, M. G.; Orlovsky, G. N.; Deliagina, T. G.

    2017-01-01

    Single steps in different directions are often used for postural corrections. However, our knowledge about the neural mechanisms underlying their generation is scarce. This study was aimed to characterize the corrective steps generated in response to disturbances of the basic body configuration caused by forward, backward or outward displacement of the hindlimb, as well as to reveal location in the CNS of the corrective step generating mechanisms. Video recording of the motor response to translation of the supporting surface under the hindlimb along with contact forces and activity of back and limb muscles was performed in freely standing intact and in fixed postmammillary rabbits. In intact rabbits, displacement of the hindlimb in any direction caused a lateral trunk movement towards the contralateral hindlimb, and then a corrective step in the direction opposite to the initial displacement. The time difference between onsets of these two events varied considerably. The EMG pattern in the supporting hindlimb was similar for all directions of corrective steps. It caused the increase in the limb stiffness. EMG pattern in the stepping limb differed in steps with different directions. In postmammillary rabbits the corrective stepping movements, as well as EMG patterns in both stepping and standing hindlimbs were similar to those observed in intact rabbits. This study demonstrates that the corrective trunk and limb movements are generated by separate mechanisms activated by sensory signals from the deviated limb. The neuronal networks generating postural corrective steps reside in the brainstem, cerebellum, and spinal cord. PMID:28215990

  8. Hindlimb Immobilization in a Wheelchair Alters Functional Recovery Following Contusive Spinal Cord Injury in the Adult Rat

    PubMed Central

    Caudle, Krista L.; Brown, Edward H.; Shum-Siu, Alice; Burke, Darlene A.; Magnuson, Trystan S. G.; Voor, Michael J.; Magnuson, David S. K.

    2015-01-01

    Background Locomotor training of rats with thoracic contusion spinal cord injuries can induce task-specific changes in stepping but rarely results in improved overground locomotion, possibly due to a ceiling effect. Thus, the authors hypothesize that incompletely injured rats maximally retrain themselves while moving about in their cages over the first few weeks postinjury. Objective To test the hypothesis using hindlimb immobilization after mild thoracic contusion spinal cord injury in adult female rats. A passive stretch protocol was included as an independent treatment. Methods Wheelchairs were used to hold the hindlimbs stationary in an extended position leaving the forelimbs free. The wheelchairs were used for 15 to 18 hours per day, 5 days per week for 8 weeks, beginning at 4 days postinjury. A 20-minute passive hindlimb stretch therapy was applied to half of the animals. Results Hindlimb locomotor function of the wheelchair group was not different from controls at 1 week postinjury but declined significantly over the next 4 weeks. Passive stretch had no influence on wheelchair animals but limited functional recovery of normally housed animals, preventing them from regaining forelimb–hindlimb coordination. Following 8 weeks of wheelchair immobilization and stretch therapy, only the wheelchair group displayed an improvement in function when returned to normal housing but retained significant deficits in stepping and coordination out to 16 weeks. Conclusion Hindlimb immobilization and passive stretch may hinder or conceal the normal course of functional recovery of spinal cord injured rats. These observations have implications for the management of acute clinical spinal cord injuries. PMID:21697451

  9. A model for nonexercising hindlimb muscles in exercising animals.

    PubMed

    Bonen, A; Blewett, C; McDermott, J C; Elder, G C

    1990-07-01

    Nonexercising muscles appear to be metabolically active during exercise. Animal models for this purpose have not been established. However, we have been able to teach animals to run on their forelimbs while their hindlimbs are suspended above the treadmill with no visible limb movement. To document that indeed this mode of exercise does not provoke additional muscle activity, we have compared the levels of neural activation of the soleus and plantaris muscles using a computer analysis of the electromyographic interference pattern, recorded from bipolar fine wire electrodes implanted across each muscle. Via computer analyses of the electromyographic interference patterns the frequencies and amplitudes of motor unit action potentials were obtained. The data were sampled during 20 s of every minute of observation. Comparisons were made in four conditions: (i) resting on the treadmill while bearing weight on the hindlimbs (normal rest), (ii) running on the treadmill (15 m/min, 8% grade) on all four limbs (normal exercise), (iii) resting while the hindlimbs were suspended in a harness above the treadmill (suspended rest), and (iv) exercising with the forelimbs (15 m/min, 8% grade) while the hindlimbs were suspended above the treadmill (suspended exercise). All four experimental conditions were carried out for 90 min each and were performed by each animal. The results clearly show that muscle activities (frequencies and amplitudes), when the hindlimbs are suspended above the treadmill, at rest or during exercise, are lower than the activities in these same muscles when the animals are at rest, supporting only their body weight. Activities in the same muscles during exercise were from 300 to 2000% greater than during hindlimb suspension.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Mesodermal and neuronal retinoids regulate the induction and maintenance of limb innervating spinal motor neurons.

    PubMed

    Ji, Sheng-Jian; Zhuang, BinQuan; Falco, Crystal; Schneider, André; Schuster-Gossler, Karin; Gossler, Achim; Sockanathan, Shanthini

    2006-09-01

    During embryonic development, the generation, diversification and maintenance of spinal motor neurons depend upon extrinsic signals that are tightly regulated. Retinoic acid (RA) is necessary for specifying the fates of forelimb-innervating motor neurons of the Lateral Motor Column (LMC), and the specification of LMC neurons into medial and lateral subtypes. Previous studies implicate motor neurons as the relevant source of RA for specifying lateral LMC fates at forelimb levels. However, at the time of LMC diversification, a significant amount of retinoids in the spinal cord originates from the adjacent paraxial mesoderm. Here we employ mouse genetics to show that RA derived from the paraxial mesoderm is required for lateral LMC induction at forelimb and hindlimb levels, demonstrating that mesodermally synthesized RA functions as a second source of signals to specify lateral LMC identity. Furthermore, reduced RA levels in postmitotic motor neurons result in a decrease of medial and lateral LMC neurons, and abnormal axonal projections in the limb; invoking additional roles for neuronally synthesized RA in motor neuron maintenance and survival. These findings suggest that during embryogenesis, mesodermal and neuronal retinoids act coordinately to establish and maintain appropriate cohorts of spinal motor neurons that innervate target muscles in the limb.

  11. Characterization of Motor and Somatosensory Evoked Potentials in the Yucatan Micropig Using Transcranial and Epidural Stimulation.

    PubMed

    Benavides, Francisco D; Santamaria, Andrea J; Bodoukhin, Nikita; Guada, Luis G; Solano, Juan P; Guest, James D

    2017-09-15

    Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.

  12. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb.

    PubMed

    Charles, James P; Cappellari, Ornella; Spence, Andrew J; Hutchinson, John R; Wells, Dominic J

    2016-01-01

    Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion.

  13. Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats

    PubMed Central

    Zhang, Yu-Ting; Jin, Hui; Wang, Jun-Hua; Wen, Lan-Yu; Yang, Yang; Ruan, Jing-Wen; Zhang, Shu-Xin; Ling, Eng-Ang

    2017-01-01

    Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy. PMID:28744378

  14. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse.

    PubMed

    Jean-Xavier, Céline; Perreault, Marie-Claude

    2018-01-01

    The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor.

  15. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse

    PubMed Central

    Jean-Xavier, Céline; Perreault, Marie-Claude

    2018-01-01

    The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor. PMID:29479302

  16. Transcranial magnetic stimulation (TMS) responses elicited in hindlimb muscles as an assessment of synaptic plasticity in spino-muscular circuitry after chronic spinal cord injury.

    PubMed

    Petrosyan, Hayk A; Alessi, Valentina; Sisto, Sue A; Kaufman, Mark; Arvanian, Victor L

    2017-03-06

    Electromagnetic stimulation applied at the cranial level, i.e. transcranial magnetic stimulation (TMS), is a technique for stimulation and neuromodulation used for diagnostic and therapeutic applications in clinical and research settings. Although recordings of TMS elicited motor-evoked potentials (MEP) are an essential diagnostic tool for spinal cord injured (SCI) patients, they are reliably recorded from arm, and not leg muscles. Mid-thoracic contusion is a common SCI that results in locomotor impairments predominantly in legs. In this study, we used a chronic T10 contusion SCI rat model and examined whether (i) TMS-responses in hindlimb muscles can be used for evaluation of conduction deficits in cortico-spinal circuitry and (ii) if plastic changes at spinal levels will affect these responses. In this study, plastic changes of transmission in damaged spinal cord were achieved by repetitive electro-magnetic stimulation applied over the spinal level (rSEMS). Spinal electro-magnetic stimulation was previously shown to activate spinal nerves and is gaining large acceptance as a non-invasive alternative to direct current and/or epidural electric stimulation. Results demonstrate that TMS fails to induce measurable MEPs in hindlimbs of chronically SCI animals. After facilitation of synaptic transmission in damaged spinal cord was achieved with rSEMS, however, MEPs were recorded from hindlimb muscles in response to single pulse TMS stimulation. These results provide additional evidence demonstrating beneficial effects of TMS as a diagnostic technique for descending motor pathways in uninjured CNS and after SCI. This study confirms the ability of TMS to assess plastic changes of transmission occurring at the spinal level. Published by Elsevier B.V.

  17. The "waiting period" of sensory and motor axons in early chick hindlimb: its role in axon pathfinding and neuronal maturation.

    PubMed

    Wang, G; Scott, S A

    2000-07-15

    During embryonic development motor axons in the chick hindlimb grow out slightly before sensory axons and wait in the plexus region at the base of the limb for approximately 24 hr before invading the limb itself (Tosney and Landmesser, 1985a). We have investigated the role of this waiting period by asking, Is the arrest of growth cones in the plexus region a general property of both sensory and motor axons? Why do axons wait? Does eliminating the waiting period affect the further development of motor and sensory neurons? Here we show that sensory axons, like motor axons, pause in the plexus region and that neither sensory nor motor axons require cues from the other population to wait in or exit from the plexus region. By transplanting older or younger donor limbs to host embryos, we show that host axons innervate donor limbs on a schedule consistent with the age of the grafted limbs. Thus, axons wait in the plexus region for maturational changes to occur in the limb rather than in the neurons themselves. Both sensory and motor axons innervate their appropriate peripheral targets when the waiting period is eliminated by grafting older donor limbs. Therefore, axons do not require a prolonged period in the plexus region to sort out and project appropriately. Eliminating the waiting period does, however, accelerate the onset of naturally occurring cell death, but it does not enhance the development of central projections or the biochemical maturation of sensory neurons.

  18. Noradrenergic innervation of the rat spinal cord caudal to a complete spinal cord transection: effects of olfactory ensheathing glia.

    PubMed

    Takeoka, Aya; Kubasak, Marc D; Zhong, Hui; Kaplan, Jennifer; Roy, Roland R; Phelps, Patricia E

    2010-03-01

    Transplantation of olfactory bulb-derived olfactory ensheathing glia (OEG) combined with step training improves hindlimb locomotion in adult rats with a complete spinal cord transection. Spinal cord injury studies use the presence of noradrenergic (NA) axons caudal to the injury site as evidence of axonal regeneration and we previously found more NA axons just caudal to the transection in OEG- than media-injected spinal rats. We therefore hypothesized that OEG transplantation promotes descending coeruleospinal regeneration that contributes to the recovery of hindlimb locomotion. Now we report that NA axons are present throughout the caudal stump of both media- and OEG-injected spinal rats and they enter the spinal cord from the periphery via dorsal and ventral roots and along large penetrating blood vessels. These results indicate that the presence of NA fibers in the caudal spinal cord is not a reliable indicator of coeruleospinal regeneration. We then asked if NA axons appose cholinergic neurons associated with motor functions, i.e., central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more NA varicosities adjacent to central canal cluster cells, partition cells, and SMNs in the lumbar enlargement of OEG- than media-injected rats. As non-synaptic release of NA is common in the spinal cord, more associations between NA varicosities and motor-associated cholinergic neurons in the lumbar spinal cord may contribute to the improved treadmill stepping observed in OEG-injected spinal rats. This effect could be mediated through direct association with SMNs and/or indirectly via cholinergic interneurons. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    PubMed

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.

  20. Effects of VX on Acoustic Startle Response and Acquisition of Operant Behavior in Rats

    DTIC Science & Technology

    2008-02-01

    spontaneous motor activity , fore- and hind-limb grip strength, thermal sensitivity (paw-lick latency), rectal temperature, acoustic startle response, and...whereas spontaneous motor activity and avoidance responding were affected at doses at or above 123 µg/kg, and acoustic startle response was affected...The 60- and 70-dB stimuli were stimulus control conditions presented to ensure that there was not significant activity within the recording chamber

  1. Neuromuscular electrical stimulation of the hindlimb muscles for movement therapy in a rodent model.

    PubMed

    Ichihara, Kazuhiko; Venkatasubramanian, Ganapriya; Abbas, James J; Jung, Ranu

    2009-01-30

    Neuromuscular electrical stimulation (NMES) can provide functional movements in people after central nervous system injury. The neuroplastic effects of long-term NMES-induced repetitive limb movement are not well understood. A rodent model of neurotrauma in which NMES can be implemented may be effective for such investigations. We present a rodent model for NMES of the flexor and extensor muscles of the hip, knee, and ankle hindlimb muscles. Custom fabricated intramuscular stimulating electrodes for rodents were implanted near identified motor points of targeted muscles in ten adult, female Long Evans rats. The effects of altering NMES pulse stimulation parameters were characterized using strength duration curves, isometric joint torque recruitment curves and joint angle measures. The data indicate that short pulse widths have the advantage of producing graded torque recruitment curves when current is used as the control parameter. A stimulus frequency of 75 Hz or more produces fused contractions. The data demonstrate ability to accurately implant the electrodes and obtain selective, graded, repeatable, strong muscle contractions. Knee and ankle angular excursions comparable to those obtained in normal treadmill walking in the same rodent species can be obtained by stimulating the target muscles. Joint torques (normalized to body weight) obtained were larger than those reported in the literature for small tailed therian mammals and for peak isometric ankle plantarflexion in a different rodent species. This model system could be used for investigations of NMES assisted hindlimb movement therapy.

  2. Two whisker motor areas in the rat cortex: evidence from thalamocortical connections.

    PubMed

    Mohammed, Hisham; Jain, Neeraj

    2014-02-15

    In primates, the motor cortex consists of at least seven different areas, which are involved in movement planning, coordination, initiation, and execution. However, for rats, only the primary motor cortex has been well described. A rostrally located second motor area has been proposed, but its extent, organization, and even definitive existence remain uncertain. Only a rostral forelimb area (RFA) has been definitively described, besides few reports of a rostral hindlimb area. We have previously proposed existence of a second whisker area, which we termed the rostral whisker area (RWA), based on its differential response to intracortical microstimulation compared with the caudal whisker area (CWA) in animals under deep anesthesia (Tandon et al. [2008] Eur J Neurosci 27:228). To establish that RWA is distinct from the caudally contiguous CWA, we determined sources of thalamic inputs to the two proposed whisker areas. Sources of inputs to RFA, caudal forelimb area (CFA), and caudal hindlimb region were determined for comparison. The results show that RWA and CWA can be distinguished based on differences in their thalamic inputs. RWA receives major projections from mediodorsal and ventromedial nuclei, whereas the major projections to CWA are from the ventral anterior, ventrolateral, and posterior nuclei. Moreover, the thalamic nuclei that provide major inputs to RWA are the same as for RFA, and the nuclei projecting to CWA are same as for CFA. The results suggest that rats have a second rostrally located motor area with RWA and RFA as its constituents. Copyright © 2013 Wiley Periodicals, Inc.

  3. Afferent control mechanisms involved in the development of soleus fiber alterations in simulated hypogravity

    NASA Astrophysics Data System (ADS)

    Shenkman, B. S.; Nemirovskaya, T. L.; Shapovalova, K. B.; Podlubnaya, Z. A.; Vikhliantsev, I. M.; Moukhina, A. M.; Kozlovskaya, I. B.

    2007-02-01

    It was recently established that support withdrawal (withdrawal of support reaction force) in microgravity provokes a sequence of functional shifts in the activity of motor units (inactivation of slow ones) and peripheral muscle apparatus which lead to the decline of postural muscle contractility and alterations in fiber characteristics. However, mechanisms involved in inactivation of the slow motor units and appropriate slow-twitch muscle fiber disuse under the supportless conditions remained unknown. We show here that artificial inactivation of muscles-antagonists (which are known to be hyperactive during unloading) counteracts some of the unloading-induced events in the rat soleus (fiber size reduction, slow-to-fast fiber-type transition and decline of titin and nebulin content). It was also demonstrated that direct activation of the muscarinic receptors of the neostriatum neurons prevented slow-to-fast fiber-type transformation in soleus of hindlimb suspended rats.

  4. Recovery time course in contractile function of fast and slow skeletal muscle after hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    The present study was undertaken to characterize the time course and extent of recovery in the isometric and isotonic contractile properties of fast and slow skeletal muscle following 6 wk of hindlimb immobilization. Female Sprague-Dawley rats were randomly assigned to an immobilized group or a control group. The results of the study show that fast and slow skeletal muscles possess the ability to completely recover normal contractile function following 6 wk of hindlimb immobilization. The rate of recovery is dependent on the fiber type composition of the affected muscle.

  5. Contractile dysfunction in muscle may underlie androgen-dependent motor dysfunction in spinal bulbar muscular atrophy

    PubMed Central

    Oki, Kentaro; Halievski, Katherine; Vicente, Laura; Xu, Youfen; Zeolla, Donald; Poort, Jessica; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Wiseman, Robert W.; Breedlove, S. Marc

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is characterized by progressive muscle weakness linked to a polyglutamine expansion in the androgen receptor (AR). Current evidence indicates that mutant AR causes SBMA by acting in muscle to perturb its function. However, information about how muscle function is impaired is scant. One fundamental question is whether the intrinsic strength of muscles, an attribute of muscle independent of its mass, is affected. In the current study, we assess the contractile properties of hindlimb muscles in vitro from chronically diseased males of three different SBMA mouse models: a transgenic (Tg) model that broadly expresses a full-length human AR with 97 CAGs (97Q), a knock-in (KI) model that expresses a humanized AR containing a CAG expansion in the first exon, and a Tg myogenic model that overexpresses wild-type AR only in skeletal muscle fibers. We found that hindlimb muscles in the two Tg models (97Q and myogenic) showed marked losses in their intrinsic strength and resistance to fatigue, but were minimally affected in KI males. However, diseased muscles of all three models showed symptoms consistent with myotonic dystrophy type 1, namely, reduced resting membrane potential and deficits in chloride channel mRNA. These data indicate that muscle dysfunction is a core feature of SBMA caused by at least some of the same pathogenic mechanisms as myotonic dystrophy. Thus mechanisms controlling muscle function per se independent of mass are prime targets for SBMA therapeutics. PMID:25663674

  6. A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements

    PubMed Central

    Britz, Olivier; Zhang, Jingming; Grossmann, Katja S; Dyck, Jason; Kim, Jun C; Dymecki, Susan; Gosgnach, Simon; Goulding, Martyn

    2015-01-01

    V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI: http://dx.doi.org/10.7554/eLife.04718.001 PMID:26465208

  7. Forelimb kinematics and motor patterns of the slider turtle (Trachemys scripta) during swimming and walking: shared and novel strategies for meeting locomotor demands of water and land

    PubMed Central

    Rivera, Angela R. V.; W. Blob, Richard

    2010-01-01

    Turtles use their limbs during both aquatic and terrestrial locomotion, but water and land impose dramatically different physical requirements. How must musculoskeletal function be adjusted to produce locomotion through such physically disparate habitats? We addressed this question by quantifying forelimb kinematics and muscle activity during aquatic and terrestrial locomotion in a generalized freshwater turtle, the red-eared slider (Trachemys scripta), using digital high-speed video and electromyography (EMG). Comparisons of our forelimb data to previously collected data from the slider hindlimb allow us to test whether limb muscles with similar functional roles show qualitatively similar modulations of activity across habitats. The different functional demands of water and air lead to a prediction that muscle activity for limb protractors (e.g. latissimus dorsi and deltoid for the forelimb) should be greater during swimming than during walking, and activity in retractors (e.g. coracobrachialis and pectoralis for the forelimb) should be greater during walking than during swimming. Differences between aquatic and terrestrial forelimb movements are reflected in temporal modulation of muscle activity bursts between environments, and in some cases the number of EMG bursts as well. Although patterns of modulation between water and land are similar between the fore- and hindlimb in T. scripta for propulsive phase muscles (retractors), we did not find support for the predicted pattern of intensity modulation, suggesting that the functional demands of the locomotor medium alone do not dictate differences in intensity of muscle activity across habitats. PMID:20889832

  8. Diffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury and Recovery

    PubMed Central

    Kelley, Brian J.; Harel, Noam Y.; Kim, Chang-Yeon; Papademetris, Xenophon; Coman, Daniel; Wang, Xingxing; Hasan, Omar; Kaufman, Adam; Globinsky, Ronen; Staib, Lawrence H.; Cafferty, William B.J.; Hyder, Fahmeed

    2014-01-01

    Abstract Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases. PMID:24779685

  9. Weight-Bearing Locomotion in the Developing Opossum, Monodelphis domestica following Spinal Transection: Remodeling of Neuronal Circuits Caudal to Lesion

    PubMed Central

    Wheaton, Benjamin J.; Noor, Natassya M.; Whish, Sophie C.; Truettner, Jessie S.; Dietrich, W. Dalton; Zhang, Moses; Crack, Peter J.; Dziegielewska, Katarzyna M.; Saunders, Norman R.

    2013-01-01

    Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P)7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming) P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors’ gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating that although following injury the isolated segment of the spinal cord retains some capability of rhythmic movement the mechanisms involved in weight-bearing locomotion are distinct. PMID:23951105

  10. Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion.

    PubMed

    Wheaton, Benjamin J; Noor, Natassya M; Whish, Sophie C; Truettner, Jessie S; Dietrich, W Dalton; Zhang, Moses; Crack, Peter J; Dziegielewska, Katarzyna M; Saunders, Norman R

    2013-01-01

    Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P)7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming) P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors' gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating that although following injury the isolated segment of the spinal cord retains some capability of rhythmic movement the mechanisms involved in weight-bearing locomotion are distinct.

  11. A training paradigm to enhance motor recovery in contused rats: effects of staircase training.

    PubMed

    Singh, Anita; Murray, Marion; Houle, John D

    2011-01-01

    Ambulating on stairs is an important aspect of daily activities for many individuals with incomplete spinal cord injury (SCI), and little is known about the effect of training for this specific task. The goal of this study was to determine whether staircase ascent training enhances motor recovery in animals with contusion injury. Rats received a midthoracic contusion lesion of moderate severity and were randomly divided into 2 groups, with one group receiving staircase ascent training for up to 8 weeks and the other receiving no training. To assess the direct effect of training, a task-specific staircase climbing test was performed. Open field test (BBB) and gait analysis (CatWalk) assessed overground recovery, and a grid test was used to assess improvement in sensorimotor tasks. Changes in muscle mass of the forelimb and hindlimb muscles were also measured, and the extent of spared white matter was determined for lesion verification and anatomical correlations. Staircase training improved the task-specific performance of ascent. Gait parameters, including base of support, stride length, regularity index (RI), and step sequence, also improved. Overground locomotion and the grid test, both showed a trend of improved performance. Finally, hindlimb muscle mass was maintained with training. Staircase ascent training after incomplete SCI has beneficial effects on task-specific as well as nonspecific motor and sensorimotor activities.

  12. Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury

    PubMed Central

    Ji, Yiming; Meng, Bin; Yuan, Chenxi; Yang, Huilin; Zou, Jun

    2013-01-01

    It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30–180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. PMID:25206629

  13. Dissociating movement from movement timing in the rat primary motor cortex.

    PubMed

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  14. Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.

    PubMed

    Mysoet, Julien; Dupont, Erwan; Bastide, Bruno; Canu, Marie-Hélène

    2015-09-01

    In the adult rat, sensorimotor restriction by hindlimb unloading (HU) is known to induce impairments in motor behavior as well as a disorganization of somatosensory cortex (shrinkage of the cortical representation of the hindpaw, enlargement of the cutaneous receptive fields, decreased cutaneous sensibility threshold). Recently, our team has demonstrated that IGF-1 level was decreased in the somatosensory cortex of rats submitted to a 14-day period of HU. To determine whether IGF-1 is involved in these plastic mechanisms, a chronic cortical infusion of this substance was performed by means of osmotic minipump. When administered in control rats, IGF-1 affects the size of receptive fields and the cutaneous threshold, but has no effect on the somatotopic map. In addition, when injected during the whole HU period, IGF-1 is interestingly implied in cortical changes due to hypoactivity: the shrinkage of somatotopic representation of hindlimb is prevented, whereas the enlargement of receptive fields is reduced. IGF-1 has no effect on the increase in neuronal response to peripheral stimulation. We also explored the functional consequences of IGF-1 level restoration on tactile sensory discrimination. In HU rats, the percentage of paw withdrawal after a light tactile stimulation was decreased, whereas it was similar to control level in HU-IGF-1 rats. Taken together, the data clearly indicate that IGF-1 plays a key-role in cortical plastic mechanisms and in behavioral alterations induced by a decrease in sensorimotor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Comparison of the Physiology of the Spaceflight and Hindlimb Suspended Rat

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Booth, F. W.

    1994-01-01

    The suspended rat has been used extensively as a simulation of the spaceflight animal. In suspension, hindlimbs are unloaded from the acceleration of gravity, much as they are in spaceflight. Comparisons of data from spaceflight (microgravity) and suspended (1G) rats have suggested that suspension my be an appropriate model, but no direct comparisons had been made between the spaceflight and suspended rat. Cosmos 2044 afforded the first opportunity to directly compare the effects of hindlimb suspension (HS) and spaceflight (SF) on a broad range of physiological and histological parameters. This paper reports on the comparison of skelton, skeletal muscle, heart, neural, pulmonary, kidney, liver, intestine, blood plasma, immune function, red blood cells, and endocrine and reproductive functions and systems.

  16. Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells.

    PubMed

    You, Jinzhi; Sun, Jiacheng; Ma, Teng; Yang, Ziying; Wang, Xu; Zhang, Zhiwei; Li, Jingjing; Wang, Longgang; Ii, Masaaki; Yang, Junjie; Shen, Zhenya

    2017-08-03

    Neovascularization is impaired in diabetes mellitus, which leads to the development of peripheral arterial disease and is mainly attributed to the dysfunction of endothelial progenitor cells (EPCs). Previous studies proved the promotional effect of curcumin on neovascularization in wound healing of diabetes. Thus, we hypothesize that curcumin could promote neovascularization at sites of hindlimb ischemia in diabetes and might take effect via modulating the function of EPCs. Streptozotocin-induced type 1 diabetic mice and nondiabetic mice both received unilateral hindlimb ischemic surgery. Curcumin was then administrated to the mice by lavage for 14 days consecutively. Laser Doppler perfusion imaging was conducted to demonstrate the blood flow reperfusion. Capillary density was measured in the ischemic gastrocnemius muscle. In addition, angiogenesis, migration, proliferation abilities, and senescence were determined in EPCs isolated from diabetic and nondiabetic mice. Quantitative PCR was then used to determine the mRNA expression of vascular endothelial growth factor (VEGF) and angiopoetin-1 (Ang-1) in EPCs. Curcumin application to type 1 diabetic mice significantly improved blood reperfusion and increased the capillary density in ischemic hindlimbs. The in-vitro study also revealed that the angiogenesis, migration, and proliferation abilities of EPCs and the number of senescent EPCs were reversed by curcumin application. Quantitative PCR confirmed the overexpression of VEGF-A and Ang-1 in EPCs after curcumin treatment. Curcumin could enhance neovascularization via promoting the function of EPCs in a diabetic mouse hindlimb ischemia model.

  17. Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Colleran, P. N.; Wilkerson, M. K.; McCurdy, M. R.; Muller-Delp, J.

    2000-01-01

    Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).

  18. Different functional reorganization of motor cortex after transfer of the contralateral C7 to different recipient nerves in young rats with total brachial plexus root avulsion.

    PubMed

    Pan, Feng; Wei, Hai-feng; Chen, Liang; Gu, Yu-dong

    2012-12-07

    Clinically, contralateral C7 transfer is used for nerve reconstruction in brachial plexus injuries. Postoperatively, synchronous motions at the donor limb are noteworthy. This study studied if different recipient nerves influenced transhemispheric functional reorganization of motor cortex after this procedure. 90 young rats with total root avulsion of the brachial plexus were divided into groups 1-3 of contralateral C7 transfer to anterior division of the upper trunk, to both the musculocutaneous and median nerves, and to the median nerve, respectively. After reinnervation of target muscles, number of sites for forelimb representations in bilateral motor cortices was determined by intracortical microstimulation at 1.5, 3, 6, 9, and 12 months postoperatively. At nine months, transhemispheric reorganization of nerves neurotized by contralateral C7 was fulfilled in four of six rats in group 1, one of six in group 2 and none in group 3, respectively; at 12 months, that was fulfilled in five of six in group 1, four of six in groups 2 and 3, respectively. Logistic regression analysis showed that rate of fulfilled transhemispheric reorganization in group 1 was 12.19 times that in group 3 (95% CI 0.006-0.651, p=0.032). At 12 months, number of sites for hindlimb representations which had encroached upon original forelimb representations on the uninjured side was statistically more in group 3 than in group 2 (t=9.5, p<0.0001). It is concluded that contralateral C7 transfer to upper trunk or to both the musculocutaneous and median nerves induces faster transhemispheric functional reorganization of motor cortex than that to median nerve alone in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Dynamic "Range of Motion" Hindlimb Stretching Disrupts Locomotor Function in Rats with Moderate Subacute Spinal Cord Injuries.

    PubMed

    Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice; Magnuson, David

    2017-06-15

    Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague-Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery.

  20. Dynamic “Range of Motion” Hindlimb Stretching Disrupts Locomotor Function in Rats with Moderate Subacute Spinal Cord Injuries

    PubMed Central

    Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice

    2017-01-01

    Abstract Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague–Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery. PMID:28288544

  1. The evolution of vertical climbing in primates: evidence from reaction forces.

    PubMed

    Hanna, Jandy B; Granatosky, Michael C; Rana, Pooja; Schmitt, Daniel

    2017-09-01

    Vertical climbing is an essential behavior for arboreal animals, yet limb mechanics during climbing are poorly understood and rarely compared with those observed during horizontal walking. Primates commonly engage in both arboreal walking and vertical climbing, and this makes them an ideal taxa in which to compare these locomotor forms. Additionally, primates exhibit unusual limb mechanics compared with most other quadrupeds, with weight distribution biased towards the hindlimbs, a pattern that is argued to have evolved in response to the challenges of arboreal walking. Here we test an alternative hypothesis that functional differentiation between the limbs evolved initially as a response to climbing. Eight primate species were recorded locomoting on instrumented vertical and horizontal simulated arboreal runways. Forces along the axis of, and normal to, the support were recorded. During walking, all primates displayed forelimbs that were net braking, and hindlimbs that were net propulsive. In contrast, both limbs served a propulsive role during climbing. In all species, except the lorisids, the hindlimbs produced greater propulsive forces than the forelimbs during climbing. During climbing, the hindlimbs tends to support compressive loads, while the forelimb forces tend to be primarily tensile. This functional disparity appears to be body-size dependent. The tensile loading of the forelimbs versus the compressive loading of the hindlimbs observed during climbing may have important evolutionary implications for primates, and it may be the case that hindlimb-biased weight support exhibited during quadrupedal walking in primates may be derived from their basal condition of climbing thin branches. © 2017. Published by The Company of Biologists Ltd.

  2. Co-induction of the heat shock response ameliorates disease progression in a mouse model of human spinal and bulbar muscular atrophy: implications for therapy

    PubMed Central

    Malik, Bilal; Nirmalananthan, Niranjanan; Gray, Anna L.; La Spada, Albert R.; Hanna, Michael G.

    2013-01-01

    Spinal and bulbar muscular atrophy, also known as Kennedy’s disease, is an adult-onset hereditary neurodegenerative disorder caused by an expansion of the polyglutamine repeat in the first exon in the androgen receptor gene. Pathologically, the disease is defined by selective loss of spinal and bulbar motor neurons causing bulbar, facial and limb weakness. Although the precise disease pathophysiology is largely unknown, it appears to be related to abnormal accumulation of the pathogenic androgen receptor protein within the nucleus, leading to disruption of cellular processes. Using a mouse model of spinal and bulbar muscular atrophy that exhibits many of the characteristic features of the human disease, in vivo physiological assessment of muscle function revealed that mice with the pathogenic expansion of the androgen receptor develop a motor deficit characterized by a reduction in muscle force, abnormal muscle contractile characteristics, loss of functional motor units and motor neuron degeneration. We have previously shown that treatment with arimoclomol, a co-inducer of the heat shock stress response, delays disease progression in the mutant superoxide dismutase 1 mouse model of amyotrophic lateral sclerosis, a fatal motor neuron disease. We therefore evaluated the therapeutic potential of arimoclomol in mice with spinal and bulbar muscular atrophy. Arimoclomol was administered orally, in drinking water, from symptom onset and the effects established at 18 months of age, a late stage of disease. Arimoclomol significantly improved hindlimb muscle force and contractile characteristics, rescued motor units and, importantly, improved motor neuron survival and upregulated the expression of the vascular endothelial growth factor which possess neurotrophic activity. These results provide evidence that upregulation of the heat shock response by treatment with arimoclomol may have therapeutic potential in the treatment of spinal and bulbar muscular atrophy and may also be a possible approach for the treatment of other neurodegenerative diseases. PMID:23393146

  3. Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III.

    PubMed

    Udina, Esther; Putman, Charles T; Harris, Luke R; Tyreman, Neil; Cook, Victoria E; Gordon, Tessa

    2017-03-01

    Smn +/- transgenic mouse is a model of the mildest form of spinal muscular atrophy. Although there is a loss of spinal motoneurons in 11-month-old animals, muscular force is maintained. This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons. The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity. We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die-back. Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn +/- transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die-back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die-back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast-twitch and one slow-twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn +/- transgenic mouse increases their susceptibility to cell death demonstrated that all the motoneurons survived and they sustained their capacity to regenerate their nerve fibres. It is concluded the systematic die-back of motoneurons that innervate both fast- and slow-twitch muscle fibres is not related to immaturity of the neuromuscular system in SMA. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  4. Distinct roles for motor neuron autophagy early and late in the SOD1G93A mouse model of ALS

    PubMed Central

    Rudnick, Noam D.; Griffey, Christopher J.; Guarnieri, Paolo; Gerbino, Valeria; Wang, Xueyong; Piersaint, Jason A.; Tapia, Juan Carlos; Rich, Mark M.; Maniatis, Tom

    2017-01-01

    Mutations in autophagy genes can cause familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of autophagy in ALS pathogenesis is poorly understood, in part due to the lack of cell type-specific manipulations of this pathway in animal models. Using a mouse model of ALS expressing mutant superoxide dismutase 1 (SOD1G93A), we show that motor neurons form large autophagosomes containing ubiquitinated aggregates early in disease progression. To investigate whether this response is protective or detrimental, we generated mice in which the critical autophagy gene Atg7 was specifically disrupted in motor neurons (Atg7 cKO). Atg7 cKO mice were viable but exhibited structural and functional defects at a subset of vulnerable neuromuscular junctions. By crossing Atg7 cKO mice to the SOD1G93A mouse model, we found that autophagy inhibition accelerated early neuromuscular denervation of the tibialis anterior muscle and the onset of hindlimb tremor. Surprisingly, however, lifespan was extended in Atg7 cKO; SOD1G93A double-mutant mice. Autophagy inhibition did not prevent motor neuron cell death, but it reduced glial inflammation and blocked activation of the stress-related transcription factor c-Jun in spinal interneurons. We conclude that motor neuron autophagy is required to maintain neuromuscular innervation early in disease but eventually acts in a non–cell-autonomous manner to promote disease progression. PMID:28904095

  5. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury.

    PubMed

    Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia

    2014-12-18

    Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats.

    PubMed

    Takahashi, Shinya; Nakagawa, Kei; Tomiyasu, Mayumi; Nakashima, Ayumu; Katayama, Keijiro; Imura, Takeshi; Herlambang, Bagus; Okubo, Tomoe; Arihiro, Koji; Kawahara, Yumi; Yuge, Louis; Sueda, Taijiro

    2018-05-01

    Spinal cord ischemia is a devastating complication after thoracic and thoracoabdominal aortic operations. In this study, we aimed to investigate the effects of mesenchymal stem cells (MSCs), which have regenerative capability and exert paracrine actions on damaged tissues, injected into rat models of spinal cord ischemia-reperfusion injury. Forty-five Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), and MSC groups. Spinal cord ischemia was induced in the latter two groups by balloon occlusion of the thoracic aorta. MSCs and PBS were then immediately injected into the left carotid artery of the MSC and PBS groups, respectively. Hindlimb motor function was evaluated at 6 and 24 hours. The spinal cord was removed at 24 hours after ischemia-reperfusion injury, and histologic and immunohistochemical analyses and real-time polymerase chain reaction assessments were performed. Rats in the MSC and PBS groups showed flaccid paraparesis/paraplegia postoperatively. Hindlimb function was significantly better at 6 and 24 hours after ischemia-reperfusion injury in the MSC group than in the PBS group (p < 0.05). The number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive neuron cells in the spinal cord and the ratio of Bax to Bcl2 were significantly larger (p < 0.05) in the PBS group than in the MSC group. The injected MSCs were observed in the spinal cord 24 hours after ischemia-reperfusion injury. The MSC therapy by transarterial injection immediately after spinal cord ischemia-reperfusion injury may improve lower limb function by preventing apoptosis of neuron cells in the spinal cord. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements.

    PubMed

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-04-21

    Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.

  8. Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice.

    PubMed

    Murphy, Kate T; Cobani, Vera; Ryall, James G; Ibebunjo, Chikwendu; Lynch, Gordon S

    2011-04-01

    Counteracting the atrophy of skeletal muscle associated with disuse has significant implications for minimizing the wasting and weakness in plaster casting, joint immobilization, and other forms of limb unloading, with relevance to orthopedics, sports medicine, and plastic and reconstructive surgery. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the loss of muscle mass and functional capacity in mice during 14 or 21 days of unilateral hindlimb casting. Twelve-week-old C57BL/10 mice were subjected to unilateral hindlimb plaster casting or served as controls. Mice received subcutaneous injections of saline or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg; n = 6-9) on days 0 and 7 and were tested for muscle function on day 14, or were treated on days 0, 7, and 14 and tested for muscle function on day 21. Hindlimb casting reduced muscle mass, fiber size, and function of isolated soleus and extensor digitorum longus (EDL) muscles (P < 0.05). PF-354 attenuated the loss of muscle mass, fiber size, and function with greater effects after 14 days than after 21 days of casting, when wasting and weakness had plateaued (P < 0.05). Antibody-directed myostatin inhibition therefore attenuated the atrophy and loss of functional capacity in muscles from mice subjected to unilateral hindlimb casting with reductions in muscle size and strength being most apparent during the first 14 days of disuse. These findings highlight the therapeutic potential of antibody-directed myostatin inhibition for disuse atrophy especially within the first 2 wk of disuse.

  9. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.

    PubMed

    Rangasamy, Suresh Babu

    2013-07-01

    Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed in partially lesioned cord of monkeys. Copyright © 2013 Wiley Periodicals, Inc.

  10. Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury

    PubMed Central

    Petrosyan, Hayk A.; Alessi, Valentina; Hunanyan, Arsen S.; Sisto, Sue A.

    2015-01-01

    Our recent terminal experiments revealed that administration of a single train of repetitive spinal electromagnetic stimulation (sEMS; 35 min) enhanced synaptic plasticity in spinal circuitry following lateral hemisection spinal cord injury. In the current study, we have examined effects of repetitive sEMS applied as a single train and chronically (5 wk, every other day) following thoracic T10 contusion. Chronic studies involved examination of systematic sEMS administration alone and combined with exercise training and transgene delivery of neurotrophin [adeno-associated virus 10-neurotrophin 3 (AAV10-NT3)]. Electrophysiological intracellular/extracellular recordings, immunohistochemistry, behavioral testing, and anatomical tracing were performed to assess effects of treatments. We found that administration of a single sEMS train induced transient facilitation of transmission through preserved lateral white matter to motoneurons and hindlimb muscles in chronically contused rats with effects lasting for at least 2 h. These physiological changes associated with increased immunoreactivity of GluR1 and GluR2/3 glutamate receptors in lumbar neurons. Systematic administration of sEMS alone for 5 wk, however, was unable to induce cumulative improvements of transmission in spinomuscular circuitry or improve impaired motor function following thoracic contusion. Encouragingly, chronic administration of sEMS, followed by exercise training (running in an exercise ball and swimming), induced the following: 1) sustained strengthening of transmission to lumbar motoneurons and hindlimb muscles, 2) better retrograde transport of anatomical tracer, and 3) improved locomotor function. Greatest improvements were seen in the group that received exercise combined with sEMS and AAV-NT3. PMID:26424579

  11. Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury.

    PubMed

    Petrosyan, Hayk A; Alessi, Valentina; Hunanyan, Arsen S; Sisto, Sue A; Arvanian, Victor L

    2015-11-01

    Our recent terminal experiments revealed that administration of a single train of repetitive spinal electromagnetic stimulation (sEMS; 35 min) enhanced synaptic plasticity in spinal circuitry following lateral hemisection spinal cord injury. In the current study, we have examined effects of repetitive sEMS applied as a single train and chronically (5 wk, every other day) following thoracic T10 contusion. Chronic studies involved examination of systematic sEMS administration alone and combined with exercise training and transgene delivery of neurotrophin [adeno-associated virus 10-neurotrophin 3 (AAV10-NT3)]. Electrophysiological intracellular/extracellular recordings, immunohistochemistry, behavioral testing, and anatomical tracing were performed to assess effects of treatments. We found that administration of a single sEMS train induced transient facilitation of transmission through preserved lateral white matter to motoneurons and hindlimb muscles in chronically contused rats with effects lasting for at least 2 h. These physiological changes associated with increased immunoreactivity of GluR1 and GluR2/3 glutamate receptors in lumbar neurons. Systematic administration of sEMS alone for 5 wk, however, was unable to induce cumulative improvements of transmission in spinomuscular circuitry or improve impaired motor function following thoracic contusion. Encouragingly, chronic administration of sEMS, followed by exercise training (running in an exercise ball and swimming), induced the following: 1) sustained strengthening of transmission to lumbar motoneurons and hindlimb muscles, 2) better retrograde transport of anatomical tracer, and 3) improved locomotor function. Greatest improvements were seen in the group that received exercise combined with sEMS and AAV-NT3.

  12. Adaptation to a cortex controlled robot attached at the pelvis and engaged during locomotion in rats

    PubMed Central

    Song, Weiguo; Giszter, Simon F.

    2011-01-01

    Brain Machine Interfaces (BMIs) should ideally show robust adaptation of the BMI across different tasks and daily activities. Most BMIs have used over-practiced tasks. Little is known about BMIs in dynamic environments. How are mechanically body-coupled BMIs integrated into ongoing rhythmic dynamics, e.g., in locomotion? To examine this we designed a novel BMI using neural discharge in the hindlimb/trunk motor cortex in rats during locomotion to control a robot attached at the pelvis. We tested neural adaptation when rats experienced (a) control locomotion, (b) ‘simple elastic load’ (a robot load on locomotion without any BMI neural control) and (c) ‘BMI with elastic load’ (in which the robot loaded locomotion and a BMI neural control could counter this load). Rats significantly offset applied loads with the BMI while preserving more normal pelvic height compared to load alone. Adaptation occurred over about 100–200 step cycles in a trial. Firing rates increased in both the loaded conditions compared to baseline. Mean phases of cells’ discharge in the step cycle shifted significantly between BMI and the simple load condition. Over time more BMI cells became positively correlated with the external force and modulated more deeply, and neurons’ network correlations on a 100ms timescale increased. Loading alone showed none of these effects. The BMI neural changes of rate and force correlations persisted or increased over repeated trials. Our results show that rats have the capacity to use motor adaptation and motor learning to fairly rapidly engage hindlimb/trunk coupled BMIs in their locomotion. PMID:21414932

  13. Muscle regeneration potential and satellite cell activation profile during recovery following hindlimb immobilization in mice.

    PubMed

    Guitart, Maria; Lloreta, Josep; Mañas-Garcia, Laura; Barreiro, Esther

    2018-05-01

    Reduced muscle activity leads to muscle atrophy and function loss in patients and animal models. Satellite cells (SCs) are postnatal muscle stem cells that play a pivotal role in skeletal muscle regeneration following injury. The regenerative potential, satellite cell numbers, and markers during recovery following immobilization of the hindlimb for 7 days were explored. In mice exposed to 7 days of hindlimb immobilization, in those exposed to recovery (7 days, splint removal), and in contralateral control muscles, muscle precursor cells were isolated from all hindlimb muscles (fluorescence-activated cell sorting, FACS) and SCs, and muscle regeneration were identified using immunofluorescence (gastrocnemius and soleus) and electron microscopy (EM, gastrocnemius). Expression of ki67, pax7, myoD, and myogenin was quantified (RT-PCR) from SC FACS yields. Body and grip strength were determined. Following 7 day hindlimb immobilization, a decline in SCs (FACS, immunofluorescence) was observed together with an upregulation of SC activation markers and signs of muscle regeneration including fusion to existing myofibers (EM). Recovery following hindlimb immobilization was characterized by a program of muscle regeneration events. Hindlimb immobilization induced a decline in SCs together with an upregulation of markers of SC activation, suggesting that fusion to existing myofibers takes place during unloading. Muscle recovery induced a significant rise in muscle precursor cells and regeneration events along with reduced SC activation expression markers and a concomitant rise in terminal muscle differentiation expression. These are novel findings of potential applicability for the treatment of disuse muscle atrophy, which is commonly associated with severe chronic and acute conditions. © 2017 Wiley Periodicals, Inc.

  14. Functional and cellular adaptation to weightlessness in primates

    NASA Technical Reports Server (NTRS)

    Bodine-Fowler, Sue C.; Pierotti, David J.; Talmadge, Robert J.

    1995-01-01

    Considerable data has been collected on the response of hindlimb muscles to unloading due to both spaceflight and hindlimb suspension. One generalized response to a reduction in load is muscle fiber atrophy, although not all muscles respond the same. Our understanding of how muscles respond to microgravity, however, has come primarily from the examination of hindlimb muscles in the unrestrained rate in space. The non-human primate spaceflight paradigm differs considerably from the rodent paradigm in that the monkeys are restrained, usually in a sitting position, while in space. Recently, we examined the effects of microgravity on muscles of the Rhesus monkey by taking biopsies of selected hindlimb muscles prior to and following spaceflights of 14 and 12 day durations (Cosmos 2044 and 2229). Our results revealed that the monkey's response to microgravity differs from that of the rat. The apparent differences in the atrophic response of the hindlimb muscles of the monkey and rat to spaceflight may be attributed to the following: (1) a species difference; (2) a difference in the manner in which the animals were maintained during the flight (i.e., chair restraint or 'free-floating'); and/or (3) an ability of the monkeys to counteract the effects of spaceflight with resistive exercise.

  15. Aberrant gastrocnemius muscle innervation by tibial nerve afferents after implantation of chitosan tubes impregnated with progesterone favored locomotion recovery in rats with transected sciatic nerve.

    PubMed

    Sarabia-Estrada, Rachel; Bañuelos-Pineda, Jacinto; Osuna Carrasco, Laura P; Jiménez-Vallejo, Salvador; Jiménez-Estrada, Ismael; Rivas-Celis, Efrain; Dueñas-Jiménez, Judith M; Dueñas-Jiménez, Sergio H

    2015-07-01

    Transection of peripheral nerves produces loss of sensory and/or motor function. After complete nerve cutting, the distal and proximal segment ends retract, but if both ends are bridged with unaltered chitosan, progesterone-impregnated chitosan, or silicone tubes, an axonal repair process begins. Progesterone promotes nerve repair and has neuroprotective effects thwarting regulation of neuron survival, inflammation, and edema. It also modulates aberrant axonal sprouting and demyelination. The authors compared the efficacy of nerve recovery after implantation of progesterone-loaded chitosan, unaltered chitosan, or silicone tubes after sciatic nerve transection in rats. After surgical removal of a 5-mm segment of the proximal sciatic nerve, rats were implanted with progesterone-loaded chitosan, unaltered chitosan, or silicone tubes in the transected nerve for evaluating progesterone and chitosan effects on sciatic nerve repair and ipsilateral hindlimb kinematic function, as well as on gastrocnemius electro-myographic responses. In some experiments, tube implantation was performed 90 minutes after nerve transection. At 90 days after sciatic nerve transection and tube implantation, rats with progesterone-loaded chitosan tubes showed knee angular displacement recovery and better outcomes for step length, velocity of locomotion, and normal hindlimb raising above the ground. In contrast, rats with chitosan-only tubes showed reduced normal raising and pendulum-like hindlimb movements. Aberrant fibers coming from the tibial nerve innervated the gastrocnemius muscle, producing electromyographic responses. Electrical responses in the gastrocnemius muscle produced by sciatic nerve stimulation occurred only when the distal nerve segment was stimulated; they were absent when the proximal or intratubular segment was stimulated. A clear sciatic nerve morphology with some myelinated fiber fascicles appeared in the tube section in rats with progesterone-impregnated chitosan tubes. Some gastrocnemius efferent fibers were partially repaired 90 days after nerve resection. The better outcome in knee angle displacement may be partially attributable to the aberrant neuromuscular synaptic effects, since nerve conduction in the gastrocnemius muscle could be blocked in the progesterone-impregnated chitosan tubes. In addition, in the region of the gap produced by the nerve resection, the number of axons and amount of myelination were reduced in the sciatic nerve implanted with chitosan, progesterone-loaded chitosan, and silicone tubes. At 180 days after sciatic nerve sectioning, the knee kinematic function recovered to a level observed in control rats of a similar age. In rats with progesterone-loaded chitosan tubes, stimulation of the proximal and intratubular sciatic nerve segments produced an electromyographic response. The axon morphology of the proximal and intratubular segments of the sciatic nerve resembled that of the contralateral nontransected nerve. Progesterone-impregnated chitosan tubes produced aberrant innervation of the gastrocnemius muscle, which allowed partial recovery of gait locomotion and could be adequate for reinnervating synergistic denervated muscles while a parent innervation is reestablished. Hindlimb kinematic parameters differed between younger (those at 90 days) and older (those at 180 days) rats.

  16. Loss of c-Kit function impairs arteriogenesis in a mouse model of hindlimb ischemia.

    PubMed

    Hernandez, Diana R; Artiles, Adriana; Duque, Juan C; Martinez, Laisel; Pinto, Mariana T; Webster, Keith A; Velazquez, Omaida C; Vazquez-Padron, Roberto I; Lassance-Soares, Roberta M

    2018-04-01

    Arteriogenesis is a process whereby collateral vessels remodel usually in response to increased blood flow and/or wall stress. Remodeling of collaterals can function as a natural bypass to alleviate ischemia during arterial occlusion. Here we used a genetic approach to investigate possible roles of tyrosine receptor c-Kit in arteriogenesis. Mutant mice with loss of c-Kit function (Kit W/W-v ), and controls were subjected to hindlimb ischemia. Blood flow recovery was evaluated pre-, post-, and weekly after ischemia. Foot ischemic damage and function were assessed between days 1 to 14 post-ischemia while collaterals remodeling were measured 28 days post-ischemia. Both groups of mice also were subjected to wild type bone marrow cells transplantation 3 weeks before hindlimb ischemia to evaluate possible contributions of defective bone marrow c-Kit expression on vascular recovery. Kit W/W-v mice displayed impaired blood flow recovery, greater ischemic damage and foot dysfunction after ischemia compared to controls. Kit W/W-v mice also demonstrated impaired collateral remodeling consistent with flow recovery findings. Because arteriogenesis is a biological process that involves bone marrow-derived cells, we investigated which source of c-Kit signaling (bone marrow or vascular) plays a major role in arteriogenesis. Kit W/W-v mice transplanted with bone marrow wild type cells exhibited similar phenotype of impaired blood flow recovery, greater tissue ischemic damage and foot dysfunction as nontransplanted Kit W/W-v mice. This study provides evidence that c-Kit signaling is required during arteriogenesis. Also, it strongly suggests a vascular role for c-Kit signaling because rescue of systemic c-Kit activity by bone marrow transplantation did not augment the functional recovery of Kit W/W-v mouse hindlimbs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Two clinical manifestations of desmopathy of the accessory ligament of the deep digital flexor tendon in the hindlimb of 23 horses.

    PubMed

    Eliashar, E; Dysont, S J; Archer, R M; Singer, E R; Smith, R K W

    2005-11-01

    Desmopathy of the accessory ligament of the deep digital flexor tendon (ALDDFT) in the hindlimb is an unusual cause of lameness in horses, and reports of the condition are sparse. To describe the clinical and ultrasonographic findings, therapy and outcome of 23 horses treated for desmopathy of the ALDDFT in the hindlimb. Records of 23 horses with ultrasonographic evidence of desmopathy of the ALDDFT in one or both hindlimbs from 3 referral centres were reviewed retrospectively. Age, breed, sex, duration and nature of clinical signs, results of clinical and lameness examinations, treatment and outcome were recorded. In 13 horses (Group A), there was an acute onset of unilateral lameness. Ten horses (Group B) had an insidious or sudden onset of postural abnormality. There were 10 cobs, 5 British native-breed ponies and 8 horses of various larger breeds. Twenty horses were used for general purposes, and mean age was 12 years. Enlargement of the ALDDFT in the affected hindlimb(s) was identified in all horses. In 44% of horses, ultrasonographic abnormalities were localised to part of the ALDDFT. Treatment included box-rest and controlled exercise, and 10 horses were subjected to desmotomy or desmectomy of the ALDDFT. Seventy-three percent of horses in Group A returned to full function, while 90% of those in Group B remained lame. Two distinct clinical conditions are associated with the ALDDFT of the hindlimb. Traumatically induced injury resulting in acute onset lameness appears to have a favourable prognosis, with most horses returning to previous work. However, postural changes, once present, are irreversible and indicate a poor prognosis. Desmopathy of the ALDDFT should be recognised as a potential cause of hindlimb lameness and this study provides clinical and prognostic information. Knuckling and/or semiflexion of the metatarsophalangeal joint may accompany the condition; therefore, if a horse is presented with a flexural deformity of this joint, desmopathy of the ALDDFT should be considered as a primary differential diagnosis.

  18. Interjoint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb

    PubMed Central

    van Antwerp, Keith W.; Burkholder, Thomas J.

    2015-01-01

    The biomechanical principles underlying the organization of muscle activation patterns during standing balance are poorly understood. The goal of this study was to understand the influence of biomechanical inter-joint coupling on endpoint forces and accelerations induced by the activation of individual muscles during postural tasks. We calculated induced endpoint forces and accelerations of 31 muscles in a 7 degree-of-freedom, 3-dimensional model of the cat hindlimb. To test the effects of inter-joint coupling, we systematically immobilized the joints (excluded kinematic degrees-of-freedom) and evaluated how the endpoint force and acceleration directions changed for each muscle in seven different conditions. We hypothesized that altered inter-joint coupling due to joint immobilization of remote joints would substantially change the induced directions of endpoint force and acceleration of individual muscles. Our results show that for most muscles crossing the knee or the hip, joint immobilization altered the endpoint force or acceleration direction by more than 90° in the dorsal and sagittal planes. Induced endpoint forces were typically consistent with behaviorally-observed forces only when the ankle was immobilized. We then activated a proximal muscle simultaneous with an ankle torque of varying magnitude, which demonstrated that the resulting endpoint force or acceleration direction is modulated by the magnitude of the ankle torque. We argue that this simple manipulation can lend insight into the functional effects of co-activating muscles. We conclude that inter-joint coupling may be an essential biomechanical principle underlying the coordination of proximal and distal muscles to produce functional endpoint actions during motor tasks. PMID:17640652

  19. DIETARY SELENIUM PROTECTS AGAINST SELECTED SIGNS OF AGING AND METHYLMERCURY EXPOSURE

    PubMed Central

    Banna, Kelly M.; Reed, Miranda N.; Pesek, Erin F.; Cole, Nathan; Li, Jun; Newland, M. Christopher

    2010-01-01

    Acute or short-term exposure to high doses of methylmercury (MeHg) causes a well-characterized syndrome that includes sensory and motor deficits. The environmental threat from MeHg, however, comes from chronic, low-level exposure, the consequences of which are poorly understood. Selenium (Se), an essential nutrient, both increases deposition of mercury (Hg) in neurons and mitigates some of MeHg's neurotoxicity in the short term, but it is unclear whether this deposition produces long-term adverse consequences. To investigate these issues, adult Long Evans rats were fed a diet containing 0.06 or 0.6 ppm of Se as sodium selenite. After 100 days on these diets, the subjects began consuming 0.0, 0.5, 5.0, or 15 ppm of Hg as methylmercuric chloride in their drinking water for 16 months. Somatosensory sensitivity, grip strength, hind-limb cross (clasping reflex), flexion, and voluntary wheel-running in overnight sessions were among the measures examined. MeHg caused a dose- and time-dependent impairment in all measures, No effects appeared in rats consuming 0 or 0.5 ppm of Hg. Somatosensory function, grip strength, and flexion were among the earliest signs of exposure. Selenium significantly delayed or blunted MeHgs effects. Selenium also increased running in unexposed animals as they aged, a novel finding that may have important clinical implications. Nerve pathology studies revealed axonal atrophy or mild degeneration in peripheral nerve fibers, which is consistent with abnormal sensorimotor function in chronic MeHg neurotoxicity. Lidocaine challenge reproduced the somatosensory deficits but not hind-limb cross or flexion. Together, these results quantify the neurotoxicity of long-term MeHg exposure, support the safety and efficacy of Se in ameliorating MeHg's neurotoxicity, and demonstrate the potential benefits of Se during aging. PMID:20079371

  20. Exposure to Enriched Environment Decreases Neurobehavioral Deficits Induced by Neonatal Glutamate Toxicity

    PubMed Central

    Horvath, Gabor; Reglodi, Dora; Vadasz, Gyongyver; Farkas, Jozsef; Kiss, Peter

    2013-01-01

    Environmental enrichment is a popular strategy to enhance motor and cognitive performance and to counteract the effects of various harmful stimuli. The protective effects of enriched environment have been shown in traumatic, ischemic and toxic nervous system lesions. Monosodium glutamate (MSG) is a commonly used taste enhancer causing excitotoxic effects when given in newborn animals. We have previously demonstrated that MSG leads to a delay in neurobehavioral development, as shown by the delayed appearance of neurological reflexes and maturation of motor coordination. In the present study we aimed at investigating whether environmental enrichment is able to decrease the neurobehavioral delay caused by neonatal MSG treatment. Newborn pups were treated with MSG subcutaneously on postnatal days 1, 5 and 9. For environmental enrichment, we placed rats in larger cages, supplemented with different toys that were altered daily. Normal control and enriched control rats received saline treatment only. Physical parameters such as weight, day of eye opening, incisor eruption and ear unfolding were recorded. Animals were observed for appearance of reflexes such as negative geotaxis, righting reflexes, fore- and hindlimb grasp, fore- and hindlimb placing, sensory reflexes and gait. In cases of negative geotaxis, surface righting and gait, the time to perform the reflex was also recorded daily. For examining motor coordination, we performed grid walking, footfault, rope suspension, rota-rod, inclined board and walk initiation tests. We found that enriched environment alone did not lead to marked alterations in the course of development. On the other hand, MSG treatment caused a slight delay in reflex development and a pronounced delay in weight gain and motor coordination maturation. This delay in most signs and tests could be reversed by enriched environment: MSG-treated pups kept under enriched conditions showed no weight retardation, no reflex delay in some signs and performed better in most coordination tests. These results show that environmental enrichment is able to decrease the neurobehavioral delay caused by neonatal excitotoxicity. PMID:24065102

  1. Ablation of D1 dopamine receptor-expressing cells generates mice with seizures, dystonia, hyperactivity, and impaired oral behavior

    PubMed Central

    Gantois, Ilse; Fang, Ke; Jiang, Luning; Babovic, Daniela; Lawrence, Andrew J.; Ferreri, Vincenzo; Teper, Yaroslav; Jupp, Bianca; Ziebell, Jenna; Morganti-Kossmann, Cristina M.; O'Brien, Terence J.; Nally, Rachel; Schütz, Günter; Waddington, John; Egan, Gary F.; Drago, John

    2007-01-01

    Huntington's disease is characterized by death of striatal projection neurons. We used a Cre/Lox transgenic approach to generate an animal model in which D1 dopamine receptor (Drd1a)+ cells are progressively ablated in the postnatal brain. Striatal Drd1a, substance P, and dynorphin expression is progressively lost, whereas D2 dopamine receptor (Drd2) and enkephalin expression is up-regulated. Magnetic resonance spectroscopic analysis demonstrated early elevation of the striatal choline/creatine ratio, a finding associated with extensive reactive striatal astrogliosis. Sequential MRI demonstrated a progressive reduction in striatal volume and secondary ventricular enlargement confirmed to be due to loss of striatal cells. Mutant mice had normal gait and rotarod performance but displayed hindlimb dystonia, locomotor hyperactivity, and handling-induced electrographically verified spontaneous seizures. Ethological assessment identified an increase in rearing and impairments in the oral behaviors of sifting and chewing. In line with the limbic seizure profile, cell loss, astrogliosis, microgliosis, and down-regulated dynorphin expression were seen in the hippocampal dentate gyrus. This study specifically implicates Drd1a+ cell loss with tail suspension hindlimb dystonia, hyperactivity, and abnormal oral function. The latter may relate to the speech and swallowing disturbances and the classic sign of tongue-protrusion motor impersistence observed in Huntington's disease. In addition, the findings of this study support the notion that Drd1a and Drd2 are segregated on striatal projection neurons. PMID:17360497

  2. Comparative anatomy, evolution, and homologies of tetrapod hindlimb muscles, comparison with forelimb muscles, and deconstruction of the forelimb-hindlimb serial homology hypothesis.

    PubMed

    Diogo, Rui; Molnar, Julia

    2014-06-01

    For more than two centuries, the idea that the forelimb and hindlimb are serially homologous structures has been accepted without serious question. This study presents the first detailed analysis of the evolution and homologies of all hindlimb muscles in representatives of each major tetrapod group and proposes a unifying nomenclature for these muscles. These data are compared with information obtained previously about the forelimb muscles of tetrapods and the muscles of other gnathostomes in order to address one of the most central and enigmatic questions in evolutionary and comparative anatomy: why are the pelvic and pectoral appendages of gnathostomes generally so similar to each other? An integrative analysis of the new myological data, combined with a review of recent paleontological, developmental, and genetic works and of older studies, does not support serial homology between the structures of these appendages. For instance, many of the strikingly similar forelimb and hindlimb muscles found in each major extant tetrapod taxon were acquired at different geological times and/or have different embryonic origins. These similar muscles are not serial homologues, but the result of evolutionary parallelism/convergence due to a complex interplay of ontogenetic, functional, topological, and phylogenetic constraints/factors. Copyright © 2014 Wiley Periodicals, Inc.

  3. Skeletal unloading induces resistance to insulin-like growth factor I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E. R.

    1994-01-01

    In previous studies with a hindlimb elevation model, we demonstrated that skeletal unloading transiently inhibits bone formation. This effect is limited to the unloaded bones (the normally loaded humerus does not cease growing), suggesting that local factors are of prime importance. IGF-I is one such factor; it is produced in bone and stimulates bone formation. To determine the impact of skeletal unloading on IGF-I production and function, we assessed the mRNA levels of IGF-I and its receptor (IGF-IR) in the proximal tibia and distal femur of growing rats during 2 weeks of hindlimb elevation. The mRNA levels for IGF-I and IGF-IR rose during hindlimb elevation, returning toward control values during recovery. This was accompanied by a 77% increase in IGF-I levels in the bone, peaking at day 10 of unloading. Changes in IGF binding protein levels were not observed. Infusion of IGF-I (200 micrograms/day) during 1 week of hindlimb elevation doubled the increase in bone mass of the control animals but failed to reverse the cessation of bone growth in the hindlimb-elevated animals. We conclude that skeletal unloading induces resistance to IGF-I, which may result secondarily in increased local production of IGF-I.

  4. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    PubMed

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.

  5. Involvement of AMPK in regulating slow-twitch muscle atrophy during hindlimb unloading in mice.

    PubMed

    Egawa, Tatsuro; Goto, Ayumi; Ohno, Yoshitaka; Yokoyama, Shingo; Ikuta, Akihiro; Suzuki, Miho; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Hayashi, Tatsuya; Goto, Katsumasa

    2015-10-01

    AMPK is considered to have a role in regulating skeletal muscle mass. However, there are no studies investigating the function of AMPK in modulating skeletal muscle mass during atrophic conditions. In the present study, we investigated the difference in unloading-associated muscle atrophy and molecular functions in response to 2-wk hindlimb suspension between transgenic mice overexpressing the dominant-negative mutant of AMPK (AMPK-DN) and their wild-type (WT) littermates. Male WT (n = 24) and AMPK-DN (n = 24) mice were randomly divided into two groups: an untreated preexperimental control group (n = 12 in each group) and an unloading (n = 12 in each group) group. The relative soleus muscle weight and fiber cross-sectional area to body weight were decreased by ∼30% in WT mice by hindlimb unloading and by ∼20% in AMPK-DN mice. There were no changes in puromycin-labeled protein or Akt/70-kDa ribosomal S6 kinase signaling, the indicators of protein synthesis. The expressions of ubiquitinated proteins and muscle RING finger 1 mRNA and protein, markers of the ubiquitin-proteasome system, were increased by hindlimb unloading in WT mice but not in AMPK-DN mice. The expressions of molecules related to the protein degradation system, phosphorylated forkhead box class O3a, inhibitor of κBα, microRNA (miR)-1, and miR-23a, were decreased only in WT mice in response to hindlimb unloading, and 72-kDa heat shock protein expression was higher in AMPK-DN mice than in WT mice. These results imply that AMPK partially regulates unloading-induced atrophy of slow-twitch muscle possibly through modulation of the protein degradation system, especially the ubiquitin-proteasome system. Copyright © 2015 the American Physiological Society.

