Platelet activation through a Bi-leaflet mechanical heart valve
NASA Astrophysics Data System (ADS)
Hedayat, Mohammadali; Borazjani, Iman
2016-11-01
Platelet activation is one of the major drawbacks of the Mechanical Heart Valves (MHVs) which can increase the risk of thrombus formation in patients. The platelet activation in MHVs can be due to the abnormal shear stress during the systole, the backward leakage flow during the diastole, and the flow through the hinge region. We investigate the contribution of each of the above mechanism to the activation of platelets in MHVs by performing simulations of the flow through the MHV and in the hinge region. The large scale heart valve simulations are performed in a straight aorta using a sharp interface curvilinear immersed boundary method along with a strong-coupling algorithm under physiological flow conditions. In addition, in order to perform the simulation of hinge region the flow field boundary conditions are obtained from the largescale simulations during a whole cardiac cycle. In order to investigate the role of hinge flow on platelet activation in MHVs, a 23mm St. Jude Medical Regent valve hinge with three different gap sizes is tested along with different platelet activation models to ensure the consistency of our results with different activation models. We compare the platelet activation of the hinge region against the bulk of the flow during one cardiac cycle. This work is supported by the American Heart Association Grant 13SDG17220022, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.
Two-axis direct fluid shear stress sensor
NASA Technical Reports Server (NTRS)
Bajikar, Sateesh (Inventor); Scott, Michael A. (Inventor); Adcock, Edward E. (Inventor)
2011-01-01
A micro sized multi-axis semiconductor skin friction/wall shear stress induced by fluid flow. The sensor design includes a shear/strain transduction gimble connected to a force collecting plate located at the flow boundary surface. The shear force collecting plate is interconnected by an arm to offset the tortional hinges from the fluid flow. The arm is connected to the shear force collecting plate through dual axis torsional hinges with piezoresistive torsional strain gauges. These gauges are disposed on the tortional hinges and provide a voltage output indicative of applied shear stress acting on the force collection plate proximate the flow boundary surface. Offsetting the torsional hinges creates a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from small shear stress, or small displacement of the collecting plate. The design also isolates the torsional sensors from exposure to the fluid flow.
Comparison of platelet activation through hinge vs bulk flow in mechanical heart valves
NASA Astrophysics Data System (ADS)
Hedayat, Mohammadali; Borazjani, Iman
2017-11-01
Bileaflet mechanical heart valves increase the risk of thrombus formation in patients which is believed to be initiated by platelet activation. Platelets can be activated by the elevated shear stresses in the bulk flow during the systole phase or the flow through the hinge during the diastole. However, the importance of platelet activation by the bulk flow vs the hinge in MHVs has yet to be studied. Here, we investigate the contribution of each of the above mechanisms to the activation of platelets in MHs by performing simulation of the flow through a 25mm St. Jude Medical valve placed in a straight aorta. Two different gap sizes (250 and 150 micrometer) are used in this study. The simulations are done using a sharp interface curvilinear immersed boundary method along with a strong-coupling algorithm for FSI solver on overset grids. The platelet activation through the hinge for different gap sizes is compared to the activation in the bulk flow using two platelet activation models to ensure the consistency of the results. Our results for all gap sizes using different activation models show that the integration of platelet activation caused by the bulk flow is several times higher in comparison to the activation through the hinge. This work is supported by the American Heart Association Grant 13SDG17220022, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.
Gas turbine combustor exit piece with hinged connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charron, Richard C.; Pankey, William W.
2016-04-26
An exit piece (66) with an inlet throat (67) that conducts a combustion gas flow (36A) in a path (82) from a combustor (63) to an annular chamber (68) that feeds the first blade section (37) of a gas turbine (26). The exit piece further includes an outlet portion (69) that forms a circumferential segment of the annular chamber. The outlet portion interconnects with adjacent outlet portions by hinges (78A, 78B, 80A, 80B). Each hinge may have a hinge axis (82A, 82B) parallel to a centerline (21) of the turbine. Respective gas flows (36A) are configured by an assembly (60)more » of the exit pieces to converge on the feed chamber (68) into a uniform helical flow that drives the first blade section with minimal circumferential variations in force.« less
Subduction hinge migration: The backwards component of plate tectonics
NASA Astrophysics Data System (ADS)
Stegman, D.; Freeman, J.; Schellart, W.; Moresi, L.; May, D.
2005-12-01
There are approximately 50 distinct segments of subduction zones in the world, of which 40% have oceanic lithosphere subducting under oceanic lithosphere. All of these ocean-ocean systems are currently experiencing hinge-rollback, with the exception of 2 (Mariana and Kermadec). In hinge-rollback, the surface trace of the suduction zone (trench) is moving in the opposite direction as the plate is moving (i.e. backwards). Coincidentally, the fastest moving plate boundary in the world is actually the Tonga trench at an estimated 17 cm/yr (backwards). Although this quite important process was recognized soon after the birth of plate tectonic theory (Elsasser, 1971), it has received only a limited amount of attention (Garfunkel, 1986; Kincaid and Olson, 1987) until recently. Laboratory models have shown that having a three dimensional experiment is essential in order to build a correct understanding of subduction. We have developed a numerical model with the neccessary 3-D geometry capable of investigating some fundamental questions of plate tectonics: How does hinge-rollback feedback into surface tectonics and mantle flow? What can we learn about the forces that drive plate tectonics by studying hinge-rollback? We will present a quantatitive analysis of the effect of the lateral width of subduction zones, the key aspect to understanding the nature of hinge-rollback. Additionally, particular emphasis has been put on gaining intuition through the use of movies (a 3-D rendering of the numerical models), illustrating the time evolution of slab interactions with the lower mantle as seen in such fields as velocity magnitude, strain rate, viscosity, as well as the toroidal and poloidal components of induced flow. This investigation is well-suited to developing direct comparisons with geological and geophysical observations such as geodetically determined hinge retreat rates, geochemical and petrological observations of arc volcanics and back-arc ridge basalts, timing and distribution of metamorphic core complexes in backarc basins under extension, paleostress observables such surface movements and block rotations, observations of seismic anistropy determined by shear wave splitting, and the emerging studies of regional tomographic models of seismic anistropy.
Hirst, Deborah V.L.; Dunn, Kevin H.; Shulman, Stanley A.; Hammond, Duane R.; Sestito, Nicholas
2015-01-01
Exposures to diacetyl, a primary ingredient of butter flavoring, have been shown to cause respiratory disease among workers who mix flavorings. This study focused on evaluating ventilation controls designed to reduce emissions from the flavor mixing tanks, the major source of diacetyl in the plants. Five exhaust hood configurations were evaluated in the laboratory: standard hinged lid-opened, standard hinged lid-closed, hinged lid-slotted, dome with 38-mm gap, and dome with 114-mm gap. Tracer gas tests were performed to evaluate quantitative capture efficiency for each hood. A perforated copper coil was used to simulate an area source within the 1.2-meter diameter mixing tank. Capture efficiencies were measured at four hood exhaust flow rates (2.83, 5.66, 11.3, and 17.0 cubic meters per minute) and three cross draft velocities (0, 30, and 60 meters per minute). All hoods evaluated performed well with capture efficiencies above 90% for most combinations of exhaust volume and cross drafts. The standard hinged lid was the least expensive to manufacture and had the best average capture efficiency (over 99%) in the closed configuration for all exhaust flow rates and cross drafts. The hinged lid-slotted hood had some of the lowest capture efficiencies at the low exhaust flow rates compared to the other hood designs. The standard hinged lid performed well, even in the open position, and it provided a flexible approach to controlling emissions from mixing tanks. The dome hood gave results comparable to the standard hinged lid but it is more expensive to manufacture. The results of the study indicate that emissions from mixing tanks used in the production of flavorings can be controlled using simple inexpensive exhaust hoods. PMID:24649880
Geothermal energy prospectivity of the Torrens Hinge Zone: evidence from new heat flow data
NASA Astrophysics Data System (ADS)
Matthews, Chris
2009-09-01
The Torrens Hinge Zone is a long but narrow (up to 40km wide) geological transition zone between the relatively stable Eastern Gawler Craton `Olympic Domain' to the west, and the sedimentary basin known as the Adelaide Geosyncline to the east. The author hypothesised from first principles that the Torrens Hinge Zone should be prospective for high geothermal gradients due to the likely presence of high heat flow and insulating cover rocks. A method to test this hypothesis was devised, which involved the determination of surface heat flow on a pattern grid using purpose-drilled wells, precision temperature logging and detailed thermal conductivity measurements. The results of this structured test have validated the hypothesis, with heat flow values over 90mW/m2 recorded in five of six wells drilled. With several kilometres thickness of moderate conductivity sediments overlying the crystalline basement in this region, predicted temperature at 5000m ranges between 200 and 300°C.
NASA Astrophysics Data System (ADS)
Pavlenko, Olga V.; Pigusov, Evgeny A.
2018-05-01
The paper discusses the approach of numerical simulation of the boundary layer control (BLC) on deflected flap for suppression of flow separation. Computational investigations were carried out using a program based on numerically solving the Reynolds averaged Navier-Stokes equations. The aim of this work is numerical investigation of the aerodynamic loads and hinge moments of the flap with BLC with influence of the walls of the wind tunnel. We have made a calculation of the airfoil section with flap deflected by 20° and 60° with variation of blowing momentum coefficient of Cμ=0÷0.1. The comparison of the calculation results with the experimental values of lift coefficient, pitching moment and pressure coefficient is presented. The pressure distribution on all surface of the wing and the threedimensional flow pattern of the wing with BLC, influence of the walls of the wind tunnel and the aerodynamic loads and hinge moments of the BLC flap are given. It is shown that the 20° flap increases the jet momentum coefficient from Cμ=0 to Cμ=0.1, leads to an increase of the hinge moment coefficient almost in 2 times, and the 60° flap increases the jet momentum coefficient from Cμ=0 to Cμ=0.113, leads to an increase of the hinge moment coefficient almost 3.5 times. The magnitude of the hinge moment on the flap with BLC rises due to the increase of the total aerodynamic force acting on the flap. As a result, the jet blowing on the plain flap leads to the significant increase of the hinge moment that must be considered when designing the high-lift devices with BLC.
Control surface hinge moment prediction using computational fluid dynamics
NASA Astrophysics Data System (ADS)
Simpson, Christopher David
The following research determines the feasibility of predicting control surface hinge moments using various computational methods. A detailed analysis is conducted using a 2D GA(W)-1 airfoil with a 20% plain flap. Simple hinge moment prediction methods are tested, including empirical Datcom relations and XFOIL. Steady-state and time-accurate turbulent, viscous, Navier-Stokes solutions are computed using Fun3D. Hinge moment coefficients are computed. Mesh construction techniques are discussed. An adjoint-based mesh adaptation case is also evaluated. An NACA 0012 45-degree swept horizontal stabilizer with a 25% elevator is also evaluated using Fun3D. Results are compared with experimental wind-tunnel data obtained from references. Finally, the costs of various solution methods are estimated. Results indicate that while a steady-state Navier-Stokes solution can accurately predict control surface hinge moments for small angles of attack and deflection angles, a time-accurate solution is necessary to accurately predict hinge moments in the presence of flow separation. The ability to capture the unsteady vortex shedding behavior present in moderate to large control surface deflections is found to be critical to hinge moment prediction accuracy. Adjoint-based mesh adaptation is shown to give hinge moment predictions similar to a globally-refined mesh for a steady-state 2D simulation.
Formation of vortex pairs with hinged rigid flaps at the nozzle exit
NASA Astrophysics Data System (ADS)
Das, Prashant; Govardhan, Raghuraman; Arakeri, Jaywant
2013-11-01
Biological flows related to aquatic propulsion using pulsed jets, or flow through the valves in a human heart, have received considerable attention in the last two decades. Both these flows are associated with starting jets that occur through biological tissue/membranes that are flexible. Motivated by these flows, we explore in the present work, the effect of passive flexibility of the nozzle exit on vortex generation from a starting jet. The starting jet is generated using a two-dimensional piston cylinder mechanism, the cross-section of the cylinder being rectangular with large aspect ratio. The fluid is pushed out of this cylinder or channel using a computer controlled piston. We introduce flexibility at the channel exit by hinging rigid flaps, which are initially parallel to the channel. The hinge used is such that it provides negligible stiffness or damping, thus allowing for the maximum opening of the flaps due to fluid forces. Using this system, we study both the flap kinematics and the vorticity dynamics downstream of the channel exit. Visualizations show large flap motions as the piston starts and this dramatically changes the vorticity distribution downstream of the flaps, with the formation of up to three different kinds of vortex pairs. This idealized configuration opens new opportunities to look at the effect of flexibility in such biological flows.
Numerical Simulation of a High-Lift Configuration Embedded with High Momentum Fluidic Actuators
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Duda, Benjamin; Fares, Ehab; Lin, John C.
2016-01-01
Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration, just upstream of the hinge line, is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW R code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. A fully compressible version of the PowerFLOW R code valid for high speed flows is used for the present simulations to accurately represent the transonic flow regimes encountered in the flow field due to the actuators operating at higher mass flow (momentum) rates required to mitigate reverse flow regions on a highly-deflected rudder surface. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. The effect of varying the rudder deflection angle on integrated forces and surface pressures is also presented.
NASA Technical Reports Server (NTRS)
Mendenhall, M. R.
1978-01-01
A user's manual is presented for a computer program in which a vortex-lattice lifting-surface method is used to model the wing and multiple flaps. The engine wake model consists of a series of closely spaced vortex rings with rectangular cross sections. The jet wake is positioned such that the lower boundary of the jet is tangent to the wing and flap upper surfaces. The two potential flow models are used to calculate the wing-flap loading distribution including the influence of the wakes from up to two engines on the semispan. The method is limited to the condition where the flow and geometry of the configurations are symmetric about the vertical plane containing the wing root chord. The results include total configuration forces and moments, individual lifting-surface load distributions, pressure distributions, flap hinge moments, and flow field calculation at arbitrary field points. The use of the program, preparation of input, the output, program listing, and sample cases are described.
NASA Astrophysics Data System (ADS)
Statsenko, Elena; Ostrovaia, Anastasia; Pigurin, Andrey
2018-03-01
This article considers the influence of the building's tallness and the presence of mounting grooved lines on the parameters of heat transfer in the gap of a hinged ventilated facade. A numerical description of the processes occurring in a heat-gravitational flow is given. The average velocity and temperature of the heat-gravitational flow of a structure with open and sealed rusts are determined with unchanged geometric parameters of the gap. The dependence of the parameters influencing the thermomechanical characteristics of the enclosing structure is derived depending on the internal parameters of the system. Physical modeling of real multistory structures is performed by projecting actual parameters onto a reduced laboratory model (scaling).
NASA Technical Reports Server (NTRS)
Mendenhall, M. R.; Goodwin, F. K.; Spangler, S. B.
1976-01-01
A vortex lattice lifting-surface method is used to model the wing and multiple flaps. Each lifting surface may be of arbitrary planform having camber and twist, and the multiple-slotted trailing-edge flap system may consist of up to ten flaps with different spans and deflection angles. The engine wakes model consists of a series of closely spaced vortex rings with circular or elliptic cross sections. The rings are normal to a wake centerline which is free to move vertically and laterally to accommodate the local flow field beneath the wing and flaps. The two potential flow models are used in an iterative fashion to calculate the wing-flap loading distribution including the influence of the waves from up to two turbofan engines on the semispan. The method is limited to the condition where the flow and geometry of the configurations are symmetric about the vertical plane containing the wing root chord. The calculation procedure starts with arbitrarily positioned wake centerlines and the iterative calculation continues until the total configuration loading converges within a prescribed tolerance. Program results include total configuration forces and moments, individual lifting-surface load distributions, including pressure distributions, individual flap hinge moments, and flow field calculation at arbitrary field points.
Fiber Grating Moisture And Chemical Sensing System
Schipani, Claudia; Spano, Ennio; Dalle Crode, Domenico
2004-01-27
A vane for a stator of a variable-geometry turbine, in particular for aeronautical engines, has an airfoil profile and a pair of hinge portions, which are carried by the airfoil profile and enable the airfoil profile to be coupled to a support structure of the stator so as to be rotatable about an axis of adjustment; the vane also has internal channels that allow a flow of air to pass through in order to cool the hinge portions.
NASA Technical Reports Server (NTRS)
Runckel, Jack F.; Hieser, Gerald
1961-01-01
An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.
NASA Technical Reports Server (NTRS)
Goin, Kennith L
1951-01-01
Existing conical-flow solutions have been used to calculate the hinge-moments and effectiveness parameters of trailing-edge controls having leading and trailing edges swept ahead of the Mach lines and having streamwise root and tip chords. Equations and detailed charts are presented for the rapid estimation of these parameters. Also included is an approximate method by which these parameters may be corrected for airfoil-section thickness.
Active Control of Separation from the Slat Shoulder of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Schaeffler, Norman W.; Yao, Chung-Sheng; Seifert, Avi
2002-01-01
Active flow control in the form of zero-mass-flux excitation was applied at the slat shoulder of a simplified high-lift airfoil to delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge slat and a 25% chord simply hinged trailing edge flap. The cruise configuration data was successfully reproduced, repeating previous experiments. The effects of flap and slat deflection angles on the performance of the airfoil integral parameters were quantified. Detailed flow features were measured as well, in an attempt to identify optimal actuator placement. The measurements included: steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization and Particle Image Velocimetry (PIV). High frequency periodic excitation was applied to delay the occurrence of slat stall and improve the maximum lift by 10 to 15%. Low frequency amplitude modulation was used to reduce the oscillatory momentum coefficient by roughly 50% with similar aerodynamic performance.
Active Control of Separation From the Flap of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Melton, La Tunia Pack; Yao, Chung-Sheng; Seifert, Avi
2003-01-01
Active flow control in the form of periodic zero-mass-flux excitation was applied at several regions on the leading edge and trailing edge flaps of a simplified high-lift system t o delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approx.= 10) and low frequency amplitude modulation (F(+)AM approx.= 1) of the high frequency excitation were used for control. Preliminary efforts to combine leading and trailing edge flap excitations are also reported.
NASA Technical Reports Server (NTRS)
Carlson, Harry W.; Darden, Christine M.
1988-01-01
Extensive correlations of computer code results with experimental data are employed to illustrate the use of linearized theory attached flow methods for the estimation and optimization of the aerodynamic performance of simple hinged flap systems. Use of attached flow methods is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. A variety of swept wing configurations are considered ranging from fighters to supersonic transports, all with leading- and trailing-edge flaps for enhancement of subsonic aerodynamic efficiency. The results indicate that linearized theory attached flow computer code methods provide a rational basis for the estimation and optimization of flap system aerodynamic performance at subsonic speeds. The analysis also indicates that vortex flap design is not an opposing approach but is closely related to attached flow design concepts. The successful vortex flap design actually suppresses the formation of detached vortices to produce a small vortex which is restricted almost entirely to the leading edge flap itself.
Control-Structure Ratings on the Fox River at McHenry and Algonquin, Illinois
Straub, Timothy D.; Johnson, Gary P.; Hortness, Jon E.; Parker, Joseph R.
2009-01-01
The Illinois Department of Natural Resources-Office of Water Resources operates control structures on a reach of the Fox River in northeastern Illinois between McHenry and Algonquin. The structures maintain water levels in the river for flood-control and recreational purposes. This report documents flow ratings for hinged-crest gates, a broad-crested weir, sluice gates, and an ogee spillway on the control structures at McHenry and Algonquin. The ratings were determined by measuring headwater and tailwater stage along with streamflow at a wide range of flows at different gate openings. Standard control-structure rating techniques were used to rate each control structure. The control structures at McHenry consist of a 221-feet(ft)-long broad-crested weir, a 4-ft-wide fish ladder, a 50-ft-wide hinged-crest gate, five 13.75-ft-wide sluice gates, and a navigational lock. Sixty measurements were used to rate the McHenry structures. The control structures at Algonquin consist of a 242-ft-long ogee spillway and a 50-ft-wide hinged-crest gate. Forty-one measurements were used to rate the Algonquin control structures.
Parametric study of a simultaneous pitch/yaw thrust vectoring single expansion ramp nozzle
NASA Technical Reports Server (NTRS)
Schirmer, Alberto W.; Capone, Francis J.
1989-01-01
In the course of the last eleven years, the concept of thrust vectoring has emerged as a promising method of enhancing aircraft control capabilities in post-stall flight incursions during combat. In order to study the application of simultaneous pitch and yaw vectoring to single expansion ramp nozzles, a static test was conducted in the NASA-Langley 16 foot transonic tunnel. This investigation was based on internal performance data provided by force, mass flow and internal pressure measurements at nozzle pressure ratios up to 8. The internal performance characteristics of the nozzle were studied for several combinations of six different parameters: yaw vectoring angle, pitch vectoring angle, upper ramp cutout, sidewall hinge location, hinge inclination angle and sidewall containment. Results indicated a 2-to- 3-percent decrease in resultant thrust ratio with vectoring in either pitch or yaw. Losses were mostly associated with the turning of supersonic flow. Resultant thrust ratios were also decreased by sideways expansion of the jet. The effects of cutback corners in the upper ramp and lower flap on performance were small. Maximum resultant yaw vector angles, about half of the flap angle, were achieved for the configuration with the most forward hinge location.
NASA Technical Reports Server (NTRS)
Elston, W. E.
1984-01-01
Voyager 1 images show 14 volcanic centers wholly or partly within the Kane Patera quadrangle of Io, which are divided into four major classes: (1) shield with parallel flows; (2) shield with early radial fan shapd flows; (3) shield with radial fan shaped flows, surfaces of flows textured with longitudinal ridges; and (4) depression surrounded by plateau-forming scarp-bounded, untextured deposits. The interpretation attempted here hinges largely on the ability to distinguish lava flows from pyroclastic flows by remote sensing.
Laminar Flow Supersonic Wind Tunnel primary air injector
NASA Technical Reports Server (NTRS)
Smith, Brooke Edward
1993-01-01
This paper describes the requirements, design, and prototype testing of the flex-section and hinge seals for the Laminar Flow Supersonic Wind Tunnel Primary Injector. The supersonic atmospheric primary injector operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128 lbm/s providing the necessary pressure reduction to operate the tunnel in the desired Reynolds number (Re) range.
Active Control of Separation From the Flap of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi
2006-01-01
Zero-mass-flux periodic excitation was applied at several regions on a simplified high-lift system to delay the occurrence of flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approximately equal to 10) and low frequency amplitude modulation (F(+) sub AM approximately equal to 1) of the high frequency excitation were used for control. It was noted that the same performance gains were obtained with amplitude modulation and required only 30% of the momentum input required by pure sine excitation.
Study of lee-side flows over conically cambered Delta wings at supersonic speeds, part 2
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Watson, Carolyn B.
1987-01-01
An experimental investigation was performed in which surface pressure data, flow visualization data, and force and moment data were obtained on four conical delta wing models which differed in leading edge camber only. Wing leading edge camber was achieved through a deflection of the outboard 30% of the local wing semispan of a reference 75 deg swept flat delta wing. The four wing models have leading edge deflection angles delta sub F of 0, 5, 10, and 15 deg measured streamwise. Data for the wings with delta sub F = 10 and 15 deg showed that hinge line separation dominated the lee-side wing loading and prohibited the development of leading edge separation on the deflected portion of wing leading edge. However, data for the wing with delta sub F = 5 deg showed that at an angle of attack of 5 deg, a vortex was positioned on the deflected leading edge with reattachment at the hinge line. Flow visualization results were presented which detail the influence of Mach number, angle of attack, and camber on the lee-side flow characteristics of conically cambered delta wings. Analysis of photographic data identified the existence of 12 distinctive lee-side flow types.
NASA Astrophysics Data System (ADS)
Li, Shuangcai; Duffy, Christopher J.
2011-03-01
Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.
Localized Flow of Frictional Or Creeping Materials In A Lower Flat Thrust To Ramp Transition
NASA Astrophysics Data System (ADS)
Maillot, B.; Leroy, Y.
The passage of rock through zones of localized shear deformation in the form of back- thrusts or kink planes is common in fold and thrust belts. The stationary flow through these two types of hinges is examined for the particular case of a lower flat to ramp transition of a fault-bend fold. The simple shear transformation resulting in strain lo- calization is studied both analytically and numerically. The overall equilibrium of the hanging wall, accounting for friction over the ramp, constrains the shear and normal forces acting on the hinge boundaries. For frictional materials, the localization oc- curs in the form of a velocity discontinuity, defining the backthrust, with a dip which is shown not to bissect ramp angle nor to conserve the thrust nappe thickness, if a criteria based on a minimization of the total dissipation is considered. For creeping materials, the strain localization as a kink plane is shown to require a destabilizing deformation mechanism, selected here to be flexural slip. The rotation of the stress tensor due to the gradient in pressure, the thicknening and thinning of the creeping material, the rate and amount of flexural slip through the hinge are analyzed to define potential tectonic markers.
Vibration and shape control of hinged light structures using electromagnetic forces
NASA Astrophysics Data System (ADS)
Matsuzaki, Yuji; Miyachi, Shigenobu; Sasaki, Toshiyuki
2003-08-01
This paper describes a new electromagnetic device for vibration control of a light-weighted deployable/retractable structure which consists of many small units connected with mechanical hinges. A typical example of such a structure is a solar cell paddle of an artificial satellite which is composed of many thin flexible blankets connected in series. Vibration and shape control of the paddle is not easy, because control force and energy do not transmit well between the blankets which are discretely connected by hinges with each other. The new device consists of a permanent magnet glued along an edge of a blanket and an electric current-conducting coil glued along an adjoining edge of another adjacent blanket. Conduction of the electric current in a magnetic field from the magnet generates an electromagnetic force on the coil. By changing the current in the coil, therefore, we may control the vibration and shape of the blankets. To confirm the effectiveness of the new device, constructing a simple paddle model consisting eight hinge- panels, we have carried out a model experiment of vibration and shape control of the paddle. In addition, a numerical simulation of vibration control of the hinge structure is performed to compare with measured data.
Galván Duque-Gastélum, Carlos; Quiñones-Uriostegui, Ivett; Mendoza, Felipe; Rodríguez, Gerardo
2014-07-01
Ortheses are devices that assist in the function of the limbs, contributing with stability and support to the involved joints. KAFOs (knee-ankle-foot orthosis) are mainly indicated for people with muscular or neural diseases that affect the lower limbs. The actual designs of knee hinges for KAFOs compromise the stability and mobility of the limb. In this work, it was tested the feasibility of a design for a knee hinge for KAFO that should be able to modify its mechanical resistance depending on the gait phase. Orthotics biomechanical criteria and gait biomechanical requirements were considered. It was proposed an electromagnetic system in order to modify the hinge damping. In the future, the system will be interacting with a magnetorheological fluid (MR) which can change its rheological properties when a magnetic field is applied, thus, reaching different damping constants with the designed hinge. The diameter of the internal pipes required for the MR fluid to freely circulate within the orthosis was established. It was observed that the original design of the proposed orthotic hinge is feasible; however, some proposals are presented in order to achieve a better performance of the orthosis.
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Schirmer, Alberto W.
1993-01-01
An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel at nozzle pressure ratios up to 8.0.
Horizontal mantle flow controls subduction dynamics.
Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V
2017-08-08
It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.
NASA Astrophysics Data System (ADS)
Axen, Gary J.; Bartley, John M.; Selverstone, Jane
1995-12-01
The kinematic and temporal sequence of structures observed to overprint mylonites along the Brenner Line low-angle normal fault may record passage of the footwall through two rolling hinges, at the top and bottom of a ramp in the shear zone. The structures comprise west down brittle and brittle-ductile structures and east down brittle structures. PT conditions of formation (250° to >400°C and 2-23 km depth), obtained from analysis of oriented fluid inclusion planes, indicate that west down structures were formed at greater depths and temperatures, and therefore earlier, than the east down structures. These data suggest that the brittle structures formed under conditions that permit crystal-plastic deformation at long-term geologic strain rates and therefore probably reflect transient rapid strain rates and/or high fluid pressure. Structures inferred to have formed at a lower hinge are consistent with viscous flow models of rolling-hinge deformation and support the concept of a crustal asthenosphere. Such high temperatures at shallow crustal depth also suggest significant upward advection of heat by extensional unroofing of warm rocks, which may have reduced the flexural rigidity of the footwall and thus affected mechanical behavior at the upper rolling hinge. Exposed mylonitic foliation within a few hundred meters of the Brenner line and on top of the east-west trending anticlines in the footwall dips ˜15° west. Our data favor a ramp dip of ˜25° but permit a dip as great as 45°. Fluid inclusion data suggest that structures related to the hinge at the base of the ramp formed at depths of 12-25 km. If the average dip of the Brenner shear zone to those depths was 20°, intermediate between the favored ramp dip and the dip of exposed foliation, then the horizontal component of slip could be as high as 33-63 km. The two discrete sets of structures with opposite shear senses, formed in the temporal sequence indicated by PT data, are consistent with subvertical simple shear models of rolling-hinge strain. This kinematic pattern is not predicted by the flexural-failure model for rolling hinges. However, the predominance of normal slip at the upper hinge, which extends rather than shortens the mylonitic foliation, fails to match the subvertical simple shear model, which predicts shortening of the foliation there. One possible solution is that superposition of regional extension upon hinge-related stresses modified the rolling-hinge kinematics. Such a modified subvertical shear model can account for the observed small foliation-parallel extensional strains if the foliation was bent <5°-10° passing through the upper hinge. If more bending than that occurred, the data suggest rolling-hinge kinematics in which deformation is achieved by uniform-sense simple shear across the shear zone as in the subvertical simple shear model but in which material lines parallel to the shear-zone foliation and the detachment fault undergo very small length changes, presumably indicating that footwall rocks retained significant resistance to shear and underwent minimal permanent strain. The mechanics that would generate such a rolling hinge are uncertain but may incorporate aspects of both subvertical simple shear and flexural failure. An important kinematic consequence of such a rolling hinge is that all of the net slip across a normal fault, not only its horizontal component, is converted into horizontal extension. This implies a significantly larger magnitude of crustal extension across dipping normal faults whose footwalls passed through a rolling hinge than for those that did not develop along with a hinge.
NASA Astrophysics Data System (ADS)
Krýza, Ondřej; Lexa, Ondrej; Závada, Prokop; Schulmann, Karel; Gapais, Denis; Cosgrove, John
2017-04-01
Recently, a PIV (particle image velocimetry) analysis method is optical method abundantly used in many technical branches where material flow visualization and quantification is important. Typical examples are studies of liquid flow through complex channel system, gas spreading or combustion problematics. In our current research we used this method for investigation of two types of complex analogue geodynamic and tectonic experiments. First class of experiments is aimed to model large-scale oroclinal buckling as an analogue of late Paleozoic to early Mesozoic evolution of Central Asian Orogenic Belt (CAOB) resulting from nortward drift of the North-China craton towards the Siberian craton. Here we studied relationship between lower crustal and lithospheric mantle flows and upper crustal deformation respectively. A second class of experiments is focused to more general study of a lower crustal flow in indentation systems that represent a major component of some large hot orogens (e.g. Bohemian massif). The most of simulations in both cases shows a strong dependency of a brittle structures shape, that are situated in upper crust, on folding style of a middle and lower ductile layers which is influenced by rheological, geometrical and thermal conditions of different parts across shortened domain. The purpose of PIV application is to quantify material redistribution in critical domains of the model. The derivation of flow direction and calculation of strain-rate and total displacement field in analogue experiments is generally difficult and time-expensive or often performed only on a base of visual evaluations. PIV method operates with set of images, where small tracer particles are seeded within modeled domain and are assumed to faithfully follow the material flow. On base of pixel coordinates estimation the material displacement field, velocity field, strain-rate, vorticity, tortuosity etc. are calculated. In our experiments we used velocity field divergence to quantify the redistribution and flow of anatectic lower crust and to evaluate upper crust thickenning and topography evolution. As this method is very sensitive to resolution and color contrast of obtained images and used materials are mostly uniform within individual rheological layers and domains, we utilized various markers as flakes of a fluorescent wax or glitter to increase overall sensitivity. Applying this method to oroclinal buckling experiments we derived velocity field divergence associated with upper crustal deformation and evolution of topography. Scaled, dimensionless negative values of divergence reach minimum (˜ -1) in two elongated domains propagating from inflection area of modeled orocline. These values correlate with significant upper crust material removing and-or with redistribution of crustal material associated with formed pop-up and pop-down structures. Maximum positive values (˜ 0.1) correspond with material spreading alongside forming platforms that are situated in foreland of maximum elevations. Application of PIV method on lateral view, where ductile middle and lower crust is vertically folded during lithosphere shortening and indentation, revealed possibility to track melt migration from base of lower crust through interlimb area towards hinge zone of individual folds. Simultaneously with folds locking and material accumulation, whole structures are exhumed at the middle crust level. Melt flow and heat exchange with surrounding environment is responsible for increased plasticity of the middle crust marked by higher strain-rates observed inside fold envelope. It is also responsible for significant elevation above hinges during later stages of model evolution. Heterogeneous nature of deformation is well documented by heterogeneities in derived divergence field within folds interiors. Our results show distinct advantages of PIV method for post-processing of geodynamic and tectonic analogue models and demonstrate great potential of this method for quantitative processing of wide spectrum of analogue approaches to different natural systems.
Operational characterization of CSFH MEMS technology based hinges
NASA Astrophysics Data System (ADS)
Crescenzi, Rocco; Balucani, Marco; Belfiore, Nicola Pio
2018-05-01
Progress in MEMS technology continuously stimulates new developments in the mechanical structure of micro systems, such as, for example, the concept of so-called CSFH (conjugate surfaces flexural hinge), which makes it possible, simultaneously, to minimize the internal stresses and to increase motion range and robustness. Such a hinge may be actuated by means of a rotary comb-drive, provided that a proper set of simulations and tests are capable to assess its feasibility. In this paper, a CSFH has been analyzed with both theoretical and finite element (FEM) methods, in order to obtain the relation between voltage and generated torque. The FEM model considers also the fringe effect on the comb drive finger. Electromechanical couple-field analysis is performed by means of both direct and load transfer methods. Experimental tests have been also performed on a CSFH embedded in a MEMS prototype, which has been fabricated starting from a SOI wafer and using D-RIE (deep reactive ion etching). Results showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.
NASA Technical Reports Server (NTRS)
Hawthorne, P. J.
1976-01-01
The base pressure environment was investigated for the first and second stage mated vehicle in a supersonic flow field from Mach 1.55 through 2.20 with simulated rocket engine exhaust plumes. The pressure environment was investigated for the orbiter at various vent port locations at these same freestream conditions. The Mach number environment around the base of the model with rocket plumes simulated was examined. Data were obtained at angles of attack from -4 deg through +4 deg at zero yaw, and at yaw angles from -4 deg through +4 deg at zero angle of attack, with rocket plume sizes varying from smaller than nominal to much greater than nominal. Failed orbiter engine data were also obtained. Elevon hinge moments and wing panel load data were obtained during all runs. Photographs of the tested configurations are shown.
NASA Technical Reports Server (NTRS)
Hawthorne, P. J.
1976-01-01
The primary test objective was to define the base pressure environment of the first and second stage mated vehicle in a supersonic flow field from Mach 2.60 through 3.50 with simulated rocket engine exhaust plumes. The secondary objective was to obtain the pressure environment of the Orbiter at various vent port locations at these same freestream conditions. Data were obtained at angles of attack from -4 deg through +4 deg at zero yaw, and at yaw angles from -4 deg through +4 deg at zero angle of attack, with rocket plume sizes varying from smaller than nominal to much greater than nominal. Failed Orbiter engine data were also obtained. Elevon hinge moments and wing panel load data were obtained during all runs. Photographs of test equipment and tested configurations are shown.
A Self-Categorization Explanation for Opinion Consensus Perceptions
ERIC Educational Resources Information Center
Zhang, Jinguang; Reid, Scott A.
2013-01-01
The public expression of opinions (and related communicative activities) hinges upon the perception of opinion consensus. Current explanations for opinion consensus perceptions typically focus on egocentric and other biases, rather than functional cognitions. Using self-categorization theory we showed that opinion consensus perceptions flow from…
Petiolate wings: effects on the leading-edge vortex in flapping flight.
Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J
2017-02-06
The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1-3. The wings were driven using a mechanical device, the 'Flapperatus', to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ * (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.
Petiolate wings: effects on the leading-edge vortex in flapping flight
2017-01-01
The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1–3. The wings were driven using a mechanical device, the ‘Flapperatus’, to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested. PMID:28163876
NASA Technical Reports Server (NTRS)
Garner, Elizabeth I.
1944-01-01
Correlation is established between aerodynamic characteristics of control surfaces in two-dimensional and three-dimensional flow. Slope of lift curve was affected little by overhang and balance-nose shape, but increased by sealing flap-nose gap. Effectiveness of balancing tab was same for sealed plain flap and unsealed overhang flap. Changes in hinge-moment coefficient were diminished by sealing gap. Values measured by three-dimensional flow disagreed with two-dimensional flow values until aspect ratio corrections were made.
Magnetic Actuation of Self-Assembled DNA Hinges
NASA Astrophysics Data System (ADS)
Lauback, S.; Mattioli, K.; Armstrong, M.; Miller, C.; Pease, C.; Castro, C.; Sooryakumar, R.
DNA nanotechnology offers a broad range of applications spanning from the creation of nanoscale devices, motors and nanoparticle templates to the development of precise drug delivery systems. Central to advancing this technology is the ability to actuate or reconfigure structures in real time, which is currently achieved primarily by DNA strand displacement yielding slow actuation times (about 1-10min). Here we exploit superparamagnetic beads to magnetically actuate DNA structures which also provides a system to measure forces associated with molecular interactions. DNA nanodevices are folded using DNA origami, whereby a long single-stranded DNA is folded into a precise compact geometry using hundreds of short oligonucleotides. Our DNA nanodevice is a nanohinge from which rod shaped DNA nanostructures are polymerized into micron-scale filaments forming handles for actuation. By functionalizing one arm of the hinge and the filament ends, the hinge can be attached to a surface while still allowing an arm to rotate and the filaments can be labeled with magnetic beads enabling the hinge to be actuated almost instantaneously by external magnetic fields. These results lay the groundwork to establish real-time manipulation and direct force application of DNA constructs.
NASA Astrophysics Data System (ADS)
Manning, Andrew H.; Bartley, John M.
1994-06-01
Much of the recent debate over low-angle normal faults exposed in metamorphic core complexes has centered on the rolling hinge model. The model predicts tilting of seismogenic high-angle normal faults to lower dips by footwall deformation in response to isostatic forces caused by footwall exhumation. This shallow brittle deformation should visibly overprint the mylonitic fabric in the footwall of a metamorphic core complex. The predicted style and magnitude of rolling hinge strain depends upon the macroscopic mechanism by which the footwall deforms. Two end-members have been proposed: subvertical simple shear and flexural failure. Each mechanism should generate a distinctive pattern of structures that strike perpendicular to the regional extension direction. Subvertical simple shear (SVSS) should generate subvertical faults and kink bands with a shear sense antithetic to the detachment. For an SVSS hinge, the hinge-related strain magnitude should depend only on initial fault dip; rolling hinge structures should shorten the mylonitic foliation by >13% for an initial fault dip of >30°. In flexural failure the footwall behaves as a flexed elastic beam that partially fails in response to bending stresses. Resulting structures include conjugate faults and kink bands that both extend and contract the mylonitic foliation. Extensional sets could predominate as a result of superposition of far-field and flexural stresses. Strain magnitudes do not depend on fault dip but depend on the thickness and radius of curvature of the flexed footwall beam and vary with location within that beam. Postmylonitic structures were examined in the footwall of the Raft River metamorphic core complex in northwestern Utah to test these predictions. Observed structures strike perpendicular to the regional extension direction and include joints, normal faults, tension-gash arrays, and both extensional and contractional kink bands. Aside from the subvertical joints, the extensional structures dip moderately to steeply and are mainly either synthetic to the detachment or form conjugate sets. Range-wide, the extensional structures accomplish about 4% elongation of the mylonitic foliation. Contractional structures dip steeply, mainly record shear antithetic to the detachment, and accomplish <1% contraction of the foliation. These observations are consistent with the presence of a rolling hinge in the Raft River Mountains, but a rolling hinge that reoriented a high-angle normal fault by SVSS is excluded. The pattern and magnitudes of strain favor hinge-related deformation mainly by flexural failure with a subordinate component of SVSS.
NASA Technical Reports Server (NTRS)
Taylor, John G.
1990-01-01
An investigation was conducted in the Static Test Facility of the NASA Langley 16-Foot Transonic Tunnel to determine the internal performance of two-dimensional convergent-divergent nozzles designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap rotation of thrust vectoring in the pitch plane and deflection of flat yaw flaps hinged at the end of the sidewalls for yaw thrust vectoring. The hinge location of the yaw flaps was varied at four positions from the nozzle exit plane to the throat plane. The yaw flaps were designed to contain the flow laterally independent of power setting. In order to eliminate any physical interference between the yaw flap deflected into the exhaust stream and the divergent flaps, the downstream corners of both upper and lower divergent flaps were cut off to allow for up to 30 deg of yaw flap deflection. The impact of varying the nozzle pitch vector angle, throat area, yaw flap hinge location, yaw flap length, and yaw flap deflection angle on nozzle internal performance characteristics, was studied. High-pressure air was used to simulate jet exhaust at nozzle pressure ratios up to 7.0. Static results indicate that configurations with the yaw flap hinge located upstream of the exit plane provide relatively high levels of thrust vectoring efficiency without causing large losses in resultant thrust ratio. Therefore, these configurations represent a viable concept for providing simultaneous pitch and yaw thrust vectoring.
A combined piezoelectric composite actuator and its application to wing/blade tips
NASA Astrophysics Data System (ADS)
Ha, Kwangtae
A novel combined piezoelectric-composite actuator configuration is proposed and analytically modeled in this work. The actuator is a low complexity, active compliant mechanism obtained by coupling a modified star cross sectional configuration composite beam with a helicoidal bimorph piezoelectric actuator coiled around it. This novel actuator is a good candidate as a hinge tension-torsion bar actuator for a helicopter rotor blade flap or blade tip and mirror rotational positioning. In the wing tip case, the tip deflection angle is different only according to the aerodynamic moment depending on the hinge position of the actuator along the chord and applied voltage because there is no centrifugal force. For an active blade tip subject to incompressible flow and 2D quasi steady airloads, its twist angle is related not only to aerodynamic moment and applied voltage but also to coupling terms, such as the trapeze effect and the tennis racquet effect. Results show the benefit of hinge position aft of the aerodynamic center, such that the blade tip response is amplified by airloads. Contrary to this effect, results also show that the centrifugal effects and inertial effect cause an amplitude reduction in the response. Summation of these effects determines the overall blade tip response. The results for a certain hinge position of Xh=1.5% chord aft of the quarter chord point proves that the tip deflection target design range of beta ∈ [-2,+2] can be achieved for all pitch angle configurations chosen.
Factors Influencing the Accuracy of Aerodynamic Hinge-Moment Prediction
1978-08-01
condition on the aft lifting surfaces and flaps. A new modeling technique for trailing-edge wake analysis using a potential- flow program based on the...control surface as depicLed in figure 21.. Three different models are used to simulate the flow on the wing, the flap, and the gaps. In the first two panel...ized sense, similar to that implemented in the FLEXSTAB program. The modeling of the wake on the side-edge gaps differs in the first two panel models
Shape Memory Composite Hybrid Hinge
NASA Technical Reports Server (NTRS)
Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen
2012-01-01
There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature is reduced to below its glass transition temperature. After the deployable structure is launched in space, the SMC tube is reheated and the hinge is unfolded to deploy the structure. Based on test results, the hybrid hinge can achieve higher than 99.999% shape recovery. The hybrid hinge inherits all of the good characteristics of a tape-spring hinge such as simplicity, light weight, high deployment reliability, and high deployment precision. Conversely, it eliminates the deployment impact that has significantly limited the applications of a tape-spring hinge. The deployment dynamics of a hybrid hinge are in a slow and controllable fashion. The SMC tube of a hybrid hinge is a multifunctional component. It serves as a deployment mechanism during the deployment process, and also serves as a structural component after the hinge is fully deployed, which makes a hybrid hinge much stronger and stiffer than a tape-spring hinge. Unlike a mechanically deploying hinge that uses relatively moving components, a hybrid hinge depends on material deformation for its packing and deployment. It naturally eliminates the microdynamic phenomenon.
Rah, Kyunil; Han, Sujeong; Choi, Jaeyeong; Eum, Chul Hun; Lee, Seungho
2017-12-15
We investigate an explicit role of the ionic strength in the retention behaviors of polystyrene (PS) latex particles in sedimentation field-flow fractionation (SdFFF) by hinging upon the retention theory recently developed [1] asR=(R o +v b * )/(1+v b * ). Here R is an experimental retention ratio, and R o is the analytical expression of the standard retention theory based on the parabolic flow velocity. The reduced boundary velocityv b * is expressed in terms of the ionic strength I of the carrier liquid as v b * =v b,o * /(1+εI), where v b,o * =0.070and ε=60 mM -1 for all the PS latex systems under investigation. We then apply this to study the explicit ionic strength effect on the retention behaviors of PS beads of 200, 300, 400, and 500nm, respectively. As a primary result, the strong dependence of the retention ratio on the ionic strength can be quantitatively accounted for in an excellent accuracy: The slip effect at the channel surface is significant, particularly when I≲0.5mM, without showing any distinguishable dependence on the specific additives to control I, such as FL-70, SDS, NaNO 3 , and NaN 3 . Based on the present study, we put forward an experimental means to estimate the ionic strength of an aqueous solution using an FFF technique. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Ralvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam
2008-01-01
Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability and control. Emphasis has been on wind tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flow field and ultimately the aerodynamics. This research has led to wind tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot in the loop simulations to be performed for pilot training, or engineering evaluation of system failure impacts or control system design.
NASA Astrophysics Data System (ADS)
Tewes, Philipp; Genschow, Konstantin; Little, Jesse; Wygnanski, Israel
2017-11-01
A detailed flow survey using PIV was conducted over a highly-deflected flap (55°) of a low-aspect ratio trapezoidal wing. The wing section is a NACA 0012 with 45° sweep at both the leading and trailing edges, an aspect ratio of 1.5 and a taper ratio of 0.27. The main element is equipped with 7 equally spaced fluidic oscillators, covering the inner 60 % of the span, located near the flap hinge. Experiments were carried out at 0° and 8° incidence at a Reynolds number of 1.7 .106 for both baseline and active flow control (AFC) cases. Velocity ISO-surfaces, x-vorticity and streamlines are analyzed / discussed. A flap leading edge vortex governs the baseline flow field for 0°. This vortical structure interacts with the jets emitted by the actuators (Cμ = 1 %). Its development is hampered and the vortex is redirected toward the trailing edge resulting in a CL increase. At 8°, the dominant flap leading edge vortex could not be detected and is believed to have already merged with the tip vortex. AFC attached the flow over the flap and enhanced the lift by up to 20 % while maintaining longitudinal stability. The dominant flow features in the AFC cases are actuator-generated streamwise vortices which appear stronger at 8°. This work was supported by the Office of Naval Research under ONR Grant No. N00014-14-1-0387.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...
NASA Astrophysics Data System (ADS)
McMahon, Paul; Jung, Hans-Juergen; Edwards, Jeff
2013-09-01
The Swarm programme consists of 3 magnetically clean satellites flying in close formation designed to measure the Earth's magnetic field using 2 Magnetometers mounted on a 4.3m long deployable boom.Deployment is initiated by releasing 3 HDRMs, once released the boom oscillates back and forth on a pair of pivots, similar to a restaurant kitchen door hinge, for around 120 seconds before coming to rest on 3 kinematic mounts which are used to provide an accurate reference location in the deployed position. Motion of the boom is damped through a combination of friction, spring hysteresis and flexing of the 120+ cables crossing the hinge. Considerable development work and accurate numerical modelling of the hinge motion was required to predict performance across a wide temperature range and ensure that during the 1st overshoot the boom did not damage itself, the harness or the spacecraft.Due to the magnetic cleanliness requirements of the spacecraft no magnetic materials could be used in the design of the hardware.
High-Lift System for a Supercritical Airfoil: Simplified by Active Flow Control
NASA Technical Reports Server (NTRS)
Melton, LaTunia Pack; Schaeffler, Norman W.; Lin, John C.
2007-01-01
Active flow control wind tunnel experiments were conducted in the NASA Langley Low-Turbulence Pressure Tunnel using a two-dimensional supercritical high-lift airfoil with a 15% chord hinged leading-edge flap and a 25% chord hinged trailing-edge flap. This paper focuses on the application of zero-net-mass-flux periodic excitation near the airfoil trailing edge flap shoulder at a Mach number of 0.1 and chord Reynolds numbers of 1.2 x 10(exp 6) to 9 x 10(exp 6) with leading- and trailing-edge flap deflections of 25 deg. and 30 deg., respectively. The purpose of the investigation was to increase the zero-net-mass-flux options for controlling trailing edge flap separation by using a larger model than used on the low Reynolds number version of this model and to investigate the effect of flow control at higher Reynolds numbers. Static and dynamic surface pressures and wake pressures were acquired to determine the effects of flow control on airfoil performance. Active flow control was applied both upstream of the trailing edge flap and immediately downstream of the trailing edge flap shoulder and the effects of Reynolds number, excitation frequency and amplitude are presented. The excitations around the trailing edge flap are then combined to control trailing edge flap separation. The combination of two closely spaced actuators around the trailing-edge flap knee was shown to increase the lift produced by an individual actuator. The phase sensitivity between two closely spaced actuators seen at low Reynolds number is confirmed at higher Reynolds numbers. The momentum input required to completely control flow separation on the configuration was larger than that available from the actuators used.
Influence of vein fabric on strain distribution and fold kinematics
NASA Astrophysics Data System (ADS)
Torremans, Koen; Muchez, Philippe; Sintubin, Manuel
2014-05-01
Abundant pre-folding, bedding-parallel fibrous dolomite veins in shale are found associated with the Nkana-Mindola stratiform Cu-Co deposit in the Central African Copperbelt, Zambia. These monomineralic veins extend for several meters along strike, with a fibrous infill orthogonal to low-tortuosity vein walls. Growth morphologies vary from antitaxial with a pronounced median surface to asymmetric syntaxial, always with small but quantifiable growth competition. Subsequently, these veins were folded. In this study, we aim to constrain the kinematic fold mechanism by which strain is accommodated in these veins, estimate paleorheology at time of deformation and investigate the influence of vein fabric on deformation during folding. Finally, the influence of the deformation on known metallogenetic stages is assessed. Various deformation styles are observed, ultimately related to vein attitude across tight to close lower-order, hectometre-scale folds. In fold hinges, at low to average dips, veins are (poly-)harmonically to disharmonically folded as parasitic folds in single or multilayer systems. With increasing distance from the fold hinge, parasitic fold amplitude decreases and asymmetry increases. At high dips in the limbs, low-displacement duplication thrusts of veins at low angles to bedding are abundant. Slickenfibres and slickenlines are sub-perpendicular to fold hinges and shallow-dipping slickenfibre-step lineations are parallel to local fold hinge lines. A dip isogon analysis of reconstructed fold geometries prior to homogeneous shortening reveals type 1B parallel folds for the veins and type 1C for the matrix. Two main deformation mechanisms are identified in folded veins. Firstly, undulatory extinction, subgrains and fluid inclusions planes parallel the fibre long axis, with deformation intensity increasing away from the fold hinges, indicate intracrystalline strain accumulation. Secondly, intergranular deformation through bookshelf rotation of fibres, via collective parallel rotation of fibres and shearing along fibre grain boundaries, is clearly observed under cathodoluminescence. We analysed the internal strain distribution by quantifying simple shear strain caused by deflection of the initially orthogonal fibres relative to layer inclination at a given position across the fold. Shear angle, and thus shear strain, steadily increases towards the limbs away from the fold hinge. Comparison of observed shear strain to theoretical distribution for kinematic mechanisms, amongst other lines of evidence, clearly points to pure flexural flow followed by homogeneous shortening. As flexural flow is not the expected kinematic folding mechanism for competent layers in an incompetent shale matrix, our analysis shows that the internal vein fabric in these dolomite veins can exhibit a first-order influence on folding mechanisms. In addition, quantitative analysis shows that these veins acted as rigid objects with high viscosity contrast relative to the incompetent carbonaceous shale, rather than as semi-passive markers. Later folding-related syn-orogenic veins, intensely mineralised with Cu-Co sulphides, are strongly related to deformation of these pre-folding veins. The high viscosity contrast created by the pre-folding fibrous dolomite veins was therefore essential in creating transient permeability for subsequent mineralising stages in the veining history.
ERIC Educational Resources Information Center
Chatterji, Madhabi
2007-01-01
This article argues with a literature review that a simplistic distinction between strong and weak evidence hinged on the use of randomized controlled trials (RCTs), the federal "gold standard" for generating rigorous evidence on social programs and policies, is not tenable with evaluative studies of complex, field interventions such as…
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Surfaces § 23.657 Hinges. (a) Control surface hinges, except ball and roller bearing hinges, must have a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Surfaces § 23.657 Hinges. (a) Control surface hinges, except ball and roller bearing hinges, must have a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Surfaces § 23.657 Hinges. (a) Control surface hinges, except ball and roller bearing hinges, must have a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Surfaces § 23.657 Hinges. (a) Control surface hinges, except ball and roller bearing hinges, must have a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Surfaces § 23.657 Hinges. (a) Control surface hinges, except ball and roller bearing hinges, must have a...
An Investigation of the Jetevator as a Means of Thrust Vector Control
1958-02-01
actual rocket firings. Description of the Tests The cold-flow jetevator tcsts were conduc.ted in the engine test cells of the Ordnance Aerophysics...45 and 210 psia, as noted on the figures. The cel. pres- sure was adjusted to give a ratio of supply pressure to cell pressure of approximately 37...CORPORATO t. r .U and SPACE DIVISION - FDN LMSD-2630 °; •GN F.]DE NT1 .A.L`. -[, GAP DEFLECTED NOZZLE JETEVATOR FLOW 6 =220 JETEVATOR .°=60O HINGE POINT
Future Challenges and Opportunities in Aerodynamics
NASA Technical Reports Server (NTRS)
Kumar, Ajay; Hefner, Jerry N.
2000-01-01
Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.
NASA Astrophysics Data System (ADS)
Beatus, Tsevi; Cohen, Itai
2015-11-01
While the wing kinematics of many flapping insects have been well characterized, understanding the underlying physiological mechanisms that determine these kinematics is still a challenge. Two of the main difficulties arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics the insect wing-hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here, we model the torques exerted by the wing-hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasi-static aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate flies can accurately control their wing-pitch kinematics on a sub-wing-beat time-scale by modulating all three effective spring parameters on longer time-scales.
Upton, Hubert Allen; Garcia, Pablo
1999-08-24
A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion.
Upton, H.A.; Garcia, P.
1999-08-24
A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.
A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles
NASA Technical Reports Server (NTRS)
Scammell, Alexander David
2016-01-01
Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field. Results were compared and shown to agree with numerical simulations of colleagues from EPFL, Switzerland.In addition, a preliminary study was completed on the effect of a Taylor bubble passing through nucleate flow boiling, showing that the thinning thermal boundary layer within the film suppressed nucleation, thereby decreasing the heat transfer coefficient.
Polymer-induced forces at interfaces
NASA Astrophysics Data System (ADS)
Rangarajan, Murali
This dissertation concerns studies of forces generated by confined and physisorbed flexible polymers using lattice mean-field theories, and those generated by confined and clamped semiflexible polymers modeled as slender elastic rods. Lattice mean-field theories have been used in understanding and predicting the behavior of polymeric interfacial systems. In order to efficiently tailor such systems for various applications of interest, one has to understand the forces generated in the interface due to the polymer molecules. The present work examines the abilities and limitations of lattice mean-field theories in predicting the structure of physisorbed polymer layers and the resultant forces. Within the lattice mean-field theory, a definition of normal force of compression as the negative derivative of the partition-function-based excess free energy with surface separation gives misleading results because the theory does not explicitly account for the normal stresses involved in the system. Correct expressions for normal and tangential forces are obtained from a continuum-mechanics-based formulation. Preliminary comparisons with lattice Monte Carlo simulations show that mean-field theories fail to predict significant attractive forces when the surfaces are undersaturated, as one would expect. The corrections to the excluded volume (non-reversal chains) and the mean-field (anisotropic field) approximations improve the predictions of layer structure, but not the forces. Bending of semiflexible polymer chains (elastic rods) is considered for two boundary conditions---where the chain is hinged on both ends and where the chain is clamped on one end and hinged on the other. For the former case, the compressive forces and chain shapes obtained are consistent with the inflexional elastica published by Love. For the latter, multiple and higher-order solutions are observed for the hinged-end position for a given force. Preliminary studies are conducted on actin-based motility of Listeria monocytogenes by treating actin filaments as elastic rods, using the actoclampin model. The results show qualitative agreement with calculations where the filaments are modeled as Hookean springs. The feasibility of the actoclampin model to address long length-scale rotation of Listeria during actin-based motility is addressed.
Unsaturated flow processes in structurally-variable pathways in wildfire-affected soils and ash
NASA Astrophysics Data System (ADS)
Ebel, B. A.
2016-12-01
Prediction of flash flood and debris flow generation in wildfire-affected soils and ash hinges on understanding unsaturated flow processes. Water resources issues, such as groundwater recharge, also rely on our ability to quantify subsurface flow. Soil-hydraulic property data provide insight into unsaturated flow processes and timescales. A literature review and synthesis of existing data from the literature for wildfire-affected soils, including ash and unburned soils, facilitated calculating metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and the Green-Ampt wetting front parameter (Ψf) were significantly lower in burned soils compared to unburned soils, while field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity was substantially reduced in burned soils, leading to faster ponding times in response to rainfall. Ash had large values of S and Kfs compared to unburned and burned soils but intermediate values of Ψf, suggesting that ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant ( 100 mm) for unburned soils, but was more variable in burned soils. Post-wildfire changes in this ratio suggested that unburned soils had a balance between gravity and capillarity contributions to infiltration, which may depend on soil organic matter, while burning shifted infiltration more towards gravity contributions by reducing S. Taken together, the changes in post-wildfire soil-hydraulic properties increased the propensity for surface runoff generation and may have enhanced subsurface preferential flow through pathways altered by wildfire.
Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.
2009-07-01
The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifyingmore » this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.« less
Wang, Yujue; Lian, Ziyang; Yao, Mingge; Wang, Ji; Hu, Hongping
2013-10-01
A power harvester with adjustable frequency, which consists of a hinged-hinged piezoelectric bimorph and a concentrated mass, is studied by the precise electric field method (PEFM), taking into account a distribution of the electric field over the thickness. Usually, using the equivalent electric field method (EEFM), the electric field is approximated as a constant value in the piezoelectric layer. Charge on the upper electrode (UEC) of the bimorph is often assumed as output charge. However, different output charge can be obtained by integrating on electric displacement over the electrode with different thickness coordinates. Therefore, an average charge (AC) on thickness is often assumed as the output value. This method is denoted EEFM AC. The flexural vibration of the bimorph is calculated by the three methods and their results are compared. Numerical results illustrate that EEFM UEC overestimates resonant frequency, output power, and efficiency. EEFM AC can accurately calculate the output power and efficiency, but underestimates resonant frequency. The performance of the harvester, which depends on concentrated mass weight, position, and circuit load, is analyzed using PEFM. The resonant frequency can be modulated 924 Hz by moving the concentrated mass along the bimorph. This feature suggests that the natural frequency of the harvester can be adjusted conveniently to adapt to frequency fluctuation of the ambient vibration.
Thin film solar cell inflatable ultraviolet rigidizable deployment hinge
NASA Technical Reports Server (NTRS)
Simburger, Edward J. (Inventor); Giants, Thomas W. (Inventor); Perry, Alan R. (Inventor); Rawal, Suraj (Inventor); Lin, John K. H. (Inventor); Matsumoto, James H. (Inventor); Garcia, III, Alec (Inventor); Marshall, Craig H. (Inventor); Day, Jonathan Robert (Inventor); Kerslake, Thomas W. (Inventor)
2010-01-01
A flexible inflatable hinge includes curable resin for rigidly positioning panels of solar cells about the hinge in which wrap around contacts and flex circuits are disposed for routing power from the solar cells to the power bus further used for grounding the hinge. An indium tin oxide and magnesium fluoride coating is used to prevent static discharge while being transparent to ultraviolet light that cures the embedded resin after deployment for rigidizing the inflatable hinge.
Unsteady bio-fluid dynamics in flying and swimming
NASA Astrophysics Data System (ADS)
Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen
2017-08-01
Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.
New Phenomena in Propagation of Radio Polarizations due to Magnetic Fields on Cosmological Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralston, J.P.; Jain, P.; Nodland, B.
1998-07-01
We discuss a new mechanism which could cause a rotation of polarization of electromagnetic waves due to magnetic fields on cosmological scales. The effect hinges on the geometrical phase of Pancharatnam and Berry, and causes a corkscrew twisting of the plane of polarization. The new effect represents an additional tool that allows possible intergalactic and cosmological magnetic fields to be studied using radio propagation. {copyright} {ital 1998} {ital The American Physical Society}
Theoretical characteristics in supersonic flow of two types of control surfaces on triangular wings
NASA Technical Reports Server (NTRS)
Tucker, Warren A; Nelson, Robert L
1949-01-01
Methods based on the linearized theory for supersonic flow were used to find the characteristics of two types of control surfaces on thin triangular wings. The first type, the constant-chord partial-span flap, was considered to extend either outboard from the center of the wing or inboard from the wing tip. The second type, the full-triangular-tip flap, was treated only for the case in which the Mach number component normal to the leading edge is supersonic. For each type, expressions were found for the lift, rolling-moment, pitching-moment, and hinge-moment characteristics.
Pressure compensated flow control valve
Minteer, Daniel J.
1999-01-01
The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.
Deployment hinge using wraparound strips
NASA Technical Reports Server (NTRS)
Blanc, Eric
1992-01-01
Aerospatiale developed a new appendage deployment concept called AMEDE (French acronym for improvement of deployment mechanisms) with a view toward increased simplicity and functional reliability. This new concept, applicable to the deployment of any type of spaceborne appendage (in particular to solar arrays), enables deployment without synchronization or speed regulation devices. On the other hand, it requires the use of hinges with low driving or resistive torques. The AMEDE concept is compared with the conventional deployment concept. The conceptual and functional principles for the ADELE hinge are presented, as well as the hinges' main characteristics. The development status of both the AMEDE concept and the ADELE (French acronym for deployment hinge using wraparound strips) hinge are addressed.
Development of an Active Flow Control Technique for an Airplane High-Lift Configuration
NASA Technical Reports Server (NTRS)
Shmilovich, Arvin; Yadlin, Yoram; Dickey, Eric D.; Hartwich, Peter M.; Khodadoust, Abdi
2017-01-01
This study focuses on Active Flow Control methods used in conjunction with airplane high-lift systems. The project is motivated by the simplified high-lift system, which offers enhanced airplane performance compared to conventional high-lift systems. Computational simulations are used to guide the implementation of preferred flow control methods, which require a fluidic supply. It is first demonstrated that flow control applied to a high-lift configuration that consists of simple hinge flaps is capable of attaining the performance of the conventional high-lift counterpart. A set of flow control techniques has been subsequently considered to identify promising candidates, where the central requirement is that the mass flow for actuation has to be within available resources onboard. The flow control methods are based on constant blowing, fluidic oscillators, and traverse actuation. The simulations indicate that the traverse actuation offers a substantial reduction in required mass flow, and it is especially effective when the frequency of actuation is consistent with the characteristic time scale of the flow.
Note: Design and capability verification of fillet triangle flexible support
NASA Astrophysics Data System (ADS)
Wang, Tao; San, Xiao-Gang; Gao, Shi-Jie; Wang, Jing; Ni, Ying-Xue; Sang, Zhi-Xin
2017-12-01
By increasing the section thickness of a triangular flexible hinge, this study focuses on optimal selection of parameters of fillet triangle flexible hinges and flexible support. Based on Castigliano's second theorem, the flexibility expression of the fillet triangle flexible hinge was derived. Then, the case design is performed, and the comparison of three types of flexible hinges with this type of flexible hinge was carried out. The finite element models of fillet triangle flexible hinges and flexible support were built, and then the simulation results of performance parameters were calculated. Finally, the experiment platform was established to validate analysis results. The maximum error is less than 8%, which verifies the accuracy of the simulation process and equations derived; also the fundamental frequency fits the requirements of the system. The fillet triangle flexible hinge is proved to have the advantages of high precision and low flexibility.
Note: Design and capability verification of fillet triangle flexible support.
Wang, Tao; San, Xiao-Gang; Gao, Shi-Jie; Wang, Jing; Ni, Ying-Xue; Sang, Zhi-Xin
2017-12-01
By increasing the section thickness of a triangular flexible hinge, this study focuses on optimal selection of parameters of fillet triangle flexible hinges and flexible support. Based on Castigliano's second theorem, the flexibility expression of the fillet triangle flexible hinge was derived. Then, the case design is performed, and the comparison of three types of flexible hinges with this type of flexible hinge was carried out. The finite element models of fillet triangle flexible hinges and flexible support were built, and then the simulation results of performance parameters were calculated. Finally, the experiment platform was established to validate analysis results. The maximum error is less than 8%, which verifies the accuracy of the simulation process and equations derived; also the fundamental frequency fits the requirements of the system. The fillet triangle flexible hinge is proved to have the advantages of high precision and low flexibility.
Concealed hinge permits flush mounting of doors and hatches
NASA Technical Reports Server (NTRS)
Holman, E. V.
1966-01-01
Hinge assembly permits flush mounting of doors and hatches of considerable thickness so that the axis of instant rotation, produced by the hinge, lies outside the panel surface and beyond the perimeter adjacent to the hinge. In operation, motion of the assembly is initially parallel, changing to angular after clearing the panel perimeter.
Nakamura, R; Komatsu, N; Fujita, K; Kuroda, K; Takahashi, M; Omi, R; Katsuki, Y; Tsuchiya, H
2017-10-01
Open wedge high tibial osteotomy (OWHTO) for medial-compartment osteoarthritis of the knee can be complicated by intra-operative lateral hinge fracture (LHF). We aimed to establish the relationship between hinge position and fracture types, and suggest an appropriate hinge position to reduce the risk of this complication. Consecutive patients undergoing OWHTO were evaluated on coronal multiplanar reconstruction CT images. Hinge positions were divided into five zones in our new classification, by their relationship to the proximal tibiofibular joint (PTFJ). Fractures were classified into types I, II, and III according to the Takeuchi classification. Among 111 patients undergoing OWHTOs, 22 sustained lateral hinge fractures. Of the 89 patients without fractures, 70 had hinges in the zone within the PTFJ and lateral to the medial margin of the PTFJ (zone WL), just above the PTFJ. Among the five zones, the relative risk of unstable fracture was significantly lower in zone WL (relative risk 0.24, confidence interval 0.17 to 0.34). Zone WL appears to offer the safest position for the placement of the osteotomy hinge when trying to avoid a fracture at the osteotomy site. Cite this article: Bone Joint J 2017;99B10:1313-18. ©2017 The British Editorial Society of Bone & Joint Surgery.
Multifunctional Deployment Hinges Rigidified by Ultraviolet
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Simburger, Edward J.; Matusmoto, James; Giants, Thomas W.; Garcia, Alexander; Perry, Alan; Rawal, Suraj; Marshall, Craig; Lin, John Kun Hung; Day, Jonathan Robert;
2005-01-01
Multifunctional hinges have been developed for deploying and electrically connecting panels comprising planar arrays of thin-film solar photovoltaic cells. In the original intended application of these hinges, the panels would be facets of a 32-sided (and approximately spherical) polyhedral microsatellite (see figure), denoted a PowerSphere, that would be delivered to orbit in a compact folded configuration, then deployed by expansion of gas in inflation bladders. Once deployment was complete, the hinges would be rigidified to provide structural connections that would hold the panels in their assigned relative positions without backlash. Such hinges could also be used on Earth for electrically connecting and structurally supporting solar panels that are similarly shipped in compact form and deployed at their destinations. As shown in section A-A in the figure, a hinge of this type is partly integrated with an inflation bladder and partly integrated with the frame of a solar panel. During assembly of the hinge, strip extensions from a flexible circuit harness on the bladder are connected to corresponding thin-film conductors on the solar panel by use of laser welding and wrap-around contacts. The main structural component of the hinge is a layer of glass fiber impregnated with an ultraviolet-curable resin. After deployment, exposure to ultraviolet light from the Sun cures the resin, thereby rigidifying the hinge.
Shi, Ze; Castro, Carlos E; Arya, Gaurav
2017-05-23
Structural DNA nanotechnology, the assembly of rigid 3D structures of complex yet precise geometries, has recently been used to design dynamic, mechanically compliant nanostructures with tunable equilibrium conformations and conformational distributions. Here we use coarse-grained molecular dynamics simulations to provide insights into the conformational dynamics of a set of mechanically compliant DNA nanostructures-DNA hinges that use single-stranded DNA "springs" to tune the equilibrium conformation of a layered double-stranded DNA "joint" connecting two stiff "arms" constructed from DNA helix bundles. The simulations reproduce the experimentally measured equilibrium angles between hinge arms for a range of hinge designs. The hinges are found to be structurally stable, except for some fraying of the open ends of the DNA helices comprising the hinge arms and some loss of base-pairing interactions in the joint regions coinciding with the crossover junctions, especially in hinges designed to exhibit a small bending angle that exhibit large local stresses resulting in strong kinks in their joints. Principal component analysis reveals that while the hinge dynamics are dominated by bending motion, some twisting and sliding of hinge arms relative to each other also exists. Forced deformation of the hinges reveals distinct bending mechanisms for hinges with short, inextensible springs versus those with longer, more extensible springs. Lastly, we introduce an approach for rapidly predicting equilibrium hinge angles from individual force-deformation behaviors of its single- and double-stranded DNA components. Taken together, these results demonstrate that coarse-grained modeling is a promising approach for designing, predicting, and studying the dynamics of compliant DNA nanostructures, where conformational fluctuations become important, multiple deformation mechanisms exist, and continuum approaches may not yield accurate properties.
U.S. Air Force Posture Statement 2007
2007-01-01
like the Raptor, the F–35a reaps the benefits of decades of advanced research, development and field experience . The F–35a will provide affordable...also increasing, and potential adversaries are already purchasing and fielding these complex and capable weapon systems. Many nations are...postured to meet our nation’s near -term requirements, our ability to meet steady state and surge requirements over the long term hinges on our ability to
Controlling Flexible Robot Arms Using High Speed Dynamics Process
NASA Technical Reports Server (NTRS)
Jain, Abhinandan (Inventor)
1996-01-01
A robot manipulator controller for a flexible manipulator arm having plural bodies connected at respective movable hinges and flexible in plural deformation modes corresponding to respective modal spatial influence vectors relating deformations of plural spaced nodes of respective bodies to the plural deformation modes, operates by computing articulated body quantities for each of the bodies from respective modal spatial influence vectors, obtaining specified body forces for each of the bodies, and computing modal deformation accelerations of the nodes and hinge accelerations of the hinges from the specified body forces, from the articulated body quantities and from the modal spatial influence vectors. In one embodiment of the invention, the controller further operates by comparing the accelerations thus computed to desired manipulator motion to determine a motion discrepancy, and correcting the specified body forces so as to reduce the motion discrepancy. The manipulator bodies and hinges are characterized by respective vectors of deformation and hinge configuration variables, and computing modal deformation accelerations and hinge accelerations is carried out for each one of the bodies beginning with the outermost body by computing a residual body force from a residual body force of a previous body and from the vector of deformation and hinge configuration variables, computing a resultant hinge acceleration from the body force, the residual body force and the articulated hinge inertia, and revising the residual body force modal body acceleration.
Controlling flexible robot arms using a high speed dynamics process
NASA Technical Reports Server (NTRS)
Jain, Abhinandan (Inventor); Rodriguez, Guillermo (Inventor)
1992-01-01
Described here is a robot controller for a flexible manipulator arm having plural bodies connected at respective movable hinges, and flexible in plural deformation modes. It is operated by computing articulated body qualities for each of the bodies from the respective modal spatial influence vectors, obtaining specified body forces for each of the bodies, and computing modal deformation accelerations of the nodes and hinge accelerations of the hinges from the specified body forces, from the articulated body quantities and from the modal spatial influence vectors. In one embodiment of the invention, the controller further operates by comparing the accelerations thus computed to desired manipulator motion to determine a motion discrepancy, and correcting the specified body forces so as to reduce the motion discrepancy. The manipulator bodies and hinges are characterized by respective vectors of deformation and hinge configuration variables. Computing modal deformation accelerations and hinge accelerations is carried out for each of the bodies, beginning with the outermost body by computing a residual body force from a residual body force of a previous body, computing a resultant hinge acceleration from the body force, and then, for each one of the bodies beginning with the innermost body, computing a modal body acceleration from a modal body acceleration of a previous body, computing a modal deformation acceleration and hinge acceleration from the resulting hinge acceleration and from the modal body acceleration.
NASA Technical Reports Server (NTRS)
Wesselski, Clarence J. (Inventor)
1988-01-01
The space station configuration currently studied utilizes structures which require struts to be hinged in the middle in the stowed mode and locked into place in the deployed mode. Since there are hundreds of hinges involved, it is necessary that they have simple, positive locking features with a minimum of joint looseness or slack. This invention comprises two similar housings hinged together with a spring loaded locking member which assists in making as well as breaking the lock. This invention comprises a bracket hinge and bracket members with a spring biased and movable locking member. The locking or latch member has ear parts received in locking openings where wedging surfaces on the ear parts cooperate with complimentary surfaces on the bracket members for bringing the bracket members into a tight end-to-end alignment when the bracket members are in an extended position. When the locking member is moved to an unlocking position, pivoting of the hinge about a pivot pin automatically places the locking member to retain the locking member in an unlocked position. In pivoting the hinge from an extended position to a folded position, longitudinal spring members are placed under tension over annular rollers so that the spring tension in a folded position assists in return of the hinge from a folded to an extended position. Novelty lies in the creation of a locking hinge which allows compact storage and easy assembly of structural members having a minimal number of parts.
Hydrodynamics of metachronal paddling in crustaceans
NASA Astrophysics Data System (ADS)
Santhanakrishnan, A.; Lai, H. K.; Samaee, M.; Lewis, T. J.; Guy, R. D.
2016-02-01
Long-tailed crustaceans such as crayfish and krill swim by rhythmically paddling a set of four to five limbs (swimmerets) originating from their abdomen. Despite variations in limb size and stroke frequency, movements of ipsilateral limbs always maintain a tail-to-head metachronal rhythm with an approximate quarter-period inter-limb phase difference. Relatively few studies have examined the fluid dynamics of metachronal limb stroke for the range of Reynolds numbers at which crustaceans operate. The objective of this study is to investigate metachronal paddling as a function of Reynolds number (Re) for quantifying hydrodynamic scalability of this swimming mechanism, including the effect of hinges on paddles as seen in crustacean swimmerets. Our approach included experiments on a scaled physical model and computational fluid dynamics (CFD) simulations using the immersed boundary (IB) method. The scaled robotic model of metachronal paddling consisted of a rectangular aquarium tank fitted above with four stepper motors coupled to a four-bar linkage that actuated four acrylic paddles immersed in water-glycerin fluid medium. 2D particle image velocimetry (PIV) was used for quantitative flow visualization in the experiments. The swimmerets were modeled in CFD simulations as rigid 1D rods in a 2D fluid. The inter-limb phase difference was varied from 0% (synchronous paddling) through 50% across Re range of O(10-1000). Two types of experimental limb models were tested, including a simple flat plate and a `split-paddle' structure with two flat plates connected halfway with hinges. Our results show that the natural tail-to-head metachronal rhythm with an approximate quarter-period phase difference is the most effective and efficient rhythm across a wide range of Reynolds numbers. Limb models with hinges generated increased horizontal flow compared to the simple flat plate paddles, suggesting that asymmetry between power and return stroke is important to augment thrust.
Deployment Testing of Flexible Composite Hinges in Bi-Material Beams
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Trease, Brian
2016-01-01
Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter deployment repeatability. Also, an interesting creep effect was discovered, that a hinges deployment error would decrease with time.
Polarization selective phase-change nanomodulator
Appavoo, Kannatassen; Haglund Jr., Richard F.
2014-01-01
Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. This architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements. PMID:25346427
Polarization selective phase-change nanomodulator
Appavoo, Kannatassen; Haglund Jr., Richard F.
2014-10-27
Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume ofmore » only 0.002 µm 3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGinnis, J.P.; Karner, G.D.; Driscoll, N.W.
The tectonic and stratigraphic development of the Congo continental margin reflects the timing, magnitude, and distribution of lithospheric extension responsible for its formation. Details of the lithospheric extension process are recorded in the stratigraphic successions preserved along and across the margin. By using the stratal relationships (e.g., onlap, downlap, and truncation) and lithofacies determined from seismic reflection and exploratory well data as input into our basin-modeling strategy, we have developed an integrated approach to determine the relationship between the timing, magnitude, and distribution of lithospheric extension across the margin. Two hinge zones, an eastern and Atlantic hinge formed along themore » Congo margin in response to discrete extensional events occurring from the Berriasian to the Aptian. The eastern hinge zone demarcates the eastern limit of the broadly distributed Berriasian extension. This extension resulted in the formation of deep anoxic, lacustrine systems. In contrast, the Atlantic hinge, located [approximately]90 km west of the eastern hinge, marks the eastern limit of a second phase of extension, which began in the Hauterivian. Consequent footwall uplift and rotation exposed the earlier synrift and prerift stratigraphy to at least wave base causing varying amounts of erosional truncation across the Atlantic hinge zone along much of the Gabon, Congo, and Angola margins. The absence of the Melania Formation across the Congo margin implies that uplift of the Atlantic hinge was relatively minor compared to that across the Angola and Gabon margins. In addition, material eroded from the adjacent and topographically higher hinge zones may in part account for the thick wedge of sediment deposited seaward of the Congo Atlantic hinge. A third phase of extension reactivated both the eastern and Atlantic hinge zones and was responsible for creating the accommodation space for Marnes Noires source rock deposition.« less
Development and Analysis of Closed Cycle Circulator Elements.
1980-05-01
circuits are mounted on cards accessible through a hinged rear panel for service or adjustments. Cards may be removed in groups of 3 for servicing without...voltage signal is processed in such a way that it became linearly related to velocity of the gas flow. The use of these modules ensures the frequency...most important idiagnostic to be measured optically. This test is broken down into two categories: a medium homogeneity category *1 in which
NASA Technical Reports Server (NTRS)
Wentz, W. H., Jr.; Seetharam, H. C.; Fiscko, K. A.
1977-01-01
Wind tunnel force and pressure tests were conducted for the GA(W)-1 airfoil equipped with a 20% aileron, and pressure tests were conducted with a 30% Fowler flap. All tests were conducted at a Reynolds number of 2.2 and a Mach number of 0.13. The aileron provides control effectiveness similar to ailerons applied to more conventional airfoils. Effects of aileron gaps from 0% to 2% chord were evaluated, as well as hinge moment characteristics. The aft camber of the GA(W)-1 section results in a substantial up-aileron moment, but the hinge moments associated with aileron deflection are similar to other configurations. Fowler flap pressure distributions indicate that unseparated flow is achieved for flap settings up to 40 deg., over a limited angle of attack range. Theoretical pressure distributions compare favorably with experiments for low flap deflections, but show substantial errors at large deflections.
Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.
Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard
2017-01-01
Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.
NASA Astrophysics Data System (ADS)
Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed
2017-11-01
Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.
On the Use pf Active Flow Control to Trim and Control a Tailles Aircraft Model
NASA Astrophysics Data System (ADS)
Jentzsch, Marvin
The Stability And Control CONfiguration (SACCON) model represents an emerging trend in airplane design where the classical tube, wing and empennage are replaced by a single tailless configuration. The challenge is to assure that these designs are stable and controllable. Nonlinear aerodynamic behavior is observed on the SACCON at higher incidence angles due to leading edge vortex structures. Active Flow Control (AFC) used in preliminary design represents a promising solution to the longitudinal stability problems and this was demonstrated experimentally on a semi span model. AFC can be used to trim the SACCON in pitch and it alters forces and moments comparable to common control surface deflections. A combination of AFC and control surface deflection may increase the overall efficiency and opens up a variety of maneuvering possibilities. This implies that AFC should be treated concomitantly with other design parameters and should be considered in the preliminary design process already and not as an add-on tool. Integral force and moment data was supplemented by observations using Pressure Sensitive Paint (PSP) and flow visualization. Two arrays of individually controlled sweeping jets, one located along the leading edge and the other along the flap hinge provided the AFC input needed to alter the flow. The array positioned over the flap-hinge of the model was most effective in stabilizing the wing by decreasing the pitching moment at lower and intermediate angles of incidence. This effect was achieved by reducing the spanwise flow on the swept back portion of the wing through jet-entrainment that also affected the leading edge vortex. Leading edge actuation showed some beneficial effects by inhibiting the formation of the leading edge vortex near the wing tip. A preliminary study using suction was carried out. The tests were carried out at Mach numbers smaller than 0.2 and Reynolds numbers based on the root chord of the model that approached 106.
Deployment Testing of Flexible Composite Hinges in Bi-Material Beams
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Trease, Brian
2016-01-01
Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter linear deployment repeatability, and sub-degree angular deployment repeatability. Also, an interesting relaxation effect was discovered, as a hinges deployment error would decrease with time.
Apparatus Producing an Even Distribution of Strain into Carries
NASA Astrophysics Data System (ADS)
Hrabovský, Leopold
2017-10-01
In many high-rise residential buildings or multi-storey warehouses, machinery, so called lifts, is used for the vertical transportation of people or weights between two or more altitudinally distant places. Carriers used for lifts are steel ropes or sprocket chains, on which a cage or a counterbalance is hinged. Apparatus of all carriers, attached to the hinge of the cage or counterbalance, should be even. This can be made only by hammer hinge. Fixed or springe hinge cannot be a perfect equalizing apparatus. This article describes an apparatus, which allows an even distribution of the strain into lift carriers, which use springe hinge of carrier ropes.
Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane
2007-01-16
A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.
Saarinen, Pekka E.; Kalliomäki, Petri; Tang, Julian W.; Koskela, Hannu
2015-01-01
The use of hospital isolation rooms has increased considerably in recent years due to the worldwide outbreaks of various emerging infectious diseases. However, the passage of staff through isolation room doors is suspected to be a cause of containment failure, especially in case of hinged doors. It is therefore important to minimize inadvertent contaminant airflow leakage across the doorway during such movements. To this end, it is essential to investigate the behavior of such airflows, especially the overall volume of air that can potentially leak across the doorway during door-opening and human passage. Experimental measurements using full-scale mock-ups are expensive and labour intensive. A useful alternative approach is the application of Computational Fluid Dynamics (CFD) modelling using a time-resolved Large Eddy Simulation (LES) method. In this study simulated air flow patterns are qualitatively compared with experimental ones, and the simulated total volume of air that escapes is compared with the experimentally measured volume. It is shown that the LES method is able to reproduce, at room scale, the complex transient airflows generated during door-opening/closing motions and the passage of a human figure through the doorway between two rooms. This was a basic test case that was performed in an isothermal environment without ventilation. However, the advantage of the CFD approach is that the addition of ventilation airflows and a temperature difference between the rooms is, in principle, a relatively simple task. A standard method to observe flow structures is dosing smoke into the flow. In this paper we introduce graphical methods to simulate smoke experiments by LES, making it very easy to compare the CFD simulation to the experiments. The results demonstrate that the transient CFD simulation is a promising tool to compare different isolation room scenarios without the need to construct full-scale experimental models. The CFD model is able to reproduce the complex airflows and estimate the volume of air escaping as a function of time. In this test, the calculated migrated air volume in the CFD model differed by 20% from the experimental tracer gas measurements. In the case containing only a hinged door operation, without passage, the difference was only 10%. PMID:26151865
Mian, Shahzad I; Li, Amy Y; Dutta, Satavisha; Musch, David C; Shtein, Roni M
2009-12-01
To determine whether corneal sensation and dry-eye signs and symptoms after myopic laser in situ keratomileusis (LASIK) surgery with a femtosecond laser are affected by varying hinge position, hinge angle, or flap thickness. University-based academic practice, Ann Arbor, Michigan, USA. This prospective randomized contralateral-eye study evaluated eyes after bilateral myopic LASIK with a femtosecond laser (IntraLase). Superior and temporal hinge positions, 45-degree and 90-degree hinge angles, and 100 microm and 130 microm corneal flap thicknesses were compared. Postoperative follow-up at 1 week and 1, 3, 6, and 12 months included central Cochet-Bonnet esthesiometry, the Ocular Surface Disease Index questionnaire, a Schirmer test with anesthesia, tear breakup time (TBUT), corneal fluorescein staining, and conjunctival lissamine green staining. The study evaluated 190 consecutive eyes (95 patients). Corneal sensation was reduced at all postoperative visits, with improvement over 12 months (P<.001). There was no difference in corneal sensation between the different hinge positions, angles, or flap thicknesses at any time point. The overall ocular surface disease index score was increased at 1 week, 1 month, and 3 months (P<.0001, P<.0001, and P = .046, respectively). The percentage of patients with a TBUT longer than 10 seconds was significantly lower at 1 week and 1 month (P<.0001). Dry-eye syndrome after myopic LASIK with a femtosecond laser was mild and improved after 3 months. Corneal flap hinge position, hinge angle, and thickness had no effect on corneal sensation or dry-eye syndrome.
Device serves as hinge and electrical connector for circuit boards
NASA Technical Reports Server (NTRS)
Bethel, P. G.; Harris, G. G.
1966-01-01
Hinge makes both sides of electrical circuit boards readily accessible for component checkout and servicing. The hinge permits mounting of two circuit boards and incorporates connectors to maintain continuous electrical contact between the components on both boards.
Hinge Moment Coefficient Prediction Tool and Control Force Analysis of Extra-300 Aerobatic Aircraft
NASA Astrophysics Data System (ADS)
Nurohman, Chandra; Arifianto, Ony; Barecasco, Agra
2018-04-01
This paper presents the development of tool that is applicable to predict hinge moment coefficients of subsonic aircraft based on Roskam’s method, including the validation and its application to predict hinge moment coefficient of an Extra-300. The hinge moment coefficients are used to predict the stick forces of the aircraft during several aerobatic maneuver i.e. inside loop, half cuban 8, split-s, and aileron roll. The maximum longitudinal stick force is 566.97 N occurs in inside loop while the maximum lateral stick force is 340.82 N occurs in aileron roll. Furthermore, validation hinge moment prediction method is performed using Cessna 172 data.
2018-02-15
conservation equations. The closure problem hinges on the evaluation of the filtered chemical production rates. In MRA/MSR, simultaneous large-eddy...simulations of a reactive flow are performed at different mesh resolution levels. The solutions at each coarser mesh level are constrained by the filtered ...include the replacement of chemical production rates with those filtered from the underlying fine mesh and the construction of ‘exact’ forms for
High Lift Common Research Model for Wind Tunnel Testing: An Active Flow Control Perspective
NASA Technical Reports Server (NTRS)
Lin, John C.; Melton, Latunia P.; Viken, Sally A.; Andino, Marlyn Y.; Koklu, Mehti; Hannon, Judith A.; Vatsa, Veer N.
2017-01-01
This paper provides an overview of a research and development effort sponsored by the NASA Advanced Air Transport Technology Project to achieve the required high-lift performance using active flow control (AFC) on simple hinged flaps while reducing the cruise drag associated with the external mechanisms on slotted flaps of a generic modern transport aircraft. The removal of the external fairings for the Fowler flap mechanism could help to reduce drag by 3.3 counts. The main challenge is to develop an AFC system that can provide the necessary lift recovery on a simple hinged flap high-lift system while using the limited pneumatic power available on the aircraft. Innovative low-power AFC concepts will be investigated in the flap shoulder region. The AFC concepts being explored include steady blowing and unsteady blowing operating in the spatial and/or temporal domain. Both conventional and AFC-enabled high-lift configurations were designed for the current effort. The high-lift configurations share the cruise geometry that is based on the NASA Common Research Model, and therefore, are also open geometries. A 10%-scale High Lift Common Research Model (HL-CRM) is being designed for testing at the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel during fiscal year 2018. The overall project plan, status, HL-CRM configurations, and AFC objectives for the wind tunnel test are described.
Beatus, Tsevi; Cohen, Itai
2015-08-01
While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.
NASA Astrophysics Data System (ADS)
Beatus, Tsevi; Cohen, Itai
2015-08-01
While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.
Tension Stiffened and Tendon Actuated Manipulator
NASA Technical Reports Server (NTRS)
Dorsey, John T. (Inventor); Mercer, Charles D. (Inventor); Ganoe, George G. (Inventor); Doggett, William R. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Corbin, Cole K. (Inventor)
2015-01-01
A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.
The aerodynamic performance of several flow control devices for internal flow systems
NASA Technical Reports Server (NTRS)
Eckert, W. T.; Wettlaufer, B. M.; Mort, K. W.
1982-01-01
An experimental reseach and development program was undertaken to develop and document new flow-control devices for use in the major modifications to the 40 by 80 Foot wind tunnel at Ames Research Center. These devices, which are applicable to other facilities as well, included grid-type and quasi-two-dimensional flow straighteners, louver panels for valving, and turning-vane cascades with net turning angles from 0 deg to 90 deg. The tests were conducted at model scale over a Reynolds number range from 2 x 100,000 to 17 x 100,000, based on chord. The results showed quantitatively the performance benefits of faired, low-blockage, smooth-surface straightener systems, and the advantages of curved turning-vanes with hinge-line gaps sealed and a preferred chord-to-gap ratio between 2.5 and 3.0 for 45 deg or 90 deg turns.
Dungan, C F; Elston, R A; Schiewe, M H
1989-01-01
Several strains of cytophaga-like gliding bacteria (CLB) were isolated as numerically dominant or codominant components of bacterial populations associated with proteinaceous hinge ligaments of cultured juvenile Pacific oysters, Crassostrea gigas. These bacteria were morphologically similar to long, flexible bacilli occurring within degenerative lesions in oyster hinge ligaments. Among bacteria isolated from hinge ligaments, only CLB strains were capable of sustained growth with hinge ligament matrix as the sole source of organic carbon and nitrogen. In vitro incubation of cuboidal portions of ligament resilium with ligament CLB resulted in bacterial proliferation on the surfaces and penetration deep into ligament matrices. Bacterial proliferation was accompanied by loss of resilium structural and mechanical integrity, including complete liquefaction, at incubation temperatures between 10 and 20 degrees C. The morphological, distributional, and degradative characteristics of CLB isolated from oyster hinge ligaments provide compelling, albeit indirect, evidence that CLB are the agents of a degenerative disease affecting juvenile cultured oysters. The motility, metabolic, and hydrolytic characteristics of hinge ligament CLB and the low moles percent G + C values (32.4 to 32.9) determined for three representative strains indicate that they are marine Cytophaga spp. Images PMID:2757377
Dungan, C F; Elston, R A; Schiewe, M H
1989-05-01
Several strains of cytophaga-like gliding bacteria (CLB) were isolated as numerically dominant or codominant components of bacterial populations associated with proteinaceous hinge ligaments of cultured juvenile Pacific oysters, Crassostrea gigas. These bacteria were morphologically similar to long, flexible bacilli occurring within degenerative lesions in oyster hinge ligaments. Among bacteria isolated from hinge ligaments, only CLB strains were capable of sustained growth with hinge ligament matrix as the sole source of organic carbon and nitrogen. In vitro incubation of cuboidal portions of ligament resilium with ligament CLB resulted in bacterial proliferation on the surfaces and penetration deep into ligament matrices. Bacterial proliferation was accompanied by loss of resilium structural and mechanical integrity, including complete liquefaction, at incubation temperatures between 10 and 20 degrees C. The morphological, distributional, and degradative characteristics of CLB isolated from oyster hinge ligaments provide compelling, albeit indirect, evidence that CLB are the agents of a degenerative disease affecting juvenile cultured oysters. The motility, metabolic, and hydrolytic characteristics of hinge ligament CLB and the low moles percent G + C values (32.4 to 32.9) determined for three representative strains indicate that they are marine Cytophaga spp.
Flow over a cylinder with a hinged-splitter plate
NASA Astrophysics Data System (ADS)
Shukla, S.; Govardhan, R. N.; Arakeri, J. H.