  6. Passive hind-limb cycling improves cardiac function and reduces cardiovascular disease risk in experimental spinal cord injury.

    PubMed

    West, Christopher R; Crawford, Mark A; Poormasjedi-Meibod, Malihe-Sadat; Currie, Katharine D; Fallavollita, Andre; Yuen, Violet; McNeill, John H; Krassioukov, Andrei V

    2014-04-15

    Spinal cord injury (SCI) causes altered autonomic control and severe physical deconditioning that converge to drive maladaptive cardiac remodelling. We used a clinically relevant experimental model to investigate the cardio-metabolic responses to SCI and to establish whether passive hind-limb cycling elicits a cardio-protective effect. Initially, 21 male Wistar rats were evenly assigned to three groups: uninjured control (CON), T3 complete SCI (SCI) or T3 complete SCI plus passive hind-limb cycling (SCI-EX; 2 × 30 min day(-1), 5 days week(-1) for 4 weeks beginning 6 days post-SCI). On day 32, cardio-metabolic function was assessed using in vivo echocardiography, ex vivo working heart assessments, cardiac histology/molecular biology and blood lipid profiles. Twelve additional rats (n = 6 SCI and n = 6 SCI-EX) underwent in vivo echocardiography and basal haemodynamic assessments pre-SCI and at days 7, 14 and 32 post-SCI to track temporal cardiovascular changes. Compared with CON, SCI exhibited a rapid and sustained reduction in left ventricular dimensions and function that ultimately manifested as reduced contractility, increased myocardial collagen deposition and an up-regulation of transforming growth factor beta-1 (TGFβ1) and mothers against decapentaplegic homolog 3 (Smad3) mRNA. For SCI-EX, the initial reduction in left ventricular dimensions and function at day 7 post-SCI was completely reversed by day 32 post-SCI, and there were no differences in myocardial contractility between SCI-EX and CON. Collagen deposition was similar between SCI-EX and CON. TGFβ1 and Smad3 were down-regulated in SCI-EX. Blood lipid profiles were improved in SCI-EX versus SCI. We provide compelling novel evidence that passive hind-limb cycling prevents cardiac dysfunction and reduces cardiovascular disease risk in experimental SCI.

  7. Ex Vivo Diffusion Tensor Imaging of Spinal Cord Injury in Rats of Varying Degrees of Severity

    PubMed Central

    Jirjis, Michael B.; Kurpad, Shekar N.

    2013-01-01

    Abstract The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague–Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm2. Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r2=0.80). The diffusivity of water significantly decreased throughout “uninjured” portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury. PMID:23782233

  8. Influence of single hindlimb support during simulated weightlessness in the rat

    NASA Technical Reports Server (NTRS)

    Stump, Craig S.; Overton, J. Michael; Tipton, Charles M.

    1990-01-01

    A study was carried out to develop and evaluate a hindlimb suspension model, making it possible to differentiate the effects of non-weight bearing by hindlimbs per se from the systemic influence of simulated weightlessness. A support platform was designed which allowed the animal to maintain one hindlimb in a posture similar to the hindlimbs of the control animals at rest and to maintain one hindlimb in a posture similar to the hindlimbs of the control animals, providing a support for the animal to contract or stretch hindlimb muscles against at any time during suspension. The results of this study indicated that hindlimb support during head-down suspension will maintain muscle-mass/body-mass ratios, glycogen concentration, and blood flow. However, it will not prevent the loss in citrate synthase activity associated with conditions of simulated weightlessness.

  9. Quantitative motor unit action potential analysis of supraspinatus, infraspinatus, deltoideus and biceps femoris muscles in adult Royal Dutch sport horses.

    PubMed

    Jose-Cunilleras, E; Wijnberg, I D

    2016-03-01

    Reference values for quantitative electromyography (QEMG) in shoulder and hindlimb muscles of horses are limited. To determine normative data on QEMG analysis of supraspinatus (SS), infraspinatus (IS), deltoideus (DT) and biceps femoris (BF) muscles. Experimental observational study and retrospective case series. Seven adult healthy Royal Dutch sport horses underwent quantitative motor unit action potential analysis of each muscle using commercial electromyography equipment. Measurements were made according to published methods. One-way ANOVA was used to compare quantitative motor unit action potential variables between muscles, with post hoc testing according to Bonferroni, with significance set at P<0.05. The QEMG and clinical information from horses with lower motor neuron disorders (n = 7) or myopathy (n = 4) were summarised retrospectively. The 95% confidence intervals of duration, amplitude, phases, turns, area and size index of quantitative motor unit action potential were 8.7-10.4 ms, 651-867 μV, 3.2-3.7, 3.7-4.7, 1054-1457 μV·ms and 1.1-1.5 for SS, 9.6-11.0 ms, 779-1082 μV, 3.3-3.7, 3.8-4.7, 1349-2204 μV·ms and 1.4-1.9 for IS, 6.0-9.1 ms, 370-691 μV, 2.9-3.7, 2.8-4.5, 380-1374 μV·ms and 0.3-1.3 for DT and 5.7-7.8 ms, 265-385 μV, 2.7-3.2, 2.6-3.1, 296-484 μV·ms and 0.2-0.5 for BF, respectively. Mean duration, amplitude, number of phases and turns, area and size index were significantly (P<0.01) higher in SS and IS than in DT and BF muscles. In addition, 4 of 7 normal horses had >15% polyphasic motor unit action potentials in SS and IS muscles. Differences between muscles should be taken into account when performing QEMG in order to be able to distinguish normal horses from horses with suspected neurogenic or myogenic disorders. These normal data provide the basis for objective QEMG assessment of shoulder and hindlimb muscles. Quantitative electromyography appears to be helpful in diagnosing neuropathies and discriminating these from myopathies. © 2015 EVJ Ltd.

  10. Assessment of the Hindlimb Membrane Musculature of Bats: Implications for Active Control of the Calcar.

    PubMed

    Stanchak, Kathryn E; Santana, Sharlene E

    2018-03-01

    The striking postcranial anatomy of bats reflects their specialized ecology; they are the only mammals capable of powered flight. Bat postcranial adaptations include a series of membranes that connect highly-modified, or even novel, skeletal elements. While most studies of bat postcranial anatomy have focused on their wings, bat hindlimbs also contain many derived and functionally important, yet less studied, features. In this study, we investigate variation in the membrane and limb musculature associated with the calcar, a neomorphic skeletal structure found in the hindlimbs of most bats. We use diffusible iodine-based contrast-enhanced computed tomography and standard histological techniques to examine the calcars and hindlimb membranes of three bat species that vary ecologically (Myotis californicus, a slow-flying insectivore; Molossus molossus, a fast-flying insectivore; and Artibeus jamaicensis, a slow-flying frugivore). We also assess the level of mineralization of the calcar at muscle attachment sites to better understand how muscle contraction may enable calcar function. We found that the arrangement of the calcar musculature varies among the three bat species, as does the pattern of mineral content within the calcar. M. molossus and M. californicus exhibit more complex calcar and calcar musculature morphologies than A. jamaicensis, and the degree of calcar mineralization decreases toward the tip of the calcar in all species. These results are consistent with the idea that the calcar may have a functional role in flight maneuverability. Anat Rec, 301:441-448, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  11. Early postnatal motor experience shapes the motor properties of C57BL/6J adult mice.

    PubMed

    Serradj, Nadjet; Picquet, Florence; Jamon, Marc

    2013-11-01

    This study aimed to evaluate the long-term consequences of early motor training on the muscle phenotype and motor output of middle-aged C57BL/6J mice. Neonatal mice were subjected to a variety of motor training procedures, for 3 weeks during the period of acquisition of locomotion. These procedures are widely used for motor training in adults; they include enriched environment, forced treadmill, chronic centrifugation, and hindlimb suspension. At 9 months, the mice reared in the enriched environment showed a slower type of fibre in slow muscles and a faster type in fast muscles, improved performance in motor tests, and a modified gait and body posture while walking. The proportion of fibres in the postural muscles of centrifuged mice did not change, but these mice showed improved resistance to fatigue. The suspended mice showed increased persistence of immature hybrid fibres in the tibialis, with a slower shift in the load-bearing soleus, without any behavioural changes. The forced treadmill was very stressful for the mice, but had limited effects on motor output, although a slower profile was observed in the tibialis. These results support the hypothesis that motor experience during a critical period of motor development shapes muscle phenotype and motor output. The different impacts of the various training procedures suggest that motor performance in adults can be optimized by appropriate training during a defined period of motor development. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Planar Covariation of Hindlimb and Forelimb Elevation Angles during Terrestrial and Aquatic Locomotion of Dogs

    PubMed Central

    Catavitello, Giovanna; Ivanenko, Yuri P.; Lacquaniti, Francesco

    2015-01-01

    The rich repertoire of locomotor behaviors in quadrupedal animals requires flexible inter-limb and inter-segmental coordination. Here we studied the kinematic coordination of different gaits (walk, trot, gallop, and swim) of six dogs (Canis lupus familiaris) and, in particular, the planar covariation of limb segment elevation angles. The results showed significant variations in the relative duration of rearward limb movement, amplitude of angular motion, and inter-limb coordination, with gait patterns ranging from a lateral sequence of footfalls during walking to a diagonal sequence in swimming. Despite these differences, the planar law of inter-segmental coordination was maintained across different gaits in both forelimbs and hindlimbs. Notably, phase relationships and orientation of the covariation plane were highly limb specific, consistent with the functional differences in their neural control. Factor analysis of published muscle activity data also demonstrated differences in the characteristic timing of basic activation patterns of the forelimbs and hindlimbs. Overall, the results demonstrate that the planar covariation of inter-segmental coordination has emerged for both fore- and hindlimbs and all gaits, although in a limb-specific manner. PMID:26218076

  13. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    PubMed

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  14. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds.

    PubMed

    Kilbourne, Brandon M

    2014-01-01

    In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses - thigh, shank, pes, tarsometatarsal segment, and digits - from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel's λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel's λ) and increasing or decreasing rates of trait change over time (i.e., Pagel's δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may underlie scale effects in stride frequency and length between smaller and larger neognaths. While variation in linear proportions of limbs appear to be governed by developmental mechanisms, variation in mass proportions does not appear to be constrained so.

  15. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds

    PubMed Central

    2014-01-01

    Introduction In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses – thigh, shank, pes, tarsometatarsal segment, and digits – from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel’s λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. Results All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel’s λ) and increasing or decreasing rates of trait change over time (i.e., Pagel’s δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. Conclusions The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may underlie scale effects in stride frequency and length between smaller and larger neognaths. While variation in linear proportions of limbs appear to be governed by developmental mechanisms, variation in mass proportions does not appear to be constrained so. PMID:24876886

  16. Application of a rat hindlimb model: a prediction of force spaces reachable through stimulation of nerve fascicles.

    PubMed

    Johnson, Will L; Jindrich, Devin L; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie

    2011-12-01

    A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb, which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model, we investigated the suitability of a lumped-parameter model for the prediction of muscle activation during dynamic tasks. Using the validated model, we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury.

  17. Application of a Rat Hindlimb Model: A Prediction of Force Spaces Reachable Through Stimulation of Nerve Fascicles

    PubMed Central

    Johnson, Will L.; Jindrich, Devin L.; Zhong, Hui; Roy, Roland R.

    2011-01-01

    A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model we investigated the suitability of a lumped-parameter model for prediction of muscle activation during dynamic tasks. Using the validated model we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury. PMID:21244999

  18. A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion

    PubMed Central

    Charles, James P.; Cappellari, Ornella; Hutchinson, John R.

    2018-01-01

    Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU) mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations. PMID:29868576

  19. Low-Level Laser Therapy (904 nm) Counteracts Motor Deficit of Mice Hind Limb following Skeletal Muscle Injury Caused by Snakebite-Mimicking Intramuscular Venom Injection

    PubMed Central

    Vieira, Willians Fernando; Kenzo-Kagawa, Bruno; Cogo, José Carlos; da Cruz-Höfling, Maria Alice

    2016-01-01

    Myotoxins present in Bothrops venom disrupt the sarcolemma of muscle fibers leading to the release of sarcoplasmic proteins and loss of muscle homeostasis. Myonecrosis and tissue anoxia induced by vascularization impairment can lead to amputation or motor functional deficit. The objective of this study was to investigate the dynamic behavior of motor function in mice subjected to injection of Bothrops jararacussu venom (Bjssu) and exposed to low-level laser therapy (LLLT). Male Swiss mice received Bjssu injection (830 μg/kg) into the medial portion of the right gastrocnemius muscle. Three hours later the injected region was irradiated with diode semiconductor Gallium Arsenide (GaAs– 904 nm, 4 J/cm²) laser following by irradiation at 24, 48 and 72 hours. Saline injection (0.9% NaCl) was used as control. Gait analysis was performed 24 hours before Bjssu injection and at every period post-Bjssu using CatWalk method. Data from spatiotemporal parameters Stand, Maximum Intensity, Swing, Swing Speed, Stride Length and Step Cycle were considered. The period of 3 hours post venom-induced injury was considered critical for all parameters evaluated in the right hindlimb. Differences (p<0.05) were concentrated in venom and venom + placebo laser groups during the 3 hours post-injury period, in which the values of stand of most animals were null. After this period, the gait characteristics were re-established for all parameters. The venom + laser group kept the values at 3 hours post-Bjssu equal to that at 24 hours before Bjssu injection indicating that the GaAs laser therapy improved spatially and temporally gait parameters at the critical injury period caused by Bjssu. This is the first study to analyze with cutting edge technology the gait functional deficits caused by snake envenoming and gait gains produced by GaAs laser irradiation. In this sense, the study fills a gap on the field of motor function after laser treatment following snake envenoming. PMID:27392016

  20. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Lawler, John M.; Song, Wook; Demaree, Scott R.; Bloomfield, S. A. (Principal Investigator)

    2003-01-01

    Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.

  1. Baroreflex Function in Rats after Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Hasser, Eileen M.

    1997-01-01

    Prolonged exposure of humans to decreased gravitational forces during spaceflight results in a number of adverse cardiovascular consequences, often referred to as cardiovascular deconditioning. Prominent among these negative cardiovascular effects are orthostatic intolerance and decreased exercise capacity. Rat hindlimb unweighting is an animal model which simulates weightlessness, and results in similar cardiovascular consequences. Cardiovascular reflexes, including arterial and cardiopulmonary baroreflexes, are required for normal adjustment to both orthostatic challenges and exercise. Therefore, the orthostatic intolerance and decreased exercise capacity associated with exposure to microgravity may be due to cardiovascular reflex dysfunction. The proposed studies will test the general hypothesis that hindlimb unweighting in rats results in impaired autonomic reflex control of the sympathetic nervous system. Specifically, we hypothesize that the ability to reflexly increase sympathetic nerve activity in response to decreases in arterial pressure or blood volume will be blunted due to hindlimb unweighting. There are 3 specific aims: (1) To evaluate arterial and cardiopulmonary baroreflex control of renal and lumbar sympathetic nerve activity in conscious rats subjected to 14 days of hindlimb unweighting; (2) To examine the interaction between arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in conscious hindlimb unweighted rats; (3) to evaluate changes in afferent and/or central nervous system mechanisms in baroreflex regulation of the sympathetic nervous system. These experiments will provide information related to potential mechanisms for orthostatic and exercise intolerance due to microgravity.

  2. Matrix Metalloproteinases as a Therapeutic Target to Improve Neurologic Recovery After Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    the BMS scale where a score of 0 indicates hindlimb paralysis and a score of 9 reflects normal hindlimb locomotor function. The more mildly injured...graded levels of injury severity based upon the BMS scale . Urologic status shows injury severity-dependent changes with UICs being most pronounced...BMS scale . Exclusion criteria were as follows: any animal showing an average score of > 0.5 at 8 hours post- injury or morbidity as defined in UCSF

  3. Inhibition of Aldehyde Dehydrogenase-Activity Expands Multipotent Myeloid Progenitor Cells with Vascular Regenerative Function.

    PubMed

    Cooper, Tyler T; Sherman, Stephen E; Kuljanin, Miljan; Bell, Gillian I; Lajoie, Gilles A; Hess, David A

    2018-05-01

    Blood-derived progenitor cell transplantation holds potential for the treatment of severe vascular diseases. Human umbilical cord blood (UCB)-derived hematopoietic progenitor cells purified using high aldehyde dehydrogenase (ALDH hi ) activity demonstrate pro-angiogenic functions following intramuscular (i.m.) transplantation into immunodeficient mice with hind-limb ischemia. Unfortunately, UCB ALDH hi cells are rare and prolonged ex vivo expansion leads to loss of high ALDH-activity and diminished vascular regenerative function. ALDH-activity generates retinoic acid, a potent driver of hematopoietic differentiation, creating a paradoxical challenge to expand UCB ALDH hi cells while limiting differentiation and retaining pro-angiogenic functions. We investigated whether inhibition of ALDH-activity during ex vivo expansion of UCB ALDH hi cells would prevent differentiation and expand progeny that retained pro-angiogenic functions after transplantation into non-obese diabetic/severe combined immunodeficient mice with femoral artery ligation-induced unilateral hind-limb ischemia. Human UCB ALDH hi cells were cultured under serum-free conditions for 9 days, with or without the reversible ALDH-inhibitor, diethylaminobenzaldehyde (DEAB). Although total cell numbers were increased >70-fold, the frequency of cells that retained ALDH hi /CD34+ phenotype was significantly diminished under basal conditions. In contrast, DEAB-inhibition increased total ALDH hi /CD34+ cell number by ≥10-fold, reduced differentiation marker (CD38) expression, and enhanced the retention of multipotent colony-forming cells in vitro. Proteomic analysis revealed that DEAB-treated cells upregulated anti-apoptotic protein expression and diminished production of proteins implicated with megakaryocyte differentiation. The i.m. transplantation of DEAB-treated cells into mice with hind-limb ischemia stimulated endothelial cell proliferation and augmented recovery of hind-limb perfusion. DEAB-inhibition of ALDH-activity delayed hematopoietic differentiation and expanded multipotent myeloid cells that accelerated vascular regeneration following i.m. transplantation in vivo. Stem Cells 2018;36:723-736. © AlphaMed Press 2018.

  4. Development of a universal measure of quadrupedal forelimb-hindlimb coordination using digital motion capture and computerised analysis.

    PubMed

    Hamilton, Lindsay; Franklin, Robin J M; Jeffery, Nick D

    2007-09-18

    Clinical spinal cord injury in domestic dogs provides a model population in which to test the efficacy of putative therapeutic interventions for human spinal cord injury. To achieve this potential a robust method of functional analysis is required so that statistical comparison of numerical data derived from treated and control animals can be achieved. In this study we describe the use of digital motion capture equipment combined with mathematical analysis to derive a simple quantitative parameter - 'the mean diagonal coupling interval' - to describe coordination between forelimb and hindlimb movement. In normal dogs this parameter is independent of size, conformation, speed of walking or gait pattern. We show here that mean diagonal coupling interval is highly sensitive to alterations in forelimb-hindlimb coordination in dogs that have suffered spinal cord injury, and can be accurately quantified, but is unaffected by orthopaedic perturbations of gait. Mean diagonal coupling interval is an easily derived, highly robust measurement that provides an ideal method to compare the functional effect of therapeutic interventions after spinal cord injury in quadrupeds.

  5. The Hindlimb Myology of Tyto alba (Tytonidae, Strigiformes, Aves).

    PubMed

    Mosto, M C

    2017-02-01

    This work is the first myological dissection performed in detail on the hindlimb of Tyto alba. Six specimens were dissected and their muscle masses were obtained. T. alba has the classical myological pattern present in other species of Strigiformes, such as a well-developed m. flexor digitorum longus and the absence of the m. plantaris, flexor cruris lateralis and ambiens. Also, T. alba lacks the m. extensor propius digiti III, m. extensor propius digiti IV and m. lumbricalis, present in the Strigidae. Hindlimb muscle mass accounts for 14.13% of total body mass, which is within the range of values of both nocturnal (Strigiformes) and diurnal (Falconidae and Accipitridae) raptors. This study provides important information for future studies related to functional morphology and ecomorphology. © 2016 Blackwell Verlag GmbH.

  6. Non-decoupled morphological evolution of the fore- and hindlimb of sabretooth predators.

    PubMed

    Martín-Serra, Alberto; Figueirido, Borja; Palmqvist, Paul

    2017-10-01

    Specialized organisms are useful for exploring the combined effects of selection of functional traits and developmental constraints on patterns of phenotypic integration. Sabretooth predators are one of the most interesting examples of specialization among mammals. Their hypertrophied, sabre-shaped upper canines and their powerfully built forelimbs have been interpreted as adaptations to a highly specialized predatory behaviour. Given that the elongated and laterally compressed canines of sabretooths were more vulnerable to fracture than the shorter canines of conical-tooth cats, it has been long hypothesized that the heavily muscled forelimbs of sabretooths were used for immobilizing prey before developing a quick and precise killing bite. However, the effect of this unique adaptation on the covariation between the fore- and the hindlimb has not been explored in a quantitative fashion. In this paper, we investigate if the specialization of sabretooth predators decoupled the morphological variation of their forelimb with respect to their hindlimb or, in contrast, both limbs vary in the same fashion as in conical-tooth cats, which do not show such extreme adaptations in their forelimb. We use 3D geometric morphometrics and different morphological indices to compare the fore- and hindlimb of conical- and sabretooth predators. Our results indicate that the limb bones of sabretooth predators covary following the same trend of conical-tooth cats. Therefore, we show that the predatory specialization of sabretooth predators did not result in a decoupling of the morphological evolution of their fore- and hindlimbs. The role of developmental constraints and natural selection on this coordinate variation between the fore- and the hindlimb is discussed in the light of this new evidence. © 2017 Anatomical Society.

  7. EEG patterns from acute to chronic stroke phases in focal cerebral ischemic rats: correlations with functional recovery.

    PubMed

    Zhang, Shao-jie; Ke, Zheng; Li, Le; Yip, Shea-ping; Tong, Kai-yu

    2013-04-01

    Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural activities in the penumbra. Longitudinal EEG monitoring at different phases after a stroke can provide information on the neural activities, which are well correlated with the motor function recovery.

  8. FISH OIL IMPROVES MOTOR FUNCTION, LIMITS BLOOD-BRAIN BARRIER DISRUPTION, AND REDUCES MMP9 GENE EXPRESSION IN A RAT MODEL OF JUVENILE TRAUMATIC BRAIN INJURY

    PubMed Central

    Russell, K. L.; Berman, N. E. J.; Gregg, P. R. A.; Levant, B.

    2014-01-01

    SUMMARY The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15 mL/kg fish oil (2.01 g/kg EPA, 1.34 g/kg DHA) or soybean oil dose via oral gavage 30 minutes prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9h gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. PMID:24342130

  9. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury.

    PubMed

    Russell, K L; Berman, N E J; Gregg, P R A; Levant, B

    2014-01-01

    The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. © 2013 Elsevier Ltd. All rights reserved.

  10. Local GABA receptor blockade reveals hindlimb responses in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Lane, Richard D; Rhoades, Robert W

    2004-07-01

    In adult rats that sustained forelimb amputation on the day of birth, there are numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to cutaneous stimulation of the hindlimb when cortical receptors for GABA are blocked. These normally suppressed hindlimb inputs originate in the SI hindlimb representation and synapse in the dysgranular cortex before exciting SI forelimb-stump neurons. In our previous studies, GABA (A + B) receptor blockade was achieved by topically applying a bicuculline methiodide/saclofen solution (BMI/SAC) to the cortical surface. This treatment blocks receptors throughout SI and does not allow determination of where along the above circuit the GABA-mediated suppression of hindlimb information occurs. In this study, focal injections of BMI/SAC were delivered to three distinct cortical regions that are involved in the hindlimb-to-forelimb-stump pathway. Blocking GABA receptors in the SI hindlimb representation and in the dysgranular cortex was largely ineffective in revealing hindlimb inputs ( approximately 10% of hindlimb inputs were revealed in both cases). In contrast, when the blockade was targeted at forelimb-stump recording sites, >80% of hindlimb inputs were revealed. Thus GABAergic interneurons within the forelimb-stump representation suppress the expression of reorganized hindlimb inputs to the region. A circuit model incorporating these and previous observations is presented and discussed.

  11. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles

    NASA Technical Reports Server (NTRS)

    Vijayan, K.; Thompson, J. L.; Norenberg, K. M.; Fitts, R. H.; Riley, D. A.

    2001-01-01

    Slow oxidative (SO) fibers of the adductor longus (AL) were predominantly damaged during voluntary reloading of hindlimb unloaded (HU) rats and appeared explainable by preferential SO fiber recruitment. The present study assessed damage after eliminating the variable of voluntary recruitment by tetanically activating all fibers in situ through the motor nerve while applying eccentric (lengthening) or isometric contractions. Muscles were aldehyde fixed and resin embedded, and semithin sections were cut. Sarcomere lesions were quantified in toluidine blue-stained sections. Fibers were typed in serial sections immunostained with antifast myosin and antitotal myosin (which highlights slow fibers). Both isometric and eccentric paradigms caused fatigue. Lesions occurred only in eccentrically contracted control and HU muscles. Fatigue did not cause lesions. HU increased damage because lesioned- fiber percentages within fiber types and lesion sizes were greater than control. Fast oxidative glycolytic (FOG) fibers were predominantly damaged. In no case did damaged SO fibers predominate. Thus, when FOG, SO, and hybrid fibers are actively lengthened in chronically unloaded muscle, FOG fibers are intrinsically more susceptible to damage than SO fibers. Damaged hybrid-fiber proportions ranged between these extremes.

  12. Topography and collateralization of dopaminergic projections to primary motor cortex in rats.

    PubMed

    Hosp, Jonas A; Nolan, Helen E; Luft, Andreas R

    2015-05-01

    Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.

  13. Endothelin-a receptor antagonist treatment improves the periosteal microcirculation after hindlimb ischemia and reperfusion in the rat.

    PubMed

    Wolfárd, Antal; Császár, József; Gera, László; Petri, András; Simonka, János Aurél; Balogh, Adáa; Boros, Mihály

    2002-12-01

    To examine the microcirculatory changes in the rat tibial periosteum after hindlimb ischemia and reperfusion and to evaluate the effects of endothelin-A (ET-A) receptor antagonist therapy in this condition. The healing and functioning of vascularized bone autografts depend mainly on the patency of the microcirculation, and the activation of ET-A receptors may be an important component of the tissue response that occurs during ischemia-reoxygenation injuries. Wistar rats were subjected to 1 hour of hindlimb ischemia and 3 hours of reperfusion. The periosteal microcirculation was visualized by intravital fluorescence microscopy. The leukocyte rolling and adherence in the postcapillary venules and the functional capillary density of the periosteum were determined. Two separate groups were treated with the selective ET-A receptor antagonist BQ 610 or the novel ET-A receptor antagonist ETR-p1/fl peptide at the onset of reperfusion. Reperfusion was accompanied by a significant decrease in functional capillary density and by an increase in the primary and secondary leukocyte-endothelial cell interactions. ET-A receptor inhibition reduced the leukocyte rolling and firm adherence and attenuated the decrease in functional capillary density in both treated groups. ET-1 plays a major role in microvascular dysfunction in the periosteum during reperfusion. The ET-1-ET-A receptor system might be an important target for tissue salvage therapy in transplantation surgery.

  14. Effects of Hindlimb Unweighting on Arterial Contractile Responses in Mice

    NASA Technical Reports Server (NTRS)

    Ma, Jia; Ren, Xin-Ling; Purdy, Ralph E.

    2003-01-01

    The aim of this work was to determine if hindlimb unweighting in mice alters arterial contractile responses. Sixteen male C57B/6 mice and 16 male Chinese Kunming mice were divided into control and 3 weeks hindlimb unweighting groups, respectively. Using isolated arterial rings from different arteries of mouse, effects of 3 weeks hindlimb unweighting on arterial contractile responsiveness were examined in vitro. The results showed that, in arterial rings from both C57B/6 and Chinese Kunming mice, maximum isometric contractile tensions evoked by either KCl or phenylephrine were significantly lower in abdominal aortic, mesenteric arterial and femoral arterial rings from hindlimb unweighting, compared to control mice. However, the maximal contractile responses of common carotid rings to KCl and PE were not significantly different between control and hindlimb unweighting groups. The sensitivity (EC(sub 50)) of all arteries to KCl or PE showed no significant differences between control and hindlimb unweighting mice. These data indicated that 3 weeks hindlimb unweighting results in a reduced capacity of the arterial smooth muscle of the hindquarter to develop tension. In addition, the alterations in arterial contractile responses caused by hindlimb unweighting in mice are similar as those in rats. Our work suggested that hindlimb unweighting mouse model may be used as a model for the study of postflight cardiovascular deconditioning.

  15. Scaling of muscle architecture and fiber types in the rat hindlimb.

    PubMed

    Eng, Carolyn M; Smallwood, Laura H; Rainiero, Maria Pia; Lahey, Michele; Ward, Samuel R; Lieber, Richard L

    2008-07-01

    The functional capacity of a muscle is determined by its architecture and metabolic properties. Although extensive analyses of muscle architecture and fiber type have been completed in a large number of muscles in numerous species, there have been few studies that have looked at the interrelationship of these functional parameters among muscles of a single species. Nor have the architectural properties of individual muscles been compared across species to understand scaling. This study examined muscle architecture and fiber type in the rat (Rattus norvegicus) hindlimb to examine each muscle's functional specialization. Discriminant analysis demonstrated that architectural properties are a greater predictor of muscle function (as defined by primary joint action and anti-gravity or non anti-gravity role) than fiber type. Architectural properties were not strictly aligned with fiber type, but when muscles were grouped according to anti-gravity versus non-anti-gravity function there was evidence of functional specialization. Specifically, anti-gravity muscles had a larger percentage of slow fiber type and increased muscle physiological cross-sectional area. Incongruities between a muscle's architecture and fiber type may reflect the variability of functional requirements on single muscles, especially those that cross multiple joints. Additionally, discriminant analysis and scaling of architectural variables in the hindlimb across several mammalian species was used to explore whether any functional patterns could be elucidated within single muscles or across muscle groups. Several muscles deviated from previously described muscle architecture scaling rules and there was large variability within functional groups in how muscles should be scaled with body size. This implies that functional demands placed on muscles across species should be examined on the single muscle level.

  16. Function of the epaxial muscles during trotting.

    PubMed

    Schilling, Nadja; Carrier, David R

    2009-04-01

    In mammals, the epaxial muscles are believed to stabilize the trunk during walking and trotting because the timing of their activity is not appropriate to produce bending of the trunk. To test whether this is indeed the case, we recorded the activity of the m. multifidus lumborum and the m. longissimus thoracis et lumborum at three different sites along the trunk (T13, L3, L6) as we manipulated the moments acting on the trunk and the pelvis in dogs trotting on a treadmill. Confirming results of previous studies, both muscles exhibited a biphasic and bilateral activity. The higher burst was associated with the second half of ipsilateral hindlimb stance phase, the smaller burst occurred during the second half of ipsilateral hindlimb swing phase. The asymmetry was noticeably larger in the m. longissimus thoracis et lumborum than in the m. multifidus lumborum. Although our manipulations of the inertia of the trunk produced results that are consistent with previous studies indicating that the epaxial muscles stabilize the trunk against accelerations in the sagittal plane, the responses of the epaxial muscles to manipulations of trunk inertia were small compared with their responses when moments produced by the extrinsic muscles of the hindlimb were manipulated. Our results indicate that the multifidus and longissimus muscles primarily stabilize the pelvis against (1) vertical components of hindlimb retractor muscles and (2) horizontal components of the hindlimb protractor and retractor muscles. Consistent with this, stronger effects of the manipulations were observed in the posterior sampling sites.

  17. Passive hind-limb cycling improves cardiac function and reduces cardiovascular disease risk in experimental spinal cord injury

    PubMed Central

    West, Christopher R; Crawford, Mark A; Poormasjedi-Meibod, Malihe-Sadat; Currie, Katharine D; Fallavollita, Andre; Yuen, Violet; McNeill, John H; Krassioukov, Andrei V

    2014-01-01

    Spinal cord injury (SCI) causes altered autonomic control and severe physical deconditioning that converge to drive maladaptive cardiac remodelling. We used a clinically relevant experimental model to investigate the cardio-metabolic responses to SCI and to establish whether passive hind-limb cycling elicits a cardio-protective effect. Initially, 21 male Wistar rats were evenly assigned to three groups: uninjured control (CON), T3 complete SCI (SCI) or T3 complete SCI plus passive hind-limb cycling (SCI-EX; 2 × 30 min day−1, 5 days week−1 for 4 weeks beginning 6 days post-SCI). On day 32, cardio-metabolic function was assessed using in vivo echocardiography, ex vivo working heart assessments, cardiac histology/molecular biology and blood lipid profiles. Twelve additional rats (n = 6 SCI and n = 6 SCI-EX) underwent in vivo echocardiography and basal haemodynamic assessments pre-SCI and at days 7, 14 and 32 post-SCI to track temporal cardiovascular changes. Compared with CON, SCI exhibited a rapid and sustained reduction in left ventricular dimensions and function that ultimately manifested as reduced contractility, increased myocardial collagen deposition and an up-regulation of transforming growth factor beta-1 (TGFβ1) and mothers against decapentaplegic homolog 3 (Smad3) mRNA. For SCI-EX, the initial reduction in left ventricular dimensions and function at day 7 post-SCI was completely reversed by day 32 post-SCI, and there were no differences in myocardial contractility between SCI-EX and CON. Collagen deposition was similar between SCI-EX and CON. TGFβ1 and Smad3 were down-regulated in SCI-EX. Blood lipid profiles were improved in SCI-EX versus SCI. We provide compelling novel evidence that passive hind-limb cycling prevents cardiac dysfunction and reduces cardiovascular disease risk in experimental SCI. PMID:24535438

  18. Upregulation of eIF-5A1 in the paralyzed muscle after spinal cord transection associates with spontaneous hindlimb locomotor recovery in rats by upregulation of the ErbB, MAPK and neurotrophin signal pathways.

    PubMed

    Shang, Fei-Fei; Zhao, Wei; Zhao, Qi; Liu, Jia; Li, Da-Wei; Zhang, Hua; Zhou, Xin-Fu; Li, Cheng-Yun; Wang, Ting-Hua

    2013-10-08

    It is well known that trauma is frequently accompanied by spontaneous functional recovery after spinal cord injury (SCI), but the underlying mechanisms remain elusive. In this study, BBB scores showed a gradual return of locomotor functions after SCT. Proteomics analysis revealed 16 differential protein spots in the gastrocnemius muscle between SCT and normal rats. Of these differential proteins, eukaryotic translation initiation factor 5A1 (elf-5A1), a highly conserved molecule throughout eukaryotes, exhibited marked upregulation in the gastrocnemius muscle after SCT. To study the role of eIF-5A1 in the restoration of hindlimb locomotor functions following SCT, we used siRNA to downregulate the mRNA level of eIF-5A1. Compared with untreated SCT control rats, those subjected to eIF-5A1 knockdown exhibited impaired functional recovery. Moreover, gene expression microarrays and bioinformatic analysis showed high correlation between three main signal pathways (ErbB, MAPK and neurotrophin signal pathways) and eIF-5A1. These signal pathways regulate cell proliferation, differentiation and neurocyte growth. Consequently, eIF-5A1 played a pivotal role via these signal pathways in hindlimb locomotor functional recovery after SCT, which could pave the way for the development of a new strategy for the treatment of spinal cord injury in clinical trials. Copyright © 2012. Published by Elsevier B.V.

  19. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence

    PubMed Central

    Udoekwere, Ubong I.; Oza, Chintan S.

    2016-01-01

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with “poor” and “high weight support” groupings. A total of 35% of rats initially classified as “poor” were able to increase their weight-supported step measures to a level considered “high weight support” after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. SIGNIFICANCE STATEMENT Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes. The robot rehabilitation system can be inactivated and the skills that were learned persist. Responding rats cannot be detached from the robot altogether, a dependence develops in the skill learned. From data and analysis here, the likelihood of such rats to respond to the robot therapy can also now be predicted. These results are all novel. Understanding trunk roles in voluntary and spinal reflex integration after spinal cord injury and in recovery of function are broadly significant for basic and clinical understanding of motor function. PMID:27511008

  20. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.

    PubMed

    Udoekwere, Ubong I; Oza, Chintan S; Giszter, Simon F

    2016-08-10

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes. The robot rehabilitation system can be inactivated and the skills that were learned persist. Responding rats cannot be detached from the robot altogether, a dependence develops in the skill learned. From data and analysis here, the likelihood of such rats to respond to the robot therapy can also now be predicted. These results are all novel. Understanding trunk roles in voluntary and spinal reflex integration after spinal cord injury and in recovery of function are broadly significant for basic and clinical understanding of motor function. Copyright © 2016 the authors 0270-6474/16/368341-15$15.00/0.

  1. Gender-related differences in recovery of locomotor function after spinal cord injury in mice.

    PubMed

    Farooque, M; Suo, Z; Arnold, P M; Wulser, M J; Chou, C-T; Vancura, R W; Fowler, S; Festoff, B W

    2006-03-01

    In order to study the role of gender in recovery, we induced a thoracic compression spinal cord injury (SCI) separately in 2-month-old male and female C57Bl/6 mice. We intended to assess effects of gender on recovery of hindlimb motor function and to correlate these with histomorphologic profiles of injured spinal cord tissue. Locomotor function was evaluated by three means: a modified locomotor scoring system for rodents, beam walking and computerized activity meter. Histology was analyzed by comparison of hematoxylin and eosin-stained perfused specimens. Locomotor scores were 2.2+/-0.9 on day 1 in male mice, while, in contrast, they were significantly higher, 7.3+/-1.7, in females (P<0.02). On day 14 Basso, Beattie and Bresnahan scores were 9.5+/-2.2 in male mice and 16.0+/-2.2 in females (P<0.03). Terminal histology showed that the spinal cord architecture was relatively better preserved in female mice and that the extent of necrosis and infiltration of inflammatory cells was less compared to males. Neurobiology Research Laboratory of University of Kansas Medical School in US Department of Veterans Affairs Medical Center, Kansas City, Missouri. We found that the severity of the initial injury as well as the ultimate recovery of motor function after SCI is significantly influenced by gender, being remarkably better in females. The mechanism(s) of neuroprotection in females, although not yet elucidated, may be associated with the effects of estrogen on pathophysiological processes (blood flow, leukocyte migration inhibition, antioxidant properties, and inhibition of apoptosis). Medical Research, US Department of Veterans Affairs, the Christopher Reeve Paralysis Foundation and NIH.

  2. Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton.

    PubMed

    Salton, Justine A; Sargis, Eric J

    2009-03-01

    The tenrecs of Central Africa and Madagascar provide an excellent model for exploring adaptive radiation and functional aspects of mammalian hindlimb form. The pelvic girdle, femur, and crus of 13 tenrecoid species, and four species from the families Solenodontidae, Macroscelididae, and Erinaceidae, were examined and measured. Results from qualitative and quantitative analyses demonstrate remarkable diversity in several aspects of knee and hip joint skeletal form that are supportive of function-based hypotheses, and consistent with studies on nontenrecoid eutherian postcranial adaptation. Locomotor specialists within Tenrecoidea exhibit suites of characteristics that are widespread among eutherians with similar locomotor behaviors. Furthermore, several characters that are constrained at the subfamily level were identified. Such characters are more indicative of postural behavior than locomotor behavior. Copyright 2008 Wiley-Liss, Inc.

  3. Short-Term Motor Compensations to Denervation of Feline Soleus and Lateral Gastrocnemius Result in Preservation of Ankle Mechanical Output during Locomotion

    PubMed Central

    Prilutsky, Boris I.; Maas, Huub; Bulgakova, Margarita; Hodson-Tole, Emma F.; Gregor, Robert J.

    2011-01-01

    Denervation of selected ankle extensors in animals results in locomotor changes. These changes have been suggested to permit preservation of global kinematic characteristics of the hindlimb during stance. The peak ankle joint moment is also preserved immediately after denervation of several ankle extensors in the cat, suggesting that the animal's response to peripheral nerve injury may also be aimed at preserving ankle mechanical output. We tested this hypothesis by comparing joint moments and power patterns during walking before and after denervation of soleus and lateral gastrocnemius muscles. Hindlimb kinematics, ground reaction forces and electromyographic activity of selected muscles were recorded during level, downslope (−50%) and upslope (50%) walking before and 1–3 weeks after nerve denervation. Denervation resulted in increased activity of the intact medial gastrocnemius and plantaris muscles, greater ankle dorsiflexion, smaller knee flexion, and the preservation of the peak ankle moment during stance. Surprisingly, ankle positive power generated in the propulsion phase of stance was increased (up to 50%) after denervation in all walking conditions (p < 0.05). The obtained results suggest that the short-term motor compensation to denervation of lateral gastrocnemius and soleus muscles may allow for preservation of mechanical output at the ankle. The additional mechanical energy generated at the ankle during propulsion can result, in part, from increased activity of intact synergists, the use of passive tissues around the ankle and by the tendon action of ankle two-joint muscles and crural fascia. PMID:21411965

  4. Misexpression experiment of Tbx5 in axolotl (Ambystoma mexicanum) hindlimb blastema.

    PubMed

    Shimokawa, Takashi; Kominami, Rieko; Yasutaka, Satoru; Shinohara, Harumichi

    2013-01-01

    Axolotls (Ambystoma mexicanum) have the ability to regenerate amputated limbs throughout their life span. In the present study, we attempted to elucidate how axolotls can specify limb type correctly during the regeneration process. We misexpressed Tbx5 in regenerating hindlimb blastema, and consequently a forelimb-like hindlimb regenerated from the hindlimb blastema. On the other hand, no change was observed in Tbx5-overexpressing forelimb blastema, and thus we considered that Tbx5 plays a key role in the specification of forelimb during the regeneration process of axolotl limbs. However, axolotls' fore- and hindlimbs have very similar structures except for the number of fingers, and it was very difficult to judge whether the forelimb-like regenerate was a true forelimb or merely a forelimb-like hindlimb. Therefore, in order to confirm our conclusion, we have to investigate other genes that are expressed differentially between fore- and hindlimbs in future experiments.

  5. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  6. [Serotoninergic system morphofunctional aspects in control of postural and locomotion function].

    PubMed

    Gerasimenko, Iu P; Moshonkina, T R; Pavlova, N V; Tomilovskaia, E S; Kozlovskaia, I B

    2012-12-01

    Different mediator systems including serotoninergic one can influence animal's locomotor behavior. It has been shown that the spinal cord in the absence of supraspinal control is able to induce the locomotor activity in hindlimbs and afferent system can activate this mechanism. In behavioral studies on the rats with complete transection of the spinal cord it has been demonstrated that the pharmacological blocking of serotoninergic system results in depression of motor activity mediated by activation of support reactions. Histological studies did not reveal any effects of activation of support reactions on the safety of neurons as well as on the distribution of synaptic contacts within L2-L4 spinal segments. At the same time it has been shown that blockade of the serotoninergic system results in alterations of cells located in 1-3 laminae of dorsal horns, and in 7 Rexed's lamina as well as in redistribution of synaptic contacts in 1-4 Rexed laminae of the spinal cord dorsal horns.

  7. Attenuation of Hind-Limb Ischemia in Mice with Endothelial-Like Cells Derived from Different Sources of Human Stem Cells

    PubMed Central

    Chan, Yau-Chi; Ng, Joyce H. L.; Au, Ka-Wing; Wong, Lai-Yung; Siu, Chung-Wah; Tse, Hung-Fat

    2013-01-01

    Functional endothelial-like cells (EC) have been successfully derived from different cell sources and potentially used for treatment of cardiovascular diseases; however, their relative therapeutic efficacy remains unclear. We differentiated functional EC from human bone marrow mononuclear cells (BM-EC), human embryonic stem cells (hESC-EC) and human induced pluripotent stem cells (hiPSC-EC), and compared their in-vitro tube formation, migration and cytokine expression profiles, and in-vivo capacity to attenuate hind-limb ischemia in mice. Successful differentiation of BM-EC was only achieved in 1/6 patient with severe coronary artery disease. Nevertheless, BM-EC, hESC-EC and hiPSC-EC exhibited typical cobblestone morphology, had the ability of uptaking DiI-labeled acetylated low-density-lipoprotein, and binding of Ulex europaeus lectin. In-vitro functional assay demonstrated that hiPSC-EC and hESC-EC had similar capacity for tube formation and migration as human umbilical cord endothelial cells (HUVEC) and BM-EC (P>0.05). While increased expression of major angiogenic factors including epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor, placental growth factor and stromal derived factor-1 were observed in all EC cultures during hypoxia compared with normoxia (P<0.05), the magnitudes of cytokine up-regulation upon hypoxic were more dramatic in hiPSC-EC and hESC-EC (P<0.05). Compared with medium, transplanting BM-EC (n = 6), HUVEC (n = 6), hESC-EC (n = 8) or hiPSC-EC (n = 8) significantly attenuated severe hind-limb ischemia in mice via enhancement of neovascularization. In conclusion, functional EC can be generated from hECS and hiPSC with similar therapeutic efficacy for attenuation of severe hind-limb ischemia. Differentiation of functional BM-EC was more difficult to achieve in patients with cardiovascular diseases, and hESC-EC or iPSC-EC are readily available as “off-the-shelf” format for the treatment of tissue ischemia. PMID:23472116

  8. Manipulated Changes in Limb Mass and Rotational Inertia in Trotting Dogs (Canis lupus familiaris) and Their Effect on Limb Kinematics.

    PubMed

    Kilbourne, Brandon M; Carrier, David R

    2016-12-01

    While the mass distribution of limbs is known to influence the metabolic energy consumed during locomotion, it remains unknown how the mass distribution of limbs may influence overall limb kinematics and whether the influence of limb mass distribution on limb kinematics differs between fore- and hindlimbs. To examine limb mass distribution's influence upon fore- and hindlimb kinematics, temporal stride parameters and swing phase joint kinematics were recorded from four dogs trotting on a treadmill with 0.5% and 1.0% body mass added to each limb, forelimbs alone, and hindlimbs alone, as well as with no added mass. Under all loading conditions, stride period did not differ between fore- and hindlimbs; however, forelimbs exhibited greater duty factors and stance durations, whereas hindlimbs exhibited greater swing durations, which may be related to the hindlimb's greater mass. Changes in forelimb joint and hip range of motion (RoM), flexion, and extension were subject to a high amount of kinematic plasticity among dogs. In contrast, for the knee and ankle, distally loading all four limbs or hindlimbs alone substantially increased joint RoM and flexion. Increased flexion of the knee and ankle has the potential to reduce the hindlimb's rotational inertia during swing phase. The differing response of fore- and hindlimbs with regard to joint kinematics is likely due to differences in their mass and mass distribution and differences in the physiological traits of fore- and hindlimb protractors and joint flexors. © 2017 Wiley Periodicals, Inc.

  9. A pressure plate study on fore and hindlimb loading and the association with hoof contact area in sound ponies at the walk and trot.

    PubMed

    Oosterlinck, M; Pille, F; Back, W; Dewulf, J; Gasthuys, F

    2011-10-01

    The aim of this study was to evaluate the association between fore- and hind-hoof contact area and limb loading. Data from a previous study on forelimb loading and symmetry were compared with data on hindlimb kinetics, and the fore- and hind-hoof contact area at the walk and trot was evaluated. Five sound ponies, selected for symmetrical feet, were walked and trotted over a pressure plate embedded in a custom-made runway. The hindlimb peak vertical force (PVF) and vertical impulse (VI) were found to be significantly lower than in the forelimb, whereas their high symmetry ratios (>95%) did not show a significant difference from forelimb data. Hindlimb PVF in ponies was found to be slightly higher when compared to data reported for horses even though the ponies moved at a similar or lower relative velocity. The contact area had low intra-individual variability and was significantly smaller in the hind- than in the fore-hooves. A larger contact area was significantly associated with lower peak vertical pressure (PVP) but higher PVF and VI. No significant differences between left and right sides were found for contact area or loading variables. Pressure plate measurements demonstrated a significant association between hoof contact area and limb loading, in addition to intrinsic differences between fore and hindlimb locomotor function. The pressure plate provides the clinician with a tool to quantify simultaneously contralateral differences in hoof contact area and limb loading. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats.

    PubMed

    Gad, Parag; Choe, Jaehoon; Nandra, Mandheerej Singh; Zhong, Hui; Roy, Roland R; Tai, Yu-Chong; Edgerton, V Reggie

    2013-01-21

    Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.

  11. Hindlimb unloading alters ligament healing

    NASA Technical Reports Server (NTRS)

    Provenzano, Paolo P.; Martinez, Daniel A.; Grindeland, Richard E.; Dwyer, Kelley W.; Turner, Joanne; Vailas, Arthur C.; Vanderby, Ray Jr

    2003-01-01

    We investigated the hypothesis that hindlimb unloading inhibits healing in fibrous connective tissue such as ligament. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing, and hindlimb-suspended healing. Ambulatory and suspended animals underwent surgical rupture of their medial collateral ligaments, whereas sham surgeries were performed on control animals. After 3 or 7 wk, mechanical and/or morphological properties were measured in ligament, muscle, and bone. During mechanical testing, most suspended ligaments failed in the scar region, indicating the greatest impairment was to ligament and not to bone-ligament insertion. Ligament testing revealed significant reductions in maximum force, ultimate stress, elastic modulus, and low-load properties in suspended animals. In addition, femoral mineral density, femoral strength, gastrocnemius mass, and tibialis anterior mass were significantly reduced. Microscopy revealed abnormal scar formation and cell distribution in suspended ligaments with extracellular matrix discontinuities and voids between misaligned, but well-formed, collagen fiber bundles. Hence, stress levels from ambulation appear unnecessary for formation of fiber bundles yet required for collagen to form structurally competent continuous fibers. Results support our hypothesis that hindlimb unloading impairs healing of fibrous connective tissue. In addition, this study provides compelling morphological evidence explaining the altered structure-function relationship in load-deprived healing connective tissue.

  12. Lack of ecto-5'-nucleotidase (CD73) promotes arteriogenesis.

    PubMed

    Böring, Yang Chul; Flögel, Ulrich; Jacoby, Christoph; Heil, Matthias; Schaper, Wolfgang; Schrader, Jürgen

    2013-01-01

    Adenosine can stimulate angiogenesis, but its role in the distinct process of arteriogenesis is unknown. We have previously reported that mice lacking ecto-5'-nucleotidase (CD73-/-) show enhanced monocyte adhesion to the endothelium after ischaemia, which is considered to be an important trigger for arteriogenesis. Hindlimb ischaemia was induced in wild-type (WT) and CD73-/- mice to study the role of extracellularly formed adenosine in arteriogenesis. Magnetic resonance angiography (MRA) was performed for serial visualization of newly developed vessels at a spatial resolution of 1 nL, and high-energy phosphates (HEP) were quantified by (31)P MR spectroscopy (MRS). MRA of CD73-/- mice revealed substantially enhanced collateral artery conductance at day 7 [CD73-/-: 0.73 ± 0.11 a.u. (arbitrary units); WT: 0.44 ± 0.13 a.u.; P < 0.01, n = 6], and MRS of the affected hindlimb showed a faster restoration of HEP in correlation with enhanced functional recovery in the mutant. Additionally, histology showed no differences in capillary density between the groups but showed an increased monocyte infiltration in hindlimbs of CD73-/- mice. Serial assessment of dynamic changes of vessel growth and metabolism in the process of arteriogenesis demonstrate that the lack of CD73-derived adenosine importantly promotes arteriogenesis but does not alter angiogenesis in our model of hindlimb ischaemia.

  13. Abnormal Motor Phenotype at Adult Stages in Mice Lacking Type 2 Deiodinase

    PubMed Central

    Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Background Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3′-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. Aim This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Results Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. Conclusions The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders. PMID:25083788

  14. Ethyl pyruvate attenuates spinal cord ischemic injury with a wide therapeutic window through inhibiting high-mobility group box 1 release in rabbits.

    PubMed

    Wang, Qiang; Ding, Qian; Zhou, Yiming; Gou, Xingchun; Hou, Lichao; Chen, Shaoyang; Zhu, Zhenghua; Xiong, Lize

    2009-06-01

    Ethyl pyruvate (EP) has been reported to offer a protective effect against ischemic injury through its antiinflammatory action. The nuclear protein high-mobility group box 1 (HMGB1) can activate inflammatory pathways when released from ischemic cells. This study was designed to investigate the neuroprotective effect of EP against spinal cord ischemic injury and the potential role of HMGB1 in this process. EP was administered at various time points before or after 20 min of spinal cord ischemia in male New Zealand rabbits. All animals were sacrificed at 72 h after reperfusion with modified Tarlov criteria, and the spinal cord segment (L4) was harvested for histopathological examination and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining. The HMGB1 levels in serum and spinal cord tissue were analyzed by enzyme-linked immunosorbent assay. The treatment of EP at 30 min before ischemia or at 6 h after reperfusion significantly improved the hind-limb motor function scores and increased the numbers of normal motor neurons, which was accompanied with reduction of the number of apoptotic neurons and levels of HMGB1 in serum and spinal cord tissue. The HMGB1 contents of spinal cord tissue correlated well with the numbers of apoptotic motor neurons in the anterior spinal cord at 72 h after reperfusion. These results suggest that EP affords a strong protection against the transient spinal cord ischemic injury with a wide therapeutic window through inhibition of HMGB1 release.

  15. [Neuronal control of posture and locomotion in decerebrated and spinalized animals].

    PubMed

    Musienko, P E; Gorskiĭ, O V; Kilimnik, V A; Kozlovskaia, I B; Courtine, G; Edgerton, V R; Gerasimenko, Iu P

    2013-03-01

    We have found that the brainstem-spinal cord circuitry of decerebrated cats actively maintain the equilibrium during standing, walking and imposed mechanical perturbations similar to that observed in intact animals. The corrective hindlimb motor responses during standing included redistribution of the extensor activity ipsilateral and contralateral to perturbation. The postural corrections in walking cats were due to considerable modification of EMG pattern in the limbs as well as changing of the swing-stance phases of the step cycle and ground reaction forces depending of perturbation side. Thus the basic mechanisms for balance control of decerebrated animals in these two forms of motor behavior are different. Balance-related adjustments relied entirely on the integration of somatosensory information arising from the moving hindquarters because of the suppression of vestibular, visual, and head-neck-trunk sensory input. We propose that the somatosensory input from the hindquarters in concert with the lumbosacral spinal circuitry can control the dynamics of the hindquarters sufficient to sustain balance. We found that, after isolation from the brainstem or forebrain, lumbosacral circuits receiving tonic epidural electrical stimulation can effectively control equilibrium during standing and stepping. Detailed analyses of the relationships among muscle activity, trunk kinematics, and limb kinetics indicate that spinal motor systems utilize a combination of feedback and feedforward strategies to maintain dynamic equilibrium during walking. The unexpected ability of spinal circuitries to exert efficient postural control in the presence of epidural electrical stimulation in decerebrated and spinal cats have significant implications for the potential of humans with a severe spinal cord injury to regain a significant level of functional standing and walking capacities.

  16. Evaluation of a wireless activity monitoring system to quantify locomotor activity in horses in experimental settings.

    PubMed

    Fries, M; Montavon, S; Spadavecchia, C; Levionnois, O L

    2017-03-01

    Methods of evaluating locomotor activity can be useful in efforts to quantify behavioural activity in horses objectively. To evaluate whether an accelerometric device would be adequate to quantify locomotor activity and step frequency in horses, and to distinguish between different levels of activity and different gaits. Observational study in an experimental setting. Dual-mode (activity and step count) piezo-electric accelerometric devices were placed at each of 4 locations (head, withers, forelimb and hindlimb) in each of 6 horses performing different controlled activities including grazing, walking at different speeds, trotting and cantering. Both the activity count and step count were recorded and compared by the various activities. Statistical analyses included analysis of variance for repeated measures, receiver operating characteristic curves, Bland-Altman analysis and linear regression. The accelerometric device was able to quantify locomotor activity at each of the 4 locations investigated and to distinguish between gaits and speeds. The activity count recorded by the accelerometer placed on the hindlimb was the most accurate, displaying a clear discrimination between the different levels of activity and a linear correlation to speed. The accelerometer placed on the head was the only one to distinguish specifically grazing behaviour from standing. The accelerometer placed on the withers was unable to differentiate different gaits and activity levels. The step count function measured at the hindlimb was reliable but the count was doubled at the walk. The dual-mode accelerometric device was sufficiently accurate to quantify and compare locomotor activity in horses moving at different speeds and gaits. Positioning the device on the hindlimb allowed for the most accurate results. The step count function can be useful but must be manually corrected, especially at the walk. © 2016 EVJ Ltd.

  17. Heart-rate reduction by If-channel inhibition with ivabradine restores collateral artery growth in hypercholesterolemic atherosclerosis.

    PubMed

    Schirmer, Stephan H; Degen, Achim; Baumhäkel, Magnus; Custodis, Florian; Schuh, Lisa; Kohlhaas, Michael; Friedrich, Erik; Bahlmann, Ferdinand; Kappl, Reinhard; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2012-05-01

    Collateral arteries protect tissue from ischaemia. Heart rate correlates with vascular events in patients with arterial obstructive disease. Here, we tested the effect of heart-rate reduction (HRR) on collateral artery growth. The I(f)-channel inhibitor ivabradine reduced heart rate by 11% in wild-type and 15% in apolipoprotein E (ApoE)(-/-) mice and restored endothelium-dependent relaxation in aortic rings of ApoE(-/-) mice. Microsphere perfusion and angiographies demonstrated that ivabradine did not change hindlimb perfusion in wild-type mice but improved perfusion in ApoE(-/-) mice from 40.5 ± 15.8-60.2 ± 18.5% ligated/unligated hindlimb. Heart rate reduction (13%) with metoprolol failed to improve endothelial function and perfusion. Protein expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS, and eNOS activity were increased in collateral tissue following ivabradine treatment of ApoE(-/-) mice. Co-treatment with nitric oxide-inhibitor N (G)-nitro-L-arginine methyl ester abolished the effects of ivabradine on arteriogenesis. Following ivabradine, classical inflammatory cytokine expression was lowered in ApoE(-/-) circulating mononuclear cells and in plasma, but unaltered in collateral-containing hindlimb tissue, where numbers of perivascular macrophages also remained unchanged. However, ivabradine reduced expression of anti-arteriogenic cytokines CXCL10and CXCL11 and of smooth muscle cell markers smoothelin and desmin in ApoE(-/-) hindlimb tissue. Endothelial nitric oxide synthase and inflammatory cytokine expression were unchanged in wild-type mice. Ivabradine did not affect cytokine production in HUVECs and THP1 mononuclear cells and had no effect on the membrane potential of HUVECs in patch-clamp experiments. Ivabradine-induced HRR stimulates adaptive collateral artery growth. Important contributing mechanisms include improved endothelial function, eNOS activity, and modulation of inflammatory cytokine gene expression.

  18. Improved recovery from limb ischaemia by delivery of an affinity-isolated heparan sulphate.

    PubMed

    Poon, Selina; Lu, Xiaohua; Smith, Raymond A A; Ho, Pei; Bhakoo, Kishore; Nurcombe, Victor; Cool, Simon M

    2018-05-18

    Peripheral arterial disease is a major cause of limb loss and its prevalence is increasing worldwide. As most standard-of-care therapies yield only unsatisfactory outcomes, more options are needed. Recent cell- and molecular-based therapies that have aimed to modulate vascular endothelial growth factor-165 (VEGF 165 ) levels have not yet been approved for clinical use due to their uncertain side effects. We have previously reported a heparan sulphate (termed HS7) tuned to avidly bind VEGF 165 . Here, we investigated the ability of HS7 to promote vascular recovery in a murine hindlimb vascular ischaemia model. HS7 stabilised VEGF 165 against thermal and enzyme degradation in vitro, and isolated VEGF 165 from serum via affinity-chromatography. C57BL6 mice subjected to unilateral hindlimb ischaemia injury received daily intramuscular injections of respective treatments (n = 8) and were assessed over 3 weeks by laser Doppler perfusion, magnetic resonance angiography, histology and the regain of function. Mice receiving HS7 showed improved blood reperfusion in the footpad by day 7. In addition, they recovered hindlimb blood volume two- to fourfold faster compared to the saline group; the greatest rate of recovery was observed in the first week. Notably, 17% of HS7-treated animals recovered full hindlimb function by day 7, a number that grew to 58% and 100% by days 14 and 21, respectively. This was in contrast to only 38% in the control animals. These results highlight the potential of purified glycosaminoglycan fractions for clinical use following vascular insult, and confirm the importance of harnessing the activity of endogenous pro-healing factors generated at injury sites.

  19. Muscle glucose uptake in the rat after suspension with single hindlimb weight bearing

    NASA Technical Reports Server (NTRS)

    Stump, Craig S.; Woodman, Christopher R.; Fregosi, Ralph F.; Tipton, Charles M.

    1993-01-01

    An examination is conducted of the effect of nonweight-bearing conditions, and the systemic influences of simulated microgravity on rat hindlimb muscles. The results obtained suggest that the increases in hindlimb muscle glucose uptake and extracellular space associated with simulated microgravity persist with hindlimb weightbearing, despite the prevention of muscle atrophy. The mechanism (or mechanisms) responsible for these effects are currently unknown.

  20. Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in mdx mice of both genders.

    PubMed

    Ferry, Arnaud; Benchaouir, Rachid; Joanne, Pierre; Peat, Rachel A; Mougenot, Nathalie; Agbulut, Onnik; Butler-Browne, Gillian

    2015-11-01

    The effects of voluntary activity initiated in adult mdx (C57BL/10ScSc-DMD(mdx) /J) mice on skeletal and cardiac muscle function have not been studied extensively. We studied the effects of 3 months of voluntary wheel running initiated at age 7 months on hindlimb muscle weakness, increased susceptibility to muscle contraction-induced injury, and left ventricular function in mdx mice. We found that voluntary wheel running did not worsen the deficit in force-generating capacity and the force drop after lengthening contractions in either mdx mouse gender. It increased the absolute maximal force of skeletal muscle in female mdx mice. Moreover, it did not affect left ventricular function, structural heart dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers. These results indicate that voluntary activity initiated at age 7 months had no detrimental effects on skeletal or cardiac muscles in either mdx mouse gender. © 2015 Wiley Periodicals, Inc.

  1. Muscle regeneration during hindlimb unloading results in a reduction in muscle size after reloading

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.

    2001-01-01

    The hindlimb-unloading model was used to study the ability of muscle injured in a weightless environment to recover after reloading. Satellite cell mitotic activity and DNA unit size were determined in injured and intact soleus muscles from hindlimb-unloaded and age-matched weight-bearing rats at the conclusion of 28 days of hindlimb unloading, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-unloaded rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb unloading, but they were the same (P > 0.05) as those of weight-bearing rats 2 and 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, number of nuclei per millimeter, and DNA unit size were significantly (P < 0.05) smaller for the injured soleus muscles from hindlimb-unloaded rats than for the soleus muscles from weight-bearing rats at each recovery time. Satellite cell mitotic activity was significantly (P < 0.05) higher in the injured soleus muscles from hindlimb-unloaded rats than from weight-bearing rats 2 wk after reloading, but it was the same (P > 0.05) as in the injured soleus muscles from weight-bearing rats 9 wk after reloading. The injured soleus muscles from hindlimb-unloaded rats failed to achieve weight-bearing muscle size 9 wk after reloading, because incomplete compensation for the decrease in myonuclear accretion and DNA unit size expansion occurred during the unloading period.

  2. Tenotomy of m.soleus antagonists prevents the changes in fiber type characteristics and sarcomeric cytoskeletal proteins in unloaded rats

    NASA Astrophysics Data System (ADS)

    Moukhina, Alexandra; Ardabievskaya, Anna; Vikhlyantsev, Ivan; Podlubnaya, Zoya; Nemirovskaya, Tatiana; Shenkman, Boris

    2005-08-01

    It is known that activity of postural extensors (m. soleus) decreases and activity of flexors (m. tibialis anterior) increases under unloading conditions. We have tested the hypothesis supposing that increased flexor activities during unloading exert suppressive influence on postural extensor activities and thus lead to dramatic changes in fiber size, MHC expression, sarcomeric proteins content in m.soleus. We have inactivated hindlimb flexor muscles (m.soleus antagonists) by bilateral tenotomy. 20 male Wistar rats were divided on 3 groups: cage control (C), hindlimb suspension for 14 days (HS), tenotomy of hindlimb flexor muscles with 14 days hindlimb suspension afterwards (HST). Several soleus muscle fiber characteristics decreased significantly in HS group (p<0.05) as compared with C group: cross sectional area (CSA) of type I muscle fibers, titin/MyHC ratio and nebulin/MyHC ratio. MyHC isoform pattern shifted slow-to-fast significantly. NFATc1 content increased in nuclear protein extract of m. soleus in HS group. None of these parameters was significantly different in HST group from those of C group. It has been concluded that the tenotomy of flexors under hindlimb suspension prevents atrophy of type I muscle fibers, decrease the degradation of titin and nebulin and prevent slow-to-fast shift of fiber MyHC isoform pattern, possibly through prevention of increase NFATc1 content in muscle fiber nuclear protein extract. Therefore, suppressive influence of increased flexor activity could be one of mechanisms that lead to the changes in m. soleus under unloading conditions. The work was supported by RFBR grants: 02-04-50025, 03- 04-48487 and the special program of RAS "Integration mechanisms of functional control in the living system".

  3. Hindlimb musculature of the largest living rodent Hydrochoerus hydrochaeris (Caviomorpha): Adaptations to semiaquatic and terrestrial styles of life.

    PubMed

    García-Esponda, César M; Candela, Adriana M

    2016-03-01

    The caviomorph species Hydrochoerus hydrochaeris (Cavioidea), or capybara, is the largest living rodent. This species is widely distributed, from northern South America to Uruguay and eastern Argentina, inhabiting in a wide variety of densely vegetated lowlands habitats in the proximity of water. Hydrochoerus hydrochaeris not only runs with agility, like other members of the Cavioidea, but it can also swim and dive easily. For these reasons, it has been classified as a cursorial as well as semiaquatic species. However, comprehensive anatomical descriptions of the osteology and myology of the capybara are not available in the literature and analyses on its swimming abilities are still required. We hypothesize that some of the characters of the hindlimb of H. hydrochaeris could reveal a unique morphological arrangement associated with swimming abilities. In this study, an anatomical description of the hindlimb musculature of H. hydrochaeris, and a discussion of the possible functional significance of the main muscles is provided. In addition, we explore the evolution of some myological and osteological characters of the capybara in the context of the cavioids. We concluded that most of the muscular and osteological features of the hindlimb of H. hydrochaeris are neither adaptations to a specialized cursoriality, nor major modifications for an aquatic mode of life. Hydrochoerus hydrochaeris share several features with other cavioids, being a generalized cursorial species in the context of this clade. However, it shows some adaptations of the hindlimb for enhancing propulsion through water, of which the most notable seems to be the shortening of the leg, short tendons of most muscles of the leg, and a well-developed soleus muscle. These adaptations to a semiaquatic mode of life could have been acquired during the most recent evolutionary history of the hydrochoerids. © 2015 Wiley Periodicals, Inc.

  4. Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations

    PubMed Central

    Bolzoni, F; Jankowska, E

    2015-01-01

    The present study aimed to compare presynaptic and postsynaptic actions of direct current polarization in the spinal cord, focusing on DC effects on primary afferents and motoneurons. To reduce the directly affected spinal cord region, a weak polarizing direct current (0.1–0.3 μA) was applied locally in deeply anaesthetized cats and rats; within the hindlimb motor nuclei in the caudal lumbar segments, or in the dorsal horn within the terminal projection area of low threshold skin afferents. Changes in the excitability of primary afferents activated by intraspinal stimuli (20–50 μA) were estimated using increases or decreases in compound action potentials recorded from the dorsal roots or peripheral nerves as their measure. Changes in the postsynaptic actions of the afferents were assessed from intracellularly recorded monosynaptic EPSPs in hindlimb motoneurons and monosynaptic extracellular field potentials (evoked by group Ia afferents in motor nuclei, or by low threshold cutaneous afferents in the dorsal horn). The excitability of motoneurons activated by intraspinal stimuli was assessed using intracellular records or motoneuronal discharges recorded from a ventral root or a muscle nerve. Cathodal polarization was found to affect motoneurons and afferents providing input to them to a different extent. The excitability of both was markedly increased during DC application, although post-polarization facilitation was found to involve presynaptic afferents and some of their postsynaptic actions, but only negligibly motoneurons themselves. Taken together, these results indicate that long-lasting post-polarization facilitation of spinal activity induced by locally applied cathodal current primarily reflects the facilitation of synaptic transmission. PMID:25416625

  5. Development of the spinal cord and peripheral nervous system in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus).

    PubMed

    Ashwell, Ken W S

    2012-01-01

    The modern monotremes (platypus and echidnas) are characterized by development of their young in a leathery egg that is laid into a nest or abdominal pouch. At hatching, the young are externally immature, with forelimbs capable of digitopalmar prehension, but hindlimbs little advanced beyond limb buds. The embryological collections at the Museum für Naturkunde in Berlin were used to examine the development of the spinal cord and early peripheral nervous system in developing monotremes and to correlate this with known behavioural development. Ventral root outgrowth to the bases of both the fore- and hindlimbs occurs at 6.0 mm crown-rump length (CRL), but invasion of both limbs does not happen until about 8.0-8.5 mm CRL. Differentiation of the ventral horn precedes the dorsal horn during incubation and separate medial and lateral motor columns can be distinguished before hatching. Rexed's laminae begin to appear in the dorsal horn in the first week after hatching, and gracile and cuneate fasciculi emerge during the first two post-hatching months. Qualitative and quantitative comparisons of the structure of the cervicothoracic junction spinal cord in the two monotremes with that in a diprotodont marsupial (the brush-tailed possum, Trichosurus vulpecula) of similar size at birth, did not reveal any significant structural differences between the monotremes and the marsupial. The precocious development of motor systems in the monotreme spinal cord is consistent with the behavioural requirements of the peri-hatching period, that is, rupture of embryonic membranes and egg, and digitopalmar prehension to grasp maternal hair or nest material.

  6. Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep.

    PubMed

    Rozance, Paul J; Zastoupil, Laura; Wesolowski, Stephanie R; Goldstrohm, David A; Strahan, Brittany; Cree-Green, Melanie; Sheffield-Moore, Melinda; Meschia, Giacomo; Hay, William W; Wilkening, Randall B; Brown, Laura D

    2018-01-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O 2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P < 0.05). Absolute hindlimb blood flow was reduced in IUGR (IUGR: 32.9 ± 5.6 ml min -1 ; CON: 60.9 ± 6.5 ml min -1 ; P < 0.005), although flow normalized to hindlimb weight was similar between groups. Hindlimb oxygen consumption rate was lower in IUGR (IUGR: 10.4 ± 1.4 μmol min -1  100 g -1 ; CON: 14.7 ± 1.3 μmol min -1  100 g -1 ; P < 0.05). Hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was lower in IUGR (IUGR: 1.3 ± 0.5 μmol min -1  100 g -1 ; CON: 2.9 ± 0.2 μmol min -1  100 g -1 ; P < 0.05). Blood O 2 saturation (r 2  = 0.80, P < 0.0001) and plasma glucose (r 2  = 0.68, P < 0.0001), insulin (r 2  = 0.40, P < 0.005) and insulin-like growth factor (IGF)-1 (r 2  = 0.80, P < 0.0001) were positively associated and norepinephrine (r 2  = 0.59, P < 0.0001) was negatively associated with hindlimb weight. Slower hindlimb linear growth and muscle protein synthesis rates match reduced hindlimb blood flow and oxygen consumption rates in the IUGR fetus. Metabolic adaptations to slow hindlimb growth are probably hormonally-mediated by mechanisms that include increased fetal norepinephrine and reduced IGF-1 and insulin. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  7. Quantitative changes of GABA-immunoreactive cells in the hindlimb representation of the rat somatosensory cortex after 14-day hindlimb unloading by tail suspension

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.

    1996-01-01

    The present study was aimed at evaluating quantitatively gamma-aminobutyric acid (GABA) immunoreactivity in the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension. A reduction in the number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-containing terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system of hindlimb-suspended animals, it is suggested that the unloading due to hindlimb suspension alters afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the reduction in immunoreactivity of local circuit GABAergic neurons and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  8. Age-Related Behavioral Phenotype of an Astrocytic Monoamine Oxidase-B Transgenic Mouse Model of Parkinson’s Disease

    PubMed Central

    Lieu, Christopher A.; Chinta, Shankar J.; Rane, Anand; Andersen, Julie K.

    2013-01-01

    We have previously shown that increases in astrocytic monoamine oxidase-B (MAO-B) expression, mimicking that which occurs with aging and in neurodegenerative disease, in a doxycycline (dox)-inducible transgenic mouse model evokes neuropathological similarities to what is observed in the human parkinsonian brain. Additional behavioral and neuropathological studies could provide further validation for its usage as a model for Parkinson’s disease (PD). In the present study, we utilized a battery of behavioral tests to evaluate age-related phenotype in this model. In the open field test, we found that dox-induction impaired motor ability with decreases in movement and ambulatory function as well as diminished stereotypical, repetitive movement episodes in both young and old mice. Older mice also showed decreased motor performance in the pole test when compared to younger mice. Furthermore, dox-induced older mice displayed severe hindlimb clasping and the most significant loss of dopamine (DA) in the striatum when compared to young and non-induced animals. Additionally, increased MAO-B activity significantly correlated with decreased expression of striatal DA. The results of our study further confirms that the dox-inducible astrocytic MAO-B transgenic mouse displays similar age-related behavioral and neuropathological features to other models of PD, and could serve as a useful tool to study PD pathophysiology and for the evaluation of therapeutic interventions. PMID:23326597

  9. Age-related behavioral phenotype of an astrocytic monoamine oxidase-B transgenic mouse model of Parkinson's disease.

    PubMed

    Lieu, Christopher A; Chinta, Shankar J; Rane, Anand; Andersen, Julie K

    2013-01-01

    We have previously shown that increases in astrocytic monoamine oxidase-B (MAO-B) expression, mimicking that which occurs with aging and in neurodegenerative disease, in a doxycycline (dox)-inducible transgenic mouse model evokes neuropathological similarities to what is observed in the human parkinsonian brain. Additional behavioral and neuropathological studies could provide further validation for its usage as a model for Parkinson's disease (PD). In the present study, we utilized a battery of behavioral tests to evaluate age-related phenotype in this model. In the open field test, we found that dox-induction impaired motor ability with decreases in movement and ambulatory function as well as diminished stereotypical, repetitive movement episodes in both young and old mice. Older mice also showed decreased motor performance in the pole test when compared to younger mice. Furthermore, dox-induced older mice displayed severe hindlimb clasping and the most significant loss of dopamine (DA) in the striatum when compared to young and non-induced animals. Additionally, increased MAO-B activity significantly correlated with decreased expression of striatal DA. The results of our study further confirms that the dox-inducible astrocytic MAO-B transgenic mouse displays similar age-related behavioral and neuropathological features to other models of PD, and could serve as a useful tool to study PD pathophysiology and for the evaluation of therapeutic interventions.

  10. Treatment with a nitric oxide-donating NSAID alleviates functional muscle ischemia in the mouse model of Duchenne muscular dystrophy.

    PubMed

    Thomas, Gail D; Ye, Jianfeng; De Nardi, Claudio; Monopoli, Angela; Ongini, Ennio; Victor, Ronald G

    2012-01-01

    In patients with Duchenne muscular dystrophy (DMD) and the standard mdx mouse model of DMD, dystrophin deficiency causes loss of neuronal nitric oxide synthase (nNOSμ) from the sarcolemma, producing functional ischemia when the muscles are exercised. We asked if functional muscle ischemia would be eliminated and normal blood flow regulation restored by treatment with an exogenous nitric oxide (NO)-donating drug. Beginning at 8 weeks of age, mdx mice were fed a standard diet supplemented with 1% soybean oil alone or in combination with a low (15 mg/kg) or high (45 mg/kg) dose of HCT 1026, a NO-donating nonsteroidal anti-inflammatory agent which has previously been shown to slow disease progression in the mdx model. After 1 month of treatment, vasoconstrictor responses to intra-arterial norepinephrine (NE) were compared in resting and contracting hindlimbs. In untreated mdx mice, the usual effect of muscle contraction to attenuate NE-mediated vasoconstriction was impaired, resulting in functional ischemia: NE evoked similar decreases in femoral blood flow velocity and femoral vascular conductance (FVC) in the contracting compared to resting hindlimbs (ΔFVC contraction/ΔFVC rest=0.88 ± 0.03). NE-induced functional ischemia was unaffected by low dose HCT 1026 (ΔFVC ratio=0.92 ± 0.04; P>0.05 vs untreated), but was alleviated by the high dose of the drug (ΔFVC ratio=0.22 ± 0.03; P<0.05 vs untreated or low dose). The beneficial effect of high dose HCT 1026 was maintained with treatment up to 3 months. The effect of the NO-donating drug HCT 1026 to normalize blood flow regulation in contracting mdx mouse hindlimb muscles suggests a putative novel treatment for DMD. Further translational research is warranted.

  11. Robust and accurate decoding of motoneuron behavior and prediction of the resulting force output.

    PubMed

    Thompson, Christopher K; Negro, Francesco; Johnson, Michael D; Holmes, Matthew R; McPherson, Laura Miller; Powers, Randall K; Farina, Dario; Heckman, Charles J

    2018-05-03

    The spinal alpha motoneuron is the only cell in the human CNS whose discharge can be routinely recorded in humans. We have reengineered motor unit collection and decomposition approaches, originally developed in humans, to measure the neural drive to muscle and estimate muscle force generation in the decerebrate cat model. Experimental, computational, and predictive approaches are used to demonstrate the validity of this approach across a wide range of modes to activate the motor pool. The utility of this approach is shown through the ability to track individual motor units across trials, allowing for better predictions of muscle force than the electromyography signal, and providing insights in to the stereotypical discharge characteristics in response to synaptic activation of the motor pool. This approach now allows for a direct link between the intracellular data of single motoneurons, the discharge properties of motoneuron populations, and muscle force generation in the same preparation. The discharge of a spinal alpha motoneuron and the resulting contraction of its muscle fibers represents the functional quantum of the motor system. Recent advances in the recording and decomposition of the electromyographic signal allows for the identification of several tens of concurrently active motor units. These detailed population data provide the potential to achieve deep insights into the synaptic organization of motor commands. Yet most of our understanding of the synaptic input to motoneurons is derived from intracellular recordings in animal preparations. Thus, it is necessary to extend the new electrode and decomposition methods to recording of motor unit populations in these same preparations. To achieve this goal, we use high-density electrode arrays and decomposition techniques, analogous to those developed for humans, to record and decompose the activity of tens of concurrently active motor units in a hindlimb muscle in the decerebrate cat. Our results showed that the decomposition method in this animal preparation was highly accurate, with conventional two-source validation providing rates of agreement equal to or superior to those found in humans. Multidimensional reconstruction of the motor unit action potential provides the ability to accurately track the same motor unit across multiple contractions. Additionally, correlational analyses demonstrate that the composite spike train provides better estimates of whole muscle force than conventional estimates obtained from the electromyographic signal. Lastly, stark differences are observed between the modes of activation, in particular tendon vibration produced quantal interspike intervals at integer multiples of the vibration period. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Reducing contralateral SI activity reveals hindlimb receptive fields in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Chiaia, Nicolas L; Rhoades, Robert W; Lane, Richard D

    2005-09-01

    In adult rats that sustained forelimb amputation on the day of birth, >30% of multiunit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) also respond to cutaneous hindlimb stimulation when cortical GABA(A+B) receptors are blocked (GRB). This study examined whether hindlimb receptive fields could also be revealed in forelimb-stump sites by reducing one known source of excitatory input to SI GABAergic neurons, the contralateral SI cortex. Corpus callosum projection neurons connect homotopic SI regions, making excitatory contacts onto pyramidal cells and interneurons. Thus in addition to providing monosynaptic excitation in SI, callosal fibers can produce disynaptic inhibition through excitatory synapses with inhibitory interneurons. Based on the latter of these connections, we hypothesized that inactivating the contralateral (intact) SI forelimb region would "unmask" normally suppressed hindlimb responses by reducing the activity of SI GABAergic neurons. The SI forelimb-stump representation was first mapped under normal conditions and then during GRB to identify stump/hindlimb responsive sites. After GRB had dissipated, the contralateral (intact) SI forelimb region was mapped and reversibly inactivated with injections of 4% lidocaine, and selected forelimb-stump sites were retested. Contralateral SI inactivation revealed hindlimb responses in approximately 60% of sites that were stump/hindlimb responsive during GRB. These findings indicate that activity in the contralateral SI contributes to the suppression of reorganized hindlimb receptive fields in neonatally amputated rats.

  13. Weight bearing of the limb as a confounding factor in assessment of mechanical allodynia in the rat.

    PubMed

    Kauppila, T; Kontinen, V K; Pertovaara, A

    1998-01-01

    Effect of weight bearing of the hindlimbs on the assessment of mechanically-induced hindlimb withdrawal threshold was determined in intact rats and in rats with various pathophysiological conditions causing allodynia or hyperalgesia. Hindlimb withdrawal was elicited by applying a series of calibrated monofilaments to the plantar or the dorsal surface of the paw. During testing the rat was either in a restraint tube with hindlimbs hanging semi-extended without weight bearing or it was standing on a metal grid (bearing its own weight). In intact rats, the withdrawal thresholds were significantly lower when the stimulus site was the dorsal hairy skin rather than the plantar glabrous skin. Also, thresholds were significantly lower when the hindlimbs were not bearing weight. Following carrageenan-induced unilateral inflammation of the plantar paw or a tibial nerve cut there was a marked threshold decrease to test stimuli applied to plantar or dorsal paw, respectively, ipsilateral to the pathological condition in standing rats. However, when the hindlimbs were not weight bearing the unilateral threshold decrease was markedly attenuated (carrageenan-treated rats) or completely abolished (tibial cut). In contrast, in rats with a unilateral spinal nerve ligation the threshold decrease ipsilateral to the nerve lesion was highly significant independent of the weight bearing of the hindlimbs. The results indicate that weight bearing of hindlimbs is an important confounding factor in the assessment of tactile allodynia in rats.

  14. Gene expression levels of heat shock proteins in the soleus and plantaris muscles of rats after hindlimb suspension or spaceflight.

    PubMed

    Ishihara, Akihiko; Fujino, Hidemi; Nagatomo, Fumiko; Takeda, Isao; Ohira, Yoshinobu

    2008-12-01

    Gene expression levels of heat shock proteins (HSPs) in the slow-twitch soleus and fast-twitch plantaris muscles of rats were determined after hindlimb suspension or spaceflight. Male rats were hindlimb-suspended for 14 d or exposed to microgravity for 9 d. The mRNA expression levels of HSP27, HSP70, and HSP84 in the hindlimb-suspended and microgravity-exposed groups were compared with those in the controls. The mRNA expression levels of the 3 HSPs in the soleus muscle under normal conditions were higher compared with those in the plantaris muscle. The mRNA expression levels of the 3 HSPs in the soleus muscle were inhibited by hindlimb suspension and spaceflight. The mRNA expression levels of the 3 HSPs in the plantaris muscle did not change after hindlimb suspension. It is suggested that the mRNA expression levels of the 3 HSPs are regulated by the mechanical and neural activity levels, and therefore the decreased mRNA expression levels of HSPs in the slow-twitch muscle following hindlimb suspension and spaceflight are related to a reduction in the mechanical and neural activity levels.

  15. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Globus, Ruth K.; Kaplansky, Alexander; Durnova, Galina

    2005-01-01

    The hindlimb unloading rodent model is used extensively to study the response of many physiological systems to certain aspects of space flight, as well as to disuse and recovery from disuse for Earth benefits. This chapter describes the evolution of hindlimb unloading, and is divided into three sections. The first section examines the characteristics of 1064 articles using or reviewing the hindlimb unloading model, published between 1976 and April 1, 2004. The characteristics include number of publications, journals, countries, major physiological systems, method modifications, species, gender, genetic strains and ages of rodents, experiment duration, and countermeasures. The second section provides a comparison of results between space flown and hindlimb unloading animals from the 14-day Cosmos 2044 mission. The final section describes modifications to hindlimb unloading required by different experimental paradigms and a method to protect the tail harness for long duration studies. Hindlimb unloading in rodents has enabled improved understanding of the responses of the musculoskeletal, cardiovascular, immune, renal, neural, metabolic, and reproductive systems to unloading and/or to reloading on Earth with implications for both long-duration human space flight and disuse on Earth.

  16. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.

    PubMed

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-06-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)(1.0) and fascicle length scaled closely to (body mass)(0.3) in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.

  17. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture

    PubMed Central

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-01-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)1.0 and fascicle length scaled closely to (body mass)0.3 in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment. PMID:16761973

  18. Long-Term Post-Stroke Changes Include Myelin Loss, Specific Deficits in Sensory and Motor Behaviors and Complex Cognitive Impairment Detected Using Active Place Avoidance

    PubMed Central

    Li, Jie; Ooi, Evelyn; Bloom, Jonathan; Poon, Carrie; Lax, Daniel; Rosenbaum, Daniel M.; Barone, Frank C.

    2013-01-01

    Persistent neurobehavioral deficits and brain changes need validation for brain restoration. Two hours middle cerebral artery occlusion (tMCAO) or sham surgery was performed in male Sprague-Dawley rats. Neurobehavioral and cognitive deficits were measured over 10 weeks included: (1) sensory, motor, beam balance, reflex/abnormal responses, hindlimb placement, forepaw foot fault and cylinder placement tests, and (2) complex active place avoidance learning (APA) and simple passive avoidance retention (PA). Electroretinogram (ERG), hemispheric loss (infarction), hippocampus CA1 neuronal loss and myelin (Luxol Fast Blue) staining in several fiber tracts were also measured. In comparison to Sham surgery, tMCAO surgery produced significant deficits in all behavioral tests except reflex/abnormal responses. Acute, short lived deficits following tMCAO were observed for forelimb foot fault and forelimb cylinder placement. Persistent, sustained deficits for the whole 10 weeks were exhibited for motor (p<0.001), sensory (p<0.001), beam balance performance (p<0.01) and hindlimb placement behavior (p<0.01). tMCAO produced much greater and prolonged cognitive deficits in APA learning (maximum on last trial of 604±83% change, p<0.05) but only a small, comparative effect on PA retention. Hemispheric loss/atrophy was measured 10 weeks after tMCAO and cross-validated by two methods (e.g., almost identical % ischemic hemispheric loss of 33.4±3.5% for H&E and of 34.2±3.5% for TTC staining). No visual dysfunction by ERG and no hippocampus neuronal loss were detected after tMCAO. Fiber tract damage measured by Luxol Fast Blue myelin staining intensity was significant (p<0.01) in the external capsule and striatum but not in corpus callosum and anterior commissure. In summary, persistent neurobehavioral deficits were validated as important endpoints for stroke restorative research in the future. Fiber myelin loss appears to contribute to these long term behavioral dysfunctions and can be important for cognitive behavioral control necessary for complex APA learning. PMID:23505432

  19. Rat hindlimb muscle responses to suspension hypokinesia/hypodynamia

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Deavers, D. R.

    1983-01-01

    Hypokinetic/hyupodynamic (H/H) whole body suspension of rats eliminates hindlimb load bearing functions while permitting continued use of the forelimbs. Responses of hindlimb muscles were assessed in terms of absolute and relative weights during 1 and 2 weeks of H/H suspension. Muscle mass loss was in the order soleus greater than gastrocnemius equal to plantaris greater than extensor digitorum longus (EDL). The soleus, a postural antigravity muscle composed mainly of slow twitch fibers, was most sensitive, losing 35 and 45 percent of its weight during the first and second weeks, respectively. The gastrocnemius and plantaris showed losses during the first week but no significant loss during the second wee. The EDL showed little or no weight loss. During post suspension recovery all muscles showed a weight gain. H/H suspended rats failed to grow; following removal from suspension they gained weight linearly, comparable to controls. Products of muscle metabolism including urea, ammonia, and 3-methylhistidine increased in the urine during H/H suspension and were significantly reduced approaching control levels during recovery. This suspension model offers considerable promise for comparison with H/H responses during weightlessness.

  20. Serotonergic Innervation of the Caudal Spinal Stump in Rats After Complete Spinal Transection: Effect of Olfactory Ensheathing Glia

    PubMed Central

    Takeoka, Aya; Kubasak, Marc D.; Zhong, Hui; Roy, Roland R.; Phelps, Patricia E.

    2010-01-01

    Spinal cord injury studies use the presence of serotonin (5-HT)-immunoreactive axons caudal to the injury site as evidence of axonal regeneration. As olfactory ensheathing glia (OEG) transplantation improves hindlimb locomotion in adult rats with complete spinal cord transection, we hypothesized that more 5-HT-positive axons would be found in the caudal stump of OEG- than media-injected rats. Previously we found 5-HT-immunolabeled axons that spanned the transection site only in OEG-injected rats but detected labeled axons just caudal to the lesion in both media- and OEG-injected rats. Now we report that many 5-HT-labeled axons are present throughout the caudal stump of both media- and OEG-injected rats. We found occasional 5-HT-positive interneurons that are one likely source of 5-HT-labeled axons. These results imply that the presence of 5-HT-labeled fibers in the caudal stump is not a reliable indicator of regeneration. We then asked if 5-HT-positive axons appose cholinergic neurons associated with motor functions: central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more 5-HT-positive varicosities in lamina X adjacent to central canal cluster cells in lumbar and sacral segments of OEG- than media-injected rats. SMNs and partition cells are less frequently apposed. As nonsynaptic release of 5-HT is common in the spinal cord, an increase in 5-HT-positive varicosities along motor-associated cholinergic neurons may contribute to the locomotor improvement observed in OEG-injected spinal rats. Furthermore, serotonin located within the caudal stump may activate lumbosacral locomotor networks. J. Comp. Neurol. 515: 664–676, 2009. PMID:19496067

  1. Serotonergic innervation of the caudal spinal stump in rats after complete spinal transection: effect of olfactory ensheathing glia.

    PubMed

    Takeoka, Aya; Kubasak, Marc D; Zhong, Hui; Roy, Roland R; Phelps, Patricia E

    2009-08-20

    Spinal cord injury studies use the presence of serotonin (5-HT)-immunoreactive axons caudal to the injury site as evidence of axonal regeneration. As olfactory ensheathing glia (OEG) transplantation improves hindlimb locomotion in adult rats with complete spinal cord transection, we hypothesized that more 5-HT-positive axons would be found in the caudal stump of OEG- than media-injected rats. Previously we found 5-HT-immunolabeled axons that spanned the transection site only in OEG-injected rats but detected labeled axons just caudal to the lesion in both media- and OEG-injected rats. Now we report that many 5-HT-labeled axons are present throughout the caudal stump of both media- and OEG-injected rats. We found occasional 5-HT-positive interneurons that are one likely source of 5-HT-labeled axons. These results imply that the presence of 5-HT-labeled fibers in the caudal stump is not a reliable indicator of regeneration. We then asked if 5-HT-positive axons appose cholinergic neurons associated with motor functions: central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more 5-HT-positive varicosities in lamina X adjacent to central canal cluster cells in lumbar and sacral segments of OEG- than media-injected rats. SMNs and partition cells are less frequently apposed. As nonsynaptic release of 5-HT is common in the spinal cord, an increase in 5-HT-positive varicosities along motor-associated cholinergic neurons may contribute to the locomotor improvement observed in OEG-injected spinal rats. Furthermore, serotonin located within the caudal stump may activate lumbosacral locomotor networks. (c) 2009 Wiley-Liss, Inc.

  2. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8.5 Gy proton irradiated hindlimb-unloaded mice indicated that the recovery of the WBC counts appeared delayed compared to 8.5 Gy irradiated controls. However, stocktickerRBC recovery appeared similar in both sets of irradiated mice. Our data indicate that hindlimb-unloaded mice are more radiation sensitive compared to irradiated controls. We thank Brian Allen and Rick Jessup for valuable assistance with dosimetry and physical arrangements at the IU Cyclotron Facility and Midwest Proton Radiotherapy Institute and Alan Constance for design of hindlimb-unloading cages. Research supported in part by NASA Grant NNJ06HE95A.

  3. Dynamic Foot Pressure as a Countermeasure to Muscle Atrophy

    NASA Astrophysics Data System (ADS)

    Kyparos, A.; Layne, C. S.; Martinez, D. A.; Clarke, M. S. F.; Feeback, D. L.

    2002-01-01

    Mechanical unloading of skeletal muscle (SKM) as a consequence of space flight or ground-based analogues, such as human bedrest and rodent hindlimb suspension (HLS) models, induces SKM atrophy particularly affecting the anti-gravity musculature of the lower limbs. In the context of manned space flight, the subsequent loss of muscle strength and functionality will pose operational implications jeopardizing mission success. Exercise, currently the primary muscle degradation countermeasure, has not proven completely effective in preventing muscle atrophy. It is therefore imperative that some other forms of in- flight countermeasure be also developed to supplement the prescribed exercise regimen the astronauts follow during spaceflight. Previous work in both humans and rats has shown that mechanical stimulation of the soles of the feet increases neuromuscular activation in the lower limb musculature and that such stimulation results in the limited prevention of atrophy in the soleus muscle of unloaded rats. This study was designed to investigate the effect of cutaneous mechanoreceptor stimulation on hindlimb unloading- induced SKM atrophy in rats. It was hypothesized that mechanical stimulation of the plantar surface of the rat foot during hindlimb suspension (HLS), utilizing a novel stimulation paradigm known as Dynamic Foot Pressure (DFP), would attenuate unloading-induced SKM atrophy. Mature adult male Wistar rats were randomly assigned to four groups of 10 rats each as follows: sedentary controls (Ctrl), hindlimb suspended only (HLS), hindlimb suspended wearing an inflatable boot (HLS-IFL) and hindlimb suspended rats wearing a non-inflatable boot (HLS-NIFL). The stimulation of mechanoreceptors was achieved by applying pressure to the plantar surface of the foot during the 10-day period of HLS using a custom-built boot. The anti-atrophic effects of DFP application was quantified directly by morphological (muscle wet weight, myofiber cross-sectional area, neuromuscular junction size/density), histochemical (myofiber type distribution) and biochemical (myosin heavy chain-MHC isoform content, muscle collagen concentration and maturation) analysis techniques in the soleus, medial gastrocnemius, and tibialis anterior muscles. The results indicated that the application of DFP ameliorated hindlimb-induced SKM atrophy. It is postulated that this effect was achieved via proprioceptive pathways as a consequence of DFT mimicking the neuromuscular activity/contraction patterns normally induced by load bearing in specific anti-gravity muscles of the lower limbs in a terrestrial environment. The underlined concept promises to serve as the basis for developing a novel supplemental to exercise during space flight countermeasure as well as an effective rehabilitation technique for bed-ridden patients.

  4. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter.

    PubMed

    Mori, Kent; Suzuki, Satoshi; Koyabu, Daisuke; Kimura, Junpei; Han, Sung-Yong; Endo, Hideki

    2015-05-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids.

  5. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection.

    PubMed

    Zeng, Xiang; Qiu, Xue-Cheng; Ma, Yuan-Huan; Duan, Jing-Jing; Chen, Yuan-Feng; Gu, Huai-Yu; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Wu, Wutian; Zeng, Yuan-Shan

    2015-06-01

    Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Soluble activin receptor type IIB decoy receptor differentially impacts murine osteogenesis imperfecta muscle function.

    PubMed

    Jeong, Youngjae; Daghlas, Salah A; Kahveci, Alp S; Salamango, Daniel; Gentry, Bettina A; Brown, Marybeth; Rector, R Scott; Pearsall, R Scott; Phillips, Charlotte L

    2018-02-01

    Osteogenesis imperfecta (OI) is characterized by skeletal fragility and muscle weakness. In this study we investigated the effects of soluble activin type IIB receptor (sActRIIB-mFc) on muscle mass and function in 2 distinct mouse models of OI: osteogenesis imperfecta murine (oim) and +/G610C. Wild-type (WT), +/G610C, and oim/oim mice were treated from 2 to 4 months of age with Tris-buffered saline (vehicle) or sActRIIB-mFc and their hindlimb muscles evaluated for mass, morphology, and contractile function. sActRIIB-mFc-treated WT, +/G610C, and oim/oim mice had increased hindlimb muscle weights and myofiber cross-sectional area compared with vehicle-treated counterparts. sActRIIB-mFc-treated oim/oim mice also exhibited increased contractile function relative to vehicle-treated counterparts. Blocking endogenous ActRIIB was effective at increasing muscle size in mouse models of OI, and increasing contractile function in oim/oim mice. ActRIIB inhibitors may provide a potential mutation-specific therapeutic option for compromised muscle function in OI. Muscle Nerve 57: 294-304, 2018. © 2017 Wiley Periodicals, Inc.

  7. Influence of fixed muscle length and contractile properties on atrophy and subsequent recovery in the rat soleus and plantaris muscles.

    PubMed

    Fujita, Naoto; Arakawa, Takamitsu; Matsubara, Takako; Ando, Hiroshi; Miki, Akinori

    2009-01-01

    This study examined muscular atrophy and the recovery process induced by hindlimb unloading and joint immobilization in the rat soleus and plantaris muscles. Rats were divided into control, hindlimb unloading (HU), hindlimb unloading with ankle joint immobilization at the maximum dorsiflexion (HUD), and maximum plantarflexion (HUP) groups. The hindlimb was reloaded after fourteen days of unloading, and muscle atrophy and walking ability were assessed at 0, 3, and 7 days of reloading. A cross sectional area of muscle fibers in the soleus muscle on day 0 of reloading revealed sizes in order from the control, HUD, HUP down to the HU group, indicating that the HU group was the most atrophied among the four groups. These values in the plantaris muscle ranged in order from the control, HU, HUD, to HUP groups, the HUP group being the most atrophied among the four groups. These muscles recovered from atrophy in the same descending order, and the values in the HUD and HUP groups slowly recovered during the reloading periods. The HUD and HUP groups showed a central core lesion and reloading-induced lesions in some type I muscle fibers after the immobilization and reloading, one possible reason for the delayed recovery in these groups. The muscle atrophy in the HU, HUD, and HUP groups remained at day 7 although the walking ability appeared to be normal. Accordingly, further rehabilitation therapy might be necessary even if the functional ability appears to be normal.

  8. A longitudinal study of skeletal muscle following spinal cord injury and locomotor training.

    PubMed

    Liu, M; Bose, P; Walter, G A; Thompson, F J; Vandenborne, K

    2008-07-01

    Experimental rat model of spinal cord contusion injury (contusion SCI). The objectives of this study were (1) to characterize the longitudinal changes in rat lower hindlimb muscle morphology following contusion SCI by using magnetic resonance imaging and (2) to determine the therapeutic potential of two types of locomotor training, treadmill and cycling. University research setting. After moderate midthoracic contusion SCI, Sprague-Dawley rats were assigned to either treadmill training, cycle training or an untrained group. Lower hindlimb muscle size was examined prior to SCI and at 1-, 2-, 4-, 8-, and 12-week post injury. Following contusion SCI, we observed significant atrophy in all rat hindlimb muscles with the posterior muscles (triceps surae and flexor digitorum) showing greater atrophy than the anterior muscles (tibialis anterior and extensor digitorum). The greatest amount of atrophy was measured at 2-week post injury (range from 11 to 26%), and spontaneous recovery in muscle size was observed by 4 weeks post-SCI. Both cycling and treadmill training halted the atrophic process and accelerated the rate of recovery. The therapeutic influence of both training interventions was observed within 1 week of training and no significant difference was noted between the two interventions, except in the tibialis anterior muscle. Finally, a positive correlation was found between locomotor functional scores and hindlimb muscle size following SCI. Both treadmill and cycle training diminish the extent of atrophy and facilitate muscle plasticity after contusion SCI.

  9. Increased susceptibility to Pseudomonas aeruginosa infection under hindlimb-unloading conditions

    NASA Technical Reports Server (NTRS)

    Aviles, Hernan; Belay, Tesfaye; Fountain, Kimberly; Vance, Monique; Sonnenfeld, Gerald

    2003-01-01

    It has been reported that spaceflight conditions alter the immune system and resistance to infection [Belay T, Aviles H, Vance M, Fountain K, and Sonnenfeld G. J Allergy Clin Immunol 170: 262-268, 2002; Hankins WR and Ziegelschmid JF. In: Biomedical Results of Apollo. Washington, DC: NASA, 1975, p. 43-81. (NASA Spec. Rep. SP-368)]. Ground-based models, including the hindlimb-unloading model, have become important tools for increasing understanding of how spaceflight conditions can influence physiology. The objective of the present study was to determine the effect of hindlimb unloading on the susceptibility of mice to Pseudomonas aeruginosa infection. Hindlimb-unloaded and control mice were subcutaneously infected with 1 LD50 of P. aeruginosa. Survival, bacterial organ load, and antibody and corticosterone levels were compared among the groups. Hindlimb unloading had detrimental effects for infected mice. Animals in the hindlimb-unloaded group, compared with controls, 1). showed significantly increased mortality and reduced time to death, 2). had increased levels of corticosterone, and 3). were much less able to clear bacteria from the organs. These results suggest that hindlimb unloading may induce the production of corticosterone, which may play a critical role in the modulation of the immune system leading to increased susceptibility to P. aeruginosa infection.

  10. Testing the hindlimb-strength hypothesis: non-aerial locomotion by Chiroptera is not constrained by the dimensions of the femur or tibia.

    PubMed

    Riskin, Daniel K; Bertram, John E A; Hermanson, John W

    2005-04-01

    In the evolution of flight bats appear to have suffered a trade-off; they have become poor crawlers relative to terrestrial mammals. Capable walking does occur in a few disparate taxa, including the vampire bats, but the vast majority of bats are able only to shuffle awkwardly along the ground, and the morphological bases of differences in crawling ability are not currently understood. One widely cited hypothesis suggests that the femora of most bats are too weak to withstand the compressive forces that occur during terrestrial locomotion, and that the vampire bats can walk because they possess more robust hindlimb skeletons. We tested a prediction of the hindlimb-strength hypothesis: that during locomotion, the forces produced by the hindlimbs of vampire bats should be larger than those produced by the legs of poorly crawling bats. Using force plates we compared the hindlimb forces produced by two species of vampire bats that walk well, Desmodus rotundus (N=8) and Diaemus youngi (N=2), to the hindlimb forces produced during over-ground shuffling by a similarly sized bat that is a poor walker (Pteronotus parnellii; N=6). Peak hindlimb forces produced by P. parnellii were larger (ANOVA; P<0.05; N=65) and more variable (93.5+/-36.6% body weight, mean +/- s.d.) than those of D. rotundus (69.3+/-8.1%) or D. youngi (75.0+/-6.2%). Interestingly, the vertical components of peak force were equivalent among species (P>0.6), indicating similar roles for support of body weight by the hindlimbs in the three species. We also used a simple engineering model of bending stress to evaluate the support capabilities of the hindlimb skeleton from the dimensions of 113 museum specimens in 50 species. We found that the hindlimb bones of vampires are not built to withstand larger forces than those of species that crawl poorly. Our results show that the legs of poorly crawling bats should be able to withstand the forces produced during coordinated crawling of the type used by the agile vampires, and this indicates that some mechanism other than hindlimb bone thickness, such as myology of the pectoral girdle, limits the ability of most bats to crawl.

  11. In Vivo Rodent Models of Skeletal Muscle Adaptation to Decreased Use.

    PubMed

    Cho, Su Han; Kim, Jang Hoe; Song, Wook

    2016-03-01

    Skeletal muscle possesses plasticity and adaptability to external and internal physiological changes. Due to these characteristics, skeletal muscle shows dramatic changes depending on its response to stimuli such as physical activity, nutritional changes, disease status, and environmental changes. Modulation of the rate of protein synthesis/degradation plays an important role in atrophic responses. The purpose of this review is to describe different features of skeletal muscle adaptation with various models of deceased use. In this review, four models were addressed: immobilization, spinal cord transection, hindlimb unloading, and aging. Immobilization is a form of decreased use in which skeletal muscle shows electrical activity, tension development, and motion. These results differ by muscle group. Spinal cord transection was selected to simulate spinal cord injury. Similar to the immobilization model, dramatic atrophy occurs in addition to fiber type conversion in this model. Despite the fact that electromyography shows unremarkable changes in muscle after hindlimb unloading, decreased muscle mass and contractile force are observed. Lastly, aging significantly decreases the numbers of muscle fibers and motor units. Skeletal muscle responses to decreased use include decreased strength, decreased fiber numbers, and fiber type transformation. These four models demonstrated different changes in the skeletal muscle. This review elucidates the different skeletal muscle adaptations in these four decreased use animal models and encourages further studies.

  12. Postinjury biomechanics of Achilles tendon vary by sex and hormone status

    PubMed Central

    Fryhofer, George W.; Freedman, Benjamin R.; Hillin, Cody D.; Salka, Nabeel S.; Pardes, Adam M.; Weiss, Stephanie N.; Farber, Daniel C.

    2016-01-01

    Achilles tendon ruptures are common injuries. Sex differences are present in mechanical properties of uninjured Achilles tendon, but it remains unknown if these differences extend to tendon healing. We hypothesized that ovariectomized females (OVX) and males would exhibit inferior postinjury tendon properties compared with females. Male, female, and OVX Sprague-Dawley rats (n = 32/group) underwent acclimation and treadmill training before blunt transection of the Achilles tendon midsubstance. Injured hindlimbs were immobilized for 1 wk, followed by gradual return to activity and assessment of active and passive hindlimb function. Animals were euthanized at 3 or 6 wk postinjury to assess tendon structure, mechanics, and composition. Passive ankle stiffness and range of motion were superior in females at 3 wk; however, by 6 wk, passive and active function were similar in males and females but remained inferior in OVX. At 6 wk, female tendons had greater normalized secant modulus, viscoelastic behavior, and laxity compared with males. Normalized secant modulus, cross-sectional area and tendon glycosaminoglycan composition were inferior in OVX compared with females at 6 wk. Total fatigue cycles until tendon failure were similar among groups. Postinjury muscle fiber size was better preserved in females compared with males, and females had greater collagen III at the tendon injury site compared with males at 6 wk. Despite male and female Achilles tendons withstanding similar durations of fatigue loading, early passive hindlimb function and tendon mechanical properties, including secant modulus, suggest superior healing in females. Ovarian hormone loss was associated with inferior Achilles tendon healing. PMID:27633741

  13. Optical study of interactions among propagation waves of neural excitation in the rat somatosensory cortex evoked by forelimb and hindlimb stimuli.

    PubMed

    Hama, Noriyuki; Kawai, Minako; Ito, Shin-Ichi; Hirota, Akihiko

    2018-05-01

    Multisite optical recording has revealed that the neural excitation wave induced by a sensory stimulation begins at a focus and propagates in the cortex. This wave is considered to be important for computation in the sensory cortex, particularly the integration of sensory information; however, the nature of this wave remains largely unknown. In the present study, we examined the interaction between two waves in the rat sensory cortex induced by hindlimb and forelimb stimuli with different interstimulus intervals. We classified the resultant patterns as follows: 1) the collision of two waves, 2) the hindlimb response being evoked while the forelimb-induced wave is passing the hindlimb focus, and 3) the hindlimb response being evoked after the forelimb-induced wave has passed the hindlimb focus. In pattern 1, the two waves fused into a single wave, but the propagation pattern differed from that predicted by the superimposition of two singly induced propagation courses. In pattern 2, the state of the interaction between the two waves varied depending on the phase of optical signals constituting the forelimb-induced wave around the hindlimb focus. Although no hindlimb-induced wave was observed in the rising phase, the propagating velocity of the forelimb-induced wave increased. At the peak, neither the hindlimb-induced response nor a modulatory effect on the forelimb-induced wave was detected. In pattern 3, the hindlimb-induced wave showed a reduced amplitude and spatial extent. These results indicate that the state of the interaction between waves was strongly influenced by the relative timing of sensory inputs. NEW & NOTEWORTHY Sensory stimulation-induced cortical excitation propagates as a wave and spreads over a wide area of the sensory cortex. To elucidate the characteristics of this relatively unknown phenomenon, we examined the interaction between two individually induced waves in the somatosensory cortex. Either the waves collided or the preceding wave affected the emergence of the following one. Our results indicate that the state of the interaction was strongly influenced by the relative timing of sensory inputs.

  14. Role of development in reorganization of the SI forelimb-stump representation in fetally, neonatally, and adult amputated rats.

    PubMed

    Pluto, Charles P; Lane, Richard D; Chiaia, Nicolas L; Stojic, Andrey S; Rhoades, Robert W

    2003-09-01

    Rats that sustain forelimb removal on postnatal day (P) 0 exhibit numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to hindlimb stimulation when cortical GABAA+B receptors are blocked. Most of these hindlimb inputs originate in the medial SI hindlimb representation. Although many forelimb-stump sites in these animals respond to hindlimb stimulation, very few respond to stimulation of the face (vibrissae or lower jaw), which is represented in SI just lateral to the forelimb. The lateral to medial development of SI may influence the capacity of hindlimb (but not face) inputs to "invade" the forelimb-stump region in neonatal amputees. The SI forelimb-stump was mapped in adult (>60 days) rats that had sustained amputation on embryonic day (E) 16, on P0, or during adulthood. GABA receptors were blocked and subsequent mapping revealed increases in nonstump inputs in E16 and P0 amputees: fetal amputees exhibited forelimb-stump sites responsive to face (34%), hindlimb (10%), and both (22%); neonatal amputees exhibited 10% face, 39% hindlimb, and 5% both; adult amputees exhibited 10% face, 5% hindlimb, and 0% both, with approximately 80% stump-only sites. These results indicate age-dependent differences in receptive-field reorganization of the forelimb-stump representation, which may reflect the spatiotemporal development of SI. Results from cobalt chloride inactivation of the SI vibrissae region and electrolesioning of the dysgranular cortex suggest that normally suppressed vibrissae inputs to the SI forelimb-stump area originate in the SI vibrissae region and synapse in the dysgranular cortex.

  15. Neurons in the pontomedullary reticular formation receive converging inputs from the hindlimb and labyrinth.

    PubMed

    Miller, Derek M; DeMayo, William M; Bourdages, George H; Wittman, Samuel R; Yates, Bill J; McCall, Andrew A

    2017-04-01

    The integration of inputs from vestibular and proprioceptive sensors within the central nervous system is critical to postural regulation. We recently demonstrated in both decerebrate and conscious cats that labyrinthine and hindlimb inputs converge onto vestibular nucleus neurons. The pontomedullary reticular formation (pmRF) also plays a key role in postural control, and additionally participates in regulating locomotion. Thus, we hypothesized that like vestibular nucleus neurons, pmRF neurons integrate inputs from the limb and labyrinth. To test this hypothesis, we recorded the responses of pmRF neurons to passive ramp-and-hold movements of the hindlimb and to whole-body tilts, in both decerebrate and conscious felines. We found that pmRF neuronal activity was modulated by hindlimb movement in the rostral-caudal plane. Most neurons in both decerebrate (83% of units) and conscious (61% of units) animals encoded both flexion and extension movements of the hindlimb. In addition, hindlimb somatosensory inputs converged with vestibular inputs onto pmRF neurons in both preparations. Pontomedullary reticular formation neurons receiving convergent vestibular and limb inputs likely participate in balance control by governing reticulospinal outflow.

  16. Neurons in the pontomedullary reticular formation receive converging inputs from the hindlimb and labyrinth

    PubMed Central

    Miller, Derek M.; DeMayo, William M.; Bourdages, George H.; Wittman, Samuel; Yates, Bill J.; McCall, Andrew A.

    2017-01-01

    The integration of inputs from vestibular and proprioceptive sensors within the central nervous system is critical to postural regulation. We recently demonstrated in both decerebrate and conscious cats that labyrinthine and hindlimb inputs converge onto vestibular nucleus neurons. The pontomedullary reticular formation (pmRF) also plays a key role in postural control, and additionally participates in regulating locomotion. Thus, we hypothesized that like vestibular nucleus neurons, pmRF neurons integrate inputs from the limb and labyrinth. To test this hypothesis, we recorded the responses of pmRF neurons to passive ramp-and-hold movements of the hindlimb and to whole-body tilts, in both decerebrate and conscious felines. We found that pmRF neuronal activity was modulated by hindlimb movement in the rostral-caudal plane. Most neurons in both decerebrate (83% of units) and conscious (61% of units) animals encoded both flexion and extension movements of the hindlimb. Additionally, hindlimb somatosensory inputs converged with vestibular inputs onto pmRF neurons in both preparations. Pontomedullary reticular formation neurons receiving convergent vestibular and limb inputs likely participate in balance control by governing reticulospinal outflow. PMID:28188328

  17. Quiet breathing in hindlimb casted mice.

    PubMed

    Receno, Candace N; Roffo, Katelynn E; Mickey, Marisa C; DeRuisseau, Keith C; DeRuisseau, Lara R

    2018-06-07

    The hindlimb casting model was developed to study skeletal muscle reloading following a period of unloading. It is unknown if ventilation parameters of mice are affected by the casting model. We tested the hypothesis that hindlimb casted mice have similar ventilatory patterns compared to mice with the casts removed. Male CD-1 mice underwent 14 days of hindlimb immobilization via plaster casting. Breathing parameters were obtained utilizing unrestrained barometric plethysmography (UBP). Breathing traces were analyzed with Ponemah software for breathing frequency, tidal volume (TV), and minute ventilation (MV). Frequency, TV and MV did not show any differences in quiet breathing patterns during or post-casting in mice. Thus, the hindlimb casting model does not complicate breathing during and after casting and should not interfere with the unloading and reloading of skeletal muscle. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Self-reinnervated muscles lose autogenic length feedback, but intermuscular feedback can recover functional connectivity

    PubMed Central

    Prilutsky, Boris I.; Gregor, Robert J.; Abelew, Thomas A.; Nichols, T. Richard

    2016-01-01

    In this study, we sought to identify sensory circuitry responsible for motor deficits or compensatory adaptations after peripheral nerve cut and repair. Self-reinnervation of the ankle extensor muscles abolishes the stretch reflex and increases ankle yielding during downslope walking, but it remains unknown whether this finding generalizes to other muscle groups and whether muscles become completely deafferented. In decerebrate cats at least 19 wk after nerve cut and repair, we examined the influence of quadriceps (Q) muscles' self-reinnervation on autogenic length feedback, as well as intermuscular length and force feedback, among the primary extensor muscles in the cat hindlimb. Effects of gastrocnemius and soleus self-reinnervation on intermuscular circuitry were also evaluated. We found that autogenic length feedback was lost after Q self-reinnervation, indicating that loss of the stretch reflex appears to be a generalizable consequence of muscle self-reinnervation. However, intermuscular force and length feedback, evoked from self-reinnervated muscles, was preserved in most of the interactions evaluated with similar relative inhibitory or excitatory magnitudes. These data indicate that intermuscular spinal reflex circuitry has the ability to regain functional connectivity, but the restoration is not absolute. Explanations for the recovery of intermuscular feedback are discussed, based on identified mechanisms responsible for lost autogenic length feedback. Functional implications, due to permanent loss of autogenic length feedback and potential for compensatory adaptations from preserved intermuscular feedback, are discussed. PMID:27306676

  19. Effects of the hindlimb-unloading model of spaceflight conditions on resistance of mice to infection with Klebsiella pneumoniae

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2002-01-01

    BACKGROUND: It has been well documented in several studies that many immunologic parameters are altered in experimental animals and human subjects who have flown in space. However, it is not fully known whether these immunologic changes could result in increased susceptibility to infection. Hindlimb (antiorthostatic) unloading of rodents has been used successfully to simulate some of the effects of spaceflight on physiologic systems. OBJECTIVE: The objective of this study was to determine the effect of hindlimb unloading on the outcome of Klebsiella pneumoniae infection in mice. METHODS: Hindlimb-unloaded, hindlimb-restrained, and control mice were intraperitoneally infected with one 50% lethal dose of K pneumoniae 2 days after suspension. Mortality and bacterial load in several organs were compared among the groups. RESULTS: Unloaded mice showed significantly increased mortality and reduced mean time to death compared with that seen in the control groups. Kinetics of bacterial growth with smaller infective doses revealed that control mice were able to clear bacteria from the organs after 30 hours. In contrast, unloaded mice had continued bacterial growth at the same time point. CONCLUSION: The results of this study suggest that hindlimb unloading might enhance the dissemination of K pneumoniae, leading to increased mortality. The complex physiologic changes observed during hindlimb unloading, including stress, have a key role in the pathophysiology of this infection.

  20. Distal hindlimb kinematics of galloping Thoroughbred racehorses on dirt and synthetic racetrack surfaces.

    PubMed

    Symons, J E; Garcia, T C; Stover, S M

    2014-03-01

    The effect of racetrack surface (dirt or synthetic) on distal hindlimb kinematics of racehorses running at competition speeds is not known. To compare distal hindlimb and hoof kinematics during stance of breezing (unrestrained gallop) racehorses between dirt and synthetic surfaces. Two-dimensional kinematic video analysis of 5 Thoroughbred racehorses galloping at high speeds (12-17 m/s) on a dirt racetrack and a synthetic racetrack. The positions of kinematic markers applied to the left hindlimb were recorded at 500 Hz. Position, velocity and acceleration of joint angles and hoof translation during stance were calculated in the sagittal plane. Peak translational and angular kinematic values were compared between the dirt and synthetic race surfaces using mixed model analyses of covariance. Maximum and heel-strike metatarsophalangeal (fetlock) angles were greater (P<0.05) on the dirt surface than on the synthetic surface. Maximum fetlock angle occurred earlier during stance on the dirt surface (P<0.05). Greater horizontal displacement of the heel during slide occurred on the dirt surface (P<0.05). During high-speed gallop, hindlimb fetlock hyperextension and horizontal hoof slide are greater on a dirt surface than on a synthetic surface. Synthetic race surfaces may mitigate risk of injury to hindlimb fetlock structures by reducing fetlock hyperextension and associated strains in fetlock support structures. Differences in hoof slide may contribute to different distal hindlimb kinematics between surfaces. © 2013 EVJ Ltd.

  1. The evolutionary history of the development of the pelvic fin/hindlimb

    PubMed Central

    Don, Emily K; Currie, Peter D; Cole, Nicholas J

    2013-01-01

    The arms and legs of man are evolutionarily derived from the paired fins of primitive jawed fish. Few evolutionary changes have attracted as much attention as the origin of tetrapod limbs from the paired fins of ancestral fish. The hindlimbs of tetrapods are derived from the pelvic fins of ancestral fish. These evolutionary origins can be seen in the examination of shared gene and protein expression patterns during the development of pelvic fins and tetrapod hindlimbs. The pelvic fins of fish express key limb positioning, limb bud induction and limb outgrowth genes in a similar manner to that seen in hindlimb development of higher vertebrates. We are now at a point where many of the key players in the development of pelvic fins and vertebrate hindlimbs have been identified and we can now readily examine and compare mechanisms between species. This is yielding fascinating insights into how the developmental programme has altered during evolution and how that relates to anatomical change. The role of pelvic fins has also drastically changed over evolutionary history, from playing a minor role during swimming to developing into robust weight-bearing limbs. In addition, the pelvic fins/hindlimbs have been lost repeatedly in diverse species over evolutionary time. Here we review the evolution of pelvic fins and hindlimbs within the context of the changes in anatomical structure and the molecular mechanisms involved. PMID:22913749

  2. Myoneural necrosis following high-frequency electrical stimulation of the cast-immobilized rabbit hindlimb

    NASA Technical Reports Server (NTRS)

    Friden, J.; Lieber, R. L.; Myers, R. R.; Powell, H. C.; Hargens, A. R.

    1989-01-01

    The morphological and physiological effects of 4 weeks of high-frequency electrical stimulation (1 h/day, 5 days/week) on cast-immobilized rabbit hindlimbs were investigated in the tibialis anterior muscle and peroneal nerve. In 2 out of 6 animals, high-frequency stimulation with immobilization caused muscle fiber death, internalization of muscle fiber nuclei, connective tissue proliferation, inflammatory response, altered fiber size distribution and variable staining intensities. The fast-twitch fibers were predominantly affected. Two of six peripheral nerves subjected to immobilization and stimulation showed severe damage. Tetanic forces were significantly reduced in the affected muscles. Therefore, the immobilization and high-frequency stimulation may be detrimental to myoneural structure and function and, thus, this combination of therapies should be applied conservatively.

  3. Resistance to disuse atrophy in a turtle hindlimb muscle.

    PubMed

    McDonagh, J C; Callister, R J; Favron, M L; Stuart, D G

    2004-04-01

    The purpose of this study was to characterize the changes in a turtle hindlimb muscle (external gastrocnemius) after exposure to three conditions of disuse: immobilization, tenotomy, and spinalization. Histochemical analysis and measurement of muscle fiber cross-sectional area and weighted cross-sectional area were used to assess the potential conversion of muscle fiber types and changes in fiber size. It was found that unlike its counterpart in mammalian endotherms, the external gastrocnemius muscle of the adult turtle, Trachemys scripta elegans, was remarkably resistant to each model of reduced muscle function. It is suggested that such resistance to disuse is due to intrinsic mechanisms that enable heterothermic mammals and ectothermic vertebrates to tolerate an unfavorable climate and food and water shortages by using hypometabolic states.

  4. Behavioral testing strategies in a localized animal model of multiple sclerosis.

    PubMed

    Buddeberg, Bigna S; Kerschensteiner, Martin; Merkler, Doron; Stadelmann, Christine; Schwab, Martin E

    2004-08-01

    To assess neurological impairments quantitatively in an animal model of multiple sclerosis (MS), we have used a targeted model of experimental autoimmune encephalomyelitis (EAE), which leads to the formation of anatomically defined lesions in the spinal cord. Deficits in the hindlimb locomotion are therefore well defined and highly reproducible, in contrast to the situation in generalized EAE with disseminated lesions. Behavioral tests for hindlimb sensorimotor functions, originally established for traumatic spinal cord injury, revealed temporary or persistent deficits in open field locomotion, the grid walk, the narrow beam and the measurement of the foot exorotation angle. Such refined behavioral testing in EAE will be crucial for the analysis of new therapeutic approaches for MS that seek to improve or prevent neurological impairment.

  5. Biomedical analysis of rat body hair after hindlimb suspension for 14 days

    NASA Astrophysics Data System (ADS)

    Terada, Masahiro; Kawano, Fuminori; Ishioka, Noriaki; Higashibata, Akira; Majima, Hideyuki J.; Yamazaki, Takashi; Watanabe-Asaka, Tomomi; Niihori, Maki; Nakao, Reiko; Yamada, Shin; Mukai, Chiaki; Ohira, Yoshinobu

    2012-04-01

    The levels of 26 minerals in rat body hair were analyzed in control and hindlimb-suspended Wistar Hannover rats (n=5 each). We quantified the levels of 22 minerals in this experiment. However, we were unable to measure the levels of 4 minerals (Be, V, Cd, and Hg) quantitatively because they were below the limit of detection. Of the 22 quantified, the levels of 19 minerals were not significantly different between control and hindlimb-suspended groups. The levels of 3 minerals (Pb, Cr, and Al) tended to be higher in the hindlimb-suspended group than in the control group; however, this difference was not significant. The concentrations of 3 other minerals (I, K, and Mg) were significantly different between the 2 groups. The iodine (I) level was 58.2% higher in the hindlimb-suspended group than in the control group (P<0.05). Potassium (K) and magnesium (Mg) levels were 55.2% and 20.4% lower, respectively, in the experimental group (P<0.05 in both cases). These results indicate that a physiological change in mineral metabolism resulting from physical or mental stress, such as hindlimb suspension, is reflected in body hair. The Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples of astronauts who stayed in the International Space Station (ISS) for 6 months. We believe that hindlimb suspension for 14 days can simulate the effects of an extremely severe environment, such as space flight, because the hindlimb suspension model elicits a rapid physiological change in skeletal muscle, bone, and fluid shift even in the short term. These results also suggest that we can detect various effects on the body by analyzing the human scalp hair shaft.

  6. Treatment with a Nitric Oxide-Donating NSAID Alleviates Functional Muscle Ischemia in the Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Thomas, Gail D.; Ye, Jianfeng; De Nardi, Claudio; Monopoli, Angela; Ongini, Ennio; Victor, Ronald G.

    2012-01-01

    In patients with Duchenne muscular dystrophy (DMD) and the standard mdx mouse model of DMD, dystrophin deficiency causes loss of neuronal nitric oxide synthase (nNOSμ) from the sarcolemma, producing functional ischemia when the muscles are exercised. We asked if functional muscle ischemia would be eliminated and normal blood flow regulation restored by treatment with an exogenous nitric oxide (NO)-donating drug. Beginning at 8 weeks of age, mdx mice were fed a standard diet supplemented with 1% soybean oil alone or in combination with a low (15 mg/kg) or high (45 mg/kg) dose of HCT 1026, a NO-donating nonsteroidal anti-inflammatory agent which has previously been shown to slow disease progression in the mdx model. After 1 month of treatment, vasoconstrictor responses to intra-arterial norepinephrine (NE) were compared in resting and contracting hindlimbs. In untreated mdx mice, the usual effect of muscle contraction to attenuate NE-mediated vasoconstriction was impaired, resulting in functional ischemia: NE evoked similar decreases in femoral blood flow velocity and femoral vascular conductance (FVC) in the contracting compared to resting hindlimbs (ΔFVC contraction/ΔFVC rest = 0.88±0.03). NE-induced functional ischemia was unaffected by low dose HCT 1026 (ΔFVC ratio = 0.92±0.04; P>0.05 vs untreated), but was alleviated by the high dose of the drug (ΔFVC ratio = 0.22±0.03; P<0.05 vs untreated or low dose). The beneficial effect of high dose HCT 1026 was maintained with treatment up to 3 months. The effect of the NO-donating drug HCT 1026 to normalize blood flow regulation in contracting mdx mouse hindlimb muscles suggests a putative novel treatment for DMD. Further translational research is warranted. PMID:23139842

  7. A novel mouse running wheel that senses individual limb forces: biomechanical validation and in vivo testing

    PubMed Central

    Roach, Grahm C.; Edke, Mangesh

    2012-01-01

    Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion. PMID:22723628

  8. Lipoic acid reduces ischemia-reperfusion injury in animal models.

    PubMed

    Freisleben, H J

    2000-08-07

    Hypoxia and reoxygenation were studied in rat hearts and ischemia and reperfusion in rat hindlimbs. Free radicals are known to be generated through these events and to propagate complications. In order to reduce hypoxic/ischemic and especially reoxygenation/reperfusion injury the (re)perfusion conditions were ameliorated including the treatment with antioxidants (lipoate or dihydrolipoate). In isolated working rat hearts cardiac and mitochondrial parameters are impaired during hypoxia and partially recover in reoxygenation. Dihydrolipoate, if added into the perfusion buffer at 0.3 microM concentration, keeps the pH higher (7. 15) during hypoxia as compared to controls (6.98). The compound accelerates the recovery of the aortic flow and stabilizes it during reoxygenation. With dihydrolipoate, ATPase activity is reduced, ATP synthesis is increased and phosphocreatine contents are higher than in controls. Creatine kinase activity is maintained during reoxygenation in the dihydrolipoate series. Isolated rat hindlimbs were stored for 4 h in a moist chamber at 18 degrees C. Controls were perfused for 30 min with a modified Krebs-Henseleit buffer at 60 mmHg followed by 30 min Krebs-Henseleit perfusion at 100 mmHg. The dihydrolipoate group contained 8.3 microM in the modified reperfusate (controlled reperfusion). With dihydrolipoate, recovery of the contractile function was 49% (vs. 34% in controls) and muscle flexibility was maintained whereas it decreased by 15% in the controls. Release of creatine kinase was significantly lower with dihydrolipoate treatment. Dihydrolipoate effectively reduces reoxygenation injury in isolated working rat hearts. Controlled reperfusion, including lipoate, prevents reperfusion syndrome after extended ischemia in exarticulated rat hindlimbs and in an in vivo pig hindlimbs model.

  9. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb

    PubMed Central

    Hudson, Penny E; Corr, Sandra A; Payne-Davis, Rachel C; Clancy, Sinead N; Lane, Emily; Wilson, Alan M

    2011-01-01

    The cheetah is capable of a top speed of 29 ms−1 compared to the maximum speed of 17 ms−1 achieved by the racing greyhound. In this study of the hindlimb and in the accompanying paper on the forelimb we have quantified the musculoskeletal anatomy of the cheetah and greyhound and compared them to identify any differences that may account for this variation in their locomotor abilities. Specifically, bone length, mass and mid-shaft diameter were measured, along with muscle mass, fascicle lengths, pennation angles and moment arms to enable estimates of maximal isometric force, joint torques and joint rotational velocities to be calculated. Surprisingly the cheetahs had a smaller volume of hip extensor musculature than the greyhounds, and we therefore propose that the cheetah powers acceleration using its extensive back musculature. The cheetahs also had an extremely powerful psoas muscle which could help to resist the pitching moments around the hip associated with fast accelerations. The hindlimb bones were proportionally longer and heavier, enabling the cheetah to take longer strides and potentially resist higher peak limb forces. The cheetah therefore possesses several unique adaptations for high-speed locomotion and fast accelerations, when compared to the racing greyhound. PMID:21062282

  10. Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle regeneration in rabbit hindlimb ischemia model.

    PubMed

    Li, Jie; Wei, Yuquan; Liu, Kang; Yuan, Chuang; Tang, Yajuan; Quan, Qingli; Chen, Ping; Wang, Wei; Hu, Huozhen; Yang, Li

    2010-07-01

    Combinatorial strategy has been used in therapeutic angiogenesis in animal models of peripheral arterial disease (PAD) and coronary artery disease for decades. Previous studies have shown that basic fibroblast growth factor (FGF-2) and platelet-derived growth factor BB (PDGF-BB) proteins together establish functional and stable vascular networks on mouse corneal and also in animal model of hindlimb ischemia. However, the short half life of protein by single injection is not sufficient to achieve effective dosage, repeated and prolonged injection causes systemic toxicity. Here we study the synergistic effects of FGF-2 and PDGF-BB by intramuscular injection of naked plasmid DNA on therapeutic angiogenesis in rabbit model of hindlimb ischemia. We found that transient delivery of FGF-2 and PDGF-BB naked DNA together resulted in greater increases in capillary growth, collateral formation and popliteal blood flow compared with control and single gene delivery. Our data provided novel evidence of beneficial effects of DNA-based FGF-2 and PDFG-BB on muscle repair after ischemic injury. These findings reveal an alternative therapeutic approach in the treatment of ischemic diseases and even in muscular disorders. Copyright 2010. Published by Elsevier Inc.