2009-05-01
Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restoring force. In the present case, the saturation tip amplitude level can be up to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate lengths (L/D⩽3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondimensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U≈0.2 at L/D=1 to fD/U≈0.1 at L/D=3. As the splitter plate length is further increased beyond L/D⩾4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate regime, the spectra of the oscillations become broadband, and are reminiscent of the change in character of the wake oscillations seen in the earlier fixed-rigid splitter plate case for L/D⩾5.0. In the present case of the hinged-splitter plate, the sudden transition seen as the splitter plate length (L/D) is increased from 3 to 4 may be attributed to the fact that the wake vortices are no longer able to synchronize with the plate motions for larger splitter plate lengths. Hence, as observed in other vortex-induced vibration problems, the oscillations become aperiodic and the amplitude reduces dramatically.
Advances in cardiovascular fluid mechanics: bench to bedside.
Dasi, Lakshmi P; Sucosky, Philippe; de Zelicourt, Diane; Sundareswaran, Kartik; Jimenez, Jorge; Yoganathan, Ajit P
2009-04-01
This paper presents recent advances in cardiovascular fluid mechanics that define the current state of the art. These studies include complex multimodal investigations with advanced measurement and simulation techniques. We first discuss the complex flows within the total cavopulmonary connection in Fontan patients. We emphasize the quantification of energy losses by studying the importance of caval offsets as well as the differences among various Fontan surgical protocols. In our studies of the fluid mechanics of prosthetic heart valves, we reveal for the first time the full three-dimensional complexity of flow fields in the vicinity of bileaflet and trileaflet valves and the microscopic hinge flow dynamics. We also present results of these valves functioning in a patient-specific native aorta geometry. Our in vitro mitral valve studies show the complex mechanism of the native mitral valve apparatus. We demonstrate that the different components of the mitral valve have independent and synergistically complex functions that allow the valve to operate efficiently. We also show how valve mechanics change under pathological and repair conditions associated with enlarged ventricles. Finally, our ex vivo studies on the interactions between the aortic valve and its surrounding hemodynamic environment are aimed at providing insights into normal valve function and valve pathology. We describe the development of organ- and tissue-culture systems and the biological response of the tissue subjected to their respective simulated mechanical environment. The studies noted above have enhanced our understanding of the complex fluid mechanics associated with the cardiovascular system and have led to new translational technologies.
Explicit frequency equations of free vibration of a nonlocal Timoshenko beam with surface effects
NASA Astrophysics Data System (ADS)
Zhao, Hai-Sheng; Zhang, Yao; Lie, Seng-Tjhen
2018-02-01
Considerations of nonlocal elasticity and surface effects in micro- and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged-hinged, clamped-clamped and clamped-hinged ends. For a hinged-hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped-clamped and clamped-hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short, explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.
Parametric analysis and temperature effect of deployable hinged shells using shape memory polymers
NASA Astrophysics Data System (ADS)
Tao, Ran; Yang, Qing-Sheng; He, Xiao-Qiao; Liew, Kim-Meow
2016-11-01
Shape memory polymers (SMPs) are a class of intelligent materials, which are defined by their capacity to store a temporary shape and recover an original shape. In this work, the shape memory effect of SMP deployable hinged shell is simulated by using compiled user defined material subroutine (UMAT) subroutine of ABAQUS. Variations of bending moment and strain energy of the hinged shells with different temperatures and structural parameters in the loading process are given. The effects of the parameters and temperature on the nonlinear deformation process are emphasized. The entire thermodynamic cycle of SMP deployable hinged shell includes loading at high temperature, load carrying with cooling, unloading at low temperature and recovering the original shape with heating. The results show that the complicated thermo-mechanical deformation and shape memory effect of SMP deployable hinge are influenced by the structural parameters and temperature. The design ability of SMP smart hinged structures in practical application is prospected.
Real-Time Flight Envelope Monitoring System
NASA Technical Reports Server (NTRS)
Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.
2012-01-01
The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.
A Classification Matrix of Examination Items to Promote Transformative Assessment
ERIC Educational Resources Information Center
McMahon, Mark; Garrett, Michael
2016-01-01
The ability to assess learning hinges on the quality of the instruments that are used. This paper reports on the first stage of the design of software to assist educators in ensuring assessment questions meet educational outcomes. A review of the literature within the field of instructional psychology was undertaken with a view towards…
Troublesome Knowledge, Troubling Experience: An Inquiry into Faculty Learning in Service-Learning
ERIC Educational Resources Information Center
Harrison, Barbara; Clayton, Patti H.; Tilley-Lubbs, Gresilda A.
2014-01-01
In this article we share the theoretical framework of threshold concepts--concepts on which deep understanding of a field of practice and inquiry hinges and which, once understood and internalized, open a doorway to otherwise inaccessible ways of thinking--and explore its relevance to learning how to teach, learn, serve, partner, and generate…
Chaotic Model for Lévy Walks in Swarming Bacteria
NASA Astrophysics Data System (ADS)
Ariel, Gil; Be'er, Avraham; Reynolds, Andy
2017-06-01
We describe a new mechanism for Lévy walks, explaining the recently observed superdiffusion of swarming bacteria. The model hinges on several key physical properties of bacteria, such as an elongated cell shape, self-propulsion, and a collectively generated regular vortexlike flow. In particular, chaos and Lévy walking are a consequence of group dynamics. The model explains how cells can fine-tune the geometric properties of their trajectories. Experiments confirm the spectrum of these patterns in fluorescently labeled swarming Bacillus subtilis.
Designing Great Hinge Questions
ERIC Educational Resources Information Center
Wiliam, Dylan
2015-01-01
According to author Dylan Wiliam, because lessons never go exactly as planned, teachers should build plan B into plan A. This involves designing a lesson with a "hinge" somewhere in the middle and using specific kinds of questions--what he calls hinge questions--to quickly assess students' understanding of a concept before moving on.…
Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing
NASA Technical Reports Server (NTRS)
Perry, B., III
1978-01-01
The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.
Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, B.I.
1978-09-01
The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimentalmore » hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.« less
Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.
Shang, Lijun; Tucker, Stephen J
2008-02-01
Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K(+) channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the "helix-bundle crossing". However, in the inwardly rectifying (Kir) potassium channel family, the role of this "hinge" residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper "hinge" residues are in close contact with the base of the pore alpha-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the "lower" gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.
NASA Technical Reports Server (NTRS)
Rignot, Eric
1997-01-01
Satellite synthetic-aperture radar (SAR) Interferometry is employed to map the hinge line, or limit of tidal flexing, of Rutford Ice Stream and Carlson Inlet, Antarctica, and detect its migration between 1992 and 1996. The hinge line is mapped using a model fit from an elastic beam theory.
77 FR 49396 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
... option for installing a redesigned aft hinge fitting with the trim already done, instead of trimming an... installing a redesigned aft hinge fitting with the trim already done, instead of trimming an existing or new... action in the existing AD) for installing a redesigned aft hinge fitting designed with the trim already...
78 FR 33197 - Airworthiness Directives; Iniziative Industriali Italiane S.p.A. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
... plane hinge assembly. We are issuing this AD to require actions to address the unsafe condition on these... plane hinge assembly have been reported. This condition, if not detected and corrected, could lead to... bearing and the horizontal tail/elevator plane hinge assembly to detect any crack, signs of corrosion or...
Dalvand, Hamid; Dehghan, Leila; Feizi, Awat; Hosseini, Seyed Ali; Amirsalari, Susan
2013-01-01
The purpose of this study was to examine the impacts of hinged and solid anklefoot orthoses (AFOs) on standing and walking abilities in children with spastic diplegia. In a quasi-experimental design, 30 children with spastic diplegia, aged 4-6 years were recruited. They were matched in terms of age, IQ, and level of GMFCS E&R. Children were randomly assigned into 3 groups: a hinged AFO group (n=10) plus occupational therapy (OT), a solid AFO group (n=10) plus OT, a control group who used only OT for three months. Gross motor abilities were measured using Gross Motor Measure Function (GMFM). We obtained statistically significant differences in the values between baseline and after treatment in all groups. The groups were also significantly different in total GMFM after intervention. Furthermore, there were differences between hinged AFOs and solid AFOs groups, and between hinged AFOs and control groups. We concluded that gross motor function was improved in all groups; however, hinged AFOs group appears to improve the gross motor function better than solid AFOs and control groups.
NASA Technical Reports Server (NTRS)
Fleischer, G. E.; Likins, P. W.
1975-01-01
Three computer subroutines designed to solve the vector-dyadic differential equations of rotational motion for systems that may be idealized as a collection of hinge-connected rigid bodies assembled in a tree topology, with an optional flexible appendage attached to each body are reported. Deformations of the appendages are mathematically represented by modal coordinates and are assumed small. Within these constraints, the subroutines provide equation solutions for (1) the most general case of unrestricted hinge rotations, with appendage base bodies nominally rotating at a constant speed, (2) the case of unrestricted hinge rotations between rigid bodies, with the restriction that those rigid bodies carrying appendages are nominally nonspinning, and (3) the case of small hinge rotations and nominally nonrotating appendages. Sample problems and their solutions are presented to illustrate the utility of the computer programs.
Design and 4D Printing of Cross-Folded Origami Structures: A Preliminary Investigation.
Teoh, Joanne Ee Mei; An, Jia; Feng, Xiaofan; Zhao, Yue; Chua, Chee Kai; Liu, Yong
2018-03-03
In 4D printing research, different types of complex structure folding and unfolding have been investigated. However, research on cross-folding of origami structures (defined as a folding structure with at least two overlapping folds) has not been reported. This research focuses on the investigation of cross-folding structures using multi-material components along different axes and different horizontal hinge thickness with single homogeneous material. Tensile tests were conducted to determine the impact of multi-material components and horizontal hinge thickness. In the case of multi-material structures, the hybrid material composition has a significant impact on the overall maximum strain and Young's modulus properties. In the case of single material structures, the shape recovery speed is inversely proportional to the horizontal hinge thickness, while the flexural or bending strength is proportional to the horizontal hinge thickness. A hinge with a thickness of 0.5 mm could be folded three times prior to fracture whilst a hinge with a thickness of 0.3 mm could be folded only once prior to fracture. A hinge with a thickness of 0.1 mm could not even be folded without cracking. The introduction of a physical hole in the center of the folding/unfolding line provided stress relief and prevented fracture. A complex flower petal shape was used to successfully demonstrate the implementation of overlapping and non-overlapping folding lines using both single material segments and multi-material segments. Design guidelines for establishing cross-folding structures using multi-material components along different axes and different horizontal hinge thicknesses with single or homogeneous material were established. These guidelines can be used to design and implement complex origami structures with overlapping and non-overlapping folding lines. Combined overlapping folding structures could be implemented and allocating specific hole locations in the overall designs could be further explored. In addition, creating a more precise prediction by investigating sets of in between hinge thicknesses and comparing the folding times before fracture, will be the subject of future work.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
..., an operator found an aileron trim tab hinge pin that had migrated sufficiently to cause a rubbing.... Recently, during a walk round check, an operator found an aileron trim tab hinge pin that had migrated... walk round check, an operator found an aileron trim tab hinge pin that had migrated sufficiently to...
Window Operator Types | Efficient Windows Collaborative
Types Casement Casement Casement windows are hinged at the sides. Hinged windows such as casements operating types to consider. Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding
Borowska-Wykret, Dorota; Rypien, Aleksandra; Dulski, Mateusz; Grelowski, Michal; Wrzalik, Roman; Kwiatkowska, Dorota
2017-06-01
The capitulum of Helichrysum bracteatum is surrounded by scarious involucral bracts that perform hygroscopic movements leading to bract bending toward or away from the capitulum, depending on cell wall water status. The present investigation aimed at explaining the mechanism of these movements. Surface strain and bract shape changes accompanying the movements were quantified using the replica method. Dissection experiments were used to assess the contribution of different tissues in bract deformation. Cell wall structure and composition were examined with the aid of light and electron microscopy as well as confocal Raman spectroscopy. At the bract hinge (organ actuator) longitudinal strains at opposite surfaces differ profoundly. This results in changes of hinge curvature that drive passive displacement of distal bract portions. The distal portions in turn undergo nearly uniform strain on both surfaces and also minute shape changes. The hinge is built of sclerenchyma-like abaxial tissue, parenchyma and adaxial epidermis with thickened outer walls. Cell wall composition is rather uniform but tissue fraction occupied by cell walls, cell wall thickness, compactness and cellulose microfibril orientation change gradually from abaxial to adaxial hinge surface. Dissection experiments show that the presence of part of the hinge tissues is enough for movements. Differential strain at the hinge is due to adaxial-abaxial gradient in structural traits of hinge tissues and cell walls. Thus, the bract hinge of H. bracteatum is a structure comprising gradually changing tissues, from highly resisting to highly active, rather than a bi-layered structure with distinct active and resistance parts, often ascribed for hygroscopically moving organs. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Lee, Wei-Shiun; Linz, Shang-Chih; Shih, Kao-Shang; Chao, Ching-Kong; Chen, Yeung-Jen; Fan, Chang-Yuan
2012-10-01
Stiffness and contracture of the periarticular tissues are common complications of a post-traumatic elbow. Arthrodiatasis is a surgical technique that uses an external fixator for initial immobilization and subsequent distraction. The two prerequisites for an ideal arthrodiatasis are concentric distraction (avoiding bony contact) and hinge alignment (reducing internal stress). This study used the finite element (FE) method to clarify the relationship between these two prerequisites and the initial conditions (pin placement, elbow angle, and distraction mode). A total of 12 variations of the initial conditions were symmetrically arranged to evaluate their biomechanical influence on concentric distraction and hinge alignment. The humeroulnar surface was hypothesized to be ideally distracted orthogonal to the line joining the tips of the olecranon and the coronoid. The eccentric separation of the humeroulnar surfaces is a response to the non-orthogonality of the distracting force and joining line. Pin placement significantly affects the effective moment arm of the fixing pins to distract the bridged elbow. Both elbow angle and distraction mode directly alter the direction of the distracting force at the elbow center. In general, the hinges misalignment occurs in a direction opposite to the distraction-activated site. After joint distraction, the elastic deflection of the fixing pins inevitably makes both elbow and fixator hinges to misalign. This indicates that both joint distraction and hinge alignment are the interactive mechanisms. The humeroulnar separation is more concentric in the situation of the 120 degrees humeral distraction by using stiffer pins with convergent placement. Even so, the eccentric displacement of the elbow hinge is a crucial consideration in the initial placement of the guiding pin to compensate for hinge misalignment.
Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A
2018-06-15
Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.
The role of hinges in primary total knee replacement.
Gehrke, T; Kendoff, D; Haasper, C
2014-11-01
The use of hinged implants in primary total knee replacement (TKR) should be restricted to selected indications and mainly for elderly patients. Potential indications for a rotating hinge or pure hinge implant in primary TKR include: collateral ligament insufficiency, severe varus or valgus deformity (>20°) with necessary relevant soft-tissue release, relevant bone loss including insertions of collateral ligaments, gross flexion-extension gap imbalance, ankylosis, or hyperlaxity. Although data reported in the literature are inconsistent, clinical results depend on implant design, proper technical use, and adequate indications. We present our experience with a specific implant type that we have used for over 30 years and which has given our elderly patients good mid-term results. Because revision of implants with long cemented stems can be very challenging, an effort should be made in the future to use shorter stems in modular versions of hinged implants. ©2014 The British Editorial Society of Bone & Joint Surgery.
Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect
NASA Astrophysics Data System (ADS)
Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.
2013-12-01
Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.
NASA Astrophysics Data System (ADS)
Zhang, Bin; Qian, Yao; Wu, Yuntian; Yang, Y. B.
2018-04-01
To further the technique of indirect measurement, the contact-point response of a moving test vehicle is adopted for the damage detection of bridges. First, the contact-point response of the vehicle moving over the bridge is derived both analytically and in central difference form (for field use). Then, the instantaneous amplitude squared (IAS) of the driving component of the contact-point response is calculated by the Hilbert transform, making use of its narrow-band feature. The IAS peaks serve as the key parameter for damage detection. In the numerical simulation, a damage (crack) is modeled by a hinge-spring unit. The feasibility of the proposed method to detect the location and severity of a damage or multi damages of the bridge is verified. Also, the effects of surface roughness, vehicle speed, measurement noise and random traffic are studied. In the presence of ongoing traffic, the damages of the bridge are identified from the repeated or invariant IAS peaks generated for different traffic flows by the same test vehicle over the bridge.
NASA Technical Reports Server (NTRS)
Schoen, A. H. (Inventor)
1973-01-01
Expandable space frames having essentially infinite periodicity limited only by practical considerations, are described. Each expandable space frame comprises a plurality of hinge joint assemblies having arms that extend outwardly in predetermined symmetrically related directions from a central or vertex point. The outer ends of the arms form one part of a hinge point. The outer expandable space frame also comprises a plurality of struts. The outer ends of the struts from the other part of the hinged joint. The struts interconnect the plurality of hinge point in sychronism, the spaceframes can be expanded or collapsed. Three-dimensional as well as two-dimensional spaceframes of this general nature are described.
Graphite Composite Booms with Integral Hinges
NASA Technical Reports Server (NTRS)
Alexander, Wes; Carlos, Rene; Rossoni, Peter; Sturm, James
2006-01-01
A document discusses lightweight instrument booms under development for use aboard spacecraft. A boom of this type comprises a thin-walled graphite fiber/ matrix composite tube with an integral hinge that can be bent for stowage and later allowed to spring back to straighten the boom for deployment in outer space. The boom design takes advantage of both the stiffness of the composite in tubular geometry and the flexibility of thin sections of the composite. The hinge is formed by machining windows in the tube at diametrically opposite locations so that there remain two opposing cylindrical strips resembling measuring tapes. Essential to the design is a proprietary composite layup that renders the hinge tough yet flexible enough to be bendable as much as 90 in either of two opposite directions. When the boom is released for deployment, the torque exerted by the bent hinge suffices to overcome parasitic resistance from harnesses and other equipment, so that the two sections of the hinge snap to a straight, rigid condition in the same manner as that of measuring tapes. Issues addressed in development thus far include selection of materials, out-of-plane bending, edge cracking, and separation of plies.
Computational Modeling of Shape Memory Polymer Origami that Responds to Light
NASA Astrophysics Data System (ADS)
Mailen, Russell William
Shape memory polymers (SMPs) transform in response to external stimuli, such as infrared (IR) light. Although SMPs have many applications, this investigation focuses on their use as actuators in self-folding origami structures. Ink patterned on the surface of the SMP sheet absorbs thermal energy from the IR light, which produces localized heating. The material shrinks wherever the activation temperature is exceeded and can produce out-of-plane deformation. The time and temperature dependent response of these SMPs provides unique opportunities for developing complex three-dimensional (3D) structures from initially flat sheets through self-folding origami, but the application of this technique requires predicting accurately the final folded or deformed shape. Furthermore, current computational approaches for SMPs do not fully couple the thermo-mechanical response of the material. Hence, a proposed nonlinear, 3D, thermo-viscoelastic finite element framework was formulated to predict deformed shapes for different self-folding systems and compared to experimental results for self-folding origami structures. A detailed understanding of the shape memory response and the effect of controllable design parameters, such as the ink pattern, pre-strain conditions, and applied thermal and mechanical fields, allows for a predictive understanding and design of functional, 3D structures. The proposed modeling framework was used to obtain a fundamental understanding of the thermo-mechanical behavior of SMPs and the impact of the material behavior on hinged self-folding. These predictions indicated how the thermal and mechanical conditions during pre-strain significantly affect the shrinking and folding response of the SMP. Additionally, the externally applied thermal loads significantly influenced the folding rate and maximum bending angle. The computational framework was also adapted to understand the effects of fully coupling the thermal and mechanical response of the material. This updated framework accounted for external heat sources, such as ambient temperature and incident surface heat flux, as well as internal temperature changes due to conduction and viscous heat generation. Viscous heating during the pre-strain sequence affected the residual stresses after cooling due to accelerated viscoelastic relaxation. This resulted in a delayed shrinking and folding response. Other factors that affected the folding response include sheet thickness, hinge width, degree of pre-strain, and hinge temperature. The predicted results indicated that the maximum bending angle can be increased for a folded structure by increasing the hinge width, degree of pre-strain, and hinge surface temperature. Folding time can be reduced by decreasing the sheet thickness, increasing the hinge width, and increasing the hinge temperature. The coupled thermo-mechanical approach was also extended to investigate both curved and folded structures by varying the ink pattern and the substrate geometry. With this approach, two continuous curvature mechanisms were obtained. One was an indirect curvature mechanism which resulted from internal stresses that evolved from the shrinking of activated regions of the material relative to unactivated regions. The second was a direct curvature mechanism that resulted from ink distributed in gradients across the surface of the material. Furthermore, the effects of hinge orientation, proximity of multiple hinges, sheet aspect ratio, and axisymmetric ink patterns were characterized for other shapes, such as rectangles and discs. The findings of this investigation clearly indicate that this validated computational approach can be used to predict and understand the myriad mechanisms of self-folding origami structures. By varying the location of ink on the polymer surface and making changes to the substrate geometry, complex 3D structures can be obtained. The developed thermo-mechanical framework can be used to design optimized origami structures for biomedical devices, space telescopes, and functional, engineered origami devices.
Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows
NASA Astrophysics Data System (ADS)
Lenarda, Pietro; Paggi, Marco; Ruiz Baier, Ricardo
2017-09-01
We present a partitioned algorithm aimed at extending the capabilities of existing solvers for the simulation of coupled advection-diffusion-reaction systems and incompressible, viscous flow. The space discretisation of the governing equations is based on mixed finite element methods defined on unstructured meshes, whereas the time integration hinges on an operator splitting strategy that exploits the differences in scales between the reaction, advection, and diffusion processes, considering the global system as a number of sequentially linked sets of partial differential, and algebraic equations. The flow solver presents the advantage that all unknowns in the system (here vorticity, velocity, and pressure) can be fully decoupled and thus turn the overall scheme very attractive from the computational perspective. The robustness of the proposed method is illustrated with a series of numerical tests in 2D and 3D, relevant in the modelling of bacterial bioconvection and Boussinesq systems.
NASA Technical Reports Server (NTRS)
Head, V. L.
1972-01-01
A nozzle installation of general interest is a podded engine mounted near the aft lower surface of the wing. The effect of this installation on the performance of an auxiliary-inlet ejector nozzle with a clamshell flow diverter was investigated over a Mach number range of 0.6 to 1.3 by using a modified F-106B aircraft. The clamshell flow diverter was tested in a 17 deg position with double-hinged synchronized floating doors. The ejector nozzle trailing-edge flaps were simulated in the closed position with a rigid structure which provided a boattail angle of 10 deg. Primary nozzle area was varied as exhaust gas temperature was varied between 975 and 1561 K. With the nozzle in a subsonic cruise position, the nozzle gross thrust coefficient was 0.918 at a flight Mach number of 0.9.
NASA Technical Reports Server (NTRS)
Rao, D. M.; Goglia, G. L.
1981-01-01
Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.
Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables
DOE Office of Scientific and Technical Information (OSTI.GOV)
DallAnese, Emiliano; Baker, Kyri; Summers, Tyler
This paper focuses on distribution systems featuring renewable energy sources (RESs) and energy storage systems, and presents an AC optimal power flow (OPF) approach to optimize system-level performance objectives while coping with uncertainty in both RES generation and loads. The proposed method hinges on a chance-constrained AC OPF formulation where probabilistic constraints are utilized to enforce voltage regulation with prescribed probability. A computationally more affordable convex reformulation is developed by resorting to suitable linear approximations of the AC power-flow equations as well as convex approximations of the chance constraints. The approximate chance constraints provide conservative bounds that hold for arbitrarymore » distributions of the forecasting errors. An adaptive strategy is then obtained by embedding the proposed AC OPF task into a model predictive control framework. Finally, a distributed solver is developed to strategically distribute the solution of the optimization problems across utility and customers.« less
Bolger, Conor M.; Sandbakk, Øyvind; Ettema, Gertjan; Federolf, Peter
2016-01-01
The purposes of the current study were to 1) test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2) investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding’s hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG) signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA). Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P < 0.05). The changed patterns in muscle activation are in alignment with previously described mechanisms that explain the effects of hinge positioning in speed-skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants. PMID:27203597
Engineering Upper Hinge Improves Stability and Effector Function of a Human IgG1
Yan, Boxu; Boyd, Daniel; Kaschak, Timothy; Tsukuda, Joni; Shen, Amy; Lin, Yuwen; Chung, Shan; Gupta, Priyanka; Kamath, Amrita; Wong, Anne; Vernes, Jean-Michel; Meng, Gloria Y.; Totpal, Klara; Schaefer, Gabriele; Jiang, Guoying; Nogal, Bartek; Emery, Craig; Vanderlaan, Martin; Carter, Paul; Harris, Reed; Amanullah, Ashraf
2012-01-01
Upper hinge is vulnerable to radical attacks that result in breakage of the heavy-light chain linkage and cleavage of the hinge of an IgG1. To further explore mechanisms responsible for the radical induced hinge degradation, nine mutants were designed to determine the roles that the upper hinge Asp and His play in the radical reactions. The observation that none of these substitutions could inhibit the breakage of the heavy-light chain linkage suggests that the breakage may result from electron transfer from Cys231 directly to the heavy-light chain linkage upon radical attacks, and implies a pathway separate from His229-mediated hinge cleavage. On the other hand, the substitution of His229 with Tyr showed promising advantages over the native antibody and other substitutions in improving the stability and function of the IgG1. This substitution inhibited the hinge cleavage by 98% and suggests that the redox active nature of Tyr did not enable it to replicate the ability of His to facilitate radical induced degradation. We propose that the lower redox potential of Tyr, a residue that may be the ultimate sink for oxidizing equivalents in proteins, is responsible for the inhibition. More importantly, the substitution increased the antibody's binding to FcγRIII receptors by 2–3-fold, and improved ADCC activity by 2-fold, while maintaining a similar pharmacokinetic profile with respect to the wild type. Implications of these observations for antibody engineering and development are discussed. PMID:22203673
Engineering upper hinge improves stability and effector function of a human IgG1.
Yan, Boxu; Boyd, Daniel; Kaschak, Timothy; Tsukuda, Joni; Shen, Amy; Lin, Yuwen; Chung, Shan; Gupta, Priyanka; Kamath, Amrita; Wong, Anne; Vernes, Jean-Michel; Meng, Gloria Y; Totpal, Klara; Schaefer, Gabriele; Jiang, Guoying; Nogal, Bartek; Emery, Craig; Vanderlaan, Martin; Carter, Paul; Harris, Reed; Amanullah, Ashraf
2012-02-17
Upper hinge is vulnerable to radical attacks that result in breakage of the heavy-light chain linkage and cleavage of the hinge of an IgG1. To further explore mechanisms responsible for the radical induced hinge degradation, nine mutants were designed to determine the roles that the upper hinge Asp and His play in the radical reactions. The observation that none of these substitutions could inhibit the breakage of the heavy-light chain linkage suggests that the breakage may result from electron transfer from Cys(231) directly to the heavy-light chain linkage upon radical attacks, and implies a pathway separate from His(229)-mediated hinge cleavage. On the other hand, the substitution of His(229) with Tyr showed promising advantages over the native antibody and other substitutions in improving the stability and function of the IgG1. This substitution inhibited the hinge cleavage by 98% and suggests that the redox active nature of Tyr did not enable it to replicate the ability of His to facilitate radical induced degradation. We propose that the lower redox potential of Tyr, a residue that may be the ultimate sink for oxidizing equivalents in proteins, is responsible for the inhibition. More importantly, the substitution increased the antibody's binding to FcγRIII receptors by 2-3-fold, and improved ADCC activity by 2-fold, while maintaining a similar pharmacokinetic profile with respect to the wild type. Implications of these observations for antibody engineering and development are discussed.
High-Reynolds Number Circulation Control Testing in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.
2012-01-01
A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.
NASA Astrophysics Data System (ADS)
Belyaev, I. A.; Genin, L. G.; Krylov, S. G.; Novikov, A. O.; Razuvanov, N. G.; Sviridov, V. G.
2015-09-01
The aim of this experimental investigation is to obtain information on the temperature fields and heat transfer coefficients during flow of liquid-metal coolant in models simulating an elementary cell in the core of a liquid heavy metal cooled fast-neutron reactor. Two design versions for spacing fuel rods in the reactor core were considered. In the first version, the fuel rods were spaced apart from one another using helical wire wound on the fuel rod external surface, and in the second version spacer grids were used for the same purpose. The experiments were carried out on the mercury loop available at the Moscow Power Engineering Institute National Research University's Chair of Engineering Thermal Physics. Two experimental sections simulating an elementary cell for each of the fuel rod spacing versions were fabricated. The temperature fields were investigated using a dedicated hinged probe that allows temperature to be measured at any point of the studied channel cross section. The heat-transfer coefficients were determined using the wall temperature values obtained at the moment when the probe thermocouple tail end touched the channel wall. Such method of determining the wall temperature makes it possible to alleviate errors that are unavoidable in case of measuring the wall temperature using thermocouples placed in slots milled in the wall. In carrying out the experiments, an automated system of scientific research was applied, which allows a large body of data to be obtained within a short period of time. The experimental investigations in the first test section were carried out at Re = 8700, and in the second one, at five values of Reynolds number. Information about temperature fields was obtained by statistically processing the array of sampled probe thermocouple indications at 300 points in the experimental channel cross section. Reach material has been obtained for verifying the codes used for calculating velocity and temperature fields in channels with an intricately shaped cross section simulating the flow pass sections for liquid-metal coolants cooling the core of nuclear reactors.
Curvature estimation for multilayer hinged structures with initial strains
NASA Astrophysics Data System (ADS)
Nikishkov, G. P.
2003-10-01
Closed-form estimate of curvature for hinged multilayer structures with initial strains is developed. The finite element method is used for modeling of self-positioning microstructures. The geometrically nonlinear problem with large rotations and large displacements is solved using step procedure with node coordinate update. Finite element results for curvature of the hinged micromirror with variable width is compared to closed-form estimates.
Design and 4D Printing of Cross-Folded Origami Structures: A Preliminary Investigation
Teoh, Joanne Ee Mei; Feng, Xiaofan; Zhao, Yue; Liu, Yong
2018-01-01
In 4D printing research, different types of complex structure folding and unfolding have been investigated. However, research on cross-folding of origami structures (defined as a folding structure with at least two overlapping folds) has not been reported. This research focuses on the investigation of cross-folding structures using multi-material components along different axes and different horizontal hinge thickness with single homogeneous material. Tensile tests were conducted to determine the impact of multi-material components and horizontal hinge thickness. In the case of multi-material structures, the hybrid material composition has a significant impact on the overall maximum strain and Young’s modulus properties. In the case of single material structures, the shape recovery speed is inversely proportional to the horizontal hinge thickness, while the flexural or bending strength is proportional to the horizontal hinge thickness. A hinge with a thickness of 0.5 mm could be folded three times prior to fracture whilst a hinge with a thickness of 0.3 mm could be folded only once prior to fracture. A hinge with a thickness of 0.1 mm could not even be folded without cracking. The introduction of a physical hole in the center of the folding/unfolding line provided stress relief and prevented fracture. A complex flower petal shape was used to successfully demonstrate the implementation of overlapping and non-overlapping folding lines using both single material segments and multi-material segments. Design guidelines for establishing cross-folding structures using multi-material components along different axes and different horizontal hinge thicknesses with single or homogeneous material were established. These guidelines can be used to design and implement complex origami structures with overlapping and non-overlapping folding lines. Combined overlapping folding structures could be implemented and allocating specific hole locations in the overall designs could be further explored. In addition, creating a more precise prediction by investigating sets of in between hinge thicknesses and comparing the folding times before fracture, will be the subject of future work. PMID:29510503
Jet-Like Flow and Thrust From a Flexible Flapping Foil in Stationary Fluid
2009-12-29
considered as a movable hinge point which travels over the flap region resulting in differential flap portions, pulling and pushing the fluid about this 15...Fliegenflugel und Hypothesen uber zugeordnete instationare Stromungseffekte,” J. Comp. Physiol., vol. 133, pp. 351–355, 1979. [24] Rayner, J. M. V., “A vortex...ring by giving an impulse to a circular disk and then dissolving it away,” J. App. Phys., vol. 24, no. 1, pp. 104, 1953. 17 [28] Wagner H., “ Uber die
Occluder closing behavior: a key factor in mechanical heart valve cavitation.
Wu, Z J; Wang, Y; Hwang, N H
1994-04-01
A laser sweeping technique developed in this laboratory was found to be capable of monitoring the leaflet closing motion with microsecond precision. The leaflet closing velocity was measured inside the last three degrees before impact. Mechanical heart valve (MHV) leaflets were observed to close with a three-phase motion; the approaching phase, the decelerating phase, and the rebound phase, all of which take place within one to two milliseconds. The leaflet closing behavior depends mainly on the leaflet design and the hinge mechanism. Bileaflet and monoleaflet types of mechanical heart valves were tested in the mitral position in a physiologic mock circulatory flow loop, which incorporated a computer-controlled magnetic drive and an adjustable afterload system. The test loop was tuned to produce physiologic ventricular and aortic pressure wave forms at 70-120 beats/min, with the maximum ventricular dp/dt varying between 1500-5600 mmHg/sec. The experiments were conducted by controlling the cardiac output at a constant level between 2.0-9.0 liters/min. The measured time-displacement curve of each tested MHV leaflet and its geometry were taken as the input for computation of the squeeze flow field in the narrow gap space between the approaching leaflet and the valve housing. The results indicated rapid build-up of both the pressure and velocity in the gap field within microsecs before the impact. The pressure build-up in the gap space is apparently responsible for the leaflet deceleration before the impact. When the concurrent water hammer pressure reduction at closure was combined with the high energy squeeze jet ejected from the gap space, there were strong indications of the environment which favors micro cavitation inceptions in certain types of MHV.
Vandergriff, D.H.
1999-08-31
A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.
Vandergriff, David Houston
1999-01-01
A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.
Inelastic seismic response of precast concrete frames with constructed plastic hinges
NASA Astrophysics Data System (ADS)
Sucuoglu, H.
1995-07-01
A modified seismic design concept is introduced for precast concrete frames in which beam plastic hinges with reduced yield capacities are constructed away from the precast beam-column connections arranged at the column faces. Plastic hinge location and yield capacity are employed as the basic parameters of an analytical survey in which the inelastic dynamic responses of a conventional precast frame and its modified counterparts are calculated and compared under two earthquake excitations by using a general purpose computer program for dynamic analysis of inelastic frames (left bracket) 1, 2 (right bracket). An optimum design is obtained by providing plastic hinges on precast beams located at one depth away from the beam ends, in which primary (negative) bending moment yield capacities are reduced between one-third and one-quarter of the beam design end moments. With such plastic hinge configurations, precast beam-column connections at the column faces can be designed to remain elastic under strong earthquake excitations.
Origami-Inspired Folding of Thick, Rigid Panels
NASA Technical Reports Server (NTRS)
Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert
2014-01-01
To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.
NASA Technical Reports Server (NTRS)
Carlson, Harry W.; Darden, Christine M.; Mann, Michael J.
1990-01-01
Extensive correlations of computer code results with experimental data are employed to illustrate the use of a linearized theory, attached flow method for the estimation and optimization of the longitudinal aerodynamic performance of wing-canard and wing-horizontal tail configurations which may employ simple hinged flap systems. Use of an attached flow method is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. The results indicate that linearized theory, attached flow, computer code methods (modified to include estimated attainable leading-edge thrust and an approximate representation of vortex forces) provide a rational basis for the estimation and optimization of aerodynamic performance at subsonic speeds below the drag rise Mach number. Generally, good prediction of aerodynamic performance, as measured by the suction parameter, can be expected for near optimum combinations of canard or horizontal tail incidence and leading- and trailing-edge flap deflections at a given lift coefficient (conditions which tend to produce a predominantly attached flow).
Hinged external fixation of the elbow.
Chen, Neal C; Julka, Abhishek
2010-08-01
Hinged external fixation of the elbow provides the advantages of static fixation with the benefits of continued motion through the joint. Indications for the use of this method of fixation include traumatic instability, distraction interposition arthroplasty, instability after contracture release, and instability after excision of heterotopic ossification. Orthopedic surgeons should be familiar with hinged fixators and their application when faced with an unstable ulnohumeral joint. 2010 Elsevier Inc. All rights reserved.
Molecular mechanics of 30S subunit head rotation.
Mohan, Srividya; Donohue, John Paul; Noller, Harry F
2014-09-16
During ribosomal translocation, a process central to the elongation phase of protein synthesis, movement of mRNA and tRNAs requires large-scale rotation of the head domain of the small (30S) subunit of the ribosome. It has generally been accepted that the head rotates by pivoting around the neck helix (h28) of 16S rRNA, its sole covalent connection to the body domain. Surprisingly, we observe that the calculated axis of rotation does not coincide with the neck. Instead, comparative structure analysis across 55 ribosome structures shows that 30S head movement results from flexing at two hinge points lying within conserved elements of 16S rRNA. Hinge 1, although located within the neck, moves by straightening of the kinked helix h28 at the point of contact with the mRNA. Hinge 2 lies within a three-way helix junction that extends to the body through a second, noncovalent connection; its movement results from flexing between helices h34 and h35 in a plane orthogonal to the movement of hinge 1. Concerted movement at these two hinges accounts for the observed magnitudes of head rotation. Our findings also explain the mode of action of spectinomycin, an antibiotic that blocks translocation by binding to hinge 2.
Molecular mechanics of 30S subunit head rotation
Mohan, Srividya; Donohue, John Paul; Noller, Harry F.
2014-01-01
During ribosomal translocation, a process central to the elongation phase of protein synthesis, movement of mRNA and tRNAs requires large-scale rotation of the head domain of the small (30S) subunit of the ribosome. It has generally been accepted that the head rotates by pivoting around the neck helix (h28) of 16S rRNA, its sole covalent connection to the body domain. Surprisingly, we observe that the calculated axis of rotation does not coincide with the neck. Instead, comparative structure analysis across 55 ribosome structures shows that 30S head movement results from flexing at two hinge points lying within conserved elements of 16S rRNA. Hinge 1, although located within the neck, moves by straightening of the kinked helix h28 at the point of contact with the mRNA. Hinge 2 lies within a three-way helix junction that extends to the body through a second, noncovalent connection; its movement results from flexing between helices h34 and h35 in a plane orthogonal to the movement of hinge 1. Concerted movement at these two hinges accounts for the observed magnitudes of head rotation. Our findings also explain the mode of action of spectinomycin, an antibiotic that blocks translocation by binding to hinge 2. PMID:25187561
Friesenbichler, Joerg; Maurer-Ertl, Werner; Sadoghi, Patrick; Lovse, Thomas; Windhager, Reinhard; Leithner, Andreas
2012-03-01
The effects of systemic metal ion exposure in patients with implants made of common prosthetic alloys continue to be a matter of concern. The aim of the study was to determine the measurement values of cobalt (Co), chromium (Cr) and molybdenum (Mo) in serum following rotating-hinge knee arthroplasty. Blood was taken from 25 patients [mean follow-up 35 (range nine to 67) months] treated with megaprostheses (n=17) or standard rotating-hinge devices (n=8) and analysed using electrothermal graphite furnace atomic absorption spectrometry (ET-ASS). Determining the concentrations of metal ions following rotating-hinge knee arthroplasty revealed increments for Co and Cr but not Mo. Metal ion release was significantly higher in patients with megaprostheses compared to a standard rotating-hinge knee device (Co p=0,024; Cr p=0.025). The authors believe there might be an additional metal ion release from the surface of the prosthesis and not only from the articulating surfaces because, in cases of rotating-hinge knee prosthesis, there is a metal-on-polyethylene articulation and not a direct metal-on-metal junction. Nevertheless, long-term studies are required to determine adverse effects of Co, Cr and Mo following total hip replacement and total knee arthroplasty.
Understanding protein lids: kinetic analysis of active hinge mutants in triosephosphate isomerase.
Sun, J; Sampson, N S
1999-08-31
In previous work we tested what three amino acid sequences could serve as a protein hinge in triosephosphate isomerase [Sun, J., and Sampson, N. S. (1998) Protein Sci. 7, 1495-1505]. We generated a genetic library encoding all 8000 possible 3 amino acid combinations at the C-terminal hinge and selected for those combinations of amino acids that formed active mutants. These mutants were classified into six phylogenetic families. Two families resembled wild-type hinges, and four families represented new types of hinges. In this work, the kinetic characteristics and thermal stabilities of mutants representing each of these families were determined in order to understand what properties make an efficient protein hinge, and why all of the families are not observed in nature. From a steady-state kinetic analysis of our mutants, it is clear that the partitioning between protonation of intermediate to form product and intermediate release from the enzyme surface to form methylglyoxal (a decomposition product) is not affected. The two most impaired mutants undergo a change in rate-limiting step from enediol formation to dihydroxyacetone phosphate binding. Thus, it appears that k(cat)/K(m)'s are reduced relative to wild type as a result of slower Michaelis complex formation and dissociation, rather than increased loop opening speed.
Evading pre-existing anti-hinge antibody binding by hinge engineering
Kim, Hok Seon; Kim, Ingrid; Zheng, Linda; Vernes, Jean-Michel; Meng, Y. Gloria; Spiess, Christoph
2016-01-01
ABSTRACT Antigen-binding fragments (Fab) and F(ab′)2 antibodies serve as alternative formats to full-length anti-bodies in therapeutic and immune assays. They provide the advantage of small size, short serum half-life, and lack of effector function. Several proteases associated with invasive diseases are known to cleave antibodies in the hinge-region, and this results in anti-hinge antibodies (AHA) toward the neoepitopes. The AHA can act as surrogate Fc and reintroduce the properties of the Fc that are otherwise lacking in antibody fragments. While this response is desired during the natural process of fighting disease, it is commonly unwanted for therapeutic antibody fragments. In our study, we identify a truncation in the lower hinge region of the antibody that maintains efficient proteolytic cleavage by IdeS protease. The resulting neoepitope at the F(ab′)2 C-terminus does not have detectable binding of pre-existing AHA, providing a practical route to produce F(ab′)2 in vitro by proteolytic digestion when the binding of pre-existing AHA is undesired. We extend our studies to the upper hinge region of the antibody and provide a detailed analysis of the contribution of C-terminal residues of the upper hinge of human IgG1, IgG2 and IgG4 to pre-existing AHA reactivity in human serum. While no pre-existing antibodies are observed toward the Fab of IgG2 and IgG4 isotype, a significant response is observed toward most residues of the upper hinge of human IgG1. We identify a T225L variant and the natural C-terminal D221 as solutions with minimal serum reactivity. Our work now enables the production of Fab and F(ab′)2 for therapeutic and diagnostic immune assays that have minimal reactivity toward pre-existing AHA. PMID:27606571
Magnetic second-order topological insulators and semimetals
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2018-04-01
We propose magnetic second-order topological insulators (SOTIs). First, we study a three-dimensional model. It is pointed out that the previously proposed topological hinge insulator has actually surface states along the [001] direction in addition to hinge states. We gap out these surface states by introducing magnetization, obtaining a SOTI only with hinge states. The bulk topological number is the Z2 index protected by the combined symmetry of the fourfold rotation and the inversion symmetry. We next study two-dimensional magnetic SOTIs, where the corner states are robust also in the presence of the magnetization. Finally, we construct a magnetic second-order topological semimetal by layering the two-dimensional magnetic SOTIs, where hinge-arc states are robust also in the presence of the magnetization.
Kikuchi, Y; Tamiya, N
1987-01-01
The proteins in the hinge ligaments of molluscan bivalves were subjected to chemotaxonomic studies according to their amino acid compositions. The hinge-ligament protein is a new class of structure proteins, and this is the first attempt to introduce chemical taxonomy into the systematics of bivalves. The hinge-ligament proteins from morphologically close species, namely mactra (superfamily Mactracea) or scallop (family Pectinidae) species, showed high intraspecific homology in their compositions. On the other hand, inconsistent results were obtained with two types of ligament proteins in pearl oyster species (genus Pinctada). The results of our chemotaxonomic analyses were sometimes in good agreement with the morphological classifications and sometimes inconsistent, implying a complicated phylogenetic relationship among the species. PMID:3593265
Study on Transverse Load Distribution of Hinged Hollow Beam
NASA Astrophysics Data System (ADS)
Wang, Weiyue; Zhang, Chao; Wan, Shui
2017-11-01
The bridge is a kind of space structure, when the car load on a part of the bridge, the impact of its load will be transmitted to the surrounding. In this paper, the hinge plate method is used to calculate and analyze the simply supported hollow slab of a certain arch bridge. Considering the hinge plate mounting method is suitable for pouring concrete bridge connecting the longitudinal tongue and groove joints, horizontal beams fabricated separate beam only in the middle between the free flaps or reinforced with steel connection. Therefore, the transverse analysis and calculation of the superstructure of box girder are carried out by using hinge plate method. And mechanical analysis of the transverse beam with finite element software MIDAS Civil grillage method.
RTM Production Monitoring of the A380 Hinge Arm Droop Nose Mechanism: A Multi-Sensor Approach.
Chiesura, Gabriele; Lamberti, Alfredo; Yang, Yang; Luyckx, Geert; Van Paepegem, Wim; Vanlanduit, Steve; Vanfleteren, Jan; Degrieck, Joris
2016-06-14
This research presents a case study of production monitoring on an aerospace composite component: the hinge arm of the droop nose mechanism on the Airbus A380 wing leading edge. A sensor network composed of Fibre Bragg Gratings, capacitive sensors for cure monitoring and thermocouples was embedded in its fibre reinforced lay-up and measurements were acquired throughout its Resin Transfer Moulding production process. Two main challenges had to be overcome: first, the integration of the sensor lines in the existing Resin Transfer Moulding mould without modifying it; second, the demoulding of the component without damaging the sensor lines. The proposed embedding solution has proved successful. The wavelength shifts of the Fibre Bragg Gratings were observed from the initial production stages, over the resin injection, the complete curing of the resin and the cooling-down prior to demoulding. The sensors proved to be sensitive to detecting the resin flow front, vacuum and pressure increase into the mould and the temperature increase caused by the resin curing. Measurements were also acquired during the post-curing cycle. Residual strains during all steps of the process were derived from the sensors' wavelength shift, showing values up to 0.2% in compression. Moreover, the capacitive sensors were able to follow-up the curing degree during the production process. The sensors proved able to detect the resin flow front, whereas thermocouples could not measure an appreciable increase of temperature due to the fact that the resin had the same temperature as the mould.