  11. Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus.

    PubMed

    Argot, Christine

    2002-07-01

    This article analyzes the adaptations of the hindlimb of two Early Paleocene marsupials, Mayulestes ferox and Pucadelphys andinus. This analysis is based on detailed comparisons with various extant marsupials, both South American and Australian. In the case of the South American opossums, original myological data were collected and osteological-myological associations were related to their locomotor behavior. The use of Australian genera helped to improve the appraisal of the locomotory habits of the fossil taxa. Several features are indicative of the ability of Mayulestes to climb or walk on uneven surfaces (e.g., very mobile hip joint, astragalocalcaneal joint pattern), and some other features emphasize a relative agility (e.g., strongly everted iliac blades, morphology of the distal epiphysis of the femur, medially stabilized cruroastragalar joint). Pucadelphys exhibits a hindlimb relatively similar morphologically to that of Mayulestes, but with features indicating slightly increased agility and a terrestrial component that is more emphasized than in Mayulestes. The Tiupampa fossils were therefore more agile than most living didelphids and resembled the condition observed in living dasyurids more. These conclusions complement a previous study performed on the forelimb of these fossils. Copyright 2002 Wiley-Liss, Inc.

  12. A metabolic cage for the hindlimb suspended rat

    NASA Technical Reports Server (NTRS)

    Evans, J.; Mulenburg, G. M.; Harper, J. S.; Skundberg, T. L.; Navidi, M.; Arnaud, S. B.

    1994-01-01

    Hindlimb suspension has been successfully used to simulate the effects of microgravity in rats. The cage and suspension system developed by E. R. Holton is designed to produce a headward shift of fluid and unload the hindlimbs in rodents, causing changes in bone and muscle similar to those in animals and humans exposed to spaceflight. While the Holton suspension system simulates many of the conditions observed in the spaceflight animal, it does not provide for the collection of urine and feces needed to monitor some metabolic activities. As a result, only limited information has been gathered on the nutritional status, and the gastrointestinal and renal function of animals using that model. Although commercial metabolic cages are available, they are usually cylindrical and require a centrally located suspension system and thus, do not readily permit movement of the rats. The limited floor space of commercial cages may affect comparisons with studies using the Holton model which has more than twice the living space of most commercially available cages. To take advantage of the extra living space and extensive data base that has been developed with the Holton model, Holton's cage was modified to make urine and fecal collections possible.

  13. Effect of aminophylline on hindlimb blood flow autoregulation during increased metabolism in dogs.

    PubMed

    Metting, P J; Weldy, D L; Ronau, T F; Britton, S L

    1986-06-01

    The contribution of adenosine to hindlimb blood flow autoregulation during treadmill exercise or the administration of 2,4-dinitrophenol (DNP) was evaluated in 9 conscious dogs by determining hindlimb vascular bed pressure-flow relationships in the presence and absence of the adenosine receptor site antagonist, aminophylline. Hindlimb pressure-flow relationships were obtained by measuring blood flow during stepwise reductions in perfusion pressure produced with an occlusion cuff located distal to a flow probe on the external iliac artery. The efficiency of autoregulation was quantitated by calculating the closed-loop gain of flow regulation (Gc) at each pressure decrement utilizing the equation Gc = 1 - (% delta flow/% delta pressure). A Gc of one represents perfect autoregulation of flow, and a Gc of zero is indicative of a rigid system. During exercise, Gc averaged 0.44 +/- 0.07. Aminophylline reduced the Gc during exercise to -0.07 +/- 0.06 (P less than 0.05). During DNP administration, Gc averaged 0.54 +/- 0.09 and declined to -0.09 +/- 0.10 in the presence of aminophylline (P less than 0.05). These results support the hypothesis that adenosine is a primary mediator of hindlimb blood flow autoregulation during conditions that increase hindlimb metabolism.

  14. Imaging studies of the hindlimbs of pacas (Cuniculus paca) bred in captivity.

    PubMed

    Araújo, F A P; Rahal, S C; Doiche, D P; Machado, M R F; Vulcano, L C; Teixeira, C R; El-Warrak, A O

    2010-01-01

    To evaluate the hindlimbs of pacas bred in captivity using radiographic and computed tomography (CT) studies. Nine mature pacas (Cuniculus paca) 5.9-8.2 kg in body weight. Radiographical aspects of the bones of the hindlimbs were evaluated, and the Norberg angle and inclination angle were measured for each hindlimb. Anteversion angle were measured in CT examination. The bone anatomy of the hindlimb of the paca was similar to that of the guinea pig, apart from two lunulae and a single fabella (lateral) which were observed. The Norberg angle had mean value of 130.56º ± 3.81 without any significant difference between testers. Inclination angles ranged from 142.44º ± 4.82 to 145.44º ± 4.09 by Hauptman's method, and from 144.94º ± 3.13 to 148.22º ± 3.25 by Montavon's method, for right and left hindlimbs respectively. Average values for the anteversion angles measured with CT ranged from 28.56º ± 5.56 to 32.91º ± 2.62. The data may be used in future studies comparing the paca to other rodent species. In addition, the paca could be used as an animal model in orthopaedic research.

  15. Alterations in skeletal muscle related to impaired physical mobility: an empirical model

    NASA Technical Reports Server (NTRS)

    Kasper, C. E.; McNulty, A. L.; Otto, A. J.; Thomas, D. P.

    1993-01-01

    The objective of this investigation was to study impaired physical mobility and the resulting skeletal muscle atrophy. An animal model was used to study morphological adaptations of the soleus and plantaris muscles to decreased loading induced by hindlimb suspension of an adult rat for 7, 14, and 28 consecutive days. Alterations in weight, skeletal muscle growth, and changes in fiber type composition were studied in synergistic plantar flexors of the rat hindlimb. Body weight and the soleus muscle mass to body mass ratio demonstrated significant progressive atrophy over th 28-day experimental period with the most significant changes occurring in the first 7 days of hindlimb suspension. Hindlimb suspension produced atrophy of Type I and Type IIa muscle fibers as demonstrated by significant decreases in fiber cross-sectional area (micron 2). These latter changes account for the loss of contractile force production reported in the rat following hindlimb unloading. When compared to traditional models of hindlimb suspension and immobilization, the ISC model produces a less severe atrophy while maintaining animal mobility and health. We conclude that it is the preferred animal model to address nursing questions of impaired physical mobility.

  16. Force-velocity and power characteristics of rat soleus muscle fibers after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Blaser, C. A.; Fitts, R. H.

    1994-01-01

    The effects of 1, 2, and 3 wk of hindlimb suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HA, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type II fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V sub O)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub O) is unknown. There was a progressive decrease in fiber diameter and peak force after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub O) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.

  17. Effect of Hindlimb Unweighting on Single Soleus Fiber Maximal Shortening Velocity and ATPase Activity

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Fitts, R. H.

    1993-01-01

    This study characterizes the time course of change in single soleus muscle fiber size and function elicited by hindlimb un weighting (HU) and analyzes the extent to which varying durations of HU altered maximal velocity of shortening (V(sub o)), myofibrillar adenosinetriphosphatase (ATPase), and relative content of slow and fast myosin in individual soleus fibers. After 1, 2, or 3 weeks of HU, soleus muscle bundles were prepared and stored in skinning solution at -20 C. Single fibers were isolated and mounted between a motor arm and a transducer, and fiber force, V(sub o), and ATPase activity were measured. Fiber myosin content was determined by one-dimensional sodium dodecyl sulfate- (SDS) polyacrylamide gel electrophoresis. After 1, 2, and 3 weeks of HU, soleus fibers exhibited a progressive reduction in fiber diameter (16, 22, and 42%, respectively) and peak force (42, 48, and 7%, respectively). Peak specific tension was significantly reduced after 1 week of HU (18%) and showed no further change in 2-3 weeks of HU. During 1 and 3 wk of HU, fiber V(sub o) and ATPase showed a significant increase. By 3 week, V(sub o) had increased from 1.32 +/- 0.04 to 2.94 +/- 0.17 fiber lengths/s and fiber ATPase from 291 +/- 16 to 1064 +/- 128 micro-M min(sub -1) mm(sub -3). The percent fibers expressing fast myosin heavy chain increased from 4% to 29% by 3 week of HU, and V(sub o) and ATPase activity within a fiber were highly correlated. However, a large population of fibers after 1, 2, and 3 weeks of HU showed increases in V(sub o) and ATPase but displayed the same myosin protein profile on SDS gels as control fibers. The mechanism eliciting increased fiber V(sub o) and ATPase activity was not obvious but may have been due to increases in fast myosin that went undetected on SDS gels and/or other factors unrelated to the myosin filament.

  18. Force-Velocity and Power Characteristics of Rat Soleus Muscle Fibers after Hindlimb Suspension

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Blaser, C. A.; Fitts, R. H.

    1994-01-01

    The effects of 1, 2, and 3 wk of Hindlimb Suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HS, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control and after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type 11 fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V(sub 0)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub 0) is unknown. There was a progressive decrease in fiber diameter (14, 30, and 38%) and peak force (38, 56, and 63%) after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub 0) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.

  19. Novel Method to Assess Arterial Insufficiency in Rodent Hindlimb

    PubMed Central

    Ziegler, Matthew A.; DiStasi, Matthew R.; Miller, Steven J.; Dalsing, Michael C.; Unthank, Joseph L.

    2015-01-01

    Background Lack of techniques to assess maximal blood flow capacity thwarts the use of rodent models of arterial insufficiency to evaluate therapies for intermittent claudication. We evaluated femoral vein outflow (VO) in combination with stimulated muscle contraction as a potential method to assess functional hindlimb arterial reserve and therapeutic efficacy in a rodent model of subcritical limb ischemia. Materials and methods VO was measured with perivascular flow probes at rest and during stimulated calf muscle contraction in young healthy rats (Wistar Kyoto, WKY; lean Zucker, LZR) and rats with cardiovascular risk factors (Spontaneously Hypertensive, SHR; Obese Zucker, OZR) with acute and/or chronic femoral arterial occlusion. Therapeutic efficacy was assessed by administration of Ramipril or Losartan to SHR after femoral artery excision. Results VO measurement in WKY demonstrated the utility of this method to assess hindlimb perfusion at rest and during calf muscle contraction. While application to diseased models (OZR, SHR) demonstrated normal resting perfusion compared to contralateral limbs, a significant reduction in reserve capacity was uncovered with muscle stimulation. Administration of Ramipril and Losartan demonstrated significant improvement in functional arterial reserve. Conclusion The results demonstrate that this novel method to assess distal limb perfusion in small rodents with subcritical limb ischemia is sufficient to unmask perfusion deficits not apparent at rest, detect impaired compensation in diseased animal models with risk factors, and assess therapeutic efficacy. The approach provides a significant advance in methods to investigate potential mechanisms and novel therapies for subcritical limb ischemia in pre-clinical rodent models. PMID:26850199

  20. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter

    PubMed Central

    MORI, Kent; SUZUKI, Satoshi; KOYABU, Daisuke; KIMURA, Junpei; HAN, Sung-Yong; ENDO, Hideki

    2015-01-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids. PMID:25715875

  1. One foot out the door: limb function during swimming in terrestrial versus aquatic turtles.

    PubMed

    Young, Vanessa K Hilliard; Vest, Kaitlyn G; Rivera, Angela R V; Espinoza, Nora R; Blob, Richard W

    2017-01-01

    Specialization for a new habitat often entails a cost to performance in the ancestral habitat. Although aquatic lifestyles are ancestral among extant cryptodiran turtles, multiple lineages, including tortoises (Testudinidae) and emydid box turtles (genus Terrapene), independently specialized for terrestrial habitats. To what extent is swimming function retained in such lineages despite terrestrial specialization? Because tortoises diverged from other turtles over 50 Ma, but box turtles did so only 5 Ma, we hypothesized that swimming kinematics for box turtles would more closely resemble those of aquatic relatives than those of tortoises. To test this prediction, we compared high-speed video of swimming Russian tortoises (Testudo horsfieldii), box turtles (Terrapene carolina) and two semi-aquatic emydid species: sliders (Trachemys scripta) and painted turtles (Chrysemys picta). We identified different kinematic patterns between limbs. In the forelimb, box turtle strokes most resemble those of tortoises; for the hindlimb, box turtles are more similar to semi-aquatic species. Such patterns indicate functional convergence of the forelimb of terrestrial species, whereas the box turtle hindlimb exhibits greater retention of ancestral swimming motions. © 2017 The Author(s).

  2. One foot out the door: limb function during swimming in terrestrial versus aquatic turtles

    PubMed Central

    Vest, Kaitlyn G.; Rivera, Angela R. V.; Espinoza, Nora R.; Blob, Richard W.

    2017-01-01

    Specialization for a new habitat often entails a cost to performance in the ancestral habitat. Although aquatic lifestyles are ancestral among extant cryptodiran turtles, multiple lineages, including tortoises (Testudinidae) and emydid box turtles (genus Terrapene), independently specialized for terrestrial habitats. To what extent is swimming function retained in such lineages despite terrestrial specialization? Because tortoises diverged from other turtles over 50 Ma, but box turtles did so only 5 Ma, we hypothesized that swimming kinematics for box turtles would more closely resemble those of aquatic relatives than those of tortoises. To test this prediction, we compared high-speed video of swimming Russian tortoises (Testudo horsfieldii), box turtles (Terrapene carolina) and two semi-aquatic emydid species: sliders (Trachemys scripta) and painted turtles (Chrysemys picta). We identified different kinematic patterns between limbs. In the forelimb, box turtle strokes most resemble those of tortoises; for the hindlimb, box turtles are more similar to semi-aquatic species. Such patterns indicate functional convergence of the forelimb of terrestrial species, whereas the box turtle hindlimb exhibits greater retention of ancestral swimming motions. PMID:28123109

  3. Shared Enhancer Activity in the Limbs and Phallus and Functional Divergence of a Limb-Genital cis-Regulatory Element in Snakes.

    PubMed

    Infante, Carlos R; Mihala, Alexandra G; Park, Sungdae; Wang, Jialiang S; Johnson, Kenji K; Lauderdale, James D; Menke, Douglas B

    2015-10-12

    The amniote phallus and limbs differ dramatically in their morphologies but share patterns of signaling and gene expression in early development. Thus far, the extent to which genital and limb transcriptional networks also share cis-regulatory elements has remained unexplored. We show that many limb enhancers are retained in snake genomes, suggesting that these elements may function in non-limb tissues. Consistent with this, our analysis of cis-regulatory activity in mice and Anolis lizards reveals that patterns of enhancer activity in embryonic limbs and genitalia overlap heavily. In mice, deletion of HLEB, an enhancer of Tbx4, produces defects in hindlimbs and genitalia, establishing the importance of this limb-genital enhancer for development of these different appendages. Further analyses demonstrate that the HLEB of snakes has lost hindlimb enhancer function while retaining genital activity. Our findings identify roles for Tbx4 in genital development and highlight deep similarities in cis-regulatory activity between limbs and genitalia. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  5. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Brimmer, C. J.

    1985-01-01

    The effect of three-month hindlimb immobilization (IM) in rats on contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus, and fast-twitch superficial region of the vastus lateralis were measured after 0, 14, 28, 60, and 90 days of recovery on excized, horizontally suspended muscles stimulated electrically to maximal twitch tension. IM caused decreases in muscle-to-body weight ratios for all muscles, with no complete recovery even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than those of the slow-twitch SOL. The SOL isometric twitch duration was shortened, due to reduced contraction and half-relaxation time, both of which returned to control levels after 14 days of recovery. The peak tetanic tension, P(O), g/sq cm,, decreased with IM by 46 percent in the SOL, but recovered by the 28th day. The maximum shortening velocity was not altered by IM in any of the muscles. Thus, normal contractile function could recover after prolonged limb IM.

  6. The Effect of Skeletal Unloading on Bone Formation: Role of IGF-I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Kostenuik, P.; Holton, E. M.; Halloran, B. P.

    1999-01-01

    The best documented change in bone during space flight is the near cessation of bone formation. Space flight leads to a decrease in osteoblast number and activity, likely the result of altered differentiation of osteoblast precursors. The net result of these space flight induced changes is weaker bone. To understand the mechanism for these changes poses a challenge. Space flight studies must overcome enormous technical problems, and are necessarily limited in size and frequency. Therefore, ground based models have been developed to evaluate the effects of skeletal unloading. The hindlimb elevation (tail suspension) model simulates space flight better than other models because it reproduces the fluid shifts seen in space travel, is reversible, and is well tolerated by the animals with minimal evidence of stress as indicated by continued weight gain and normal levels and circadian rhythms of corticosterone. This is the model we have used for our experiments. Skeletal unloading by the hindlimb elevation method simulates a number of features of space flight in that bone formation, mineralization, and maturation are inhibited, osteoblast number is decreased, serum and skeletal osteocalcin levels fall, the ash content of bone decreases, and bone strength diminishes. We and others have shown that when osteoblasts or osteoprogenitor cells from the bones of the unloaded limbs are cultured in vitro they proliferate and differentiate more slowly, suggesting that skeletal unloading causes a persistent change in cell function which can be assessed in vitro. In contrast to the unweighted bones of the hindlimbs, no significant change in bone mass or bone formation is observed in the humeri, mandible, and cervical vertebrae during hindlimb elevation. The lack of effect of hindlimb elevation on bones like the humeri, mandible, and cervical vertebrae which are not unloaded by this procedure suggests that local factors rather than systemic effects dominate the response of bone to skeletal unloading. We have focussed on the role of IGF- 1 as the local factor mediating the effects of skeletal unloading on bone formation. IGF-I is produced by bone cells and chondrocytes; these cells have receptors for IGF-I, and respond to IGF-I with an increase in proliferation and function (e.g. collagen, and glycosaminoglycan production, respectively). IGF-I production by bone is under hormonal control, principally by GH and PTH, and IGF-I is thought to mediate some if not all of the effects of GH and PTH on bone growth. Thus, systemic changes in hormones such as GH and PTH may still have effects which vary from bone to bone depending on the loading history.

  7. Shared Components of Rhythm Generation for Locomotion and Scratching Exist Prior to Motoneurons

    PubMed Central

    Hao, Zhao-Zhe; Berkowitz, Ari

    2017-01-01

    Does the spinal cord use a single network to generate locomotor and scratching rhythms or two separate networks? Previous research showed that simultaneous swim and scratch stimulation (“dual stimulation”) in immobilized, spinal turtles evokes a single rhythm in hindlimb motor nerves with a frequency often greater than during swim stimulation alone or scratch stimulation alone. This suggests that the signals that trigger swimming and scratching converge and are integrated within the spinal cord. However, these results could not determine whether the integration occurs in motoneurons themselves or earlier, in spinal interneurons. Here, we recorded intracellularly from hindlimb motoneurons during dual stimulation. Motoneuron membrane potentials displayed regular oscillations at a higher frequency during dual stimulation than during swim or scratch stimulation alone. In contrast, arithmetic addition of the oscillations during swimming alone and scratching alone with various delays always generated irregular oscillations. Also, the standard deviation of the phase-normalized membrane potential during dual stimulation was similar to those during swimming or scratching alone. In contrast, the standard deviation was greater when pooling cycles of swimming alone and scratching alone for two of the three forms of scratching. This shows that dual stimulation generates a single rhythm prior to motoneurons. Thus, either swimming and scratching largely share a rhythm generator or the two rhythms are integrated into one rhythm by strong interactions among interneurons. PMID:28848402

  8. Medial prefrontal cortex acetylcholine injection-induced hypotension: the role of hindlimb vasodilation

    NASA Technical Reports Server (NTRS)

    Crippa, G. E.; Lewis, S. J.; Johnson, A. K.; Correa, F. M.

    2000-01-01

    The injection of acetylcholine (ACh) into the cingulate region of the medial prefrontal cortex (MPFC) causes a marked fall in arterial blood pressure which is not accompanied by changes in heart rate. The purpose of the present study was to investigate the hemodynamic basis for this stimulus-induced hypotension in Sprague-Dawley rats. The study was designed to determine whether a change in the vascular resistance of hindlimb, renal or mesenteric vascular beds contributes to the fall in arterial pressure in response to ACh injection into the cingulate cortex. Miniature pulsed-Doppler flow probes were used to measure changes in regional blood flow and vascular resistance. The results indicated that the hypotensive response was largely due to a consistent and marked vasodilation in the hindlimb vascular bed. On this basis, an additional experiment was then undertaken to determine the mechanisms that contribute to hindlimb vasodilation. The effect of interrupting the autonomic innervation of one leg on the hindlimb vasodilator response was tested. Unilateral transection of the lumbar sympathetic chain attenuated the cingulate ACh-induced vasodilation in the ipsilateral, but not in the contralateral hindlimb. These results suggest that the hypotensive response to cingulate cortex-ACh injection is caused by skeletal muscle vasodilation mediated by a sympathetic chain-related vasodilator system.

  9. Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic hedgehog and HOXD Enhancers.

    PubMed

    Leal, Francisca; Cohn, Martin J

    2016-11-07

    Limb reduction and loss are hallmarks of snake evolution. Although advanced snakes are completely limbless, basal and intermediate snakes retain pelvic girdles and small rudiments of the femur. Moreover, legs may have re-emerged in extinct snake lineages [1-5], suggesting that the mechanisms of limb development were not completely lost in snakes. Here we report that hindlimb development arrests in python embryos as a result of mutations that abolish essential transcription factor binding sites in the limb-specific enhancer of Sonic hedgehog (SHH). Consequently, SHH transcription is weak and transient in python hindlimb buds, leading to early termination of a genetic circuit that drives limb outgrowth. Our results suggest that degenerate evolution of the SHH limb enhancer played a role in reduction of hindlimbs during snake evolution. By contrast, HOXD digit enhancers are conserved in pythons, and HOXD gene expression in the hindlimb buds progresses to the distal phase, forming an autopodial (digit) domain. Python hindlimb buds then develop transitory pre-chondrogenic condensations of the tibia, fibula, and footplate, raising the possibility that re-emergence of hindlimbs during snake evolution did not require de novo re-evolution of lost structures but instead could have resulted from persistence of embryonic legs. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Vertical movement symmetry of the withers in horses with induced forelimb and hindlimb lameness at trot.

    PubMed

    Rhodin, M; Persson-Sjodin, E; Egenvall, A; Serra Bragança, F M; Pfau, T; Roepstorff, L; Weishaupt, M A; Thomsen, M H; van Weeren, P R; Hernlund, E

    2018-04-15

    The main criteria for lameness assessment in horses are head movement for forelimb lameness and pelvic movement for hindlimb lameness. However, compensatory head nod in horses with primary hindlimb lameness is a well-known phenomenon. This compensatory head nod movement can be easily misinterpreted as a sign of primary ipsilateral forelimb lameness. Therefore, discriminating compensatory asymmetries from primary directly pain-related movement asymmetries is a prerequisite for successful lameness assessment. To investigate the association between head, withers and pelvis movement asymmetry in horses with induced forelimb and hindlimb lameness. Experimental study. In 10 clinically sound Warmblood riding horses, forelimb and hindlimb lameness were induced using a sole pressure model. The horses were then trotted on a treadmill. Three-dimensional optical motion capture was used to collect kinematic data from reflective markers attached to the poll, withers and tubera sacrale. The magnitude and side (left or right) of the following symmetry parameters, vertical difference in minimum position, maximum position and range-up were calculated for head, withers, and pelvis. Mixed models were used to analyse data from induced forelimb and hindlimb lameness. For each mm increase in pelvic asymmetry in response to hindlimb lameness induction, withers movement asymmetry increased by 0.35-0.55 mm, but towards the contralateral side. In induced forelimb lameness, for each mm increase in head movement asymmetry, withers movement asymmetry increased by 0.05-0.10 mm, in agreement with the head movement asymmetry direction, both indicating lameness in the induced forelimb. Results must be confirmed in clinically lame horses trotting overground. The vertical asymmetry pattern of the withers discriminated a head nod associated with true forelimb lameness from the compensatory head movement asymmetry caused by primary hindlimb lameness. Measuring movement symmetry of the withers may, thus, aid in determining primary lameness location. © 2018 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.

  11. Hindlimb Skeletal Muscle Function and Skeletal Quality and Strength in +/G610C Mice With and Without Weight-Bearing Exercise.

    PubMed

    Jeong, Youngjae; Carleton, Stephanie M; Gentry, Bettina A; Yao, Xiaomei; Ferreira, J Andries; Salamango, Daniel J; Weis, MaryAnn; Oestreich, Arin K; Williams, Ashlee M; McCray, Marcus G; Eyre, David R; Brown, Marybeth; Wang, Yong; Phillips, Charlotte L

    2015-10-01

    Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice. © 2015 American Society for Bone and Mineral Research.

  12. Transplanted Peripheral Blood Stem Cells Mobilized by Granulocyte Colony-Stimulating Factor Promoted Hindlimb Functional Recovery After Spinal Cord Injury in Mice.

    PubMed

    Takahashi, Hiroshi; Koda, Masao; Hashimoto, Masayuki; Furuya, Takeo; Sakuma, Tsuyoshi; Kato, Kei; Okawa, Akihiko; Inada, Taigo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Takahashi, Kazuhisa; Yamazaki, Masashi; Mannoji, Chikato

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) mobilizes peripheral blood stem cells (PBSCs) derived from bone marrow. We hypothesized that intraspinal transplantation of PBSCs mobilized by G-CSF could promote functional recovery after spinal cord injury. Spinal cords of adult nonobese diabetes/severe immunodeficiency mice were injured using an Infinite Horizon impactor (60 kdyn). One week after the injury, 3.0 µl of G-CSF-mobilized human mononuclear cells (MNCs; 0.5 × 10(5)/µl), G-CSF-mobilized human CD34-positive PBSCs (CD34; 0.5 × 10(5)/µl), or normal saline was injected to the lesion epicenter. We performed immunohistochemistry. Locomotor recovery was assessed by Basso Mouse Scale. The number of transplanted human cells decreased according to the time course. The CD31-positive area was significantly larger in the MNC and CD34 groups compared with the vehicle group. The number of serotonin-positive fibers was significantly larger in the MNC and CD34 groups than in the vehicle group. Immunohistochemistry revealed that the number of apoptotic oligodendrocytes was significantly smaller in cell-transplanted groups, and the areas of demyelination in the MNC- and CD34-transplanted mice were smaller than that in the vehicle group, indicating that cell transplantation suppressed oligodendrocyte apoptosis and demyelination. Both the MNC and CD34 groups showed significantly better hindlimb functional recovery compared with the vehicle group. There was no significant difference between the two types of transplanted cells. Intraspinal transplantation of G-CSF-mobilized MNCs or CD34-positive cells promoted angiogenesis, serotonergic fiber regeneration/sparing, and preservation of myelin, resulting in improved hindlimb function after spinal cord injury in comparison with vehicle-treated control mice. Transplantation of G-CSF-mobilized PBSCs has advantages for treatment of spinal cord injury in the ethical and immunological viewpoints, although further exploration is needed to move forward to clinical application.

  13. Long-term (6-wk) hindlimb suspension inhibits spermatogenesis in adult male rats

    NASA Technical Reports Server (NTRS)

    Tash, Joseph S.; Johnson, Donald C.; Enders, George C.

    2002-01-01

    The International Space Station will allow extended habitation in space and long-term exposure to microgravity (microG). A concern is the impact of long-term microG exposure on the ability of species to reproduce. The model often used to simulate microG is rat hindlimb suspension (HLS), where the hindlimbs are elevated above the cage floor with a tail harness. Experiments described here are the first to examine the effect of long-term HLS on testicular function in adult male rats. Free-roaming (controls), animals with only the tail harnessed but hindlimbs in contact with the cage floor (TO), and HLS animals were tested for 6 wk. Cryptorchidism was prevented in TO and HLS animals by partial constriction of the inguinal canal with sutures. All parameters were compared at the end of the 6-wk experiment. Testicular weights and spermatogenesis were significantly reduced by HLS, such that no spermatogenic cells beyond round spermatids were present and epididymides were devoid of mature sperm. In many tubules, loss of all germ cells, except a few spermatogonia, resulting in histopathology similar to the Sertoli cell, was observed. Spermatogenesis appeared unaffected in control and TO animals. Sertoli and Leydig cell appearance, testosterone, luteinizing hormone, and follicle-stimulating hormone levels, and epididymal and seminal vesicle weight were unchanged by HLS. Cortisone was not elevated by HLS; thus stress may not be a factor. These results demonstrate that spermatogenesis is severely inhibited by long-term HLS, whereas testicular androgen production is not. These results have significant implications regarding serious effects of long-term exposure to microG on the reproductive capability of scrotal mammals, including humans.

  14. A Novel Intronic Single Nucleotide Polymorphism in the Myosin heavy polypeptide 4 Gene Is Responsible for the Mini-Muscle Phenotype Characterized by Major Reduction in Hind-Limb Muscle Mass in Mice

    PubMed Central

    Kelly, Scott A.; Bell, Timothy A.; Selitsky, Sara R.; Buus, Ryan J.; Hua, Kunjie; Weinstock, George M.; Garland, Theodore; Pardo-Manuel de Villena, Fernando; Pomp, Daniel

    2013-01-01

    Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4Minimsc. Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics. PMID:24056412

  15. A novel intronic single nucleotide polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle phenotype characterized by major reduction in hind-limb muscle mass in mice.

    PubMed

    Kelly, Scott A; Bell, Timothy A; Selitsky, Sara R; Buus, Ryan J; Hua, Kunjie; Weinstock, George M; Garland, Theodore; Pardo-Manuel de Villena, Fernando; Pomp, Daniel

    2013-12-01

    Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4(Minimsc). Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics.

  16. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse

    PubMed Central

    Huang, Yunfei; Fan, Yubo; Salanova, Michele; Yang, Xiao; Sun, Lianwen; Blottner, Dieter

    2018-01-01

    The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat. PMID:29875702

  17. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse.

    PubMed

    Huang, Yunfei; Fan, Yubo; Salanova, Michele; Yang, Xiao; Sun, Lianwen; Blottner, Dieter

    2018-01-01

    The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups ( n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  18. Mature IGF-I excels in promoting functional muscle recovery from disuse atrophy compared with pro-IGF-IA.

    PubMed

    Park, Soohyun; Brisson, Becky K; Liu, Min; Spinazzola, Janelle M; Barton, Elisabeth R

    2014-04-01

    Prolonged disuse of skeletal muscle results in atrophy, and once physical activity is resumed, there is increased susceptibility to injury. Insulin-like growth factor-I (IGF-I) is considered a potential therapeutic target to attenuate atrophy during unloading and to enhance rehabilitation upon reloading of skeletal muscles, due to its multipronged actions on satellite cell proliferation, differentiation, and survival, as well as its actions on muscle fibers to boost protein synthesis and inhibit protein degradation. However, the form of IGF-I delivered may alter the success of treatment. Using the hindlimb suspension model of disuse atrophy, we compared the efficacy of two IGF-I forms in protection against atrophy and enhancement of recovery: mature IGF-I (IGF-IS) lacking the COOH-terminal extension, called the E-peptide, and IGF-IA, which is the predominant form retaining the E-peptide. Self-complementary adeno-associated virus harboring the murine Igf1 cDNA constructs were delivered to hindlimbs of adult female C57BL6 mice 3 days prior to hindlimb suspension. Hindlimb muscles were unloaded for 7 days and then reloaded for 3, 7, and 14 days. Loss of muscle mass following suspension was not prevented by either IGF-I construct. However, IGF-IS expression maintained soleus muscle force production. Further, IGF-IS treatment caused rapid recovery of muscle fiber morphology during reloading and maintained muscle strength. Analysis of gene expression revealed that IGF-IS expression accelerated the downregulation of atrophy-related genes compared with untreated or IGF-IA-treated samples. We conclude that mature-IGF-I may be a better option than pro-IGF-IA to promote skeletal muscle recovery following disuse atrophy.

  19. Mature IGF-I excels in promoting functional muscle recovery from disuse atrophy compared with pro-IGF-IA

    PubMed Central

    Park, SooHyun; Brisson, Becky K.; Liu, Min; Spinazzola, Janelle M.

    2013-01-01

    Prolonged disuse of skeletal muscle results in atrophy, and once physical activity is resumed, there is increased susceptibility to injury. Insulin-like growth factor-I (IGF-I) is considered a potential therapeutic target to attenuate atrophy during unloading and to enhance rehabilitation upon reloading of skeletal muscles, due to its multipronged actions on satellite cell proliferation, differentiation, and survival, as well as its actions on muscle fibers to boost protein synthesis and inhibit protein degradation. However, the form of IGF-I delivered may alter the success of treatment. Using the hindlimb suspension model of disuse atrophy, we compared the efficacy of two IGF-I forms in protection against atrophy and enhancement of recovery: mature IGF-I (IGF-IS) lacking the COOH-terminal extension, called the E-peptide, and IGF-IA, which is the predominant form retaining the E-peptide. Self-complementary adeno-associated virus harboring the murine Igf1 cDNA constructs were delivered to hindlimbs of adult female C57BL6 mice 3 days prior to hindlimb suspension. Hindlimb muscles were unloaded for 7 days and then reloaded for 3, 7, and 14 days. Loss of muscle mass following suspension was not prevented by either IGF-I construct. However, IGF-IS expression maintained soleus muscle force production. Further, IGF-IS treatment caused rapid recovery of muscle fiber morphology during reloading and maintained muscle strength. Analysis of gene expression revealed that IGF-IS expression accelerated the downregulation of atrophy-related genes compared with untreated or IGF-IA-treated samples. We conclude that mature-IGF-I may be a better option than pro-IGF-IA to promote skeletal muscle recovery following disuse atrophy. PMID:24371018

  20. Growth and regression of vasculature in healthy and diabetic mice after hindlimb ischemia.

    PubMed

    Landázuri, Natalia; Joseph, Giji; Guldberg, Robert E; Taylor, W Robert

    2012-07-01

    The formation of vascular networks during embryogenesis and early stages of development encompasses complex and tightly regulated growth of blood vessels, followed by maturation of some vessels, and spatially controlled disconnection and pruning of others. The adult vasculature, while more quiescent, is also capable of adapting to changing physiological conditions by remodeling blood vessels. Numerous studies have focused on understanding key factors that drive vessel growth in the adult in response to ischemic injury. However, little is known about the extent of vessel rarefaction and its potential contribution to the final outcome of vascular recovery. We addressed this topic by characterizing the endogenous phases of vascular repair in a mouse model of hindlimb ischemia. We showed that this process is biphasic. It encompasses an initial rapid phase of vessel growth, followed by a later phase of vessel rarefaction. In healthy mice, this process resulted in partial recovery of perfusion and completely restored the ability of mice to run voluntarily. Given that the ability to revascularize can be compromised by a cardiovascular risk factor such as diabetes, we also examined vascular repair in diabetic mice. We found that paradoxically both the initial growth and subsequent regression of collateral vessels were more pronounced in the setting of diabetes and resulted in impaired recovery of perfusion and impaired functional status. In conclusion, our findings demonstrate that the formation of functional collateral vessels in the hindlimb requires vessel growth and subsequent vessel rarefaction. In the setting of diabetes, the physiological defect was not in the initial formation of vessels but rather in the inability to sustain newly formed vessels.

  1. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat

    PubMed Central

    Kao, T; Shumsky, JS; Murray, M; Moxon, KA

    2009-01-01

    Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/day, 5days/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI, but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923

  2. Intermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle.

    PubMed

    Kaneguchi, Akinori; Ozawa, Junya; Kawamata, Seiichi; Kurose, Tomoyuki; Yamaoka, Kaoru

    2014-09-26

    Whole-body vibration has been suggested for the prevention of muscle mass loss and muscle wasting as an attractive measure for disuse atrophy. This study examined the effects of daily intermittent whole-body vibration and weight bearing during hindlimb suspension on capillary number and muscle atrophy in rat skeletal muscles. Sixty male Wistar rats were randomly divided into four groups: control (CONT), hindlimb suspension (HS), HS + weight bearing (WB), and HS + whole-body vibration (VIB) (n = 15 each). Hindlimb suspension was applied for 2 weeks in HS, HS + WB, and HS + VIB groups. During suspension, rats in HS + VIB group were placed daily on a vibrating whole-body vibration platform for 20 min. In HS + WB group, suspension was interrupted for 20 min/day, allowing weight bearing. Untreated rats were used as controls. Soleus muscle wet weights and muscle fiber cross-sectional areas (CSA) significantly decreased in HS, HS + WB, and HS + VIB groups compared with CONT group. Both muscle weights and CSA were significantly greater in HS + WB and HS + VIB groups compared with HS group. Capillary numbers (represented by capillary-to-muscle fiber ratio) were significantly smaller in all hindlimb suspension-treated groups compared with CONT group. However, a reduction in capillary number by unloading hindlimbs was partially prevented by whole-body vibration. These findings were supported by examining mRNA for angiogenic-related factors. Expression levels of a pro-angiogenic factor, vascular endothelial growth factor-A mRNA, were significantly lower in all hindlimb suspension-treated groups compared with CONT group. There were no differences among hindlimb suspension-treated groups. Expression levels of an anti-angiogenic factor, CD36 (receptor for thrombospondin-1) mRNA, were significantly higher in all hindlimb suspension-treated groups compared with CONT group. Among the hindlimb suspension-treated groups, expression of CD36 mRNA in HS + VIB group tended to be suppressed (less than half the HS group). Our results suggest that weight bearing with or without vibration is effective for disuse-derived disturbance by preventing muscle atrophy, and whole-body vibration exercise has an additional benefit of maintaining microcirculation of skeletal muscle.

  3. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb.

    PubMed

    Hudson, Penny E; Corr, Sandra A; Payne-Davis, Rachel C; Clancy, Sinead N; Lane, Emily; Wilson, Alan M

    2011-04-01

    The cheetah is capable of a top speed of 29 ms(-1) compared to the maximum speed of 17 ms(-1) achieved by the racing greyhound. In this study of the hindlimb and in the accompanying paper on the forelimb we have quantified the musculoskeletal anatomy of the cheetah and greyhound and compared them to identify any differences that may account for this variation in their locomotor abilities. Specifically, bone length, mass and mid-shaft diameter were measured, along with muscle mass, fascicle lengths, pennation angles and moment arms to enable estimates of maximal isometric force, joint torques and joint rotational velocities to be calculated. Surprisingly the cheetahs had a smaller volume of hip extensor musculature than the greyhounds, and we therefore propose that the cheetah powers acceleration using its extensive back musculature. The cheetahs also had an extremely powerful psoas muscle which could help to resist the pitching moments around the hip associated with fast accelerations. The hindlimb bones were proportionally longer and heavier, enabling the cheetah to take longer strides and potentially resist higher peak limb forces. The cheetah therefore possesses several unique adaptations for high-speed locomotion and fast accelerations, when compared to the racing greyhound. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.

  4. Interaction of various mechanical activity models in regulation of myosin heavy chain isoform expression

    NASA Technical Reports Server (NTRS)

    Diffee, Gary M.; Mccue, Samuel; Larosa, Angela; Herrick, Robert E.; Baldwin, Kenneth M.

    1993-01-01

    The purpose of this study was to determine the effects of a novel combination of mechanical activity paradigms on the isomyosin distribution in rat hindlimb muscles. Thirty female Sprague-Dawley rats were divided into five experimental groups as follows: normal control, functional overload (OV) of the plantaris, OV in conjunction with hindlimb suspension (OV-S), and a combination of OV-S and either static standing weight-bearing activity (OV-SS) or high-incline treadmill exercise (OV-SE). OV of the plantaris resulted in significant hypertrophy and significant fast-to-slow isomyosin shifts. These changes were completely inhibited by the addition of hindlimb suspension (OV-S). Also, neither of the two weight-bearing regimes (OV-SS and OV-SE) was able to attenuate the suspension-induced atrophy. In the vastus intermedius and vastus lateralis, however, OV-SS was able to partially retard the atrophy associated with suspension. In both the plantaris and vastus intermedius, only OV-SS was able to partially reverse the slow-to-fast isomyosin transitions associated with suspension. These results suggest that the type of mechanical activity is important in determining adaptation to altered loading conditions, with OV-SS appearing more effective than OV-SE in reversing the effects of unweighting.

  5. Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with 64Cu-labeled TRC105.

    PubMed

    Orbay, Hakan; Zhang, Yin; Hong, Hao; Hacker, Timothy A; Valdovinos, Hector F; Zagzebski, James A; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo

    2013-07-01

    The goal of this study was to assess ischemia-induced angiogenesis with (64)Cu-NOTA-TRC105 positron emission tomography (PET) in a murine hindlimb ischemia model of peripheral artery disease (PAD). CD105 binding affinity/specificity of NOTA-conjugated TRC105 (an anti-CD105 antibody) was evaluated by flow cytometry, which exhibited no difference from unconjugated TRC105. BALB/c mice were anesthetized, and the right femoral artery was ligated to induce hindlimb ischemia, with the left hindlimb serving as an internal control. Laser Doppler imaging showed that perfusion in the ischemic hindlimb plummeted to ∼ 20% of the normal level after surgery and gradually recovered to near normal level on day 24. Ischemia-induced angiogenesis was noninvasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 1, 3, 10, 17, and 24. (64)Cu-NOTA-TRC105 uptake in the ischemic hindlimb increased significantly from the control level of 1.6 ± 0.2 %ID/g to 14.1 ± 1.9 %ID/g at day 3 (n = 3) and gradually decreased with time (3.4 ± 1.9 %ID/g at day 24), which correlated well with biodistribution studies performed on days 3 and 24. Blocking studies confirmed the CD105 specificity of tracer uptake in the ischemic hindlimb. Increased CD105 expression on days 3 and 10 following ischemia was confirmed by histology and reverse transcription polymerase chain reaction (RT-PCR). This is the first report of PET imaging of CD105 expression during ischemia-induced angiogenesis. (64)Cu-NOTA-TRC105 PET may play multiple roles in future PAD-related research and improve PAD patient management by identifying the optimal timing of treatment and monitoring the efficacy of therapy.

  6. Use-dependent loss of active sympathetic neurogenic vasodilation after nitric oxide synthase inhibition in conscious rats. Evidence for the presence of preformed stores of nitric oxide-containing factors

    NASA Technical Reports Server (NTRS)

    Davisson, R. L.; Shaffer, R. A.; Johnson, A. K.; Lewis, S. J.

    1996-01-01

    In this study, we examined whether air-jet stress-induced active sympathetic hindlimb vasodilation in conscious rats involves the release of preformed stores of nitric oxide-containing factors. We determined the effects of repeated episodes of air-jet stress (six episodes given 5 minutes apart) on mean arterial pressure and vascular resistances in the mesenteric bed and intact and sympathetically denervated hindlimb beds of conscious rats treated with saline or the nitric oxide synthesis inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 25 mumol/kg IV). In saline-treated rats, air-jet stress produced alerting behavior, minor changes in blood pressure, pronounced mesenteric vaso-constriction, and immediate and marked vasodilation in the sympathetically intact hindlimb but a minor vasodilation in the sympathetically denervated hindlimb. Each air-jet stress produced virtually identical responses. In L-NAME-treated rats, the first air-jet stress produced vasodilator responses in the sympathetically intact and sympathetically denervated hindlimbs that were similar to those in the saline-treated rats. However, each subsequent air-jet stress produced progressively smaller vasodilator responses in the sympathetically intact but not the sympathetically denervated hindlimb. There was no loss of air-jet stress-induced alerting behavior or mesenteric vasoconstriction, suggesting that L-NAME did not interfere with the central processing of the air-jet or the resultant changes in autonomic nerve activity. The progressive diminution of air-jet stress-induced vasodilation in the intact hindlimb of L-NAME-treated rats may be due to the use-dependent depletion of preformed stores of nitric oxide-containing factors that cannot be replenished in the absence of nitric oxide synthesis.

  7. Characterization and validation of a split belt treadmill for measuring hindlimb ground-reaction forces in able-bodied and spinalized felines

    PubMed Central

    Dimiskovski, Marko; Scheinfield, Richard; Higgin, Dwight; Krupka, Alexander; Lemay, Michel A.

    2017-01-01

    BACKGROUND The measurement of ground reaction forces (GRFs) in animals trained to locomote on a treadmill after spinal cord injury (SCI) could prove valuable for evaluating training outcomes; however, quantitative measures of the GRFs in spinal felines are limited. NEW METHOD A split belt treadmill was designed and constructed to measure the GRFs of feline hindlimbs during stepping. The treadmill consists of two independent treadmill assemblies, each mounted on a force plate. The design allows measurements of the vertical (Fz), fore-aft (Fy) and mediolateral (Fx) ground-reaction forces for both hindlimbs while the forelimbs are resting on a platform. RESULTS Static and dynamic noise tests revealed little to no noise at frequencies below 6 Hz. Validation of the force plate measurements with a hand-held force sensor force showed good agreement between the two force readings. Peak normalized (to body mass) vertical GRFs for intact cats were 4.89±0.85N/Kg for the left hindlimb and 4.79±0.97N/Kg for the right. In comparison, trained spinalized cats peak normalized vertical GRFs were 2.20±0.94N/Kg for the left hindlimb and 2.85±0.99N/Kg for the right. COMPARISON WITH OTHER EXISTING METHODS Previous methods of measuring GRFs used stationary single force plates or treadmill mounted to single force plate. Using independent treadmills for each hindlimb allows measurement of the individual hindlimb’s GRFs in spinalized cats following body-weight supported treadmill training. CONCLUSIONS The split belt force treadmill enables the simultaneous recording of ground-reaction forces for both hindlimbs in cats prior to spinalization, and following spinalization and body-weight-supported treadmill training (BWST). PMID:28069392

  8. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.

    PubMed

    You, Si-Wei; Chen, Bing-Yao; Liu, Hui-Ling; Lang, Bing; Xia, Jie-Lai; Jiao, Xi-Ying; Ju, Gong

    2003-01-01

    A major issue in analysis of experimental results after spinal cord injury is spontaneous functional recovery induced by remaining nerve fibers. The authors investigated the relationship between the degree of locomotor recovery and the percentage and location of the fibers that spared spinal cord transection. The spinal cords of 12 adult rats were transected at T9 with a razor blade, which often resulted in sparing of nerve fibers in the ventral spinal cord. The incompletely-transected animals were used to study the degree of spontaneous recovery of hindlimb locomotion, evaluated with the BBB rating scale, in correlation to the extent and location of the remaining fibers. Incomplete transection was found in the ventral spinal cord in 42% of the animals. The degree of locomotor recovery was highly correlated with the percentage of the remaining fibers in the ventral and ventrolateral funiculi. In one of the rats, 4.82% of remaining fibers in unilateral ventrolateral funiculus were able to sustain a certain recovery of locomotion. Less than 5% of remaining ventrolateral white matter is sufficient for an unequivocal motor recovery after incomplete spinal cord injury. Therefore, for studies with spinal cord transection, the completeness of sectioning should be carefully checked before any conclusion can be reached. The fact that the degree of locomotor recovery is correlated with the percentage of remaining fibers in the ventrolateral spinal cord, exclusive of most of the descending motor tracts, may imply an essential role of propriospinal connections in the initiation of spontaneous locomotor recovery.

  9. Time course changes in [Ca2+]i, force, and protein content in hindlimb-suspended mouse soleus muscles

    NASA Technical Reports Server (NTRS)

    Ingalls, C. P.; Wenke, J. C.; Armstrong, R. B.; Hamilton, S. L. (Principal Investigator)

    2001-01-01

    BACKGROUND: Exposure to reduced gravitational forces during spaceflight is associated with significant reductions in skeletal muscle mass and strength. The purpose of this study was to test the hypothesis that increases in resting cytosolic free calcium concentration ([Ca2+]i) would precede reductions in protein content and maximal isometric tetanic force (Po) in mouse soleus muscle after initiation of hindlimb suspension. METHODS: Female ICR mice (n = 42) were hindlimb suspended for 1, 2, 3, 5, or 7 d; weight-matched mice were used as controls. Following the hindlimb suspension, the left soleus muscle was used to determine Po in vitro and the right soleus muscle was used to determine protein content and [Ca2+]i via confocal laser scanning microscopy. RESULTS: Compared with controls, [Ca2+]i was elevated by 38% at 2 d, and 117% at 7 d. Compared with controls, soleus muscle total and myofibrillar protein contents were reduced 27-29% and 30-34%, respectively, at 5-7 d after initiation of hindlimb suspension. Compared with controls, soleus muscle Po was decreased by 24% at 3 d, and 38% at 7 d. CONCLUSION: It appears that resting cytosolic Ca2+ homeostasis is disturbed soon after the initiation of hindlimb suspension, and these elevations in [Ca2+]i may play a role in initiating soleus muscle atrophy.

  10. Hyperbaric oxygen in skeletal muscle of rats submitted to total acute left hindlimb ischemia: A research report.

    PubMed

    da Silva, Luis Gustavo Campos; Dalio, Marcelo Bellini; Joviliano, Edwaldo Edner; Feres, Omar; Piccinato, Carlos Eli

    2015-01-01

    Determine the effect of hyperbaric oxygen treatment in skeletal muscle of rats submitted to total acute left hindlimb ischemia. An experimental study was designed using 48 Wistar rats divided into four groups (n = 12): Control; Ischemia (I)--total hindlimb ischemia for 270 minutes; Hyperbaric oxygen treatment during ischemia (HBO2)--total hindlimb ischemia for 270 minutes and hyperbaric oxygen during the first 90 minutes; Pre-treatment with hyperbaric oxygen (PHBO2)--90 minutes of hyperbaric oxygen treatment before total hindlimb ischemia for 270 minutes. Skeletal muscle injury was evaluated by measuring levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total creatine phosphokinase (CPK); muscular malondialdehyde (MDA), muscular glycogen, and serum ischemia-modified albumin (IMA). AST was significantly higher in I, HBO2 and PHBO2 compared with control (P = .001). There was no difference in LDH. CPK was significantly higher in I, HBO2 and PHBO2, compared with control (p = .014). MDA was significantly higher in PHBO2, compared with other groups (p = .042). Glycogen was significantly decreased in I, HBO2 and PHBO2, compared with control (p < .001). Hyperbaric oxygen treatment in acute total hindlimb ischemia exerted no protective effect on muscle injury, regardless of time of application. When applied prior to installation of total ischemia, hyperbaric oxygen treatment aggravated muscle injury.

  11. Oral erlotinib, but not rapamycin, causes modest acceleration of bladder and hindlimb recovery from spinal cord injury in rats.

    PubMed

    Kjell, J; Pernold, K; Olson, L; Abrams, M B

    2014-03-01

    Erlotinib and Rapamycin are both in clinical use and experimental inhibition of their respective molecular targets, EGFR and mTORC1, has improved recovery from spinal cord injury. Our aim was to determine if daily Erlotinib or Rapamycin treatment started directly after spinal contusion injury in rats improves locomotion function or recovery of bladder function. Stockholm, Sweden. Rats were subjected to contusion injuries and treated during the acute phase with either Erlotinib or Rapamycin. Recovery of bladder function was monitored by measuring residual urine volume and hindlimb locomotion assessed by open-field observations using the BBB rating scale as well as by automated registration of gait parameters. Body weights were monitored. To determine whether Erlotinib and Rapamycin inhibit the same signaling pathway, a cell culture system and western blots were used. Erlotinib accelerated locomotor recovery and slightly improved bladder recovery; however, we found no long-term improvements of locomotor function. Rapamycin did neither improved locomotor function nor bladder recovery. In vitro studies confirmed that Erlotinib and Rapamycin both inhibit the EGFR-mTORC1 signaling pathway. We conclude that none of these two drug regimes improved long-term functional outcome in our current model of spinal cord injury. Nevertheless, oral treatment with Erlotinib may offer modest temporary advantages, whereas treatment with Rapamycin does not.

  12. Dependence of normal development of skeletal muscle in neonatal rats on load bearing

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2000-01-01

    Antigravity function plays an important role in determining the morphological and physiological properties of the neuromuscular system. Inhibition of the normal development of the neuromuscular system is induced by hindlimb unloading during the neonatal period in rats. However, the role of gravitational loading on the development of skeletal muscle in rats is not well understood. It could be hypothesized that during the early postnatal period, i.e. when minimal weight-supporting activity occurs, the activity imposed by gravity would be of little consequence in directing the normal development of the skeletal musculature. We have addressed this issue by limiting the amount of postnatal weight-support activity of the hindlimbs of rats during the lactation period. We have focused on the development of three characteristics of the muscle fibers, i.e. size, myonuclear number and myosin heavy chain expression.

  13. Monitoring of the biological response to murine hindlimb ischemia with 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography.

    PubMed

    Willmann, Jürgen K; Chen, Kai; Wang, Hui; Paulmurugan, Ramasamy; Rollins, Mark; Cai, Weibo; Wang, David S; Chen, Ian Y; Gheysens, Olivier; Rodriguez-Porcel, Martin; Chen, Xiaoyuan; Gambhir, Sanjiv S

    2008-02-19

    Vascular endothelial growth factor-121 (VEGF121), an angiogenic protein secreted in response to hypoxic stress, binds to VEGF receptors (VEGFRs) overexpressed on vessels of ischemic tissue. The purpose of this study was to evaluate 64Cu-VEGF121 positron emission tomography for noninvasive spatial, temporal, and quantitative monitoring of VEGFR2 expression in a murine model of hindlimb ischemia with and without treadmill exercise training. 64Cu-labeled VEGF121 and a VEGF mutant were tested for VEGFR2 binding specificity in cell culture. Mice (n=58) underwent unilateral ligation of the femoral artery, and postoperative tissue ischemia was assessed with laser Doppler imaging. Longitudinal VEGFR2 expression in exercised and nonexercised mice was quantified with 64Cu-VEGF121 positron emission tomography at postoperative day 8, 15, 22, and 29 and correlated with postmortem gamma-counting. Hindlimbs were excised for immunohistochemistry, Western blotting, and microvessel density measurements. Compared with the VEGF mutant, VEGF121 showed specific binding to VEGFR2. Perfusion in ischemic hindlimbs fell to 9% of contralateral hindlimb on postoperative day 1 and recovered to 82% on day 29. 64Cu-VEGF121 uptake in ischemic hindlimbs increased significantly (P < 0.001) from a control level of 0.61+/-0.17% ID/g (percentage of injected dose per gram) to 1.62+/-0.35% ID/g at postoperative day 8, gradually decreased over the following 3 weeks (0.59+/-0.14% ID/g at day 29), and correlated with gamma-counting (R2 = 0.99). Compared with nonexercised mice, 64Cu-VEGF121 uptake was increased significantly (P < or = 0.0001) in exercised mice (at day 15, 22, and 29) and correlated with VEGFR2 levels as obtained by Western blotting (R2 = 0.76). Ischemic hindlimb tissue stained positively for VEGFR2. In exercised mice, microvessel density was increased significantly (P<0.001) compared with nonexercised mice. 64Cu-VEGF121 positron emission tomography allows longitudinal spatial and quantitative monitoring of VEGFR2 expression in murine hindlimb ischemia and indirectly visualizes enhanced angiogenesis stimulated by treadmill exercise training.

  14. HOXA13 and HOXD13 expression during development of the syndactylous digits in the marsupial Macropus eugenii

    PubMed Central

    2012-01-01

    Background Kangaroos and wallabies have specialised limbs that allow for their hopping mode of locomotion. The hindlimbs differentiate much later in development but become much larger than the forelimbs. The hindlimb autopod has only four digits, the fourth of which is greatly elongated, while digits two and three are syndactylous. We investigated the expression of two genes, HOXA13 and HOXD13, that are crucial for digit patterning in mice during formation of the limbs of the tammar wallaby. Results We describe the development of the tammar limbs at key stages before birth. There was marked heterochrony and the hindlimb developed more slowly than the forelimb. Both tammar HOXA13 and HOXD13 have two exons as in humans, mice and chickens. HOXA13 had an early and distal mRNA distribution in the tammar limb bud as in the mouse, but forelimb expression preceded that in the hindlimb. HOXD13 mRNA was expressed earlier in the forelimb than the hindlimb and was predominantly detected in the interdigital tissues of the forelimb. In contrast, the hindlimb had a more restricted expression pattern that appeared to be expressed at discrete points at both posterior and anterior margins of the limb bud, and was unlike expression seen in the mouse and the chicken. Conclusions This is the first examination of HOXA and HOXD gene expression in a marsupial. The gene structure and predicted proteins were highly conserved with their eutherian orthologues. Interestingly, despite the morphological differences in hindlimb patterning, there were no modifications to the polyalanine tract of either HOXA13 or HOXD13 when compared to those of the mouse and bat but there was a marked difference between the tammar and the other mammals in the region of the first polyserine tract of HOXD13. There were also altered expression domains for both genes in the developing tammar limbs compared to the chicken and mouse. Together these findings suggest that the timing of HOX gene expression may contribute to the heterochrony of the forelimb and hindlimb and that alteration to HOX domains may influence phenotypic differences that lead to the development of marsupial syndactylous digits. PMID:22235805

  15. Length asymmetry of the bovine digits.

    PubMed

    Muggli, E; Sauter-Louis, C; Braun, U; Nuss, K

    2011-06-01

    The lengths of the digital bones of the fore- and hind-limbs obtained post mortem from 40 cattle of different ages were measured using digital radiographs. The lengths of the individual digital bones and the overall length of the digit were determined using computer software. The lateral metacarpal/metatarsal condyle, and lateral P1 and P2 were significantly longer than their medial counterparts, whereas P3 of the medial digit was longer than its lateral partner. Measured from the cannon bone epiphysis to the tip of the pedal bone, the mean increased length of the lateral digit was 0.8 mm in the fore- and 1.5 mm in the hind-limb. When the lengths of the digital bones were summed, the mean length of the lateral digit was 1.8 mm longer in the fore-limb and 2.1 mm longer in the hind-limb. Based on these findings, it can be concluded that the lengths of the paired digits differ in cattle. The majority of cattle have longer lateral digits in the fore- and hind-limbs. This asymmetry might explain why the lateral hind-limb claws are predisposed to sole ulcers on hard surfaces. In the hind-limbs, the impact is transferred from the pelvis directly to the longer lateral digit. In the fore-limb claws, the tenomuscular attachment to the trunk may be involved in a more even weight distribution and in a shift of weight to the medial claw. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Functional morphology and comparative anatomy of appendicular musculature in Cuban Anolis lizards with different locomotor habits.

    PubMed

    Anzai, Wataru; Omura, Ayano; Diaz, Antonio Cadiz; Kawata, Masakado; Endo, Hideki

    2014-07-01

    We examined the diversity of the musculoskeletal morphology in the limbs of Anolis lizards with different habitats and identified variations in functional and morphological adaptations to different ecologies or behaviors. Dissection and isolation of 40 muscles from the fore- and hindlimbs of five species of Anolis were performed, and the muscle mass and length of the moment arm were compared after body size effects were removed. Ecologically and behaviorally characteristic morphological differences were observed in several muscles. Well-developed hindlimb extensors were observed in ground-dwelling species, A. sagrei and A. bremeri, and were considered advantageous for running, whereas adept climber species possessed expanded femoral retractors for weight-bearing during climbing. Moreover, morphological variations were observed among arboreal species. Wider excursions of the forelimb joint characterized A. porcatus, presumably enabling branch-to-branch locomotion, while A. equestris and A. angusticeps possessed highly developed adductor muscles for grasping thick branches or twigs. These findings suggest divergent evolution of musculoskeletal characteristic in the limbs within the genus Anolis, with correlations observed among morphological traits, locomotor performance, and habitat uses.

  17. Peripheral vascular responses to heat stress after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Looft-Wilson, Robin C.; Gisolfi, Carl V.

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether hindlimb suspension (which simulates the effects of microgravity) results in impaired hemodynamic responses to heat stress or alterations in mesenteric small artery sympathetic nerve innervation. METHODS: Over 28 d, 16 male Sprague-Dawley rats were hindlimb-suspended, and 13 control rats were housed in the same type of cage. After the treatment, mean arterial pressure (MAP), colonic temperature (Tcol), and superior mesenteric and iliac artery resistances (using Doppler flowmetry) were measured during heat stress [exposure to 42 degrees C until the endpoint of 80 mm Hg blood pressure was reached (75 +/- 9 min); endpoint Tcore = 43.6 +/- 0.2] while rats were anesthetized (sodium pentobarbital, 50 mg x kg(-1) BW). RESULTS: Hindlimb-suspended and control rats exhibited similar increases in Tcol, MAP, and superior mesenteric artery resistance, and similar decreases in iliac resistance during heat stress (endpoint was a fall in MAP below 80 mm Hg). Tyrosine hydroxylase immunostaining indicated similar sympathetic nerve innervation in small mesenteric arteries from both groups. CONCLUSION: Hindlimb suspension does not alter the hemodynamic or thermoregulatory responses to heat stress in the anesthetized rat or mesenteric sympathetic nerve innervation, suggesting that this sympathetic pathway is intact.

  18. Ladder beam and camera video recording system for evaluating forelimb and hindlimb deficits after sensorimotor cortex injury in rats.

    PubMed

    Soblosky, J S; Colgin, L L; Chorney-Lane, D; Davidson, J F; Carey, M E

    1997-12-30

    Hindlimb and forelimb deficits in rats caused by sensorimotor cortex lesions are frequently tested by using the narrow flat beam (hindlimb), the narrow pegged beam (hindlimb and forelimb) or the grid-walking (forelimb) tests. Although these are excellent tests, the narrow flat beam generates non-parametric data so that using more powerful parametric statistical analyses are prohibited. All these tests can be difficult to score if the rat is moving rapidly. Foot misplacements, especially on the grid-walking test, are indicative of an ongoing deficit, but have not been reliably and accurately described and quantified previously. In this paper we present an easy to construct and use horizontal ladder-beam with a camera system on rails which can be used to evaluate both hindlimb and forelimb deficits in a single test. By slow motion videotape playback we were able to quantify and demonstrate foot misplacements which go beyond the recovery period usually seen using more conventional measures (i.e. footslips and footfaults). This convenient system provides a rapid and reliable method for recording and evaluating rat performance on any type of beam and may be useful for measuring sensorimotor recovery following brain injury.

  19. Altered skeletal pattern of gene expression in response to spaceflight and hindlimb elevation

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E.

    1994-01-01

    Spaceflight leads to osteopenia, in part by inhibiting bone formation. Using an animal model (hindlimb elevation) that simulates the weightlessness of spaceflight, we and others showed a reversible inhibition of bone formation and bone mineralization. In this study, we have measured the mRNA levels of insulin-like growth factor I (IGF-I), IGF-I receptor (IGF-IR), alkaline phosphatase, and osteocalcin in the tibiae of rats flown aboard National Aeronautics and Space Administration Shuttle Flight STS-54 and compared the results with those obtained from their ground-based controls and from the bones of hindlimb-elevated animals. Spaceflight and hindlimb elevation transiently increase the mRNA levels for IGF-I, IGF-IR, and alkaline phosphatase but decrease the mRNA levels for osteocalcin. The changes in osteocalcin and alkaline phosphatase mRNA levels are consistent with a shift toward decreased maturation, whereas the rise in IGF-I and IGF-IR mRNA levels may indicate a compensatory response to the fall in bone formation. We conclude that skeletal unloading during spaceflight or hindlimb elevation resets the pattern of gene expression in the osteoblast, giving it a less mature profile.

  20. Adaptations of mouse skeletal muscle to low intensity vibration training

    PubMed Central

    McKeehen, James N.; Novotny, Susan A.; Baltgalvis, Kristen A.; Call, Jarrod A.; Nuckley, David J.; Lowe, Dawn A.

    2013-01-01

    Purpose We tested the hypothesis that low intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. Methods We subjected C57BL/6J mice to 6 wk, 5 d·wk−1, 15 min·d−1 of sham or low intensity vibration (45 Hz, 1.0 g) while housed in traditional cages (Sham-Active, n=8; Vibrated-Active, n=10) or in small cages to restrict physical activity (Sham-Restricted, n=8; Vibrated-Restricted, n=8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine effects of vibration and physical inactivity. Results Vibration training resulted in a 10% increase in maximal isometric torque (P=0.038) and 16% faster maximal rate of relaxation (P=0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, with the exception of greater rates of contraction in Vibrated-Restricted mice compared to Vibrated-Active and Sham-Restricted mice (P=0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P=0.057) and maximal relaxation was 20% faster (P=0.005) in Vibrated compared to Sham mice. Restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not impact muscle fatigability or any indicator of cellular adaptation investigated (P≥0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Conclusion Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations. PMID:23274599

  1. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.

    PubMed

    Allen, Vivian; Bates, Karl T; Li, Zhiheng; Hutchinson, John R

    2013-05-02

    Locomotion in living birds (Neornithes) has two remarkable features: feather-assisted flight, and the use of unusually crouched hindlimbs for bipedal support and movement. When and how these defining functional traits evolved remains controversial. However, the advent of computer modelling approaches and the discoveries of exceptionally preserved key specimens now make it possible to use quantitative data on whole-body morphology to address the biomechanics underlying this issue. Here we use digital body reconstructions to quantify evolutionary trends in locomotor biomechanics (whole-body proportions and centre-of-mass position) across the clade Archosauria. We use three-dimensional digital reconstruction to estimate body shape from skeletal dimensions for 17 archosaurs along the ancestral bird line, including the exceptionally preserved, feathered taxa Microraptor, Archaeopteryx, Pengornis and Yixianornis, which represent key stages in the evolution of the avian body plan. Rather than a discrete transition from more-upright postures in the basal-most birds (Avialae) and their immediate outgroup deinonychosauria, our results support hypotheses of a gradual, stepwise acquisition of more-crouched limb postures across much of theropod evolution, although we find evidence of an accelerated change within the clade Maniraptora (birds and their closest relatives, such as deinonychosaurs). In addition, whereas reduction of the tail is widely accepted to be the primary morphological factor correlated with centre-of-mass position and, hence, evolution of hindlimb posture, we instead find that enlargement of the pectoral limb and several associated trends have a much stronger influence. Intriguingly, our support for the onset of accelerated morpho-functional trends within Maniraptora is closely correlated with the evolution of flight. Because we find that the evolution of enlarged forelimbs is strongly linked, via whole-body centre of mass, to hindlimb function during terrestrial locomotion, we suggest that the evolution of avian flight is linked to anatomical novelties in the pelvic limb as well as the pectoral.

  2. High dietary phosphate intake induces hypertension and augments exercise pressor reflex function in rats.

    PubMed

    Mizuno, Masaki; Mitchell, Jere H; Crawford, Scott; Huang, Chou-Long; Maalouf, Naim; Hu, Ming-Chang; Moe, Orson W; Smith, Scott A; Vongpatanasin, Wanpen

    2016-07-01

    An increasing number of studies have linked high dietary phosphate (Pi) intake to hypertension. It is well established that the rise in sympathetic nerve activity (SNA) and blood pressure (BP) during physical exertion is exaggerated in many forms of hypertension, which are primarily mediated by an overactive skeletal muscle exercise pressor reflex (EPR). However, it remains unknown whether high dietary Pi intake potentiates the EPR-mediated SNA and BP response to exercise. Accordingly, we measured renal SNA (RSNA) and mean BP (MBP) in normotensive Sprague-Dawley rats fed a normal Pi diet (0.6%, n = 13) or high Pi diet (1.2%, n = 13) for 3 mo. As previously reported, we found that resting BP was significantly increased by 1.2% Pi diet in both conscious and anesthetized animals. Activation of the EPR by electrically induced hindlimb contraction triggered greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (126 ± 25 vs. 42 ± 9%; 44 ± 5 vs. 14 ± 2 mmHg, respectively, P < 0.01). Activation of the muscle mechanoreflex, a component of the EPR, by passively stretching hindlimb muscle also evoked greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (109 ± 27 vs. 24 ± 7%, 38 ± 7 vs. 8 ± 2 mmHg, respectively, P < 0.01). A similar response was produced by hindlimb intra-arterial capsaicin administration to stimulate the metaboreflex arm of the EPR. Thus, our data demonstrate a novel action of dietary Pi loading in augmenting EPR function through overactivation of both the muscle mechanoreflex and metaboreflex. Copyright © 2016 the American Physiological Society.

  3. Motor tics evoked by striatal disinhibition in the rat

    PubMed Central

    Bronfeld, Maya; Yael, Dorin; Belelovsky, Katya; Bar-Gad, Izhar

    2013-01-01

    Motor tics are sudden, brief, repetitive movements that constitute the main symptom of Tourette syndrome (TS). Multiple lines of evidence suggest the involvement of the cortico-basal ganglia system, and in particular the basal ganglia input structure—the striatum in tic formation. The striatum receives somatotopically organized cortical projections and contains an internal GABAergic network of interneurons and projection neurons' collaterals. Disruption of local striatal GABAergic connectivity has been associated with TS and was found to induce abnormal movements in model animals. We have previously described the behavioral and neurophysiological characteristics of motor tics induced in monkeys by local striatal microinjections of the GABAA antagonist bicuculline. In the current study we explored the abnormal movements induced by a similar manipulation in freely moving rats. We targeted microinjections to different parts of the dorsal striatum, and examined the effects of this manipulation on the induced tic properties, such as latency, duration, and somatic localization. Tics induced by striatal disinhibition in monkeys and rats shared multiple properties: tics began within several minutes after microinjection, were expressed solely in the contralateral side, and waxed and waned around a mean inter-tic interval of 1–4 s. A clear somatotopic organization was observed only in rats, where injections to the anterior or posterior striatum led to tics in the forelimb or hindlimb areas, respectively. These results suggest that striatal disinhibition in the rat may be used to model motor tics such as observed in TS. Establishing this reliable and accessible animal model could facilitate the study of the neural mechanisms underlying motor tics, and the testing of potential therapies for tic disorders. PMID:24065893

  4. Coordination strategies for limb forces during weight-bearing locomotion in normal rats, and in rats spinalized as neonates

    PubMed Central

    Giszter, Simon F; Davies, Michelle R; Graziani, Virginia

    2010-01-01

    Some rats spinally transected as neonates (ST rats) achieve weight-supporting independent locomotion. The mechanisms of coordinated hindlimb weight support in such rats are not well understood. To examine these in such ST rats and normal rats, rats with better than 60% of weight supported steps on a treadmill as adults were trained to cross an instrumented runway. Ground reaction forces, coordination of hindlimb and forelimb forces and the motions of the center of pressure were assessed. Normal rats crossed the runway with a diagonal trot. On average hindlimbs bore about 80% of the vertical load carried by forelimbs, although this varied. Forelimbs and hindlimb acted synergistically to generate decelerative and propulsive rostrocaudal forces, which averaged 15% of body weight with maximums of 50% . Lateral forces were very small (<8% of body weight). Center of pressure progressed in jumps along a straight line with mean lateral deviations <1 cm. ST rats hindlimbs bore about 60% of the vertical load of forelimbs, significantly less compared to intact (p<0.05). ST rats showed similar mean rostrocaudal forces, but with significantly larger maximum fluctuations of up to 80% of body weight (p<0.05). Joint force-plate recordings showed forelimbs and hindlimb rostrocaudal forces in ST rats were opposing and significantly different from intact rats (p<0.05). Lateral forces were ~20% of body weight and significantly larger than in normal rats (p<0.05). Center of pressure zig-zagged, with mean lateral deviations of ~ 2cm and a significantly larger range (p<0.05). The haunches were also observed to roll more than normal rats. The locomotor strategy of injured rats using limbs in opposition was presumably less efficient but their complex gait was statically stable. Because forelimbs and hindlimbs acted in opposition, the trunk was held compressed. Force coordination was likely managed largely by the voluntary control in forelimbs and trunk. PMID:18612631

  5. Compromised regulation of tissue perfusion and arteriogenesis limit, in an AT1R-independent fashion, recovery of ischemic tissue in Cx40−/− mice

    PubMed Central

    Fang, Jennifer S.; Angelov, Stoyan N.; Simon, Alexander M.

    2013-01-01

    Recently, we reported that recovery of tissue perfusion in the ischemic hindlimb was reduced, inflammatory response increased, and survival of distal limb tissue compromised in connexin 40 (Cx40)-deficient (Cx40−/−) mice. Here we evaluate whether genotype-specific differences in tissue perfusion, native vascular density, arteriogenesis, blood pressure, and chronic ANG II type 1 receptor (AT1R) activation contribute to poor recovery of ischemic hindlimb tissue in Cx40−/− mice. Hindlimb ischemia was induced in wild-type (WT), Cx40−/−, and losartan-treated Cx40−/− mice by using surgical procedures that either maintained (mild surgery) or compromised (severe surgery) perfusion of major collateral vessels supplying the distal limb. Pre- and postsurgical hindlimb perfusion was evaluated, and tissue survival, microvascular density, and macrophage infiltration were documented during recovery. Hindlimb perfusion was compromised in presurgical Cx40−/− versus WT mice despite comparable native microvascular density. Hindlimb perfusion 24 h postsurgery in Cx40−/− and WT mice was comparable after mild surgery (collateral vessels maintained), but compromised arteriogenesis in Cx40−/− animals nevertheless limited subsequent recovery of tissue perfusion and compromised tissue survival. Prolonged pre- and postsurgical treatment of Cx40−/− mice with losartan (an AT1R antagonist) normalized blood pressure but did not improve tissue perfusion or survival, despite reduced macrophage infiltration. Thus it appears Cx40 is necessary for normal tissue perfusion and for recovery of perfusion, arteriogenesis, and tissue survival in the ischemic hindlimb. Our data suggest that Cx40−/− mice are at significantly greater risk for poor recovery from ischemic insult due to compromised regulation of tissue perfusion, vascular remodeling, and prolonged inflammatory response. PMID:23292716

  6. Posture and movement characteristics of forward and backward walking in horses with shivering and acquired bilateral stringhalt.

    PubMed

    Draper, A C E; Trumble, T N; Firshman, A M; Baird, J D; Reed, S; Mayhew, I G; MacKay, R; Valberg, S J

    2015-03-01

    To investigate and further characterise posture and movement characteristics during forward and backward walking in horses with shivering and acquired, bilateral stringhalt. To characterise the movement of horses with shivering (also known as shivers) in comparison with control horses and horses with acquired bilateral stringhalt. Qualitative video analysis of gait in horses. Owners' and authors' videos of horses with shivering or stringhalt and control horses walking forwards and backwards and manually lifting their limbs were examined subjectively to characterise hyperflexion, hyperextension and postural abnormalities of the hindlimbs. The pattern and timing of vertical displacement of a hindlimb over one stride unit was evaluated among control, shivering and stringhalt cases. Gait patterns of shivering cases were characterised as follows: shivering-hyperextension (-HE, n = 13), in which horses subjectively showed hyperextension when backing and lifting the limb; shivering-hyperflexion (-HF, n = 27), in which horses showed hindlimb hyperflexion and abduction during backward walking; and shivering-forward hyperflexion (-FHF, n = 4), which resembled shivering-HF but included intermittent hyperflexion and abduction with forward walking. Horses with shivering-HF, shivering-FHF and stringhalt (n = 7) had a prolonged swing phase duration compared with control horses and horses with shivering-HE during backward walking. With the swing phase of forward walking, horses with stringhalt had a rapid ascent to adducted hyperflexion of the hindlimb, compared with a rapid descent of the hindlimb after abducted hyperflexion in horses with shivering-FHF. Shivering affects backward walking, with either HE or HF of hindlimbs, and can gradually progress to involve intermittent abducted hyperflexion during forward walking. Shivering-HF and shivering-FHF can look remarkably similar to acquired bilateral stringhalt during backward walking; however, stringhalt can be distinguished from shivering-HF by hyperflexion during forward walking and from shivering-FHF by an acute onset of a more consistent, rapidly ascending, hyperflexed, adducted hindlimb gait at a walk. © 2014 EVJ Ltd.

  7. Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth.

    PubMed

    Roselló-Díez, Alberto; Stephen, Daniel; Joyner, Alexandra L

    2017-07-25

    Regulation of organ growth is a poorly understood process. In the long bones, the growth plates (GPs) drive elongation by generating a scaffold progressively replaced by bone. Although studies have focused on intrinsic GP regulation, classic and recent experiments suggest that local signals also modulate GP function. We devised a genetic mouse model to study extrinsic long bone growth modulation, in which injury is specifically induced in the left hindlimb, such that the right hindlimb serves as an internal control. Remarkably, when only mesenchyme cells surrounding postnatal GPs were killed, left bone growth was nevertheless reduced. GP signaling was impaired by altered paracrine signals from the knee joint, including activation of the injury response and, in neonates, dampened IGF1 production. Importantly, only the combined prevention of both responses rescued neonatal growth. Thus, we identified signals from the knee joint that modulate bone growth and could underlie establishment of body proportions.

  8. Responses of neuromuscular systems under gravity or microgravity environment.

    PubMed

    Ishihara, Akihiko; Kawano, Fuminori; Wang, Xiao Dong; Ohira, Yoshinobu

    2004-11-01

    Hindlimb suspension of rats induces induces fiber atrophy and type shift of muscle fibers. In contrast, there is no change in the cell size or oxidative enzyme activity of spinal motoneurons innervating muscle fibers. Growth-related increases in the cell size of muscle fibers and their spinal motoneurons are inhibited by hindlimb suspension. Exposure to microgravity induces atrophy of fibers (especially slow-twitch fibers) and shift of fibers from slow- to fast-twitch type in skeletal muscles (especially slow, anti-gravity muscles). In addition, a decrease in the oxidative enzyme activity of spinal motoneurons innervating slow-twitch fibers and of sensory neurons in the dorsal root ganglion is observed following exposure to microgravity. It is concluded that neuromuscular activities are important for maintaining metabolism and function of neuromuscular systems at an early postnatal development and that gravity effects both efferent and afferent neural pathways.

  9. [The relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus].

    PubMed

    Li, Li; Liu, Hong-Ju; Yang, Ming-Hao; Li, Jing-Long; Wang, Lu; Chen, Xiao-Ping; Fan, Ming

    2012-03-01

    To explore the relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus. After 28-day hind-limb unloading and muscle atrophy, we used the method of isolated muscle perfusion with different stimulated protocols to determine the changes in contractile characteristics including the isometric twitch force and tetanus force and fatigue index of slow twitch muscle in mice. The muscle myofibrillar composition and fiber type conversion were detected by immunofluorescence staining and real-time PCR. The isometric twitch force and the tetanus force and fatigue index were decreased progressively in 28-day unloaded mice soleus, with the increase in fast twitch fiber subtype and the decrease in slow twitch fiber subtype. The alteration of contractile characteristics is relevant to the slow-to-fast fiber conversion in mice soleus after 28-day hind-limb unloading.

  10. How the embryo makes a limb: determination, polarity and identity

    PubMed Central

    Tickle, Cheryll

    2015-01-01

    The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity – wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions – the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity – determined by Pitx1 in hindlimbs – and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk – with Hox gene activity inhibiting the formation of forelimbs in the interlimb region – and also along the dorso-ventral axis. PMID:26249743

  11. How the embryo makes a limb: determination, polarity and identity.

    PubMed

    Tickle, Cheryll

    2015-10-01

    The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity - wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions - the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity - determined by Pitx1 in hindlimbs - and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk - with Hox gene activity inhibiting the formation of forelimbs in the interlimb region - and also along the dorso-ventral axis. © 2015 Anatomical Society.

  12. Skeletal Phenotype of Transgenic Mice Expressing the Beta1 Integrin Cytoplasmic Tail In Osteoblasts

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; vanderMeulen, M. C. H.; Damsky, D.; Kim, J.-B.; Amblard, D.; Amblard, D.; Nishimura, Y.; Almeida, E.; Iwaniec, U. T.; Wronski, T. J.; hide

    2002-01-01

    To define the physiologic role of beta1 integrin in bone formation and mechanical loading, transgenic mice were generated by expressing the cytoplasmic tall and transmembrane domain of Beta1 integrin under the control of the osteocalcin promoter. In cultured cells, this truncated fragment of Beta1 can act as a dominant negative. Previously, the matrix of calvariae was shown to be abnormal in transgenic (TG) compared to wildtype (WT) mice. In this study, we analyzed appendicular bone in TG and WT, male and female mice at 14, 35, 63, 90 and 365 days old (n=8-12/gp). To assess beta1 integrin function in mechanical loading, a pilot study using hindlimb unloading by tail suspension was performed. 35d old TG and WT females were hindlimb unloaded for 4 wks (n=3-5). Body mass, bone mineral content, histomorphometric (distal femur) and biomechanical parameters were analyzed. Statistical significance (P less than.05) was defined by ANOVA using the Tukey-Kramer post-hoc test. We confirmed transgene expression by immunoprecipitating then immunoblotting bone lysates using an antibody against the beta1 tail. Body masses of TG mice at 63, 90 and 365d old were greater (16-25%) than WT. Some TG female mice at 365d appeared obese; mean abdominal fat mass was 415% greater in TG than WT mice. Tibiae were longer (5-7%) in TG than WT mice at 63 and 90d. Tibial mineral mass of 35d males was 7% lower in TG than WT mice, but at 63d was 21% higher. The % osteoblast surface in 35d TG mice was 20% higher than WT, and at 63d was 17% lower, while % osteoclast surface did not differ. In 365d mice, cancellous bone volume (125%) and endocortical mineral apposition rate (40%) were greater in TG than WT males but not females. In WT mice, hindlimb unloading caused a reduction in mineral mass of tibiae (-20%) and lumbar vertebrae (-22%) relative to normally loaded controls. Surprisingly, hindlimb unloading also caused a relative reduction (-13%) in humerus mass. The effects of hindlimb unloading on tibia and humerus mass were less obvious in TG than in WT mice. Since hindlimb unloading caused skeletal changes in both loaded and unloaded bones, systemic changes may contribute to bone responses observed using this animal model. In conclusion, transgene expression resulted in marked metabolic changes during growth and in the aged female. Our results demonstrate that expression of the Beta1 integrin cytoplasmic tail in vivo causes gender- and age-specific changes in select morphometric parameters, bone length, and bone mass.

  13. Comparison of hindlimb unloading and partial weight suspension models for spaceflight-type condition induced effects on white blood cells

    NASA Astrophysics Data System (ADS)

    Wilson, Jolaine M.; Krigsfeld, Gabriel S.; Sanzari, Jenine K.; Wagner, Erika B.; Mick, Rosemarie; Kennedy, Ann R.

    2012-01-01

    Animal models are frequently used to assist in the determination of the long- and short-term effects of space flight. The space environment, including microgravity, can impact many physiological and immunological system parameters. It has been found that ground based models of microgravity produce changes in white blood cell counts, which negatively affects immunologic function. As part of the Center of Acute Radiation Research (CARR), we compared the acute effects on white blood cell parameters induced by the more traditionally used animal model of hindlimb unloading (HU) with a recently developed reduced weightbearing analog known as partial weight suspension (PWS). Female ICR mice were either hindlimb unloaded or placed in the PWS system at 16% quadrupedal weightbearing for 4 h, 1, 2, 7 or 10 days, at which point complete blood counts were obtained. Control animals (jacketed and non-jacketed) were exposed to identical conditions without reduced weightbearing. Results indicate that significant changes in total white blood cell (WBC), neutrophil, lymphocyte, monocyte and eosinophil counts were observed within the first 2 days of exposure to each system. These differences in blood cell counts normalized by day 7 in both systems. The results of these studies indicate that there are some statistically significant changes observed in the blood cell counts for animals exposed to both the PWS and HU simulated microgravity systems.

  14. Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading

    NASA Technical Reports Server (NTRS)

    Ingalls, C. P.; Warren, G. L.; Armstrong, R. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    The objective of this study was to determine whether altered intracellular Ca(2+) handling contributes to the specific force loss in the soleus muscle after unloading and/or subsequent reloading of mouse hindlimbs. Three groups of female ICR mice were studied: 1) unloaded mice (n = 11) that were hindlimb suspended for 14 days, 2) reloaded mice (n = 10) that were returned to their cages for 1 day after 14 days of hindlimb suspension, and 3) control mice (n = 10) that had normal cage activity. Maximum isometric tetanic force (P(o)) was determined in the soleus muscle from the left hindlimb, and resting free cytosolic Ca(2+) concentration ([Ca(2+)](i)), tetanic [Ca(2+)](i), and 4-chloro-m-cresol-induced [Ca(2+)](i) were measured in the contralateral soleus muscle by confocal laser scanning microscopy. Unloading and reloading increased resting [Ca(2+)](i) above control by 36% and 24%, respectively. Although unloading reduced P(o) and specific force by 58% and 24%, respectively, compared with control mice, there was no difference in tetanic [Ca(2+)](i). P(o), specific force, and tetanic [Ca(2+)](i) were reduced by 58%, 23%, and 23%, respectively, in the reloaded animals compared with control mice; however, tetanic [Ca(2+)](i) was not different between unloaded and reloaded mice. These data indicate that although hindlimb suspension results in disturbed intracellular Ca(2+) homeostasis, changes in tetanic [Ca(2+)](i) do not contribute to force deficits. Compared with unloading, 24 h of physiological reloading in the mouse do not result in further changes in maximal strength or tetanic [Ca(2+)](i).

  15. The effect of long-term hindlimb unloading on the expression of risk neurogenes encoding elements of serotonin-, dopaminergic systems and apoptosis; comparison with the effect of actual spaceflight on mouse brain.

    PubMed

    Kulikova, E A; Kulikov, V A; Sinyakova, N A; Kulikov, A V; Popova, N K

    2017-02-15

    The study of spaceflight effects on the brain is technically complex concern; complicated by the problem of applying an adequate ground model. The most-widely used experimental model to study the effect of microgravity is the tail-suspension hindlimb unloading model; however, its compliance with the effect of actual spaceflight on the brain is still unclear. We evaluated the effect of one month hindlimb unloading on the expression of genes related to the brain neuroplasticity-brain neutotrophic factors (Gdnf, Cdnf), apoptotic factors (Bcl-xl, Bax), serotonin- and dopaminergic systems (5-HT 2A , Maoa, Maob, Th, D1r, Comt), and compared the results with the data obtained on mice that spent one month in spaceflight on Russian biosatellite Bion-M1. No effect of hindlimb unloading was observed on the expression of most genes, which were considered as risk neurogenes for long-term actual spaceflight. The opposite effect of hindlimb unloading and spaceflight was found on the level of mRNA of D1 dopamine receptor and catechol-O-methyltransferase in the striatum. At the same time, the expression of Maob in the midbrain decreased, and the expression of Bcl-xl genes increased in the hippocampus, which corresponds to the effect of spaceflight. However, the hindlimb unloading model failed to reproduce the majority of effects of long-term spaceflight on serotonin-, dopaminergic systems and some apoptotic factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hindlimb motion during steady flight of the lesser dog-faced fruit bat, Cynopterus brachyotis.

    PubMed

    Cheney, Jorn A; Ton, Daniel; Konow, Nicolai; Riskin, Daniel K; Breuer, Kenneth S; Swartz, Sharon M

    2014-01-01

    In bats, the wing membrane is anchored not only to the body and forelimb, but also to the hindlimb. This attachment configuration gives bats the potential to modulate wing shape by moving the hindlimb, such as by joint movement at the hip or knee. Such movements could modulate lift, drag, or the pitching moment. In this study we address: 1) how the ankle translates through space during the wingbeat cycle; 2) whether amplitude of ankle motion is dependent upon flight speed; 3) how tension in the wing membrane pulls the ankle; and 4) whether wing membrane tension is responsible for driving ankle motion. We flew five individuals of the lesser dog-faced fruit bat, Cynopterus brachyotis (Family: Pteropodidae), in a wind tunnel and documented kinematics of the forelimb, hip, ankle, and trailing edge of the wing membrane. Based on kinematic analysis of hindlimb and forelimb movements, we found that: 1) during downstroke, the ankle moved ventrally and during upstroke the ankle moved dorsally; 2) there was considerable variation in amplitude of ankle motion, but amplitude did not correlate significantly with flight speed; 3) during downstroke, tension generated by the wing membrane acted to pull the ankle dorsally, and during upstroke, the wing membrane pulled laterally when taut and dorsally when relatively slack; and 4) wing membrane tension generally opposed dorsoventral ankle motion. We conclude that during forward flight in C. brachyotis, wing membrane tension does not power hindlimb motion; instead, we propose that hindlimb movements arise from muscle activity and/or inertial effects.

  17. Misdirection of Regenerating Axons and Functional Recovery Following Sciatic Nerve Injury in Rats

    PubMed Central

    Hamilton, Shirley K.; Hinkle, Marcus L.; Nicolini, Jennifer; Rambo, Lindsay N.; Rexwinkle, April M.; Rose, Sam J.; Sabatier, Manning J.; Backus, Deborah; English, Arthur W.

    2013-01-01

    Poor functional recovery found after peripheral nerve injury has been attributed to the misdirection of regenerating axons to reinnervate functionally inappropriate muscles. We applied brief electrical stimulation (ES) to the common fibular (CF) but not the tibial (Tib) nerve just prior to transection and repair of the entire rat sciatic nerve, to attempt to influence the misdirection of its regenerating axons. The specificity with which regenerating axons reinnervated appropriate targets was evaluated physiologically using compound muscle action potentials (M responses) evoked from stimulation of the two nerve branches above the injury site. Functional recovery was assayed using the timing of electromyography (EMG) activity recorded from the tibialis anterior (TA) and soleus (Sol) muscles during treadmill locomotion and kinematic analysis of hindlimb locomotor movements. Selective ES of the CF nerve resulted in restored M-responses at earlier times than in unstimulated controls in both TA and Sol muscles. Stimulated CF axons reinnervated inappropriate targets to a greater extent than unstimulated Tib axons. During locomotion, functional antagonist muscles, TA and Sol, were coactivated both in stimulated rats and in unstimulated but injured rats. Hindlimb kinematics in stimulated rats were comparable to untreated rats, but significantly different from intact controls. Selective ES promotes enhanced axon regeneration but does so with decreased fidelity of muscle reinnervation. Functional recovery is neither improved nor degraded, suggesting that compensatory changes in the outputs of the spinal circuits driving locomotion may occur irrespective of the extent of misdirection of regenerating axons in the periphery. PMID:21120925

  18. Intralimb and Interlimb Cutaneous Reflexes during Locomotion in the Intact Cat.

    PubMed

    Hurteau, Marie-France; Thibaudier, Yann; Dambreville, Charline; Danner, Simon M; Rybak, Ilya A; Frigon, Alain

    2018-04-25

    When the foot contacts an obstacle during locomotion, cutaneous inputs activate spinal circuits to ensure dynamic balance and forward progression. In quadrupeds, this requires coordinated reflex responses between the four limbs. Here, we investigated the patterns and phasic modulation of cutaneous reflexes in forelimb and hindlimb muscles evoked by inputs from all four limbs. Five female cats were implanted to record muscle activity and to stimulate the superficial peroneal and superficial radial nerves during locomotion. Stimulating these nerves evoked short-, mid-, and longer-latency excitatory and/or inhibitory responses in all four limbs that were phase-dependent. The largest responses were generally observed during the peak activity of the muscle. Cutaneous reflexes during mid-swing were consistent with flexion of the homonymous limb and accompanied by modification of the stance phases of the other three limbs, by coactivating flexors and extensors and/or by delaying push-off. Cutaneous reflexes during mid-stance were consistent with stabilizing the homonymous limb by delaying and then facilitating its push-off and modifying the support phases of the homolateral and diagonal limbs, characterized by coactivating flexors and extensors, reinforcing extensor activity and/or delaying push-off. The shortest latencies of homolateral and diagonal responses were consistent with fast-conducting disynaptic or trisynaptic pathways. Descending homolateral and diagonal pathways from the forelimbs to the hindlimbs had a higher probability of eliciting responses compared with ascending pathways from the hindlimbs to the forelimbs. Thus, in quadrupeds, intralimb and interlimb reflexes activated by cutaneous inputs ensure dynamic coordination of the four limbs, producing a whole-body response. SIGNIFICANCE STATEMENT The skin contains receptors that, when activated, send inputs to spinal circuits, signaling a perturbation. Rapid responses, or reflexes, in muscles of the contacted limb and opposite homologous limb help maintain balance and forward progression. Here, we investigated reflexes during quadrupedal locomotion in the cat by electrically stimulating cutaneous nerves in each of the four limbs. Functionally, responses appear to modify the trajectory or stabilize the movement of the stimulated limb while modifying the support phase of the other limbs. Reflexes between limbs are mediated by fast-conducting pathways that involve excitatory and inhibitory circuits controlling each limb. The comparatively stronger descending pathways from cervical to lumbar circuits controlling the forelimbs and hindlimbs, respectively, could serve a protective function. Copyright © 2018 the authors 0270-6474/18/384104-19$15.00/0.

  19. Head and pelvic movement asymmetry during lungeing in horses with symmetrical movement on the straight.

    PubMed

    Rhodin, M; Roepstorff, L; French, A; Keegan, K G; Pfau, T; Egenvall, A

    2016-05-01

    Lungeing is commonly used as part of standard lameness examinations in horses. Knowledge of how lungeing influences motion symmetry in sound horses is needed. The aim of this study was to objectively evaluate the symmetry of vertical head and pelvic motion during lungeing in a large number of horses with symmetric motion during straight line evaluation. Cross-sectional prospective study. A pool of 201 riding horses, all functioning well and considered sound by their owners, were evaluated in trot on a straight line and during lungeing to the left and right. From this pool, horses with symmetric vertical head and pelvic movement during the straight line trot (n = 94) were retained for analysis. Vertical head and pelvic movements were measured with body mounted uniaxial accelerometers. Differences between vertical maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) heights between left and right forelimb and hindlimb stances were compared between straight line trot and lungeing in either direction. Vertical head and pelvic movements during lungeing were more asymmetric than during trot on a straight line. Common asymmetric patterns seen in the head were more upward movement during push-off of the outside forelimb and less downward movement during impact of the inside limb. Common asymmetric patterns seen in the pelvis were less upward movement during push-off of the outside hindlimb and less downward movement of the pelvis during impact of the inside hindlimb. Asymmetric patterns in one lunge direction were frequently not the same as in the opposite direction. Lungeing induces systematic asymmetries in vertical head and pelvic motion patterns in horses that may not be the same in both directions. These asymmetries may mask or mimic fore- or hindlimb lameness. © 2015 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.

  20. Dynamic weight bearing analysis is effective for evaluation of tendinopathy using a customized corridor with multi-directional force sensors in a rat model.

    PubMed

    Wu, Po-Ting; Hsu, Chieh-Hsiang; Su, Fong-Chin; Jou, I-Ming; Chen, Shih-Yao; Wu, Chao-Liang; Su, Wei-Ren; Kuo, Li-Chieh

    2017-08-18

    Few studies discuss kinetic changes in tendinopathy models. We propose a customized corridor to evaluate dynamic weight bearing (DWB) and shearing forces. Sixty rats were randomly given ultrasound-assisted collagenase injections (Collagenase rats) or needle punctures (Control rats) in their left Achilles tendons, and then evaluated 1, 4, and 8 weeks later. The Collagenase rats always had significantly (p < 0.001) higher histopathological and ultrasound feature scores than did the Controls, significantly lower DWB values in the injured than in the right hindlimbs, and compensatorily higher (p < 0.05) DWB values in the contralateral than in the left forelimbs. The injured hindlimbs had lower outward shearing force 1 and 4 weeks later, and higher (p < 0.05) push-off shearing force 8 weeks later, than did the contralateral hindlimbs. Injured Control rat hindlimbs had lower DWB values than did the contralateral only at week 1. The Collagenase rats had only lower static weight bearing ratios (SWBRs) values than did the Controls at week 1 (p < 0.05). Our customized corridor showed changes in DWB compatible with histopathological and ultrasound feature changes in the rat tendinopathy model. The hindlimb SWBRs did not correspond with any tendinopathic changes.

  1. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hindlimb ischemia mice

    NASA Astrophysics Data System (ADS)

    Park, In-Su; Ahn, Jin-Chul; Chung, Phil-Sang

    2014-02-01

    Adipose-derived stromal cells (ASCs) are attractive cell source for tissue engineering. However, one obstacle to this approach is that the transplanted ASC population can decline rapidly in the recipient tissue. The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on transplanted human ASCs (hASCs) spheroid in a hindlimb ischemia animal model. LLLT, hASCs spheroid and hASCs spheroid transplantation with LLLT (spheroid + LLLT) were applied to the ischemic hindlimbs in athymic mice. The survival, differentiation and secretion of vascular endothelial growth (VEGF) of spheroid ASCs were evaluated by immunohistochemistry. The spheroid + LLLT group enhanced the tissue regeneration, including angiogenesis, compared with other groups. The spheroid contributed tissue regeneration via differentiation and secretion of growth factors. In the spheroid + LLLT group, the survival of spheroid hASCs was increased by the decreased apoptosis of spheroid hASCs in the ischemic hindlimb. The secretion of growth factors was stimulated in the spheroid + LLLT group compared with the ASCs group and spheroid group. These data suggest that LLLT is an effective biostimulator of spheroid hASCs in tissue regeneration that enhances the survival of ASCs and stimulates the secretion of growth factors in the ischemic hindlimb.

  2. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  3. Epinephrine administered with lidocaine solution does not worsen intrathecal lidocaine neurotoxicity in rats.

    PubMed

    Komatsu, Toshiaki; Takenami, Tamie; Nara, Yoshihiro; Yagishita, Saburo; Kurashige, Chie; Okamoto, Hirotsugu; Yago, Kazuo

    2013-01-01

    Epinephrine can potentially worsen the neurotoxic effects of local anesthetics when used for spinal or epidural anesthesia. The vasoconstrictive property of epinephrine reduces dural blood flow, which in turn reduces the clearance of local anesthetics from the subarachnoid space. This study examined the histological and neurofunctional effects of intrathecally administered lidocaine combined with epinephrine in rats. Sixty-two rats were divided into 9 treatment groups: 5% or 7.5% lidocaine in 10% glucose solution with or without 0.1 or 0.5 mg/mL epinephrine, or epinephrine alone at 0.1 or 0.5 mg/mL in 10% glucose, or 10% glucose alone. Hind-limb motor function was evaluated immediately after drug injection by walking behavior. Sensory function was assessed by the response to radiant heat stimulation at just before and 1 week after the injection. Seven days after the injection, L3 spinal cord with anterior and posterior roots, the dorsal ganglion, and cauda equina were harvested and examined histologically. Histological lesions were limited to the posterior root just at entry into the spinal cord in rats injected with 7.5% lidocaine, with and without epinephrine. No histological abnormalities were noted in other areas or other groups. There was no significant change in sensory threshold in all groups. Significantly, prolongation of gait recovery time was noted in 5% and 7.5% lidocaine with epinephrine groups compared with 5% or 7.5% lidocaine alone. Intrathecal epinephrine prolonged the action of intrathecal lidocaine but did not worsen lidocaine-induced histological damage and functional impairment.

  4. Paired immunoglobulin-like receptor B knockout does not enhance axonal regeneration or locomotor recovery after spinal cord injury.

    PubMed

    Nakamura, Yuka; Fujita, Yuki; Ueno, Masaki; Takai, Toshiyuki; Yamashita, Toshihide

    2011-01-21

    Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PIR-B). As per previous reports, corticospinal tract (CST) regeneration is not enhanced in NgR-knock-out mice after spinal cord injury. Therefore, we assessed CST regeneration in PIR-B-knock-out mice. We found that hindlimb motor function, as assessed using the Basso mouse scale, footprint test, inclined plane test, and beam walking test, did not differ between the PIR-B-knock-out and wild-type mice after dorsal hemisection of the spinal cord. Further, tracing of the CST fibers after injury did not reveal enhanced axonal regeneration or sprouting in the CST of the PIR-B-knock-out mice. Systemic administration of NEP1-40, a NgR antagonist, to PIR-B knock-out mice did not enhance the regenerative response. These results indicate that PIR-B knock-out is not sufficient to induce extensive axonal regeneration after spinal cord injury.

  5. Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion

    NASA Astrophysics Data System (ADS)

    Jung, R.; Belanger, A.; Kanchiku, T.; Fairchild, M.; Abbas, J. J.

    2009-10-01

    The mechanisms underlying the effects of neuromuscular electrical stimulation (NMES) induced repetitive limb movement therapy after incomplete spinal cord injury (iSCI) are unknown. This study establishes the capability of using therapeutic NMES in rodents with iSCI and evaluates its ability to promote recovery of interlimb control during locomotion. Ten adult female Long Evans rats received thoracic spinal contusion injuries (T9; 156 ± 9.52 Kdyne). 7 days post-recovery, 6/10 animals received NMES therapy for 15 min/day for 5 days, via electrodes implanted bilaterally into hip flexors and extensors. Six intact animals served as controls. Motor function was evaluated using the BBB locomotor scale for the first 6 days and on 14th day post-injury. 3D kinematic analysis of treadmill walking was performed on day 14 post-injury. Rodents receiving NMES therapy exhibited improved interlimb coordination in control of the hip joint, which was the specific NMES target. Symmetry indices improved significantly in the therapy group. Additionally, injured rodents receiving therapy more consistently displayed a high percentage of 1:1 coordinated steps, and more consistently achieved proper hindlimb touchdown timing. These results suggest that NMES techniques could provide an effective therapeutic tool for neuromotor treatment following iSCI.

  6. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp.

    PubMed

    Ishizaka, Ryo; Hayashi, Yuki; Iohara, Koichiro; Sugiyama, Masahiko; Murakami, Masashi; Yamamoto, Tsubasa; Fukuta, Osamu; Nakashima, Misako

    2013-03-01

    Mesenchymal stem cells (MSCs) have been used for cell therapy in various experimental disease models. However, the regenerative potential of MSCs from different tissue sources and the influence of the tissue niche have not been investigated. In this study, we compared the regenerative potential of dental pulp, bone marrow and adipose tissue-derived CD31(-) side population (SP) cells isolated from an individual porcine source. Pulp CD31(-) SP cells expressed the highest levels of angiogenic/neurotrophic factors and had the highest migration activity. Conditioned medium from pulp CD31(-) SP cells produced potent anti-apoptotic activity and neurite outgrowth, compared to those from bone marrow and adipose CD31(-) SP cells. Transplantation of pulp CD31(-) SP cells in a mouse hindlimb ischemia model produced higher blood flow and capillary density than transplantation of bone marrow and adipose CD31(-) SP cells. Motor function recovery and infarct size reduction were greater with pulp CD31(-) SP cells. Pulp CD31(-) SP cells induced maximal angiogenesis, neurogenesis and pulp regeneration in ectopic transplantation models compared to other tissue sources. These results demonstrate that pulp stem cells have higher angiogenic, neurogenic and regenerative potential and may therefore be superior to bone marrow and adipose stem cells for cell therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Morphological integration of anatomical, developmental, and functional postcranial modules in the crab-eating macaque (Macaca fascicularis).

    PubMed

    Conaway, Mark A; Schroeder, Lauren; von Cramon-Taubadel, Noreen

    2018-03-22

    Integration and modularity reflect the coordinated action of past evolutionary processes and, in turn, constrain or facilitate phenotypic evolvability. Here, we analyze magnitudes of integration in the macaque postcranium to test whether 20 a priori defined modules are (1) more tightly integrated than random sets of postcranial traits, and (2) are differentiated based on mode of definition, with developmental modules expected to be more integrated than functional or anatomical modules. The 3D morphometric data collected for eight limb and girdle bones for 60 macaques were collated into anatomical, developmental, and functional modules. A resampling technique was used to create random samples of integration values for each module for statistical comparison. Our results found that not all a priori defined modules were more strongly integrated than random samples of postcranial traits and that specific types of modules did not present consistent patterns of integration. Rather, girdle and joint modules were consistently less integrated than limb modules, and forelimb elements were less integrated than hindlimbs. The results suggest that morphometrically complex modules tend to be less integrated than simple limb bones, irrespective of the number of available traits. However, differences in integration of the fore- and hindlimb more likely reflects the multitude of locomotory, feeding, and social functions involved. It remains to be tested whether patterns of integration identified here are primate universals, and to what extent they vary depending on phylogenetic or functional factors. © 2018 Wiley Periodicals, Inc.

  8. Pheromones enhance somatosensory processing in newt brains through a vasotocin-dependent mechanism.

    PubMed

    Thompson, R R; Dickinson, P S; Rose, J D; Dakin, K A; Civiello, G M; Segerdahl, A; Bartlett, R

    2008-07-22

    We tested whether the sex pheromones that stimulate courtship clasping in male roughskin newts do so, at least in part, by amplifying the somatosensory signals that directly trigger the motor pattern associated with clasping and, if so, whether that amplification is dependent on endogenous vasotocin (VT). Female olfactory stimuli increased the number of action potentials recorded in the medulla of males in response to tactile stimulation of the cloaca, which triggers the clasp motor reflex, as well as to tactile stimulation of the snout and hindlimb. That enhancement was blocked by exposing the medulla to a V1a receptor antagonist before pheromone exposure. However, the antagonist did not affect medullary responses to tactile stimuli in the absence of pheromone exposure, suggesting that pheromones amplify somatosensory signals by inducing endogenous VT release. The ability of VT to couple sensory systems together in response to social stimulation could allow this peptide to induce variable behavioural outcomes, depending on the immediate context of the social interaction and thus on the nature of the associated stimuli that are amplified. If widespread in vertebrates, this mechanism could account for some of the behavioural variability associated with this and related peptides both within and across species.

  9. Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda).

    PubMed

    Carrano, Matthew T; Hutchinson, John R

    2002-09-01

    In this article, we develop a new reconstruction of the pelvic and hindlimb muscles of the large theropod dinosaur Tyrannosaurus rex. Our new reconstruction relies primarily on direct examination of both extant and fossil turtles, lepidosaurs, and archosaurs. These observations are placed into a phylogenetic context and data from extant taxa are used to constrain inferences concerning the soft-tissue structures in T. rex. Using this extant phylogenetic bracket, we are able to offer well-supported inferences concerning most of the hindlimb musculature in this taxon. We also refrain from making any inferences for certain muscles where the resulting optimizations are ambiguous. This reconstruction differs from several previous attempts and we evaluate these discrepancies. In addition to providing a new and more detailed understanding of the hindlimb morphology of T. rex--the largest known terrestrial biped--this reconstruction also helps to clarify the sequence of character-state change along the line to extant birds. Copyright 2002 Wiley-Liss, Inc.

  10. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that programed administration of PTH is effective in increasing osteoblast number and bone formation and has beneficial effects on bone volume in the absence of weight-bearing and gonadal hormones. We conclude that the actions of PTH on cancellous bone are independent of the level of mechanical usage.

  11. Altered central nervous system processing of baroreceptor input following hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, J. A.; Schadt, J. C.; Hasser, E. M.

    1999-01-01

    The effect of cardiovascular deconditioning on central nervous system processing of baroreceptor afferent activity was evaluated following 14 days of hindlimb unloading (HU). Inactin-anesthetized rats were instrumented with catheters, renal sympathetic nerve electrodes, and aortic depressor nerve electrodes for measurement of mean arterial pressure, heart rate, renal sympathetic nerve activity (RSNA), and aortic depressor nerve activity (ADNA). Baroreceptor and baroreflex functions were assessed during infusion of phenylephrine and sodium nitroprusside. Central processing of baroreceptor afferent input was evaluated by linear regression relating RSNA to ADNA. The maximum baroreflex-elicited increase in RSNA was significantly reduced in HU rats (122 +/- 3.8 vs. 144 +/- 4.9% of baseline RSNA), whereas ADNA was not altered. The slope (-0.18 +/- 0.04 vs. -0.40 +/- 0.04) and y-intercept (121 +/- 3.2 vs. 146 +/- 4.3) of the linear regression relating increases in efferent RSNA to decreases in afferent ADNA during hypotension were significantly reduced in HU rats. There were no differences during increases in arterial pressure. Results demonstrate that the attenuation in baroreflex-mediated increases in RSNA following HU is due to changes in central processing of baroreceptor afferent information rather than aortic baroreceptor function.

  12. Functional decline at the aging neuromuscular junction is associated with altered laminin-α4 expression.

    PubMed

    Lee, Kah Meng; Chand, Kirat K; Hammond, Luke A; Lavidis, Nickolas A; Noakes, Peter G

    2017-03-14

    Laminin-α4 is involved in the alignment of active zones to postjunctional folds at the neuromuscular junction (NMJ). Prior study has implicated laminin-α4 in NMJ maintenance, with altered NMJ morphology observed in adult laminin-α4 deficient mice ( lama 4 -/- ). The present study further investigated the role of laminin-α4 in NMJ maintenance by functional characterization of transmission properties, morphological investigation of synaptic proteins including synaptic laminin-α4, and neuromotor behavioral testing. Results showed maintained perturbed transmission properties at lama 4 -/- NMJs from adult (3 months) through to aged (18-22 months). Hind-limb grip force demonstrated similar trends as transmission properties, with maintained weaker grip force across age groups in lama 4 -/- . Interestingly, both transmission properties and hind-limb grip force in aged wild-types resembled those observed in adult lama 4 -/- . Most significantly, altered expression of laminin-α4 was noted at the wild-type NMJs prior to the observed decline in transmission properties, suggesting that altered laminin-α4 expression precedes the decline of neurotransmission in aging wild-types. These findings significantly support the role of laminin-α4 in maintenance of the NMJ during aging.

  13. Effects of insulin and exercise on rat hindlimb muscles after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Stump, Craig S.; Balon, Thomas W.; Tipton, Charles M.

    1992-01-01

    The effect of simulated microgravity on the insulin- and exercise-stimulated glucose uptake and metabolism in the hindlimb muscles of rats was investigated using three groups of rats suspended at 45 head-down tilt (SUS) for 14 days: (1) cage control, (2) exercising (treadmill running) control, and (3) rats subjected to suspension followed by exercise (SUS-E). It was found that the suspension of rats with hindlimbs non-weight bearing led to enhanced muscle responses to insulin and exercise, when these stimuli were applied separately. However, the insulin affect appeared to be impaired after exercise for the SUS-E rats, especially for the soleus muscle.

  14. Treatment of Radix Dipsaci extract prevents long bone loss induced by modeled microgravity in hindlimb unloading rats.

    PubMed

    Niu, Yinbo; Li, Chenrui; Pan, Yalei; Li, Yuhua; Kong, Xianghe; Wang, Shuo; Zhai, YuanKun; Wu, Xianglong; Fan, Wutu; Mei, Qibing

    2015-01-01

    Radix Dipsaci is a kidney tonifying herbal medicine with a long history of safe use for treatment of bone fractures and joint diseases in China. Previous studies have shown that Radix Dipsaci extract (RDE) could prevent bone loss in ovariectomized rats. This study investigates the effect of RDE against bone loss induced by simulated microgravity. A hindlimb unloading rat model was established to determine the effect of RDE on bone mineral density and bone microarchitecture. Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6 per group): control (CON), hindlimb unloading with vehicle (HLU), hindlimb unloading treated with alendronate (HLU-ALN, 2.0 mg/kg/d), and hindlimb unloading treated with RDE (HLU-RDE, 500 mg/kg/d). RDE or ALN was administrated orally for 4 weeks. Treatment with RDE had a positive effect on mechanical strength, BMD, BMC, bone turnover markers, and the changes in urinary calcium and phosphorus excretion. MicroCT analysis showed that RDE significantly prevented the reduction of the bone volume fraction, connectivity density, trabecular number, thickness, tissue mineral density, and tissue mineral content as well as improved the trabecular separation and structure model index. RDE was demonstrated to prevent the loss of bone mass induced by HLU treatment, which suggests the potential application of RDE in the treatment of microgravity-induced bone loss.

  15. Near-Infrared II Fluorescence for Imaging Hindlimb Vessel Regeneration with Dynamic Tissue Perfusion Measurement

    PubMed Central

    Hong, Guosong; Lee, Jerry C.; Jha, Arshi; Diao, Shuo; Nakayama, Karina H.; Hou, Luqia; Doyle, Timothy C.; Robinson, Joshua T.; Antaris, Alexander L.; Dai, Hongjie; Cooke, John P.; Huang, Ngan F.

    2014-01-01

    Background Real-time vascular imaging that provides both anatomic and hemodynamic information could greatly facilitate the diagnosis of vascular diseases and provide accurate assessment of therapeutic effects. Here we have developed a novel fluorescence-based all-optical method, named near-infrared II (NIR-II) fluorescence imaging, to image murine hindlimb vasculature and blood flow in an experimental model of peripheral arterial disease, by exploiting fluorescence in the NIR-II region (1000–1400 nm) of photon wavelengths. Methods and Results Owing to the reduced photon scattering of NIR-II fluorescence compared to traditional NIR fluorescence imaging and thus much deeper penetration depth into the body, we demonstrated that the mouse hindlimb vasculature could be imaged with higher spatial resolution than in vivo microCT. Furthermore, imaging over 26 days revealed a significant increase in hindlimb microvascular density in response to experimentally induced ischemia within the first 8 days of the surgery (P < 0.005), which was confirmed by histological analysis of microvascular density. Moreover, the tissue perfusion in the ischemic hindlimb could be quantitatively measured by the dynamic NIR-II method, revealing the temporal kinetics of blood flow recovery that resembled microbead-based blood flowmetry and laser Doppler blood spectroscopy. Conclusions The penetration depth of millimeters, high spatial resolution and fast acquisition rate of NIR-II imaging makes it a useful imaging tool for murine models of vascular disease. PMID:24657826

  16. Near-infrared II fluorescence for imaging hindlimb vessel regeneration with dynamic tissue perfusion measurement.

    PubMed

    Hong, Guosong; Lee, Jerry C; Jha, Arshi; Diao, Shuo; Nakayama, Karina H; Hou, Luqia; Doyle, Timothy C; Robinson, Joshua T; Antaris, Alexander L; Dai, Hongjie; Cooke, John P; Huang, Ngan F

    2014-05-01

    Real-time vascular imaging that provides both anatomic and hemodynamic information could greatly facilitate the diagnosis of vascular diseases and provide accurate assessment of therapeutic effects. Here, we have developed a novel fluorescence-based all-optical method, named near-infrared II (NIR-II) fluorescence imaging, to image murine hindlimb vasculature and blood flow in an experimental model of peripheral arterial disease, by exploiting fluorescence in the NIR-II region (1000-1400 nm) of photon wavelengths. Because of the reduced photon scattering of NIR-II fluorescence compared with traditional NIR fluorescence imaging and thus much deeper penetration depth into the body, we demonstrated that the mouse hindlimb vasculature could be imaged with higher spatial resolution than in vivo microscopic computed tomography. Furthermore, imaging during 26 days revealed a significant increase in hindlimb microvascular density in response to experimentally induced ischemia within the first 8 days of the surgery (P<0.005), which was confirmed by histological analysis of microvascular density. Moreover, the tissue perfusion in the ischemic hindlimb could be quantitatively measured by the dynamic NIR-II method, revealing the temporal kinetics of blood flow recovery that resembled microbead-based blood flowmetry and laser Doppler blood spectroscopy. The penetration depth of millimeters, high spatial resolution, and fast acquisition rate of NIR-II imaging make it a useful imaging tool for murine models of vascular disease. © 2014 American Heart Association, Inc.

  17. Walking like dinosaurs: chickens with artificial tails provide clues about non-avian theropod locomotion.

    PubMed

    Grossi, Bruno; Iriarte-Díaz, José; Larach, Omar; Canals, Mauricio; Vásquez, Rodrigo A

    2014-01-01

    Birds still share many traits with their dinosaur ancestors, making them the best living group to reconstruct certain aspects of non-avian theropod biology. Bipedal, digitigrade locomotion and parasagittal hindlimb movement are some of those inherited traits. Living birds, however, maintain an unusually crouched hindlimb posture and locomotion powered by knee flexion, in contrast to the inferred primitive condition of non-avian theropods: more upright posture and limb movement powered by femur retraction. Such functional differences, which are associated with a gradual, anterior shift of the centre of mass in theropods along the bird line, make the use of extant birds to study non-avian theropod locomotion problematic. Here we show that, by experimentally manipulating the location of the centre of mass in living birds, it is possible to recreate limb posture and kinematics inferred for extinct bipedal dinosaurs. Chickens raised wearing artificial tails, and consequently with more posteriorly located centre of mass, showed a more vertical orientation of the femur during standing and increased femoral displacement during locomotion. Our results support the hypothesis that gradual changes in the location of the centre of mass resulted in more crouched hindlimb postures and a shift from hip-driven to knee-driven limb movements through theropod evolution. This study suggests that, through careful experimental manipulations during the growth phase of ontogeny, extant birds can potentially be used to gain important insights into previously unexplored aspects of bipedal non-avian theropod locomotion.

  18. Walking Like Dinosaurs: Chickens with Artificial Tails Provide Clues about Non-Avian Theropod Locomotion

    PubMed Central

    Grossi, Bruno; Iriarte-Díaz, José; Larach, Omar; Canals, Mauricio; Vásquez, Rodrigo A.

    2014-01-01

    Birds still share many traits with their dinosaur ancestors, making them the best living group to reconstruct certain aspects of non-avian theropod biology. Bipedal, digitigrade locomotion and parasagittal hindlimb movement are some of those inherited traits. Living birds, however, maintain an unusually crouched hindlimb posture and locomotion powered by knee flexion, in contrast to the inferred primitive condition of non-avian theropods: more upright posture and limb movement powered by femur retraction. Such functional differences, which are associated with a gradual, anterior shift of the centre of mass in theropods along the bird line, make the use of extant birds to study non-avian theropod locomotion problematic. Here we show that, by experimentally manipulating the location of the centre of mass in living birds, it is possible to recreate limb posture and kinematics inferred for extinct bipedal dinosaurs. Chickens raised wearing artificial tails, and consequently with more posteriorly located centre of mass, showed a more vertical orientation of the femur during standing and increased femoral displacement during locomotion. Our results support the hypothesis that gradual changes in the location of the centre of mass resulted in more crouched hindlimb postures and a shift from hip-driven to knee-driven limb movements through theropod evolution. This study suggests that, through careful experimental manipulations during the growth phase of ontogeny, extant birds can potentially be used to gain important insights into previously unexplored aspects of bipedal non-avian theropod locomotion. PMID:24505491

  19. Movement asymmetry in working polo horses.

    PubMed

    Pfau, T; Parkes, R S; Burden, E R; Bell, N; Fairhurst, H; Witte, T H

    2016-07-01

    The high, repetitive demands imposed on polo horses in training and competition may predispose them to musculoskeletal injuries and lameness. To quantify movement symmetry and lameness in a population of polo horses, and to investigate the existence of a relationship with age. Convenience sampled cross-sectional study. Sixty polo horses were equipped with inertial measurement units (IMUs) attached to the poll, and between the tubera sacrale. Six movement symmetry measures were calculated for vertical head and pelvic displacement during in-hand trot and compared with values for perfect symmetry, compared between left and right limb lame horses, and compared with published thresholds for lameness. Regression lines were calculated as a function of age of horse. Based on 2 different sets of published asymmetry thresholds 52-53% of the horses were quantified with head movement asymmetry and 27-50% with pelvic movement asymmetry resulting in 60-67% of horses being classified with movement asymmetry outside published guideline values for either the forelimbs, hindlimbs or both. Neither forelimb nor hindlimb asymmetries were preferentially left or right sided, with directional asymmetry values across all horses not different from perfect symmetry and absolute values not different between left and right lame horses (P values >0.6 for all forelimb symmetry measures and >0.2 for all hindlimb symmetry measures). None of the symmetry parameters increased or decreased significantly with age. A large proportion of polo horses show gait asymmetries consistent with previously defined thresholds for lameness. These do not appear to be lateralised or associated with age. © 2015 EVJ Ltd.

  20. Neuronal Basis of Crossed Actions from the Reticular Formation on Feline Hindlimb Motoneurons

    PubMed Central

    Jankowska, Elzbieta; Hammar, Ingela; Slawinska, Urszula; Maleszak, Katarzyna; Edgley, Stephen A.

    2007-01-01

    Pathways through which reticulospinal neurons can influence contralateral limb movements were investigated by recording from mo-toneurons innervating hindlimb muscles. Reticulospinal tract fibers were stimulated within the brainstem or in the lateral funiculus of the thoracic spinal cord contralateral to the motoneurons. Effects evoked by ipsilaterally descending reticulospinal tract fibers were eliminated by a spinal hemisection at an upper lumbar level. Stimuli applied in the brainstem evoked EPSPs, IPSPs, or both at latencies of 1.42 ± 0.03 and 1.53 ± 0.04 msec, respectively, from the first components of the descending volleys and with properties indicating a disynaptic linkage, in most contralateral motoneurons: EPSPs in 76% and IPSPs in 26%. EPSPs with characteristics of monosynaptically evoked responses, attributable to direct actions of crossed axon collaterals of reticulospinal fibers, were found in a small proportion of the motoneurons, whether evoked from the brainstem (9%) or from the thoracic cord (12.5%). Commissural neurons, which might mediate the crossed disynaptic actions (i.e., were antidromically activated from contralateral motor nuclei and monosynaptically excited from the ipsilateral reticular formation), were found in Rexed’s lamina VIII in the midlumbar segments (L3–L5). The results reveal that although direct actions of reticulospinal fibers are much more potent on ipsilateral motoneurons, interneuronally mediated actions are as potent contralaterally as ipsilaterally, and midlumbar commissural neurons are likely to contribute to them. They indicate a close coupling between the spinal interneuronal systems used by the reticulospinal neurons to coordinate muscle contractions ipsilaterally and contralaterally. PMID:12629191

  1. [Parameters of fibers cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading].

    PubMed

    Mirzoev, T M; Biriukov, N S; Veselova, O M; Larina, I M; Shenkman, B S; Ogneva, I V

    2012-01-01

    The aim of the work was to study the parameters of fibers cell respiration and desmin content in Wistar rat soleus muscle after 1, 3, 7 and 14 days of gravitational unloading. Gravitational unloading was simulated by antiorthostatic hindlimb suspension. The parameters of cell respiration were determined using the polarography, and desmin content was assessed by means of Western blotting. The results showed that the intensity of cell respiration is reduced after three days of gravitational unloading, reaches a minimum level after seven days and slightly increases by the fourteenth day of hindlimb unloading, as well as the content of desmin, which, however, to the fourteenth day returns to the control level. Taking into account that mitochondrial function depends on the state of cytoskeleton the data allow us to assume that early reduction of the intensity of cell respiration under unloading could be caused by degradation of the protein desmin that determines intracellular localization of mitochondria.

  2. Influence of 7 days of hindlimb suspension and intermittent weight support on rat muscle mechanical properties

    NASA Technical Reports Server (NTRS)

    Pierotti, David J.; Roy, Roland R.; Flores, Vinicio; Edgerton, Reggie

    1990-01-01

    The effect of intermittent periods of weight support on a decrease in mass of the soleus (Sol) and medial gastrocnemius (MG) muscles atrophied by hindlimb suspension (HS) was investigated in rats subjected to continuous HS for seven days or an HS plus intermittent (10 min every 6 hrs of slow walking on a treadmill) weight support (HS-WS). After 7 d HS, the Sol weight relative to body weight was 21 and 9 percent lower in Hs and HS-WS, respectively, than in control rats. Maximum tetanic tension/muscle mass ratio was significantly lower in HS than in controls; the HS-WS rats had values similar to controls, whereas the maximum tetanic tension/muscle weight was significantly elevated in HS-WS compared to controls. Contraction times were 25 percent faster in the Sol and unchanged in the MG of HS rats, indicating that a low-force short-duration exercise regime results in a significant functional recovery in the 'slow' Sol, whereas the 'fast' MG is less affected.

  3. Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth

    PubMed Central

    Roselló-Díez, Alberto; Stephen, Daniel; Joyner, Alexandra L

    2017-01-01

    Regulation of organ growth is a poorly understood process. In the long bones, the growth plates (GPs) drive elongation by generating a scaffold progressively replaced by bone. Although studies have focused on intrinsic GP regulation, classic and recent experiments suggest that local signals also modulate GP function. We devised a genetic mouse model to study extrinsic long bone growth modulation, in which injury is specifically induced in the left hindlimb, such that the right hindlimb serves as an internal control. Remarkably, when only mesenchyme cells surrounding postnatal GPs were killed, left bone growth was nevertheless reduced. GP signaling was impaired by altered paracrine signals from the knee joint, including activation of the injury response and, in neonates, dampened IGF1 production. Importantly, only the combined prevention of both responses rescued neonatal growth. Thus, we identified signals from the knee joint that modulate bone growth and could underlie establishment of body proportions. DOI: http://dx.doi.org/10.7554/eLife.27210.001 PMID:28741471

  4. Effects of perinatal asphyxia on the neurobehavioral and retinal development of newborn rats.

    PubMed

    Kiss, Peter; Szogyi, Donat; Reglodi, Dora; Horvath, Gabor; Farkas, Jozsef; Lubics, Andrea; Tamas, Andrea; Atlasz, Tamas; Szabadfi, Krisztina; Babai, Norbert; Gabriel, Robert; Koppan, Miklos

    2009-02-19

    Perinatal asphyxia during delivery produces long-term deficits and represents a major problem in both neonatal and pediatric care. Several morphological, biochemical and behavioral changes have been described in rats exposed to perinatal asphyxia. The aim of the present study was to evaluate how perinatal asphyxia affects the complex early neurobehavioral development and retinal structure of newborn rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by cesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily during the first 3 weeks, and motor coordination tests were performed on postnatal weeks 3-5. After completion of the testing procedure, retinas were removed for histological analysis. We found that in spite of the fast catch-up-growth of asphyctic pups, nearly all examined reflexes were delayed by 1-4 days: negative geotaxis, sensory reflexes, righting reflexes, development of fore- and hindlimb grasp and placing, gait and auditory startle reflexes. Time to perform negative geotaxis, surface righting and gait reflexes was significantly longer during the first few weeks in asphyctic pups. Among the motor coordination tests, a markedly weaker performance was observed in the grid walking and footfault test and in the walk initiation test. Retinal structure showed severe degeneration in the layer of the photoreceptor and bipolar cell bodies. In summary, our present study provided a detailed description of reflex and motor development following perinatal asphyxia, showing that asphyxia led to a marked delay in neurobehavioral development and a severe retinal degeneration.

  5. Clinical, radiographic, and magnetic resonance imaging findings of gastrocnemius musculotendinopathy in various dog breeds.

    PubMed

    Kaiser, Susanne M; Harms, Oliver; Konar, Martin; Staudacher, Anne; Langer, Anna; Thiel, Cetina; Kramer, Martin; Schaub, Sebastian; von Pückler, Kerstin H

    2016-11-23

    To describe clinical, radiographic, and magnetic resonance imaging (MRI) findings in 16 dogs diagnosed with gastrocnemius musculotendinopathy. Retrospective evaluation of medical records, radiographs, and MRI results, as well as follow-up completed by telephone questionnaire. Most dogs had chronic hindlimb lameness with no history of trauma or athletic activities. Clinical examination revealed signs of pain on palpation without stifle joint instability. Seven dogs had radiographic signs of osteophyte formation on the lateral fabella. Magnetic resonance imaging revealed T2 hyperintensity and uptake of contrast agent in the region of the origin of the gastrocnemius muscle. Changes were found in the lateral and medial heads of the gastrocnemius. Conservative treatment resulted in return to full function in 11 dogs. Two dogs showed partial restoration of normal function, one dog showed no improvement. Two dogs were lost to follow-up. Gastrocnemius musculotendinopathy is a potential cause of chronic hindlimb lameness in medium to large breed dogs. A history of athletic activity must not necessarily be present. Magnetic resonance imaging shows signal changes and uptake of contrast agent in the region of the origin of the gastrocnemius muscle. A combination of T1 pre- and post-contrast administration and T2 weighted sequences completed by a fat-suppressed sequence in the sagittal plane are well-suited for diagnosis. Conservative treatment generally results in return to normal function.

  6. Quantitative analysis of poliomyelitis-like paralysis in mice induced by a poliovirus replicon.

    PubMed

    Arita, Minetaro; Nagata, Noriyo; Sata, Tetsutaro; Miyamura, Tatsuo; Shimizu, Hiroyuki

    2006-11-01

    Poliovirus (PV) infection causes severe paralysis, typically of the legs, by destruction of the motor neurons in the spinal cord. In this study, the relationship between PV replication in the spinal cord, damage in the motor neurons and poliomyelitis-like paralysis was analysed in transgenic mice expressing the human PV receptor (TgPVR21). First, a PV replicon encoding firefly luciferase in place of the capsid genes (PV-Fluc mc) was trans-encapsidated in 293T cells and the trans-encapsidated PV-Fluc mc (TE-PV-Fluc mc) was then inoculated into the spinal cords of TgPVR21 mice. TE-PV-Fluc mc was recovered with a titre of 6.3 x 10(7) infectious units ml(-1), which was comparable to those of PV1 strains. TgPVR21 mice inoculated with TE-PV-Fluc mc showed non-lethal paralysis of the hindlimbs, with severity ranging from a decline in grip strength to complete flaccid paralysis. The replication of TE-PV-Fluc mc in the spinal cord reached peak levels at 10 h post-inoculation (p.i.), followed by the appearance of paralysis at as early as 12 h p.i., reaching a plateau at 16 h p.i. Histological analysis showed a correlation between the lesion and the severity of the clinical symptoms in most mice. However, severe paralysis could also be observed with an apparently low lesion score, where as few as 5.3 x 10(2) motor neurons (1.4 % of the susceptible cells in the lumbar cord) were infected by TE-PV-Fluc mc. These results indicate that PV replication in a small population of the motor neurons was critical for severe residual poliomyelitis-like paralysis in TgPVR21 mice.

  7. [Readjustment of the efferent activity of the scratching generator in response to stimulation of muscle afferents of the hindlimb of the decerebrate immobilized cat].

    PubMed

    Shimanskiĭ, Iu P; Baev, K V

    1987-01-01

    Rebuildings of the scratching generator activity caused by phasic electrical stimulation of ipsilateral hindlimb muscle nerves during different hindlimb positions were studied in decerebrated immobilized cats. Strong dependence of these rebuildings on the stimulation phase was observed. The character of the "scratch" cycle duration rebuilding was formed by the scratching generator tendency to bring efferent activity into such correlation with the stimulus that the stimulation moment coincided with the moment of efferent activity phase triggering. Phasic altering of the efferent activity intensity rebuilding was observed against a background of "aiming" and "scratching" activity correlation shift in the direction of strengthening activation of muscles innervated by the stimulated nerve. This rebuilding was intensified when the hindlimb deflects from the aimed position in the direction of corresponding muscles stretching. Physiological sense of "rebuilding absence phases" is discussed. It is postulated that absence of the duration and intensity changes can be achieved simultaneously only with definite correlation between phase and intensity of the afferent impulsation burst.

  8. The Hindlimb Arterial Vessels in Lowland paca (Cuniculus paca, Linnaeus 1766).

    PubMed

    Leal, L M; de Freitas, H M G; Sasahara, T H C; Machado, M R F

    2016-04-01

    This study aims to describe the origin and distribution of the hindlimb arterial vessels. Five adult lowland pacas (Cuniculus paca) were used. Stained and diluted latex was injected, caudally to the aorta. After fixation in 10% paraformaldehyde for 72 h, we dissected to visualize and identify the vessels. It was found out that the vascularization of the hindlimb in lowland paca derives from the terminal branch of the abdominal aorta. The common iliac artery divides into external iliac and internal iliac. The external iliac artery emits the deep iliac circumflex artery, the pudendal epigastric trunk, the deep femoral artery; the femoral artery originates the saphenous artery, it bifurcates into cranial and caudal saphenous arteries. Immediately after the knee joint, the femoral artery is called popliteal artery, which divides into tibial cranial and tibial caudal arteries at the level of the crural inter-osseous space. The origin and distribution of arteries in the hindlimb of lowland paca resembles that in other wild rodents, as well as in the domestic mammals. © 2014 Blackwell Verlag GmbH.