RTM Production Monitoring of the A380 Hinge Arm Droop Nose Mechanism: A Multi-Sensor Approach
Chiesura, Gabriele; Lamberti, Alfredo; Yang, Yang; Luyckx, Geert; Van Paepegem, Wim; Vanlanduit, Steve; Vanfleteren, Jan; Degrieck, Joris
2016-01-01
This research presents a case study of production monitoring on an aerospace composite component: the hinge arm of the droop nose mechanism on the Airbus A380 wing leading edge. A sensor network composed of Fibre Bragg Gratings, capacitive sensors for cure monitoring and thermocouples was embedded in its fibre reinforced lay-up and measurements were acquired throughout its Resin Transfer Moulding production process. Two main challenges had to be overcome: first, the integration of the sensor lines in the existing Resin Transfer Moulding mould without modifying it; second, the demoulding of the component without damaging the sensor lines. The proposed embedding solution has proved successful. The wavelength shifts of the Fibre Bragg Gratings were observed from the initial production stages, over the resin injection, the complete curing of the resin and the cooling-down prior to demoulding. The sensors proved to be sensitive to detecting the resin flow front, vacuum and pressure increase into the mould and the temperature increase caused by the resin curing. Measurements were also acquired during the post-curing cycle. Residual strains during all steps of the process were derived from the sensors’ wavelength shift, showing values up to 0.2% in compression. Moreover, the capacitive sensors were able to follow-up the curing degree during the production process. The sensors proved able to detect the resin flow front, whereas thermocouples could not measure an appreciable increase of temperature due to the fact that the resin had the same temperature as the mould. PMID:27314347
Yamasaki, Kazuo; Daiho, Takashi; Danko, Stefania; Suzuki, Hiroshi
2013-01-01
Sarcoplasmic reticulum Ca2+-ATPase couples the motions and rearrangements of three cytoplasmic domains (A, P, and N) with Ca2+ transport. We explored the role of electrostatic force in the domain dynamics in a rate-limiting phosphoenzyme (EP) transition by a systematic approach combining electrostatic screening with salts, computer analysis of electric fields in crystal structures, and mutations. Low KCl concentration activated and increasing salt above 0.1 m inhibited the EP transition. A plot of the logarithm of the transition rate versus the square of the mean activity coefficient of the protein gave a linear relationship allowing division of the activation energy into an electrostatic component and a non-electrostatic component in which the screenable electrostatic forces are shielded by salt. Results show that the structural change in the transition is sterically restricted, but that strong electrostatic forces, when K+ is specifically bound at the P domain, come into play to accelerate the reaction. Electric field analysis revealed long-range electrostatic interactions between the N and P domains around their hinge. Mutations of the residues directly involved and other charged residues at the hinge disrupted in parallel the electric field and the structural transition. Favorable electrostatics evidently provides a low energy path for the critical N domain motion toward the P domain, overcoming steric restriction. The systematic approach employed here is, in general, a powerful tool for understanding the structural mechanisms of enzymes. PMID:23737524
NASA Astrophysics Data System (ADS)
Chen, T. W.; Hu, J. C.; Huang, S. T.
2016-12-01
Hsinchu-Miaoli area is the major hydrocarbon producing fields in the fold-and-thrust belt of Taiwan. To understand the nature and the geometry of the reservoirs in this area, 82 wells were drilled in the Chinshui Field, which is one of the important gas fields in the Hsinchu-Miaoli area. However, the subsurface structures and fracture distribution of these fields are still unclear, and the reason for long time producing is also unknown. Fractures in the oil-bearing reservoir might be one of the important factors of long time gas producing, but the fracture reservoirs attaining hydrocarbons associated with fault-related folding need to be further clarified. In this study, we first represent a new structural interpretation of Chinshui anticlines and adjacent structures by a geological cross section across from Miaoli offshore to inner western foothills. After conducting 2D restoration with 2DMove, we could test whether our structural interpretation is reasonable and clarify the evolution history of Chinshui anticline and adjacent structures. We further construct a 3D structural model of Chinshui anticline by GOCAD. By using surface restoration, the location with higher fracture density could be inferred and be taken into account for reproduction. According to the restoration, we conclude that Chinshui anticline is mainly formed by the movement of the deep detachment. The old strata between two detachments develop a thrust wedge and deform upper strata to form Chinshui anticline. Furthermore, we obtain strain fields and the extension areas of Talu shale, Tungkeng, Chuhaungkeng, Mushan and Wuchihshan Formation of Chinshui anticline during the deformation. The results reveal that the highest fracture density lies in the hinge of A and C blocks in Mushan Formation as well as the hinge of B block in Wuchihshan Formation. After comparing the curvature and strain fields of these surfaces, we also find out that the strain field is highly relevant to the curvature of Chinshui anticline.
Aerodynamic analysis of seamless horizontal stabilizer
NASA Astrophysics Data System (ADS)
Nithya, S.; Kanimozhi, S.
2017-05-01
This project presents an investigative view into the concept of seamless aeroelastic wing and hingeless flexible trailing edge. Wings are designed to provide maximum lift and minimal drag and weight. But with conventional wings where rivets are used and the control surfaces are separately hinged, parasite drag comes into play. This project is about analysing a smooth seamless wing with hinge-less flexible trailing edge. This type of wing reduces the drag considerably and the hinge-less trailing edge leads to a minimal control demand and reduces the noise produced when the aircraft comes for landing. Seamless aeroelastic wing will function as an integrated one piece lifting and control surface. It has been designed to enhance a desirable wing camber for control by deflecting a hinge-less flexible trailing edge part instead of a traditional hinged control surface. This kind of flexible wing can be achieved either by a curved beam and disc actuation mechanism or by piezo-electric materials, whose shape change can be achieved by electricity. The intent of this project is to analyze the effects of introducing the concept of Seamless Wing to the horizontal stabilizer. While the removal of rivets and serrations that hinge the elevators to the stabilizer reduces the overall drag by a reasonable value, the overall concept of a control surface-less stabilizer where the maneuvers are done by deflecting the trailing edge offers better maneuverability.
Kinematics analysis on hinges of robot arm gripper for harmful chemical handling
NASA Astrophysics Data System (ADS)
Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Mustafa, Nurul Fahimah; Daud, Mohd Hisam
2017-09-01
The development of manufacturing industry is booming the application of industrial robot, and proportional to the use of robot arm. Some of the purpose of robot arm gripper is to sort things and place to the proper place. And some of the things are harmful to human, such as harmful chemical. By using robot arm to do picking and placing, it is expected to replace human tasks, as well as to reduce human from the harmful job. The problem of the robot arm gripper, most likely the problem of hinge, thus the analysis on the hinges of robot arm gripper to prevent claw is essential. By using robot arm, instead of human, is labored to do the harmful tasks and unexpected accident happen, costs and expenses in handling injured employee due to the harmful chemicals can be minimized. Thus the objective of this project is to make a kinematics analysis on the hinges of the robot arm gripper. Suitable material such as steel structure has also been selected for the construction of this hinges. This material has properties associated with compressive strength, fire resistance, corrosion and has a shape that is easy to move. Solid Works and ANSYS software is used to create animated movement on the design model and to detect deficiencies in the hinges. Detail methodology is described in this paper.
Hinged Capsulotomy – Does it Decrease Floaters After Yttrium Aluminum Garnet Laser Capsulotomy?
Alipour, Fatemeh; Jabbarvand, Mahmoud; Hashemian, Hesam; Hosseini, Simindokht; Khodaparast, Mehdi
2015-01-01
Objectives: The objective was to compare conventional circular yttrium aluminum garnet (YAG) laser capsulotomy with hinged capsulotomy to manage posterior capsular opacification (PCO). Materials and Methods: This prospective, randomized clinical trial enrolled pseudophakic patients with visually significant posterior capsule opacification. Patients were randomized to undergo posterior YAG laser capsulotomy with either conventional circular technique or a new technique with an inferior hinge. At 1-month postoperatively, patients were asked if they had any annoying floaters and the responses were compared between groups. P < 0.05 was considered statistically significant. Results: A total of 83 patients were enrolled. Forty-three patients underwent hinged posterior YAG capsulotomy and 40 patients underwent routine circular capsulotomy. At 1-month postoperatively, there was a statistically significant decrease in annoying floaters in the group that underwent circular capsulotomy (P = 0.02). There was no statistically significant association in the total energy delivered (P = 0.4) or the number of spots (P = 0.2) and patient perception of annoying floaters. Conclusion: Hinged YAG capsulotomy was effective at decreasing the rate of floaters in patients with PCO. PMID:26180476
Hinged Capsulotomy--Does it Decrease Floaters After Yttrium Aluminum Garnet Laser Capsulotomy?
Alipour, Fatemeh; Jabbarvand, Mahmoud; Hashemian, Hesam; Hosseini, Simindokht; Khodaparast, Mehdi
2015-01-01
The objective was to compare conventional circular yttrium aluminum garnet (YAG) laser capsulotomy with hinged capsulotomy to manage posterior capsular opacification (PCO). This prospective, randomized clinical trial enrolled pseudophakic patients with visually significant posterior capsule opacification. Patients were randomized to undergo posterior YAG laser capsulotomy with either conventional circular technique or a new technique with an inferior hinge. At 1-month postoperatively, patients were asked if they had any annoying floaters and the responses were compared between groups. P < 0.05 was considered statistically significant. A total of 83 patients were enrolled. Forty-three patients underwent hinged posterior YAG capsulotomy and 40 patients underwent routine circular capsulotomy. At 1-month postoperatively, there was a statistically significant decrease in annoying floaters in the group that underwent circular capsulotomy (P = 0.02). There was no statistically significant association in the total energy delivered (P = 0.4) or the number of spots (P = 0.2) and patient perception of annoying floaters. Hinged YAG capsulotomy was effective at decreasing the rate of floaters in patients with PCO.
Mechanical energy storage device for hip disarticulation
NASA Technical Reports Server (NTRS)
Vallotton, W. C. (Inventor)
1977-01-01
An artificial leg including a trunk socket, a thigh section hingedly coupled to the trunk socket, a leg section hingedly coupled to the thigh section and a foot section hingedly coupled to the leg section is outlined. A mechanical energy storage device is operatively associated with the artificial leg for storage and release of energy during the normal walking stride of the user. Energy is stored in the mechanical energy storage device during a weight-bearing phase of the walking stride when the user's weight is on the artificial leg. Energy is released during a phase of the normal walking stride, when the user's weight is removed from the artificial leg. The stored energy is released from the energy storage device to pivot the thigh section forwardly about the hinged coupling to the trunk socket.
A fully redundant power hinge for LANDSAT-D appendages
NASA Technical Reports Server (NTRS)
Mamrol, F. E.; Matteo, D. N.
1981-01-01
The configuration and testing of a power driven hinge for deployment of the solar array and antenna boom for the LANDSAT-D spacecraft is discussed. The hinge is fully mechanically and electrically redundant and, thereby, can sustain a single point failure of any one motor (or its power supply), speed reducer, or bearing set without loss of its ability to function. This design utilizes the capability of the stepper motor drive to remove the flexibility of the drive train from the joint stiffness equation when the hinge is loaded against its stop. This feature precludes gapping of the joint under spacecraft maneuver loads even in the absence of a latching feature. Thus, retraction is easily accomplished by motor reversal without the need for a solenoid function to remove the latch.
Adaptive fiber optics collimator based on flexible hinges.
Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu
2014-08-20
In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.
CALUTRON ASSEMBLING AND DISASSEMBLING APPARATUS
Andrews, R.E.
1959-01-27
A closure plate assembly is presented for a calutron tank. Due to the size and weight of the calutron tank a special face plate, hinges and latch construction are required. The salient feature of the invention is the provision of a face plate carrying the ion separating niechanism and adapted to close an open side of a calutron tank. A spring-type hinge secured to the face plate at one end prevents injury to the sealing gasket as the face plate is inserted and withdrawn. In additions a hinged support for the face plate comprises readily separable hinge elements, so that the face plate may first be swung outwardly from its operative position far enough to clear the ion separating meehanism carried thereby, and may thereafter be elevated and transported by a convcntional overhead crane.
BAF57 Modulation of Androgen Receptor Action and Prostate Cancer Progression
2007-12-01
mapped the AR binding site on BAF57 to the N-terminus (proline-rich region). Furthermore, the DBD and hinge region of AR also appear to play a...Accomplishments of Task 1: BAF57 binds to DNA binding domain ( DBD ) and hinge region of AR As outlined in the initial proposal, the first task...the above construct are the well-characterized zinc finger DNA binding domain ( DBD ) and the hinge region. Given the significant role of these two
BAF57 Modulation of Androgen Receptor Action and Prostate Cancer Progression
2006-12-01
has fine mapped the AR binding site on BAF57 to the N-terminus (proline-rich region). Furthermore, the DBD and hinge region of AR also appear to...Accomplishments of Task 1: BAF57 binds to DNA binding domain ( DBD ) and hinge region of AR As outlined in the initial proposal, the first task was to...construct are the well-characterized zinc finger DNA binding domain ( DBD ) and the hinge region. Given the significant role of these two domains in AR
Wire-Strain-Gage Hinge-Moment Indicators for Use in Tests of Airplane Models
NASA Technical Reports Server (NTRS)
Edwards, Howard B.
1944-01-01
The design and construction of various forms of strain-gage spring units and hinge-moment assemblies are discussed with particular reference to wind-tunnel test, although the indicators may be used equally well in flight tests. Strain-gage specifications are given, and the techniques of their application and use are described briefly. Testing, calibration and operation of hinge-moment indicators are discussed and precautions necessary for successful operation are stressed. Difficulties that may be encountered are summarized along with the possible causes.
Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd
2015-01-01
The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) – secreted by the placenta, and lutropin (LH) – produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor’s leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region of the receptor. PMID:26441830
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Cruz, Josue; Lung, Shun-Fat; Kota, Sridhar; Ervin, Gregory; Lu, Kerr-Jia; Flick, Pete
2016-01-01
A seamless adaptive compliant trailing edge (ACTE) flap was demonstrated in flight on a Gulfstream III aircraft at the NASA Armstrong Flight Research Center. The trailing edge flap was deflected between minus 2 deg up and plus 30 deg down in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The interface hardware instrumentation layout and load calibration are discussed. Twenty-one applied calibration test load cases were developed for each individual fitting. The 2-sigma residual errors for the hinge moment was calculated to be 2.4 percent, and for normal force was calculated to be 7.3 percent. The hinge moment and normal force generated by the ACTE flap with a hinge point located at 26-percent wing chord were measured during steady state and symmetric pitch maneuvers. The loads predicted from analysis were compared to the loads observed in flight. The hinge moment loads showed good agreement with the flight loads while the normal force loads calculated from analysis were over-predicted by approximately 20 percent. Normal force and hinge moment loads calculated from the pressure sensors located on the ACTE showed good agreement with the loads calculated from the installed strain gages.
Theoretical characteristics of two-dimensional supersonic control surfaces
NASA Technical Reports Server (NTRS)
Morrissette, Robert R; Oborny, Lester F
1951-01-01
The "Busemann second-order-approximation theory" for the pressure distribution over a two-dimensional airfoil in supersonic flow was used to determine some of the aerodynamic characteristics of uncambered symmetrical parabolic and double-wedge airfoils with leading-edge and trailing-edge flaps. The characteristics presented and discussed in this paper are: flap effectiveness factor, rate of change of hinge-moment coefficient with flap deflection, rate of change of the pitching-moment coefficient with flap deflection, rate of change of the pitching-moment coefficient about the mid chord with flap deflection, and the location of the center of pressure of the airfoil-flap combination.
NASA Technical Reports Server (NTRS)
Hardin, R. B.; Burrows, R. R.
1975-01-01
The purpose of the test was to determine the effects of cold jet gas plumes on (1) the integrated vehicle longitudinal and lateral-directional force data, (2) exposed wing hinge moment, (3) wing pressure distributions, (4) orbiter MPS external pressure distributions, and (5) model base pressures. An investigation was undertaken to determine the similarity between solid and gaseous plumes; fluorescent oil flow visualization studies were also conducted. Plotted wing pressure data is tabulated.
Flagella, flexibility and flow: Physical processes in microbial ecology
NASA Astrophysics Data System (ADS)
Brumley, D. R.; Rusconi, R.; Son, K.; Stocker, R.
2015-12-01
How microorganisms interact with their environment and with their conspecifics depends strongly on their mechanical properties, on the hydrodynamic signatures they generate while swimming and on fluid flows in their environment. The rich fluid-structure interaction between flagella - the appendages microorganisms use for propulsion - and the surrounding flow, has broad reaching effects for both eukaryotic and prokaryotic microorganisms. Here, we discuss selected recent advances in our understanding of the physical ecology of microorganisms, which have hinged on the ability to directly interrogate the movement of individual cells and their swimming appendages, in precisely controlled fluid environments, and to image them at appropriately fast timescales. We review how a flagellar buckling instability can unexpectedly serve a fundamental function in the motility of bacteria, we elucidate the role of hydrodynamics and flexibility in the emergent properties of groups of eukaryotic flagella, and we show how fluid flows characteristic of microbial habitats can strongly bias the migration and spatial distribution of bacteria. The topics covered here are illustrative of the potential inherent in the adoption of experimental methods and conceptual frameworks from physics in understanding the lives of microorganisms.
Progressive collapse of a two-story reinforced concrete frame with embedded smart aggregates
NASA Astrophysics Data System (ADS)
Laskar, Arghadeep; Gu, Haichang; Mo, Y. L.; Song, Gangbing
2009-07-01
This paper reports the experimental and analytical results of a two-story reinforced concrete frame instrumented with innovative piezoceramic-based smart aggregates (SAs) and subjected to a monotonic lateral load up to failure. A finite element model of the frame is developed and analyzed using a computer program called Open system for earthquake engineering simulation (OpenSees). The finite element analysis (FEA) is used to predict the load-deformation curve as well as the development of plastic hinges in the frame. The load-deformation curve predicted from FEA matched well with the experimental results. The sequence of development of plastic hinges in the frame is also studied from the FEA results. The locations of the plastic hinges, as obtained from the analysis, were similar to those observed during the experiment. An SA-based approach is also proposed to evaluate the health status of the concrete frame and identify the development of plastic hinges during the loading procedure. The results of the FEA are used to validate the SA-based approach for detecting the locations and occurrence of the plastic hinges leading to the progressive collapse of the frame. The locations and sequential development of the plastic hinges obtained from the SA-based approach corresponds well with the FEA results. The proposed SA-based approach, thus validated using FEA and experimental results, has a great potential to be applied in the health monitoring of large-scale civil infrastructures.
Investigation on adaptive wing structure based on shape memory polymer composite hinge
NASA Astrophysics Data System (ADS)
Yu, Yuemin; Li, Xinbo; Zhang, Wei; Leng, Jinsong
2007-07-01
This paper describes the design and investigation of the SMP composite hinge and the morphing wing structure. The SMP composite hinge was based on SMP and carbon fiber fabric. The twisting recoverability of it was investigated by heating and then cooling repeatedly above and below the Tg. The twisting recoverability characterized by the twisting angle. Results show that the SMP composite hinge have good shape recoverability, Recovery time has a great influence on the twisting recoverability. The twisting recovery ratio became large with the increment of recovery time. The morphing wing can changes shape for different tasks. For the advantages of great recovery force and stable performances, we adopt SMP composite hinge as actuator to apply into the structure of the wing which can realize draw back wings to change sweep angle according to the speed and other requirements of military airplanes. Finally, a series of simulations and experiments are performed to investigate the deformations of morphing wings have been performed successfully. It can be seen that the sweep angle change became large with the increment of initial angle. The area reduction became large with the increment of initial angle, but after 75° the area reduction became smaller and smaller. The deformations of the triangle wing became large with the increment of temperature. The area and the sweep angle of wings can be controlled by adjusting the stimulate temperature and the initial twisting angle of shape memory polymer composite hinge.
Rowley, James P.; Lewandowski, Edward F.; Groh, Edward F.
1976-01-01
Three cylindrical rollers are rotatably mounted equidistant from the center of a hollow tool head on radii spaced 120.degree. apart. Each roller has a thin flange; the three flanges lie in a single plane to form an internal circumferential rib in a rotating tubular workpiece. The tool head has two complementary parts with two rollers in one part of the head and one roller in the other part; the two parts are joined by a hinge. A second hinge, located so the rollers are between the two hinges, connects one of the parts to a tool bar mounted in a lathe tool holder. The axes of rotation of both hinges and all three rollers are parallel. A hole exposing equal portions of the three roller flanges is located in the center of the tool head. The two hinges permit the tool head to be opened and rotated slightly downward, taking the roller flanges out of the path of the workpiece which is supported on both ends and rotated by the lathe. The parts of the tool head are then closed on the workpiece so that the flanges are applied to the workpiece and form the rib. The tool is then relocated for forming of the next rib.
Jaeger, Gayle H; Wosar, Marc A; Marcellin-Little, Denis J; Lascelles, B Duncan X
2005-08-15
To describe placement of hinged transarticular external fixation (HTEF) frames and evaluate their ability to protect the primary repair of unstable joints while allowing joint mobility in dogs and cats. Retrospective study. 8 cats and 6 dogs. HTEF frames were composed of metal or epoxy connecting rods and a hinge. Measurements of range of motion of affected and contralateral joints and radiographs were made after fixator application and removal. 9 animals (4 cats and 5 dogs) had tarsal and 5 (4 cats and 1 dog) had stifle joint injuries. Treatment duration ranged from 45 to 100 days (median, 57 days). Ranges of motion in affected stifle and tarsal joints were 57% and 72% of control while HTEF was in place and 79% and 84% of control after frame removal. Complications were encountered in 3 cats and 2 dogs and included breakage of pins and connecting rods, hinge loosening, and failure at the hinge-epoxy interface. HTEF in animals with traumatic joint instability provided adjunctive joint stabilization during healing and protection of the primary repair and maintained joint motion during healing, resulting in early weight bearing of the affected limb.
Huang, Yongqi; Gao, Meng; Su, Zhengding
2018-02-01
Three-dimensional (3D) domain swapping is a mechanism to form protein oligomers. It has been proposed that several factors, including proline residues in the hinge region, may affect the occurrence of 3D domain swapping. Although introducing prolines into the hinge region has been found to promote domain swapping for some proteins, the opposite effect has also been observed in several studies. So far, how proline affects 3D domain swapping remains elusive. In this work, based on a large set of 3D domain-swapped structures, we performed a systematic analysis to explore the correlation between the presence of proline in the hinge region and the occurrence of 3D domain swapping. We further analyzed the conformations of proline and pre-proline residues to investigate the roles of proline in 3D domain swapping. We found that more than 40% of the domain-swapped structures contained proline residues in the hinge region. Unexpectedly, conformational transitions of proline residues were rarely observed upon domain swapping. Our analyses showed that hinge regions containing proline residues preferred more extended conformations, which may be beneficial for the occurrence of domain swapping by facilitating opening of the exchanged segments.
Adjustable hinge permits movement of knee in plaster cast
NASA Technical Reports Server (NTRS)
Maley, W. E.
1967-01-01
Metal knee hinge with an adjustable sleeve worn on the outside of a leg cast facilitates movement of the knee joint. This helps eliminate stiffness of the knee and eliminates bulkiness and adjustment difficulty.
Design of elevator control surface actuated by LIPCA for small unmanned air vehicle
NASA Astrophysics Data System (ADS)
Yoon, K. J.; Setiawan, Hery; Goo, N. S.
2006-03-01
There have been persistent interests in high performance actuators suitable for the actuation of control surfaces of small aircraft and helicopter blades and for active vibration control of aerospace and submarine structures that need high specific force and displacement. What is really needed for active actuation is a large-displacement actuator with a compact source, i.e., much higher strain. A lot of effort has been made to develop compact actuators with large displacement at a high force. One of the representative actuator is LIPCA actuator that was introduced by Yoon et al. The LIPCA design offers the advantages to be applied as actuator for the small aerial vehicle comparing with any other actuators. The weight is one of the main concerns for aerospace field, and since LIPCA has lighter weight than any other piezo-actuator thus it is suitable as actuator for small aircraft control surface. In this paper, a conceptual design of LIPCA-actuated control surface is introduced. A finite element model was constructed and analyzed to predict the deflection angle of the control surface. The hinge moment that produced by the aerodynamic forces was calculated to determine the optimum position of the hinge point, which could produce the deflection as high as possible with reasonable hinge moment. To verify the prediction, a prototype of SUAV (small unmanned air vehicle) control surface was manufactured and tested both in static condition and in the wind tunnel. The prediction and test results showed a good agreement on the control surface deflection angle.
Nichols, S. Jerrine; Black, M.G.
1994-01-01
There are presently four freshwater bivalves in the United States that produce larvae or veligers commonly found in the water column: two forms of Asian clams and two species of dreissenids. Portions of the geographic range of three of these bivalves, one species of Asian clam (Corbicula fluminea), zebra mussels (Dreissena polymorpha), and quagga mussels (Dreissena rosteriformis bugensis), overlap, causing problems with larval identification. To determine which characteristics can be used to separate larval forms, adult Asian clams, quaggas, and zebra mussels were brought into the laboratory and induced to spawn, and the resulting larvae were reared. Hybrids between quaggas and zebra mussels were also produced, but not reared to maturity. Characteristics allowing for the most rapid and accurate separation of larvae were hinge length, shell length/height, shell shape, shell size, and the presence or absence of a foot and velum. These characteristics were observed in laboratory-reared larvae of known parentage and field-caught larvae of unknown parentage. In most cases, larvae of the Asian clam can be readily separated from those produced by either type of dreissenid on the basis of shell size and presence of a foot. Separating the gametes and embryos of the two types of dreissenids is not possible, but after shell formation, most of the larval stages can be distinguished. Hinge length, shell length/height, and the similarity in size of the shell valves can be used to separate straight-hinged, umbonal, pediveliger, and plantigrade larvae. Quagga × zebra mussel hybrids show characteristics of both parents and are difficult to identify.
Limitations of Lifting-Line Theory for Estimation of Aileron Hinge-Moment Characteristics
NASA Technical Reports Server (NTRS)
Swanson, Robert S.; Gillis, Clarence L.
1943-01-01
Hinge-moment parameters for several typical ailerons were calculated from section data with the aspect-ratio correction as usually determined from lifting-line theory. The calculations showed that the agreement between experimental and calculated results was unsatisfactory. An additional aspect-ratio correction, calculated by the method of lifting-surface theory, was applied to the slope of the curve of hinge-moment coefficient against angle of attack at small angles of attack. This so-called streamline-curvature correction brought the calculated and experimental results into satisfactory agreement.
NASA Technical Reports Server (NTRS)
Tang, M. H.; Pearson, G. P. E.
1973-01-01
Control-surface hinge-moment measurements obtained in the X-24A lifting body flight-test program are compared with results from wind-tunnel tests. The effects of variations in angle of attack, angle of sideslip, rudder bias, rudder deflection, upper-flap deflection, lower-flap deflection, Mach number, and rocket-engine operation on the control-surface hinge moments are presented. In-flight motion pictures of tufts attached to the inboard side of the right fin and the rudder and upper-flap surfaces are discussed.
Dynamic stability of a helicopter with hinged rotor blades
NASA Technical Reports Server (NTRS)
Hohenemser, K
1939-01-01
The present report is a study of the dynamic stability of a helicopter with hinged rotor blades under hovering conditions. While in this case perfect stability can in general not be obtained it is possible by means of design features to prolong the period of the spontaneous oscillations of the helicopter and reduce their amplification, and so approximately assure neutral equilibrium. The possibility of controlled stability of a helicopter fitted with hinged blades is proved by the successful flights of various helicopters, particularly of the Focker FW61 helicopter.
NASA Technical Reports Server (NTRS)
Hardin, R. B.; Burrows, R. R.
1975-01-01
A test is presented which was performed to determine the effect of cold jet gas plumes generated from main propulsion system and solid rocket motor nozzles on: (1) six-component force and moment data, (2) wing static pressures, (3) wing hinge moment, (4) elevon hinge moment, (5) rudder hinge moment, and (6) orbiter MPS nozzle pressure loads. The effects of rudder deflection, nozzle gimbal angle, and plume size were also obtained.
Subsonic wind-tunnel measurements of a slender wing-body configuration employing a vortex flap
NASA Technical Reports Server (NTRS)
Frink, Neal T.
1987-01-01
A wind tunnel study at Mach 0.4 was conducted for a slender wing-body configuration with a leading edge vortex flap of curved planform that is deflectable about a 74 degree swept hinge line. The basic data consist of a unique combination of longitudinal aerodynamic, surface pressure, and vortex flap hinge-moment measurements on a common model. The longitudinal aerodynamic, pressure and hinge-moment data are presented without analysis in tabular format. Plots of the tabulated pressure data are also given.
Means to flexibly attach lens frames to temple members
Smith, Harry D.
1995-01-01
The invention is a band hinge for flexibly connecting the temple member to the lens frame thereby preventing damage from inadvertent pressure or cyclic wear. A distinguishing feature of the invention is the use of a band hinge that holds together the temple member and the lens frame without the use of a pin or screw hinging mechanism. The invention allows for a high degree of freedom of movement for the temple member with respect to the lens frame which will prevent most forms of damages to the glasses from these types of events.
Biomechanical Comparison of 3 Ankle Braces With and Without Free Rotation in the Sagittal Plane
Alfuth, Martin; Klein, Dieter; Koch, Raphael; Rosenbaum, Dieter
2014-01-01
Context: Various designs of braces including hinged and nonhinged models are used to provide external support of the ankle. Hinged ankle braces supposedly allow almost free dorsiflexion and plantar flexion of the foot in the sagittal plane. It is unclear, however, whether this additional degree of freedom affects the stabilizing effect of the brace in the other planes of motion. Objective: To investigate the dynamic and passive stabilizing effects of 3 ankle braces, 2 hinged models that provide free plantar flexion–dorsiflexion in the sagittal plane and 1 ankle brace without a hinge. Design: Crossover study. Setting: University Movement Analysis Laboratory. Patients or Other Participants: Seventeen healthy volunteers (5 women, 12 men; age = 25.4 ± 4.8 years; height = 180.3 ± 6.5 cm; body mass = 75.5 ± 10.4 kg). Intervention(s): We dynamically induced foot inversion on a tilting platform and passively induced foot movements in 6 directions via a custom-built apparatus in 3 brace conditions and a control condition (no brace). Main Outcome Measure(s): Maximum inversion was determined dynamically using an in-shoe electrogoniometer. Passively induced maximal joint angles were measured using a torque and angle sensor. We analyzed differences among the 4 ankle-brace conditions (3 braces, 1 control) for each of the dependent variables with Friedman and post hoc tests (P < .05). Results: Each ankle brace restricted dynamic foot-inversion movements on the tilting platform as compared with the control condition, whereas only the 2 hinged ankle braces differed from each other, with greater movement restriction caused by the Ankle X model. Passive foot inversion was reduced with all ankle braces. Passive plantar flexion was greater in the hinged models as compared with the nonhinged brace. Conclusions: All ankle braces showed stabilizing effects against dynamic and passive foot inversion. Differences between the hinged braces and the nonhinged brace did not appear to be clinically relevant. PMID:25098661
Campelo, Diana; Lautier, Thomas; Urban, Philippe; Esteves, Francisco; Bozonnet, Sophie; Truan, Gilles; Kranendonk, Michel
2017-01-01
NADPH-cytochrome P450 reductase (CPR) is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction), a linker (hinge), and a connecting/FAD domain (NADPH oxidation). It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state) to an ensemble of open conformations (unlocked state), the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners. PMID:29163152
NASA Technical Reports Server (NTRS)
Wiley, Harleth G; Taylor, Robert T
1954-01-01
This paper present results of an investigation of the lateral-control and hinge-moment characteristics of a 0.67 semispan flap-type spoiler aileron on a semispan thin 60 degree delta wing at transonic speeds by the reflection-plane technique. The spoiler-aileron had a constant chord of 10.29 percent mean aerodynamic chord and was hinged at the 81.9-percent-wing-root-chord station. Tests were made with the spoiler aileron slot open, partially closed, and closed. Incremental rolling-moment coefficients were obtained through a Mach number range of 0.62 to 1.08. Results indicated reasonably linear variations of rolling-moment and hinge-moment coefficients with spoiler projection except at spoiler projections of less than -2 percent mean aerodynamic chord and angles of attack greater than 12 degrees with results generally independent of slot geometry.
Plumes do not Exist: Plate Circulation is Confined to Upper Mantle
NASA Astrophysics Data System (ADS)
Hamilton, W. B.
2002-12-01
Plumes from deep mantle are widely conjectured to define an absolute reference frame, inaugurate rifting, drive plates, and profoundly modify oceans and continents. Mantle properties and composition are assumed to be whatever enables plumes. Nevertheless, purported critical evidence for plume speculation is false, and all data are better interpreted without plumes. Plume fantasies are made ever more complex and ad hoc to evade contradictory data, and have no predictive value because plumes do not exist. All plume conjecture derives from Hawaii and the guess that the Emperor-Hawaii inflection records a 60-degree change in Pacific plate direction at 45 Ma. Paleomagnetic latitudes and smooth Pacific spreading patterns disprove any such change. Rationales for other fixed plumes collapse when tested, and hypotheses of jumping, splitting, and gyrating plumes are specious. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Purported tomographic support elsewhere represents artifacts and misleading presentations. Asthenosphere is everywhere near solidus temperature, so melt needs a tensional setting for egress but not local heat. Gradational and inconsistent contrasts between MORB and OIB are as required by depth-varying melt generation and behavior in contrasted settings and do not indicate systematically unlike sources. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts react with cool lithosphere, and lose mass, by crystallizing refractories and retaining and assimilating fusibles. The unfractionated lower mantle of plume conjecture is contrary to cosmologic and thermodynamic data, for mantle below 660 km is more refractory than that above. Subduction, due to density inversion by top-down cooling that forms oceanic lithosphere, drives plate tectonics and upper-mantle circulation. It organizes plate motions and lithosphere stress, which controls plate boundaries and volcanic chains. Hinge rollback is the key to kinematics. Arcs advance and collide, fast-spreading Pacific shrinks, etc. A fore-arc basin atop an overriding plate shows that hinge and non-shortening plate front there track together: velocities of rollback and advance are equal. Convergence velocity commonly also equals rollback velocity but often is greater. Slabs sinking broadside push upper mantle back under incoming plates and force rapid Pacific spreading, whereas overriding plates flow forward with retreating hinges. Backarc basins open behind island arcs migrating with hinges. Slabs settle on uncrossable 660-km discontinuity. (Contrary tomographic claims reflect sampling and smearing artifacts, notably due to along-slab raypaths.) Plates advance over sunken slabs and mantle displaced rearward by them, and ridges spread where advancing plates pull away. Ridges migrate over asthenosphere, producing geophysical and bathymetric asymmetry, and tap fresh asthenosphere into which slab material is recycled upward. Sluggish deep-mantle circulation is decoupled from rapid upper-mantle circulation, so plate motions can be referenced to semistable lower mantle. Global plate motions make kinematic sense if Antarctica, almost ringed by departing ridges and varying little in Cenozoic paleomagnetic position, is stationary: hinges roll back, ridges migrate, and directions and velocities of plate rotations accord with subduction, including sliding and crowding of oceanic lithosphere toward free edges, as the dominant drive. (The invalid hotspot and no-net-rotation frames minimize motions of hinges and ridges, and their plate motions lack kinematic sense.) Northern Eurasia also is almost stationary, Africa rotates very slowly counterclockwise toward Aegean and Zagros, Pacific plate races toward surface-exit subduction systems, etc.
Enhanced multimaterial 4D printing with active hinges
NASA Astrophysics Data System (ADS)
Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi
2018-06-01
Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.
The three-hinged arch as an example of piezomechanic passive controlled structure
NASA Astrophysics Data System (ADS)
Pagnini, Luisa Carlotta; Piccardo, Giuseppe
2016-09-01
Although piezoelectric transducers are employed in a variety of fields, their application for vibration control of civil or industrial structures has not yet been fully developed, at the best of authors' knowledge. Thanks to a new generation of ever more performing piezoceramic materials and to the recent development of scientific proposals based on a very simple technology, this paper presents a step forward to engineering applications for the control of structural systems. A three-hinged arch controlled by piezoelectric stack actuators and passive RL electrical circuits is chosen as a simple structural model that may represent the starting point for a generalization to the most common typologies of civil and industrial engineering structures. Based on the concept of electromechanical analogy, the evolution equations are obtained through a consistent Lagrangian approach. A multimodal vibration suppression is guaranteed by the spectral analogy between the mechanical and electrical components. Preliminary applications related to free oscillations, with one or more actuators on each member, seem to lead to excellent performance in terms of multimodal damping and dissipated energy.
In Silico Identification of a Novel Hinge-Binding Scaffold for Kinase Inhibitor Discovery.
Wang, Yanli; Sun, Yuze; Cao, Ran; Liu, Dan; Xie, Yuting; Li, Li; Qi, Xiangbing; Huang, Niu
2017-10-26
To explore novel kinase hinge-binding scaffolds, we carried out structure-based virtual screening against p38α MAPK as a model system. With the assistance of developed kinase-specific structural filters, we identify a novel lead compound that selectively inhibits a panel of kinases with threonine as the gatekeeper residue, including BTK and LCK. These kinases play important roles in lymphocyte activation, which encouraged us to design novel kinase inhibitors as drug candidates for ameliorating inflammatory diseases and cancers. Therefore, we chemically modified our substituted triazole-class lead compound to improve the binding affinity and selectivity via a "minimal decoration" strategy, which resulted in potent and selective kinase inhibitors against LCK (18 nM) and BTK (8 nM). Subsequent crystallographic experiments validated our design. These rationally designed compounds exhibit potent on-target inhibition against BTK in B cells or LCK in T cells, respectively. Our work demonstrates that structure-based virtual screening can be applied to facilitate the development of novel chemical entities in crowded chemical space in the field of kinase inhibitor discovery.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.; Rogers, Lawrence W.
1992-01-01
A wind tunnel data base was established for the effects of chine-like forebody strakes and Mach number on the longitudinal and lateral-directional characteristics of a generalized 55 degree cropped delta wing-fuselage-centerline vertical tail configuration. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center at free-stream Mach numbers of 0.40 to 1.10 and Reynolds numbers based on the wing mean aerodynamic chord of 1.60 x 10(exp 6) to 2.59 x 10(exp 6). The best matrix included angles of attack from 0 degree to a maximum of 28 degree, angles of sidesip of 0, +5, and -5 degrees, and wing leading-edge flat deflection angles of 0 and 30 degrees. Key flow phenomena at subsonic and transonic conditions were identified by measuring off-body flow visualization with a laser screen technique. These phenomena included coexisting and interacting vortex flows and shock waves, vortex breakdown, vortex flow interactions with the vertical tail, and vortices induced by flow separation from the hinge line of the deflected wing flap. The flow mechanisms were correlated with the longitudinal and lateral-directional aerodynamic data trends.
NASA Astrophysics Data System (ADS)
Hopkins, J. L.; Leonard, G.; Timm, C.; Wilson, C. J. N.; Neil, H.; Millet, M. A.
2014-12-01
Establishing volcanic hazard and risk management strategies hinges on a detailed understanding of the type, timing and tephra dispersal of past eruptions. In order to unravel the pyroclastic eruption history of a volcanic field, genetic links between the deposits and eruption source centre need to be established. The Auckland Volcanic Field (AVF; New Zealand) has been active for ca. 200 kyr and comprises ca. 53 individual centres covering an area of ca. 360km2. These centres show a range of sizes and eruptive styles from maar craters and tuff rings, to scoria cones and lava flows consistent with both phreatomagmatic and magmatic eruptions. Superimposition of the metropolitan area of Auckland (ca. 1.4 million inhabitants) on the volcanic field makes it critically important to assess the characteristics of the volcanic activity, on which to base assessment and management of the consequent hazards. Here we present a geochemical approach for correlating tephra deposits to their source centres. To acquire the most complete stratigraphic record of pyroclastic events, maar crater cores from different locations, covering various depths and thus ages across the field were selected. Magnetic susceptibility and x-ray density scanning of the cores was used to identify the basaltic tephra horizons, which were sampled and in-situ analysis of individual shards undertaken for major and trace elements using EPMA and LA-ICP-MS techniques, respectively. Our results show that tephra shard trace element ratios are comparable and complementary to the AVF whole rock database. The use of specific trace element ratios (e.g. Gd/Yb vs. Zr/Yb) allows us to fingerprint and cross correlate tephra horizons between cores and, when coupled with newly acquired 40Ar-39Ar age dating and eruption size estimates, correlate horizons to their source centres. This integrated style of study can provide valuable information to help volcanic hazard management and forecasting, and mitigation of related risks.
22. August 1974. BENCH SHOP, EAST WALL VIEW SHOWING HINGED ...
22. August 1974. BENCH SHOP, EAST WALL VIEW SHOWING HINGED PANEL AND WHEELPIT FOR MOUNTING SPOKES IN WHEEL HUB. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA
Jang, Young Woong; Lim, DoHyung; Seo, Hansol; Lee, Myung Chul; Lee, O-Sung; Lee, Yong Seuk
2018-07-01
Open-wedge high tibial osteotomy (OWHTO) is a well-established surgical option for medial compartment osteoarthritis of the varus knee. The initial strength of the fixation plate is critical for successful correction maintenance and healing of the osteotomy site. This study was conducted to verify if a newly designed anatomical plate (LCfit) improves the stability of both the medial implant and lateral hinge area, as well as to evaluate how the metal block contributes to both medial and lateral stability. A finite element (FE) tibial model was combined with TomoFix plate, a LCfit plate with and without a metal block. Data analysis was conducted to evaluate the balanced stability, which refers to the enforced lateral stability resulting from redistribution of overall stress. We assessed the balanced stability of the medial implant and lateral hinge area in three cases using the same Sawbones and loads using the tibia FE model. The LCfit plate reduced stress by 23.1% at the lateral hinge compared to the TomoFix plate (TomoFix vs. LCfit: 34.2 ± 23.3 MPa vs. 26.3 ± 17.5 MPa). The LCfit plate with a metal block reduced stress by 40.1% at the medial plate (210.1 ± 64.2 MPa vs. 125.8 ± 65.7 MPa) and by 31.2% (26.3 ± 17.5 MPa vs. 18.1 ± 12.1 MPa) at the lateral hinge area compared to the reduction using the LCfit plate without a metal block. The newly designed fixation system for OWHTO balanced the overall stress distribution and reduced stress at the lateral hinge area compared to that using a conventional fixation system. The addition of the metal block showed additional benefits for balanced stability between the medial implant and lateral hinge area. However, this conclusion could only be drawn using the FE model in this study. Therefore, further clinical studies are necessary to reveal the clinical effect of reduced lateral stress on the occurrence of the lateral hinge fracture and the biologic effect of the metal block on the healing of the medial cortex.
NASA Technical Reports Server (NTRS)
Bachmann, M.; Shiraishi, N.; Campbell, W. H.; Yoo, B. C.; Harmon, A. C.; Huber, S. C.; Davies, E. (Principal Investigator)
1996-01-01
Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombinant NR fragments containing or lacking the phosphorylation site sequence. Studies with NR partial reactions indicated that the block in electron flow caused by phosphorylation also could be localized to the hinge 1 region. A synthetic peptide (NR6) based on the phosphorylation site sequence was phosphorylated readily by NR kinase (NRk) in vitro. NR6 kinase activity tracked the ATP-dependent inactivation of NR during several chromatographic steps and completely inhibited inactivation/phosphorylation of native NR in vitro. Two forms of NRk were resolved by using anion exchange chromatography. Studies with synthetic peptide analogs indicated that both forms of NRk had similar specificity determinants, requiring a basic residue at P-3 (i.e., three amino acids N-terminal to the phosphorylated serine) and a hydrophobic residue at P-5. Both forms are strictly calcium dependent but belong to distinct families of protein kinases because they are distinct immunochemically.
NASA Technical Reports Server (NTRS)
Liu, Yi; Sankar, Lakshmi N.; Englar, Robert; Ahuja, K.; Gaeta, R.
2003-01-01
Circulation Control Wing (CCW) technology is a very effective way of achieving very high lift coefficients needed by aircraft during take-off and landing. This technology can also be used to directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate the required values of lift coefficient C(sub L,max) during take-off/landing with fewer or no moving parts and much less complexity. Earlier designs of CCW configurations used airfoils with a large radius rounded trailing edge to maximize the lift benefit. However, these designs also produced very high drag. These high drag levels associated with the blunt, large radius trailing edge can be prohibitive under cruise conditions when Circulation Control is no longer necessary. To overcome this difficulty, an advanced CCW section, i.e., a circulation hinged flap was developed to replace the original rounded trailing edge CC airfoil. This concept developed by Englar is shown. The upper surface of the CCW flap is a large-radius arc surface, but the lower surface of the flap is flat. The flap could be deflected from 0 degrees to 90 degrees. When an aircraft takes-off or lands, the flap is deflected as in a conventional high lift system. Then this large radius on the upper surface produces a large jet turning angle, leading to high lift. When the aircraft is in cruise, the flap is retracted and a conventional sharp trailing edge shape results, greatly reducing the drag. This kind of flap does have some moving elements that increase the weight and complexity over an earlier CCW design. But overall, the hinged flap design still maintains most of the Circulation Control high lift advantages, while greatly reducing the drag in cruising condition associated with the rounded trailing edge CCW design. In the present work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to this advanced CCW configuration. The solver can be used in both a 2-D and a 3-D mode, and can thus model airfoils as well as finite wings. The jet slot location, slot height, and the flap angle can all be varied easily and individually in the grid generator and the flow solver. Steady jets, pulsed jets, the leading edge and trailing edge blowing can all be studied with this solver.
NASA Astrophysics Data System (ADS)
Jackman, C. M.; Slavin, J. A.; Kivelson, M. G.; Southwood, D. J.; Achilleos, N.; Thomsen, M. F.; DiBraccio, G. A.; Eastwood, J. P.; Freeman, M. P.; Dougherty, M. K.; Vogt, M. F.