  9. Evolution of the patellar sesamoid bone in mammals

    PubMed Central

    Samuels, Mark E.; Regnault, Sophie

    2017-01-01

    The patella is a sesamoid bone located in the major extensor tendon of the knee joint, in the hindlimb of many tetrapods. Although numerous aspects of knee morphology are ancient and conserved among most tetrapods, the evolutionary occurrence of an ossified patella is highly variable. Among extant (crown clade) groups it is found in most birds, most lizards, the monotreme mammals and almost all placental mammals, but it is absent in most marsupial mammals as well as many reptiles. Here, we integrate data from the literature and first-hand studies of fossil and recent skeletal remains to reconstruct the evolution of the mammalian patella. We infer that bony patellae most likely evolved between four and six times in crown group Mammalia: in monotremes, in the extinct multituberculates, in one or more stem-mammal genera outside of therian or eutherian mammals and up to three times in therian mammals. Furthermore, an ossified patella was lost several times in mammals, not including those with absent hindlimbs: once or more in marsupials (with some re-acquisition) and at least once in bats. Our inferences about patellar evolution in mammals are reciprocally informed by the existence of several human genetic conditions in which the patella is either absent or severely reduced. Clearly, development of the patella is under close genomic control, although its responsiveness to its mechanical environment is also important (and perhaps variable among taxa). Where a bony patella is present it plays an important role in hindlimb function, especially in resisting gravity by providing an enhanced lever system for the knee joint. Yet the evolutionary origins, persistence and modifications of a patella in diverse groups with widely varying habits and habitats—from digging to running to aquatic, small or large body sizes, bipeds or quadrupeds—remain complex and perplexing, impeding a conclusive synthesis of form, function, development and genetics across mammalian evolution. This meta-analysis takes an initial step toward such a synthesis by collating available data and elucidating areas of promising future inquiry. PMID:28344905

  10. Pravastatin reverses obesity-induced dysfunction of induced pluripotent stem cell-derived endothelial cells via a nitric oxide-dependent mechanism

    PubMed Central

    Gu, Mingxia; Mordwinkin, Nicholas M.; Kooreman, Nigel G.; Lee, Jaecheol; Wu, Haodi; Hu, Shijun; Churko, Jared M.; Diecke, Sebastian; Burridge, Paul W.; He, Chunjiang; Barron, Frances E.; Ong, Sang-Ging; Gold, Joseph D.; Wu, Joseph C.

    2015-01-01

    Aims High-fat diet-induced obesity (DIO) is a major contributor to type II diabetes and micro- and macro-vascular complications leading to peripheral vascular disease (PVD). Metabolic abnormalities of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from obese individuals could potentially limit their therapeutic efficacy for PVD. The aim of this study was to compare the function of iPSC-ECs from normal and DIO mice using comprehensive in vitro and in vivo assays. Methods and results Six-week-old C57Bl/6 mice were fed with a normal or high-fat diet. At 24 weeks, iPSCs were generated from tail tip fibroblasts and differentiated into iPSC-ECs using a directed monolayer approach. In vitro functional analysis revealed that iPSC-ECs from DIO mice had significantly decreased capacity to form capillary-like networks, diminished migration, and lower proliferation. Microarray and ELISA confirmed elevated apoptotic, inflammatory, and oxidative stress pathways in DIO iPSC-ECs. Following hindlimb ischaemia, mice receiving intramuscular injections of DIO iPSC-ECs had significantly decreased reperfusion compared with mice injected with control healthy iPSC-ECs. Hindlimb sections revealed increased muscle atrophy and presence of inflammatory cells in mice receiving DIO iPSC-ECs. When pravastatin was co-administered to mice receiving DIO iPSC-ECs, a significant increase in reperfusion was observed; however, this beneficial effect was blunted by co-administration of the nitric oxide synthase inhibitor, Nω-nitro-l-arginine methyl ester. Conclusion This is the first study to provide evidence that iPSC-ECs from DIO mice exhibit signs of endothelial dysfunction and have suboptimal efficacy following transplantation in a hindlimb ischaemia model. These findings may have important implications for future treatment of PVD using iPSC-ECs in the obese population. PMID:25368203

  11. Effects of hindlimb unweighting on the mechanical and structure properties of the rat abdominal aorta

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Anthony; Delp, Michael D.

    2003-01-01

    Previous studies have shown that hindlimb unweighting of rats, a model of microgravity, reduces evoked contractile tension of peripheral conduit arteries. It has been hypothesized that this diminished contractile tension is the result of alterations in the mechanical properties of these arteries (e.g., active and passive mechanics). Therefore, the purpose of this study was to determine whether the reduced contractile force of the abdominal aorta from 2-wk hindlimb-unweighted (HU) rats results from a mechanical function deficit resulting from structural vascular alterations or material property changes. Aortas were isolated from control (C) and HU rats, and vasoconstrictor responses to norepinephrine (10(-9)-10(-4) M) and AVP (10(-9)-10(-5) M) were tested in vitro. In a second series of tests, the active and passive Cauchy stress-stretch relations were determined by incrementally increasing the uniaxial displacement of the aortic rings. Maximal Cauchy stress in response to norepinephrine and AVP were less in aortic rings from HU rats. The active Cauchy stress-stretch response indicated that, although maximum stress was lower in aortas from HU rats (C, 8.1 +/- 0.2 kPa; HU, 7.0 +/- 0.4 kPa), it was achieved at a similar hoop stretch. There were also no differences in the passive Cauchy stress-stretch response or the gross vascular morphology (e.g., medial cross-sectional area: C, 0.30 +/- 0.02 mm(2); HU, 0.32 +/- 0.01 mm(2)) between groups and no differences in resting or basal vascular tone at the displacement that elicits peak developed tension between groups (resting tension: C, 1.71 +/- 0.06 g; HU, 1.78 +/- 0.14 g). These results indicate that HU does not alter the functional mechanical properties of conduit arteries. However, the significantly lower active Cauchy stress of aortas from HU rats demonstrates a true contractile deficit in these arteries.

  12. Vasoresponsiveness of collateral vessels in the rat hindlimb: influence of training.

    PubMed

    Colleran, Patrick N; Li, Zeyi; Yang, Hsiao T; Laughlin, M Harold; Terjung, Ronald L

    2010-04-15

    Exercise training is known to be an effective means of improving functional capacity and quality of life in patients with peripheral arterial insufficiency (PAI). However, the specific training-induced physiological adaptations occurring within collateral vessels remain to be clearly defined. The purpose of this study was to determine the effect of exercise training on vasomotor properties of isolated peripheral collateral arteries. We hypothesized that daily treadmill exercise would improve the poor vasodilatory capacity of collateral arteries isolated from rats exposed to surgical occlusion of the femoral artery. Following femoral artery ligation, animals were either kept sedentary or exercise trained daily for a period of 3 weeks. Hindlimb collateral arteries were then isolated, cannulated and pressurized via hydrostatic reservoirs to an intravascular pressure of either 45 or 120 cmH(2)O. Non-occluded contralateral vessels of the sedentary animals served as normal Control. Vasodilatory responses to acetylcholine (ACh; 1 x 10(9)-1 x 10(5)m) and sodium nitroprusside (SNP; 1 x 10(9)-1 x 10(4)m), constrictor responses to phenylephrine (PE; 1 x 10(9)-1 x 10(4)m), and flow-induced vasodilatation were determined. Endothelium-mediated vasodilatation responses were significantly greater to either ACh (P < 0.02) or intravascular flow (P < 0.001) in collateral arteries of trained rats. Neither blockade of cyclooxygenase with indomethacin (Indo; 5 microm) nor blockade of endothelial nitric oxide synthase with N(G)-nitro-L-arginine methyl ester (L-NAME; 300 microm) eliminated this ACh- or flow-induced vasodilatation. The depressed vasodilatory response to SNP caused by vascular occlusion was reversed with training. These data indicate that exercise training improves endothelium-mediated vasodilatory capacity of hindlimb collateral arteries, apparently by enhanced production of the putative endothelium-derived hyperpolarizing factor(s). If these findings were applicable to patients with PAI, they could contribute to an improved collateral vessel function and enhance exercise tolerance during routine physical activity.

  13. Multiparametric evaluation of hindlimb ischemia using time-series indocyanine green fluorescence imaging.

    PubMed

    Guang, Huizhi; Cai, Chuangjian; Zuo, Simin; Cai, Wenjuan; Zhang, Jiulou; Luo, Jianwen

    2017-03-01

    Peripheral arterial disease (PAD) can further cause lower limb ischemia. Quantitative evaluation of the vascular perfusion in the ischemic limb contributes to diagnosis of PAD and preclinical development of new drug. In vivo time-series indocyanine green (ICG) fluorescence imaging can noninvasively monitor blood flow and has a deep tissue penetration. The perfusion rate estimated from the time-series ICG images is not enough for the evaluation of hindlimb ischemia. The information relevant to the vascular density is also important, because angiogenesis is an essential mechanism for post-ischemic recovery. In this paper, a multiparametric evaluation method is proposed for simultaneous estimation of multiple vascular perfusion parameters, including not only the perfusion rate but also the vascular perfusion density and the time-varying ICG concentration in veins. The target method is based on a mathematical model of ICG pharmacokinetics in the mouse hindlimb. The regression analysis performed on the time-series ICG images obtained from a dynamic reflectance fluorescence imaging system. The results demonstrate that the estimated multiple parameters are effective to quantitatively evaluate the vascular perfusion and distinguish hypo-perfused tissues from well-perfused tissues in the mouse hindlimb. The proposed multiparametric evaluation method could be useful for PAD diagnosis. The estimated perfusion rate and vascular perfusion density maps (left) and the time-varying ICG concentration in veins of the ankle region (right) of the normal and ischemic hindlimbs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of Partial Vibration on Morphological Changes in Bone and Surrounding Muscle of Rats Under Microgravity Condition: Comparative Study by Gender

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyung; Seo, Dong-Hyun; Cho, Seungkwan; Kim, Seo-Hyun; Eom, Sinae; Kim, Han Sung

    2015-09-01

    Musculoskeletal disorders during and after spaceflight are considered as a serious health issue. In space, weight-bearing exercise recognized as the main countermeasure to bone loss, since many anti-resorptive medications have not yet been approved for spaceflight or have been unsuccessful in their limited application. We need to investigate a complementary or alternative way to prevent bone loss and muscle atrophy resulting from microgravity condition. Partial vibration was chosen because it is one of the most feasible ways to adopt safely and effectively. Moreover, although the influence of hind-limb suspension has been studied in both male and female rodents, only rarely are both genders evaluated in the same study. Thus, to further extend our knowledge, the present study performed comparative analysis between genders. A total of 36 12-week-old male and female Sprague-Dawley rats were used and were randomly assigned to control (CON), hind-limb suspension without vibration stimulus (HS), and hind-limb suspension with vibration stimulus (HV) groups. Hind-limb suspension has led to increasing the rate of bone loss and muscle atrophy regardless of gender. The rates of bone loss in male group obviously increased than that of female group. All structural parameters were showed significant difference between HS and HV ( p < 0.05) in male group whereas there are no significant differences in female group. In female, the muscle volume with treatment of partial vibration stimulus significantly increased which compared with that of hind-limb suspension ( p < 0.05) whereas there are no significant differences in male group. Thus partial vibration could prevent bone loss of tibia in males and muscle atrophy in females induced by hind-limb suspension. In other words, partial vibration has positive effects on damaged musculoskeletal tissues that differ based on gender.

  15. Effects of Resveratrol on the Recovery of Muscle Mass Following Disuse in the Plantaris Muscle of Aged Rats

    PubMed Central

    Bennett, Brian T.; Mohamed, Junaith S.; Alway, Stephen E.

    2013-01-01

    Aging is associated with poor skeletal muscle regenerative ability following extended periods of hospitalization and other forms of muscular disuse. Resveratrol (3,5,4’-trihydroxystilbene) is a natural phytoalexin which has been shown in skeletal muscle to improve oxidative stress levels in muscles of aged rats. As muscle disuse and reloading after disuse increases oxidative stress, we hypothesized that resveratrol supplementation would improve muscle regeneration after disuse. A total of thirty-six male Fisher 344 × Brown Norway rats (32 mo.) were treated with either a water vehicle or resveratrol via oral gavage. The animals received hindlimb suspension for 14 days. Thereafter, they were either sacrificed or allowed an additional 14 day period of cage ambulation during reloading. A total of six rats from the vehicle and the resveratrol treated groups were used for the hindlimb suspension and recovery protocols. Furthermore, two groups of 6 vehicle treated animals maintained normal ambulation throughout the experiment, and were used as control animals for the hindlimb suspension and reloading groups. The data show that resveratrol supplementation was unable to attenuate the decreases in plantaris muscle wet weight during hindlimb suspension but it improved muscle mass during reloading after hindlimb suspension. Although resveratrol did not prevent fiber atrophy during the period of disuse, it increased the fiber cross sectional area of type IIA and IIB fibers in response to reloading after hindlimb suspension. There was a modest enhancement of myogenic precursor cell proliferation in resveratrol-treated muscles after reloading, but this failed to reach statistical significance. The resveratrol-associated improvement in type II fiber size and muscle mass recovery after disuse may have been due to decreases in the abundance of pro-apoptotic proteins Bax, cleaved caspase 3 and cleaved caspase 9 in reloaded muscles. Resveratrol appears to have modest therapeutic benefits for improving muscle mass after disuse in aging. PMID:24349525

  16. The Effects of Ligustrazine on the Ca2+ Concentration of Soleus and Gastrocnemius Muscle Fibers in Hindlimb Unloaded Rat

    NASA Astrophysics Data System (ADS)

    Gao, Yunfang; Goswami, Nandu; Du, Bei; Hu, Huanxin; Wu, Xue

    Background Spaceflight or inactivity (bed rest, limb immobilization, hindlimb unloading) causes skeletal muscle atrophy. Recent studies show that an increase in protein degradation is an important mechanism for disuse atrophy. Furthermore, the calcium overload of disuse-atrophied muscle fiber has been shown to initiate the skeletal muscle proteolysis in disuse atrophy. Ligustrazine (tetramethylpyrazine, TMP), one of the important active ingredient extracted from Chuanxiong, has been shown by our group to increase muscle fiber cross-sectional area in atrophied soleus induced by 14 days hindlimb unloading. However, the underlying mechanisms of ligustrazine effects on disuse-atrophied muscle fibers remain unknown. Objective: We investigated the effects of ligustrazine on the cytoplasmic calcium overloading in soleus and gastrocnemius in 14 days hindlimb unloaded (HU) rats. Methods: Adult female Sprague-Dawley rats were matched for body mass and randomly assigned to three groups (n=8, each group): 1) synchronous control (CON); HU + intragastric water instillation (HU+W); HU + intragastric 60.0 mg kg-1 ligustrazine instillation (HU+Tmp). Laser scanning confocal microscope assessed the concentrations of cytoplasmic calcium ions. Spaceflight disuse atrophy was simulated by hindlimb unloading, provided by tail suspension. Results: 1) Compared with CON, the concentration of soleus intracellular calcium ion in HU+W and HU+Tmp increased 330% and 86% respectively P<0.01). Compared with HU+W, the concentration of soleus intracellular calcium ion in HU+Tmp decreased by 130% P<0.01). 2) Compared with CON, the concentration of gastrocnemius intracellular calcium ion in HU+W and HU+Tmp increased 189.8% and 32.1% respectively P<0.01). Compared with HU+W, the concentration of gastrocnemius intracellular calcium ion in HU+Tmp decreased by 119.3% (P<0.01). Conclusion: After 14 days of hindlimb unloading, cytoplasmic calcium of soleus (slow-twitch muscle) and gastrocnemius (fast-twitch muscle) showed significant overload. This was especially true for the soleus. Ligustrazine appears to inhibit the cytoplasmic calcium overload thus leadig to lesser muscle atrophy in hindlimb unloaded animals. Therefore, ligustrazine may play important role in preventing muscle loss during spaceflight. Key words: Ligustrazine; Tetramethylpyrazine; disuse atrophy; calcium overload; soleus; gastrocnemius; spaceflight This work was supported by funds from the National Natural Science Foundation of China (Grant No. 31270455), International Scientific and Technological Cooperation Projects in Shaanxi Province of China (Grant No. 2013KW26-01).

  17. Coccidioidomycosis in the llama: case report and epidemiologic survey.

    PubMed

    Muir, S; Pappagianis, D

    1982-12-01

    An 8-year-old nongravid female llama with a 1-month history of progressive posterior paresis was referred because of suspected degenerative myelopathy secondary to copper deficiency or plant poisoning. Neurologic examination revealed loss of conscious proprioception and slightly depressed bilateral patellar reflexes. Electromyographic examination of hindlimb flexors and extensors did not elicit evidence of lower motor neuron disease. Possible fragmentation and mottling of the 10th thoracic vertebral body were noted radiographically. Results of a lumbar CSF tap, complete blood count, and fecal flotation were not diagnostic. In the face of poor prognosis, the llama was euthanatized. Postmortem and histologic evaluation revealed, in addition to disseminated visceral granulomas, an extradural pyogranulomatous mass compressing the cord laterally at the level of T-10. Large numbers of Coccidioides immitis were dispersed throughout the granulomas. Complement fixing antibody tests in 11 other herd members showed evidence of C immitis infection in three.

  18. Presynaptic elements involved in the maintenance of the neuromuscular junction

    NASA Technical Reports Server (NTRS)

    Burrows, G. H.

    1984-01-01

    Alterations in the neuromuscular junction were observed in rats preceding loss of muscle mass. In view of the possibility that these alterations involve changes in the secretion of myotrophic agents by presynaptic motor neurons, an investigation was undertaken to characterize a neuronall factor which is thought to be involved in the initiation and maintenance of cholinergic synapses. This factor, which is secreted into the incubation medium by NG108-15 neuroblastoma x glioma hybrid cells, induces the aggregation of nicotinic acetylcholine receptors on primary cultures of rat hindlimb myotubes. Previous attempts to purify this factor failed. Extensive washing of the NG108-15 cells with hepes-buffered salt solution followed by short (4 hour) collection times resulted in the collection of incubation medium containing maximal aggregation activity with as little as 5 ug secreted protein per ml of fresh medium. A three-fold increase in specific activity was obtained after anion exchange chromatography.

  19. Differences in Age-Related Alterations in Muscle Contraction Properties in Rat Tongue and Hindlimb

    ERIC Educational Resources Information Center

    Connor, Nadine P.; Ota, Fumikazu; Nagai, Hiromi; Russell, John A.; Leverson, Glen

    2008-01-01

    Purpose: Because of differences in muscle architecture and biomechanics, the purpose of this study was to determine whether muscle contractile properties of rat hindlimb and tongue were differentially affected by aging. Method: Deep peroneal and hypoglossal nerves were stimulated in 6 young and 7 old Fischer 344-Brown Norway rats to allow…

  20. Age effects on rat hindlimb muscle atrophy during suspension unloading

    NASA Technical Reports Server (NTRS)

    Steffen, Joseph M.; Fell, Ronald D.; Geoghegan, Thomas E.; Ringel, Lisa C.; Musacchia, X. J.

    1990-01-01

    The effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450-g) and juvenile (200-g) rats after 1, 7, or 14 days of whole-body suspension. Quantitatively and qualitatively the soleus, gastrocnemius, plantaris, and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicates a less rapid rate of response in adult muscles.

  1. Partial Reductions in Mechanical Loading Yield Proportional Changes in Bone Density, Bone Architecture, and Muscle Mass

    PubMed Central

    Ellman, Rachel; Spatz, Jordan; Cloutier, Alison; Palme, Rupert; Christiansen, Blaine A; Bouxsein, Mary L

    2014-01-01

    Although the musculoskeletal system is known to be sensitive to changes in its mechanical environment, the relationship between functional adaptation and below-normal mechanical stimuli is not well defined. We investigated bone and muscle adaptation to a range of reduced loading using the partial weight suspension (PWS) system, in which a two-point harness is used to offload a tunable amount of body weight while maintaining quadrupedal locomotion. Skeletally mature female C57Bl/6 mice were exposed to partial weight bearing at 20%, 40%, 70%, or 100% of body weight for 21 days. A hindlimb unloaded (HLU) group was included for comparison in addition to age-matched controls in normal housing. Gait kinematics was measured across the full range of weight bearing, and some minor alterations in gait from PWS were identified. With PWS, bone and muscle changes were generally proportional to the degree of unloading. Specifically, total body and hindlimb bone mineral density, calf muscle mass, trabecular bone volume of the distal femur, and cortical area of the femur midshaft were all linearly related to the degree of unloading. Even a load reduction to 70% of normal weight bearing was associated with significant bone deterioration and muscle atrophy. Weight bearing at 20% did not lead to better bone outcomes than HLU despite less muscle atrophy and presumably greater mechanical stimulus, requiring further investigation. These data confirm that the PWS model is highly effective in applying controllable, reduced, long-term loading that produces predictable, discrete adaptive changes in muscle and bone of the hindlimb. PMID:23165526

  2. GH/IGF-I Transgene Expression on Muscle Homeostasis

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1999-01-01

    We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.

  3. Evolution of morphology and locomotor performance in anurans: relationships with microhabitat diversification.

    PubMed

    Citadini, J M; Brandt, R; Williams, C R; Gomes, F R

    2018-03-01

    The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post-cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi-aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein-Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi-aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi-aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  4. Ontogeny of Odor-LiCl vs. Odor-Shock Learning: Similar Behaviors but Divergent Ages of Functional Amygdala Emergence

    ERIC Educational Resources Information Center

    Raineki, Charlis; Shionoya, Kiseko; Sander, Kristin; Sullivan, Regina M.

    2009-01-01

    Both odor-preference and odor-aversion learning occur in perinatal pups before the maturation of brain structures that support this learning in adults. To characterize the development of odor learning, we compared three learning paradigms: (1) odor-LiCl (0.3M; 1% body weight, ip) and (2) odor-1.2-mA shock (hindlimb, 1sec)--both of which…

  5. Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats.

    PubMed

    Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim

    2002-07-01

    This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.

  6. New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers.

    PubMed

    Foth, Christian; Tischlinger, Helmut; Rauhut, Oliver W M

    2014-07-03

    Discoveries of bird-like theropod dinosaurs and basal avialans in recent decades have helped to put the iconic 'Urvogel' Archaeopteryx into context and have yielded important new data on the origin and early evolution of feathers. However, the biological context under which pennaceous feathers evolved is still debated. Here we describe a new specimen of Archaeopteryx with extensive feather preservation, not only on the wings and tail, but also on the body and legs. The new specimen shows that the entire body was covered in pennaceous feathers, and that the hindlimbs had long, symmetrical feathers along the tibiotarsus but short feathers on the tarsometatarsus. Furthermore, the wing plumage demonstrates that several recent interpretations are problematic. An analysis of the phylogenetic distribution of pennaceous feathers on the tail, hindlimb and arms of advanced maniraptorans and basal avialans strongly indicates that these structures evolved in a functional context other than flight, most probably in relation to display, as suggested by some previous studies. Pennaceous feathers thus represented an exaptation and were later, in several lineages and following different patterns, recruited for aerodynamic functions. This indicates that the origin of flight in avialans was more complex than previously thought and might have involved several convergent achievements of aerial abilities.

  7. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording

    NASA Astrophysics Data System (ADS)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  8. Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice.

    PubMed

    Homs, Judit; Ariza, Lorena; Pagès, Gemma; Verdú, Enrique; Casals, Laura; Udina, Esther; Chillón, Miguel; Bosch, Assumpció; Navarro, Xavier

    2011-09-01

    The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice. © 2011 Peripheral Nerve Society.

  9. Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only

    PubMed Central

    Alluin, Olivier; Delivet-Mongrain, Hugo

    2015-01-01

    Although a complete thoracic spinal cord section in various mammals induces paralysis of voluntary movements, the spinal lumbosacral circuitry below the lesion retains its ability to generate hindlimb locomotion. This important capacity may contribute to the overall locomotor recovery after partial spinal cord injury (SCI). In rats, it is usually triggered by pharmacological and/or electrical stimulation of the cord while a robot sustains the animals in an upright posture. In the present study we daily trained a group of adult spinal (T7) rats to walk with the hindlimbs for 10 wk (10 min/day for 5 days/wk), using only perineal stimulation. Kinematic analysis and terminal electromyographic recordings revealed a strong effect of training on the reexpression of hindlimb locomotion. Indeed, trained animals gradually improved their locomotion while untrained animals worsened throughout the post-SCI period. Kinematic parameters such as averaged and instant swing phase velocity, step cycle variability, foot drag duration, off period duration, and relationship between the swing features returned to normal values only in trained animals. The present results clearly demonstrate that treadmill training alone, in a normal horizontal posture, elicited by noninvasive perineal stimulation is sufficient to induce a persistent hindlimb locomotor recovery without the need for more complex strategies. This provides a baseline level that should be clearly surpassed if additional locomotor-enabling procedures are added. Moreover, it has a clinical value since intrinsic spinal reorganization induced by training should contribute to improve locomotor recovery together with afferent feedback and supraspinal modifications in patients with incomplete SCI. PMID:26203108

  10. Changes in resting-state functional connectivity after stroke in a mouse brain lacking extracellular matrix components.

    PubMed

    Quattromani, Miriana Jlenia; Hakon, Jakob; Rauch, Uwe; Bauer, Adam Q; Wieloch, Tadeusz

    2018-04-01

    In the brain, focal ischemia results in a local region of cell death and disruption of both local and remote functional neuronal networks. Tissue reorganization following stroke can be limited by factors such as extracellular matrix (ECM) molecules that prevent neuronal growth and synaptic plasticity. The brain's ECM plays a crucial role in network formation, development, and regeneration of the central nervous system. Further, the ECM is essential for proper white matter tract development and for the formation of structures called perineuronal nets (PNNs). PNNs mainly surround parvalbumin/GABA inhibitory interneurons, of importance for processing sensory information. Previous studies have shown that downregulating PNNs after stroke reduces the neurite-inhibitory environment, reactivates plasticity, and promotes functional recovery. Resting-state functional connectivity (RS-FC) within and across hemispheres has been shown to correlate with behavioral recovery after stroke. However, the relationship between PNNs and RS-FC has not been examined. Here we studied a quadruple knock-out mouse (Q4) that lacks four ECM components: brevican, neurocan, tenascin-C and tenascin-R. We applied functional connectivity optical intrinsic signal (fcOIS) imaging in Q4 mice and wild-type (129S1 mice) before and 14 days after photothrombotic stroke (PT) to understand how the lack of crucial ECM components affects neuronal networks and functional recovery after stroke. Limb-placement ability was evaluated at 2, 7 and 14 days of recovery through the paw-placement test. Q4 mice exhibited significantly impaired homotopic RS-FC compared to wild-type mice, especially in the sensory and parietal regions. Changes in RS-FC were significantly correlated with the number of interhemispheric callosal crossings in those same regions. PT caused unilateral damage to the sensorimotor cortex and deficits of tactile-proprioceptive placing ability in contralesional fore- and hindlimbs, but the two experimental groups did not present significant differences in infarct size. Two weeks after PT, a general down-scaling of regional RS-FC as well as the number of regional functional connections was visible for all cortical regions and most notable in the somatosensory areas of both Q4 and wild-type mice. Q4 mice exhibited higher intrahemispheric RS-FC in contralesional sensory and motor cortices compared to control mice. We propose that the lack of growth inhibiting ECM components in the Q4 mice potentially worsen behavioral outcome in the early phase after stroke, but subsequently facilitates modulation of contralesional RS-FC which is relevant for recovery of sensory motor function. We conclude that Q4 mice represent a valuable model to study how the elimination of ECM genes compromises neuronal function and plasticity mechanisms after stroke. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury.

    PubMed

    Kim, Dae-Sung; Jung, Se Jung; Lee, Jae Souk; Lim, Bo Young; Kim, Hyun Ah; Yoo, Jeong-Eun; Kim, Dong-Wook; Leem, Joong Woo

    2017-07-28

    Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI.

  12. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury

    PubMed Central

    Kim, Dae-Sung; Jung, Se Jung; Lee, Jae Souk; Lim, Bo Young; Kim, Hyun Ah; Yoo, Jeong-Eun; Kim, Dong-Wook; Leem, Joong Woo

    2017-01-01

    Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI. PMID:28751784

  13. Differential Adaptations of the Musculoskeletal System after Spinal Cord Contusion and Transection in Rats.

    PubMed

    Lin, Ching-Yi; Androjna, Charlie; Rozic, Richard; Nguyen, Bichtram; Parsons, Brett; Midura, Ronald J; Lee, Yu-Shang

    2018-04-05

    Spinal cord injury (SCI) causes impaired neuronal function with associated deficits in the musculoskeletal system, which can lead to permanent disability. Here, the impact of SCI on in vivo musculoskeletal adaptation was determined by studying deficits in locomotor function and analyzing changes that occur in the muscle and bone compartments within the rat hindlimb after contusion or transection SCI. Analyses of locomotor patterns, as assessed via the Basso, Beattie, and Bresnahan (BBB) rating scale, revealed that transection animals showed significant deficits, while the contusion group had moderate deficits, compared with naïve groups. Muscle myofiber cross-sectional areas (CSA) of both the soleus and tibialis anterior muscles were significantly decreased three months after contusion SCI. Such decreases in CSA were even more dramatic in the transection SCI group, suggesting a dependence on muscle activity, which is further validated by the correlation analyses between BBB score and myofiber CSA. Bone compartment analyses, however, revealed that transection animals showed the most significant deficits, while contusion animals showed no significant differences in the trabecular bone content within the proximal tibia compartment. In general, values of bone volume per total bone volume (BV/TV) were similar across the SCI groups. Significant decreases were observed, however, in the transection animals for bone mineral content, bone mineral density, and three-dimensional trabecular structure parameters (trabecular number, thickness, and spacing) compared with the naïve and contusion groups. Together, these findings suggest an altered musculoskeletal system can be correlated directly to motor dysfunctions seen after SCI.

  14. Fluoro-Jade and TUNEL staining as useful tools to identify ischemic brain damage following moderate extradural compression of sensorimotor cortex.

    PubMed

    Kundrotiene, Jurgita; Wägner, Anna; Liljequist, Sture

    2004-01-01

    Cerebral ischemia was produced by moderate compression for 30 min of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. On day 1, that is 24 h after the transient sensorimotor compression, ischemia-exposed animals displayed a marked focal neurological deficit documented as impaired beam walking performance. This functional disturbance was mainly due to contralateral fore- and hind-limb paresis. As assessed by daily beam walking tests it was shown that there was a spontaneous recovery of motor functions over a period of five to seven days after the ischemic event. Using histopathological analysis (Nissl staining) we have previously reported that the present experimental paradigm does not produce pannecrosis (tissue cavitation) despite the highly reproducible focal neurological deficit. We now show how staining with fluorescent markers for neuronal death, that is Fluoro-Jade and TUNEL, respectively, identifies regional patterns of selective neuronal death. These observations add further support to the working hypothesis that the brain damage caused by cortical compression-induced ischemia consists of scattered, degenerating neurons in specific brain regions. Postsurgical administration of the AMPA receptor specific antagonist, LY326325 (30 mg/kg; i.p., 70 min after compression), not only improved beam walking performance on day 1 to 3, respectively but also significantly reduced the number of Fluoro-Jade stained neurons on day 5. These results suggest that enhanced AMPA/glutamate receptor activity is at least partially responsible for the ischemia-produced brain damage detected by the fluorescent marker Fluoro-Jade.

  15. Morphological changes in the sciatic nerve, skeletal muscle, heart and brain of rabbits receiving continuous sciatic nerve block with 0.2% ropivacaine.

    PubMed

    Zhou, Yangning; He, Miao; Zou, Tianxiao; Yu, Bin

    2015-01-01

    To investigate the morphological changes in various tissues of rabbits receiving sciatic nerve block with 0.2% ropivacaine for 48 h. Twenty healthy were randomly assigned to normal saline group (N group) and ropivacaine group (R group). The right sciatic nerve was exposed, and a nerve-blocking trocar cannula embedded. Animals received an injection of 0.5% ropivacaine hydrochloride at a dose of 0.75 ml/kg. Rabbit was then connected to an infusion pump containing 50 ml of normal saline in N group, or to a infusion pump containing 0.2% ropivacaine hydrochloride in R group at 0.25 ml/kg•h-1. In both R group and N group, a small number of nerve cells exhibited pyknotic degeneration. More nerve cells with pyknotic degeneration were found in R group than in N group (P<0.001). At 48 h after surgery, there was a significant correlation between the abnormality of right hind limb and the degree of edema in sciatic nerve (P<0.01). Pyknotic degeneration of sciatic nerve increased after an infusion of 0.2% ropivacaine hydrochloride for 48 h, suggesting the neurotoxicity of ropivacaine. An infusion of 0.2% ropivacaine hydrochloride for 48 h may cause necrosis of skeletal muscle cells. The sciatic nerve edema would greatly affect the hindlimb motor while both pyknotic degeneration of sciatic nerve and skeletal muscle have little influence on the hindlimb movement. After an infusion of 0.2% ropivacaine hydrochloride for 48 h, the morphology of right atrium and brain tissues around the ventriculus tertius and medulla oblongata remained unchanged.

  16. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage.

    PubMed

    Quek, Hazel; Luff, John; Cheung, KaGeen; Kozlov, Sergei; Gatei, Magtouf; Lee, C Soon; Bellingham, Mark C; Noakes, Peter G; Lim, Yi Chieh; Barnett, Nigel L; Dingwall, Steven; Wolvetang, Ernst; Mashimo, Tomoji; Roberts, Tara L; Lavin, Martin F

    2017-04-01

    Mutations in the ataxia-telangiectasia (A-T)-mutated ( ATM ) gene give rise to the human genetic disorder A-T, characterized by immunodeficiency, cancer predisposition, and neurodegeneration. Whereas a series of animal models recapitulate much of the A-T phenotype, they fail to present with ataxia or neurodegeneration. We describe here the generation of an Atm missense mutant [amino acid change of leucine (L) to proline (P) at position 2262 (L2262P)] rat by intracytoplasmic injection (ICSI) of mutant sperm into oocytes. Atm -mutant rats ( Atm L2262P/L2262P ) expressed low levels of ATM protein, suggesting a destabilizing effect of the mutation, and had a significantly reduced lifespan compared with Atm +/+ Whereas these rats did not show cerebellar atrophy, they succumbed to hind-limb paralysis (45%), and the remainder developed tumors. Closer examination revealed the presence of both dsDNA and ssDNA in the cytoplasm of cells in the hippocampus, cerebellum, and spinal cord of Atm L2262P/L2262P rats. Significantly increased levels of IFN-β and IL-1β in all 3 tissues were indicative of DNA damage induction of the type 1 IFN response. This was further supported by NF-κB activation, as evidenced by p65 phosphorylation (P65) and translocation to the nucleus in the spinal cord and parahippocampus. Other evidence of neuroinflammation in the brain and spinal cord was the loss of motor neurons and the presence of increased activation of microglia. These data provide support for a proinflammatory phenotype that is manifested in the Atm mutant rat as hind-limb paralysis. This mutant represents a useful model to investigate the importance of neuroinflammation in A-T. © Society for Leukocyte Biology.

  17. Home-care treatment of swimmer syndrome in a miniature schnauzer dog.

    PubMed

    Kim, Sun-A; Na, Ki-Jeong; Cho, Jong-Ki; Shin, Nam-Shik

    2013-09-01

    A 50-day-old, female miniature schnauzer dog was presented for astasia, dorsoventral flattening of the thorax, hypoplasia of hind-limb muscles, stiffness of hind-limb joints, paddling leg motion, and panting. The dog was diagnosed with swimmers syndrome. The dog recovered completely following 40 days of home-care treatment that involved environmental and nutritional management along with intensive physiotherapy.

  18. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  19. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Rodnick, K. J.; Azhar, S.; Reaven, G. M.; Dolkas, C. B.

    1992-01-01

    Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity-dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.

  20. Moderate tibia axial loading promotes discordant response of bone composition parameters and mechanical properties in a hindlimb unloading rat model.

    PubMed

    Yang, Peng-Fei; Huang, Ling-Wei; Nie, Xiao-Tong; Yang, Yue; Wang, Zhe; Ren, Li; Xu, Hui-Yun; Shang, Peng

    2018-06-01

    The purpose of the present study was to characterize the dynamic alterations of bone composition parameters and mechanical properties to disuse and mechanical intervention. A tail suspension hindlimb unloading model and an in vivo axial tibia loading model in rats were used. A moderate mechanical loading that was capable of engendering 800 µε tibia strain was applied to the right tibia of rats in both control and hindlimb unloading group across 28 days of the experimental period. The contralateral tibia served as control. Hindlimb unloading led to bone loss in tibia from day 14. Bone mineral density, mineral content and mechanical properties responded differently with microstructure to disuse in timing course. Mechanical loading of 800 µε tibia strain failed to alter the bone of the control group, but minimized the detrimental effects of unloading by completely prohibiting the decrease of bone mineral content and main mechanical properties after 28 days. Less obvious influence of mechanical loading on bone microstructure was found. The moderate mechanical loading is not able to stimulate the mechanical response of healthy tibia, but indeed lead to discordant recovery of bone composition parameters and mechanical properties.

  1. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity

    NASA Astrophysics Data System (ADS)

    Mondon, C. E.; Rodnick, K. J.; Dolkas, C. B.; Azhar, S.; Reaven, G. M.

    1992-09-01

    Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.

  2. Bilateral sensory disturbance after cortical spreading depression revealed by fluorescence imaging of voltage-sensitive dye.

    PubMed

    Huang, Qin; Liu, Rui; Gui, Shen; Lu, Jinling; Li, Pengcheng

    2018-03-07

    Cortical spreading depression (CSD), a propagation wave of transient neuronal and glial depolarization followed by suppression of spontaneous brain activity, has been hypothesized to be the underlying mechanism of migraine aura and triggers the headache attack. Evidence from various animal models accumulates since its first discovery in 1944 and provides support for this hypothesis. In this paper, alterations of bilateral cortical responses are investigated in a mice migrainous model of CSD using voltage-sensitive dye imaging under hindlimb and cortical stimulation. After CSD induction in the right hemisphere, bilateral sensory responses evoked by left hindlimb stimulation dramatically decreases, whereas right hindlimb stimulation can still activate bilateral responses with an increased response of the left hemisphere and a well-preserved response of the right hemisphere. In addition, cortical neural excitability remains after CSD assessed by direct activation of the right hemisphere in spite of the sensory deficit under contralateral hindlimb stimulation. These results depict the sensory disturbance of bilateral hemispheres after CSD, which may be helpful in understanding how sensory disturbance occur during migraine aura. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Response of rat hindlimb muscles to 12 hours recovery from tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E. J.; Jacob, S.; Jaspers, S. R.

    1985-01-01

    Previous work has shown a number of biochemical changes which accompany atrophy or reduced muscle growth in hindlimb of tail-casted, suspended rats. These results clearly show that altered muscle growth was due to changes in protein turnover. Accordingly, the rise in soleus tyrosine following unloading reflects the more negative protein balance. Other major changes we found included slower synthesis of glutamine as indicated by lower ratios of glutamine/glutamate and reduced levels of aspartate which coincide with slower aspartate and ammonia metabolism in vitro. In conjunction with the study of SL-3 rats, which were subjected to 12 h of post-flight gravity, a study of the effects of 12 h eight bearing on metabolism of 6-day unloaded hindlimb muscles was carried out.

  4. Effects of hypothyroidism on the skeletal muscle blood flow response to contractions.

    PubMed

    Bausch, L; McAllister, R M

    2003-04-01

    Hypothyroidism is associated with impaired blood flow to skeletal muscle under whole body exercise conditions. It is unclear whether poor cardiac and/or vascular function account for blunted muscle blood flow. Our experiment isolated a small group of hindlimb muscles and simulated exercise via tetanic contractions. We hypothesized that muscle blood flow would be attenuated in hypothyroid rats (HYPO) compared with euthyroid rats (EUT). Rats were made hypothyroid by mixing propylthiouracil in their drinking water (2.35 x 10-3 mol/l). Treatment efficacy was evidenced by lower serum T3 concentrations and resting heart rates in HYPO (both P<0.05). In the experimental preparation, isometric contractions of the lower right hindlimb muscles at a rate of 30 tetani/min were induced via sciatic nerve stimulation. Regional blood flows were determined by the radiolabelled microsphere method at three time points: rest, 2 min of contractions and 10 min of contractions. Muscle blood flow generally increased from rest ( approximately 5-10 ml/min per 100 g) through contractions for both groups. Further, blood flow during contractions did not differ between groups for any muscle (eg. red section of gastrocnemius muscle; EUT, 59.9 +/- 14.1; HYPO, 61.1 +/- 15.0; NS between groups). These findings indicate that hypothyroidism does not significantly impair skeletal muscle blood flow when only a small muscle mass is contracting. Our findings suggest that impaired blood flow under whole body exercise is accounted for by inadequate cardiac function rather than abnormal vascular function.

  5. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb (Open Access)

    DTIC Science & Technology

    2016-04-26

    Cappellari1, Andrew J. Spence2,3, John R. Hutchinson2, Dominic J. Wells1* 1 Neuromuscular Diseases Group, Comparative Biomedical Sciences, Royal...Veterinary College, 4 Royal College Street, London, NW1 0TU, United Kingdom, 2 Structure and Motion Lab, Comparative Biomedical Sciences, Royal Veterinary...or comparing the rela- tive effects of architecture and fibre types on determining contractile properties [11], rather than their geometry or

  6. Home-care treatment of swimmer syndrome in a miniature schnauzer dog

    PubMed Central

    Kim, Sun-A; Na, Ki-Jeong; Cho, Jong-Ki; Shin, Nam-Shik

    2013-01-01

    A 50-day-old, female miniature schnauzer dog was presented for astasia, dorsoventral flattening of the thorax, hypoplasia of hind-limb muscles, stiffness of hind-limb joints, paddling leg motion, and panting. The dog was diagnosed with swimmers syndrome. The dog recovered completely following 40 days of home-care treatment that involved environmental and nutritional management along with intensive physiotherapy. PMID:24155492

  7. Hyperpolarized functional magnetic resonance of murine skeletal muscle enabled by multiple tracer-paradigm synchronizations.

    PubMed

    Leftin, Avigdor; Roussel, Tangi; Frydman, Lucio

    2014-01-01

    Measuring metabolism's time- and space-dependent responses upon stimulation lies at the core of functional magnetic resonance imaging. While focusing on water's sole resonance, further insight could arise from monitoring the temporal responses arising from the metabolites themselves, in what is known as functional magnetic resonance spectroscopy. Performing these measurements in real time, however, is severely challenged by the short functional timescales and low concentrations of natural metabolites. Dissolution dynamic nuclear polarization is an emerging technique that can potentially alleviate this, as it provides a massive sensitivity enhancement allowing one to probe low-concentration tracers and products in a single-scan. Still, conventional implementations of this hyperpolarization approach are not immediately amenable to the repeated acquisitions needed in real-time functional settings. This work proposes a strategy for functional magnetic resonance of hyperpolarized metabolites that bypasses this limitation, and enables the observation of real-time metabolic changes through the synchronization of stimuli-triggered, multiple-bolus injections of the metabolic tracer 13C1-pyruvate. This new approach is demonstrated with paradigms tailored to reveal in vivo thresholds of murine hind-limb skeletal muscle activation, involving the conversion of 13C1-pyruvate to 13C1-lactate and 13C1-alanine. These functional hind-limb studies revealed that graded skeletal muscle stimulation causes commensurate increases in glycolytic metabolism in a frequency- and amplitude-dependent fashion, that can be monitored on the seconds/minutes timescale using dissolution dynamic nuclear polarization. Spectroscopic imaging further allowed the in vivo visualization of uptake, transformation and distribution of the tracer and products, in fast-twitch glycolytic and in slow-twitch oxidative muscle fiber groups. While these studies open vistas in time and sensitivity for metabolic functional magnetic resonance studies in muscle, the simplicity of our approach makes this technique amenable to a wide range of functional metabolic tracer studies.

  8. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight.

    PubMed

    Morey-Holton, E R; Globus, R K

    1998-05-01

    A model that uses hindlimb unloading of rats was developed to study the consequences of skeletal unloading and reloading as occurs during and following space flight. Studies using the model were initiated two decades ago and further developed at National Aeronautics and Space Administration (NASA)-Ames Research Center. The model mimics some aspects of exposure to microgravity by removing weightbearing loads from the hindquarters and producing a cephalic fluid shift. Unlike space flight, the forelimbs remain loaded in the model, providing a useful internal control to distinguish between the local and systemic effects of hindlimb unloading. Rats that are hindlimb unloaded by tail traction gain weight at the same rate as pairfed controls, and glucocorticoid levels are not different from controls, suggesting that systemic stress is minimal. Unloaded bones display reductions in cancellous osteoblast number, cancellous mineral apposition rate, trabecular bone volume, cortical periosteal mineralization rate, total bone mass, calcium content, and maturation of bone mineral relative to controls. Subsequent studies reveal that these changes also occur in rats exposed to space flight. In hindlimb unloaded rats, bone formation rates and masses of unloaded bones decline relative to controls, while loaded bones do not change despite a transient reduction in serum 1,25-dihydroxyvitamin D (1,25D) concentrations. Studies using the model to evaluate potential countermeasures show that 1,25D, growth hormone, dietary calcium, alendronate, and muscle stimulation modify, but do not completely correct, the suppression of bone growth caused by unloading, whereas continuous infusion of transforming growth factor-beta2 or insulin-like growth factor-1 appears to protect against some of the bone changes caused by unloading. These results emphasize the importance of local as opposed to systemic factors in the skeletal response to unloading, and reveal the pivotal role that osteoblasts play in the response to gravitational loading. The hindlimb unloading model provides a unique opportunity to evaluate in detail the physiological and cellular mechanisms of the skeletal response to weightbearing loads, and has proven to be an effective model for space flight.

  9. Rat soleus muscle satellite cells during the recovery after gravitational unloading

    NASA Astrophysics Data System (ADS)

    Turtikova, Olga; Shenkman, Boris; Altaeva, Erzhena; Leinsoo, Toomas

    In this study the attempt was made to assess alterations of rat soleus satellite cell (SC) population during muscle regrowth after 14-day gravitational unloading (using the hindlimb suspension model). Myofiber size increases during the recovery period. SCs are supposed to participate in muscle growth by fusion with myofibers and supplying them with new myonuclei [Mitchell PO, Pavlath GK, 2001; Oishi Y., 2008]. Other points of view are known about SC participation in the recovery of atrophied muscle mass during the readaptation period [Bruusgaard J.C. et al., 2011; Jackson JR et al., 2012]. After 2 weeks of hindlimb suspension mki67 expression was fivefold lower as compared to control animals and increased gradually up to 28 times by the day 7 of reloading. Cdh15 was decreased after hindlimb unloading and rose from the 1st day of reloading. The expression reached control level to the day 7th of reloading. Cellular response was going on concurrently with the spike of IGF-1 blood level and the increase in muscle IGF-1 concentration. It is possible that in the early days of reloading period differentiation and fusion of satellite cells which were active by the end of hindlimb suspension occurred. Satellite cell incorporation was assessed by counting the amount of BrdU+ myonuclei under myofiber dystrophin layer. It came more intensively in the 1st day of readaptation. It is in accordance with the 4,5 time increase in myogenin expression as compared to hindlimb suspended animals detected at the same time point. Myogenin expression 3 fold decreased by 3rd day of readaptation. We observed only the tendency of resizing but no significant changes in in myonuclear domain size. The number of myonuclei per myofiber cross section was decreased after hindlimb suspension and was not restored by the day 14th of readaptation. Cdh15 and myogenin expression at some extent stabilized after 7 days of readaptation, but high mki67 level pointed to intensive proliferation, which could cause the increase of myonuclei and satellite cell number and enhancing protein synthesis in the late readaptation period. Supported by RFBR grant 13-04-01891

  10. Testosterone Dose Dependently Prevents Bone and Muscle Loss in Rodents after Spinal Cord Injury

    PubMed Central

    Conover, Christine F.; Beggs, Luke A.; Beck, Darren T.; Otzel, Dana M.; Balaez, Alexander; Combs, Sarah M.; Miller, Julie R.; Ye, Fan; Aguirre, J. Ignacio; Neuville, Kathleen G.; Williams, Alyssa A.; Conrad, Bryan P.; Gregory, Chris M.; Wronski, Thomas J.; Bose, Prodip K.; Borst, Stephen E.

    2014-01-01

    Abstract Androgen administration protects against musculoskeletal deficits in models of sex-steroid deficiency and injury/disuse. It remains unknown, however, whether testosterone prevents bone loss accompanying spinal cord injury (SCI), a condition that results in a near universal occurrence of osteoporosis. Our primary purpose was to determine whether testosterone-enanthate (TE) attenuates hindlimb bone loss in a rodent moderate/severe contusion SCI model. Forty (n=10/group), 14 week old male Sprague-Dawley rats were randomized to receive: (1) Sham surgery (T9 laminectomy), (2) moderate/severe (250 kdyne) SCI, (3) SCI+Low-dose TE (2.0 mg/week), or (4) SCI+High-dose TE (7.0 mg/week). Twenty-one days post-injury, SCI animals exhibited a 77–85% reduction in hindlimb cancellous bone volume at the distal femur (measured via μCT) and proximal tibia (measured via histomorphometry), characterized by a >70% reduction in trabecular number, 13–27% reduction in trabecular thickness, and increased trabecular separation. A 57% reduction in cancellous volumetric bone mineral density (vBMD) at the distal femur and a 20% reduction in vBMD at the femoral neck were also observed. TE dose dependently prevented hindlimb bone loss after SCI, with high-dose TE fully preserving cancellous bone structural characteristics and vBMD at all skeletal sites examined. Animals receiving SCI also exhibited a 35% reduction in hindlimb weight bearing (triceps surae) muscle mass and a 22% reduction in sublesional non-weight bearing (levator ani/bulbocavernosus [LABC]) muscle mass, and reduced prostate mass. Both TE doses fully preserved LABC mass, while only high-dose TE ameliorated hindlimb muscle losses. TE also dose dependently increased prostate mass. Our findings provide the first evidence indicating that high-dose TE fully prevents hindlimb cancellous bone loss and concomitantly ameliorates muscle loss after SCI, while low-dose TE produces much less profound musculoskeletal benefit. Testosterone-induced prostate enlargement, however, represents a potential barrier to the clinical implementation of high-dose TE as a means of preserving musculoskeletal tissue after SCI. PMID:24378197

  11. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Globus, R. K.

    1998-01-01

    A model that uses hindlimb unloading of rats was developed to study the consequences of skeletal unloading and reloading as occurs during and following space flight. Studies using the model were initiated two decades ago and further developed at National Aeronautics and Space Administration (NASA)-Ames Research Center. The model mimics some aspects of exposure to microgravity by removing weightbearing loads from the hindquarters and producing a cephalic fluid shift. Unlike space flight, the forelimbs remain loaded in the model, providing a useful internal control to distinguish between the local and systemic effects of hindlimb unloading. Rats that are hindlimb unloaded by tail traction gain weight at the same rate as pairfed controls, and glucocorticoid levels are not different from controls, suggesting that systemic stress is minimal. Unloaded bones display reductions in cancellous osteoblast number, cancellous mineral apposition rate, trabecular bone volume, cortical periosteal mineralization rate, total bone mass, calcium content, and maturation of bone mineral relative to controls. Subsequent studies reveal that these changes also occur in rats exposed to space flight. In hindlimb unloaded rats, bone formation rates and masses of unloaded bones decline relative to controls, while loaded bones do not change despite a transient reduction in serum 1,25-dihydroxyvitamin D (1,25D) concentrations. Studies using the model to evaluate potential countermeasures show that 1,25D, growth hormone, dietary calcium, alendronate, and muscle stimulation modify, but do not completely correct, the suppression of bone growth caused by unloading, whereas continuous infusion of transforming growth factor-beta2 or insulin-like growth factor-1 appears to protect against some of the bone changes caused by unloading. These results emphasize the importance of local as opposed to systemic factors in the skeletal response to unloading, and reveal the pivotal role that osteoblasts play in the response to gravitational loading. The hindlimb unloading model provides a unique opportunity to evaluate in detail the physiological and cellular mechanisms of the skeletal response to weightbearing loads, and has proven to be an effective model for space flight.

  12. Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization.

    PubMed

    Bhang, Suk Ho; Lee, Seahyoung; Shin, Jung-Youn; Lee, Tae-Jin; Kim, Byung-Soo

    2012-10-01

    Despite promising results from the therapeutic use of stem cells for treating ischemic diseases, the poor survival of cells transplanted into ischemic regions is one of the major problems that undermine the efficacy of stem cell therapy. Cord blood mononuclear cells (CBMNCs) are an alternative source of mesenchymal stem cells (MSCs) without disadvantages, such as the painful and invasive harvesting procedure, of MSCs derived from bone marrow or adipose tissue. In the present study, we investigated whether the angiogenic efficacy of cord blood mesenchymal stem cells (CBMSCs) can be enhanced by grafting as spheroids in a mouse hindlimb ischemia model. Human CBMSC (hCBMSC) spheroids were prepared by using the hanging-drop method. Mouse hindlimb ischemia was induced by excising the femoral artery and its branches. After surgery, the animals were divided into no-treatment, dissociated hCBMSC, and spheroid hCBMSC groups (n=8 per group) and received corresponding hCBMSC treatments. After surgery, the ischemic hindlimbs were monitored for 4 weeks, and then, the ischemic hindlimb muscles were harvested for histological analysis. Apoptotic signaling, angiogenesis-related signal pathways, and blood vessel formation were investigated in vitro and/or in vivo. The transplantation of hCBMSCs as spheroids into mouse ischemic hindlimbs significantly improved the survival of the transplanted cells by suppressing apoptotic signaling while activating antiapoptotic signaling. Furthermore, the transplantation of hCBMSCs as spheroids significantly increased the number of microvessels and smooth muscle α-actin-positive vessels in the ischemic limbs of mice, and attenuated limb loss and necrosis. Human CBMNC can be considered an alternative source of MSC, and spheroid-based hCBMSC delivery can be considered a simple and effective strategy for enhancing the therapeutic efficacy of hCBMSCs.

  13. Expression of a hindlimb-determining factor Pitx1 in the forelimb of the lizard Pogona vitticeps during morphogenesis.

    PubMed

    Melville, Jane; Hunjan, Sumitha; McLean, Felicity; Mantziou, Georgia; Boysen, Katja; Parry, Laura J

    2016-10-01

    With over 9000 species, squamates, which include lizards and snakes, are the largest group of reptiles and second-largest order of vertebrates, spanning a vast array of appendicular skeletal morphology. As such, they provide a promising system for examining developmental and molecular processes underlying limb morphology. Using the central bearded dragon (Pogona vitticeps) as the primary study model, we examined limb morphometry throughout embryonic development and characterized the expression of three known developmental genes (GHR, Pitx1 and Shh) from early embryonic stage through to hatchling stage via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). In this study, all genes were found to be transcribed in both the forelimbs and hindlimbs of P. vitticeps. While the highest level of GHR expression occurred at the hatchling stage, Pitx1 and Shh expression was greatest earlier during embryogenesis, which coincides with the onset of the differentiation between forelimb and hindlimb length. We compared our finding of Pitx1 expression-a hindlimb-determining gene-in the forelimbs of P. vitticeps to that in a closely related Australian agamid lizard, Ctenophorus pictus, where we found Pitx1 expression to be more highly expressed in the hindlimb compared with the forelimb during early and late morphogenesis-a result consistent with that found across other tetrapods. Expression of Pitx1 in forelimbs has only rarely been documented, including via in situ hybridization in a chicken and a frog. Our findings from both RT-qPCR and IHC indicate that further research across a wider range of tetrapods is needed to more fully understand evolutionary variation in molecular processes underlying limb morphology. © 2016 The Authors.

  14. Electrical stimulation at the dorsal root ganglion preserves trabecular bone mass and microarchitecture of the tibia in hindlimb-unloaded rats.

    PubMed

    Lau, Y-C; Qian, X; Po, K-T; Li, L-M; Guo, X

    2015-02-01

    This study seeks to investigate the effect of electrical stimulation (ES) at dorsal root ganglion (DRG) on disuse bone loss in a rat model. Hindlimb unloading for 14 days resulted in significant bone loss in rat tibia while rats with ES at DRG showed a significant reduced bone loss Mechanical unloading induces osteoporosis in both human and animals. Previous studies demonstrated that electrical stimulation (ES) to dorsal root ganglion (DRG) could trigger secretion of calcitonin gene-related peptide (CGRP) which plays an important role in bone modeling and remodeling. This study seeks to investigate the effect of ES to DRG on disuse bone loss in a rat model. Twenty-four rats were randomly assigned in three experimental groups: cage control (CC), hindlimb unloading (HU), and hindlimb unloading with ES (HUES). ES was applied via implantable micro-electrical stimulators (IMES) to right DRGs at vertebral levels L4-L6 in HUES group. Hindlimb unloading for 14 days resulted in 25.9% decrease in total bone mineral content (BMC), 29.2% decrease in trabecular BMD and trabecular microarchitecture and connectivity were significantly deteriorated in the proximal tibia metaphysis in HU group, while rats with ES at DRG showed significant reduced bone loss that there was 3.8% increase in total BMC, 2.3% decrease in trabecular BMD, and significant improvement in trabecular microarchitecture. There was a concurrent enhancement of expression of CGRP in stimulated DRGs. The results confirm the effect of ES at DRG on enhancing CGRP expression and suggest potential applications of IMES for the prevention and treatment of disuse bone loss.

  15. Structural equation modeling of motor impairment, gross motor function, and the functional outcome in children with cerebral palsy.

    PubMed

    Park, Eun-Young; Kim, Won-Ho

    2013-05-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effects of Unloading and Reloading on Expressions of Skelatal Muscle Membrane Proteins in Mice

    NASA Astrophysics Data System (ADS)

    Ohno, Y.; Ikuta, A.; Goto, A.; Sugiura, T.; Ohira, Y.; Yoshioka, T.; Goto, K.

    2013-02-01

    Effects of unloading and reloading on the expression levels of tripartite motif-containing 72 (TRIM72) and caveolin-3 (Cav-3) of soleus muscle in mice were investigated. Male C57BL/6J mice (11-week old) were randomly assigned to control and hindlimb-suspended groups. Some of mice in hindlimb-suspended group were subjected to continuous hindlimb suspension (HS) for 2 weeks with or without 7 days of ambulation recovery. Following HS, the muscle weight and protein expression levels of TRIM72 and Cav-3 in soleus were decreased. On the other hand, the gradual increases in muscle mass, TRIM72 and Cav-3 were observed after reloading following HS. Therefore, it was suggested that mechanical loading played a key role in a regulatory system for protein expressions of TRIM72 and Cav-3.

  17. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Booth, F. W.; Gordon, S. E.

    1999-01-01

    Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S. -J. Lee. Nature 387: 83-90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation (r = 0.725, P < 0. 0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.

  18. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.

    PubMed

    Callister, Robert J; Pierce, Patricia A; McDonagh, Jennifer C; Stuart, Douglas G

    2005-04-01

    A description is provided of the ratio of slow-tonic vs. slow- and fast-twitch fibers for five muscles in the adult turtle, Pseudemys (Trachemys) scripta elegans. The cross-sectional area of each fiber type and an estimation of the relative (weighted) cross-sectional area occupied by the different fiber types are also provided. Two hindlimb muscles (flexor digitorum longus, FDL; external gastrocnemius, EG) were selected on the basis of their suitability for future motor-unit studies. Three neck muscles (the fourth head of testo-cervicis, TeC4; the fourth head of retrahens capitus collique, RCCQ4; transversalis cervicis, TrC) were chosen for their progressively decreasing oxidative capacity. Serial sections were stained for myosin adenosine triphosphatase (ATPase), NADH-diaphorase, and alpha-glycerophosphate dehydrogenase (alpha-GPDH). Conventional fiber-type classification was then performed using indirect markers for contraction speed and oxidative (aerobic) vs. glycolytic (anaerobic) metabolism: i.e., slow oxidative (SO, including slow-twitch and possibly slow-tonic fibers), fast-twitch, oxidative-glycolytic (FOG), and fast-twitch glycolytic (Fg) fibers. Slow-tonic fibers in the SO class were then revealed by directing the monoclonal antibody, ALD-58 (raised against the slow-tonic fiber myosin heavy chain of chicken anterior latissimus dorsi), to additional muscle cross sections. All five of the tested muscles contained the four fiber types, with the ATPase-stained fibers including both slow-tonic and slow-twitch fibers. The extreme distributions of SO fibers were in the predominately glycolytic TrC vs. the predominately oxidative TeC4 muscle (TrC-SO, 9%; FOG, 20%; Fg, 71% vs. TeC4-SO, 58%: FOG, 16%; Fg, 25%). Across the five muscles, the relative prevalence of slow-tonic fibers (4-47%) paralleled that of the SO fibers (9-58%). TeC4 had the highest prevalence of slow-tonic fibers (47%). The test muscles exhibited varying degrees of regional concentration of each fiber type, with the distribution of slow-tonic fibers paralleling that of the SO fibers. In the five test muscles, fiber cross-sectional area was usually ranked Fg > FOG > SO, and slow-twitch always > slow-tonic. In terms of weighted cross-sectional area, which provides a coarse-grain measure of each fiber type's potential contribution to whole muscle force, all five muscles exhibited a higher Fg and lower SO contribution to cross-sectional area than suggested by their corresponding fiber-type prevalence. This was also the case for the slow-twitch vs. slow-tonic fibers. We conclude that slow-tonic fibers are widespread in turtle muscle. The weighted cross-sectional area evidence suggested, however, that their contribution to force generation is minor except in highly oxidative muscles, with a special functional role, like TeC4. There is discussion of: 1) the relationship between the present results and previous work on homologous neck and hindlimb muscles in other nonmammalian species, and 2) the potential motoneuronal innervation of slow-tonic fibers in turtle hindlimb muscles. Copyright 2005 Wiley-Liss, Inc.

  19. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.

    PubMed

    Wong, Jamie K; Steward, Oswald

    2012-02-01

    It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury because early training with amphetamine increases lesion severity. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis.

    PubMed

    Miquel, Ernesto; Cassina, Adriana; Martínez-Palma, Laura; Souza, José M; Bolatto, Carmen; Rodríguez-Bottero, Sebastián; Logan, Angela; Smith, Robin A J; Murphy, Michael P; Barbeito, Luis; Radi, Rafael; Cassina, Patricia

    2014-05-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motor neuron degeneration that ultimately results in progressive paralysis and death. Growing evidence indicates that mitochondrial dysfunction and oxidative stress contribute to motor neuron degeneration in ALS. To further explore the hypothesis that mitochondrial dysfunction and nitroxidative stress contribute to disease pathogenesis at the in vivo level, we assessed whether the mitochondria-targeted antioxidant [10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl]triphenylphosphonium methane sulfonate (MitoQ) can modify disease progression in the SOD1(G93A) mouse model of ALS. To do this, we administered MitoQ (500 µM) in the drinking water of SOD1(G93A) mice from a time when early symptoms of neurodegeneration become evident at 90 days of age until death. This regime is a clinically plausible scenario and could be more easily translated to patients as this corresponds to initiating treatment of patients after they are first diagnosed with ALS. MitoQ was detected in all tested tissues by liquid chromatography/mass spectrometry after 20 days of administration. MitoQ treatment slowed the decline of mitochondrial function, in both the spinal cord and the quadriceps muscle, as measured by high-resolution respirometry. Importantly, nitroxidative markers and pathological signs in the spinal cord of MitoQ-treated animals were markedly reduced and neuromuscular junctions were recovered associated with a significant increase in hindlimb strength. Finally, MitoQ treatment significantly prolonged the life span of SOD1(G93A) mice. Our results support a role for mitochondrial nitroxidative damage and dysfunction in the pathogenesis of ALS and suggest that mitochondria-targeted antioxidants may be of pharmacological use for ALS treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy.

    PubMed

    Park, Myoung-Ok

    2017-02-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.

  2. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  3. Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles.

    PubMed

    Gregor, Robert J; Maas, Huub; Bulgakova, Margarita A; Oliver, Alanna; English, Arthur W; Prilutsky, Boris I

    2018-03-01

    Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of autogenic stretch reflex in self-reinnervated muscles may be compensated by recovered intermuscular force-dependent and oligosynaptic length-dependent feedback and central drive to regain adequate locomotor output capabilities during level and upslope walking.

  4. Alterations in Vasoreactivity of Femoral Artery Induced by Hindlimb Unweighting are Related to the Changes of Contractile Protein in Rats

    NASA Technical Reports Server (NTRS)

    Ma, Jin; Ren, Xinling; Meng, Qinjun; Zhang, Lifan; Purdy, Ralph E.

    2005-01-01

    Responses of endothelium removed femoral arterial rings to vasoactive compounds were examined in vitro, and the expression of Myosin and Actin of femoral artery were observed by Western Blotting and Immunohistochemistry in hndlimb unweighting rats and control rats. The results showed that contractile responses of femoral arterial rings evoked by Phenylephrine, Endothelin-1, Vasopressin, KCl, Ca(2+) and Ca(2+) ionophore A23187 were decreased in hindlimb unweighting rats as compared with that of controls. But vasoddatory responses induced by SNPand cGMP were not different between groups. No significant differences have been found in expressions of Calponin, Myosin, Actin, and the ratio of MHC SM1/SM2 between the two groups, but expression of alpha-SM-Actin decreased in hindlimb unweighting rats. The data indicated that the diminished contractile responsiveness probably result from altered contractile apparatus, especially the contractile proteins.