2014-07-01
We present a comprehensive study of the magnetic field and plasma signatures of reconnection events observed with the Cassini spacecraft during the tail orbits of 2006. We examine their "local" properties in terms of magnetic field reconfiguration and changing plasma flows. We also describe the "global" impact of reconnection in terms of the contribution to mass loss, flux closure, and large-scale tail structure. The signatures of 69 plasmoids, 17 traveling compression regions (TCRs), and 13 planetward moving structures have been found. The direction of motion is inferred from the sign of the change in the Bθ component of the magnetic field in the first instance and confirmed through plasma flow data where available. The plasmoids are interpreted as detached structures, observed by the spacecraft tailward of the reconnection site, and the TCRs are interpreted as the effects of the draping and compression of lobe magnetic field lines around passing plasmoids. We focus on the analysis and interpretation of the tailward moving (south-to-north field change) plasmoids and TCRs in this work, considering the planetward moving signatures only from the point of view of understanding the reconnection x-line position and recurrence rates. We discuss the location spread of the observations, showing that where spacecraft coverage is symmetric about midnight, reconnection signatures are observed more frequently on the dawn flank than on the dusk flank. We show an example of a chain of two plasmoids and two TCRs over 3 hours and suggest that such a scenario is associated with a single-reconnection event, ejecting multiple successive plasmoids. Plasma data reveal that one of these plasmoids contains H+ at lower energy and W+ at higher energy, consistent with an inner magnetospheric source, and the total flow speed inside the plasmoid is estimated with an upper limit of 170 km/s. We probe the interior structure of plasmoids and find that the vast majority of examples at Saturn show a localized decrease in field magnitude as the spacecraft passes through the structure. We take the trajectory of Cassini into account, as, during 2006, the spacecraft's largely equatorial position beneath the hinged current sheet meant that it rarely traversed the center of plasmoids. We present an innovative method of optimizing the window size for minimum variance analysis (MVA) and apply this MVA across several plasmoids to explore their interior morphology in more detail, finding that Saturn's tail contains both loop-like and flux rope-like plasmoids. We estimate the mass lost downtail through reconnection and suggest that the apparent imbalance between mass input and observed plasmoid ejection may mean that alternative mass loss methods contribute to balancing Saturn's mass budget. We also estimate the rate of magnetic flux closure in the tail and find that when open field line closure is active, it plays a very significant role in flux cycling at Saturn.
NASA Technical Reports Server (NTRS)
Rignot, Eric
1998-01-01
The synthetic-aperture radar interferometry technique is used to detect the migration of the limit of tidal flexing, or hinge line, of the floating ice tongue of Petermann Gletscher, a major outlet glacier of north Greenland.
14 CFR 25.393 - Loads parallel to hinge line.
Code of Federal Regulations, 2010 CFR
2010-01-01
... designed for inertia loads acting parallel to the hinge line. (b) In the absence of more rational data, the inertia loads may be assumed to be equal to KW, where— (1) K=24 for vertical surfaces; (2) K=12 for...
14 CFR 25.393 - Loads parallel to hinge line.
Code of Federal Regulations, 2012 CFR
2012-01-01
... designed for inertia loads acting parallel to the hinge line. (b) In the absence of more rational data, the inertia loads may be assumed to be equal to KW, where— (1) K=24 for vertical surfaces; (2) K=12 for...
14 CFR 25.393 - Loads parallel to hinge line.
Code of Federal Regulations, 2011 CFR
2011-01-01
... designed for inertia loads acting parallel to the hinge line. (b) In the absence of more rational data, the inertia loads may be assumed to be equal to KW, where— (1) K=24 for vertical surfaces; (2) K=12 for...
14 CFR 25.393 - Loads parallel to hinge line.
Code of Federal Regulations, 2014 CFR
2014-01-01
... designed for inertia loads acting parallel to the hinge line. (b) In the absence of more rational data, the inertia loads may be assumed to be equal to KW, where— (1) K=24 for vertical surfaces; (2) K=12 for...
14 CFR 25.393 - Loads parallel to hinge line.
Code of Federal Regulations, 2013 CFR
2013-01-01
... designed for inertia loads acting parallel to the hinge line. (b) In the absence of more rational data, the inertia loads may be assumed to be equal to KW, where— (1) K=24 for vertical surfaces; (2) K=12 for...
Fabrication and Assembly of High-Precision Hinge and Latch Joints for Deployable Optical Instruments
NASA Technical Reports Server (NTRS)
Phelps, James E.
1999-01-01
Descriptions are presented of high-precision hinge and latch joints that have been co-developed, for application to deployable optical instruments, by NASA Langley Research Center and Nyma/ADF. Page-sized versions of engineering drawings are included in two appendices to describe all mechanical components of both joints. Procedures for assembling the mechanical components of both joints are also presented. The information herein is intended to facilitate the fabrication and assembly of the high-precision hinge and latch joints, and enable the incorporation of these joints into the design of deployable optical instrument systems.
Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading
Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J.; Jumaat, Mohd Zamin
2016-01-01
Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed. PMID:28773430
Seismic Performance Evaluation of Reinforced Concrete Frames Subjected to Seismic Loads
NASA Astrophysics Data System (ADS)
Zameeruddin, Mohd.; Sangle, Keshav K.
2017-06-01
Ten storied-3 bays reinforced concrete bare frame designed for gravity loads following the guidelines of IS 456 and IS 13920 for ductility is subjected to seismic loads. The seismic demands on this building were calculated by following IS 1893 for response spectra of 5% damping (for hard soil type). Plastic hinges were assigned to the beam and column at both ends to represent the failure mode, when member yields. Non-linear static (pushover) analysis was performed to evaluate the performance of the building in reference to first (ATC 40), second (FEMA 356) and next-generation (FEMA 440) performance based seismic design procedures. Base shear against top displacement curve of structure, known as pushover curve was obtained for two actions of plastic hinge behavior, force-controlled (brittle) and deformation-controlled (ductile) actions. Lateral deformation corresponding to performance point proves the building capability to sustain a certain level of seismic loads. The failure is represented by a sequence of formation of plastic hinges. Deformation-controlled action of hinges showed that building behaves like strong-column-weak-beam mechanism, whereas force-controlled action showed formation of hinges in the column. The study aims to understand the first, second and next generation performance based design procedure in prediction of actual building responses and their conservatism into the acceptance criteria.
Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading.
Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J; Jumaat, Mohd Zamin
2016-04-22
Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed.
Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick
2005-01-01
During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.
Visualizing Key Hinges and a Potential Major Source of Compliance in the Lever Arm of Myosin
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Brown; V Senthil Kumar; E ONeall-Hennessey
2011-12-31
We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during themore » contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.« less
Visualizing key hinges and a potential major source of compliance in the lever arm of myosin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.H.; Robinson, H.; Senthil Kumar, V. S.
2011-01-04
We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during themore » contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.« less
NASA Astrophysics Data System (ADS)
Rostami, Ali Bakhshandeh; Fernandes, Antonio Carlos
2018-03-01
This paper is dedicated to develop a mathematical model that can simulate nonlinear phenomena of a hinged plate which places into the fluid flow (1 DOF). These phenomena are fluttering (oscillation motion), autorotation (continuous rotation) and chaotic motion (combination of fluttering and autorotation). Two mathematical models are developed for 1 DOF problem using two eminent mathematical models which had been proposed for falling plates (3 DOF). The procedures of developing these models are elaborated and then these results are compared to experimental data. The best model in the simulation of the phenomena is chosen for stability and bifurcation analysis. Based on these analyses, this model shows a transcritical bifurcation and as a result, the stability diagram and threshold are presented. Moreover, an analytical expression is given for finding the boundary of bifurcation from the fluttering to the autorotation.
Making the business case for hospital information systems--a Kaiser Permanente investment decision.
Garrido, Terhilda; Raymond, Brian; Jamieson, Laura; Liang, Louise; Wiesenthal, Andrew
2004-01-01
Further evidence in favor of the clinical IT business case is set forth in Kaiser Permanente's cost/benefit analysis for an electronic hospital information system. This article reviews the business case for an inpatient electronic medical record system, including 36 categories of quantifiable benefits that contribute to a positive cumulative net cash flow within an 8.5 year period. However, the business case hinges on several contingent success factors: leadership commitment, timely implementation, partnership with labor, coding compliance, and workflow redesign. The issues and constraints that impact the potential transferability of this business case across delivery systems raise questions that merit further attention.
28. BRIDGE NO. 9 APRON AND BRIDGE HINGE JOINT AND ...
28. BRIDGE NO. 9 APRON AND BRIDGE HINGE JOINT AND BRIDGE SUSPENSION SYSTEM SHOWING EYEBAR AND CABLE CONNECTIONS. LOOKING WEST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
DETAIL OF ORIGINAL SLIDING DOORS ALTERED WITH OPENING FOR HINGED ...
DETAIL OF ORIGINAL SLIDING DOORS ALTERED WITH OPENING FOR HINGED DOOR. WITH GRADUATED SCALE IN 1' INCREMENTS. VIEW FACING NORTHWEST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI
Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels
Shang, Lijun
2007-01-01
Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K+ channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the “helix-bundle crossing”. However, in the inwardly rectifying (Kir) potassium channel family, the role of this “hinge” residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper “hinge” residues are in close contact with the base of the pore α-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the “lower” gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue. PMID:17657484
The effects of klapskate hinge position on push-off performance: a simulation study.
Houdijk, Han; Bobbert, Maarten F; De Koning, Jos J; De Groot, Gert
2003-12-01
The introduction of the klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed skating. For this purpose, a model of the musculoskeletal system was designed to simulate a simplified, two-dimensional skating push off. To capture the essence of a skating push off, this model performed a one-leg vertical jump, from a frictionless surface, while keeping its trunk horizontally. In this model, klapskate hinge position was varied by varying the length of the foot segment between 115 and 300 mm. With each foot length, an optimal control solution was found that resulted in the maximal amount of vertical kinetic and potential energy of the body's center of mass at take off (Weff). Foot length was shown to considerably affect push-off performance. Maximal Weff was obtained with a foot length of 185 mm and decreased by approximately 25% at either foot length of 115 mm and 300 mm. The reason for this decrease was that foot length affected the onset and control of foot rotation. This resulted in a distortion of the pattern of leg segment rotations and affected muscle work (Wmus) and the efficacy ratio (Weff/Wmus) of the entire leg system. Despite its simplicity, the model very well described and explained the effects of klapskate hinge position on push off performance that have been observed in speed-skating experiments. The simplicity of the model, however, does not allow quantitative analyses of optimal klapskate hinge position for speed-skating practice.
Bertocci, Gina E; Brown, Nathan P; Mich, Patrice M
2017-01-01
OBJECTIVE To evaluate effects of an orthosis on biomechanics of a cranial cruciate ligament (CrCL)-deficient canine stifle joint by use of a 3-D quasistatic rigid-body pelvic limb computer model simulating the stance phase of gait and to investigate influences of orthosis hinge stiffness (durometer). SAMPLE A previously developed computer simulation model for a healthy 33-kg 5-year-old neutered Golden Retriever. PROCEDURES A custom stifle joint orthosis was implemented in the CrCL-deficient pelvic limb computer simulation model. Ligament loads, relative tibial translation, and relative tibial rotation in the orthosis-stabilized stifle joint (baseline scenario; high-durometer hinge]) were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. Sensitivity analysis was conducted to evaluate the influence of orthosis hinge stiffness on model outcome measures. RESULTS The orthosis decreased loads placed on the caudal cruciate and lateral collateral ligaments and increased load placed on the medial collateral ligament, compared with loads for the CrCL-intact stifle joint. Ligament loads were decreased in the orthosis-managed CrCL-deficient stifle joint, compared with loads for the CrCL-deficient stifle joint. Relative tibial translation and rotation decreased but were not eliminated after orthosis management. Increased orthosis hinge stiffness reduced tibial translation and rotation, whereas decreased hinge stiffness increased internal tibial rotation, compared with values for the baseline scenario. CONCLUSIONS AND CLINICAL RELEVANCE Stifle joint biomechanics were improved following orthosis implementation, compared with biomechanics of the CrCL-deficient stifle joint. Orthosis hinge stiffness influenced stifle joint biomechanics. An orthosis may be a viable option to stabilize a CrCL-deficient canine stifle joint.
Experimental and Numerical Assessment of a New Alternative of RBS Moment Connection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirghaderi, Rasoul; Imanpour, Ali; Keshavarzi, Farhad
2008-07-08
Reduced beam section (RBS) connection has been known as a famous connection for steel moment-resisting seismic frames in high-rise buildings, because of their economical advantages and seismic ductility. In the ordinary RBS connection, often portions of the beam flanges are selectively trimmed in the region adjacent to the beam-to-column connection, and beam section is weakened in the plastic hinge region; section weakening concept in the plastic hinge region of beam cause to reduction of beam plastic section modulus in this region, and force plastic hinge to occur within the reduced section.This paper presents a new alternative of RBS connection thatmore » has been used aforesaid weakening concept in it, with this difference that corrugated steel plate webs instead of beam flange cutting has been used in limited specific length near the column face. Corrugated steel plates because of their accordion effect don't have bending rigidity, then using of these plates in plastic hinge region reduces the beam plastic section modulus and plastic hinge is formed in corrugated region. For investigating the seismic behavior and performance of new RBS moment connection, experimental specimen of new RBS connection were subjected to cyclic load, and finite element analysis were executed. The result of cyclic test and numerical analysis specified that the corrugated webs improved the plastic stability and provided capability of large plastic rotation at the plastic hinge location without any appreciable buckling and brittle fractures in this region. The test observations also showed that the specimens' plastic rotations exceeded 0.04 rad without any local and global buckling. All of the analytical results for proposed connection are generally in good agreement with the test observations.« less
Interconversion of Functional Motions between Mesophilic and Thermophilic Adenylate Kinases
Daily, Michael D.; Phillips, George N.; Cui, Qiang
2011-01-01
Dynamic properties are functionally important in many proteins, including the enzyme adenylate kinase (AK), for which the open/closed transition limits the rate of catalytic turnover. Here, we compare our previously published coarse-grained (double-well Gō) simulation of mesophilic AK from E. coli (AKmeso) to simulations of thermophilic AK from Aquifex aeolicus (AKthermo). In AKthermo, as with AKmeso, the LID domain prefers to close before the NMP domain in the presence of ligand, but LID rigid-body flexibility in the open (O) ensemble decreases significantly. Backbone foldedness in O and/or transition state (TS) ensembles increases significantly relative to AKmeso in some interdomain backbone hinges and within LID. In contact space, the TS of AKthermo has fewer contacts at the CORE-LID interface but a stronger contact network surrounding the CORE-NMP interface than the TS of AKmeso. A “heated” simulation of AKthermo at 375K slightly increases LID rigid-body flexibility in accordance with the “corresponding states” hypothesis. Furthermore, while computational mutation of 7 prolines in AKthermo to their AKmeso counterparts produces similar small perturbations, mutation of these sites, especially positions 8 and 155, to glycine is required to achieve LID rigid-body flexibility and hinge flexibilities comparable to AKmeso. Mutating the 7 sites to proline in AKmeso reduces some hinges' flexibilities, especially hinge 2, but does not reduce LID rigid-body flexibility, suggesting that these two types of motion are decoupled in AKmeso. In conclusion, our results suggest that hinge flexibility and global functional motions alike are correlated with but not exclusively determined by the hinge residues. This mutational framework can inform the rational design of functionally important flexibility and allostery in other proteins toward engineering novel biochemical pathways. PMID:21779157
Hinge residue I174 is critical for proper dNTP selection by DNA polymerase beta.
Yamtich, Jen; Starcevic, Daniela; Lauper, Julia; Smith, Elenoe; Shi, Idina; Rangarajan, Sneha; Jaeger, Joachim; Sweasy, Joann B
2010-03-23
DNA polymerase beta (pol beta) is the key gap-filling polymerase in base excision repair, the DNA repair pathway responsible for repairing up to 20000 endogenous lesions per cell per day. Pol beta is also widely used as a model polymerase for structure and function studies, and several structural regions have been identified as being critical for the fidelity of the enzyme. One of these regions is the hydrophobic hinge, a network of hydrophobic residues located between the palm and fingers subdomains. Previous work by our lab has shown that hinge residues Y265, I260, and F272 are critical for polymerase fidelity by functioning in discrimination of the correct from incorrect dNTP during ground state binding. Our work aimed to elucidate the role of hinge residue I174 in polymerase fidelity. To study this residue, we conducted a genetic screen to identify mutants with a substitution at residue I174 that resulted in a mutator polymerase. We then chose the mutator mutant I174S for further study and found that it follows the same general kinetic pathway as and has an overall protein folding similar to that of wild-type (WT) pol beta. Using single-turnover kinetic analysis, we found that I174S exhibits decreased fidelity when inserting a nucleotide opposite a template base G, and this loss of fidelity is due primarily to a loss of discrimination during ground state dNTP binding. Molecular dynamics simulations show that mutation of residue I174 to serine results in an overall tightening of the hinge region, resulting in aberrant protein dynamics and fidelity. These results point to the hinge region as being critical in the maintenance of the proper geometry of the dNTP binding pocket.
PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES
NASA Technical Reports Server (NTRS)
Lawrence, C.
1994-01-01
PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.
[ANALYSIS OF IMPLANT-RELATED COMPLICATIONS AFTER HINGE KNEE REPLACEMENT FOR TUMORS AROUND THE KNEE].
Li, Dong; Ma, Huanzhi; Zhang, Wei; Sun, Chengliang; Lu, Xiaoyong; Gao, Yutong; Zhou, Dongsheng
2015-08-01
To investigate the reasons and managements of implant-related complications after hinge knee replacement for tumors around the knee. A retrospective analysis was made on the clinical data of 96 patients undergoing hinge knee replacement between January 2000 and December 2012. There were 64 males and 32 females with the mean age of 31.0 years (range, 15-72 years). The most common tumor type was osteosarcoma (72 cases), and the second was giant cell tumor (15 cases). The tumor located at the distal femurs in 52 cases and at the proximal tibias in 44 cases. Fifteen hinge and 81 rotating hinge prostheses were used. The recurrence, metastasis, and survival were recorded. The implant-related complications were observed. The median follow-up time was 43.5 months (range, 10-156 months). Complications were observed in 21 patients (25 implant-related complications); 13 complications located at the femur and 12 complications at the tibia. The complications included aseptic loosening (8 cases), deep infection (7 cases), prosthetic breakage (4 cases), peri-prosthetic fracture (2 cases), and dislocation (4 cases). Most deep infection occurred within 12 months after operation (6/7), and most aseptic loosening after 40 months of operation (6/8). The rate of limb salvage was 90.6% (87/96) and the amputation rate was 9.4% (9/96). The overall survival rate of the prosthesis was 76.7% (5-year) and 47.2% (10-year). The 5-year survival rate was 82.9% for femoral prosthesis and 71.0% for tibial prosthesis, showing no significant difference (P = 0.954). Hinge knee prosthesis still has a high rate of complications. Deep infection is main reason to decrease short-term prosthetic survival rate, and aseptic loosening shortens the long-short prosthetic survival time.
29. BRIDGE NO. 13 APRON AND BRIDGE HINGE JOINT AND ...
29. BRIDGE NO. 13 APRON AND BRIDGE HINGE JOINT AND BRIDGE SUSPENSION SYSTEM (OLDER STYLE) SHOWING EYEBAR AND CABLE CONNECTIONS. LOOKING WEST. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ
10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... transparent or solid doors, sliding or hinged doors, a combination of hinged, sliding, transparent, or solid... compressors, refrigerant condensers, condenser fans and motors, and factory supplied accessories. Self... more refrigerant compressors, refrigerant condensers, condenser fans and motors, and factory supplied...
Modal identities for multibody elastic spacecraft: An aid to selecting modes for simulation
NASA Technical Reports Server (NTRS)
Hablani, Hari B.
1989-01-01
The question: Which set of modes furnishes a higher fidelity math model of dynamics of a multibody, deformable spacecraft (hinges-free or hinges-locked vehicle modes) is answered. Two sets of general, discretized, linear equations of motion of a spacecraft with an arbitrary number of deformable appendages, each articulated directly to the core body, are obtained using the above two families of modes. By a comparison of these equations, ten sets of modal identities are constructed which involve modal momenta coefficients and frequencies associated with both classes of modes. The sums of infinite series that appear in the identities are obtained in terms of mass, and first and second moments of inertia of the appendages, core body, and vehicle by using certain basic identities concerning appendage modes. Applying the above identities to a four-body spacecraft, the hinges-locked vehicle modes are found to yield a higher fidelity model than hinges-free modes, because the latter modes have nonconverging modal coefficients; a characteristic proved and illustrated.
Purohit, Prasad
2011-01-01
The extent to which agonists activate synaptic receptor-channels depends on both the intrinsic tendency of the unliganded receptor to open and the amount of agonist binding energy realized in the channel-opening process. We examined mutations of the nicotinic acetylcholine receptor transmitter binding site (α subunit loop B) with regard to both of these parameters. αGly147 is an “activation” hinge where backbone flexibility maintains high values for intrinsic gating, the affinity of the resting conformation for agonists and net ligand binding energy. αGly153 is a “deactivation” hinge that maintains low values for these parameters. αTrp149 (between these two glycines) serves mainly to provide ligand binding energy for gating. We propose that a concerted motion of the two glycine hinges (plus other structural elements at the binding site) positions αTrp149 so that it provides physiologically optimal binding and gating function at the nerve-muscle synapse. PMID:21115636
Collective Dynamics of Periplasmic Glutamine Binding Protein upon Domain Closure
Loeffler, Hannes H.; Kitao, Akio
2009-01-01
The glutamine binding protein is a vital component of the associated ATP binding cassette transport systems responsible for the uptake of glutamine into the cell. We have investigated the global movements of this protein by molecular dynamics simulations and principal component analysis (PCA). We confirm that the most dominant mode corresponds to the biological function of the protein, i.e., a hinge-type motion upon ligand binding. The closure itself was directly observed from two independent trajectories whereby PCA was used to elucidate the nature of this closing reaction. Two intermediary states are identified and described in detail. The ligand binding induces the structural change of the hinge regions from a discontinuous β-sheet to a continuous one, which also enhances softness of the hinge and modifies the direction of hinge motion to enable closing. We also investigated the convergence behavior of PCA modes, which were found to converge rather quickly when the associated magnitudes of the eigenvalues are well separated. PMID:19883597
Ultra-precise micro-motion stage for optical scanning test
NASA Astrophysics Data System (ADS)
Chen, Wen; Zhang, Jianhuan; Jiang, Nan
2009-05-01
This study aims at the application of optical sensing technology in a 2D flexible hinge test stage. Optical fiber sensor which is manufactured taking advantage of the various unique properties of optical fiber, such as good electric insulation properties, resistance of electromagnetic disturbance, sparkless property and availability in flammable and explosive environment, has lots of good properties, such as high accuracy and wide dynamic range, repeatable, etc. and is applied in 2D flexible hinge stage driven by PZT. Several micro-bending structures are designed utilizing the characteristics of the flexible hinge stage. And through experiments, the optimal micro-bending tooth structure and the scope of displacement sensor trip under this optimal micro-bending tooth structure are derived. These experiments demonstrate that the application of optical fiber displacement sensor in 2D flexible hinge stage driven by PZT substantially broadens the dynamic testing range and improves the sensitivity of this apparatus. Driving accuracy and positioning stability are enhanced as well. [1,2
Rigid collapsible dish structure
NASA Technical Reports Server (NTRS)
Palmer, William B. (Inventor); Giebler, Martin M. (Inventor)
1982-01-01
A collapsible dish structure composed of a plurality of rows of rigid radial petal assemblies concentric with the axis of the dish. The petal assemblies consist of a center petal and two side petals, the center petal hinged on an axis tangent to a circle concentric with the axis of the dish and the side petals hinged to the center petal at their mating edge. The center petal is foldable inwardly and the side petals rotate about their hinges such that the collapsed dish structure occupies a much smaller volume than the deployed dish. Means of controlling the shape of the dish to compensate for differential expansion of the deployed dish are also provided.
NASA Astrophysics Data System (ADS)
Roy, M. L.; Roy, A. G.; Grant, J. W.
2013-12-01
For stream fish, flow properties have been shown to influence energy expenses and habitat selection. Furthermore, flow properties directly influence the velocity of drifting prey items, therefore influencing the probability of fish at catch prey. Flow properties might also have an effect on prey trajectories that can become more unpredictable with increased turbulence. In this study, we combined field and experimental approaches to examine the foraging behaviour and position choice of juvenile Atlantic salmon in various flow conditions. We used an in situ portable flume, which consists in a transparent enclosure (observation section) equipped with hinged doors upstream allowing to funnel the water inside and modify flow properties. Portable flumes have been developed and used to simulate benthic invertebrate drift and sediment transport, but have not been previously been used to examine fish behaviour. Specifically, we tested the predictions that 1) capture probability declined with turbulence, 2) the number of attacks and the proportion of time spent on the substrate decreased with turbulence and 3) parr will preferably selected focal positions with lower turbulence than random locations across the observation section. The portable flume allowed creating four flow treatments on a gradient of mean downstream velocity and turbulence. Fish were fed with brine shrimps and filmed through translucent panels using a submerged camera. Twenty-three juvenile salmon were captured and submitted to each flow treatment for 20 minutes feeding trials. Our results showed high inter-individual variability in the foraging success and time budget within each flow treatment associated to levels of velocity and turbulence. However, the average prey capture probability for the two lower velocity treatments was higher than that for the two higher velocity treatments. An inverse relationship between flow velocity and prey capture probability was observed and might have resulted from a diminution in prey detection distance. Fish preferentially selected focal positions in moderate velocity, and low turbulence areas and avoided the highly turbulent locations. Similarly, selection of average downward velocity and avoidance of upward velocity might be associated to the ease at maintaining position. Considering the streamlined shape providing high hydrodynamism, average vertical velocity might be an important feature driving microhabitat selection. Our results do not rule out the effect of turbulence on fish foraging but rather highlights the need to further investigate this question with a wider range of hydraulic values in order to possibly implement a turbulence-dependent prey capture function that might be useful to mechanistic foraging models.
DETAIL VIEW OF WINCH USED TO RAISE AND LOWER HINGED ...
DETAIL VIEW OF WINCH USED TO RAISE AND LOWER HINGED SECTION OF THIRD FLOOR LEVEL, PLATFORM D-SOUTH, HB-3, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
78 FR 15281 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... horizontal stabilizer. This AD requires repetitive high frequency eddy current (HFEC) inspections for... repetitive high frequency eddy current (HFEC) inspections for cracking of the left and right rib hinge... high frequency eddy current (HFEC) inspection for cracking of the left and right rib hinge bearing lugs...
Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Bryant; Larry Britton
2008-09-30
Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtainmore » new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.« less
A bio-inspired flying robot sheds light on insect piloting abilities.
Franceschini, Nicolas; Ruffier, Franck; Serres, Julien
2007-02-20
When insects are flying forward, the image of the ground sweeps backward across their ventral viewfield and forms an "optic flow," which depends on both the groundspeed and the groundheight. To explain how these animals manage to avoid the ground by using this visual motion cue, we suggest that insect navigation hinges on a visual-feedback loop we have called the optic-flow regulator, which controls the vertical lift. To test this idea, we built a micro-helicopter equipped with an optic-flow regulator and a bio-inspired optic-flow sensor. This fly-by-sight micro-robot can perform exacting tasks such as take-off, level flight, and landing. Our control scheme accounts for many hitherto unexplained findings published during the last 70 years on insects' visually guided performances; for example, it accounts for the fact that honeybees descend in a headwind, land with a constant slope, and drown when travelling over mirror-smooth water. Our control scheme explains how insects manage to fly safely without any of the instruments used onboard aircraft to measure the groundheight, groundspeed, and descent speed. An optic-flow regulator is quite simple in terms of its neural implementation and just as appropriate for insects as it would be for aircraft.
Jones, Kevin B.; Griffin, Anthony M.; Chandrasekar, Coonoor R.; Biau, David; Babinet, Antoine; Deheshi, Benjamin; Bell, Robert S.; Grimer, Robert J.; Wunder, Jay S.; Ferguson, Peter C.
2011-01-01
Background and Objectives Functional outcomes following oncologic total femoral endoprosthetic reconstruction (TFR) are lacking. We compared patient-oriented functional results of TFRs to proximal femur and distal femur reconstructions (PFR and DFR). We also compared function and complications with regard to knee and hip componentry. Methods 54 TFR patients were identified from 3 institutional prospective databases. 41 had fixed- and 13 had rotating-hinge knees, 37 hemiarthroplasty and 17 total hip arthroplasty componentry. Toronto Extremity Salvage Scores (TESS) for n=27 were compared between groups and to cohorts of PFR (n=31) and DFR (n=85) patients using the Mann-Whitney U test. Results Follow-up averaged 4 years. Mechanical complications included 5 hip dislocations and 1 femoral malrotation. Four dislocations were in fixed-hinge implants, all in those lacking abductor reattachment. TESS averaged 69.3±17.8, statistically decreased from DFR (p=0.002) and PFR patients (p=0.036). No significant differences were detected between patients in the fixed-hinge (n=18) and rotating-hinge (n=9) groups (p = 0.944), or total hip (n=8) and hemiarthroplasty (n=19) groups (p=0.633). Conclusions TFR is reserved for extreme cases of limb salvage, portending a poor prognosis overall. Function reflects additive impairments from PFR and DFR. TFR outcomes differ little with rotating- or fixed-hinge, total hip or hemiarthroplasty implants. PMID:21695701
Advanced wind turbine with lift-destroying aileron for shutdown
Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.
1996-06-18
An advanced aileron configuration for wind turbine rotors featuring an aileron with a bottom surface that slopes upwardly at an angle toward the nose region of the aileron. The aileron rotates about a center of rotation which is located within the envelope of the aileron, but does not protrude substantially into the air flowing past the aileron while the aileron is deflected to angles within a control range of angles. This allows for strong positive control of the rotation of the rotor. When the aileron is rotated to angles within a shutdown range of deflection angles, lift-destroying, turbulence-producing cross-flow of air through a flow gap, and turbulence created by the aileron, create sufficient drag to stop rotation of the rotor assembly. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.
Inkjet 3D printed check microvalve
NASA Astrophysics Data System (ADS)
Walczak, Rafał; Adamski, Krzysztof; Lizanets, Danylo
2017-04-01
3D printing enables fast and relatively easy fabrication of various microfluidic structures including microvalves. A check microvalve is the simplest valve enabling control of the fluid flow in microchannels. Proper operation of the check valve is ensured by a movable element that tightens the valve seat during backward flow and enables free flow for forward pressure. Thus, knowledge of the mechanical properties of the movable element is crucial for optimal design and operation of the valve. In this paper, we present for the first time the results of investigations on basic mechanical properties of the building material used in multijet 3D printing. Specified mechanical properties were used in the design and fabrication of two types of check microvalve—with deflecting or hinge-fixed microflap—with 200 µm and 300 µm thickness. Results of numerical simulation and experimental data of the microflap deflection were obtained and compared. The valves were successfully 3D printed and characterised. Opening/closing characteristics of the microvalve for forward and backward pressures were determined. Thus, proper operation of the check microvalve so developed was confirmed.
Hinge specification for a square-faceted tetrahedral truss
NASA Technical Reports Server (NTRS)
Adams, L. R.
1984-01-01
A square-faceted tetrahedral truss is geometrically analyzed. Expressions are developed for single degree of freedom hinges which allow packaging of the structure into a configuration in which all members are parallel and closely packed in a square pattern. Deployment is sequential, thus providing control over the structure during deployment.
NASA Technical Reports Server (NTRS)
Death, M. D.
1984-01-01
The evolution of an Antenna Deployment Mechanism (ADM) from a Hinge Actuator Mechanism (HAM) is described as it pertains to the deployment of large satellite antennas. Design analysis and mechanical tests are examined in detail.
78 FR 24985 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
... (L-126A,B,C), 195A, and 195B airplanes that are equipped with certain inboard aileron hinge brackets... 4, 2013), currently requires you to repetitively inspect the affected inboard aileron hinge brackets... brackets. Replacement with aluminum brackets would terminate the need for the repetitive inspections...
14 CFR 23.393 - Loads parallel to hinge line.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) K=24 for vertical surfaces; (2) K=12 for horizontal surfaces; and (3) W=weight of the movable... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Loads parallel to hinge line. 23.393 Section 23.393 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...
14 CFR 23.393 - Loads parallel to hinge line.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) K=24 for vertical surfaces; (2) K=12 for horizontal surfaces; and (3) W=weight of the movable... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Loads parallel to hinge line. 23.393 Section 23.393 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...
14 CFR 23.393 - Loads parallel to hinge line.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) K=24 for vertical surfaces; (2) K=12 for horizontal surfaces; and (3) W=weight of the movable... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Loads parallel to hinge line. 23.393 Section 23.393 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...
14 CFR 23.393 - Loads parallel to hinge line.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) K=24 for vertical surfaces; (2) K=12 for horizontal surfaces; and (3) W=weight of the movable... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Loads parallel to hinge line. 23.393 Section 23.393 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...
14 CFR 23.393 - Loads parallel to hinge line.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) K=24 for vertical surfaces; (2) K=12 for horizontal surfaces; and (3) W=weight of the movable... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Loads parallel to hinge line. 23.393 Section 23.393 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...
49 CFR 571.224 - Standard No. 224; Rear impact protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the vehicle is in motion. Nonstructural protrusions such as taillights, rubber bumpers, hinges and... deliver asphalt and other road building materials, in a controlled horizontal manner, into a lay down... protrusions such as taillights, hinges, rubber bumpers, and latches are excluded from the determination of the...
61. DETAIL OF HEAD, VANE STEM, VANE HINGE, AND WHEEL ...
61. DETAIL OF HEAD, VANE STEM, VANE HINGE, AND WHEEL OF AN ELI WINDMILL ON THE GROUND AT THE STOLL RESIDENCE ABOUT 1-1/2 MILES WEST OF NEBRASKA CITY ON STEAM WAGON ROAD. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE
Angular motion equations for a satellite with hinged flexible solar panel
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Tkachev, S. S.; Roldugin, D. S.; Nuralieva, A. B.; Mashtakov, Y. V.
2016-11-01
Non-linear mathematical model for the satellite with hinged flexible solar panel is presented. Normal modes of flexible elements are used for motion description. Motion equations are derived using virtual work principle. A comparison of normal modes calculation between finite element method and developed model is presented.
[COSMOS motion design optimization in the CT table].
Shang, Hong; Huang, Jian; Ren, Chao
2013-03-01
Through the CT Table dynamic simulation by COSMOS Motion, analysis the hinge of table and the motor force, then optimize the position of the hinge of table, provide the evidence of selecting bearing and motor, meanwhile enhance the design quality of the CT table and reduce the product design cost.
Interaction of a Synthetic Jet Actuator with a Severely Separated Crossflow
NASA Astrophysics Data System (ADS)
Jansen, Kenneth; Farnsworth, John; Rasquin, Michel; Rathay, Nick; Monastero, Marianne; Amitay, Michael
2017-11-01
A coordinated experimental/computational study of synthetic jet-based flow control on a vertical tail/rudder assembly has been carried out on a 1/19th scale model operating at 30 degree rudder deflection, 0 degree side slip, and 20m/s free-stream flow. Under these conditions a very strong span-wise separated flow develops over the rudder surface for a majority of its span. Twelve synthetic jets were distributed across the span of the vertical tail just upstream of the rudder hinge-line to determine their ability to reduce flow separation and thereby increase the side force production; to extend the rudder effectiveness. Experiments were completed for the baseline case (i.e. no jets blowing) and for cases where 1, 6, and 12 jets were activated. RANS and DDES computations were completed to match these four experiments. While some experimental results for the same geometry have been previously reported, more detailed results concerning the experiments and their comparison to the DDES computations for the baseline and 1 jet active cases are reported here. Specifically, this effort focuses on the near-jet flow and the phase-averaged vortical structures produced by a single jet interacting with a severely separated, turbulent cross-flow. An award of computer time was provided by the INCITE program and the Theta and Aurora ESP through ALCF which is supported by the DOE under Contract DE-AC02-06CH11357.
NASA Technical Reports Server (NTRS)
Lindsey, A. I.; Milam, M. D.
1974-01-01
Aerodynamic investigations were conducted in a transonic pressure tunnel on an 0.015 scale model of the space shuttle orbiter. Major test objectives were to determine: (1) transonic differential elevon/aileron lateral control optimization; (2) transonic elevon hinge moments; (3) transonic effects of the baseline 6 inch elevon/elevon and elevon/fuselage gaps; and (4) transonic effects of the short OMS pods. Six-component aerodynamic force and moment, and elevon hinge moment data, were recorded over an angle-of-attack range form -2 to +22 degrees.
Effect of hinge-moment parameters on elevator stick forces in rapid maneuvers
NASA Technical Reports Server (NTRS)
Jones, Robert T; Greenberg, Harry
1944-01-01
The importance of the stick force per unit normal acceleration as a criterion of longitudinal stability and the critical dependence of this gradient on elevator hinge-moment parameters have been shown in previous reports. The present report continues the investigation with special reference to transient effects for maneuvers of short duration.
Deployable video conference table
NASA Technical Reports Server (NTRS)
Cohen, Marc M. (Inventor); Lissol, Peter (Inventor)
1993-01-01
A deployable table is presented. The table is stowed in and deployed from a storage compartment based upon a non-self rigidizing, 4-hinge, arch support structure that folds upon itself to stow and that expands to deploy. The work surfaces bypass each other above and below to allow the deployment mechanism to operate. This assembly includes the following: first and second primary pivot hinges placed at the opposite ends of the storage compartment; first and second lateral frame members with proximal ends connected to the first and second pivot hinges; a medial frame member offset from and pivotally connected to distal ends of the first and second members through third and fourth medial pivot hinges; and left-side, right-side, and middle trays connected respectively to the first, second, and third frame members and being foldable into and out of the storage compartment by articulation of the first, second, third, and fourth joints. At least one of the third and fourth joints are locked to set the first, second, and third frame members in a desired angular orientation with respect to each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butrapet, Siritorn; Childers, Thomas; Moss, Kelley J.
Fifteen mutant dengue viruses were engineered and used to identify AAs in the molecular hinge of the envelope protein that are critical to viral infection. Substitutions at Q52, A54, or E133 reduced infectivity in mammalian cells and altered the pH threshold of fusion. Mutations at F193, G266, I270, or G281 affected viral replication in mammalian and mosquito cells, but only I270W had reduced fusion activity. T280Y affected the pH threshold for fusion and reduced replication in C6/36 cells. Three different mutations at L135 were lethal in mammalian cells. Among them, L135G abrogated fusion and reduced replication in C6/36 cells, butmore » only slightly reduced the mosquito infection rate. Conversely, L135W replicated well in C6/36 cells, but had the lowest mosquito infection rate. Possible interactions between hinge residues 52 and 277, or among 53, 135, 170, 186, 265, and 276 required for hinge function were discovered by sequence analysis to identify compensatory mutations.« less
Anterior knee symptoms after S-ROM hinge implantation.
Deehan, David J; Gangadharan, Rajkumar; Malviya, Ajay; Sutherland, Alasdair; Holland, James P
2014-01-01
To evaluate the performance of a canal filling hinge device for complex knee arthroplasty. Thirty-seven (4 primary hinge implantation and 33 revision cases) patients who had undergone arthroplasty with the S-ROM third generation hinge device for a combination of massive bone loss or ligamentous insufficiency were prospectively examined with a minimum of 5-year follow-up. Median age at surgery was 72 years (range: 43 to 87 years). Principal indications included aseptic loosening or massive osteolysis (24 cases), infection (8 cases) and periprosthetic fracture (4 cases). All patients exhibited either grade 2 (N = 12) or grade 3 (N = 25) AORI bone loss or a grade 3 medial ligament deficiency. One patient experienced implant failure (71 months), and one patient suffered late deep infection (36 months). Mean WOMAC score improved from 27 to 62. Four patients required patellar resurfacing for persistent pain. The 5-year survivorship was 86%. While the S-ROM device may offer satisfactory medium term outcome for complex end stage knee disease, we report a high rate of debilitating anterior knee symptoms.
NASA Technical Reports Server (NTRS)
Rao, B. M.; Jones, W. P.
1974-01-01
A general method of predicting airloads is applied to helicopter rotor blades on a full three-dimensional basis using the general theory developed for a rotor blade at the psi = pi/2 position where flutter is most likely to occur. Calculations of aerodynamic coefficients for use in flutter analysis are made for forward and hovering flight with low inflow. The results are compared with values given by two-dimensional strip theory for a rigid rotor hinged at its root. The comparisons indicate the inadequacies of strip theory for airload prediction. One important conclusion drawn from this study is that the curved wake has a substantial effect on the chordwise load distribution.
NASA Technical Reports Server (NTRS)
McCarty, John Locke; Brooks, George W.; Maglieri, Domenic J.
1959-01-01
A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was tested in the Langley 300-MPH 7- by 10-foot tunnel to obtain information on the effect of certain rotor variables on the blade periodic bending moments and flapping angles during the various stages of transformation between the helicopter and autogiro configuration. Variables studied included collective pitch angle, flapping-hinge offset, rotor angle of attack, and tip-speed ratio. The results show that the blade periodic bending moments generally increase with tip-speed ratio up into the transition region, diminish over a certain range of tip-speed ratio, and increase again at higher tip-speed ratios. Above the transition region, the bending moments increase with collective pitch angle and rotor angle of attack. The absence of a flapping hinge results in a significant amplification of the periodic bending moments, the magnitudes of which increase with tip-speed ratio. When the flapping hinge is used, an increase in flapping-hinge offset results in reduced period bending moments. The aforementioned trends exhibited by the bending moments for changes in the variables are essentially duplicated by the periodic flapping motions. The existence of substantial amounts of blade stall increased both the periodic bending moments and the flapping angles. Harmonic analysis of the bending moments shows significant contributions of the higher harmonics, particularly in the transition region.
Jones, Kevin B; Griffin, Anthony M; Chandrasekar, Coonoor R; Biau, David; Babinet, Antoine; Deheshi, Benjamin; Bell, Robert S; Grimer, Robert J; Wunder, Jay S; Ferguson, Peter C
2011-11-01
Functional outcomes following oncologic total femoral endoprosthetic reconstruction (TFR) are lacking. We compared patient-oriented functional results of TFRs to proximal femur and distal femur reconstructions (PFR and DFR). We also compared function and complications with regard to knee and hip componentry. Fifty-four TFR patients were identified from three institutional prospective databases. Forty-one had fixed- and 13 had rotating-hinge knees, 37 hemiarthroplasty and 17 total hip arthroplasty componentry. Toronto Extremity Salvage Scores (TESS) for n = 27 were compared between groups and to cohorts of PFR (n = 31) and DFR (n = 85) patients using the Mann-Whitney U-test. Follow-up averaged 4 years. Mechanical complications included five hip dislocations and one femoral malrotation. Four dislocations were in fixed-hinge implants, all in those lacking abductor reattachment. TESS averaged 69.3 ± 17.8, statistically decreased from DFR (P = 0.002) and PFR patients (P = 0.036). No significant differences were detected between patients in the fixed-hinge (n = 18) and rotating-hinge (n = 9) groups (P = 0.944), or total hip (n = 8) and hemiarthroplasty (n = 19) groups (P = 0.633). TFR is reserved for extreme cases of limb salvage, portending a poor prognosis overall. Function reflects additive impairments from PFR and DFR. TFR outcomes differ little with rotating- or fixed-hinge, total hip or hemiarthroplasty implants. Copyright © 2011 Wiley Periodicals, Inc.
Klem, Nardia-Rose; Wild, Catherine Y; Williams, Sian A; Ng, Leo
2017-03-01
Despite the high prevalence of lower extremity injuries in female basketball players as well as a high proportion of athletes who wear ankle braces, there is a paucity of research pertaining to the effects of ankle bracing on ankle and knee biomechanics during basketball-specific tasks. To compare the effects of a lace-up brace (ASO), a hinged brace (Active T2), and no ankle bracing (control) on ankle and knee joint kinematics and joint reaction forces in female basketball athletes during a cutting maneuver. Controlled laboratory study. Twenty healthy, semi-elite female basketball players performed a cutting task under both ankle brace conditions (lace-up ankle brace and hinged ankle brace) and a no-brace condition. The 3-dimensional kinematics of the ankle and knee during the cutting maneuver were measured with an 18-camera motion analysis system (250 Hz), and ground-reaction force data were collected by use of a multichannel force plate (2000 Hz) to quantify ankle and knee joint reaction forces. Conditions were randomized using a block randomization method. Compared with the control condition, the hinged ankle brace significantly restricted peak ankle inversion (mean difference, 1.7°; P = .023). No significant difference was found between the lace-up brace and the control condition ( P = .865). Compared with the lace-up brace, the hinged brace significantly reduced ankle and knee joint compressive forces at the time of peak ankle dorsiflexion (mean difference, 1.5 N/kg [ P = .018] and 1.4 N/kg [ P = .013], respectively). Additionally, the hinged ankle brace significantly reduced knee anterior shear forces compared with the lace-up brace both during the deceleration phase and at peak ankle dorsiflexion (mean difference, 0.8 N/kg [ P = .018] and 0.9 N/kg [ P = .011], respectively). The hinged ankle brace significantly reduced ankle inversion compared with the no-brace condition and reduced ankle and knee joint forces compared with the lace-up brace in a female basketball population during a cutting task. Compared with the lace-up brace, the hinged brace may be a better choice of prophylactic ankle support for female basketball players from a biomechanical perspective. However, both braces increased knee internal rotation and knee abduction angles, which may be problematic for a population that already has a high prevalence of knee injuries.
77 FR 20515 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... attachment fittings and the swan neck with serviceable ones if necessary. This AD was prompted by reports of cracks on the forward attachment fittings of the left and right sides of the forward hinge of the nose... (FWD) fittings (hinge 5) of the NLG aft doors (Right Hand (RH) side or Left Hand (LH) side). The cracks...
75 FR 22543 - Airworthiness Directives; Aircraft Industries a.s. Model L 23 Super Blanik Gliders
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... unsafe condition as: Cracks on the stabilizer elevator inner hinges of seven L 23 SUPERBLAN[Iacute]K... the need for the immediate inspection of the elevator inner hinges on the stabilizer. The European Aviation Safety Agency (EASA), which is the Technical Agent for the Member States of the European Community...
75 FR 17295 - Airworthiness Directives; Aircraft Industries a.s. Model L 23 Super Blanik Gliders
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... elevator inner hinges of seven L 23 SUPERBLAN[Iacute]K sailplanes have been detected during an inspection... European Aviation Safety Agency (EASA), which is the Technical Agent for the Member States of the European... stabilizer elevator inner hinges of seven L 23 SUPERBLAN[Iacute]K sailplanes have been detected during an...
NASA Technical Reports Server (NTRS)
Esparza, V.
1975-01-01
Experimental aerodynamic investigations were conducted in the Arnold Engineering Development Center (AEDC) Von Karman Facility Tunnel A on a scale model of the space shuttle orbiter. The objectives of this test were: (1) determine supersonic differential elevon/aileron lateral control optimization, (2) determine supersonic elevon hinge moments, (3) determine the supersonic effects of the new baseline 6-inch elevon/elevon and elevon/fuselage gaps, and 4) determine the supersonic effects of the new short (VL70-008410) OMS pods. Six-component aerodynamic force, moment, and elevon hinge moment data were recorded.