  5. Antinociceptive efficacy of buprenorphine and hydromorphone in red-eared slider turtles (Trachemys scripta elegans).

    PubMed

    Mans, Christoph; Lahner, Lesanna L; Baker, Bridget B; Johnson, Stephen M; Sladky, Kurt K

    2012-09-01

    Despite the frequent clinical use of buprenorphine in reptiles, its antinociceptive efficacy is not known. In a randomized, complete cross-over study, the antinociceptive efficacy of buprenorphine (0.2 mg/kg s.c.) was compared with hydromorphone (0.5 mg/kg s.c.), and saline (0.9% s.c. equivalent volume) in 11 healthy red-eared slider turtles (Trachemys scripta elegans). Additionally, buprenorphine at 0.1 and 1 mg/kg was compared with saline in six turtles. Hindlimb withdrawal latencies were measured after exposure to a focal, thermal noxious stimulus before and between 3 hr and up to 96 hr after drug administration. Buprenorphine did not significantly increase hindlimb withdrawal latencies at any time point compared with saline. In contrast, hydromorphone administration at 0.5 mg/kg significantly increased hindlimb withdrawal latencies for up to 24 hr. These results show that hydromorphone, but not buprenorphine, provides thermal antinociception in red-eared slider turtles.

  6. Group Housing During Hindlimb Unloading to Simulate Weightlessness

    NASA Technical Reports Server (NTRS)

    Tahimic, Candice; Lowe, Moniece; Steczina, Sonette; Torres, Samantha; Terada, Masahiro; Schreurs, Ann-Sofie; Ronca, April; Alwood, Joshua; Globus, Ruth K.

    2017-01-01

    The rodent hindlimb unloading (HU) model was developed in the 1980s to faciliate the study of mechanisms, responses, and treatments for the adverse effects of spaceflight. A number of variations on unloading systems and cage designs have been developed, although most entail individually housing the HU animals. In this study, we performed hindlimb unloading under group housing conditions. Our preliminary results indicate that HU animals that were group housed for 30 days, displayed musculoskeletal decrements associated with disuse, and further, body weights did not differ compared to age-matched controls. In conclusion, group housing of HU mice provides a novel means to simulate weightlessness under conditions that more closely resemble living conditions of Rodent Research Project ISS flight hardware habitats, and minimizes the social stress of isolation, which is consistent with current animal welfare standards (Guide for the Care and Use of Laboratory Animals: Eighth Edition, National Research Council).

  7. Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis

    PubMed Central

    Jiang, Baoyu; Zhao, Tao; Regnault, Sophie; Edwards, Nicholas P.; Kohn, Simon C.; Li, Zhiheng; Wogelius, Roy A.; Benton, Michael J.; Hutchinson, John R.

    2017-01-01

    The hindlimb of theropod dinosaurs changed appreciably in the lineage leading to extant birds, becoming more ‘crouched' in association with changes to body shape and gait dynamics. This postural evolution included anatomical changes of the foot and ankle, altering the moment arms and control of the muscles that manipulated the tarsometatarsus and digits, but the timing of these changes is unknown. Here, we report cellular-level preservation of tendon- and cartilage-like tissues from the lower hindlimb of Early Cretaceous Confuciusornis. The digital flexor tendons passed through cartilages, cartilaginous cristae and ridges on the plantar side of the distal tibiotarsus and proximal tarsometatarsus, as in extant birds. In particular, fibrocartilaginous and cartilaginous structures on the plantar surface of the ankle joint of Confuciusornis may indicate a more crouched hindlimb posture. Recognition of these specialized soft tissues in Confuciusornis is enabled by our combination of imaging and chemical analyses applied to an exceptionally preserved fossil. PMID:28327586

  8. Effects of hypokinesia and hypodynamia upon protein turnover in hindlimb muscles of the rat

    NASA Technical Reports Server (NTRS)

    Loughna, Paul T.; Goldspink, David F.; Goldspink, Geoffrey

    1987-01-01

    Hypokinesia/hypodynamia was induced in the hindlimb muscles of the rat, using a suspension technique. This caused differing degrees of atrophy in different muscles. However, this atrophy was reduced in muscles held in a lenghthened position. The greatest degree of wasting was observed in the unstretched soleus, a slow postural muscle, where both Type 1 and Type 2a fibers atrophied to the same degree. However, wasting of the gastrocnemius muscle was associated with a reduction in the size of the Type 2b fibers. In both slow-postural and fast-phasic hindlimb muscles, atrophy was brought about by a reduction in the rate of protein synthesis in conjunction with an elevation in the rate of protein degradation. When inactive muscles were passively stretched, both protein synthesis and degradation were dramatically elevated. Even periods of stretch of as little as 0.5 h/d were found to significantly decrease atrophy in inactive muscles.

  9. Combining neurotrophin-transduced schwann cells and rolipram to promote functional recovery from subacute spinal cord injury.

    PubMed

    Flora, Govinder; Joseph, Gravil; Patel, Samik; Singh, Amanpreet; Bleicher, Drew; Barakat, David J; Louro, Jack; Fenton, Stephanie; Garg, Maneesh; Bunge, Mary Bartlett; Pearse, Damien D

    2013-01-01

    Following spinal cord injury (SCI), both an inhibitory environment and lack of intrinsic growth capacity impede axonal regeneration. In a previous study, prevention of cyclic adenosine monophosphate (AMP) hydrolysis by the phosphodiesterase-4 inhibitor rolipram, in combination with Schwann cell (SC) grafts, promoted significant supraspinal and proprioceptive fiber growth and/or sparing and improved locomotion. In another study, transplanted SCs transduced to generate a bifunctional neurotrophin (D15A) led to significant increases in graft SCs and axons, including supraspinal and myelinated axons. Here we studied the growth and myelination of local and supraspinal axons and functional outcome following the combination of rolipram administration and neurotrophin-transduced SC implantation after SCI. Rolipram was administered subcutaneously for 4 weeks immediately after contusion at vertebral T8 (25.0-mm weight drop, MASCIS impactor). GFP or GFP-D15A-transduced SCs were injected into the injury epicenter 1 week after SCI. GFP-D15A SC grafts and GFP SC grafts with rolipram contained significantly more serotonergic fibers compared to GFP SCs. SC myelinated axons were increased significantly in GFP SC with rolipram-treated animals compared to animals receiving SCI alone. Rolipram administered with either GFP or GFP-D15A SCs significantly increased numbers of brain stem-derived axons below the lesion/implant area and improved hindlimb function. Compared to the single treatments, the combination led to the largest SC grafts, the highest numbers of serotonergic fibers in the grafts, and increased numbers of axons from the reticular formation below the lesion/implant area and provided the greatest improvement in hindlimb function. These findings demonstrate the therapeutic potential for a combination therapy involving the maintenance of cyclic AMP levels and neurotrophin-transduced SCs to repair the subacutely injured spinal cord.

  10. Deficiency of selenoprotein S, an endoplasmic reticulum resident oxidoreductase, impairs the contractile function of fast twitch hindlimb muscles.

    PubMed

    Addinsall, Alex Bernard; Wright, Craig Robert; Shaw, Christopher S; McRae, Natasha L; Forgan, Leonard George; Weng, Chia-Heng; Conlan, Xavier A; Francis, Paul S; Smith, Zoe M; Andrikopoulos, Sofianos; Stupka, Nicole

    2018-04-18

    Selenoprotein S (Seps1) is an endoplasmic reticulum (ER) resident antioxidant implicated in ER stress and inflammation. In human vastus lateralis and mouse hindlimb muscles, Seps1 localization and expression was fiber type specific. In male Seps1 +/- heterozygous mice, spontaneous physical activity was reduced compared to wild type littermates ( d=1.10, P=0.029). A similar trend also observed in Seps1 -/- knockout mice ( d=1.12, P=0.051). Whole body metabolism, body composition, extensor digitorum longus (EDL) and soleus mass, and myofibre diameter were unaffected by genotype. However, in isolated fast EDL muscles from Seps1 -/- knockout mice, the force frequency curve (1-120 Hz; FFC) was shifted downward versus EDL muscles from wild type littermates ( d=0.55, P=0.002), suggestive of reduced strength. During 4 min of intermittent, submaximal (60 Hz) stimulation, the genetic deletion or reduction of Seps1 decreased EDL force production ( d=0.52, P<0.001). Furthermore, at the start of the intermittent stimulation protocol, when compared to the 60 Hz stimulation of the FFC, EDL muscles from Seps1 -/- knockout or Seps1 +/- heterozygous mice produced 10% less force than those from wild type littermates ( d=0.31, P<0.001 and d=0.39, P=0.015). This functional impairment was associated with reduced mRNA transcript abundance of thioredoxin-1 ( Trx1), thioredoxin interacting protein ( Txnip), and the ER stress markers Chop and Grp94. Whereas, in slow soleus muscles, Seps1 deletion did not compromise contractile function and Trx1 ( d=1.38, P=0.012) and Txnip ( d=1.27, P=0.025) gene expression was increased. Seps1 is a novel regulator of contractile function and cellular stress responses in fast twitch muscles.

  11. Beta2-adrenoceptor agonist fenoterol enhances functional repair of regenerating rat skeletal muscle after injury.

    PubMed

    Beitzel, Felice; Gregorevic, Paul; Ryall, James G; Plant, David R; Sillence, Martin N; Lynch, Gordon S

    2004-04-01

    Beta(2)-adrenoceptor agonists such as fenoterol are anabolic in skeletal muscle, and because they promote hypertrophy and improve force-producing capacity, they have potential application for enhancing muscle repair after injury. No previous studies have measured the beta(2)-adrenoceptor population in regenerating skeletal muscle or determined whether fenoterol can improve functional recovery in regenerating muscle after myotoxic injury. In the present study, the extensor digitorum longus (EDL) muscle of the right hindlimb of deeply anesthetized rats was injected with bupivacaine hydrochloride, which caused complete degeneration of all muscle fibers. The EDL muscle of the left hindlimb served as the uninjured control. Rats received either fenoterol (1.4 mg x kg(-1) x day(-1)) or an equal volume of saline for 2, 7, 14, or 21 days. Radioligand binding assays identified a approximately 3.5-fold increase in beta(2)-adrenoceptor density in regenerating muscle at 2 days postinjury. Isometric contractile properties of rat EDL muscles were measured in vitro. At 14 and 21 days postinjury, maximum force production (P(o)) of injured muscles from fenoterol-treated rats was 19 and 18% greater than from saline-treated rats, respectively, indicating more rapid restoration of function after injury. The increase in P(o) in fenoterol-treated rats was due to increases in muscle mass, fiber cross-sectional area, and protein content. These findings suggest a physiological role for beta(2)-adrenoceptor-mediated mechanisms in muscle regeneration and show clearly that fenoterol hastens recovery after injury, indicating its potential therapeutic application.

  12. Reduced high-frequency motor neuron firing, EMG fractionation, and gait variability in awake walking ALS mice

    PubMed Central

    Hadzipasic, Muhamed; Ni, Weiming; Nagy, Maria; Steenrod, Natalie; McGinley, Matthew J.; Kaushal, Adi; Thomas, Eleanor; McCormick, David A.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease prominently featuring motor neuron (MN) loss and paralysis. A recent study using whole-cell patch clamp recording of MNs in acute spinal cord slices from symptomatic adult ALS mice showed that the fastest firing MNs are preferentially lost. To measure the in vivo effects of such loss, awake symptomatic-stage ALS mice performing self-initiated walking on a wheel were studied. Both single-unit extracellular recordings within spinal cord MN pools for lower leg flexor and extensor muscles and the electromyograms (EMGs) of the corresponding muscles were recorded. In the ALS mice, we observed absent or truncated high-frequency firing of MNs at the appropriate time in the step cycle and step-to-step variability of the EMG, as well as flexor-extensor coactivation. In turn, kinematic analysis of walking showed step-to-step variability of gait. At the MN level, the higher frequencies absent from recordings from mutant mice corresponded with the upper range of frequencies observed for fast-firing MNs in earlier slice measurements. These results suggest that, in SOD1-linked ALS mice, symptoms are a product of abnormal MN firing due at least in part to loss of neurons that fire at high frequency, associated with altered EMG patterns and hindlimb kinematics during gait. PMID:27821773

  13. Electrodiagnostic Examination of the Tibial Nerve in Clinically Normal Ferrets

    PubMed Central

    Bianchi, Ezio; Callegari, Daniela; Ravera, Manuela; Dondi, Maurizio

    2010-01-01

    Tibial nerves of 10 normal domestic ferrets (Mustela putorius furo) were evaluated by means of electrodiagnostic tests: motor nerve conduction studies (MNCSs), supramaximal repetitive nerve stimulation (SRNS), F waves, and cord dorsum potentials (CDPs). Values of conduction velocity, proximal and distal compound muscular action potentials, and amplitudes of MNCS were, respectively, 63.25 ± 7.56 m/sec, 10.79 ± 2.75 mV, and 13.02 ± 3.41 mV. Mean decrements in amplitude and area of compound muscular action potentials of wave 9 with low frequency SRNS were 0.3 ± 3.83% and 0.1 ± 3.51%. The minimum latency of the F waves and the F ratio were, respectively, 8.49 ± 0.65 ms and 1.92 ± 0.17. Onset latency of CDP was 1.99 ± 0.03 ms. These tests may help in diagnosing neuromuscular disorders and in better characterizing the hindlimb paresis reported in many ferrets with systemic illnesses. PMID:20706690

  14. The Impact of Muscle Disuse on Muscle Atrophy in Severely Burned Rats

    DTIC Science & Technology

    2010-12-01

    Following muscle collection from the right hindlimb, muscle isometric force of PL and SL was measured simultaneously in the left hindlimb under...37.5°C by manually adjusting the temperature of cir culating water in the rat surgical bed. The isometric force of the PL and SL muscles was then...the physiologic cross sectional area (CSA) of PL and SL was calculated using the following formula: CSA= ( muscle mass) × cos θ ( muscle fiber

  15. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb

    PubMed Central

    Frueh, Florian S.; Körbel, Christina; Gassert, Laura; Müller, Andreas; Gousopoulos, Epameinondas; Lindenblatt, Nicole; Giovanoli, Pietro; Laschke, Matthias W.; Menger, Michael D.

    2016-01-01

    Secondary lymphedema is a common complication of cancer treatment characterized by chronic limb swelling with interstitial inflammation. The rodent hindlimb is a widely used model for the evaluation of novel lymphedema treatments. However, the assessment of limb volume in small animals is challenging. Recently, high-resolution three-dimensional (3D) imaging modalities have been introduced for rodent limb volumetry. In the present study we evaluated the validity of microcomputed tomography (μCT), magnetic resonance imaging (MRI) and ultrasound in comparison to conventional measuring techniques. For this purpose, acute lymphedema was induced in the mouse hindlimb by a modified popliteal lymphadenectomy. The 4-week course of this type of lymphedema was first assessed in 6 animals. In additional 12 animals, limb volumes were analyzed by μCT, 9.4 T MRI and 30 MHz ultrasound as well as by planimetry, circumferential length and paw thickness measurements. Interobserver correlation was high for all modalities, in particular for μCT analysis (r = 0.975, p < 0.001). Importantly, caliper-measured paw thickness correlated well with μCT (r = 0.861), MRI (r = 0.821) and ultrasound (r = 0.800). Because the assessment of paw thickness represents a time- and cost-effective approach, it may be ideally suited for the quantification of rodent hindlimb lymphedema. PMID:27698469

  16. Reduced expression of the Ca(2+) transporter protein PMCA2 slows Ca(2+) dynamics in mouse cerebellar Purkinje neurones and alters the precision of motor coordination.

    PubMed

    Empson, Ruth M; Turner, Paul R; Nagaraja, Raghavendra Y; Beesley, Philip W; Knöpfel, Thomas

    2010-03-15

    Cerebellar Purkinje neurones (PNs) express high levels of the plasma membrane calcium ATPase, PMCA2, a transporter protein critical for the clearance of calcium from excitable cells. Genetic deletion of one PMCA2 encoding gene in heterozygous PMCA2 knock-out (PMCA2(+/-) mice enabled us to determine how PMCA2 influences PN calcium regulation without the complication of the severe morphological changes associated with complete PMCA2 knock-out (PMCA2(-/-) in these cells. The PMCA2(+/-) cerebellum expressed half the normal levels of PMCA2 and this nearly doubled the time taken for PN dendritic calcium transients to recover (mean fast and slow recovery times increased from 70 ms to 110 ms and from 600 ms to 1100 ms). The slower calcium recovery had distinct consequences for PMCA2(+/-) PN physiology. The PNs exhibited weaker climbing fibre responses, prolonged outward Ca(2+)-dependent K(+) current (mean fast and slow recovery times increased from 136 ms to 192 ms and from 595 ms to 1423 ms) and a slower mean frequency of action potential firing (7.4 Hz compared with 15.8 Hz). Our findings were consistent with prolonged calcium accumulation in the cytosol of PMCA2(+/-) Purkinje neurones. Although PMCA2(+/-) mice exhibited outwardly normal behaviour and little change in their gait pattern, when challenged to run on a narrow beam they exhibited clear deficits in hindlimb coordination. Training improved the motor performance of both PMCA2(+/-) and wild-type mice, although PMCA2(+/-) mice were always impaired. We conclude that reduced calcium clearance perturbs calcium dynamics in PN dendrites and that this is sufficient to disrupt the accuracy of cerebellar processing and motor coordination.

  17. Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Alwood, J.; Tahimic, C.; Schreurs, A.-S.; Shirazi-Fard, Y.; Terada, M.; Zaragoza, J.; Truong, T.; Bruns, K.; Castillo, A.; hide

    2018-01-01

    We examined experimentally the effects of radiation and/or simulated weightlessness by hindlimb unloading on bone and blood vessel function either after a short period or at a later time after transient exposures in adult male, C57Bl6J mice. In sum, recent findings from our studies show that in the short term, ionizing radiation and simulate weightlessness cause greater deficits in blood vessels when combined compared to either challenge alone. In the long term, heavy ion radiation, but not unloading, can lead to persistent, adverse consequences for bone and vessel function, possibly due to oxidative stress-related pathways.

  18. Tetrahydrobiopterin, l-Arginine and Vitamin C Act Synergistically to Decrease Oxidant Stress and Increase Nitric Oxide That Increases Blood Flow Recovery after Hindlimb Ischemia in the Rat

    PubMed Central

    Yan, Jinglian; Tie, Guodong; Messina, Louis M

    2012-01-01

    Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is a potent vasodilator and signaling molecule that plays essential roles in neovascularization. During limb ischemia, decreased NO bioavailability occurs secondary to increased oxidant stress, decreased l-arginine and tetrahydrobiopterin. This study tested the hypothesis that dietary cosupplementation with tetrahydrobiopterin (BH4), l-arginine and vitamin C acts synergistically to decrease oxidant stress, increase NO and thereby increase blood flow recovery after hindlimb ischemia. Rats were fed normal chow, chow supplemented with BH4 or l-arginine (alone or in combination) or chow supplemented with BH4 + l-arginine + vitamin C for 1 wk before induction of hindlimb ischemia. In the is-chemic hindlimb, cosupplementation with BH4 + l-arginine resulted in greater eNOS and phospho-eNOS (P-eNOS) expression, Ca2+-dependent NOS activity and NO concentration in the ischemic calf region (gastrocnemius), as well as greater NO concentration in the region of collateral arteries (gracilis). Rats receiving cosupplementation of BH4 + l-arginine led to greater recovery of foot perfusion and greater collateral enlargement than did rats receiving either agent separately. The addition of vitamin C to the BH4 + l-arginine regimen further increased these dependent variables. In addition, rats given all three supplements showed significantly less Ca2+-independent activity, less nitrotyrosine accumulation, greater glutathione (GSH)–to–glutathione disulfide (GSSG) ratio and less gastrocnemius muscle necrosis, on both macroscopic and microscopic levels. In conclusion, co-supplementation with BH4 + l-arginine + vitamin C significantly increased blood flow recovery after hindlimb ischemia by reducing oxidant stress, increasing NO bioavailability, enlarging collateral arteries and reducing muscle necrosis. Oral cosupplementation of BH4, l-arginine and vitamin C holds promise as a biological therapy to induce collateral artery enlargement. PMID:23212846

  19. Regulation of eIF2α phosphorylation in hindlimb-unloaded and STS-135 space-flown mice

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Tanjung, Nancy; Swarnkar, Gaurav; Ledet, Eric; Yokota, Hiroki

    2012-09-01

    Various environmental stresses elevate the phosphorylation level of eukaryotic translation initiation factor 2 alpha (eIF2α) and induce transcriptional activation of a set of stress responsive genes such as activating transcription factors 3 and 6 (ATF3 and ATF6), CCAAT/enhancer-binding protein homologous protein (CHOP), and Xbp1 (X-box binding protein 1). These stress sources include radiation, oxidation, and stress to the endoplasmic reticulum, and it is recently reported that unloading by hindlimb unloading is such a stress source. No studies, however, have examined the phosphorylation level of eIF2α (eIF2α-p) using skeletal samples that have experienced microgravity in space. In this study we addressed a question: Does a mouse tibia flown in space show altered levels of eIF2α-p? To address this question, we obtained STS-135 flown samples that were harvested 4-7 h after landing. The tibia and femur isolated from hindlimb unloaded mice were employed as non-flight controls. The effects of loading were also investigated in non- flight controls. Results indicate that the level of eIF2α-p of the non-flight controls was elevated during hindlimb unloading and reduced after being released from unloading. Second, the eIF2α-p level of space-flown samples was decreased, and mechanical loading to the tibia caused the reduction of the eIF2α-p level. Third, the mRNA levels of ATF3, ATF6, and CHOP were lowered in space-flown samples as well as in the non-flight samples 4-7 h after being released from unloading. Collectively, the results herein indicated that a release from hindlimb unloading and a return to normal weight environment from space provided a suppressive effect to eIF2α-linked stress responses and that a period of 2-4 h is sufficient to induce this suppressive outcome.

  20. A comparative study of proximal hindlimb flexion in horses: 5 versus 60 seconds.

    PubMed

    Armentrout, A R; Beard, W L; White, B J; Lillich, J D

    2012-07-01

    The flexion test is routinely used in lameness and prepurchase examinations. There is no accepted standard for duration of flexion or evidence that interpretation of results would differ with different durations of flexion. There will be no difference in interpretation of proximal hindlimb flexion for 5 or 60 s. Video recordings of lameness examinations of 34 client-owned horses were performed that included: baseline lameness, proximal hindlimb flexion for 60 s, and flexion of the same limb for 5 s. Videos were edited to blind reviewers to the hypothesis being tested. The baseline lameness video from each horse was paired with each flexion to make 2 pairs of videos for each case. Twenty video pairs were repeated to assess intraobserver repeatability. Fifteen experienced equine clinicians were asked to review the baseline lameness video followed by the flexion test and grade the response to flexion as either positive or negative. Potential associations between the duration of flexion and the likelihood of a positive flexion test were evaluated using generalised linear mixed models. A kappa value was calculated to assess the degree of intraobserver agreement on the repeated videos. Significance level was set at P<0.05. Proximal hindlimb flexion of 60 s was more likely to be called positive than flexion of 5 s (P<0.0001), with the likelihood of the same interpretation 74% of the time. The first flexion performed was more likely to be called positive than subsequent flexions (P = 0.029). Intra-assessor agreement averaged 75% with κ= 0.49. Proximal hindlimb flexion of a limb for 5 s does not yield the same result as flexing a limb for 60 s. Shorter durations of flexion may be useful for clinicians that have good agreement with flexions of 5 and 60 s. © 2011 EVJ Ltd.

  1. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Prober, R. J.; de Guzman, C. P.; de Leon, R.

    1992-01-01

    The neural circuitry of the lumbar spinal cord can generate alternating extension and flexion of the hindlimbs. The hindlimbs of adult cats with complete transection of the spinal cord at a low thoracic level (T12-T13) can perform full weight-supporting locomotion on a treadmill belt moving at a range of speeds. Some limitations in the locomotor capacity can be associated with a deficit in the recruitment level of the fast extensors during the stance phase and the flexors during the swing phase of a step cycle. The level of locomotor performance, however, can be enhanced by daily training on a treadmill while emphasizing full weight-support stepping and by providing appropriately timed sensory stimulation, loading, and/or pharmacologic stimulation of the hindlimb neuromuscular apparatus. Furthermore, there appears to be an interactive effect of these interventions. For example, the maximum treadmill speed that a spinal adult cat can attain and maintain is significantly improved with daily full weight-supporting treadmill training, but progressive recruitment of fast extensors becomes apparent only when the hindlimbs are loaded by gently pulling down on the tail during the stepping. Stimulation of the sural nerve at the initiation of the flexion phase of the step cycle can likewise markedly improve the locomotor capability. Administration of clonidine, in particular in combination with an elevated load, resulted in the most distinct and consistent alternating bursts of electromyographic activity during spinal stepping. These data indicate that the spinal cord has the ability to execute alternating activation of the extensor and flexor musculature of the hindlimbs (stepping) and that this ability can be improved by several interventions such as training, sensory stimulation, and use of some pharmacologic agents. Thus, it appears that the spinal cord, without supraspinal input, is highly plastic and has the potential to "learn," that is, to acquire and improve its ability to execute full weight-supporting locomotion on a treadmill belt.

  2. Neuromuscular Development and Regulation of Myosin Expression

    NASA Technical Reports Server (NTRS)

    Bodine, Sue

    1997-01-01

    The proposed experiments were designed to determine whether the absence of gravity during embryogenesis influences the postnatal development of the neuromuscular system. Further, we examined the effects of reduced gravity on hindlimb muscles of the pregnant rats. Microgravity may have short and long-term effects on the development of muscle fiber type differentiation and force producing capabilities. Microgravity will reduce muscle fiber size and cause a shift in myosin heavy chain expression from slow to fast in hindlimb muscles of the adult pregnant rats.

  3. Chronic neuromuscular electrical stimulation of paralyzed hindlimbs in a rodent model.

    PubMed

    Jung, Ranu; Ichihara, Kazuhiko; Venkatasubramanian, Ganapriya; Abbas, James J

    2009-10-15

    Neuromuscular electrical stimulation (NMES) can be used to activate paralyzed or paretic muscles to generate functional or therapeutic movements. The goal of this research was to develop a rodent model of NMES-assisted movement therapy after spinal cord injury (SCI) that will enable investigation of mechanisms of NMES-induced plasticity, from the molecular to systems level. Development of the model requires accurate mapping of electrode and muscle stimulation sites, the capability to selectively activate muscles to produce graded contractions of sufficient strength, stable anchoring of the implanted electrode within the muscles and stable performance with functional reliability over several weeks of the therapy window. Custom designed electrodes were implanted chronically in hindlimb muscles of spinal cord transected rats. Mechanical and electrical stability of electrodes and the ability to achieve appropriate muscle recruitment and joint angle excursion were assessed by characterizing the strength duration curves, isometric torque recruitment curves and kinematics of joint angle excursion over 6-8 weeks post implantation. Results indicate that the custom designed electrodes and implantation techniques provided sufficient anchoring and produced stable and reliable recruitment of muscles both in the absence of daily NMES (for 8 weeks) as well as with daily NMES that is initiated 3 weeks post implantation (for 6 weeks). The completed work establishes a rodent model that can be used to investigate mechanisms of neuroplasticity that underlie NMES-based movement therapy after spinal cord injury and to optimize the timing of its delivery.

  4. Relation between hand function and gross motor function in full term infants aged 4 to 8 months.

    PubMed

    Nogueira, Solange F; Figueiredo, Elyonara M; Gonçalves, Rejane V; Mancini, Marisa C

    2015-01-01

    In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object) and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. The number of reaches and the period (i.e. time) of manipulation to an object were extracted from video synchronized with the Qualisys(r) movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. RESULTS revealed a significant increase in the number of reaches (p<0.001), the time of manipulation (p<0.001) and gross motor function (p<0.001) over time, as well as associations between reaching and gross motor function (R2=0.84; p<0.001) and manipulation and gross motor function (R2=0.13; p=0.02) from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development.

  5. Recovery of skeletal muscle after 3 mo of hindlimb immobilization in rats

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Seider, M. J.

    1979-01-01

    During immobilization, skeletal muscle undergoes decreases in size and strength with concomitant atrophic and degenerative changes in slow-twitch muscle fibers. Currently there are no objective data in slow-twitch muscle demonstrating recovery of biochemical or physiological indices following termination of immobilization. The purpose of this study was to determine whether the soleus, a slow-twitch muscle, could recover normal biochemical or physiological levels following termination of immobilization. Adenosine triphosphate, glycogen, and protein concentration (mg/g wet wt) all significantly decreased following 90 days of hindlimb immobilization, but these three values returned to control levels by the 60th recovery day. Similarly, soleus muscle wet weight and protein content (mg protein/muscle) returned to control levels by the 14th recovery day. In contrast, maximal isometric tension did not return to normal until the 120th day. These results indicate that following muscular atrophy, which was achieved through 90 days of hindlimb immobilization, several biochemical and physiological values in skeletal muscle are recovered at various times after the end of immobilization.

  6. Models of disuse - A comparison of hindlimb suspension and immobilization

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Metzger, J. M.; Riley, D. A.; Unsworth, B. R.

    1986-01-01

    The effects of 1 and 2 weeks of hindlimb suspension (HS) on the contractile properties of fast- and slow-twitch skeletal muscles of male Sprague Dawley rats are studied and compared with hindlimb immobilization (HI) data. The optimal length and contractile properties of the slow-twitch soleus, fast-twitch extensor digitorum longus, and the vastus lateralis are measured. It is observed that HS and HI affect slow-twitch muscles; isometric twitch duration in the slow-twitch soleus is decreased. Soleus muscle mass and peak tetanic tension declines with disuse. A major difference in the influence of HS and HI on the maximal speed of soleus muscle shortening, V(max) is detected; HS produced a twofold increase in V(max) compared to control data and HI had no significant effect on V(max). The relation between V(max) and myosin concentration is analyzed. The data reveal that HS modifies slow-twitch muscle yielding hybrid fibers with elevated shortening velocities and this change may be dependent on the elimination of load-bearing contractions.

  7. Molecular shifts in limb identity underlie development of feathered feet in two domestic avian species

    PubMed Central

    Domyan, Eric T; Kronenberg, Zev; Infante, Carlos R; Vickrey, Anna I; Stringham, Sydney A; Bruders, Rebecca; Guernsey, Michael W; Park, Sungdae; Payne, Jason; Beckstead, Robert B; Kardon, Gabrielle; Menke, Douglas B; Yandell, Mark; Shapiro, Michael D

    2016-01-01

    Birds display remarkable diversity in the distribution and morphology of scales and feathers on their feet, yet the genetic and developmental mechanisms governing this diversity remain unknown. Domestic pigeons have striking variation in foot feathering within a single species, providing a tractable model to investigate the molecular basis of skin appendage differences. We found that feathered feet in pigeons result from a partial transformation from hindlimb to forelimb identity mediated by cis-regulatory changes in the genes encoding the hindlimb-specific transcription factor Pitx1 and forelimb-specific transcription factor Tbx5. We also found that ectopic expression of Tbx5 is associated with foot feathers in chickens, suggesting similar molecular pathways underlie phenotypic convergence between these two species. These results show how changes in expression of regional patterning genes can generate localized changes in organ fate and morphology, and provide viable molecular mechanisms for diversity in hindlimb scale and feather distribution. DOI: http://dx.doi.org/10.7554/eLife.12115.001 PMID:26977633

  8. Pathological lesions in the central nervous system and peripheral tissues of ddY mice with street rabies virus (1088 strain).

    PubMed

    Kimitsuki, Kazunori; Yamada, Kentaro; Shiwa, Nozomi; Inoue, Satoshi; Nishizono, Akira; Park, Chun-Ho

    2017-06-10

    Most studies on rabies virus pathogenesis in animal models have employed fixed rabies viruses, and the results of those employing street rabies viruses have been inconsistent. Therefore, to clarify the pathogenesis of street rabies virus (1088 strain) in mice, 10 6 focus forming units were inoculated into the right hindlimb of ddY mice (6 weeks, female). At 3 days postinoculation (DPI), mild inflammation was observed in the hindlimb muscle. At 5 DPI, ganglion cells in the right lumbosacral spinal dorsal root ganglia showed chromatolysis. Axonal degeneration and inflammatory cells increased with infection progress in the spinal dorsal horn and dorsal root ganglia. Right hindlimb paralysis was observed from 7 DPI, which progressed to quadriparalysis. However, no pathological changes were observed in the ventral horn and root fibers of the spinal cord. Viral antigen was first detected in the right hindlimb muscle at 3 DPI, followed by the right lumbosacral dorsal root ganglia, dorsal horn of spinal cord, left red nuclei, medulla oblongata and cerebral cortex (M1 area) at 5 DPI. These results suggested that the 1088 virus ascended the lumbosacral spinal cord via mainly afferent fibers at early stage of infection and moved to cerebral cortex (M1 area) using descending spinal tract. Additionally, we concluded that significant pathological changes in mice infected with 1088 strain occur in the sensory tract of the spinal cord; this selective susceptibility results in clinical features of the disease.

  9. Transient repetitive exposure to low level light therapy enhances collateral blood vessel growth in the ischemic hindlimb of the tight skin mouse.

    PubMed

    Zaidi, Maria; Krolikowki, John G; Jones, Deron W; Pritchard, Kirkwood A; Struve, Janine; Nandedkar, Sandhya D; Lohr, Nicole L; Pagel, Paul S; Weihrauch, Dorothée

    2013-01-01

    The tight skin mouse (Tsk(-/+)) is a model of scleroderma characterized by impaired vasoreactivity, increased oxidative stress, attenuated angiogenic response to VEGF and production of the angiogenesis inhibitor angiostatin. Low-level light therapy (LLLT) stimulates angiogenesis in myocardial infarction and chemotherapy-induced mucositis. We hypothesize that repetitive LLLT restores vessel growth in the ischemic hindlimb of Tsk(-/+) mice by attenuating angiostatin and enhancing angiomotin effects in vivo. C57Bl/6J and Tsk(-/+) mice underwent ligation of the femoral artery. Relative blood flow to the foot was measured using a laser Doppler imager. Tsk(-/+) mice received LLLT (670 nm, 50 mW cm(-2), 30 J cm(-2)) for 10 min per day for 14 days. Vascular density was determined using lycopersicom lectin staining. Immunofluorescent labeling, Western blot analysis and immunoprecipitation were used to determine angiostatin and angiomotin expression. Recovery of blood flow to the ischemic limb was reduced in Tsk(-/+) compared with C57Bl/6 mice 2 weeks after surgery. LLLT treatment of Tsk(-/+) mice restored blood flow to levels observed in C57Bl/6 mice. Vascular density was decreased, angiostatin expression was enhanced and angiomotin depressed in the ischemic hindlimb of Tsk(-/+) mice. LLLT treatment reversed these abnormalities. LLLT stimulates angiogenesis by increasing angiomotin and decreasing angiostatin expression in the ischemic hindlimb of Tsk(-/+) mice. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  10. The hindlimb in walking horses: 1. Kinematics and ground reaction forces.

    PubMed

    Hodson, E; Clayton, H M; Lanovaz, J L

    2001-01-01

    The objective was to study associations between kinematics and ground reaction forces in the hindlimb of walking horses. Video (60 Hz) and force (2000 Hz) data were gathered for 8 strides from each of 5 sound horses during the walk. Sagittal plane kinematics were measured concurrently with the vertical and longitudinal ground reaction forces. The hindlimb showed rapid loading and braking in the initial 10% stride. The stifle, tarsal and coffin joints flexed and the fetlock joint extended during this period of rapid loading. The vertical ground reaction force showed 2 peaks separated by a dip; this pattern was similar to the fetlock joint angle-time graph. Peaks in the longitudinal ground reaction force did not appear to correspond with kinematic events. Total braking impulse was equal to total propulsive impulse over the entire stride. Flexion and extension of the hip were responsible for protraction and retraction of the entire limb. Maximal protraction occurred shortly before the end of swing and maximal retraction occurred during breakover. During the middle part of stance the tarsal joint extended slowly, while the stifle began to flex when the limb was retracted beyond the midstance position at 28% stride. Flexion cycles of the stifle and tarsal joints were well coordinated during the swing phase to raise the distal limb as it was protracted. The results demonstrate a relationship between limb kinematics and vertical limb loading in the hindlimbs of sound horses. Future studies will elucidate the alterations in response to lameness.

  11. The hindlimb in walking horses: 2. Net joint moments and joint powers.

    PubMed

    Clayton, H M; Hodson, E; Lanovaz, J L; Colborne, G R

    2001-01-01

    The objective of the study was to describe net joint moments and joint powers in the equine hindlimb during walking. The subjects were 5 sound horses. Kinematic and force data were collected synchronously and combined with morphometric information to determine net joint moments at each hindlimb joint throughout stance and swing. The results showed that the net joint moment was on the caudal/plantar side of all hindlimb joints at the start of stance when the limb was being actively retracted. It moved to the cranial/dorsal side around 24% stride at the hip and stifle and in terminal stance at the more distal joints. It remained on the cranial/dorsal side of all joints during the first half of swing to provide active limb protraction, then moved to the caudal/plantar aspect to reverse the direction of limb motion prior to ground contact. The hip joint was the main source of energy generation throughout the stride. It was assisted by the tarsal joint in both stance and swing phases and by the fetlock joint during the stance phase. The coffin joint acted as an energy damper during stance, whereas the stifle joint absorbed almost equal amounts of energy in the stance and swing phases. The coffin and fetlock joints absorbed energy as the limb was protracted and retracted during the swing phase, suggesting that their movements were driven by inertial forces. Future studies will apply these findings to detect changes in the energy profiles due to specific soft tissue injuries.

  12. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    NASA Technical Reports Server (NTRS)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  13. Dynamic Foot Stimulation Attenuates Soleus Muscle Atrophy Induced by Hindlimb Unloading in Rats

    NASA Technical Reports Server (NTRS)

    Kyparos, Antonios; Feeback, Daniel L.; Layne, Charles S.; Martinez, Daniel A.; Clarke, Mark S. F.

    2004-01-01

    Unloading-induced myofiber atrophy is a phenomenon that occurs in the aging population, bed-ridden patients and astronauts. The objective of this study was to determine whether or not dynamic foot stimulation (DFS) applied to the plantar surface of the rat foot can serve as a countermeasure to the soleus muscle atrophy normally observed in hindlimb unloaded (HU) rats. Thirty mature adult (6-month-old) male Wistar rats were randomly assigned into ambulatory control (AMB), hindlimb unloaded alone (HU), or hindlimb unloaded with the application of DFS (HU+DFS) groups. A dynamic pattern of pressure was applied to the right foot of each HU animal using a specially fabricated boot containing an inflatable air bladder connected to a solenoid air pump controlled by a laptop computer. The anti-atrophic effects of DFS were quantified morphometrically in frozen cross-sections of soleus muscle stained using the metachromatic-ATPase fiber typing technique. Application of DFS during HU significantly counteracted the atrophic response observed in the soleus by preventing approximately 85% of the reduction in Type I myofiber cross-sectional area (CSA) observed during HU. However, DFS did not protect type II fibers of the soleus from HU-induced atrophy or any fiber type in the soleus muscle of the contralateral control leg of the DFS-treated HU animals. These results illustrate that the application of DFS to the rat foot is an effective countermeasure to soleus muscle atrophy induced by HU.

  14. Molecular motors and their functions in plants

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.

    2001-01-01

    Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.

  15. The water extract of Liuwei dihuang possesses multi-protective properties on neurons and muscle tissue against deficiency of survival motor neuron protein.

    PubMed

    Tseng, Yu-Ting; Jong, Yuh-Jyh; Liang, Wei-Fang; Chang, Fang-Rong; Lo, Yi-Ching

    2017-10-15

    Deficiency of survival motor neuron (SMN) protein, which is encoded by the SMN1 and SMN2 genes, induces widespread splicing defects mainly in spinal motor neurons, and leads to spinal muscular atrophy (SMA). Currently, there is no effective treatment for SMA. Liuwei dihuang (LWDH), a traditional Chinese herbal formula, possesses multiple therapeutic benefits against various diseases via modulation of the nervous, immune and endocrine systems. Previously, we demonstrated water extract of LWDH (LWDH-WE) protects dopaminergic neurons and improves motor activity in models of Parkinson's disease. This study aimed to investigate the potential protection of LWDH-WE on SMN deficiency-induced neurodegeneration and muscle weakness. The effects of LWDH-WE on SMN deficiency-induced neurotoxicity and muscle atrophy were examined by using SMN-deficient NSC34 motor neuron-like cells and SMA-like mice, respectively. Inducible SMN-knockdown NSC34 motor neuron-like cells were used to mimic SMN-deficient condition. Doxycycline (1 µg/ml) was used to induce SMN deficiency in stable NSC34 cell line carrying SMN-specific shRNA. SMAΔ7 mice were used as a severe type of SMA mouse model. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Apoptotic cells and neurite length were observed by inverted microscope. Protein expressions were examined by western blots. Muscle strength of animals was evaluated by hind-limb suspension test. LWDH-WE significantly increased SMN protein level, mitochondrial membrane potential and cell viability of SMN-deficient NSC34 cells. LWDH-WE attenuated SMN deficiency-induced down-regulation of B-cell lymphoma-2 (Bcl-2) and up-regulation of cytosolic cytochrome c and cleaved caspase-3. Moreover, LWDH-WE prevented SMN deficiency-induced inhibition of neurite outgrowth and activation of Ras homolog gene family, member A (RhoA)/ Rho-associated protein kinase (ROCK2)/ phospho-LIM kinase (p-LIMK)/ phospho-cofilin (p-cofilin) pathway. Furthermore, in SMA-like mice, LWDH-WE improved muscle strength and body weight accompanied with up-regulation of SMN protein in spinal cord, brain, and gastrocnemius muscle tissues. The present study demonstrated that LWDH-WE protects motor neurons against SMN deficiency-induced neurodegeneration, and it also improves the muscle strength of SMA-like mice, suggesting the potential benefits of LWDH-WE as a complementary prescription for SMN deficiency-related diseases. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Cerebral palsy in Victoria: motor types, topography and gross motor function.

    PubMed

    Howard, Jason; Soo, Brendan; Graham, H Kerr; Boyd, Roslyn N; Reid, Sue; Lanigan, Anna; Wolfe, Rory; Reddihough, Dinah S

    2005-01-01

    To study the relationships between motor type, topographical distribution and gross motor function in a large, population-based cohort of children with cerebral palsy (CP), from the State of Victoria, and compare this cohort to similar cohorts from other countries. An inception cohort was generated from the Victorian Cerebral Palsy Register (VCPR) for the birth years 1990-1992. Demographic information, motor types and topographical distribution were obtained from the register and supplemented by grading gross motor function according to the Gross Motor Function Classification System (GMFCS). Complete data were obtained on 323 (86%) of 374 children in the cohort. Gross motor function varied from GMFCS level I (35%) to GMFCS level V (18%) and was similar in distribution to a contemporaneous Swedish cohort. There was a fairly even distribution across the topographical distributions of hemiplegia (35%), diplegia (28%) and quadriplegia (37%) with a large majority of young people having the spastic motor type (86%). The VCPR is ideal for population-based studies of gross motor function in children with CP. Gross motor function is similar in populations of children with CP in developed countries but the comparison of motor types and topographical distribution is difficult because of lack of consensus with classification systems. Use of the GMFCS provides a valid and reproducible method for clinicians to describe gross motor function in children with CP using a universal language.

  17. [Reduction of the immunological rejection in composite tissue allotransplantation by heat stress preconditioning].

    PubMed

    Schorr, N; Sauerbier, M; Germann, G; Gebhard, M M; Ofer, N

    2011-12-01

    In spite of great advances in the field of composite tissue allotransplantations (CTA), there is still a major need for optimisation in terms of immunosuppression. Heat shock proteins are produced as a reaction of the body during a stress situation. Once elevated, they protect against a second stress and reduce ischaemia-reperfusion injury within transplantations. In the literature the effect of heat shock and HSP70 on rejection after CTA has not been described. The purpose of this experimental study was to examine the effect of heat shock proteins on rejection in a rat model of CTA. Evaluated was the effect of preconditioning by prior heat stress. Brown Norway rats were systemically heated to a core temperature of 42 °C in order to up-regulate HSP70. The expression of HSP70 in muscle was measured by Western blot analysis and showed a peak 24 h after heat shock. Allogeneic hindlimb transplantations were performed between Brown Norway rats (donor) and Lewis rats (recipients). Group 1 (n=12) was preheated 24 h prior to transplantation. In group 2 (n=12) the transplantation was performed without prior heat shock. Group 3 (n=6) was used as a control group with syngeneic hindlimb transplantations between Lewis rats. Postoperatively the appearance of the transplanted hindlimb was evaluated every 12 h. The beginning of rejection was defined when plantar erythema and foot oedema could be observed at the same time. To verify these discrete signs of rejection, the observation was continued for a further 24 h. In this time erythema and oedema spread over the whole transplanted hindlimb. The rat was sacrificed after specimens of skin and muscle had been taken for histological assessment. The rejection in group 1 (with preconditioning heat shock) began after 4.83±0.44 days, in group 2 (without heat shock) already after 3.88±0.53 days. The difference between these groups was significant because of the small standard deviation (Whitney-Mann U test: p<0.01). In our model of allogeneic composite tissue transplantation, a heat shock and subsequent up-regulation of HSP70 led to a significant delay of the immunological rejection. As the graft rejection is an important item influencing the outcome of allogeneic transplantations, these results represent an option to improve the final functional outcome of composite tissue allotransplantations. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Do Integrins Mediate the Skeletal Response to Altered Loading?

    NASA Technical Reports Server (NTRS)

    vanderMeulen, Marjolein C. H.

    2004-01-01

    In vivo experiments were performed to examine the role of B1 integrin in skeletal adaptation to reduced and increased loading. Transgenic mice were generated with a dominant negative form of the B1 integrin cytoplasmic domain with expression driven by the osteocalcin promoter (pOCb1DN). This fragment consists of the transmembrane and intracellular domains and interferes with endogenous integrin signalling in vitro. This promoter targets expression of the transgene to mature bone cells. Expression of the transgene was confirmed by immunoprecipitation and western blotting. Reduced loading was generated by hindlimb suspension and increased loading the resumption of normal loading following hindlimb suspension. Two groups of female 35-day old mice were examined: poCb1DN transgenic mice (TG) and wild-type littermate controls (WT). Animals were hindlimb suspended for 1 week (HU, n = l0/gp) or 4 weeks (HU, n = 4 - 7/gp) or suspended for 4 weeks followed by reloading by normal ambulation for 4 weeks (RL, n = l0/gp). Age-matched controls (CT) were pairfed based on the HU food intake. The protocols were approved by the NASA Ames Research Center IACUC. Upon completion of the experimental protocol, body mass was recorded and tissues of interest removed and analyzed following standard procedures. Femoral whole bone structural behavior was measured in torsion to failure to obtain whole bone strength (failure torque) and torsional rigidity. Ash content (ash) and fraction (% ash) were determined for the tibia. Total ash is indicative of bone size whereas %ash is a material property. Tibial curvature was measured from microradiographs. For each experiment, the effects of genotype (TG, WT) and treatment (CT, HU/RL) were assessed by two-factor ANOVA followed by the Tukey-Kramer posthoc to identify significant differences at an alpha level of 0.05. Our goal was to understand differences resulting from altered integrin function in the adaptation to altered loading.

  19. Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to RANKL mediated osteoclastogenesis

    PubMed Central

    Saxena, Ritu; Pan, George; Dohm, Erik D.; McDonald, Jay M.

    2010-01-01

    Mechanical forces are essential to maintain skeletal integrity, and microgravity exposure leads to bone loss. The underlying molecular mechanisms leading to the changes in osteoblasts and osteoclast differentiation and function remain be to fully elucidated. Due to the infrequency of spaceflights and payload constraints, establishing in vitro and in vivo systems that mimic microgravity conditions becomes necessary. We have established a simulated microgravity (modeled microgravity, MMG) system to study the changes induced in osteoclast precursors. We observed that MMG, on its own was unable to induce osteoclastogenesis of osteoclast precursors, however, 24h of MMG activates osteoclastogenesis-related signaling molecules ERK, p38, PLCγ2, and NFATc1. RANKL (and/or M-CSF) stimulation for 3-4 days in gravity of cells that had been exposed to MMG for 24h, enhanced the formation of very large TRAP positive multinucleated (>30 nuclei) osteoclasts accompanied by an upregulation of osteoclast marker genes- TRAP and cathepsin K. To validate the in vitro system, we established the hindlimb unloading system using BALB/c mice and observed a decrease in BMD of femurs and a loss of 3D microstructure of both cortical and trabecular bone as determined by microCT. There was a marked stimulation of osteoclastogenesis as determined by the total number of TRAP positive multinucleated osteoclasts formed and also an increase in RANKL stimulated osteoclastogenesis from precursors removed from the tibias of mice after 28 days of hindlimb unloading. Contrary to earlier reported findings, we did not observe any histomorphometrical changes in the bone formation parameters. Thus, the above observations indicate that microgravity sensitizes osteoclast precursors for increased differentiation. The in vitro model system described here is potentially a valid system for testing drugs for preventing microgravity induced bone loss by targeting the molecular events occurring in microgravity-induced enhanced osteoclastogenesis. PMID:20589403

  20. Dietary fish oil delays hypoxic skeletal muscle fatigue and enhances caffeine-stimulated contractile recovery in the rat in vivo hindlimb.

    PubMed

    Peoples, Gregory E; McLennan, Peter L

    2017-06-01

    Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O 2 (SaO 2 -98%) and hypoxia 14% O 2 (SaO 2 -89%)) the hindlimb was perfused at a constant flow and the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g -1 tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P < 0.05), and the time to decline to 50% of maximum twitch tension was extended (SF: 546 ± 58; n-6 PUFA: 522 ± 58; FO: 792 ± 96 s; P < 0.05). In addition, caffeine-stimulated skeletal muscle contractile recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.

  1. Thoracic Hemisection in Rats Results in Initial Recovery Followed by a Late Decrement in Locomotor Movements, with Changes in Coordination Correlated with Serotonergic Innervation of the Ventral Horn

    PubMed Central

    Leszczyńska, Anna N.; Majczyński, Henryk; Wilczyński, Grzegorz M.; Sławińska, Urszula; Cabaj, Anna M.

    2015-01-01

    Lateral thoracic hemisection of the rodent spinal cord is a popular model of spinal cord injury, in which the effects of various treatments, designed to encourage locomotor recovery, are tested. Nevertheless, there are still inconsistencies in the literature concerning the details of spontaneous locomotor recovery after such lesions, and there is a lack of data concerning the quality of locomotion over a long time span after the lesion. In this study, we aimed to address some of these issues. In our experiments, locomotor recovery was assessed using EMG and CatWalk recordings and analysis. Our results showed that after hemisection there was paralysis in both hindlimbs, followed by a substantial recovery of locomotor movements, but even at the peak of recovery, which occurred about 4 weeks after the lesion, some deficits of locomotion remained present. The parameters that were abnormal included abduction, interlimb coordination and speed of locomotion. Locomotor performance was stable for several weeks, but about 3–4 months after hemisection secondary locomotor impairment was observed with changes in parameters, such as speed of locomotion, interlimb coordination, base of hindlimb support, hindlimb abduction and relative foot print distance. Histological analysis of serotonergic innervation at the lumbar ventral horn below hemisection revealed a limited restoration of serotonergic fibers on the ipsilateral side of the spinal cord, while on the contralateral side of the spinal cord it returned to normal. In addition, the length of these fibers on both sides of the spinal cord correlated with inter- and intralimb coordination. In contrast to data reported in the literature, our results show there is not full locomotor recovery after spinal cord hemisection. Secondary deterioration of certain locomotor functions occurs with time in hemisected rats, and locomotor recovery appears partly associated with reinnervation of spinal circuitry by serotonergic fibers. PMID:26606275

  2. Vincristine and fine motor function of children with acute lymphoblastic leukemia

    PubMed

    Sabarre, Cheryl L; Rassekh, Shahrad R; Zwicker, Jill G

    2014-10-01

    Children with acute lymphoblastic leukemia receive vincristine, a chemotherapy drug known to cause peripheral neuropathy. Yet, few studies have examined the association of vincristine to fine motor function. This study will describe the fine motor skills and function of children with acute lymphoblastic leukemia on maintenance vincristine. A prospective case series design assessed manual dexterity and parent-reported fine motor dysfunction of 15 children with acute lymphoblastic leukemia in relation to cumulative vincristine exposure. Almost half of the participants had below-average fine motor skills compared to age-related norms, and 57% of parents observed functional motor problems in their children. No significant associations were found between vincristine, manual dexterity, and functional motor skills. Early detection and intervention for fine motor difficulties is suggested. Research with a larger sample is necessary to further explore the association of vincristine and fine motor function in this clinical population.

  3. Relationships Between Gross Motor Skills and Social Function in Young Boys With Autism Spectrum Disorder.

    PubMed

    Holloway, Jamie M; Long, Toby M; Biasini, Fred

    2018-05-02

    The purpose of this study was to examine the relationship between gross motor skills and social function in young boys with autism spectrum disorder. Twenty-one children with autism spectrum disorder participated in the study. The Peabody Developmental Motor Scales Second Edition and the Miller Function and Participation Scales were used to assess gross motor skills. The Social Skills Improvement System Rating Scales was used to assess social function. Moderately high correlations were found between overall gross motor and social skills (r = 0.644) and between the core stability motor subtest and overall social skills (r = -0.672). Specific motor impairments in stability, motor accuracy, and object manipulation scores were predictive of social function. This study suggests that motor skills and social function are related in young boys with autism. Implications for physical therapy intervention are also discussed.

  4. The relationship between motor function, cognition, independence and quality of life in myelomeningocele patients.

    PubMed

    Luz, Carolina Lundberg; Moura, Maria Clara Drummond Soares de; Becker, Karine Kyomi; Teixeira, Rosani Aparecida Antunes; Voos, Mariana Callil; Hasue, Renata Hydee

    2017-08-01

    Motor function, cognition, functional independence and quality of life have been described in myelomeningocele patients, but no study has investigated their relationships. We aimed to investigate the relationships between motor function, cognition, functional independence, quality of life, age, and lesion level in myelomeningocele patients, and investigate the influence of hydrocephalus on these variables. We assessed 47 patients with the Gross Motor Function Measure (motor function), Raven's Colored Progressive Matrices (cognition), Pediatric Evaluation of Disability Inventory (functional independence) and the Autoquestionnaire Qualité de vie Enfant Imagé (quality of life). Spearman's correlation tests determined relationships between the variables. The Friedman ANOVAs determined the influence of hydrocephalus. Motor function was strongly related to mobility and lesion level, and moderately related to cognition, self-care and social function. Cognition and quality of life were moderately related to functional independence. Age correlated moderately with functional independence and quality of life. Hydrocephalus resulted in poorer motor/cognitive outcomes and lower functional independence.

  5. Insulin effect on amino acid uptake by unloaded rat hindlimb muscles

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Tischler, M. E.

    1988-01-01

    The effect of insulin on the uptake of alpha-amino-isobutyric acid (AIB) by unloaded rat hindlimb muscles was investigated using soleus and extensor digitorum longus (EDL) muscles from intact and adrenalectomized (ADX) rats that were tail-casted for six days. It was found that, at insulin levels above 0.00001 units/ml, the in vitro rate of AIB uptake by muscles from intact animals was stimulated more in the weight bearing muscles than in unloaded ones. In ADX animals, this differential response to insulin was abolished.

  6. Relation between hand function and gross motor function in full term infants aged 4 to 8 months

    PubMed Central

    Nogueira, Solange F.; Figueiredo, Elyonara M.; Gonçalves, Rejane V.; Mancini, Marisa C.

    2015-01-01

    Background: In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. Objective: To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object) and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. Method: The number of reaches and the period (i.e. time) of manipulation to an object were extracted from video synchronized with the Qualisys(r) movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. Results: Results revealed a significant increase in the number of reaches (p<0.001), the time of manipulation (p<0.001) and gross motor function (p<0.001) over time, as well as associations between reaching and gross motor function (R2=0.84; p<0.001) and manipulation and gross motor function (R2=0.13; p=0.02) from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. Conclusion: The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development. PMID:25714437

  7. Cold shivering activity after unilateral destruction of the vestibular apparatus

    NASA Technical Reports Server (NTRS)

    Kuzmina, G. I.

    1980-01-01

    The bioelectric activity of muscles (flexors and extensors of the forelimbs and hindlimbs) during cold shivering after unilateral destruction of the vestibular apparatus. It was found, that unilateral delabyrinthing produces bilateral facilitation of cold shivering in the flexor extremities more pronounced on the ipsilateral side. In the extensor muscles there was an absence of bioelectric activity both before and after delabyrinthing. Enhancement of cold shivering in the flexor extremities following intervention was evidently conditioned by removal of the inhibiting effect of the vestibulary apparatus on the function of special centers.

  8. Motor function domains in alternating hemiplegia of childhood.

    PubMed

    Masoud, Melanie; Gordon, Kelly; Hall, Amanda; Jasien, Joan; Lardinois, Kara; Uchitel, Julie; Mclean, Melissa; Prange, Lyndsey; Wuchich, Jeffrey; Mikati, Mohamad A

    2017-08-01

    To characterize motor function profiles in alternating hemiplegia of childhood, and to investigate interrelationships between these domains and with age. We studied a cohort of 23 patients (9 males, 14 females; mean age 9y 4mo, range 4mo-43y) who underwent standardized tests to assess gross motor, upper extremity motor control, motor speech, and dysphagia functions. Gross Motor Function Classification System (GMFCS), Gross Motor Function Measure-88 (GMFM-88), Manual Ability Classification System (MACS), and Revised Melbourne Assessment (MA2) scales manifested predominantly mild impairments; motor speech, moderate to severe; Modified Dysphagia Outcome and Severity Scale (M-DOSS), mild-to moderate deficits. GMFCS correlated with GMFM-88 scores (Pearson's correlation, p=0.002), MACS (p=0.038), and MA2 fluency (p=0.005) and accuracy (p=0.038) scores. GMFCS did not correlate with motor speech (p=0.399), MA2 dexterity (p=0.247), range of motion (p=0.063), or M-DOSS (p=0.856). Motor speech was more severely impaired than the GMFCS (p<0.013). There was no correlation between any of the assessment tools and age (p=0.210-0.798). Our data establish a detailed profile of motor function in alternating hemiplegia of childhood, argue against the presence of worse motor function in older patients, identify tools helpful in evaluating this population, and identify oropharyngeal function as the more severely affected domain, suggesting that brain areas controlling this function are more affected than others. © 2017 Mac Keith Press.

  9. Pontine norepinephrine content after motor cortical ablation in rats.

    PubMed

    Gonzalez-Pina, Rigoberto; Bueno-Nava, Antonio; Montes, Sergio; Alfaro-Rodriguez, Alfonso; Gonzalez-Maciel, Angélica; Reynoso-Robles, Rafael; Ayala-Guerrero, Fructuoso

    2005-01-01

    It has been reported that norepinephrine (NE) plays an important role in recovery after brain damage. However, the role of the pons, the site where the norepinephrinergic locus coeruleus (LC) is located, has not been elucidated. In order to study the changes in the pontine NE content in either noninjured, injured or recovered rats, we used 35 animals trained to walk across to a walkway where their footprints were recorded. Subsequently, 17 trained rats were sham-operated while 18 were injured by means of an ablation of the right motor cortex representative of the hindlimb. From the injured rats, 6 were sacrificed 6 hr before surgery in order to obtain the pons, while all the remaining rats were recorded in the walkway 6, 24 and 48 hr post-surgery. Then, rats were sacrificed by decapitation, the pons was removed and each hemisphere was prepared for the chromatographic analysis of NE. Results showed that after cortical brain damage, the length of the stride decreased while the angle of the stride increased 6 hr post-surgery. Recovery was observed after 24 hr. NE increased in the pons after 6 hr and returned to normal levels when rats had recovered. This suggests that cortical damage elicits NE changes in the LC that could reorganize the system to lead the recovery process. Such findings must be taken in account when pharmacotherapy with antidepressants or antipsychotics that act on norepinephrine-containing neuronal systems are prescribed in patients after stroke.

  10. Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke

    PubMed Central

    Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.

    2016-01-01

    Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794

  11. Pravastatin stimulates angiogenesis in a murine hindlimb ischemia model: a positron emission tomography imaging study with (64)Cu-NOTA-TRC105.

    PubMed

    Orbay, Hakan; Hong, Hao; Koch, Jill M; Valdovinos, Hector F; Hacker, Timothy A; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo

    2013-01-01

    In this study, (64)Cu-NOTA-TRC105 (TRC105 is an anti-CD105 monoclonal antibody that binds to both human and murine CD105) positron emission tomography (PET) was used to assess the response to pravastatin treatment in a murine model of peripheral artery disease (PAD). Hindlimb ischemia was induced by ligation of the right femoral arteries in BALB/c mice under anesthesia, and the left hindlimb served as an internal control. Mice in the treatment group were given intraperitoneal pravastatin daily until the end of the study, whereas the animals in the control group were injected with 0.9% sodium chloride solution. Laser Doppler imaging showed that blood flow in the ischemic hindlimb plummeted to ~20% of the normal level after surgery, and gradually recovered to near normal level on day 10 in the treatment group and on day 20 in the control group. Angiogenesis was non-invasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 3, 10, 17, and 24. Tracer uptake at 48 h post-injection in the ischemic hindlimb in the treatment group was significantly higher than that of the control group on day 10 (20.5 ± 1.9 %ID/g vs 11.4 ± 1.5 %ID/g), suggesting increased CD105 expression and higher level of angiogenesis upon pravastatin treatment, and gradually decreased to background levels in both groups (4.9 ± 0.8 %ID/g vs 3.4 ± 1.9 %ID/g on day 24). The in vivo PET data correlated well with ex vivo biodistribution studies performed on day 24. Increased CD105 expression on days 3 and 10 following ischemia was further confirmed by immunofluorescence staining. Taken together, our results indicated that (64)Cu-NOTA-TRC105 PET is a suitable and non-invasive method to monitor the angiogenesis and therapeutic response in PAD, which can also be utilized for non-invasive evaluation of other pro-angiogenic/anti-angiogenic drugs in other cardiovascular diseases and cancer.

  12. Retinoic acid-independent expression of Meis2 during autopod patterning in the developing bat and mouse limb.

    PubMed

    Mason, Mandy K; Hockman, Dorit; Curry, Lyle; Cunningham, Thomas J; Duester, Gregg; Logan, Malcolm; Jacobs, David S; Illing, Nicola

    2015-01-01

    The bat has strikingly divergent forelimbs (long digits supporting wing membranes) and hindlimbs (short, typically free digits) due to the distinct requirements of both aerial and terrestrial locomotion. During embryonic development, the morphology of the bat forelimb deviates dramatically from the mouse and chick, offering an alternative paradigm for identifying genes that play an important role in limb patterning. Using transcriptome analysis of developing Natal long-fingered bat (Miniopterus natalensis) fore- and hindlimbs, we demonstrate that the transcription factor Meis2 has a significantly higher expression in bat forelimb autopods compared to hindlimbs. Validation by reverse transcriptase and quantitative polymerase chain reaction (RT-qPCR) and whole mount in situ hybridisation shows that Meis2, conventionally known as a marker of the early proximal limb bud, is upregulated in the bat forelimb autopod from CS16. Meis2 expression is localised to the expanding interdigital webbing and the membranes linking the wing to the hindlimb and tail. In mice, Meis2 is also expressed in the interdigital region prior to tissue regression. This interdigital Meis2 expression is not activated by retinoic acid (RA) signalling as it is present in the retained interdigital tissue of Rdh10 (trex/trex) mice, which lack RA. Additionally, genes encoding RA-synthesising enzymes, Rdh10 and Aldh1a2, and the RA nuclear receptor Rarβ are robustly expressed in bat fore- and hindlimb interdigital tissues indicating that the mechanism that retains interdigital tissue in bats also occurs independently of RA signalling. Mammalian interdigital Meis2 expression, and upregulation in the interdigital webbing of bat wings, suggests an important role for Meis2 in autopod development. Interdigital Meis2 expression is RA-independent, and retention of interdigital webbing in bat wings is not due to the suppression of RA-induced cell death. Rather, RA signalling may play a role in the thinning (rather than complete loss) of the interdigital tissue in the bat forelimb, while Meis2 may interact with other factors during both bat and mouse autopod development to maintain a pool of interdigital cells that contribute to digit patterning and growth.

  13. Influence of seating styles on head and pelvic vertical movement symmetry in horses ridden at trot

    PubMed Central

    Hernlund, Elin; Pfau, Thilo; Haubro Andersen, Pia; Rhodin, Marie

    2018-01-01

    Detailed knowledge of how a rider’s seating style and riding on a circle influences the movement symmetry of the horse’s head and pelvis may aid rider and trainer in an early recognition of low grade lameness. Such knowledge is also important during both subjective and objective lameness evaluations in the ridden horse in a clinical setting. In this study, inertial sensors were used to assess how different rider seating styles may influence head and pelvic movement symmetry in horses trotting in a straight line and on the circle in both directions. A total of 26 horses were subjected to 15 different conditions at trot: three unridden conditions and 12 ridden conditions where the rider performed three different seating styles (rising trot, sitting trot and two point seat). Rising trot induced systematic changes in movement symmetry of the horses. The most prominent effect was decreased pelvic rise that occurred as the rider was actively rising up in the stirrups, thus creating a downward momentum counteracting the horses push off. This mimics a push off lameness in the hindlimb that is in stance when the rider sits down in the saddle during the rising trot. On the circle, the asymmetries induced by rising trot on the correct diagonal counteracted the circle induced asymmetries, rendering the horse more symmetrical. This finding offers an explanation to the equestrian tradition of rising on the ‘correct diagonal.’ In horses with small pre-existing movement asymmetries, the asymmetry induced by rising trot, as well as the circular track, attenuated or reduced the horse’s baseline asymmetry, depending on the sitting diagonal and direction on the circle. A push off hindlimb lameness would be expected to increase when the rider sits during the lame hindlimb stance whereas an impact hindlimb lameness would be expected to decrease. These findings suggest that the rising trot may be useful for identifying the type of lameness during subjective lameness assessment of hindlimb lameness. This theory needs to be studied further in clinically lame horses. PMID:29621299

  14. Acute antioxidant supplementation and skeletal muscle vascular conductance in aged rats: role of exercise and fiber type.