Wind-Tunnel Investigation of the Effect of Tab Balance on Tab and Control-Surface Characteristics
NASA Technical Reports Server (NTRS)
Brewer, Jack D; Queijo, M J
1947-01-01
An investigation was conducted to furnish data on the effect of tab balance on tab and control-surface characteristics. The airfoil tested had a modified NACA 65(1)-012 contour with a plain flap having a chord equal to 25 percent of the wing chord and with a tab having a chord equal to 25 percent of the flap chord and having several nose shapes and overhang lengths. The results of the investigation indicated that, in general, tab balance affected tab hinge-moment characteristics in much the same manner that flap balance affects flap hinge-moment characteristics. A moderate amount of tab balance did not seem to have any adverse effect on flap hinge-moment characteristics.
Apparatus for raising or tilting a micromechanical structure
Allen, James J [Albuquerque, NM
2008-09-09
An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.
NASA Astrophysics Data System (ADS)
Sarmento, Carla Cecília Treib; Sommer, Carlos Augusto; Lima, Evandro Fernandes
2017-08-01
The hypabyssal intrusions investigated in this study are located in the east-central region of the state of Rio Grande do Sul, in the south hinge of the Torres Syncline. The intrusions comprise twenty-four dikes and ten sills, intruding in ponded pahoehoe, compound pahoehoe, rubbly and acidic lava flows of the south sub-Province of the Paraná Igneous Province and the sedimentary rocks of the Botucatu, Pirambóia, Santa Maria and Rio do Rasto Formations, on the edge of the Paraná Basin. The intrusive dikes in the flows have preferred NNW-SSE direction and the intrusive dikes in the sedimentary rocks have preferred NE-SW direction. Regarding the morphology, the dikes were separated into two different groups: symmetrical and asymmetrical. The small variation in facies is characterized by fine to aphanitic equigranular rocks. The rocks were divided into two types: Silica Supersaturated Tholeiite (SST) - dikes and sills consisting of plagioclase and clinopyroxene as essential minerals, with some olivine and felsic mesostasis, predominant intergranular texture and subordinate subophitic texture; and Silica Saturated Olivine Tholeiite (SSOT) - dikes consisting mainly of plagioclase, clinopyroxene and olivine, and predominant ophitic texture. The major and trace element geochemistry allows classifying these hypabyssal bodies as basalts (SSOT), basaltic andesites and trachyandesites (TSS) of tholeiitic affinity. The mineral chemistry data and the REE behavior, combined with the LILE and HFSE patterns, similar to the flows and low-Ti basic intrusions of southern Brazil and northwestern Namibia allow suggesting that these dikes and sills were part of a feeder system of the magmatism in the Paraná-Etendeka Igneous Province. The preferred direction of the intrusive dikes in the sedimentary rocks of the Paraná Basin coincides with tectonic-magmatic lineaments related to extensional processes and faulting systems that served as vents for dike swarms parallel to the Brazilian coast, with the same direction as the Namibia coast dike swarm. This suggests that these dikes were part of the triple junction system related to the opening of the South Atlantic Ocean. The preferred directions of the intrusive dikes in the lava flows are similar to the directions of the Ponta Grossa and Rio Grande Arcs and the Torres Syncline. They may have been a part of, or been caused by one or more geotectonic cycles that originated these structures. The emplacement process of the asymmetric dikes suggests they were enclosed under the hydraulic fracture model, since they do not follow a pre-existing fracture filling pattern. The emplacement of the sills conforms to the weakness zones of the sedimentary units. Regarding the intrusive dikes in the flows, divided by lithofacies associations, also taking into account the geochemical and petrographic similarities, it is observed that these dikes are part of a supply system of the basic lava flows, stratigraphically positioned above the host lava flows.
Attractors for non-dissipative irrotational von Karman plates with boundary damping
NASA Astrophysics Data System (ADS)
Bociu, Lorena; Toundykov, Daniel
Long-time behavior of solutions to a von Karman plate equation is considered. The system has an unrestricted first-order perturbation and a nonlinear damping acting through free boundary conditions only. This model differs from those previously considered (e.g. in the extensive treatise (Chueshov and Lasiecka, 2010 [11])) because the semi-flow may be of a non-gradient type: the unique continuation property is not known to hold, and there is no strict Lyapunov function on the natural finite-energy space. Consequently, global bounds on the energy, let alone the existence of an absorbing ball, cannot be a priori inferred. Moreover, the free boundary conditions are not recognized by weak solutions and some helpful estimates available for clamped, hinged or simply-supported plates cannot be invoked. It is shown that this non-monotone flow can converge to a global compact attractor with the help of viscous boundary damping and appropriately structured restoring forces acting only on the boundary or its collar.
Gust wind tunnel study on ballast pick-up by high-speed trains
NASA Astrophysics Data System (ADS)
Navarro-Medina, F.; Sanz-Andres, A.; Perez-Grande, I.
2012-01-01
This paper describes the experimental setup, procedure, and results obtained, concerning the dynamics of a body lying on a floor, attached to a hinge, and exposed to an unsteady flow, which is a model of the initiation of rotational motion of ballast stones due to the wind generated by the passing of a high-speed train. The idea is to obtain experimental data to support the theoretical model developed in Sanz-Andres and Navarro-Medina (J Wind Eng Ind Aerodyn 98, 772-783, (2010), aimed at analyzing the initial phase of the ballast train-induced-wind erosion (BATIWE) phenomenon. The experimental setup is based on an open circuit, closed test section, low-speed wind tunnel, with a new sinusoidal gust generator mechanism concept, designed and built at the IDR/UPM. The tunnel's main characteristic is the ability to generate a flow with a uniform velocity profile and sinusoidal time fluctuation of the speed. Experimental results and theoretical model predictions are in good agreement.
Folding Polyominoes from One Level to Two
ERIC Educational Resources Information Center
Frederickson, Greg N.
2011-01-01
For any given polyomino, is it possible to cut it into pieces and then hinge the pieces, so that the polyomino folds up into a similar version of itself but two levels thick? While we don't know how to do this for every polyomino, the article does show how to cut, hinge, and fold polyominoes from several infinite classes, providing an…
49 CFR 571.206 - Standard No. 206; Door locks and door retention components.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (GVWR) of 4,536 kg or less. S3. Definitions. Auxiliary Door Latch is a latch equipped with a fully... auxiliary door latch on each hinged door shall not disengage from the fully latched position when an inertia... hinged back door shall also not disengage from the fully latched position when an inertia load is applied...
49 CFR 571.206 - Standard No. 206; Door locks and door retention components.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (GVWR) of 4,536 kg or less. S3. Definitions. Auxiliary Door Latch is a latch equipped with a fully... auxiliary door latch on each hinged door shall not disengage from the fully latched position when an inertia... hinged back door shall also not disengage from the fully latched position when an inertia load is applied...
49 CFR 571.206 - Standard No. 206; Door locks and door retention components.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (GVWR) of 4,536 kg or less. S3. Definitions. Auxiliary Door Latch is a latch equipped with a fully... auxiliary door latch on each hinged door shall not disengage from the fully latched position when an inertia... hinged back door shall also not disengage from the fully latched position when an inertia load is applied...
49 CFR 571.206 - Standard No. 206; Door locks and door retention components.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (GVWR) of 4,536 kg or less. S3. Definitions. Auxiliary Door Latch is a latch equipped with a fully... auxiliary door latch on each hinged door shall not disengage from the fully latched position when an inertia... hinged back door shall also not disengage from the fully latched position when an inertia load is applied...
NASA Astrophysics Data System (ADS)
Ferry, John M.; Wing, Boswell A.; Penniston-Dorland, Sarah C.; Rumble, Douglas
2002-03-01
Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux ~5,000 and ~300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.
NASA Astrophysics Data System (ADS)
Ferry, John; Wing, Boswell; Penniston-Dorland, Sarah; Rumble, Douglas
2001-11-01
Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux 5,000 and 300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.
NASA Astrophysics Data System (ADS)
Iai, Masafumi; Durali, Mohammad; Hatsuzawa, Takeshi
Recent research has been extending the applications of small satellites called microsatellites, nanosatellites, or picosatellites. To further improve capability of those satellites, a lightweight, active attitude-control mechanism is needed. This paper proposes a concept of inertial orientation control, an attitude control method using movable solar arrays. This method is made suitable for nanosatellites by the use of shape memory alloy (SMA)-actuated elastic hinges and a simple maneuver generation algorithm. The combination of SMA and an elastic hinge allows the hinge to remain lightweight and free of frictional or rolling contacts. Changes in the shrinking and stretching speeds of the SMA were measured in a vacuum chamber. The proposed algorithm constructs a maneuver to achieve arbitrary attitude change by repeating simple maneuvers called unit maneuvers. Provided with three types of unit maneuvers, each degree of freedom of the satellite can be controlled independently. Such construction requires only simple calculations, making it a practical algorithm for a nanosatellite with limited computational capability. In addition, power generation variation caused by maneuvers was analyzed to confirm that a maneuver from any initial attitude to an attitude facing the sun was justifiable in terms of the power budget.
Kerkum, Yvette L; Brehm, Merel-Anne; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap
2014-12-01
A rigid ventral shelf ankle foot orthosis (AFO) may improve gait in children with spastic cerebral palsy (SCP) whose gait is characterized by excessive knee flexion in stance. However, these AFOs can also impede ankle range of motion (ROM) and thereby inhibit push-off power. A more spring-like AFO can enhance push-off and may potentially reduce walking energy cost. The recent development of an adjustable spring-hinged AFO now allows adjustment of AFO stiffness, enabling tuning toward optimal gait performance. This study aims to quantify the mechanical properties of this spring-hinged AFO for each of its springs and settings. Using an AFO stiffness tester, two AFO hinges and their accompanying springs were measured. The springs showed a stiffness range of 0.01-1.82 N · m · deg(-1). The moment-threshold increased with increasing stiffness (1.13-12.1 N · m), while ROM decreased (4.91-16.5°). Energy was returned by all springs (11.5-116.3 J). These results suggest that the two stiffest available springs should improve joint kinematics and enhance push-off in children with SCP walking with excessive knee flexion.
Helmstaedt, Kerstin; Heinrich, Gabriele; Lipscomb, William N.; Braus, Gerhard H.
2002-01-01
The yeast chorismate mutase is regulated by tyrosine as feedback inhibitor and tryptophan as crosspathway activator. The monomer consists of a catalytic and a regulatory domain covalently linked by the loop L220s (212–226), which functions as a molecular hinge. Two monomers form the active dimeric enzyme stabilized by hydrophobic interactions in the vicinity of loop L220s. The role of loop L220s and its environment for enzyme regulation, dimerization, and stability was analyzed. Substitution of yeast loop L220s in place of the homologous loop from the corresponding and similarly regulated Aspergillus enzyme (and the reverse substitution) changed tyrosine inhibition to activation. Yeast loop L220s substituted into the Aspergillus enzyme resulted in a tryptophan-inhibitable enzyme. Monomeric yeast chorismate mutases could be generated by substituting two hydrophobic residues in and near the hinge region. The resulting Thr-212→Asp–Phe-28→Asp enzyme was as stable as wild type, but lost allosteric regulation and showed reduced catalytic activity. These results underline the crucial role of this molecular hinge for inhibition, activation, quaternary structure, and stability of yeast chorismate mutase. PMID:11997452
NASA Technical Reports Server (NTRS)
Murray, Harry E.; Erwin, Mary A.
1945-01-01
The results of a theoretical analysis of the hinge-moment characteristics of various sealed-internal-balance arrangements for control surfaces are presented. The analysis considered overhands sealed to various types of wing structure by flexible seals spanning gaps of various widths or sealed to the wing structure by a flexible system of linked plates. Leakage was not considered; the seal was assumed to extend the full spanwise length of the control surface. The effect of the developed width of the flexible seal and of the geometry of the structure to which the seal was anchored was investigated, as well as the effect of the gap width that is sealed. The results of the investigation indicated that the most nearly linear control-surface hinge-moment characteristics can probably be obtained from a flexible seal over a narrow gap (about 0.1 of the overhang chord), which is so installed that the motion of the seal is restricted to a region behind the point of attachment of the seal to the wing structure. Control-surface hinge moments that tend to be high at large deflections and low or overbalanced at small deflections will result if a very narrow seal is used.
Flectofold—a biomimetic compliant shading device for complex free form facades
NASA Astrophysics Data System (ADS)
Körner, A.; Born, L.; Mader, A.; Sachse, R.; Saffarian, S.; Westermeier, A. S.; Poppinga, S.; Bischoff, M.; Gresser, G. T.; Milwich, M.; Speck, T.; Knippers, J.
2018-01-01
Smart and adaptive outer façade shading systems are of high interest in modern architecture. For long lasting and reliable systems, the abandonment of hinges which often fail due to mechanical wear during repetitive use is of particular importance. Drawing inspiration from the hinge-less motion of the underwater snap-trap of the carnivorous waterwheel plant (Aldrovanda vesiculosa), the compliant façade shading device Flectofold was developed. Based on computational simulations of the biological role-model’s elastic and reversible motion, the actuation principle of the plant can be identified. The enclosed geometric motion principle is abstracted into a simplified curved-line folding geometry with distinct flexible hinge-zones. The kinematic behaviour is translated into a quantitative kinetic model, using finite element simulation which allows the detailed analyses of the influence of geometric parameters such as curved-fold line radius and various pneumatically driven actuation principles on the motion behaviour, stress concentrations within the hinge-zones, and actuation forces. The information regarding geometric relations and material gradients gained from those computational models are then used to develop novel material combinations for glass fibre reinforced plastics which enabled the fabrication of physical prototypes of the compliant façade shading device Flectofold.
Elasto-Capillary Folding Using Stop-Programmable Hinges Fabricated by 3D Micro-Machining
Legrain, Antoine; Berenschot, Erwin J. W.; Tas, Niels R.; Abelmann, Leon
2015-01-01
We show elasto-capillary folding of silicon nitride objects with accurate folding angles between flaps of (70.6 ± 0.1)° and demonstrate the feasibility of such accurate micro-assembly with a final folding angle of 90°. The folding angle is defined by stop-programmable hinges that are fabricated starting from silicon molds employing accurate three-dimensional corner lithography. This nano-patterning method exploits the conformal deposition and the subsequent timed isotropic etching of a thin film in a 3D shaped silicon template. The technique leaves a residue of the thin film in sharp concave corners which can be used as an inversion mask in subsequent steps. Hinges designed to stop the folding at 70.6° were fabricated batchwise by machining the V-grooves obtained by KOH etching in (110) silicon wafers; 90° stop-programmable hinges were obtained starting from silicon molds obtained by dry etching on (100) wafers. The presented technique has potential to achieve any folding angle and opens a new route towards creating structures with increased complexity, which will ultimately lead to a novel method for device fabrication. PMID:25992886
NASA Astrophysics Data System (ADS)
Tan, Chee Ghuan; Chia, Wei Ting; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Adiyanto, Mohd Irwan
2017-10-01
On 5th June 2015, a moderate earthquake with Mw 5.9 hit Ranau, resulted in damages of the existing non-seismically designed buildings, such that 61 buildings, including mosques, schools, hospitals and Ranau police headquarters were suffered from different level structural damages. Soft storey irregularity is one of the main reasons of the building damage. This study is to investigate the soft-story effect on the propagation path of plastic hinges RC building under seismic excitation. The plastic hinges formation and seismic performance of five moment resisting RC frames with different infill configurations are studied. The seismic performance of building is evaluated by Incremental Dynamic Analysis (IDA). Open ground soft storey structure shows the lowest seismic resistance, collapses at 0.55g pga. The maximum interstorey drift ratio (IDRmax) in soft storey buildings ranging from 0.53% to 2.96% which are far greater than bare frame ranging from 0.095% to 0.69%. The presence of infill walls creates stiffer upper stories causing moments concentrate at the soft storey, resulting the path of plastic hinge propagation is dominant at the soft storey columns. Hence, the buildings with soft storey are very susceptible under earthquake load.
Tembe, S.; Lockner, D.; Wong, T.-F.
2009-01-01
Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (?? 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature-and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (?????0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress. Copyright 2009 by the American Geophysical Union.
Lockner, David A.; Tembe, Cheryl; Wong, Teng-fong
2009-01-01
Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (m < 0.2) or strength consistent with standard laboratory tests (m > 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature- and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (m0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress.
Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes
NASA Astrophysics Data System (ADS)
Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.
2011-12-01
Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.
A proline-hinge alters the characteristics of the amphipathic α-helical AMPs.
Lee, Jong Kook; Gopal, Ramamourthy; Park, Seong-Cheol; Ko, Hyun Sook; Kim, Yangmee; Hahm, Kyung-Soo; Park, Yoonkyung
2013-01-01
HP (2-20) is a 19-aa, amphipathic, α-helical peptide with antimicrobial properties that was derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously showed that increasing the net hydrophobicity of HP (2-20) by substituting Trp for Gln(17) and Asp(19) (Anal 3) increased the peptide's antimicrobial activity. In hydrophobic medium, Anal 3 forms an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and an extended helical region (residues 6-20). To investigate the structure-activity relationship of Anal 3, we substituted Pro for Glu(9) (Anal 3-Pro) and then examined the new peptide's three-dimensional structure, antimicrobial activity and mechanism of action. Anal 3-Pro had an α-helical structure in the presence of trifluoroethanol (TFE) and sodium dodecyl sulfate (SDS). NMR spectroscopic analysis of Anal 3-Pro's tertiary structure in SDS micelles confirmed that the kink potential introduced by Pro(10) was responsible for the helix distortion. We also found that Anal 3-Pro exhibited about 4 times greater antimicrobial activity than Anal 3. Fluorescence activated flow cytometry and confocal fluorescence microscopy showed that incorporating a Pro-hinge into Anal 3 markedly reduced its membrane permeability so that it accumulated in the cytoplasm without remaining in the cell membrane. To investigate the translocation mechanism, we assessed its ability to release of FITC-dextran. The result showed Anal 3-Pro created a pore <1.8 nm in diameter, which is similar to buforin II. Notably, scanning electron microscopic observation of Candida albicans revealed that Anal 3-Pro and buforin II exert similar effects on cell membranes, whereas magainin 2 exerts a different, more damaging, effect. In addition, Anal 3-Pro assumed a helix-hinge-helix structure in the presence of biological membranes and formed micropores in both bacterial and fungal membranes, through which it entered the cytoplasm and tightly bound to DNA. These results indicate that the bending region of Anal 3- Pro peptide is prerequisite for effective antibiotic activity and may facilitate easy penetration of the lipid bilayers of the cell membrane.
Liu, Zhaoqun; Zhou, Zhi; Wang, Lingling; Song, Xiaorui; Chen, Hao; Wang, Weilin; Liu, Rui; Wang, Mengqiang; Wang, Hao; Song, Linsheng
2015-08-01
Enkephalinergic neuroendocrine-immune regulatory system is one of the most important neuroendocrine-immune systems in both vertebrates and invertebrates for its significant role in the immune regulation. In the present study, the early onset of enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas were investigated to illustrate the function of neural regulation on the innate immune system in oyster larvae. [Met(5)]-enkephalin (Met-ENK) was firstly observed on the marginal of the dorsal half of D-hinged larvae. Six immune-related molecules, including four PRRs (CgCTL-1, CgCTL-2, CgCTL-4, CgNatterin-3) and two immune effectors (CgTNF-1 and CgEcSOD) were detected in the early developmental stages of trochophore, D-hinged and umbo larvae of oyster. After incubated with [Met(5)]-enkephalin, the mRNA expression level of all the PRRs changed significantly (p < 0.05). In trochophore larvae, the expression level of CgNatterin-3 decreased dramatically (p < 0.05) at 6 h, and the expression level of CgCTL-4 was significantly down-regulated at 3 h and 6 h (p < 0.05), respectively. In D-hinged and umbo larvae, only CgCTL-1 was significantly down-regulated and the differences were significant at 3 h and 6 h (p < 0.05), while the expression level of CgCTL-2 and CgCTL-4 increased significantly at 3 h after treatment (p < 0.05). Moreover, the expression levels of immune effectors were up-regulated significantly at 3 h and 6 h in trochophore larvae (p < 0.05). The expression level of CgTNF-1 in both blank and experiment groups was up-regulated but there was no significant difference in D-hinged larvae stage. On the contrary, the expression level of CgEcSOD in D-hinged larvae decreased dramatically at 3 h and 6 h after [Met(5)]-enkephalin incubation (p < 0.05). In umbo larvae, the expression level of CgTNF-1 and CgEcSOD in the experiment group increased significantly at 6 h after [Met(5)]-enkephalin treatment (p < 0.05), while no significant difference was found in the blank group. In addition, the anti-bacterial activities of the total protein extract from trochophore, D-hinged and umbo larvae increased significantly (p < 0.05) at both 3 h and 6 h after [Met(5)]-enkephalin incubation compared to that in the blank group, and PO activities of both D-hinged and umbo larvae total protein extract increased significantly (p < 0.05) while no significant difference was observed in trochophore larvae. The PO activities of the total protein extract in all the experiment groups decreased after the treatment with [Met(5)]-enkephalin for 6 h, but no significant difference was observed when compared to the blank group. Furthermore, after incubation for 6 h, the concentration of both CgTNF-1 and CgIL17-5 increased dramatically compared to that in the blank group (p < 0.05). These results together indicated that the enkephalinergic nervous system of oyster was firstly appeared in D-hinged larvae, while the primitive immune defense system existed in the region of prototroch in trochophore larvae and developed maturely after D-hinged larvae. The developing immune system could be regulated by the neurotransmitter [Met(5)]-enkephalin released by the neuroendocrine system in oyster C. gigas. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Siala, Firas; Totpal, Alexander; Liburdy, James
2015-11-01
The flow physics of flying animals has recently received significant attention, mostly in the context of developing bio-inspired micro air vehicles and oscillating flow energy harvesters. Of particular interest is the understanding of the impact of airfoil flexibility on the flow physics. Research efforts showed that some degree of surface flexibility enhanced the strength and size of the leading edge vortex. In this study, the influence of flexibility on the near-wake dynamics and flow structures is investigated using 2D PIV measurements. The experiments are conducted in a wind tunnel at a Reynolds number of 30,000 and a range of reduced frequencies from 0.09 to 0.2. The flexibility is attained using a torsion rod forming a hinge between the flap and the main wing. Vortex flow structures are visualized using large eddy scale decomposition technique and quantified using swirling strength analysis. It is found that trailing edge flexibility increases the vortex swirling strength compared to a rigid airfoil, whereas leading edge flexibility decreases the swirling strength. Furthermore, the integral length scale determined from the autocorrelation of the velocity fluctuations is found to be approximately equal to the actual vortex size. The vortex convective velocity is shown to be independent of flexibility and oscillation frequency, and it is represented by a trimodal distribution, with peak values at 0.8, 0.95 and 1 times the free stream velocity. Oregon State University.
NASA Astrophysics Data System (ADS)
Horie, Mikio
2004-10-01
In recent years, the researches about Micro/Nano Systems are down actively in the bio-medical research fields, DNA research fields, chemical analysis systems fields, etc. In the results, a new materials and new functions in the systems are developed. In this invited paper, Mechano-Micro/Nano Systems, especially, motion systems are introduced. First, the research activities concerning the Mechano-Micro/Nano Systems in the world(MST2003, MEMS2003 and MEMS2004) and in Japan(Researech Projects on Nanotechnology and Materials in Ministry of Education, Culture, Sports, Science and Technology) are shown. Secondary, my research activities are introduced. As my research activities, (1) a comb-drive static actuator for the motion convert mechanisms, (2) a micro-nano fabrication method by use of FAB(Fast Atom Beam) machines, (3) a micro optical mirror manipulator for inputs-outputs optical switches, (4) a miniature pantograph mechanism with large-deflective hinges and links made of plastics are discussed and their performances are explained.
NASA Astrophysics Data System (ADS)
Gueroult, R.; Rax, J.-M.; Zweben, S. J.; Fisch, N. J.
2018-01-01
The ability to separate large volumes of mixed species based on atomic mass appears desirable for a variety of emerging applications with high societal impact. One possibility to meet this objective consists in leveraging mass differential effects in rotating plasmas. Beyond conventional centrifugation, rotating plasmas offer in principle additional ways to separate elements based on mass. Single ion orbits show that ion radial mass separation in a uniform magnetized plasma column can be achieved by applying a tailored electric potential profile across the column, or by driving a rotating magnetic field within the column. Furthermore, magnetic pressure and centrifugal effects can be combined in a non-uniform geometry to separate ions based on mass along the field lines. Practical application of these separation schemes hinges on the ability to produce the desirable electric and magnetic field configuration within the plasma column.
Rhee, John M; Register, Bradley; Hamasaki, Takahiko; Franklin, Betty
2011-01-01
Prospective clinical series. To evaluate the ability of plate-only laminoplasty to achieve stable laminar arch reconstruction and to determine the rate and time course with which bony healing occurs in such constructs. Reconstruction of a stable laminar arch with sufficient room for the decompressed spinal cord is a desired goal when performing cervical laminoplasty for myelopathy. Traditional forms of laminoplasty fixation, such as sutures, bone struts, and ceramic spacers, may be associated with complications including loss of fixation, dislodgement with neurologic compromise, and premature laminoplasty closure. Plates, in contrast, provide more rigid fixation. Plate-only laminoplasty is gaining popularity as a method of laminoplasty fixation, but there is little data on its effectiveness. Fifty-four patients who underwent open door laminoplasty for cervical myelopathy and had available postoperative computed tomography (CT) scans formed the basis of this study. In all cases, a 4-mm round burr was used to create the hinge at the junction of the lateral mass and lamina by completely removing the dorsal cortex and thinning the ventral cortex until a greenstick deformation of the hinge could be produced. Laminoplasty plates were used as the sole method of fixation. No supplemental bone graft struts were used on the plated side, and the hinge side was not bone grafted. Axial CT scans obtained at 3, 6, and 12 months postoperatively were assessed for plate complications and bony healing of the hinge. No plate failures, dislodgements, or premature closures occurred in any of the levels at any time postoperatively. Computed tomography scan review demonstrated that 55% of levels were healed at 3 months, 77% at 6 months, and 93% at 12 months. At each timepoint, C6 and C7 had the highest hinge healing rates. Laminar screw backout was seen in 5/217 (2.3%) of levels, but was not associated with plate dislodgement, laminoplasty closure, or neurologic consequences, and did not occur in any case in which 2 laminar screws had been placed. Plate-only laminoplasty provided stable reconstruction of an expanded laminar arch with no failures, dislodgements, adverse neurologic consequences, or premature closures in 217 levels. Ninety-three percent of hinges demonstrated radiographic union at 12 months, and even those that did not heal by CT scan criteria maintained patent expansion of the spinal canal without adverse neurologic consequences. Supplemental bone graft does not appear necessary when plated laminoplasty is performed.
Steady pressure measurements on an Aeroelastic Research Wing (ARW-2)
NASA Technical Reports Server (NTRS)
Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.
1994-01-01
Transonic steady and unsteady pressure tests have been conducted in the Langley transonic dynamics tunnel on a large elastic wing known as the DAST ARW-2. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading-edge sweep back angle of 28.8 degrees, and two inboard and one outboard trailing-edge control surfaces. Only the outboard control surface was deflected to generate steady and unsteady flow over the wing during this study. Only the steady surface pressure, control-surface hinge moment, wing-tip deflection, and wing-root bending moment measurements are presented. The results from this elastic wing test are in tabulated form to assist in calibrating advanced computational fluid dynamics (CFD) algorithms.
Aerodynamic coefficients in generalized unsteady thin airfoil theory
NASA Technical Reports Server (NTRS)
Williams, M. H.
1980-01-01
Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).
Attitude dynamics simulation subroutines for systems of hinge-connected rigid bodies
NASA Technical Reports Server (NTRS)
Fleischer, G. E.; Likins, P. W.
1974-01-01
Several computer subroutines are designed to provide the solution to minimum-dimension sets of discrete-coordinate equations of motion for systems consisting of an arbitrary number of hinge-connected rigid bodies assembled in a tree topology. In particular, these routines may be applied to: (1) the case of completely unrestricted hinge rotations, (2) the totally linearized case (all system rotations are small), and (3) the mixed, or partially linearized, case. The use of the programs in each case is demonstrated using a five-body spacecraft and attitude control system configuration. The ability of the subroutines to accommodate prescribed motions of system bodies is also demonstrated. Complete listings and user instructions are included for these routines (written in FORTRAN V) which are intended as multi- and general-purpose tools in the simulation of spacecraft and other complex electromechanical systems.
Self-folding micropatterned polymeric containers.
Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H
2011-02-01
We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.
Influence of tectonic folding on rockfall susceptibility, American Fork Canyon, Utah, USA
Coe, J.A.; Harp, E.L.
2007-01-01
We examine rockfall susceptibility of folded strata in the Sevier fold-thrust belt exposed in American Fork Canyon in north-central Utah. Large-scale geologic mapping, talus production data, rock-mass-quality measurements, and historical rockfall data indicate that rockfall susceptibility is correlated with limb dip and curvature of the folded, cliff-forming Mississippian limestones. On fold limbs, rockfall susceptibility increases as dip increases. This relation is controlled by several factors, including an increase in adverse dip conditions and apertures of discontinuities, and shearing by flexural slip during folding that has reduced the friction angles of discontinuities by smoothing surface asperities. Susceptibility is greater in fold hinge zones than on adjacent limbs primarily because there are greater numbers of discontinuities in hinge zones. We speculate that susceptibility increases in hinge zones as fold curvature becomes tighter.
Tilting table for ergometer and for other biomedical devices
NASA Technical Reports Server (NTRS)
Gause, R. L.; Spier, R. A. (Inventor)
1973-01-01
The apparatus is for testing the human body in a variety of positions, ranging from the vertical to the supine, while exercising on an ergometer; and can also be used for angular positioning of other biomedical devices. It includes a floor plate and a hinged plate upon which to fix the ergometer, a back rest and a head rest attached at right angles to said hinged plate and behind the seat of the ergometer, dual hydraulic cylinders for raising and lowering the hinged plate through 90 deg by means of a self contained hydraulic system, with valve means for control and positive stops on the apparatus to prevent over travel. Tests can be made with the subject positioned on the seat of the ergometer, through the various angles, with a substantially normal body attitude relative to the seat and ergometer.
Reconstruction of palatal defect using mucoperiosteal hinge flap and pushback palatoplasty.
Lee, S I; Lee, H S; Hwang, K
2001-11-01
This article describes a simple, new surgical technique to provide a complete two-layer closure of palatal defect resulting from a surgical complication of trans palatal resection of skull base chordoma. The nasal layer was reconstructed with triangular shape oral mucoperiosteal turn over hinge flap based on anterior margin of palatal defect and rectangular shaped lateral nasal mucosal hinge flaps. The oral layer was reconstructed with conventional pushback V-Y advancement 2-flaps palatoplasty. Each layer of the flaps were secured with two key mattress suture for flap coaptation. This technique has some advantages: simple, short operation time, one-stage procedure, no need of osteotomy. It can close small- to medium-sized palatal defect of palate or wide cleft palate and can prevent common complication of oronasal fistula, which could be caused by tension.
NASA Astrophysics Data System (ADS)
Michalicek, M. Adrian; Bright, Victor M.
2001-10-01
This paper presents the design, fabrication, modeling, and testing of various arrays of cantilever micromirror devices integrated atop CMOS control electronics. The upper layers of the arrays are prefabricated in the MUMPs process and then flip-chip transferred to CMOS receiving modules using a novel latching off-chip hinge mechanism. This mechanism allows the micromirror arrays to be released, rotated off the edge of the host module and then bonded to the receiving module using a standard probe station. The hinge mechanism supports the arrays by tethers that are severed to free the arrays once bonded. The resulting devices are inherently planarized since the bottom of the first releasable MUMPs layer becomes the surface of the integrated mirror. The working devices are formed by mirror surfaces bonded to address electrodes fabricated above static memory cells on the CMOS module. These arrays demonstrate highly desirable features such as compatible address potentials, less than 2 nm of RMS roughness, approximately 1 micrometers of lateral position accuracy and the unique ability to metallize reflective surfaces without masking. Ultimately, the off-chip hinge mechanism enables very low-cost, simple, reliable, repeatable and accurate assembly of advanced MEMS and integrated microsystems without specialized equipment or complex procedures.
NASA Technical Reports Server (NTRS)
Foley, Robert J.; Pendergraft, Odis C., Jr.
1991-01-01
A static (wind-off) test was conducted in the Static Test Facility of the 16-ft transonic tunnel to determine the performance and turning effectiveness of post-exit yaw vanes installed on two-dimensional convergent-divergent nozzles. One nozzle design that was previously tested was used as a baseline, simulating dry power and afterburning power nozzles at both 0 and 20 degree pitch vectoring conditions. Vanes were installed on these four nozzle configurations to study the effects of vane deflection angle, longitudinal and lateral location, size, and camber. All vanes were hinged at the nozzle sidewall exit, and in addition, some were also hinged at the vane quarter chord (double-hinged). The vane concepts tested generally produced yaw thrust vectoring angles much less than the geometric vane angles, for (up to 8 percent) resultant thrust losses. When the nozzles were pitch vectored, yawing effectiveness decreased as the vanes were moved downstream. Thrust penalties and yawing effectiveness both decreased rapidly as the vanes were moved outboard (laterally). Vane length and height changes increased yawing effectiveness and thrust ratio losses, while using vane camber, and double-hinged vanes increased resultant yaw angles by 50 to 100 percent.
NASA Technical Reports Server (NTRS)
Olney, Candida D.; Hillebrandt, Heather; Reichenbach, Eric Y.
2000-01-01
A limited evaluation of the F/A-18 baseline loads model was performed on the Systems Research Aircraft at NASA Dryden Flight Research Center (Edwards, California). Boeing developed the F/A-18 loads model using a linear aeroelastic analysis in conjunction with a flight simulator to determine loads at discrete locations on the aircraft. This experiment was designed so that analysis of doublets could be used to establish aircraft aerodynamic and loads response at 20 flight conditions. Instrumentation on the right outboard leading edge flap, left aileron, and left stabilator measured the hinge moment so that comparisons could be made between in-flight-measured hinge moments and loads model-predicted values at these locations. Comparisons showed that the difference between the loads model-predicted and in-flight-measured hinge moments was up to 130 percent of the flight limit load. A stepwise regression technique was used to determine new loads derivatives. These derivatives were placed in the loads model, which reduced the error to within 10 percent of the flight limit load. This paper discusses the flight test methodology, a process for determining loads coefficients, and the direct comparisons of predicted and measured hinge moments and loads coefficients.
NASA Astrophysics Data System (ADS)
Pathak, Arup Kumar
2018-05-01
Despite the knowledge that the influenza protein, hemagglutinin, undergoes a large conformational change at low pH during the process of fusion with the host cell, its molecular mechanism remains elusive. The present constant pH molecular dynamics (CpHMD) study identifies the residues responsible for large conformational change in acidic condition. Based on the pKa calculations, it is predicted that His-106 is much more responsible for the large conformational change than any other residues in the hinge region of hemagglutinin protein. Potential of mean force profile from well-tempered meta-dynamics (WT-MtD) simulation is also generated along the folding pathway by considering radius of gyration (R gyr) as a collective variable (CV). It is very clear from the present WT-MtD study, that the initial bending starts at that hinge region, which may trigger other conformational changes. Both the protein–protein and protein–water HB time correlation functions are monitored along the folding pathway. The protein–protein (full or hinge region) HB time correlation functions are always found to be stronger than those of the protein–water time correlation functions. The dynamical balance between protein–protein and protein–water HB interactions favors the stabilization of the folded state.
Parasites in food webs: the ultimate missing links
Lafferty, Kevin D; Allesina, Stefano; Arim, Matias; Briggs, Cherie J; De Leo, Giulio; Dobson, Andrew P; Dunne, Jennifer A; Johnson, Pieter T J; Kuris, Armand M; Marcogliese, David J; Martinez, Neo D; Memmott, Jane; Marquet, Pablo A; McLaughlin, John P; Mordecai, Erin A; Pascual, Mercedes; Poulin, Robert; Thieltges, David W
2008-01-01
Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists. PMID:18462196
Parasites in food webs: the ultimate missing links.
Lafferty, Kevin D; Allesina, Stefano; Arim, Matias; Briggs, Cherie J; De Leo, Giulio; Dobson, Andrew P; Dunne, Jennifer A; Johnson, Pieter T J; Kuris, Armand M; Marcogliese, David J; Martinez, Neo D; Memmott, Jane; Marquet, Pablo A; McLaughlin, John P; Mordecai, Erin A; Pascual, Mercedes; Poulin, Robert; Thieltges, David W
2008-06-01
Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.
The Cook Agronomy Farm LTAR: Knowledge Intensive Precision Agro-ecology
NASA Astrophysics Data System (ADS)
Huggins, D. R.
2015-12-01
Drowning in data and starving for knowledge, agricultural decision makers require evidence-based information to enlighten sustainable intensification. The agro-ecological footprint of the Cook Agronomy Farm (CAF) Long-Term Agro-ecosystem Research (LTAR) site is embedded within 9.4 million ha of diverse land uses primarily cropland (2.9 million ha) and rangeland (5.3 million ha) that span a wide annual precipitation gradient (150 mm through 1400 mm) with diverse social and natural capital (see Figure). Sustainable intensification hinges on the development and adoption of precision agro-ecological practices that rely on meaningful spatio-temporal data relevant to land use decisions at within-field to regional scales. Specifically, the CAF LTAR will provide the scientific foundation (socio-economical and bio-physical) for enhancing decision support for precision and conservation agriculture and synergistic cropping system intensification and diversification. Long- and short-term perspectives that recognize and assess trade-offs in ecosystem services inherent in any land use decision will be considered so as to promote the development of more sustainable agricultural systems. Presented will be current and future CAF LTAR research efforts required for the development of sustainable agricultural systems including cropping system cycles and flows of nutrients, water, carbon, greenhouse gases and other biotic and abiotic factors. Evaluation criteria and metrics associated with long-term agro-ecosystem provisioning, supporting, and regulating services will be emphasized.
Parasites in food webs: the ultimate missing links
Lafferty, Kevin D.; Allesina, Stefano; Arim, Matias; Briggs, Cherie J.; De Leo, Giulio A.; Dobson, Andrew P.; Dunne, Jennifer A.; Johnson, Pieter T.J.; Kuris, Armand M.; Marcogliese, David J.; Martinez, Neo D.; Memmott, Jane; Marquet, Pablo A.; McLaughlin, John P.; Mordecai, Eerin A.; Pascual, Mercedes; Poulin, Robert; Thieltges, David W.
2008-01-01
Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.
Design and construction of an airfoil with controlled flap
NASA Astrophysics Data System (ADS)
Amin, Md. Ruhul; Rahman, S. M. Mahbobur; Mashud, Mohammad; Rabbi, Md. Fazle
2017-06-01
For modern aircrafts maneuvering control and reduction of power loss is a matter of great concern in Aerodynamics. Separation of airflow over the wings of aircraft at high angle of attack or at other situations is a hindrance to proper maneuvering control. As flow separation increases drag force on the aircraft, it consumes excess power. For these reasons much effort and research has gone into the design of aerodynamic surfaces which delay flow separation and keep the local flow attached for as long as possible. One of the simple and cost-effective way is to use a hinged flap on the wing of the aircraft, which lifts and self-adjusts to a position dependent on the aerodynamic forces and flap weight due to reversed flow at increasing angle of attack. There is a limitation of this kind of process. At very high angles of attack, the reversed flow would cause the flap to tip forwards entirely and the effect of the flap would vanish. For recovering this limitation an idea of controlling the movement or rotation of the flap has been proposed in this paper. A light surface was selected as a flap and was coupled to the shaft of a servo motor, which was placed on a model airfoil. For controlling the angle of rotation of the motor as well as the flap arbitrarily, an electronic circuit comprising necessary components was designed and applied to the servo motor successfully.
Knightsat Flight Design Review
2007-08-03
spring loaded hinges were obtained from McMaster under part number 15205A42. The fasteners used to attach each shutter to its corresponding hinge were... Coefficient of thermal expansion) is fairly well matched to the cell’s germanium substrate. Copper is not a good choice since it expands and contracts...Temperature: K Ground Station Transmission Line Temp.: 290 K Ground Station Sky Temperature: 450 K G.S. Transmission Line Coefficient : 0.7943 Ground Station
NASA Technical Reports Server (NTRS)
Tang, M. H.; Sefic, W. J.; Sheldon, R. G.
1978-01-01
Concurrent strain gage and pressure transducer measured flight loads on a lifting reentry vehicle are compared and correlated with wind tunnel-predicted loads. Subsonic, transonic, and supersonic aerodynamic loads are presented for the left fin and control surfaces of the X-24B lifting reentry vehicle. Typical left fin pressure distributions are shown. The effects of variations in angle of attack, angle of sideslip, and Mach number on the left fin loads and rudder hinge moments are presented in coefficient form. Also presented are the effects of variations in angle of attack and Mach number on the upper flap, lower flap, and aileron hinge-moment coefficients. The effects of variations in lower flap hinge moments due to changes in lower flap deflection and Mach number are presented in terms of coefficient slopes.
Coleman, Clint; Kurth, William T.
1994-06-14
A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.
NASA Technical Reports Server (NTRS)
Nielsen, Jack N; Kaattari, George E; Drake, William C
1952-01-01
A simple method is presented for estimating lift, pitching-moment, and hinge-moment characteristics of all-movable wings in the presence of a body as well as the characteristics of wing-body combinations employing such wings. In general, good agreement between the method and experiment was obtained for the lift and pitching moment of the entire wing-body combination and for the lift of the wing in the presence of the body. The method is valid for moderate angles of attack, wing deflection angles, and width of gap between wing and body. The method of estimating hinge moment was not considered sufficiently accurate for triangular all-movable wings. An alternate procedure is proposed based on the experimental moment characteristics of the wing alone. Further theoretical and experimental work is required to substantiate fully the proposed procedure.
Folding Elastic Thermal Surface - FETS
NASA Technical Reports Server (NTRS)
Urquiza, Eugenio; Zhang, Burt X.; Thelen, Michael P.; Rodriquez, Jose I.; Pellegrino, Sergio
2013-01-01
The FETS is a light and compact thermal surface (sun shade, IR thermal shield, cover, and/or deployable radiator) that is mounted on a set of offset tape-spring hinges. The thermal surface is constrained during launch and activated in space by a thermomechanical latch such as a wax actuator. An application-specific embodiment of this technology developed for the MATMOS (Mars Atmospheric Trace Molecule Occultation Spectrometer) project serves as a deployable cover and thermal shield for its passive cooler. The FETS fits compactly against the instrument within the constrained launch envelope, and then unfolds into a larger area once in space. In this application, the FETS protects the passive cooler from thermal damage and contamination during ground operations, launch, and during orbit insertion. Once unfolded or deployed, the FETS serves as a heat shield, intercepting parasitic heat loads by blocking the passive cooler s view of the warm spacecraft. The technology significantly enhances the capabilities of instruments requiring either active or passive cooling of optical detectors. This can be particularly important for instruments where performance is limited by the available radiator area. Examples would be IR optical instruments on CubeSATs or those launched as hosted payloads because radiator area is limited and views are often undesirable. As a deployable radiator, the panels making up the FETS are linked thermally by thermal straps and heat pipes; the structural support and deployment energy is provided using tape-spring hinges. The FETS is a novel combination of existing technologies. Prior art for deployable heat shields uses rotating hinges that typically must be lubricated to avoid cold welding or static friction. By using tape-spring hinges, the FETS avoids the need for lubricants by avoiding friction altogether. This also eliminates the potential for contamination of nearby cooled optics by outgassing lubricants. Furthermore, the tape-spring design of the FETS is also self-locking so the panels stay in a rigid and extended configuration after deployment. This unexpected benefit makes the tape-spring hinge design of the FETS a light, simple, reliable, compact, non-outgassing hinge, spring, and latch. While tape-spring hinges are not novel, they have never been used to deploy passive unfolding thermal surfaces (radiator panels, covers, sun shades, or IR thermal shields). Furthermore, because this technology is compact, it has minimal impact on the launch envelope and mass specifications. FETS enhances the performance of hosted payload instruments where the science data is limited by dark noise. Incorporating FETS into a thermal control system increases radiator area, which lowers the optical detector temperature. This results in higher SNR (signal-to-noise ratio) and improved science data.
Vortical flow management for improved configuration aerodynamics: Recent experiences
NASA Technical Reports Server (NTRS)
Rao, D. M.
1983-01-01
Recent progress in vortex-control applications for alleviating the adverse consequences of three dimensional separation and vortical interactions on slender body/swept wing configurations is reported. Examples include helical separation trip to alleviate the side force due to forebody vortex asymmetry; hinged strakes to avoid vortex breakdown effects; compartmentation of swept leading edge separation to delay the pitch-up instability; under wing vortex trip and vortex trip and vortex flaps for drag reduction at high lift; and an apex-flap trimmer to fully utilize the lift capability of trailing-edge flaps for take off and landing of delta wings. Experimental results on generic wind-tunnel models are presented to illustrate the vortex-management concepts involved and to indicate their potential for enhancing the subsonic aerodynamics of supersonic-cruise type vehicles.
An experimental study of pressures on 60 deg Delta wings with leading edge vortex flaps
NASA Technical Reports Server (NTRS)
Marchman, J. F., III; Terry, J. E.; Donatelli, D. A.
1983-01-01
An experimental study was conducted in the Virginia Tech Stability Wind Tunnel to determine surface pressures over a 60 deg sweep delta wing with three vortex flap designs. Extensive pressure data was collected to provide a base data set for comparison with computational design codes and to allow a better understanding of the flow over vortex flaps. The results indicated that vortex flaps can be designed which will contain the leading edge vortex with no spillage onto the wing upper surface. However, the tests also showed that flaps designed without accounting for flap thickness will not be optimum and the result can be oversized flaps, early flap vortex reattachment and a second separation and vortex at the wing/flap hinge line.
Promising ferroelectricity in 2D group IV tellurides: a first-principles study
NASA Astrophysics Data System (ADS)
Wan, Wenhui; Liu, Chang; Xiao, Wende; Yao, Yugui
2017-09-01
Based on the first-principles calculations, we investigated the ferroelectric properties of two-dimensional (2D) Group-IV tellurides XTe (X = Si, Ge, and Sn), with a focus on GeTe. 2D Group-IV tellurides energetically prefer an orthorhombic phase with a hinge-like structure and an in-plane spontaneous polarization. The intrinsic Curie temperature Tc of monolayer GeTe is as high as 570 K and can be raised quickly by applying a tensile strain. An out-of-plane electric field can effectively decrease the coercive field for the reversal of polarization, extending its potential for regulating the polarization switching kinetics. Moreover, for bilayer GeTe, the ferroelectric phase is still the ground state. Combined with these advantages, 2D GeTe is a promising candidate material for practical integrated ferroelectric applications.
T-Craft Seabase Ramp Loads Model Test Data Report
2010-12-01
INTRODUCTION 1 TEST CONDITION MATRIX 2 MODEL DESCRIPTIONS 9 LMSR Model 15 Ramp Models 17 MODEL TEST SETUP 18 Side-by-Side Hull Configuration 19... INTRODUCTION The Office of Naval Research (ONR) sponsored a multiple bodied seakeeping model test designed to investigate vessel motions and loads on the hinge...C. 3. Side-by-Side configuration 137 Ramp Load cell 1.88 27.49 -CG ft I ^ -Hinged Connection 3.00 from CL to jauge • oad ce LMSR
Engineering design, stress and thermal analysis, and documentation for SATS program
NASA Technical Reports Server (NTRS)
1973-01-01
An in-depth analysis and mechanical design of the solar array stowage and deployment arrangements for use in Small Applications Technology Satellite spacecraft is presented. Alternate approaches for the major elements of work are developed and evaluated. Elements include array stowage and deployment arrangements, the spacecraft and array behavior in the spacecraft despin mode, and the design of the main hinge and segment hinge assemblies. Feasibility calculations are performed and the preferred approach is identified.
NASA Technical Reports Server (NTRS)
Baucom, R. M. (Inventor)
1983-01-01
An X-ray transparent and biological inert medical clip for treating aneurisms and the like is described. A graphite reinforced composite film is molded into a unitary structure having a pair of hourglass-like cavities hinged together with a pair of jaws for grasping the aneurism extending from the wall of one cavity. A silicone rubber pellet is disposed in the other cavity to exert a spring force through the hinge area to normally bias the jaws into contact with each other.
A Flight-Dynamic Helicopter Mathematical Model with a Single Flap-Lag- Torsion Main Rotor
1990-02-01
allows several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to calculate the blade-section aerodynamic forces...steady Greenberg model is used (ref. 3), Unsteady inflow effects are included using the three-state nonlinear Pitt/Peters dynamic inflow model (ref. 4...sectional aerodynamic model is based on quasi-steady Greenberg theory, which is a Theodorsen theory modified to account for lead-lag motions (refs. 3,14). The
Localised JAK/STAT Pathway Activation Is Required for Drosophila Wing Hinge Development
Johnstone, Kirsty; Wells, Richard E.; Strutt, David; Zeidler, Martin P.
2013-01-01
Extensive morphogenetic remodelling takes place during metamorphosis from a larval to an adult insect body plan. These changes are particularly intricate in the generation of the dipteran wing hinge, a complex structure that is derived from an apparently simple region of the wing imaginal disc. Using the characterisation of original outstretched alleles of the unpaired locus as a starting point, we demonstrate the role of JAK/STAT pathway signalling in the process of wing hinge development. We show that differences in JAK/STAT signalling within the proximal most of three lateral folds present in the wing imaginal disc is required for fold morphology and the subsequent differentiation of the first and second auxiliary sclerites as well as the posterior notal wing process. Changes in these domains are consistent with the established fate map of the wing disc. We show that outstretched wing posture phenotypes arise from the loss of a region of Unpaired expression in the proximal wing fold and demonstrate that this results in a decrease in JAK/STAT pathway activity. Finally we show that reduction of JAK/STAT pathway activity within the proximal wing fold is sufficient to phenocopy the outstretched phenotype. Taken together, we suggest that localised Unpaired expression and hence JAK/STAT pathway activity, is required for the morphogenesis of the adult wing hinge, providing new insights into the link between signal transduction pathways, patterning and development. PMID:23741461
Schierjott, Ronja A; Giurea, Alexander; Neuhaus, Hans-Joachim; Schwiesau, Jens; Pfaff, Andreas M; Utzschneider, Sandra; Tozzi, Gianluca; Grupp, Thomas M
2016-01-01
Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens ( n = 3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.
How insect flight steering muscles work.
Hedenström, Anders
2014-03-01
Insights into how exactly a fly powers and controls flight have been hindered by the need to unpick the dynamic complexity of the muscles involved. The wingbeats of insects are driven by two antagonistic groups of power muscles and the force is funneled to the wing via a very complex hinge mechanism. The hinge consists of several hardened and articulated cuticle elements called sclerites. This articulation is controlled by a great number of small steering muscles, whose function has been studied by means of kinematics and muscle activity. The details and partly novel function of some of these steering muscles and their tendons have now been revealed in research published in this issue of PLOS Biology. The new study from Graham Taylor and colleagues applies time-resolved X-ray microtomography to obtain a three-dimensional view of the blowfly wingbeat. Asymmetric power output is achieved by differential wingbeat amplitude on the left and right wing, which is mediated by muscular control of the hinge elements to mechanically block the wing stroke and by absorption of work by steering muscles on one of the sides. This new approach permits visualization of the motion of the thorax, wing muscles, and the hinge mechanism. This very promising line of work will help to reveal the complete picture of the flight motor of a fly. It also holds great potential for novel bio-inspired designs of fly-like micro air vehicles.
On the Roles of Substrate Binding and Hinge Unfolding in Conformational Changes of Adenylate Kinase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brokaw, Jason B.; Chu, Jhih-wei
2010-11-17
We characterized the conformational change of adenylate kinase (AK) between open and closed forms by conducting five all-atom molecular-dynamics simulations, each of 100 ns duration. Different initial structures and substrate binding configurations were used to probe the pathways of AK conformational change in explicit solvent, and no bias potential was applied. A complete closed-to-open and a partial open-to-closed transition were observed, demonstrating the direct impact of substrate-mediated interactions on shifting protein conformation. The sampled configurations suggest two possible pathways for connecting the open and closed structures of AK, affirming the prediction made based on available x-ray structures and earlier worksmore » of coarse-grained modeling. The trajectories of the all-atom molecular-dynamics simulations revealed the complexity of protein dynamics and the coupling between different domains during conformational change. Calculations of solvent density and density fluctuations surrounding AK did not show prominent variation during the transition between closed and open forms. Finally, we characterized the effects of local unfolding of an important hinge near Pro177 on the closed-to-open transition of AK and identified a novel mechanism by which hinge unfolding modulates protein conformational change. The local unfolding of Pro177 hinge induces alternative tertiary contacts that stabilize the closed structure and prevent the opening transition.« less
Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert
2005-01-01
The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.
A Sweeping Jet Application on a High Reynolds Number Semispan Supercritical Wing Configuration
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Melton, Latunia; Goodliff, Scott L.; Cagle, C. Mark
2017-01-01
The FAST-MAC circulation control model was modified to test an array of unsteady sweeping-jet actuators at realistic flight Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center. Two types of sweeping jet actuators were fabricated using rapid prototype techniques, and directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 deg and 60 deg, and a transonic cruise configuration having a 0 deg flap deflection. For the 30 deg flap high-lift configuration, the sweeping jets achieved comparable lift performance in the separation control regime, while reducing the mass flow by 54% as compared to steady blowing. The sweeping jets however were not effective for the 60 deg flap. For the transonic cruise configuration, the sweeping jets reduced the drag by 3.3% at an off-design condition. The drag reduction for the design lift coefficient for the sweeping jets offer is only half the drag reduction shown for the steady blowing case (6.5%), but accomplished this with a 74% reduction in mass flow.
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation (to index large arrays) have not been widely researched. We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGE is that any addressmore » computation scheme that flows an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Enabling the flow of errors allows one to situate detectors at loop exit points, and helps turn silent corruptions into easily detectable error situations. Our experiments using PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
Brownian microhydrodynamics of active filaments.
Laskar, Abhrajit; Adhikari, R
2015-12-21
Slender bodies capable of spontaneous motion in the absence of external actuation in an otherwise quiescent fluid are common in biological, physical and technological contexts. The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity of the body presents a challenging fluid-structure interaction problem. Here, we model this problem by approximating the slender body as an elastic filament that can impose non-equilibrium velocities or stresses at the fluid-structure interface. We derive equations of motion for such an active filament by enforcing momentum conservation in the fluid-structure interaction and assuming slow viscous flow in the fluid. The fluid-structure interaction is obtained, to any desired degree of accuracy, through the solution of an integral equation. A simplified form of the equations of motion, which allows for efficient numerical solutions, is obtained by applying the Kirkwood-Riseman superposition approximation to the integral equation. We use this form of equation of motion to study dynamical steady states in free and hinged minimally active filaments. Our model provides the foundation to study collective phenomena in momentum-conserving, Brownian, active filament suspensions.
Plasmonic direct writing lithography with a macroscopical contact probe
NASA Astrophysics Data System (ADS)
Huang, Yuerong; Liu, Ling; Wang, Changtao; Chen, Weidong; Liu, Yunyue; Li, Ling
2018-05-01
In this work, we design a plasmonic direct writing lithography system with a macroscopical contact probe to achieve nanometer scale spots. The probe with bowtie-shaped aperture array adopts spring hinge and beam deflection method (BDM) to realize near-field lithography. Lithography results show that a macroscopical plasmonic contact probe can achieve a patterning resolution of around 75 nm at 365 nm wavelength, and demonstrate that the lithography system is promising for practical applications due to beyond the diffraction limit, low cost, and simplification of system configuration. CST calculations provide a guide for the design of recording structure and the arrangement of placing polarizer.
2016-07-01
the U.S. Army 7– by 10–foot Wind Tunnel located at NASA Ames Research Center in Moffett Field, CA. The purpose of the test was to quantify the drag...drag test of a non-rotating 2/5 scale Lockheed AH-56 Cheyenne main rotor hub in the U.S. Army 7– by 10–foot Wind Tunnel located at NASA Ames Research...the U.S. Army 7– by 10–foot wind tunnel at NASA Ames Research Center 5 2.3 Perspective view of the hub mounted with major dimensions and model
Design research of nanopositioner based on SPM and its simulation of FEM
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Li, Hongqi; Zhou, Hongxiu; Li, Linan; Liu, Xiangjun
2006-01-01
A novel nanopositioning stage was designed according to the scanning property of SPM with flexure hinge as kinematic structure and piezoelectric ceramic as actuator. Kinetic precision and X directional area of nanopositioner are 1.55nm and 26.4 micron, respectively, which is demonstrated by kinetic analysis and finite element method FEM simulation. Designed nanopositioner based on SPM moves at 3 dimensions with nanometer scale and its motion of X, Y, and Z directions is decoupled and isotropic. Furthermore, frame of nanopositioner is simple and manufacturing is convenient, which will have broad prospect in the field of nanopositioning and nanotracing.
Oscillatory vortex formation behind a movable plat
NASA Astrophysics Data System (ADS)
Vukicevic, Marija; Pedrizzetti, Gianni
2010-11-01
INTRODUCTION: A wide spectra of application, from industrial to environmental and biological, involve fluid-structure interaction (FSI) at a fundamental level. We investigate a 2D FSI problem for a rigid structure hinged on a wall, freely rotating by the action of an oscillatory fluid flow. METHODS: The Navier-Stokes equations are solved simultaneously with the body dynamics. An accurate numerical solution is developed on the conformal map of the time-varying physical domain. RESULTS: The FSI is primarily influenced by the vortex formation process and by the interaction between vortices generated during the sequential flow oscillations. The emerging bodies can be arranged into a three main groups. The first, made of heavy bodies, terminates the motion during the first few oscillations with the impact of the body on the wall. On the other extreme, the third group made of relatively light bodies presents a flow-driven motion that oscillates periodically in time. In a wide intermediate range, the body oscillates in time presenting non periodic features. CONCLUSIONS: The process of oscillatory vortex formation in presence of fluid-structure interaction shows the emergence of various phenomena that were analyzed in details. In this specific application the results demonstrate that the FSI range from linear to chaotic interaction and finite-time collapse.
Improved design of support for large aperture space lightweight mirror
NASA Astrophysics Data System (ADS)
Wang, Chao; Ruan, Ping; Liu, Qimin
2013-08-01
In order to design a kind of rational large aperture space mirror which can adapt to the space gravity and thermal environment, by taking the choice of material, the lightweight of the mirror and the design of support into account in detail, a double-deck structure with traditional flexible hinge was designed, then the analytical mathematical model of the mirror system was established. The design adopts six supports on back. in order to avoid the constraints, mirror is connected to three middle transition pieces through six flexible hinges, and then the three transition pieces are connected to support plate through another three flexible hinges. However, the initial structure is unable to reach the expected design target and needs to be made further adjustments. By improving and optimizing the original structure, a new type of flexible hinge in the shape of the letter A is designed finally. Compared with the traditional flexible hinge structure, the new structure is simpler and has less influence on the surface figure accuracy of mirror. By using the finite element analysis method, the static and dynamic characteristics as well as the thermal characteristics of the mirror system are analyzed. Analysis results show that the maximum PV value is 37 nm and the maximum RMS value is 10.4 nm when gravity load is applied. Furthermore, the maximum PV value is 46 nm and the maximum RMS value is 10.5 nm under the load case of gravity coupled with 4℃ uniform temperature rise. The results satisfy the index of optical design. The first order natural frequency of the mirror component is 130 Hz according to the conclusion obtained by modal analytical solution, so the mirror structure has high enough fundamental frequency. And, the structural strength can meet the demand under the overload and the random vibration environment respectively. It indicates that the mirror component structure has enough dynamic, static stiffness and thermal stability, meeting the design requirements.
Savage, W.Z.; Morin, R.H.
2002-01-01
We have applied a previously developed analytical stress model to interpret subsurface stress conditions inferred from acoustic televiewer logs obtained in two municipal water wells located in a valley in the southern Davis Mountains near Alpine, Texas. The appearance of stress-induced breakouts with orientations that shift by 90?? at two different depths in one of the wells is explained by results from exact solutions for the effects of valleys on gravity and tectonically induced subsurface stresses. The theoretical results demonstrate that above a reference depth termed the hinge point, a location that is dependent on Poisson's ratio, valley shape, and magnitude of the maximum horizontal tectonic stress normal to the long axis of the valley, horizontal stresses parallel to the valley axis are greater than those normal to it. At depths below this hinge point the situation reverses and horizontal stresses normal to the valley axis are greater than those parallel to it. Application of the theoretical model at Alpine is accommodated by the fact that nearby earthquake focal mechanisms establish an extensional stress regime with the regional maximum horizontal principal stress aligned perpendicular to the valley axis. We conclude that the localized stress field associated with a valley setting can be highly variable and that breakouts need to be examined in this context when estimating the orientations and magnitudes of regional principal stresses.
Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft
NASA Technical Reports Server (NTRS)
Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David
1993-01-01
Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.
Sadrizadeh, Sasan; Pantelic, Jovan; Sherman, Max; Clark, Jordan; Abouali, Omid
2018-03-08
Operating rooms (ORs) are usually over-pressurized in order to prevent the penetration of contaminated air and the consequent risk of surgical site infection. However, a door-opening can result in the rapid disappearance of pressure and contaminants can then easily penetrate into the surgical zone. Therefore, a broad knowledge and understanding of OR ventilation systems and their protective potential is essential for optimizing the surgical environment. This study investigated the air quality and level of airborne particles during a single and multiple door-opening cycles in an operating room supplied by a turbulent-mixing ventilation system. The exploration was carried out numerically using computational fluid dynamics. Model validation was performed to ensure the validity of the achieved results. The OR was initially over-pressurized by approximately 15Pa, relative to the adjacent corridors. Both sliding and hinged doors were simulated and compared. Penetration of bacteria carrying particles from the corridors to the OR can be successfully restricted by using a positive-pressure system. However, the results clearly indicate that frequent door opening can interfere with airflow ventilation systems, alter the pressure gradient, and increase the infection risk for the patient undergoing surgical intervention. Door-opening disturbs the airflow field and could result in containment failure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Algorithms for the Reduction of Wind-Tunnel Data Derived from Strain Gauge Force Balances.
1984-05-01
summed. Where hinge moments are measured on a model, it is customary to express them by coefficients of the form C11 h (4.23) q Si dH where hi is the...measured hinge moment and Sit and dH are a characteristic area and length associated with the control surface. 4.6 Transformation to Body Axes...Pty. Ltd. Mr D. Pilkington Mr R. D. Bullen Commonwealth Aircraft Corporation, Libra Hawker de Havilland Aust. Pty. Ltd., Bankstown. L.ibrar
Structural Analysis of a Magnetically Actuated Silicon Nitride Micro-Shutter for Space Applications
NASA Technical Reports Server (NTRS)
Loughlin, James P.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Mott, D. Brent; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Finite element models have been created to simulate the electrostatic and electromagnetic actuation of a 0.5 micrometers silicon nitride micro-shutter for use in a spacebased Multi-object Spectrometer (MOS). The microshutter uses a torsion hinge to go from the closed, 0 degree, position, to the open, 90 degree position. Stresses in the torsion hinge are determined with a large deformation nonlinear finite element model. The simulation results are compared to experimental measurements of fabricated micro-shutter devices.
NASA Technical Reports Server (NTRS)
Likins, P. W.
1974-01-01
Equations of motion are derived for use in simulating a spacecraft or other complex electromechanical system amenable to idealization as a set of hinge-connected rigid bodies of tree topology, with rigid axisymmetric rotors and nonrigid appendages attached to each rigid body in the set. In conjunction with a previously published report on finite-element appendage vibration equations, this report provides a complete minimum-dimension formulation suitable for generic programming for digital computer numerical integration.
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.
1983-01-01
Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.
Structural controls of the Tuscarora geothermal field, Elko County, Nevada
NASA Astrophysics Data System (ADS)
Dering, G.; Faulds, J. E.
2012-12-01
Tuscarora is an amagmatic geothermal system located ~90 km northwest of Elko, Nevada, in the northern part of the Basin and Range province ~15 km southeast of the Snake River Plain. Detailed geologic mapping, structural analysis, and well data have been integrated to identify the structural controls of the Tuscarora geothermal system. The structural framework of the geothermal field is defined by NNW- to NNE-striking normal faults that are approximately orthogonal to the present extension direction. Boiling springs, fumaroles, and siliceous sinter emanate from a single NNE-striking, west-dipping normal fault. Normal faults west of these hydrothermal features mostly dip steeply east, whereas normal faults east of the springs primarily dip west. Thus, the springs, fumaroles, and sinter straddle a zone of interaction between fault sets that dip toward each other, classified as a strike-parallel anticlinal accommodation zone. Faults within the geothermal area are mostly discontinuous along strike with offsets of tens to hundreds of meters, whereas the adjacent range-bounding fault systems of the Bull Run and Independence Mountains accommodate several kilometers of displacement. The geothermal field lies within a broad step over between the southward terminating west-dipping Bull Run fault zone and the northward terminating west-dipping Independence Mountains fault zone. Neither of these major fault zones is known to host high temperature geothermal systems. The accommodation zone lies within the broad step over and contains both east-dipping antithetic and west-dipping synthetic faults. Accommodation zones are relatively common structural components of extended terranes that transfer strain between oppositely dipping fault sets via a network of subsidiary normal faults. This study has identified the hinge zone of an anticlinal accommodation zone as the site most conducive to fluid up-flow. The recognition of this specific portion of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. This type of information may ultimately help to reduce the risks of targeting successful geothermal wells in such settings.
NASA Astrophysics Data System (ADS)
Qiu, Zhi-cheng; Wang, Xian-feng; Zhang, Xian-Min; Liu, Jin-guo
2018-07-01
A novel non-contact vibration measurement method using binocular vision sensors is proposed for piezoelectric flexible hinged plate. Decoupling methods of the bending and torsional low frequency vibration on measurement and driving control are investigated, using binocular vision sensors and piezoelectric actuators. A radial basis function neural network controller (RBFNNC) is designed to suppress both the larger and the smaller amplitude vibrations. To verify the non-contact measurement method and the designed controller, an experimental setup of the flexible hinged plate with binocular vision is constructed. Experiments on vibration measurement and control are conducted by using binocular vision sensors and the designed RBFNNC controllers, compared with the classical proportional and derivative (PD) control algorithm. The experimental measurement results demonstrate that the binocular vision sensors can detect the low-frequency bending and torsional vibration effectively. Furthermore, the designed RBF can suppress the bending vibration more quickly than the designed PD controller owing to the adjustment of the RBF control, especially for the small amplitude residual vibrations.
Modeling and design of a two-axis elliptical notch flexure hinge
NASA Astrophysics Data System (ADS)
Wu, Jianwei; Zhang, Yin; Lu, Yunfeng; Wen, Zhongpu; Bin, Deer; Tan, Jiubin
2018-04-01
As an important part of the joule balance system, the two-axis elliptical notch flexure hinge (TENFH) which typically consists of two single-axis elliptical notch flexure hinges was studied. First, a 6 degrees of freedom (6-DOF) compliance model was established based on the coordinate transformation method. In addition, the maximum stress of the TENFH was derived. The compliance and maximum stress model was verified using finite element analysis simulation. To decouple the attitude of the suspended coil system and reduce the offset between the centroid of the suspended coil mechanism and the mass comparator in the joule balance system, a new mechanical structure of TENFH was designed based on the compliance model and stress model proposed in this paper. The maximum rotation range is up to 10°, and the axial load is more than 5 kg, which meets the requirements of the system. The compliance model was also verified by deformation experimentation with the designed TENFH.
Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft
NASA Technical Reports Server (NTRS)
Boroughs, R. R.; Padmanabhan, V.
1983-01-01
The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described.
Bioengineered nisin derivatives with enhanced activity in complex matrices
Rouse, Susan; Field, Des; Daly, Karen M.; O'Connor, Paula M.; Cotter, Paul D.; Hill, Colin; Ross, R. Paul
2012-01-01
Summary Nisin A is the best known and most extensively characterized lantibiotic. As it is ribosomally synthesized, bioengineering‐based strategies can be used to generate variants. We have previously demonstrated that bioengineering of the hinge region of nisin A can result in the generation of variants with enhanced anti‐microbial activity against Gram‐positive pathogens. Here we created a larger bank of hinge variant producers and screened for producers that exhibit enhanced bioactivity as assessed by agar‐based assays against a selection of target strains. Further analysis of 12 ‘lead’ variants reveals that in many cases enhanced bioactivity is not attributable to enhanced specific activity but is instead as a consequence of an enhanced ability to diffuse through complex polymers. In the case of two variants, which contain the residues SVA and NAK, respectively, within the hinge region, we demonstrate that this enhanced trait enables the peptides to dramatically outperform nisin A with respect to controlling Listeria monocytogenes in commercially produced chocolate milk that contains carrageenan as a stabilizer. PMID:22260415
NASA Astrophysics Data System (ADS)
Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm
2017-04-01
Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.
Role for the MED21-MED7 Hinge in Assembly of the Mediator-RNA Polymerase II Holoenzyme.
Sato, Shigeo; Tomomori-Sato, Chieri; Tsai, Kuang-Lei; Yu, Xiaodi; Sardiu, Mihaela; Saraf, Anita; Washburn, Michael P; Florens, Laurence; Asturias, Francisco J; Conaway, Ronald C; Conaway, Joan W
2016-12-23
Mediator plays an integral role in activation of RNA polymerase II (Pol II) transcription. A key step in activation is binding of Mediator to Pol II to form the Mediator-Pol II holoenzyme. Here, we exploit a combination of biochemistry and macromolecular EM to investigate holoenzyme assembly. We identify a subset of human Mediator head module subunits that bind Pol II independent of other subunits and thus probably contribute to a major Pol II binding site. In addition, we show that binding of human Mediator to Pol II depends on the integrity of a conserved "hinge" in the middle module MED21-MED7 heterodimer. Point mutations in the hinge region leave core Mediator intact but lead to increased disorder of the middle module and markedly reduced affinity for Pol II. These findings highlight the importance of Mediator conformation for holoenzyme assembly. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm
2017-04-07
Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.
Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm
2017-01-01
Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine. PMID:28387240
Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian
2015-06-01
Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins. © 2015 Wiley Periodicals, Inc.
A flight-dynamic helicopter mathematical model with a single flap-lag-torsion main rotor
NASA Technical Reports Server (NTRS)
Takahashi, Marc D.
1990-01-01
A mathematical model of a helicopter system with a single main rotor that includes rigid, hinge-restrained rotor blades with flap, lag, and torsion degrees of freedom is described. The model allows several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to calculate the blade-section aerodynamic forces, and inflow effects are accounted for by using three-state nonlinear dynamic inflow model. The motion of the rigid fuselage is defined by six degrees of freedom, and an optional rotor rpm degree of freedom is available. Empennage surfaces and the tail rotor are modeled, and the effect of main-rotor downwash on these elements is included. Model trim linearization, and time-integration operations are described and can be applied to a subset of the model in the rotating or nonrotating coordinate frame. A preliminary validation of the model is made by comparing its results with those of other analytical and experimental studies. This publication presents the results of research compiled in November 1989.
Computational prediction of hinge axes in proteins
2014-01-01
Background A protein's function is determined by the wide range of motions exhibited by its 3D structure. However, current experimental techniques are not able to reliably provide the level of detail required for elucidating the exact mechanisms of protein motion essential for effective drug screening and design. Computational tools are instrumental in the study of the underlying structure-function relationship. We focus on a special type of proteins called "hinge proteins" which exhibit a motion that can be interpreted as a rotation of one domain relative to another. Results This work proposes a computational approach that uses the geometric structure of a single conformation to predict the feasible motions of the protein and is founded in recent work from rigidity theory, an area of mathematics that studies flexibility properties of general structures. Given a single conformational state, our analysis predicts a relative axis of motion between two specified domains. We analyze a dataset of 19 structures known to exhibit this hinge-like behavior. For 15, the predicted axis is consistent with a motion to a second, known conformation. We present a detailed case study for three proteins whose dynamics have been well-studied in the literature: calmodulin, the LAO binding protein and the Bence-Jones protein. Conclusions Our results show that incorporating rigidity-theoretic analyses can lead to effective computational methods for understanding hinge motions in macromolecules. This initial investigation is the first step towards a new tool for probing the structure-dynamics relationship in proteins. PMID:25080829
Hinge-deleted IgG4 blocker therapy for acetylcholine receptor myasthenia gravis in rhesus monkeys.
Losen, Mario; Labrijn, Aran F; van Kranen-Mastenbroek, Vivianne H; Janmaat, Maarten L; Haanstra, Krista G; Beurskens, Frank J; Vink, Tom; Jonker, Margreet; 't Hart, Bert A; Mané-Damas, Marina; Molenaar, Peter C; Martinez-Martinez, Pilar; van der Esch, Eline; Schuurman, Janine; de Baets, Marc H; Parren, Paul W H I
2017-04-20
Autoantibodies against ion channels are the cause of numerous neurologic autoimmune disorders. Frequently, such pathogenic autoantibodies have a restricted epitope-specificity. In such cases, competing antibody formats devoid of pathogenic effector functions (blocker antibodies) have the potential to treat disease by displacing autoantibodies from their target. Here, we have used a model of the neuromuscular autoimmune disease myasthenia gravis in rhesus monkeys (Macaca mulatta) to test the therapeutic potential of a new blocker antibody: MG was induced by passive transfer of pathogenic acetylcholine receptor-specific monoclonal antibody IgG1-637. The effect of the blocker antibody (IgG4Δhinge-637, the hinge-deleted IgG4 version of IgG1-637) was assessed using decrement measurements and single-fiber electromyography. Three daily doses of 1.7 mg/kg IgG1-637 (cumulative dose 5 mg/kg) induced impairment of neuromuscular transmission, as demonstrated by significantly increased jitter, synaptic transmission failures (blockings) and a decrease in the amplitude of the compound muscle action potentials during repeated stimulations (decrement), without showing overt symptoms of muscle weakness. Treatment with three daily doses of 10 mg/kg IgG4Δhinge-637 significantly reduced the IgG1-637-induced increase in jitter, blockings and decrement. Together, these results represent proof-of principle data for therapy of acetylcholine receptor-myasthenia gravis with a monovalent antibody format that blocks binding of pathogenic autoantibodies.
Lee, Winson C C; Kobayashi, Toshiki; Choy, Barton T S; Leung, Aaron K L
2012-06-01
A custom moulded ankle orthosis with hinged joints potentially offers a better control over the subtalar joint and the ankle joint during lateral cutting movements, due to total contact design and increase in material strength. To test the above hypothesis by comparing it to three other available orthoses. Repeated measures. Eight subjects with a history of ankle sprains (Grade 2), and 11 subjects without such history performed lateral cutting movements in four test conditions: 1) non-orthotic, 2) custom-moulded ankle orthosis with hinges, 3) Sport-Stirrup, and 4) elastic ankle sleeve with plastic support. A VICON motion analysis system was used to study the motions at the ankle and subtalar joints. The custom-moulded ankle orthosis significantly lowered the inversion angle at initial contact (p = 0.006) and the peak inversion angle (p = 0.000) during lateral cutting movements in comparison to non-orthotic condition, while the other two orthoses did not. The three orthoses did not affect the plantarflexion motions, which had been suggested by previous studies to be important in shock wave attenuation. The custom-moulded ankle orthosis with hinges could better control inversion and thus expected to better prevent ankle sprain in lateral cutting movements. Custom-moulded ankle orthoses are not commonly used in preventing ankle sprains. This study raises the awareness of the use of custom-moulded ankle orthoses which are expected to better prevent ankle sprains.
Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping.
Wang, Wei; Ahn, Sung-Hoon
2017-12-01
Soft pneumatic actuators and motor-based mechanisms being concomitant with the cumbersome appendages have many challenges to making the independent robotic system with compact and lightweight configuration. Meanwhile, shape memory actuators have shown a promising alternative solution in many engineering applications ranging from artificial muscle to aerospace industry. However, one of the main limitations of such systems is their inherent softness resulting in a small actuation force, which prevents them from more effective applications. This issue can be solved by combining shape memory actuators and the mechanism of stiffness modulation. As a first, this study describes a shape memory alloy-based soft gripper composed of three identical fingers with variable stiffness for adaptive grasping in low stiffness state and effective holding in high stiffness state. Each finger with two hinges is fabricated through integrating soft composite actuator with stiffness changeable material where each hinge can approximately achieve a 55-fold changeable stiffness independently. Besides, each finger with two hinges can actively achieve multiple postures by both selectively changing the stiffness of hinges and actuating the relevant SMA wire. Based on these principles, the gripper is applicable for grasping objects with deformable shapes and varying shapes with a large range of weight where its maximum grasping force is increased to ∼10 times through integrating with the stiffness changeable mechanism. The final demonstration shows that the finger with desired shape-retained configurations enables the gripper to successfully pick up a frustum-shaped object.
Experimental testing of flexible barriers for containment of debris flows
DeNatale, Jay S.; Iverson, Richard M.; Major, Jon J.; LaHusen, Richard G.; Fliegel, Gregg L.; Duffy, John D.
1999-01-01
In June 1996, six experiments conducted at the U.S. Geological Survey Debris Flow Flume demonstrated that flexible, vertical barriers constructed of wire rope netting can stop small debris flows. All experimental debris flows consisted of water-saturated gravelly sand with less than two percent finer sediment by weight. All debris flows had volumes of about 10 cubic meters, masses of about 20 metre tons, and impact velocities of 5 to 9 meters per second. In four experiments, the debris flow impacted pristine, unreformed barriers of varying design; in the other two experiments, the debris flow impacted barriers already loaded with sediment from a previous flow. Differences in barrier design led to differences in barrier performance. Experiments were conducted with barriers constructed of square-mesh wire-rope netting with 30centimeter, 20centimeter, and 15 centimeter mesh openings as well as 30centimeter diameter interlocking steel rings. In all cases, sediment cascading downslope at the leading edge of the debris flows tended to spray through the nets. Nets fitted with finer-mesh chain link or chicken wire liners contained more sediment than did unlined nets, and a ring net fitted with a synthetic silt screen liner contained nearly 100 percent of the sediment. Irreversible net displacements of up to 2 meters and friction brake engagement on the support and anchor cables dissipated some of the impact energy. However, substantial forces developed in the steel support columns and the lateral and tie-back anchor cables attached to these columns. As predicted by elementary mechanics, the anchor cables experienced larger tensile forces when the support columns were hinged at the base rather than bolted rigidly to the foundation. Measured loads in the lateral anchor cables exceeded those in the tie-back anchor cables and the load cell capacity of 45 kilo-Newtons. Measurements also indicated that the peak loads in the tie- back anchors were highly transient and occurred at the points of maximum momentum impulse to the net.
A roadmap for bridging basic and applied research in forensic entomology.
Tomberlin, J K; Mohr, R; Benbow, M E; Tarone, A M; VanLaerhoven, S
2011-01-01
The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.
Asymmetric Subductions in an Asymmetric Earth: Geodynamics and Numerical Modeling
NASA Astrophysics Data System (ADS)
Dal Zilio, L.; Ficini, E.; Doglioni, C.; Gerya, T.
2016-12-01
The driving mechanism of plate tectonics is still controversial. Moreover, mantle kinematics is still poorly constrained due to the limited information available on its composition, thermal state, and physical parameters. The net rotation of the lithosphere, or so-called W-ward drift, however, indicates a decoupling of the plates relative to the underlying asthenosphere at about 100-200 km depth in the Low-Velocity Zone and a relative "E-ward" mantle counterflow. This mantle flow can account for a number of tectonic asymmetries on subduction dynamics such as steep versus shallow slab dip, diverging versus converging subduction hinge, low versus high topography of mountain belts, etc. This asymmetry is generally interpreted to reflect the age-dependent negative buoyancy of the subducting lithosphere. However, slab dip is insensitive to the age of the lithosphere. Here we investigate the role of mantle flow in controlling subduction dynamics using a high-resolution rheologically consistent two-dimensional numerical modeling. Results show the evolution of a subducting oceanic plate beneath a continent: when the subducting plate is dipping in opposite direction with respect to the mantle flow, the slab is sub-vertically deflected by the mantle flow, thus leading the coeval development of a back-arc basin. In contrast, agreement between mantle flow and dipping of the subducting slab relieves shallow dipping subduction zone, which in turn controls the development of a pronounced topography. Moreover, this study confirms that the age of the subducting oceanic lithosphere (i.e. its negative buoyancy) has a second order effect on the dip angle of the slab and, more generally, on subduction dynamics. Our numerical experiments show strong similarities to the observed evolution of subduction zone worldwide and demonstrate that the possibility of a horizontal mantle flow is universally valid.
Development of a Fowler flap system for a high performance general aviation airfoil
NASA Technical Reports Server (NTRS)
Wentz, W. H., Jr.; Seetharam, H. C.
1974-01-01
A two-dimensional wind-tunnel evaluation of two Fowler flap configurations on the new GA(W)-1 airfoil was conducted. One configuration used a computer-designed 29-percent chord Fowler flap. The second configuration was modified to have increased Fowler action with a 30-percent chord flap. Force, pressure, and flow-visualization data were obtained at Reynolds numbers of 2.2 million to 2.9 million. Optimum slot geometry and performance were found to be close to computer predictions. A C sub L max of 3.8 was achieved. Optimum flap deflection, slot gap, and flap overlap are presented as functions of C sub L. Tests were made with the lower surface cusp filled in to show the performance penalties that result. Some data on the effects of adding vortex generators and hinged-plate spoilers were obtained.
Baker, Zeke
2017-12-01
This article has two aims: first, to understand the co-production of climate science and the state, and second, to provide a test case for Pierre Bourdieu's field theory. To these ends, the article reconstructs the historical formation of a US climate science field, with an analytic focus on inter-field dynamics and heterogeneous networking practices. Drawing from primary- and secondary-source materials, the historical analysis focuses on relations between scientists and state actors from the 1930s to the 1960s. The account shows how actors with positions linking scientific and bureaucratic fields constructed critical nodes and 'hinges' that co-produced war-making and state expansion on the one hand, and a relatively autonomous climate science field on the other. The analysis explains the emergence of climate science by focusing on the WWII-era transformation of meteorology and oceanography into distinct disciplines, the emergence of 'basic' research as a central principle of post-war government, and the formation of a climate science field by the 1960s centered on computerized modeling and populated by an interdisciplinary scientific elite. The article concludes by indicating how these processes led to the subsequent development of climate change as a science-state conundrum that has reorganized the climate science field in recent decades.
Open cycle ocean thermal energy conversion steam control and bypass system
Wittig, J. Michael; Jennings, Stephen J.
1980-01-01
Two sets of hinged control doors for regulating motive steam flow from an evaporator to a condenser alternatively through a set of turbine blades in a steam bypass around the turbine blades. The evaporator has a toroidal shaped casing situated about the turbine's vertical axis of rotation and an outlet opening therein for discharging motive steam into an annular steam flow path defined between the turbine's radially inner and outer casing structures. The turbine blades extend across the steam flow path intermediate the evaporator and condenser. The first set of control doors is arranged to prevent steam access to the upstream side of the turbine blades and the second set of control doors acts as a bypass around the blades so as to maintain equilibrium between the evaporator and condenser during non-rotation of the turbine. The first set of control doors preferably extend, when closed, between the evaporator casing and the turbine's outer casing and, when open, extend away from the axis of rotation. The second set of control doors preferably constitute a portion of the turbine's outer casing downstream from the blades when closed and extend, when open, toward the axis of rotation. The first and second sets of control doors are normally held in the open and closed positions respectively by locking pins which may be retracted upon detecting an abnormal operating condition respectively to permit their closing and opening and provide steam flow from the evaporator to the condenser.
Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields
NASA Astrophysics Data System (ADS)
Byrnes, Jeffrey M.; Crown, David A.
2002-10-01
Morphologic characteristics, flow stratigraphy, and radar backscatter properties of five lava flow fields on Venus (Turgmam Fluctus, Zipaltonal Fluctus, Tuli Mons/Uilata Fluctus, Var Mons, and Mylitta Fluctus) were examined to understand flow field emplacement mechanisms and relationships to other surface processes. These analyses indicate that the flow fields studied developed through emplacement of numerous, thin flow units, presumably over extended periods of time. Although the Venusian fields display flow morphologies similar to those observed within terrestrial flow fields, the Venusian flow units are significantly larger and have a larger range of radar backscatter coefficients. Both simple and compound flow emplacement appear to have occurred within the flow fields. A potential correlation between flow rheology and radar brightness is suggested by differences in planform morphology, apparent flow thickness, and apparent sensitivity to topography between bright and dark flows. Distributary flow morphologies may result from tube-fed flows, and postemplacement modification by processes such as flow inflation and crustal foundering is consistent with discrete zones of increased radar brightness within individual flow lobes. Mapping of these flow fields does not indicate any simple evolutionary trend in eruptive/resurfacing style within the flow fields, or any consistent temporal sequence relative to other tectonic and volcanic features.
Concepts, characterization, and modeling of MEMS microswitches with gold contacts in MUMPs
NASA Astrophysics Data System (ADS)
Lafontan, Xavier; Dufaza, Christian; Robert, Michel; Pressecq, Francis; Perez, Guy
2001-04-01
This paper demonstrates that RF MEMS micro-switches can be realized with a low cost MEMS technology such as MUMPs. Two different switches are proposed, namely the hinged beam switch and the gold overflowing switch. Their concepts, design and characterization are described in details. On-resistance as low as 5 - 6 (Omega) for the gold overflowing switch and 2 - 3 (Omega) for the hinged beam switch have been measured. Finally, experimental measurements showed that force and electrical current had strong influences on the overall electrical contact.
NASA Astrophysics Data System (ADS)
Khomchenko, V. G.; Varepo, L. G.; Glukhov, V. I.; Krivokhatko, E. A.
2017-06-01
The geometric model for the synthesis of third-class lever mechanisms is proposed, which allows, by changing the length of the auxiliary link and the position of its fixed hinge, to rearrange the movement of the working organ onto the cyclograms with different predetermined dwell times. It is noted that with the help of the proposed model, at the expense of the corresponding geometric constructions, the best uniform Chebyshev approximation can be achieved at the interval of the standstill.
Thermoelectric generator with hinged assembly for fins
Purdy, David L.; Shapiro, Zalman M.; Hursen, Thomas F.; Maurer, Gerould W.
1976-11-02
A cylindrical casing has a central shielded capsule of radioisotope fuel. A plurality of thermonuclear modules are axially arranged with their hot junctions resiliently pressed toward the shield and with their cold junctions adjacent a transition member having fins radiating heat to the environment. For each module, the assembly of transition member and fins is hinged to the casing for swinging to permit access to and removal of such module. A ceramic plate having gold layers on opposite faces prevents diffusion bonding of the hot junction to the shield.
Aerodynamic characteristics of horizontal tail surfaces
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1940-01-01
Collected data are presented on the aerodynamic characteristics of 17 horizontal tail surfaces including several with balanced elevators and two with end plates. Curves are given for coefficients of normal force, drag, and elevator hinge moment. A limited analysis of the results has been made. The normal-force coefficients are in better agreement with the lifting-surface theory of Prandtl and Blenk for airfoils of low aspect ratio than with the usual lifting-line theory. Only partial agreement exists between the elevator hinge-moment coefficients and those predicted by Glauert's thin-airfoil theory.
Simplified Flutter Prevention Criteria for Personal Type Aircraft
1955-01-01
Play of Ailerons The total free play at the aileron edge of each aileron, when the other aileron is cla:nped to the wing should not exceed 2.5 percent of...the aileron chcrd aft of the hinge line at the station where the free play is measured. Elevator Balance Each elevator should be dynamically balanced...8217•. • . e •% f% ’dr-,•~~ • . S•, ,,,8- 2. The total free play at the tab trailing edge should be less than 2.5% of the tab chord aft of the hinge
Process of making medical clip
NASA Technical Reports Server (NTRS)
Baucom, R. M. (Inventor)
1984-01-01
An X-ray transparent and biologically inert medical clip for treating aneurisms and the like is disclosed, as well as a process for its production. A graphite reinforced composite film is molded into a unitary structure having a pair of hourglass-like cavities which are hinged together with a pair of jaws for grasping the aneurism extending from the wall of one cavity. A silicone rubber pellet is disposed in the other cavity to exert a spring force through the hinge area to normally bias the jaws into contact with each other.
Modeling and design of a high-performance hybrid actuator
NASA Astrophysics Data System (ADS)
Aloufi, Badr; Behdinan, Kamran; Zu, Jean
2016-12-01
This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic responses, passive isolation characteristics and the locations of their peaks and dips. Furthermore, the output actuating force can be improved by increasing the hinge hardness, which is controlled by its dimensions, although increasing the hinge hardness may cause a decrease in the free displacement and passive insulation performance, particularly at low frequencies.
NASA Astrophysics Data System (ADS)
Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.
2018-03-01
We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.
NASA Technical Reports Server (NTRS)
Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.; Anders, Scott G.; Melton, Latunia P.; Carter, Melissa B.; Allan, Brian G.; Capone, Francis J.
2013-01-01
A second wind tunnel test of the FAST-MAC circulation control model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 and 60 degrees, along with the transonic cruise configuration with zero degree flap deflection. Testing was again conducted over a wide range of Mach numbers up to 0.88, and Reynolds numbers up to 30 million based on the mean chord. The first wind tunnel test had poor transonic force and moment data repeatability at mild cryogenic conditions due to inadequate thermal conditioning of the balance. The second test demonstrated that an improvement to the balance heating system significantly improved the transonic data repeatability, but also indicated further improvements are still needed. The low-speed highlift performance of the model was improved by testing various blowing slot heights, and the circulation control was again demonstrated to be effective in re-attaching the flow over the wing at off-design transonic conditions. A new tailored spanwise blowing technique was also demonstrated to be effective at transonic conditions with the benefit of reduced mass flow requirements.
NASA Technical Reports Server (NTRS)
Magee-Roberts, K.; Head, James W., III; Lancaster, M. G.
1992-01-01
Large-volume lava flow fields have been identified on Venus, the most areally extensive of which are known as fluctus and have been subdivided into six morphologic types. Sheetlike flow fields (Type 1) lack the numerous, closely spaced, discrete lava flow lobes that characterize digitate flow fields. Transitional flow fields (Type 2) are similar to sheetlike flow fields but contain one or more broad flow lobes. Digitate flow fields are divided further into divergent (Types 3-5) and subparallel (Type 6) classes on the basis of variations in the amount of downstream flow divergence. As a result of our previous analysis of the detailed morphology, stratigraphy, and tectonic associations of Mylitta Fluctus, we have formulated a number of questions to apply to all large flow fields on Venus. In particular, we would like to address the following: (1) eruption conditions and style of flow emplacement (effusion rate, eruption duration), (2) the nature of magma storage zones (presence of neutral buoyancy zones, deep or shallow crustal magma chambers), (3) the origin of melt and possible link to mantle plumes, and (4) the importance of large flow fields in plains evolution. To answer these questions we have begun to examine variations in flow field dimension and morphology; the distribution of large flow fields in terms of elevation above the mean planetary radius; links to regional tectonic or volcanic structures (e.g., associations with large shield edifices, coronae, or rift zones); statigraphic relationships between large flow fields, volcanic plains, shields, and coronae; and various models of flow emplacement in order to estimate eruption parameters. In this particular study, we have examined the proximal elevations and topographic slopes of 16 of the most distinctive flow fields that represent each of the 6 morphologic types.
NASA Astrophysics Data System (ADS)
Bit Lee, Han; Kim, Young Won; Yoon, Jonghun; Lee, Nak Kyu; Park, Suk-Hee
2017-04-01
We developed a skin-conformal flexible sensor in which three-dimensional (3D) free-form elastomeric sheets were harmoniously integrated with a piezoelectric nanofiber mat. The elastomeric sheets were produced by polydimethylsiloxane (PDMS) molding via using a 3D printed mold assembly, which was adaptively designed from 3D scanned skin surface geometry. The mold assembly, fabricated using a multi-material 3D printer, was composed of a pair of upper/lower mold parts and an interconnecting hinge, with material properties are characterized by different flexibilities. As a result of appropriate deformabilites of the upper mold part and hinge, the skin-conformal PDMS structures were successfully sandwich molded and demolded with good repeatability. An electrospun poly(vinylidene fluoride trifluoroethylene) nanofiber mat was prepared as the piezoelectric active layer and integrated with the 3D elastomeric parts. We confirmed that the highly responsive sensing performances of the 3D integrated sensor were identical to those of a flat sensor in terms of sensitivity and the linearity of the input-output relationship. The close 3D conformal skin contact of the flexible sensor enabled discernable perception of various scales of physical stimuli, such as tactile force and even minute skin deformation caused by the tester’s pulse. Collectively from the 3D scanning design to the practical application, our achievements can potentially meet the needs of tailored human interfaces in the field of wearable devices and human-like robots.