    PubMed

    Hirai, Daniel M; Copp, Steven W; Schwagerl, Peter J; Haub, Mark D; Poole, David C; Musch, Timothy I

    2011-04-01

    Age-related increases in oxidative stress contribute to impaired skeletal muscle vascular control. However, recent evidence indicates that antioxidant treatment with tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) attenuates flow-mediated vasodilation in isolated arterioles from the highly oxidative soleus muscle of aged rats. Whether antioxidant treatment with tempol evokes similar responses in vivo at rest and during exercise in senescent individuals and whether this effect varies based on muscle fiber type composition are unknown. We tested the hypothesis that redox modulation via acute systemic tempol administration decreases vascular conductance (VC) primarily in oxidative hindlimb locomotor muscles at rest and during submaximal whole body exercise (treadmill running at 20 m/min, 5% grade) in aged rats. Eighteen old (25-26 mo) male Fischer 344 x Brown Norway rats were assigned to either rest (n = 8) or exercise (n = 10) groups. Regional VC was determined via radiolabeled microspheres before and after intra-arterial administration of tempol (302 μmol/kg). Tempol decreased mean arterial pressure significantly by 9% at rest and 16% during exercise. At rest, similar VC in 26 out of 28 individual hindlimb muscles or muscle parts following tempol administration compared with control resulted in unchanged total hindlimb muscle VC (control: 0.18 ± 0.02; tempol: 0.17 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1); P > 0.05). During exercise, all individual hindlimb muscles or muscle parts irrespective of fiber type composition exhibited either an increase or no change in VC with tempol (i.e., ↑11 and ↔17 muscles or muscle parts), such that total hindlimb VC increased by 25% (control: 0.93 ± 0.04; tempol: 1.15 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1); P ≤ 0.05). These results demonstrate that acute systemic administration of the antioxidant tempol significantly impacts the control of regional vascular tone in vivo presumably via redox modulation and improves skeletal muscle vasodilation independently of fiber type composition during submaximal whole body exercise in aged rats.

  15. The short legs of great apes: evidence for aggressive behavior in australopiths.

    PubMed

    Carrier, David R

    2007-03-01

    Early hominins, australopiths, were similar to most large primates in having relatively short hindlimbs for their body size. The short legs of large primates are thought to represent specialization for vertical climbing and quadrupedal stability on branches. Although this may be true, there are reasons to suspect that the evolution of short legs may also represent specialization for physical aggression. Fighting in apes is a behavior in which short legs are expected to improve performance by lowering the center of mass during bipedal stance and by increasing the leverage through which muscle forces can be applied to the ground. Among anthropoid primates, body size sexual dimorphism (SSD) and canine height sexual dimorphism (CSD) are strongly correlated with levels of male-male competition, allowing SSD and CSD to be used as indices of male-male aggression. Here I show that the evolution of hindlimb length in apes is inversely correlated with the evolution of SSD (R(2)= 0.683, P-value = 0.006) and the evolution of CSD (R(2)= 0.630, P-value = 0.013). In contrast, a significant correlation was not observed for the relationship between the evolution of hindlimb and forelimb lengths. These observations are consistent with the suggestion that selection for fighting performance has maintained relatively short hindlimbs in species of Hominoidea with high levels of male-male competition. Although australopiths were highly derived for striding bipedalism when traveling on the ground, they retained short legs compared to those of Homo for over two million years, approximately 100,000 generations. Their short legs may be indicative of persistent selection for high levels of aggression.

  16. Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Li, Huiyan; Wan, Huiying; Xia, Tian; Chen, Maohua; Zhang, Yun; Luo, Xiaoming; Li, Xiaohong

    2015-07-01

    Therapeutic angiogenesis remains the most effective method to re-establish a proper blood flow in ischemic tissues. There is a great clinical need to identify an injectable format to achieve a well accumulation following local administration and a sustained delivery of biological factors at the ischemic sites. In the current study, fragmented nanofibers with loaded traditional Chinese medicines, astragaloside IV (AT), the main active ingredient of astragalus, and ferulic acid (FA), the main ingredient of angelica, were proposed to promote the microvessel formation after intramuscular injection into ischemic hindlimbs. Fragmented fibers with average lengths of 5 (FF-5), 20 (FF-20) and 80 μm (FF-80) were constructed by the cryocutting of aligned electrospun fibers. Their dispersion in sodium alginate solution (0.2%) indicated good injectability. After injection into the quadriceps muscles of the hindlimbs, FF-20 and FF-80 fiber fragments showed higher tissue retentions than FF-5, and around 90% of the injected doses were determined after 7 days. On a hindlimb ischemia model established by ligating the femoral arteries, intramuscular injection of the mixtures of FA-loaded and AT-loaded FF-20 fiber fragments substantially reduced the muscle degeneration with minimal fibrosis formation, significantly enhanced the neovessel formation and hindlimb perfusion in the ischemic tissues, and efficiently promoted the limb salvage with few limb losses. Along with the easy manipulation and lower invasiveness for in vivo administration, fragmented fibers should become potential drug carriers for disease treatment, wound recovery and tissue repair after local injection.

  17. Increasing the number of unloading/reambulation cycles does not adversely impact body composition and lumbar bone mineral density but reduces tissue sensitivity

    NASA Astrophysics Data System (ADS)

    Gupta, Shikha; Manske, Sarah L.; Judex, Stefan

    2013-11-01

    A single exposure to hindlimb unloading leads to changes in body mass, body composition and bone, but the consequences of multiple exposures are not yet understood. Within a 18 week period, adult C57BL/6 male mice were exposed to 1 (1x-HLU), 2 (2x-HLU) or 3 (3x-HLU) cycles of 2 weeks of hindlimb unloading (HLU) followed by 4 weeks of reambulation (RA), or served as ambulatory age-matched controls. In vivo μCT longitudinally tracked changes in abdominal adipose and lean tissues, lumbar vertebral apparent volumetric bone mineral density (vBMD) and upper hindlimb muscle cross-sectional area before and after the final HLU and RA cycle. During the final HLU cycle, significant decreases in total adipose tissue and vertebral vBMD in the three experimental groups occurred such that there were no significant between-group differences at the beginning of the final RA cycle. However, the magnitude of the HLU induced losses diminished in mice undergoing their 2nd or 3rd HLU cycle. Irrespective of the number of HLU/RA cycles, total adipose tissue and vertebral vBMD recovered and were no different from age-matched controls after the final RA period. In contrast, upper hindlimb muscle cross-sectional area was significantly lower than controls in all unloaded groups after the final RA period. These results suggest that tissues in the abdominal region are more resilient to multiple bouts of unloading and more amenable to recovery during reambulation than the peripheral musculoskeletal system.

  18. Retrospective assessment of peripheral nerve block techniques used in cats undergoing hindlimb orthopaedic surgery.

    PubMed

    Vettorato, Enzo; Corletto, Federico

    2016-10-01

    The aim of this study was to assess retrospectively the efficacy and complication rate of hindlimb peripheral nerve blocks (PNBs) in cats. Clinical records of cats that received PNBs and underwent hindlimb orthopaedic surgery from February 2010 to October 2014 were examined. Type of PNB, type and dose of local anaesthetic used, end-expiratory fraction of isoflurane (FE'Iso) administered, additional intraoperative analgesia, incidence of hypotension, postoperative opioid requirement, postoperative contralateral limb paralysis and neurological complications at the 6 week re-examination were investigated. Eighty-nine records were retrieved but only 69 were analysed. Four combinations of PNBs were used: 34 lateral preiliac (LPI) approach to lumbar plexus (LP) associated with lumbar paravertebral approach to sciatic nerve (SN); 20 LPI-LP associated with the lateral approach to SN; three LPI-LP associated with gluteal approach to SN; 12 dorsal-paravertebral (DPV) approach to LP associated with lateral SN. Levobupivacaine was used for the majority of PNBs. The mean intraoperative FE'Iso was 1.15%; hypotension was documented in 55.1% of anaesthetics, while 31.8% of cats received fentanyl and/or ketamine intraoperatively. Postoperatively, 72.7% of cats received at least one dose of opioid, while five cats required further postoperative analgesia (ketamine constant rate infusion and/or gabapentin). No cats showed contralateral limb paralysis and neurological complications at the 6 week re-examination. No differences were found when comparing the different PNBs used. PNBs contributed to perioperative anaesthesia/analgesia in cats undergoing hindlimb orthopaedic surgery. However, the clinical relevance of intraoperative hypotension needs further investigation. © The Author(s) 2015.

  19. Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.

    PubMed

    Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro

    2012-07-30

    Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1α-GRP78-Akt Axis.

    PubMed

    Lee, Jun Hee; Yoon, Yeo Min; Lee, Sang Hun

    2017-06-21

    Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. Under hypoxia (2% O₂), the expression of GRP78 was significantly increased via hypoxia-inducible factor (HIF)-1α. Hypoxia-induced GRP78 promoted the proliferation and migration potential of MSCs through the HIF-1α-GRP78-Akt signal axis. In a murine hind-limb ischemia model, hypoxic preconditioning enhanced the survival and proliferation of transplanted MSCs through suppression of the cell death signal pathway and augmentation of angiogenic cytokine secretion. These effects were regulated by GRP78. Our findings indicate that hypoxic preconditioning promotes survival, proliferation, and angiogenic cytokine secretion of MSCs via the HIF-1α-GRP78-Akt signal pathway, suggesting that hypoxia-preconditioned MSCs might provide a therapeutic strategy for MSC-based therapies and that GRP78 represents a potential target for the development of functional MSCs.

  1. Comparative Genomics Reveals Accelerated Evolution in Conserved Pathways during the Diversification of Anole Lizards

    PubMed Central

    Tollis, Marc; Hutchins, Elizabeth D; Stapley, Jessica; Rupp, Shawn M; Eckalbar, Walter L; Maayan, Inbar; Lasku, Eris; Infante, Carlos R; Dennis, Stuart R; Robertson, Joel A; May, Catherine M; Bermingham, Eldredge; DeNardo, Dale F; Hsieh, Shi-Tong Tonia; Kulathinal, Rob J; McMillan, William Owen; Menke, Douglas B; Pratt, Stephen C; Rawls, Jeffery Alan; Sanjur, Oris; Wilson-Rawls, Jeanne; Wilson Sayres, Melissa A; Fisher, Rebecca E

    2018-01-01

    Abstract Squamates include all lizards and snakes, and display some of the most diverse and extreme morphological adaptations among vertebrates. However, compared with birds and mammals, relatively few resources exist for comparative genomic analyses of squamates, hampering efforts to understand the molecular bases of phenotypic diversification in such a speciose clade. In particular, the ∼400 species of anole lizard represent an extensive squamate radiation. Here, we sequence and assemble the draft genomes of three anole species—Anolis frenatus, Anolis auratus, and Anolis apletophallus—for comparison with the available reference genome of Anolis carolinensis. Comparative analyses reveal a rapid background rate of molecular evolution consistent with a model of punctuated equilibrium, and strong purifying selection on functional genomic elements in anoles. We find evidence for accelerated evolution in genes involved in behavior, sensory perception, and reproduction, as well as in genes regulating limb bud development and hindlimb specification. Morphometric analyses of anole fore and hindlimbs corroborated these findings. We detect signatures of positive selection across several genes related to the development and regulation of the forebrain, hormones, and the iguanian lizard dewlap, suggesting molecular changes underlying behavioral adaptations known to reinforce species boundaries were a key component in the diversification of anole lizards. PMID:29360978

  2. Bone and hormonal changes induced by skeletal unloading in the mature male rat

    NASA Technical Reports Server (NTRS)

    Dehority, W.; Halloran, B. P.; Bikle, D. D.; Curren, T.; Kostenuik, P. J.; Wronski, T. J.; Shen, Y.; Rabkin, B.; Bouraoui, A.; Morey-Holton, E.

    1999-01-01

    To determine whether the rat hindlimb elevation model can be used to study the effects of spaceflight and loss of gravitational loading on bone in the adult animal, and to examine the effects of age on bone responsiveness to mechanical loading, we studied 6-mo-old rats subjected to hindlimb elevation for up to 5 wk. Loss of weight bearing in the adult induced a mild hypercalcemia, diminished serum 1,25-dihydroxyvitamin D, decreased vertebral bone mass, and blunted the otherwise normal increase in femoral mass associated with bone maturation. Unloading decreased osteoblast numbers and reduced periosteal and cancellous bone formation but had no effect on bone resorption. Mineralizing surface, mineral apposition rate, and bone formation rate decreased during unloading. Our results demonstrate the utility of the adult rat hindlimb elevation model as a means of simulating the loss of gravitational loading on the skeleton, and they show that the effects of nonweight bearing are prolonged and have a greater relative effect on bone formation in the adult than in the young growing animal.

  3. Transcriptomic and epigenomic characterization of the developing bat wing

    PubMed Central

    Eckalbar, Walter L.; Schlebusch, Stephen A.; Mason, Mandy K.; Gill, Zoe; Parker, Ash V.; Booker, Betty M.; Nishizaki, Sierra; Muswamba-Nday, Christiane; Terhune, Elizabeth; Nevonen, Kimberly; Makki, Nadja; Friedrich, Tara; VanderMeer, Julia E.; Pollard, Katherine S.; Carbone, Lucia; Wall, Jeff D.; Illing, Nicola; Ahituv, Nadav

    2016-01-01

    Bats are the only mammals capable of powered flight, but little is known about the genetic determinants that shape their wings. Here, we generated a genome for Miniopterus natalensis and performed RNA-seq and ChIP-seq (H3K27ac, H3K27me3) on its developing forelimb and hindlimb autopods at sequential embryonic stages to decipher the molecular events that underlie bat wing development. Over 7,000 genes and several lncRNAs, including Tbx5-as1 and Hottip, were differentially expressed between forelimb, hindlimb and different stages. ChIP-seq identified thousands of regions that are differentially modified in forelimb versus hindlimb. Comparative genomics found 2,796 bat-accelerated regions within H3K27ac peaks, several of which cluster near limb-associated genes. Pathway analyses revealed multiple ribosomal proteins and known limb patterning signaling pathways as differentially regulated, and implicated increased forelimb mesenchymal condensations with differential growth. Combined, our work outlines multiple genetic components that contribute to bat wing formation, providing a genomic blueprint for this morphological innovation. PMID:27019111

  4. Expression of IGF-I and Protein Degradation Markers During Hindlimb Unloading and Growth Hormone Administration in Rats

    NASA Astrophysics Data System (ADS)

    Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.

    2013-02-01

    It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.

  5. Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network.

    PubMed

    Schiekofer, Stephan; Galasso, Gennaro; Sato, Kaori; Kraus, Benjamin J; Walsh, Kenneth

    2005-08-01

    Diabetes is a risk factor for the development of cardiovascular diseases associated with impaired angiogenesis or increased endothelial cell apoptosis. Here it is shown that angiogenic repair of ischemic hindlimbs was impaired in Lepr(db/db) mice, a leptin receptor-deficient model of diabetes, compared with wild-type (WT) C57BL/6 mice, as evaluated by laser Doppler flow and capillary density analyses. To identify molecular targets associated with this disease process, hindlimb cDNA expression profiles were created from adductor muscle of Lepr(db/db) and WT mice before and after hindlimb ischemia using Affymetrix GeneChip Mouse Expression Set microarrays. The expression patterns of numerous angiogenesis-related proteins were altered in Lepr(db/db) versus WT mice after ischemic injury. These transcripts included neuropilin-1, vascular endothelial growth factor-A, placental growth factor, elastin, and matrix metalloproteinases implicated in blood vessel growth and maintenance of vessel wall integrity. These data illustrate that impaired ischemia-induced neovascularization in type 2 diabetes is associated with the dysregulation of a complex angiogenesis-regulatory network.

  6. Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting

    NASA Technical Reports Server (NTRS)

    Allen, D. L.; Linderman, J. K.; Roy, R. R.; Bigbee, A. J.; Grindeland, R. E.; Mukku, V.; Edgerton, V. R.

    1997-01-01

    The role of apoptosis in the elimination of myonuclei during hindlimb unloading-induced atrophy and the inhibition of apoptosis in the prevention of muscle atrophy were examined. The number of nuclei demonstrating double-stranded DNA fragmentation seen by terminal deoxynucleotidyl transferase (TDT) histochemical staining, an indicator of apoptosis, was significantly increased after 14 days of suspension. Double staining with TDT and antilaminin immunohistochemistry revealed that some TDT-positive nuclei were within the fiber lamina and were most likely myonuclei. The number of fibers containing morphologically abnormal nuclei was also significantly greater in suspended compared with control rats. Combined treatment with growth hormone and insulin-like growth factor I (GH/ IGF-I) and resistance exercise attenuated the increase in TDT-positive nuclei (approximately 26%, P > 0.05) and significantly decreased the number of fibers with morphologically abnormal nuclei. The data suggest that 1) "programmed nuclear death" contributes to the elimination of myonuclei and/or satellite cells from atrophying fibers, and 2) GH/IGF-I administration plus muscle loading ameliorates the apoptosis associated with hindlimb unloading.

  7. Experiment K-6-11. Actin mRNA and cytochrome c mRNA concentrations in the tricepts brachia muscle of rats

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Morrison, P. R.; Thomason, D. B.; Oganov, V. S.

    1990-01-01

    It is well known that some skeletal muscles atrophy as a result of weightlessness (Steffen and Musacchia 1986) and as a result of hindlimb suspension (Tischler et al., 1985, Thomason et al., 1987). Because the content of protein is determined by the rates of protein synthesis and degradation, a decrease in protein synthesis rate, or an increase in the protein degradation, or changes in both could produce the atrophy. Indeed, an increased protein degradation (Tischler et al., 1985) and a decreased protein synthesis (Thomason et al., 1988) have been observed in skeletal muscles of suspended hindlimbs of rats. Any decrease in protein synthesis rate could be caused by decreases in mRNA concentrations. Such decreases in the concentration and content of alpha-actin mRNA and cytochrome c mRNA have been noted in skeletal muscles of hindlimb suspended rats (Babij and Booth, 1988). From these findings researchers hypothesized that alpha-actin mRNA and cytochrome c mRNA would decrease in the triceps brachia muscle of Cosmos 1887 rats.

  8. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  9. Motor skills in kindergarten: Internal structure, cognitive correlates and relationships to background variables.

    PubMed

    Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M

    2017-04-01

    The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The hippocampus participates in the control of locomotion speed.

    PubMed

    López Ruiz, J R; Osuna Carrasco, L P; López Valenzuela, C L; Franco Rodríguez, N E; de la Torre Valdovinos, B; Jiménez Estrada, I; Dueñas Jiménez, J M; Dueñas Jiménez, S H

    2015-12-17

    The hippocampus role in sensory-motor integration remains unclear. In these experiments we study its function in the locomotor control. To establish the connection between the hippocampus and the locomotor system, electrical stimulation in the CA1 region was applied and EMG recordings were obtained. We also evaluated the hindlimbs and forelimbs kinematic patterns in rats with a penetrating injury (PI) in the hippocampus as well as in a cortex-injured group (CI), which served as control. After the PI, tamoxifen a selective estrogen receptor modulator (SERM) that has been described as a neuroprotector and antiinflammatory drug, or vehicle was administered. Electrical stimulation in the hippocampus produces muscle contractions in the contralateral triceps, when 6 Hz or 8 Hz pulse trains were applied. The penetrating injury in the hippocampus reduced the EMG amplitude after the electrical stimulation. At 7 DPI (days post-injury) we observed an increase in the strides speed in all four limbs of the non-treated group, decreasing the correlation percentage of the studied joints. After 15 DPI the strides speed in the non-treated returned to normal. These changes did not occur in the tamoxifen group nor in cortex-injured group. After 30 days, the nontreated group presented a reduction in the number of pyramidal cell layer neurons at the injury site, in comparison to the tam-treated group. The loss of neurons, may cause the interruption of the trisynaptic circuit and changes in the locomotion speed. Tamoxifen preserves the pyramidal neurons after the injury, probably resulting in the strides speed recovery. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Response of amino acids in hindlimb muscles to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E. J.; Jacob, S.; Cook, P. H.

    1985-01-01

    Concentrations of glutamine, glutamate, aspartate (+ asparagine) and alanine were compared in hindlimb muscles of SL-3 and ground control rats. Alanine was lower in the soleus of flown rats but not of suspended animals, with no response in other muscles except a slight increase in the unloaded plantaris. With recovery, alanine in the soleus was elevated. Since no differences in alanine metabolism were found by isolated muscle, changes in muscle alanine are probably due to altered body use of this amino acid leading to varied plasma levels.

  12. [Fundamental biological model for trials of wound ballistics].

    PubMed

    Krajsa, J; Hirt, M

    2006-10-01

    The aim of our experiment was the testing of effects of common ammunition on usable and slightly accessible biological tissue thereby to create fundamental simple biological model for trials of wounded ballistic. Like objective tissue was elected biological material - pork and beef hind-limbs, pork head, pork bodily cavity. It was discovered that objective tissue is able to react to singles types of shots in all spectrum results namely simple smooth penetration wound as well as splintery fracture in dependence on kind of using ammunition. Pork hind-limb was evaluated like the most suitable biological material for given object.

  13. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    PubMed

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  14. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  15. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    NASA Astrophysics Data System (ADS)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  16. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    PubMed Central

    Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308

  17. An experimental evaluation of a new designed apparatus (NDA) for the rapid measurement of impaired motor function in rats.

    PubMed

    Jarrahi, M; Sedighi Moghadam, B; Torkmandi, H

    2015-08-15

    Assessment of the ability of rat to balance by rotarod apparatus (ROTA) is frequently used as a measure of impaired motor system function. Most of these methods have some disadvantages, such as failing to sense motor coordination rather than endurance and as the sensitivity of the method is low, more animals are needed to obtain statistically significant results. We have designed and tested a new designed apparatus (NDA) to measure motor system function in rats. Our system consists of a glass box containing 4 beams which placed with 1cm distance between them, two electrical motors for rotating the beams, and a camera to record the movements of the rats. The RPM of the beams is adjustable digitally between 0 and 50 rounds per minute. We evaluated experimentally the capability of the NDA for the rapid measurement of impaired motor function in rats. Also we demonstrated that the sensitivity of the NDA increases by faster rotation speeds and may be more sensitive than ROTA for evaluating of impaired motor system function. Compared to a previous version of this task, our NDA provides a more efficient method to test rodents for studies of motor system function after impaired motor nervous system. In summary, our NDA will allow high efficient monitoring of rat motor system function and may be more sensitive than ROTA for evaluating of impaired motor system function in rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Physical activity, motor function, and white matter hyperintensity burden in healthy older adults.

    PubMed

    Fleischman, Debra A; Yang, Jingyun; Arfanakis, Konstantinos; Arvanitakis, Zoe; Leurgans, Sue E; Turner, Arlener D; Barnes, Lisa L; Bennett, David A; Buchman, Aron S

    2015-03-31

    To test the hypothesis that physical activity modifies the association between white matter hyperintensity (WMH) burden and motor function in healthy older persons without dementia. Total daily activity (exercise and nonexercise physical activity) was measured for up to 11 days with actigraphy (Actical; Philips Respironics, Bend, OR) in 167 older adults without dementia participating in the Rush Memory and Aging Project. Eleven motor performances were summarized into a previously described global motor score. WMH volume was expressed as percent of intracranial volume. Linear regression models, adjusted for age, education, and sex, were performed with total WMH volume as the predictor and global motor score as the outcome. Terms for total daily physical activity and its interaction with WMH volume were then added to the model. Higher WMH burden was associated with lower motor function (p = 0.006), and total daily activity was positively associated with motor function (p = 0.002). Total daily activity modified the association between WMH and motor function (p = 0.007). WMH burden was not associated with motor function in persons with high activity (90th percentile). By contrast, higher WMH burden remained associated with lower motor function in persons with average (50th percentile; estimate = -0.304, slope = -0.133) and low (10th percentile; estimate = -1.793, slope = -0.241) activity. Higher levels of physical activity may reduce the effect of WMH burden on motor function in healthy older adults. © 2015 American Academy of Neurology.

  19. Physical activity, motor function, and white matter hyperintensity burden in healthy older adults

    PubMed Central

    Yang, Jingyun; Arfanakis, Konstantinos; Arvanitakis, Zoe; Leurgans, Sue E.; Turner, Arlener D.; Barnes, Lisa L.; Bennett, David A.; Buchman, Aron S.

    2015-01-01

    Objective: To test the hypothesis that physical activity modifies the association between white matter hyperintensity (WMH) burden and motor function in healthy older persons without dementia. Methods: Total daily activity (exercise and nonexercise physical activity) was measured for up to 11 days with actigraphy (Actical; Philips Respironics, Bend, OR) in 167 older adults without dementia participating in the Rush Memory and Aging Project. Eleven motor performances were summarized into a previously described global motor score. WMH volume was expressed as percent of intracranial volume. Linear regression models, adjusted for age, education, and sex, were performed with total WMH volume as the predictor and global motor score as the outcome. Terms for total daily physical activity and its interaction with WMH volume were then added to the model. Results: Higher WMH burden was associated with lower motor function (p = 0.006), and total daily activity was positively associated with motor function (p = 0.002). Total daily activity modified the association between WMH and motor function (p = 0.007). WMH burden was not associated with motor function in persons with high activity (90th percentile). By contrast, higher WMH burden remained associated with lower motor function in persons with average (50th percentile; estimate = −0.304, slope = −0.133) and low (10th percentile; estimate = −1.793, slope = −0.241) activity. Conclusions: Higher levels of physical activity may reduce the effect of WMH burden on motor function in healthy older adults. PMID:25762710

  20. Simulated microgravity facilitates cell migration and neuroprotection after bone marrow stromal cell transplantation in spinal cord injury

    PubMed Central

    2013-01-01

    Introduction Recently, cell-based therapy has gained significant attention for the treatment of central nervous system diseases. Although bone marrow stromal cells (BMSCs) are considered to have good engraftment potential, challenges due to in vitro culturing, such as a decline in their functional potency, have been reported. Here, we investigated the efficacy of rat BMSCs (rBMSCs) cultured under simulated microgravity conditions, for transplantation into a rat model of spinal cord injury (SCI). Methods rBMSCs were cultured under two different conditions: standard gravity (1G) and simulated microgravity attained by using the 3D-clinostat. After 7 days of culture, the rBMSCs were analyzed morphologically, with RT-PCR and immunostaining, and were used for grafting. Adult rats were used for constructing SCI models by using a weight-dropping method and were grouped into three experimental groups for comparison. rBMSCs cultured under 1 g and simulated microgravity were transplanted intravenously immediately after SCI. We evaluated the hindlimb functional improvement for 3 weeks. Tissue repair after SCI was examined by calculating the cavity area ratio and immunohistochemistry. Results rBMSCs cultured under simulated microgravity expressed Oct-4 and CXCR4, in contrast to those cultured under 1 g conditions. Therefore, rBMSCs cultured under simulated microgravity were considered to be in an undifferentiated state and thus to possess high migration ability. After transplantation, grafted rBMSCs cultured under microgravity exhibited greater survival at the periphery of the lesion, and the motor functions of the rats that received these grafts improved significantly compared with the rats that received rBMSCs cultured in 1 g. In addition, rBMSCs cultured under microgravity were thought to have greater trophic effects on reestablishment and survival of host spinal neural tissues because cavity formations were reduced, and apoptosis-inhibiting factor expression was high at the periphery of the SCI lesion. Conclusions Here we show that transplantation of rBMSCs cultured under simulated microgravity facilitates functional recovery from SCI rather than those cultured under 1 g conditions. PMID:23548163

  1. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  2. Aberrant Hyperconnectivity in the Motor System at Rest Is Linked to Motor Abnormalities in Schizophrenia Spectrum Disorders.

    PubMed

    Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V

    2017-09-01

    Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function

    PubMed Central

    Leisman, Gerry; Moustafa, Ahmed A.; Shafir, Tal

    2016-01-01

    In this article, we argue that motor and cognitive processes are functionally related and most likely share a similar evolutionary history. This is supported by clinical and neural data showing that some brain regions integrate both motor and cognitive functions. In addition, we also argue that cognitive processes coincide with complex motor output. Further, we also review data that support the converse notion that motor processes can contribute to cognitive function, as found by many rehabilitation and aerobic exercise training programs. Support is provided for motor and cognitive processes possessing dynamic bidirectional influences on each other. PMID:27252937

  4. Olfaction Is Related to Motor Function in Older Adults.

    PubMed

    Tian, Qu; Resnick, Susan M; Studenski, Stephanie A

    2017-08-01

    Among older adults, both olfaction and motor function predict future cognitive decline and dementia, suggesting potential shared causal pathways. However, it is not known whether olfactory and motor function are independently related in late life. We assessed cross-sectional associations of olfaction with motor and cognitive function, using concurrent data on olfactory function, mobility, balance, fine motor function, manual dexterity, and cognition in 163 Baltimore Longitudinal Study of Aging participants aged 60 and older without common neurological diseases (n = 114 with available cognitive data). Using multiple linear regression, we adjusted for age, sex, race, smoking history, height, and weight for mobility and balance, and education for cognition. We used multiple linear regression to test whether olfaction-motor associations were independent of cognition and depressive symptoms. Olfactory scores were significantly associated with mobility (usual gait speed, rapid gait speed, 400-m walk time, and Health ABC Physical Performance Battery score), balance, fine motor function, and manual dexterity (all p < .05). In those with available cognitive data, additional adjustment for depressive symptoms, verbal memory, or visuoperceptual speed demonstrated especially strong independent relationships with challenging motor tasks such as 400-m walk and nondominant hand manual dexterity (p < .005). This study demonstrates for the first time that, in older adults, olfactory function is associated with mobility, balance, fine motor function, and manual dexterity, and independent of cognitive function, with challenging upper and lower extremity motor function tasks. Longitudinal studies are needed to determine if olfactory performance predicts future mobility and functional decline. Published by Oxford University Press on behalf of The Gerontological Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. 49 CFR 382.501 - Removal from safety-sensitive function.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...

  6. 49 CFR 382.501 - Removal from safety-sensitive function.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...

  7. 49 CFR 382.501 - Removal from safety-sensitive function.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...

  8. 49 CFR 382.501 - Removal from safety-sensitive function.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...

  9. 49 CFR 382.501 - Removal from safety-sensitive function.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...

  10. Low-frequency group exercise improved the motor functions of community-dwelling elderly people in a rural area when combined with home exercise with self-monitoring

    PubMed Central

    Matsubayashi, Yoshito; Asakawa, Yasuyoshi; Yamaguchi, Haruyasu

    2016-01-01

    [Purpose] This study examined whether low-frequency group exercise improved the motor functions of community-dwelling elderly people in a rural area when combined with home exercise with self-monitoring. [Subjects] The subjects were community-dwelling elderly people in a rural area of Japan. [Methods] One group (n = 50) performed group exercise combined with home exercise with self-monitoring. Another group (n = 37) performed group exercise only. Low-frequency group exercise (warm-up, exercises for motor functions, and cool-down) was performed in seven 40 to 70-minute sessions over 9 weeks by both groups. Five items of motor functions were assessed before and after the intervention. [Results] Significant interactions were observed between groups and assessment times for all motor functions. Improvements in motor functions were significantly greater in the group that performed group exercise combined with home exercise with self-monitoring than in the group that performed group exercise only. Post-hoc comparisons revealed significant differences in 3 items of motor functions. No significant improvements were observed in motor functions in the group that performed group exercise only. [Conclusions] Group exercise combined with home exercise with self-monitoring improved motor functions in the setting of low-frequency group exercise for community-dwelling elderly people in a rural area. PMID:27065520

  11. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    NASA Astrophysics Data System (ADS)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  12. Magnetic resonance imaging, ultrasonography and histology of the suspensory ligament origin: a comparative study of normal anatomy of warmblood horses.

    PubMed

    Bischofberger, A S; Konar, M; Ohlerth, S; Geyer, H; Lang, J; Ueltschi, G; Lischer, C J

    2006-11-01

    The diagnosis of lameness caused by proximal metacarpal and metatarsal pain can be challenging. Magnetic resonance imaging (MRI) offers the possibility for further diagnosis but there have been no studies on the normal MRI appearance of the origin of the suspensory ligament (OSL) in conjunction with ultrasonography and histology. To describe the MRI appearance of the OSL in fore- and hindlimbs of sound horses and compare it to the ultrasonographic and histological appearance. The findings can be used as reference values to recognise pathology in the OSL. The OSL in the fore- and hindlimbs of 6 sound horses was examined by ultrasonography prior to death, and MRI and histology post mortem. Qualitative evaluation and morphometry of the OSL were performed and results of all modalities compared. Muscular tissue, artefacts, variable SL size and shape complicated ultrasonographic interpretation. In MRI and histology the forelimb OSL consisted of 2 portions, the lateral being significantly thicker than medial. The hindlimb SL had a single large area of origin. In fore- and hindlimbs, the amount of muscular tissue was significantly larger laterally than medially. Overall SL measurements using MRI were significantly higher than using histology and ultrasonography and histological higher than ultrasonographic measurements. Morphologically, there was a good correlation between MRI and histology. MRI provides more detailed information than ultrasonography regarding muscle fibre detection and OSL dimension and correlates morphologically well with histology. Therefore, ultrasonographic results should be regarded with caution. MRI may be a diagnostic aid when other modalities fail to identify clearly the cause of proximal metacarpal and metatarsal pain; and may improve selection of adequate therapy and prognosis for injuries in this region.

  13. Low-molecular weight heparin protamine complex augmented the potential of adipose-derived stromal cells to ameliorate limb ischemia.

    PubMed

    Kishimoto, Satoko; Inoue, Ken-Ichi; Nakamura, Shingo; Hattori, Hidemi; Ishihara, Masayuki; Sakuma, Masashi; Toyoda, Shigeru; Iwaguro, Hideki; Taguchi, Isao; Inoue, Teruo; Yoshida, Ken-Ichiro

    2016-06-01

    Heparin/protamine micro/nanoparticles (LH/P-MPs) were recently developed as low-molecular weight, biodegradable carriers for adipose-derived stromal cells (ADSCs). These particles can be used for a locally delivered stem cell therapy that promotes angiogenesis. LH/P-MPs bind to the cell surface of ADSCs and promote cell-to-cell interaction and aggregation of ADSCs. Cultured ADSC/LH/P-MP aggregates remain viable. Here, we examined the ability of these aggregates to rescue limb loss in a mouse model of hindlimb ischemia. Unilateral hindlimb ischemia was induced in adult male BALB/c mice by ligation of the iliac artery and hindlimb vein. For allotransplantation of ADSCs from the same inbred strain, we injected ADSC alone or ADSC/LH/P-MP aggregates or control medium (sham-treated) directly into the ischemic muscles. Ischemic limb blood perfusion, vessel density, and vessel area were recorded. The extent of ischemic limb necrosis or limb loss was assessed on postoperative days 2, 7, and 14. Compared with the sham-treatment control, treatment with ADSCs alone showed modest effects on blood perfusion recovery and increased the number of α-SMA-positive vessels. Response to ADSC/LH/P-MP aggregates was significantly greater than ADSCs alone for every endpoint. ADSC/LH/P-MP aggregates more effectively prevented the loss of ischemic hindlimbs than ADSCs alone or the sham-treatment. The LH/P-MPs augmented the effects of ADSCs on angiogenesis and reversal of limb ischemia. Use of ADSC/LH/P-MP aggregates offers a novel and convenient treatment method and potentially represents a promising new therapeutic approach to inducing angiogenesis in ischemic diseases. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds

    PubMed Central

    Dambreville, Charline; Labarre, Audrey; Thibaudier, Yann; Hurteau, Marie-France

    2015-01-01

    When speed changes during locomotion, both temporal and spatial parameters of the pattern must adjust. Moreover, at slow speeds the step-to-step pattern becomes increasingly variable. The objectives of the present study were to assess if the spinal locomotor network adjusts both temporal and spatial parameters from slow to moderate stepping speeds and to determine if it contributes to step-to-step variability in left-right symmetry observed at slow speeds. To determine the role of the spinal locomotor network, the spinal cord of 6 adult cats was transected (spinalized) at low thoracic levels and the cats were trained to recover hindlimb locomotion. Cats were implanted with electrodes to chronically record electromyography (EMG) in several hindlimb muscles. Experiments began once a stable hindlimb locomotor pattern emerged. During experiments, EMG and bilateral video recordings were made during treadmill locomotion from 0.1 to 0.4 m/s in 0.05 m/s increments. Cycle and stance durations significantly decreased with increasing speed, whereas swing duration remained unaffected. Extensor burst duration significantly decreased with increasing speed, whereas sartorius burst duration remained unchanged. Stride length, step length, and the relative distance of the paw at stance offset significantly increased with increasing speed, whereas the relative distance at stance onset and both the temporal and spatial phasing between hindlimbs were unaffected. Both temporal and spatial step-to-step left-right asymmetry decreased with increasing speed. Therefore, the spinal cord is capable of adjusting both temporal and spatial parameters during treadmill locomotion, and it is responsible, at least in part, for the step-to-step variability in left-right symmetry observed at slow speeds. PMID:26084910

  15. Androgen Action via the Androgen Receptor in Neurons Within the Brain Positively Regulates Muscle Mass in Male Mice.

    PubMed

    Davey, Rachel A; Clarke, Michele V; Russell, Patricia K; Rana, Kesha; Seto, Jane; Roeszler, Kelly N; How, Jackie M Y; Chia, Ling Yeong; North, Kathryn; Zajac, Jeffrey D

    2017-10-01

    Although it is well established that exogenous androgens have anabolic effects on skeletal muscle mass in humans and mice, data from muscle-specific androgen receptor (AR) knockout (ARKO) mice indicate that myocytic expression of the AR is dispensable for hind-limb muscle mass accrual in males. To identify possible indirect actions of androgens via the AR in neurons to regulate muscle, we generated neuron-ARKO mice in which the dominant DNA binding-dependent actions of the AR are deleted in neurons of the cortex, forebrain, hypothalamus, and olfactory bulb. Serum testosterone and luteinizing hormone levels were elevated twofold in neuron-ARKO males compared with wild-type littermates due to disruption of negative feedback to the hypothalamic-pituitary-gonadal axis. Despite this increase in serum testosterone levels, which was expected to increase muscle mass, the mass of the mixed-fiber gastrocnemius (Gast) and the fast-twitch fiber extensor digitorum longus hind-limb muscles was decreased by 10% in neuron-ARKOs at 12 weeks of age, whereas muscle strength and fatigue of the Gast were unaffected. The mass of the soleus muscle, however, which consists of a high proportion of slow-twitch fibers, was unaffected in neuron-ARKOs, demonstrating a stimulatory action of androgens via the AR in neurons to increase the mass of fast-twitch hind-limb muscles. Furthermore, neuron-ARKOs displayed reductions in voluntary and involuntary physical activity by up to 60%. These data provide evidence for a role of androgens via the AR in neurons to positively regulate fast-twitch hind-limb muscle mass and physical activity in male mice. Copyright © 2017 Endocrine Society.

  16. A force plate measurement system to assess hindlimb weight support of spinal cord injured rats.

    PubMed

    Chang, Ming-Wen; Chang, Ching-Ping; Wei, Ying-Chieh; Hou, Shang-You; Young, Ming-Shing; Lin, Mao-Tsun

    2010-05-30

    This paper describes a force plate system for quantitative measurement of the hindlimb weight support of rats. The system is built around a microcontroller and uses strain gauges to measure individually the weight applied by each limb and also the general hindquarters of the rat. The sum of weights on the individual force plates adds up to the total weight of the rat. Mathematical comparison of the weights of the different force plates allows calculation of the weight percentage of the hindquarters (W%HQ=(hindquarters weight/total weight)x100%). When hindlimb impairment is high, the W%HQ is high and vise versa, allowing hindlimb weight support to be evaluated by the W%HQ. An actual laboratory embodiment is demonstrated and real experiments are performed on spinal cord damaged rats. W%HQ results are compared with Basso, Beattie, Bresnahan (BBB) locomotor behavioural test results on the same rats at approximately the same time. When a rat is placed in the correct position of the test chamber, the user can use a local keypad/LCD display (standalone mode) or the PC keyboard/display to control the system and access the current data. Comparing our results with those of the BBB method confirms the proposed hardware and W%HQ metric represent very well the recovery of a rat after spinal cord injury. Medical investigators report that under actual use, the presented system is stable, accurate and easy to use. Additional advantages of the presented force plate system include stand-alone capability, non-dependence on subjective human judgement and quantitative results. (c) 2010 Elsevier B.V. All rights reserved.

  17. Methylene Blue Attenuates Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats

    PubMed Central

    Wang, Liangrong; Chen, Baihui; Lin, Bi; Ye, Yuzhu; Bao, Caiying; Zhao, Xiyue; Jin, Lida

    2018-01-01

    Objective This study was aimed to investigate the protective effect of methylene blue against lung injury induced by reperfusion of ischemic hindlimb in a rat model. Methods Twenty-four healthy adult male Sprague-Dawley rats were equally randomized into three groups: sham (SM) group, ischemia reperfusion (IR) group, and methylene blue (MB) group. Rats in both IR and MB groups were subjected to 4 h of ischemia by clamping the left femoral artery and then followed by 4 h of reperfusion. Treatment with 1% methylene blue (50 mg/kg) was administrated intraperitoneally at 10 min prior to reperfusion in the MB group. After 4 h of reperfusion, malondialdehyde (MDA) level, myeloperoxidase (MPO), and superoxide dismutase (SOD) activities in lung tissue were detected; inflammatory cytokines, including IL-1β and IL-6, were measured in bronchoalveolar lavage fluid (BALF); correspondingly, the morphological changes and water content in both gastrocnemius muscle and lung samples were evaluated. Results Hindlimb IR caused remarkable morphological abnormalities and edema in both muscle and lung tissues. SOD activity was decreased, both the MPO activity and MDA level in lung tissue, as well as IL-1β and IL-6 levels in BALF, were increased in the IR group (p < 0.05). Compared with the IR group, SOD activity was increased, whereas MPO activity and MDA level in lung tissue and IL-1β and IL-6 levels in BALF were decreased in the MB group (p < 0.05). Also, the histological damage and edema in both lung and muscle tissues were significantly attenuated by the treatment of methylene blue. Conclusion Methylene blue attenuates lung injury induced by hindlimb IR in rats, at least in part, by inhibiting oxidative stress. PMID:29713238

  18. The central action of the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) on cardiac inotropy and vascular resistance in the anaesthetized cat

    PubMed Central

    Ramage, Andrew G; de Burgh Daly, M

    1998-01-01

    Experiments were carried out to determine the effects of the application of the selective 5-HT2 receptor agonist DOI intravenously (in the presence of the peripherally acting 5-HT2 receptor antagonist, BW501C67, 1 mg kg−1, i.v.) or to the `glycine sensitive area' of the ventral surface (30 μg each side) on the left ventricular inotropic (left ventricular dP/dt max) and vascularly isolated hindlimb responses in anaesthetized cats. For the ventral surface experiments, NMDA (10 μg each side) was applied to act as a positive control. In all experiments heart rate and mean arterial blood pressure were held constant to exclude any secondary effects caused by changes in these variables.DOI (n=6) i.v or on the ventral surface had no effect on left ventricular dP/dt max but caused a significant increase in hindlimb perfusion pressure of 40±9 and 50±14 mmHg, respectively. Respiration was unaffected. NMDA (n=6), applied to the ventral surface, caused significant increases in both left ventricular dP/dt max and hindlimb perfusion pressure of 1950±349 mmHg s−1 and 69±17 mmHg respectively, with no associated change in left ventricular end-diastolic pressure. The amplitude of respiratory movements increased.It is concluded that activation of 5-HT2 receptors at the level of the rostral ventrolateral medulla (RVLM) excites sympathetic premotor neurons and/or their antecedents controlling hindlimb vascular resistance but not those controlling the inotropic effects on the left ventricle. PMID:9863644

  19. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    PubMed

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  20. Differential sensitivity of cranial and limb motor function to nigrostriatal dopamine depletion

    PubMed Central

    Plowman, Emily K.; Maling, Nicholas; Rivera, Benjamin J.; Larson, Krista; Thomas, Nagheme J.; Fowler, Stephen C.; Manfredsson, Fredric P.; Shrivastav, Rahul; Kleim, Jeffrey A.

    2012-01-01

    The present study determined the differential effects of unilateral striatal dopamine depletion on cranial motor versus limb motor function. Forty male Long Evans rats were first trained on a comprehensive motor testing battery that dissociated cranial versus limb motor function and included: cylinder forepaw placement, single pellet reaching, vermicelli pasta handling; sunflower seed opening, pasta biting acoustics, and a licking task. Following baseline testing, animals were randomized to either a 6-hydroxydopamine (6-OHDA) (n = 20) or control (n = 20) group. Animals in the 6-OHDA group received unilateral intrastriatal 6-OHDA infusions to induce striatal dopamine depletion. Six-weeks following infusion, all animals were re-tested on the same battery of motor tests. Near infrared densitometry was performed on sections taken through the striatum that were immunohistochemically stained for tyrosine hydroxylase (TH). Animals in the 6-OHDA condition showed a mean reduction in TH staining of 88.27%. Although 6-OHDA animals were significantly impaired on all motor tasks, limb motor deficits were more severe than cranial motor impairments. Further, performance on limb motor tasks was correlated with degree of TH depletion while performance on cranial motor impairments showed no significant correlation. These results suggest that limb motor function may be more sensitive to striatal dopaminergic depletion than cranial motor function and is consistent with the clinical observation that therapies targeting the nigrostriatal dopaminergic system in Parkinson’s disease are more effective for limb motor symptoms than cranial motor impairments. PMID:23018122

  1. Deficits in vision and visual attention associated with motor performance of very preterm/very low birth weight children.

    PubMed

    Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G

    2016-01-01

    To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    PubMed

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study

    PubMed Central

    Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G.; Villani, Flavio; Ghielmetti, Francesco

    2018-01-01

    Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery. PMID:29922216

  4. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study.

    PubMed

    Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco

    2018-01-01

    Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery.

  5. Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke.

    PubMed

    Lin, Keh-chung; Huang, Pai-chuan; Chen, Yu-ting; Wu, Ching-yi; Huang, Wen-ling

    2014-02-01

    Mirror therapy (MT) and mesh glove (MG) afferent stimulation may be effective in reducing motor impairment after stroke. A hybrid intervention of MT combined with MG (MT + MG) may broaden aspects of treatment benefits. To demonstrate the comparative effects of MG + MT, MT, and a control treatment (CT) on the outcomes of motor impairments, manual dexterity, ambulation function, motor control, and daily function. Forty-three chronic stroke patients with mild to moderate upper extremity impairment were randomly assigned to receive MT + MG, MT, or CT for 1.5 hours/day, 5 days/week for 4 weeks. Outcome measures were the Fugl-Meyer Assessment (FMA) and muscle tone measured by Myoton-3 for motor impairment and the Box and Block Test (BBT) and 10-Meter Walk Test (10 MWT) for motor function. Secondary outcomes included kinematic parameters for motor control and the Motor Activity Log and ABILHAND Questionnaire for daily function. FMA total scores were significantly higher and synergistic shoulder abduction during reach was less in the MT + MG and MT groups compared with the CT group. Performance on the BBT and the 10 MWT (velocity and stride length in self-paced task and velocity in as-quickly-as-possible task) were improved after MT + MG compared with MT. MT + MG improved manual dexterity and ambulation. MT + MG and MT reduced motor impairment and synergistic shoulder abduction more than CT. Future studies may integrate functional task practice into treatments to enhance functional outcomes in patients with various levels of motor severity. The long-term effects of MG + MT remain to be evaluated.

  6. Gross motor function change after multilevel soft tissue release in children with cerebral palsy.

    PubMed

    Chang, Chia-Hsieh; Chen, Yu-Ying; Yeh, Kuo-Kuang; Chen, Chia-Ling

    2017-06-01

    Improving motor function is a major goal of therapy for children with cerebral palsy (CP). However, changes in motor function after orthopedic surgery for gait disorders are seldom discussed. This study aimed to evaluate the postoperative changes in gross motor function and to investigate the prognostic factors for such changes. We prospectively studied 25 children with CP (4-12 years) who were gross motor function classification system (GMFCS) level II to IV and and underwent bilateral multilevel soft-tissue release for knee flexion gait. Patients were evaluated preoperatively and at 6 weeks and 3 and 6 months postoperatively for Gross Motor Function Measure (GMFM-66), range of motion, spasticity, and selective motor control. The associations between change in GMFM-66 score and possible factors were analyzed. 25 children with gross motor function level II to IV underwent surgery at a mean age of 8.6 years (range, 4-12 years). Mean GMFM-66 score decreased from 55.9 at baseline to 54.3 at 6-weeks postoperatively and increased to 57.5 at 6-months postoperatively (p < 0.05). Regression analysis revealed better gross motor function level and greater surgical reduction of spasticity were predictors for decreased GMFM-66 score at 6-weeks postoperatively. Younger age was a predictor for increased GMFM-66 score at 6-months postoperatively. Reduction of contracture and spasticity and improvement of selective motor control were noted after surgery in children with CP. However, a down-and-up course of GMFM-66 score was noted. It is emphasized that deterioration of motor function in children with ambulatory ability and the improvement in young children after orthopedic surgery for gait disorders. case series, therapeutic study, level 4. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  7. Assessment of motor functioning in the preschool period.

    PubMed

    Piek, Jan P; Hands, Beth; Licari, Melissa K

    2012-12-01

    The assessment of motor functioning in young children has become increasingly important in recent years with the acknowledgement that motor impairment is linked with cognitive, language, social and emotional difficulties. However, there is no one gold standard assessment tool to investigate motor ability in children. The aim of the current paper was to discuss the issues related to the assessment of motor ability in young pre-school children and to provide guidelines on the best approach for motor assessment. The paper discusses the maturational changes in brain development at the preschool level in relation to motor ability. Other issues include sex differences in motor ability at this young age, and evidence for this in relation to sociological versus biological influences. From the previous literature it is unclear what needs to be assessed in relation to motor functioning. Should the focus be underlying motor processes or movement skill assessment? Several key assessment tools are discussed that produce a general measure of motor performance followed by a description of tools that assess specific skills, such as fine and gross motor, ball and graphomotor skills. The paper concludes with recommendations on the best approach in assessing motor function in pre-school children.

  8. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    PubMed

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  9. Motor deficits correlate with resting state motor network connectivity in patients with brain tumours

    PubMed Central

    Mikell, Charles B.; Youngerman, Brett E.; Liston, Conor; Sisti, Michael B.; Bruce, Jeffrey N.; Small, Scott A.; McKhann, Guy M.

    2012-01-01

    While a tumour in or abutting primary motor cortex leads to motor weakness, how tumours elsewhere in the frontal or parietal lobes affect functional connectivity in a weak patient is less clear. We hypothesized that diminished functional connectivity in a distributed network of motor centres would correlate with motor weakness in subjects with brain masses. Furthermore, we hypothesized that interhemispheric connections would be most vulnerable to subtle disruptions in functional connectivity. We used task-free functional magnetic resonance imaging connectivity to probe motor networks in control subjects and patients with brain tumours (n = 22). Using a control dataset, we developed a method for automated detection of key nodes in the motor network, including the primary motor cortex, supplementary motor area, premotor area and superior parietal lobule, based on the anatomic location of the hand-motor knob in the primary motor cortex. We then calculated functional connectivity between motor network nodes in control subjects, as well as patients with and without brain masses. We used this information to construct weighted, undirected graphs, which were then compared to variables of interest, including performance on a motor task, the grooved pegboard. Strong connectivity was observed within the identified motor networks between all nodes bilaterally, and especially between the primary motor cortex and supplementary motor area. Reduced connectivity was observed in subjects with motor weakness versus subjects with normal strength (P < 0.001). This difference was driven mostly by decreases in interhemispheric connectivity between the primary motor cortices (P < 0.05) and between the left primary motor cortex and the right premotor area (P < 0.05), as well as other premotor area connections. In the subjects without motor weakness, however, performance on the grooved pegboard did not relate to interhemispheric connectivity, but rather was inversely correlated with connectivity between the left premotor area and left supplementary motor area, for both the left and the right hands (P < 0.01). Finally, two subjects who experienced severe weakness following surgery for their brain tumours were followed longitudinally, and the subject who recovered showed reconstitution of her motor network at follow-up. The subject who was persistently weak did not reconstitute his motor network. Motor weakness in subjects with brain tumours that do not involve primary motor structures is associated with decreased connectivity within motor functional networks, particularly interhemispheric connections. Motor networks become weaker as the subjects become weaker, and may become strong again during motor recovery. PMID:22408270

  10. Maturation of Sensori-Motor Functional Responses in the Preterm Brain.

    PubMed

    Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne

    2016-01-01

    Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.

  11. Evaluation of Esophageal Motor Function With High-resolution Manometry

    PubMed Central

    2013-01-01

    For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094

  12. Housing type after the Great East Japan Earthquake and loss of motor function in elderly victims: a prospective observational study

    PubMed Central

    Tomata, Yasutake; Kogure, Mana; Sugawara, Yumi; Watanabe, Takashi; Asaka, Tadayoshi; Tsuji, Ichiro

    2016-01-01

    Objective Previous studies have reported that elderly victims of natural disasters might be prone to a subsequent decline in motor function. Victims of the Great East Japan Earthquake (GEJE) relocated to a wide range of different types of housing. As the evacuee lifestyle varies according to the type of housing available to them, their degree of motor function loss might also vary accordingly. However, the association between postdisaster housing type and loss of motor function has never been investigated. The present study was conducted to investigate the association between housing type after the GEJE and loss of motor function in elderly victims. Methods We conducted a prospective observational study of 478 Japanese individuals aged ≥65 years living in Miyagi Prefecture, one of the areas most significantly affected by the GEJE. Information on housing type after the GEJE, motor function as assessed by the Kihon checklist and other lifestyle factors was collected by interview and questionnaire in 2012. Information on motor function was then collected 1 year later. The multiple logistic regression model was used to estimate the multivariate adjusted ORs of motor function loss. Results We classified 53 (11.1%) of the respondents as having loss of motor function. The multivariate adjusted OR (with 95% CI) for loss of motor function among participants who were living in privately rented temporary housing/rental housing was 2.62 (1.10 to 6.24) compared to those who had remained in the same housing as that before the GEJE, and this increase was statistically significant. Conclusions The proportion of individuals with loss of motor function was higher among persons who had relocated to privately rented temporary housing/rental housing after the GEJE. This result may reflect the influence of a move to a living environment where few acquaintances are located (lack of social capital). PMID:27810976

  13. Safety Aspects of Postanesthesia Care Unit Discharge without Motor Function Assessment after Spinal Anesthesia: A Randomized, Multicenter, Semiblinded, Noninferiority, Controlled Trial.

    PubMed

    Aasvang, Eske Kvanner; Jørgensen, Christoffer Calov; Laursen, Mogens Berg; Madsen, Jacob; Solgaard, Søren; Krøigaard, Mogens; Kjærsgaard-Andersen, Per; Mandøe, Hans; Hansen, Torben Bæk; Nielsen, Jørgen Ulrich; Krarup, Niels; Skøtt, Annette Elisabeth; Kehlet, Henrik

    2017-06-01

    Postanesthesia care unit (PACU) discharge without observation of lower limb motor function after spinal anesthesia has been suggested to significantly reduce PACU stay and enhance resource optimization and early rehabilitation but without enough data to allow clinical recommendations. A multicenter, semiblinded, noninferiority randomized controlled trial of discharge from the PACU with or without assessment of lower limb motor function after elective total hip or knee arthroplasty under spinal anesthesia was undertaken. The primary outcome was frequency of a successful fast-track course (length of stay 4 days or less and no 30-day readmission). Noninferiority would be declared if the odds ratio (OR) for a successful fast-track course was no worse for those patients receiving no motor function assessment versus those patients receiving motor function assessment by OR = 0.68. A total of 1,359 patients (98.8% follow-up) were available for analysis (93% American Society of Anesthesiologists class 1 to 2). The primary outcome occurred in 92.2% and 92.0%, corresponding to no motor function assessment being noninferior to motor function assessment with OR 0.97 (95% CI, 0.70 to 1.35). Adverse events in the ward during the first 24 h occurred in 5.8% versus 7.4% with or without motor function assessment, respectively (OR, 0.77; 95% CI, 0.5 to 1.19, P = 0.24). PACU discharge without assessment of lower limb motor function after spinal anesthesia for total hip or knee arthroplasty was noninferior to motor function assessment in achieving length of stay 4 days or less or 30-day readmissions. Because a nonsignificant tendency toward increased adverse events during the first 24 h in the ward was discovered, further safety data are needed in patients without assessment of lower limb motor function before PACU discharge.

  14. Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms

    PubMed Central

    Baldwin, Kenneth M.; Haddad, Fadia; Pandorf, Clay E.; Roy, Roland R.; Edgerton, V. Reggie

    2013-01-01

    Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a motor unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC) gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s). Hence, this review will examine findings from three different animal models of unloading: (1) space flight (SF), i.e., microgravity; (2) hindlimb suspension (HS), a procedure that chronically eliminates weight bearing of the lower limbs; and (3) spinal cord isolation (SI), a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: (1) all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; (2) transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and (3) signaling pathways impacting these alterations appear to be similar in each of the models investigated. PMID:24130531

  15. Split-arm swinging: the effect of arm swinging manipulation on interlimb coordination during walking.

    PubMed

    Bondi, Moshe; Zeilig, Gabi; Bloch, Ayala; Fasano, Alfonso; Plotnik, Meir

    2017-08-01

    Human locomotion is defined by bilateral coordination of gait (BCG) and shared features with the fore-hindlimb coordination of quadrupeds. The objective of the present study is to explore the influence of arm swinging (AS) on BCG. Sixteen young, healthy individuals (eight women; eight right motor-dominant, eight left-motor dominant) participated. Participants performed 10 walking trials (2 min). In each of the trials AS was unilaterally manipulated (e.g., arm restriction, weight on the wrist), bilaterally manipulated, or not manipulated. The order of trials was random. Walking trials were performed on a treadmill. Gait kinematics were recorded by a motion capture system. Using feedback-controlled belt speed allowed the participants to walk at a self-determined gait speed. Effects of the manipulations were assessed by AS amplitudes and the phase coordination index (PCI), which quantifies the left-right anti-phased stepping pattern. Most of the AS manipulations caused an increase in PCI values (i.e., reduced lower limb coordination). Unilateral AS manipulation had a reciprocal effect on the AS amplitude of the other arm such that, for example, over-swinging of the right arm led to a decrease in the AS amplitude of the left arm. Side of motor dominance was not found to have a significant impact on PCI and AS amplitude. The present findings suggest that lower limb BCG is markedly influenced by the rhythmic AS during walking. It may thus be important for gait rehabilitation programs targeting BCG to take AS into account. NEW & NOTEWORTHY Control mechanisms for four-limb coordination in human locomotion are not fully known. To study the influence of arm swinging (AS) on bilateral coordination of the lower limbs during walking, we introduced a split-AS paradigm in young, healthy adults. AS manipulations caused deterioration in the anti-phased stepping pattern and impacted the AS amplitudes for the contralateral arm, suggesting that lower limb coordination is markedly influenced by the rhythmic AS during walking. Copyright © 2017 the American Physiological Society.

  16. Effects of maternal separation on the neurobehavioral development of newborn Wistar rats.

    PubMed

    Farkas, Jozsef; Reglodi, Dora; Gaszner, Balazs; Szogyi, Donat; Horvath, Gabor; Lubics, Andrea; Tamas, Andrea; Frank, Falko; Besirevic, Dario; Kiss, Peter

    2009-05-29

    Animal models of neonatal stress, like maternal separation, may provide important correlation with human stress-related disorders. Early maternal deprivation has been shown to cause several short- and long-term neurochemical and behavioral deficits. Little is known about the early neurobehavioral development after postnatal stress. The aim of the present study was to investigate the development of reflexes and motor coordination in male and female pups subjected to maternal deprivation. Pups were removed from their mothers from postnatal day 1-14, for 3h daily. Somatic development (weight gain, eye opening, ear unfolding, incisor eruption) and reflex development was tested during the first 3 weeks. The appearance of the following reflexes was investigated: crossed extensor, grasping, placing, gait, righting and sensory reflexes, and negative geotaxis. Timely performance of negative geotaxis, righting and gait were also tested daily during the first 3 weeks. Motor coordination and open-field tests were performed on postnatal weeks 3-5 (rotarod, elevated grid-walk, footfault, rope suspension, inclined board and walk initiation tests). The results revealed that a 3-h-long daily maternal separation did not lead to a marked delay or enhancement in reflex development and motor coordination. A subtle enhancement was observed in the appearance of hindlimb grasp and gait reflexes, and a better performance in footfault test in male rats suffering from maternal deprivation. In contrast, female maternally deprived (MD) rats displayed a slight delay in forelimb grasp and air righting reflex appearance, and surface righting performance. Open-field activity was not changed in maternally deprived rats. In summary, our present observations indicate that maternal deprivation does not induce drastic changes in early neurodevelopment, therefore, further research is needed to determine the onset of behavioral alterations in subject with maternal deprivation history. Gender differences described in this study could help to understand how gender-specific differences in early life experience-induced stress-related disorders appear in adult life.

  17. Obsessive-compulsive disorder: a disorder of pessimal (non-functional) motor behavior.

    PubMed

    Zor, R; Keren, H; Hermesh, H; Szechtman, H; Mort, J; Eilam, D

    2009-10-01

    To determine whether in addition to repetitiveness, the motor rituals of patients with obsessive-compulsive disorder (OCD) involve reduced functionality due to numerous and measurable acts that are irrelevant and unnecessary for task completion. Comparing motor rituals of OCD patients with behavior of non-patient control individuals who were instructed to perform the same motor task. Obsessive-compulsive disorder behavior comprises abundant acts that were not performed by the controls. These acts seem unnecessary or even irrelevant for the task that the patients were performing, and therefore are termed 'non-functional'. Non-functional acts comprise some 60% of OCD motor behavior. Moreover, OCD behavior consists of short chains of functional acts bounded by long chains of non-functional acts. The abundance of irrelevant or unnecessary acts in OCD motor rituals represents reduced functionality in terms of task completion, typifying OCD rituals as pessimal behavior (antonym of optimal behavior).

  18. Fractal dimension assessment of brain white matter structural complexity post stroke in relation to upper-extremity motor function

    PubMed Central

    Zhang, Luduan; Butler, Andrew J.; Sun, Chang-Kai; Sahgal, Vinod; Wittenberg, George F.; Yue, Guang H.

    2008-01-01

    Little is known about the association between brain white matter (WM) structure and motor function in humans. This study investigated complexity of brain WM interior shape as determined by magnetic resonance imaging (MRI) and its relationship with upper-extremity (UE) motor function in patients post stroke. We hypothesized that (1) the WM complexity would decrease following stroke, and (2) higher WM complexity in non-affected cortical areas would be related to greater UE motor function. Thirty-eight stroke patients (16 with left-hemisphere lesions) underwent MRI anatomical brain scans. Fractal dimension (FD), a quantitative shape metric, was applied onto skeletonized brain WM images to evaluate WM internal structural complexity. Wolf Motor Function Test (WMFT) and Fugl-Meyer Motor Assessment (FM) scores were measured to assess motor function of the affected limb. The WM complexity was lower in the stroke-affected hemisphere. The FD was associated with better motor function in two subgroups: with left-subcortical lesions, FD values of the lesion-free areas of the left hemisphere were associated with better FM scores; with right-cortical lesions, FD values of lesion-free regions were robustly associated with better WMFT scores. These findings suggest that greater residual WM complexity is associated with less impaired UE motor function, which is more robust in patients with right-hemisphere lesions. No correlations were found between lesion volume and WMFT or FM scores. This study addressed WM complexity in stroke patients and its relationship with UE motor function. Measurement of brain WM reorganization may be a sensitive correlate of UE function in people recovering from stroke. PMID:18590710

  19. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    PubMed

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  20. Spectrum of gross motor and cognitive functions in children with cerebral palsy: gender differences.

    PubMed

    Romeo, Domenico M M; Cioni, Matteo; Battaglia, Laura R; Palermo, Filippo; Mazzone, Domenico

    2011-01-01

    Multiple differences between males and females are reported both in physiological and pathophysiological conditions. To test the hypothesis that gender could influence the motor and cognitive development in children with cerebral palsy (CP). Prospective, cross-sectional. One hundred seventy one children with CP (98 males and 73 females) were evaluated for motor (Gross Motor Function Measure, Gross Motor Function Classification System) and cognitive (Bayley II, Wechsler Scales) functions. Eighty-four of them were assessed before and other eighty-seven children after 4 years of age. No gender-related differences were observed in children with diplegia or quadriplegia, both for motor and cognitive functions. On the contrary, females with hemiplegia scored significantly better (P < 0.01) in cognitive functions and in the dimension D (standing) of the Gross Motor Function Measure, under the age of 4 years. These differences were not observed after this age. In this study we point out that gender might influence differently the psycho-motor development of children with hemiplegia and of those with a more severe clinical involvement as diplegia and quadriplegia. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

Top