NASA Astrophysics Data System (ADS)
Wang, Guilian; Zhou, Xiaoqin; Ma, Peiqun; Wang, Rongqi; Meng, Guangwei; Yang, Xu
2018-01-01
The vibration assisted polishing has widely application fields because of higher machining frequency and better polishing quality, especially the polishing with the non-resonant mode that is regarded as a kind of promising polishing method. This paper reports a novel vibration assisted polishing device, consisting of the flexible hinge mechanism driven by the piezoelectric actuators, which is suitable for polishing planes or curve surfaces with slow curvature. Firstly, the generation methods of vibration trajectory are investigated for the same frequency and different frequency signals' inputs, respectively, and then the types of elliptic and Lissajous's vibration trajectories are generated respectively. Secondly, a flexural mechanism consisting of the right circular flexible hinges and the leaf springs is developed to produce two-dimensional vibration trajectory. Statics and dynamics investigating of this flexible mechanism are finished in detail. The analytical models about input and output compliances of the flexural mechanism are established according to the matrix-based compliance modeling, and the dynamic model of the flexural mechanism based on the Euler-Lagrange equation is also presented. The finite element model of the flexural mechanism was established to carry out the numerical simulation in order to testify the rationality of device design. Finally, the polishing experiment is carried out to prove the effectiveness of the vibration device. The experimental results show that this novel vibration assisted polishing device developed in this study can remove more effectively the cutting marks left by last process and obviously reduce the workpiece surface roughness.
Cysteine Racemization on IgG Heavy and Light Chains
Zhang, Qingchun; Flynn, Gregory C.
2013-01-01
Under basic pH conditions, the heavy chain 220-light chain 214 (H220-L214) disulfide bond, found in the flexible hinge region of an IgG1, can convert to a thioether. Similar conditions also result in racemization of the H220 cysteine. Here, we report that racemization occurs on both H220 and L214 on an IgG1 with a λ light chain (IgG1λ) but almost entirely on H220 of an IgGl with a κ light chain (IgG1κ) under similar conditions. Likewise, racemization was detected at significant levels on H220 and L214 on endogenous human IgG1λ but only at the H220 position on IgG1κ. Low but measurable levels of d-cysteines were found on IgG2 cysteines in the hinge region, both with monoclonal antibodies incubated under basic pH conditions and on antibodies isolated from human serum. A simplified reaction mechanism involving reversible β-elimination on the cysteine is presented that accounts for both base-catalyzed racemization and thioether formation at the hinge disulfide. PMID:24142697
NASA Technical Reports Server (NTRS)
Aoyagi, Kiyoshi; Hickey, David H.
1959-01-01
Previous investigations have shown that increased blowing at the hinge-line radius of a plain flap will give flap lift increases above that realized with boundary-layer control. Other experiments and theory have shown that blowing from a wing trailing edge, through the jet flap effect, produced lift increases. The present investigation was made to determine whether blowing simultaneously at the hinge-line radius and trailing edge would be more effective than blowing separately at either location. The tests were made at a Reynolds number of 4.5 x 10(exp 6) with a 35 deg sweptback-wing airplane. For this report, only the lift data are presented. Of the three flap blowing arrangements tested, blowing distributed between the trailing edge and the hinge-line radius of a plain flap was found to be superior to blowing at either location separately at the plain flap deflections of interest. Comparison of estimated and experimental jet flap effectiveness was fair.
How does a woodpecker work? An impact dynamics approach
NASA Astrophysics Data System (ADS)
Liu, Yuzhe; Qiu, Xinming; Yu, Tongxi; Tao, Jiawei; Cheng, Ze
2015-04-01
To understand how a woodpecker is able accelerate its head to such a high velocity in a short amount of time, a multi-rigid-segment model of a woodpecker's body is established in this study. Based on the skeletal specimen of the woodpecker and several videos of woodpeckers pecking, the parameters of a three-degree-of-freedom system are determined. The high velocity of the head is found to be the result of a whipping effect, which could be affected by muscle torque and tendon stiffness. The mechanism of whipping is analyzed by comparing the response of a hinged rod to that of a rigid rod. Depending on the parameters, the dynamic behavior of a hinged rod is classified into three response modes. Of these, a high free-end velocity could be achieved in mode II. The model is then generalized to a multihinge condition, and the free-end velocity is found to increase with hinge number, which explains the high free-end velocity resulting from whipping. Furthermore, the effects of some other factors, such as damping and mass distribution, on the velocity are also discussed.
NASA Technical Reports Server (NTRS)
Hughes, M. T.; Mennell, R. C.
1974-01-01
Experimental aerodynamic investigations were conducted on an 0.015-scale representation of the integrated space shuttle launch vehicle in the trisonic wind tunnel. The primary test objective was to obtain subsonic and transonic elevon and bodyflap hinge moments and wing bending-torsion moments in the presence of the launch vehicle. Wing pressures were also recorded for the upper and lower right wing surfaces at two spanwise stations. The hinge moment, wing bending/torsion moments and wing pressure data were recorded over an angle-of-attack (alpha) range from -8 deg to +8 deg, and angle-of-sideslip (beta) range from -8 deg to +8 deg and at Mach numbers of 0.90, 1.12, 1.24 and 1.50. Tests were also conducted to determine the effects of the orbiter rear attach cross beam and the forward attach wedge and strut diameter. The orbiter alone was tested at 0.90 and 1.24 Mach number only.
NASA Technical Reports Server (NTRS)
Herman, G. C.
1986-01-01
A lateral guidance algorithm which controls the location of the line of intersection between the actual and desired orbital planes (the hinge line) is developed for the aerobraking phase of a lift-modulated orbital transfer vehicle. The on-board targeting algorithm associated with this lateral guidance algorithm is simple and concise which is very desirable since computation time and space are limited on an on-board flight computer. A variational equation which describes the movement of the hinge line is derived. Simple relationships between the plane error, the desired hinge line position, the position out-of-plane error, and the velocity out-of-plane error are found. A computer simulation is developed to test the lateral guidance algorithm for a variety of operating conditions. The algorithm does reduce the total burn magnitude needed to achieve the desired orbit by allowing the plane correction and perigee-raising burn to be combined in a single maneuver. The algorithm performs well under vacuum perigee dispersions, pot-hole density disturbance, and thick atmospheres. The results for many different operating conditions are presented.
Qin, Guangzhao; Yan, Qing-Bo; Qin, Zhenzhen; Yue, Sheng-Ying; Cui, Hui-Juan; Zheng, Qing-Rong; Su, Gang
2014-01-01
We systematically investigated the geometric, electronic and thermoelectric (TE) properties of bulk black phosphorus (BP) under strain. The hinge-like structure of BP brings unusual mechanical responses such as anisotropic Young's modulus and negative Poisson's ratio. A sensitive electronic structure of BP makes it transform among metal, direct and indirect semiconductors under strain. The maximal figure of merit ZT of BP is found to be 0.72 at 800 K that could be enhanced to 0.87 by exerting an appropriate strain, revealing BP could be a potential medium-high temperature TE material. Such strain-induced enhancements of TE performance are often observed to occur at the boundary of the direct-indirect band gap transition, which can be attributed to the increase of degeneracy of energy valleys at the transition point. By comparing the structure of BP with SnSe, a family of potential TE materials with hinge-like structure are suggested. This study not only exposes various novel properties of BP under strain, but also proposes effective strategies to seek for better TE materials. PMID:25374306
NASA Astrophysics Data System (ADS)
Mondal, Puskar; Korenaga, Jun
2018-03-01
The dispersion relation of the Rayleigh-Taylor instability, a gravitational instability associated with unstable density stratification, is of profound importance in various geophysical contexts. When more than two layers are involved, a semi-analytical technique based on the biharmonic formulation of Stokes flow has been extensively used to obtain such dispersion relation. However, this technique may become cumbersome when applied to lithospheric dynamics, where a number of layers are necessary to represent the continuous variation of viscosity over many orders of magnitude. Here, we present an alternative and more efficient method based on the propagator matrix formulation of Stokes flow. With this approach, the original instability problem is reduced to a compact eigenvalue equation whose size is solely determined by the number of primary density contrasts. We apply this new technique to the stability of the early crust, and combined with the Monte Carlo sensitivity analysis, we derive an empirical formula to compute the growth rate of the Rayleigh-Taylor instability for this particular geophysical setting. Our analysis indicates that the likelihood of crustal delamination hinges critically on the effective viscosity of eclogite.
NASA Astrophysics Data System (ADS)
Jeon, Juncheol; Han, Chulhee; Chung, Jye Ung; Choi, Seung-Bok
2015-01-01
In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains.
Application of Balancing Tabs to Ailerons
NASA Technical Reports Server (NTRS)
Sears, Richard I.
1942-01-01
Analysis was made to determine characteristics required of a balancing-tab system for ailerons in order to reduce aileron stick forces to any desired magnitude. Series of calculations based on section data were made to determine balancing-tab systems of various chord tabs and ailerons that will give, for a particular airplane, zero rate of aileron hinge moment with aileron deflection and yet will produce same maximum rate of roll as a plain unbalanced 15-percent chord aileron of same span. Effects of rolling velocity and of forces in tab link on aileron hinge moments have been included.
NASA Technical Reports Server (NTRS)
Macala, G. A.
1983-01-01
A computer program is described that can automatically generate symbolic equations of motion for systems of hinge-connected rigid bodies with tree topologies. The dynamical formulation underlying the program is outlined, and examples are given to show how a symbolic language is used to code the formulation. The program is applied to generate the equations of motion for a four-body model of the Galileo spacecraft. The resulting equations are shown to be a factor of three faster in execution time than conventional numerical subroutines.
NASA Technical Reports Server (NTRS)
Fleischer, G. E.
1973-01-01
A new computer subroutine, which solves the attitude equations of motion for any vehicle idealized as a topological tree of hinge-connected rigid bodies, is used to simulate and analyze science instrument pointing control interaction with a flexible Mariner Venus/Mercury (MVM) spacecraft. The subroutine's user options include linearized or partially linearized hinge-connected models whose computational advantages are demonstrated for the MVM problem. Results of the pointing control/flexible vehicle interaction simulations, including imaging experiment pointing accuracy predictions and implications for MVM science sequence planning, are described in detail.
NASA Astrophysics Data System (ADS)
McQuarrie, Nadine; Rodgers, David W.
1998-04-01
The Eastern Snake River Plain (ESRP) is a linear volcanic basin interpreted by many workers to reflect late Cenozoic migration of North America over the Yellowstone hotspot. Thermal subsidence of this volcanic province with respect to Yellowstone has been documented by several workers, but no one has characterized subsidence with respect to the adjacent Basin and Range Province. This paper documents crustal flexure along the northwest edge of the ESRP, uses flexure to model the dimensions of a dense load beneath the basin, and presents evidence in support of density-driven subsidence and lower crustal flow away from the basin. Crustal flexure adjacent to the ESRP is reflected by the attitudes of Mesozoic fold hinges and Neogene volcanic rocks. Fold hinges formed with a subhorizontal plunge and a trend perpendicular to the ESRP but now show a southward plunge near the ESRP of as much as 20°-25°. We present a contour map of equal fold plunges proximal to the ESRP that shows flexure is roughly parallel to and extends 10-20 km north of the average edge of the ESRP. Flexural profiles indicate the minimum amount of ESRP subsidence, with respect to the Basin and Range; subsidence ranges from 4.5 to 8.5 km. The structural contour map and published seismic and gravity data were used to develop and constrain flexural subsidence models. These models indicate the flexed crust is very weak (flexural parameter of 4-10 km), interpreted to be a result of the high heat flow of the ESRP. Assuming subsidence was induced by emplacement of a dense crustal layer beneath the ESRP, a midcrustal "sill" identified in previous seismic surveys is too wide and probably too thin to produce the measured flexure. New dimensions include a thickness of 17-25 km and a half width of 40-50 km, which place the edge of the sill beneath the edge of the ESRP. The dimensions of the ESRP sill are based on isostatic compensation in the lower crust because compensation in the asthenosphere requires an unreasonable sill thickness of 30+ km and because ESRP seismic, gravity, and heat flow data support lower crustal compensation. Density-driven lower crustal flow away from the ESRP is proposed to accommodate subsidence and maintain isostatic equilibrium. Timing of subsidence is constrained by ESRP exploratory wells, where 6.6 Ma rhyolites at a depth of 1.5 km indicate most subsidence occurred prior to their emplacement, and by strong spatial correlations between plunge contours and Quaternary volcanic rift zones. Two processes interpreted to contribute to the load include an extensive midcrustal mafic load emplaced at ˜10 Ma, which provided the heat source for the initial rhyolitic volcanism on the ESRP, and continuing, localized loads from dikes and sills associated with Quaternary basalts. Widespread ˜10 Ma magmatism and subsidence conflicts with simple time-transgressive migration of the Yellowstone hotspot, indicating a need for revision of the hotspot paradigm.
Experimental and Analytical Seismic Studies of a Four-Span Bridge System with Innovative Materials
NASA Astrophysics Data System (ADS)
Cruz Noguez, Carlos Alonso
As part of a multi-university project utilizing the NSF Network for Earthquake Engineering Simulation (NEES), a quarter-scale model of a four-span bridge incorporating plastic hinges with different advanced materials was tested to failure on the three shake table system at the University of Nevada, Reno (UNR). The bridge was the second test model in a series of three 4-span bridges, with the first model being a conventional reinforced-concrete (RC) structure. The purpose of incorporating advanced materials was to improve the seismic performance of the bridge with respect to two damage indicators: (1) column damage and (2) permanent deformations. The goals of the study presented in this document were to (1) evaluate the seismic performance of a 4-span bridge system incorporating SMA/ECC and built-in rubber pad plastic hinges as well as post-tensioned piers, (2) quantify the relative merit of these advanced materials and details compared to each other and to conventional reinforced concrete plastic hinges, (3) determine the influence of abutment-superstructure interaction on the response, (4) examine the ability of available elaborate analytical modeling techniques to model the performance of advanced materials and details, and (5) conduct an extensive parametric study of different variations of the bridge model to study several important issues in bridge earthquake engineering. The bridge model included six columns, each pair of which utilized a different advanced detail at bottom plastic hinges: shape memory alloys (SMA), special engineered cementitious composites (ECC), elastomeric pads embedded into columns, and post-tensioning tendons. The design of the columns, location of the bents, and selection of the loading protocol were based on pre-test analyses conducted using computer program OpenSees. The bridge model was subjected to two-horizontal components of simulated earthquake records of the 1994 Northridge earthquake. Over 340 channels of data were collected. The test results showed the effectiveness of the advanced materials in reducing damage and permanent displacements. The damage was minimal in plastic hinges with SMA/ECC and those with built-in elastomeric pads. Conventional RC plastic hinges were severely damaged due to spalling of concrete and rupture of the longitudinal and transverse reinforcement. Extensive post-test analytical studies were conducted and it was determined that a computational model of the bridge that included bridge-abutment interaction using OpenSees was able to provide satisfactory estimations of key structural parameters such as superstructure displacements and base shears. The analytical model was also used to conduct parametric studies on single-column and bridge-system response under near-fault ground motions. The effects of vertical excitations and transverse shear-keys at the bridge abutments on the superstructure displacement and column drifts were also explored.
[Clinical neuropsychology in perspective: future challenges based on current developments].
Verdejo-García, Antonio; Tirapu-Ustárroz, Javier
2012-02-01
New lines of translational, interdisciplinary research are emerging among different fields of the neurosciences, which often point at clinical neuropsychology as the hinge discipline capable of linking the basic findings with their clinical implications and thereby endow them with some meaning for phenomenological experience. To establish the great lines of progress made in the fields of neuroscience and neuropsychology in recent years, so as to be able to foresee the strategic lines and priorities of neuroscience in the near future. To achieve this aim, the first step will be to identify the changes of paradigm that have taken place in the areas of neuroscience and psychology in the last two decades. The next step will be to propose new topics and fields of application that these changes in paradigm offer and demand from neuroscience. The false dichotomies of genes versus environment, mind versus brain, and reason versus emotion are considered, as are the new applications of neuropsychology to the understanding of psychopathological disorders, from the neurodegenerative to neurodevelopment, from 'dirty' drugs to cognitive and affective enhancers.
Computational wing optimization and comparisons with experiment for a semi-span wing model
NASA Technical Reports Server (NTRS)
Waggoner, E. G.; Haney, H. P.; Ballhaus, W. F.
1978-01-01
A computational wing optimization procedure was developed and verified by an experimental investigation of a semi-span variable camber wing model in the NASA Ames Research Center 14 foot transonic wind tunnel. The Bailey-Ballhaus transonic potential flow analysis and Woodward-Carmichael linear theory codes were linked to Vanderplaats constrained minimization routine to optimize model configurations at several subsonic and transonic design points. The 35 deg swept wing is characterized by multi-segmented leading and trailing edge flaps whose hinge lines are swept relative to the leading and trailing edges of the wing. By varying deflection angles of the flap segments, camber and twist distribution can be optimized for different design conditions. Results indicate that numerical optimization can be both an effective and efficient design tool. The optimized configurations had as good or better lift to drag ratios at the design points as the best designs previously tested during an extensive parametric study.
Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity
NASA Astrophysics Data System (ADS)
Borstad, Chris; McGrath, Daniel; Pope, Allen
2017-05-01
Tabular iceberg calving and ice shelf retreat occurs after full-thickness fractures, known as rifts, propagate across an ice shelf. A quickly evolving rift signals a threat to the stability of Larsen C, the Antarctic Peninsula's largest ice shelf. Here we reveal the influence of ice shelf heterogeneity on the growth of this rift, with implications that challenge existing notions of ice shelf stability. Most of the rift extension has occurred in bursts after overcoming the resistance of suture zones that bind together neighboring glacier inflows. We model the stresses in the ice shelf to determine potential rift trajectories. Calving perturbations to ice flow will likely reach the grounding line. The stability of Larsen C may hinge on a single suture zone that stabilizes numerous upstream rifts. Elevated fracture toughness of suture zones may be the most important property that allows ice shelves to modulate Antarctica's contribution to sea level rise.
Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
AlMomani, T; Udaykumar, H S; Marshall, J S; Chandran, K B
2008-06-01
Platelet activation, adhesion, and aggregation on the blood vessel and implants result in the formation of mural thrombi. Platelet dynamics in blood flow is influenced by the far more numerous erythrocytes (RBCs). This is particularly the case in the smaller blood vessels (arterioles) and in constricted regions of blood flow (such as in valve leakage and hinge regions) where the dimensions of formed elements of blood become comparable with that of the flow geometry. In such regions, models to predict platelet motion, activation, aggregation and adhesion must account for platelet-RBC interactions. This paper studies platelet-RBC interactions in shear flows by performing simulations of micro-scale dynamics using a computational fluid dynamics (CFD) model. A level-set sharp-interface immersed boundary method is employed in the computations in which RBC and platelet boundaries are tracked on a two-dimensional Cartesian grid. The RBCs are assumed to have an elliptical shape and to deform elastically under fluid forces while the platelets are assumed to behave as rigid particles of circular shape. Forces and torques between colliding blood cells are modeled using an extension of the soft-sphere model for elliptical particles. RBCs and platelets are transported under the forces and torques induced by fluid flow and cell-cell and cell-platelet collisions. The simulations show that platelet migration toward the wall is enhanced with increasing hematocrit, in agreement with past experimental observations. This margination is seen to occur due to hydrodynamic forces rather than collisional forces or volumetric exclusion effects. The effect of fluid shear forces on the platelets increases exponentially as a function of hematocrit for the range of parameters covered in this study. The micro-scale analysis can be potentially employed to obtain a deterministic relationship between fluid forces and platelet activation and aggregation in blood flow past cardiovascular implants.
A Two-Axis Direct Fluid Shear Stress Sensor
NASA Technical Reports Server (NTRS)
Adcock, Edward E.; Scott, Michael A.; Bajikar, Sateesh S.
2010-01-01
This innovation is a miniature or micro sized semiconductor sensor design that provides two axis direct non-intrusive measurement of skin friction or wall shear stress in fluid flow. The sensor is fabricated by micro-electro-mechanical system (MEMS) technology, enabling small size and low cost reproductions. The sensors have been fabricated by utilizing MEMS fabrication processes to bond a sensing element wafer to a fluid coupling wafer. This layering technique provides for an out of plane dimension that is on the same order of length as the inplane dimensions. The sensor design has the following characteristics: a shear force collecting plate with dimensions that can be tailored to various application specific requirements such as spatial resolution, temporal resolution and shear force range and resolution. This plate is located coplanar to both the sensor body and flow boundary, and is connected to a dual axis gimbal structure by a connecting column or lever arm. The dual axis gimbal structure has torsional hinges with embedded piezoresistive torsional strain gauges which provide a voltage output that is correlated to the applied shear stress (and excitation current) on force collection plate that is located on the flow boundary surface (hence the transduction method). This combination of design elements create a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from the small shear stress on the flow boundary wall. This design as well as the use of back side electrical contacts establishes a non-intrusive method to quantitatively measure the shear force vector on aerodynamic bodies.
Weng, Pei-Wei; Chen, Chia-Hsien; Luo, Chu-An; Sun, Jui-Sheng; Tsuang, Yang-Hwei; Cheng, Cheng-Kung; Lin, Shang-Chih
2017-04-01
Several plate systems for high tibial osteotomy (HTO) have been developed to stabilize the opening wedge of an osteotomized tibia. Among them, the TomoFix system, having a quasi-straight and T-shaped design, has been widely adopted in the literature. However, this system is implemented by inserting a lag (i.e., cortical) screw through the proximal combi-hole, to deform the plate and pull the distal tibia toward the plate. This process potentially induces plate springback and creates an elastic preload on the osteotomized tibia, especially at the lateral hinge of the distracted wedge. Using the finite-element method, this study aims to investigate the contoured effect of lag-screw application on the biomechanical behavior of the tibia-plate construct. Two tibial profiles (normal and more concave), three distraction angles (6°, 9°, and 12°), and three knee loads (intraoperative: contouring plate; postoperative: weight and nonweight bearing) are systematically varied in this study. The wedge instability and fracture risk at the lateral hinge are chosen as the comparison indices. The results show the necessity of preoperative planning for a precontoured procedure, rather than elastic deformation using a lag screw. Within the intraoperative period, a more concave tibial profile and/or reduced distraction angle (i.e., 6° or 9°) necessitate a higher compressive load to elastically deform the plate, thereby deteriorating the lateral-hinge fracture risk. A precontoured plate is recommended in the case that the proximal tibia is highly concave and the distraction angle is insufficient to stretch the tibial profile. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Arthrometric Evaluation of Stabilizing Effect of Knee Functional Bracing at Different Flexion Angles
Seyed Mohseni, Saeedeh; Moss, Farzam; Karimi, Hossein; Kamali, Mohammad
2009-01-01
Previous in-vivo investigations on the stabilizing efficacy of knee bracing for ACL reconstructed patients have been often limited to 20-30 degrees of knee flexion. In this study, the effectiveness of a uniaxial hinged functional brace to improve the knee stability was assessed at 30, 60 and 90 degrees of knee flexion. Arthrometry tests were conducted on 15 healthy subjects before and following wearing the brace and the tibial displacements were measured at up to 150 N anterior forces. Results indicated that functional bracing has a significant stabilizing effect throughout the range of knee flexion examined (p < 0.05). The rate of effectiveness, however, was not consistent across the flexion range, e.g., 50% at 30 degrees and only 4% at 90 degrees. It was suggested that accurate sizing and fitting as well as attention to correct hinge placement relative to the femoral condyles can limit brace migration and improve its effectiveness in mid and deep knee flexion. With using adaptive limb fittings, through flexible pads, and a polycentric joint a more significant improvement of the overall brace performance and efficacy might be obtained. Key points Functional bracing improves the knee joint stability mostly in extension posture. Unlike the non-braced condition, the least knee joint stability appears in mid and deep flexion angles when using a hinged brace. Accurate sizing and fitting and attention to correct hinge placement relative to the femoral condyles can limit brace migration and improve its effectiveness in mid and deep knee flexion. The overall brace performance and efficacy might be improved significantly using adaptive limb fittings through flexible pads and/or polycentric joints. PMID:24149533
Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges
2017-01-01
Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects. PMID:29215571
Chauhan, Aakash; Palmer, Bradley A; Baratz, Mark E
2015-06-01
Total elbow arthroplasty is successful in older, lower demand patients but not in the younger, more active individual with severe elbow arthritis. Interposition arthroplasty is an alternative for younger patients who hope to minimize the degree to which arm use is restricted. Interposition arthroplasty traditionally involves release of all ligaments and capsule. As a result, the postoperative care included the use of a hinged external fixator of the elbow to apply distraction and to permit motion during the early phases of healing. We describe a novel surgical technique without a hinged external fixator that allows secure fixation of the interposition graft through arthroscopic assistance and maintains the integrity of the medial collateral ligament with only a takedown and repair of the lateral collateral ligament complex. A retrospective chart review was performed to analyze 4 patients with an average age of 57 years who underwent surgery between 2007 and 2011. The patients were also contacted to assess elbow-specific American Shoulder and Elbow Surgeons and Disabilities of the Arm, Shoulder, and Hand scores. The average follow-up was 3.6 years (range, 2.5-6 years), and 1 patient was converted to a total elbow arthroplasty after 2.5 years because of persistent pain. The remaining 3 patients have done well with regard to pain control, stability, and functional use of the operative extremity. There were no postoperative complications. On the basis of our small series of patients, an arthroscopically assisted elbow interposition arthroplasty without hinged external fixation can provide satisfactory medium-term outcomes as a salvage procedure for a difficult condition with limited options. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Breed, Ananya A; Gomes, Amanda; Roy, Binita Sur; Mahale, Smita D; Pathak, Bhakti R
2013-04-01
Human Prostate Secretory Protein of 94 amino acids (PSP94) has been shown to bind human CRISP-3 (cysteine-rich secretory protein 3) with very high affinity. CRISP-3 belongs to the CRISP family of proteins having a PR-1 (pathogenesis related protein 1) domain at its N-terminal and ion channel regulatory (ICR) domain at its C-terminal connected by a hinge region. Functional significance of this complex is not yet known. In order to identify the residues and/or regions involved in PSP94-CRISP-3 interaction, site-directed mutagenesis was employed. Effect of the mutations on the interaction was studied by co-immunoprecipitation (Co-IP). For PSP94, amino acids Y(3), F(4), P(56) and the C-terminal β-strand were found to be crucial for interacting with CRISP-3. A disulfide bond between the two domains of PSP94 (C(37)A-C(73)A) was also important for this interaction. In case of CRISP-3, the N-terminal domain alone could not maintain a strong interaction with PSP94 but it required presence of the hinge region and not the C-terminal domain. Apart from CRISP-3, CRISP-2 was also found to interact with human PSP94. Based on our findings the most likely model of PSP94-CRISP-3 complex has been proposed. The terminal β-strands of PSP94 contact the first α-helix and the hinge region of CRISP-3. Involvement of the hinge region of CRISPs in interaction with PSP94 may affect the domain movement of CRISPs essential for the ion-channel regulatory activity resulting in inhibition of this activity. Copyright © 2013 Elsevier B.V. All rights reserved.
LASIK flap characteristics using the Moria M2 microkeratome with the 90-microm single use head.
Aslanides, Ioannis M; Tsiklis, Nikolaos S; Astyrakakis, Nikolaos I; Pallikaris, Ioannis G; Jankov, Mirko R
2007-01-01
To evaluate the accuracy and consistency of corneal flap thickness, horizontal diameter, and hinge size with the Moria M2 90-microm single use head. Fifty-two myopic patients (104 eyes), mean age 32.6 years, underwent bilateral LASIK with a superior hinged flap using the Moria M2 microkeratome (90-microm single use head). Prospective evaluation included flap thickness (subtraction method), diameter, hinge size, interface particles, intraoperative complications, and visual recovery. The mean preoperative spherical equivalent refraction was -5.72 +/- 2.59 diopters (D) (range: -2.88 to -10.75 D) and -5.84 +/- 2.73 D (range: -3.13 to -9.38 D) for right and left eyes, respectively. The mean preoperative central corneal thickness was 548 +/- 24 microm and 547 +/- 25 microm for right and left eyes, respectively. The mean preoperative steepest K was 44.12 +/- 1.28 D and 44.41 +/- 1.27 D for right and left eyes, respectively. Corneal diameter (white-to-white) was 12 +/- 0.4 mm and 11.9 +/- 0.4 mm for right and left eyes, respectively. The mean postoperative flap thickness was 109 +/- 18 microm (range: 67 to 152 microm) and 103 +/- 15 microm (range: 65 to 151 microm) for right and left eyes, respectively. The mean postoperative flap diameter was 9.4 +/- 0.3 mm (expected mean according to the nomogram given by the company was 9.5 mm). The mean postoperative hinge chord was 4.4 +/- 0.4 mm (expected mean 4.2 mm). No interface particles were detected on slit-lamp examination. The Moria M2 90-microm single use head is safe with reasonable predictability for LASIK flap creation.
Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Elahinia, Mohammad
2017-12-07
Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.
Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly.
Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia
2017-11-10
In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field-a relationship which we capture, along with other features of the assembly process, in a 'phase diagram'. In doing so, we set out initial design rules to build custom made assemblies. Moreover, these assemblies can be made flexible thanks to the hinged contacts of their particle building blocks. This flexibility, combined with the superparamagnetic nature of the architectures, renders our assembly method particularly appropriate for the construction of complex actuators at a scale hitherto not possible.
NASA Astrophysics Data System (ADS)
Hoover, R.; Harrison, M.; Sonnenthal, N.; Hernandez, A.; Pelaez, J.
2015-12-01
Researchers investigating interdisciplinary topics must work to understand the barriers created by information siloes in order to productively collaborate on complex Earth science questions. These barriers create acute challenges when research is driven by observations rather than hypotheses, as communication between collaborators hinges on data synthesis techniques that often vary greatly between disciplines. Field data collection across disciplines creates even more challenges, and employing student researchers of varying abilities demands an approach that is structured, and yet still flexible enough to accommodate inherent differences in the subjective portions of student data collection. Blueprint Earth is performing system-level environmental observations in the broad areas of geology, biology, hydrology, and atmospheric science. Traditional field data collection methodologies are employed for ease of reproducibility, but must translate across disciplinary information siloes. Information collected must be readily useable in the formulation of hypotheses based on field observations, which necessitates an understanding of key metrics by all investigators involved in data analysis. Blueprint Earth demonstrates the ability to create clear data standards across several disciplines while incorporating a quality control process and this allows for conversion of data into functional visualizations. Additionally, geocuration is organized such that data will be ready for public dissemination upon completion of field research.
Effective-medium theory of elastic waves in random networks of rods.
Katz, J I; Hoffman, J J; Conradi, M S; Miller, J G
2012-06-01
We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector k the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels, or trabecular bone.
Formulating Spatially Varying Performance in the Statistical Fusion Framework
Landman, Bennett A.
2012-01-01
To date, label fusion methods have primarily relied either on global (e.g. STAPLE, globally weighted vote) or voxelwise (e.g. locally weighted vote) performance models. Optimality of the statistical fusion framework hinges upon the validity of the stochastic model of how a rater errs (i.e., the labeling process model). Hitherto, approaches have tended to focus on the extremes of potential models. Herein, we propose an extension to the STAPLE approach to seamlessly account for spatially varying performance by extending the performance level parameters to account for a smooth, voxelwise performance level field that is unique to each rater. This approach, Spatial STAPLE, provides significant improvements over state-of-the-art label fusion algorithms in both simulated and empirical data sets. PMID:22438513
NASA Astrophysics Data System (ADS)
Andersen, S.; Grefsrud, E. S.; Harboe, T.
2013-10-01
As a result of high anthropogenic CO2 emissions, the concentration of CO2 in the oceans has increased, causing a decrease in pH, known as ocean acidification (OA). Numerous studies have shown negative effects on marine invertebrates, and also that the early life stages are the most sensitive to OA. We studied the effects of OA on embryos and unfed larvae of the great scallop (Pecten maximus Lamarck), at pCO2 levels of 469 (ambient), 807, 1164, and 1599 μatm until seven days after fertilization. To our knowledge, this is the first study on OA effects on larvae of this species. A drop in pCO2 level the first 12 h was observed in the elevated pCO2 groups due to a discontinuation in water flow to avoid escape of embryos. When the flow was restarted, pCO2 level stabilized and was significantly different between all groups. OA affected both survival and shell growth negatively after seven days. Survival was reduced from 45% in the ambient group to 12% in the highest pCO2 group. Shell length and height were reduced by 8 and 15%, respectively, when pCO2 increased from ambient to 1599 μatm. Development of normal hinges was negatively affected by elevated pCO2 levels in both trochophore larvae after two days and veliger larvae after seven days. After seven days, deformities in the shell hinge were more connected to elevated pCO2 levels than deformities in the shell edge. Embryos stained with calcein showed fluorescence in the newly formed shell area, indicating calcification of the shell at the early trochophore stage between one and two days after fertilization. Our results show that P. maximus embryos and early larvae may be negatively affected by elevated pCO2 levels within the range of what is projected towards year 2250, although the initial drop in pCO2 level may have overestimated the effect of the highest pCO2 levels. Future work should focus on long-term effects on this species from hatching, throughout the larval stages, and further into the juvenile and adult stages.
NASA Technical Reports Server (NTRS)
Simon, George W.; Title, A. M.; Topka, K. P.; Tarbell, T. D.; Shine, R. A.
1988-01-01
Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles ('corks') in the measured flow field congregate at the same locations where the magnetic field is observed.
Several examples where turbulence models fail in inlet flow field analysis
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.
1993-01-01
Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.
Reconfigurable paramagnetic microswimmers: Brownian motion affects non-reciprocal actuation.
Du, Di; Hilou, Elaa; Biswal, Sibani Lisa
2018-05-09
Swimming at low Reynolds number is typically dominated by a large viscous drag, therefore microscale swimmers require non-reciprocal body deformation to generate locomotion. Purcell described a simple mechanical swimmer at the microscale consisting of three rigid components connected together with two hinges. Here we present a simple microswimmer consisting of two rigid paramagnetic particles with different sizes. When placed in an eccentric magnetic field, this simple microswimmer exhibits non-reciprocal body motion and its swimming locomotion can be directed in a controllable manner. Additional components can be added to create a multibody microswimmer, whereby the particles act cooperatively and translate in a given direction. For some multibody swimmers, the stochastic thermal forces fragment the arm, which therefore modifies the swimming strokes and changes the locomotive speed. This work offers insight into directing the motion of active systems with novel time-varying magnetic fields. It also reveals that Brownian motion not only affects the locomotion of reciprocal swimmers that are subject to the Scallop theorem, but also affects that of non-reciprocal swimmers.
Deployable geodesic truss structure
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr. (Inventor); Rhodes, Marvin D. (Inventor); Simonton, J. Wayne (Inventor)
1987-01-01
A deployable geodesic truss structure which can be deployed from a stowed state to an erected state is described. The truss structure includes a series of bays, each bay having sets of battens connected by longitudinal cross members which give the bay its axial and torsional stiffness. The cross members are hinged at their mid point by a joint so that the cross members are foldable for deployment or collapsing. The bays are deployed and stabilized by actuator means connected between the mid point joints of the cross members. Hinged longerons may be provided to also connect the sets of battens and to collapse for stowing with the rest of the truss structure.
Effect of hinge-moment parameters on elevator stick forces in rapid maneuvers
NASA Technical Reports Server (NTRS)
Jones, R. T.; Greenberg, H.
1976-01-01
The importance of the stick force per unit normal acceleration as a criterion of longitudinal stability and the critical dependence of this gradient on elevator hinge moment parameters are investigated with special reference to transient effects for maneuvers of short duration. The analysis shows that different combinations of elevator parameters, which give the same stick force per unit acceleration in turns, give widely different force variations during the entries into and recoveries from steady turns and during maneuvers of short duration such as abrupt pull-ups. The stick force per unit acceleration is greater for abrupt than for gradual control movements.
Hot cell shield plug extraction apparatus
Knapp, Philip A.; Manhart, Larry K.
1995-01-01
An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.
NASA Technical Reports Server (NTRS)
Hughes, T.
1974-01-01
Experimental aerodynamic investigations were conducted on a string-mounted 0.030 scale representation of the 140A/B space shuttle orbiter in the 7.75- by 11-foot low speed wind tunnel. The primary test objectives were to establish basic longitudinal and lateral directional stability and control characteristics for the basic configuration plus control surface hinge moments. Aerodynamic force and moment data were measured in the body axis system by an internally mounted, six-component strain gage balance. Additional configurations investigated were sealed rudder hingeline gaps, sealed elevon gaps and compartmentized speedbrakes.
Three-axis lever actuator with flexure hinges for an optical disk system
NASA Astrophysics Data System (ADS)
Han, Chang-Soo; Kim, Soo-Hyun
2002-10-01
A three-axis lever actuator with a flexure hinge has been designed and fabricated. This actuator is driven by electromagnetic force based on a coil-magnet system and can be used as a high precision actuator and, especially as a pickup head actuator in optical disks. High precision and low sensitivity to external vibration are the major advantages of this lever actuator. An analysis model was found and compared to the finite element method. Dynamic characteristics of the three-axis lever actuator were measured. The results are in very close agreement to those predicted by the model and finite element analysis.
Characterization of flexure hinges for the French watt balance experiment
NASA Astrophysics Data System (ADS)
Pinot, Patrick; Genevès, Gérard
2014-08-01
In the French watt balance experiment, the translation and rotation functions must have no backlash, no friction, nor the need for lubricants. In addition errors in position and movement must be below 100 nm. Flexure hinges can meet all of these criteria. Different materials, profile shapes and machining techniques have been studied. The flexure pivots have been characterized using three techniques: 1) an optical microscope and, if necessary, a SEM to observe the surface inhomogeneities; 2) a mass comparator to determine the bending stiffness of unloaded pivots; 3) a loaded beam oscillating freely under vacuum to study the dynamic behavior of loaded pivots.
Deployable Soft Composite Structures.
Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon
2016-02-19
Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.
NASA Technical Reports Server (NTRS)
Swanson, Robert S; Crandall, Stewart M
1948-01-01
A limited number of lifting-surface-theory solutions for wings with chordwise loadings resulting from angle of attack, parabolic-ac camber, and flap deflection are now available. These solutions were studied with the purpose of determining methods of extrapolating the results in such a way that they could be used to determine lifting-surface-theory values of the aspect-ratio corrections to the lift and hinge-moment parameters for both angle-of-attack and flap-deflection-type loading that could be used to predict the characteristics of horizontal tail surfaces from section data with sufficient accuracy for engineering purposes. Such a method was devised for horizontal tail surfaces with full-span elevators. In spite of the fact that the theory involved is rather complex, the method is simple to apply and may be applied without any knowledge of lifting-surface theory. A comparison of experimental finite-span and section value and of the estimated values of the lift and hinge-moment parameters for three horizontal tail surfaces was made to provide an experimental verification of the method suggested. (author)
Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation.
Mohd Zubir, Mohd Nashrul; Shirinzadeh, Bijan; Tian, Yanling
2009-06-01
This paper describes the process of developing a microgripper that is capable of high precision and fidelity manipulation of micro-objects. The design adopts the concept of flexure-based hinges on its joints to provide the rotational motion, thus eliminating the inherent nonlinearities associated with the application of conventional rigid hinges. A combination of two modeling techniques, namely, pseudorigid body model and finite element analysis was utilized to expedite the prototyping procedure, which leads to the establishment of a high performance mechanism. A new hybrid compliant structure integrating cantilever beam and flexural hinge configurations within microgripper mechanism mainframe has been developed. This concept provides a novel approach to harness the advantages within each individual configuration while mutually compensating the limitations inherent between them. A wire electrodischarge machining technique was utilized to fabricate the gripper out of high grade aluminum alloy (Al 7075T6). Experimental studies were conducted on the model to obtain various correlations governing the gripper performance as well as for model verification. The experimental results demonstrate high level of compliance in comparison to the computational results. A high amplification characteristic and maximum achievable stroke of 100 microm can be achieved.
Pivot design in bileaflet valves.
Vallana, F; Rinaldi, S; Galletti, P M; Nguyen, A; Piwnica, A
1992-01-01
The design criteria leading to the development of a new bileaflet valve (Sorin Bicarbon) were derived from the analysis of functional requirements, the performance of existing prostheses, and the availability of an advanced carbon coating technology (Carbofilm). The hinge is the critical element affecting fluid dynamics, durability, and thrombus formation in bileaflet valves. A comparative study of three existing models led to a new hinge design that was based on coupling two spheric surfaces with different radii of curvature (leaflet pivot and hinge recess) and obtained by electroerosion into a Carbofilm-coated metallic housing. In this valve, the point of contact moves continuously by rolling, not sliding. This minimizes friction and wear and allows uninterrupted washing of the blood exposed surfaces even during diastole (a finding established in patients using transesophageal echocardiography). Tricuspid implantation without anticoagulation in 33 sheep did not lead to thrombotic events (follow-up, 40-400 days). In the first 36 clinical implants observed for 15 months (mitral position, size 29; two unrelated deaths), the mean diastolic gradient by echo Doppler was 4 +/- 1.25 mmHg; the functional area was 3.2 +/- 0.6 cm2. No leaflet fracture and no thrombotic or embolic complications were observed clinically using a standard anticoagulant regimen.
Measurement method of rotation angle and clearance in intelligent spherical hinge
NASA Astrophysics Data System (ADS)
Hu, Penghao; Lu, Yichang; Chen, Shiyi; Hu, Yi; Zhu, Lianqing
2018-06-01
Precision ball hinges are widely applied in parallel mechanisms, robotics, and other areas, but their rotation orientation and angle cannot be obtained during passive motion. The simultaneous clearance error in a precision ball hinge’s motion also can not be determined. In this paper we propose an intelligent ball hinge (IBH) that can detect the rotation angle and moving clearance, based on our previous research results. The measurement model was optimized to promote measurement accuracy and resolution, and an optimal design for the IBH’s structure was determined. The experimental data showed that the measurement accuracy and resolution of the modified scheme were improved. Within ±10° and ± 20°, the average errors of the uniaxial measurements were 0.29° and 0.42°, respectively. The resolution of the measurements was 15″. The source of the measurement errors was analyzed through theory and experimental data and several key error sources were determined. A point capacitance model for measuring the clearance error is proposed, which is useful not only in compensating for the angle measurement error but also in realizing the motion clearance of an IBH in real-time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Seungil; Mistry, Anil; Chang, Jeanne S.
Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptormore » tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors.« less
Deployable Soft Composite Structures
Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon
2016-01-01
Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762
Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation
NASA Astrophysics Data System (ADS)
Mohd Zubir, Mohd Nashrul; Shirinzadeh, Bijan; Tian, Yanling
2009-06-01
This paper describes the process of developing a microgripper that is capable of high precision and fidelity manipulation of micro-objects. The design adopts the concept of flexure-based hinges on its joints to provide the rotational motion, thus eliminating the inherent nonlinearities associated with the application of conventional rigid hinges. A combination of two modeling techniques, namely, pseudorigid body model and finite element analysis was utilized to expedite the prototyping procedure, which leads to the establishment of a high performance mechanism. A new hybrid compliant structure integrating cantilever beam and flexural hinge configurations within microgripper mechanism mainframe has been developed. This concept provides a novel approach to harness the advantages within each individual configuration while mutually compensating the limitations inherent between them. A wire electrodischarge machining technique was utilized to fabricate the gripper out of high grade aluminum alloy (Al 7075T6). Experimental studies were conducted on the model to obtain various correlations governing the gripper performance as well as for model verification. The experimental results demonstrate high level of compliance in comparison to the computational results. A high amplification characteristic and maximum achievable stroke of 100 μm can be achieved.
NASA Astrophysics Data System (ADS)
Kim, Jinyong; Luo, Gang; Wang, Chao-Yang
2017-10-01
3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.
2012-01-01
Background During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile “trigger loop” of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the “bridge helix” that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. Results All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as “switch” residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop. Conclusions Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation. PMID:22676913
NASA Astrophysics Data System (ADS)
Mizera, M.; Little, T.; Norton, K. P.; Webber, S.; Ellis, S. M.; Oesterle, J.
2016-12-01
While shown to operate in oceanic crust, rolling hinge style deformation remains a debated process in metamorpic core complexes (MCCs) in the continents. The model predicts that unloading and isostatic uplift during slip causes a progressive back-tilting in the upper crust of a normal fault that is more steeply dipping at depth. The Mai'iu Fault in the Woodlark Rift, SE Papua New Guinea, is one of the best-exposed and fastest slipping (probably >7 mm/yr) active low-angle normal faults (LANFs) on Earth. We analysed structural field data from this fault's exhumed slip surface and footwall, together with geomorphic data interpreted from aerial photographs and GeoSAR-derived digital elevation models (gridded at 5-30 m spacing), to evaluate deformational processes affecting the rapidly exhuming, domal-shaped detachment fault. The exhumed fault surface emerges from the ground at the rangefront near sea level with a northward dip of 21°. Up-dip, it is well-preserved, smooth and corrugated, with some fault remnants extending at least 29 km in the slip direction. The surface flattens over the crest of the dome, beyond where it dips S at up to 15°. Windgaps perched on the crestal main divide of the dome, indicate both up-dip tectonic advection and progressive back-tilting of the exhuming fault surface. We infer that slip on a serial array of m-to-km scale up-to-the-north, steeply S-dipping ( 75°) antithetic-sense normal faults accommodated some of the exhumation-related, inelastic bending of the footwall. These geomorphically well expressed faults strike parallel to the main Mai'iu fault at 110.9±5°, have a mean cross-strike spacing of 1520 m, and slip with a consistent up-to-the-north sense of throw ranging from <5 m to 120 m. Apparently the Mai'iu Fault was able to continue slipping despite having to negotiate this added fault-roughness. We interpret the antithetic faulting to result from bending stresses, and to provide the first clear examples of rolling hinge-style accommodation structures on a continental MCC.
Lead-Lag Control for Helicopter Vibration and Noise Reduction
NASA Technical Reports Server (NTRS)
Gandhi, Farhan
1995-01-01
As a helicopter transitions from hover to forward flight, the main rotor blades experience an asymmetry in flow field around the azimuth, with the blade section tangential velocities increasing on the advancing side and decreasing on the retreating side. To compensate for the reduced dynamic pressure on the retreating side, the blade pitch angles over this part of the rotor disk are increased. Eventually, a high enough forward speed is attained to produce compressibility effects on the advancing side of the rotor disk and stall on the retreating side. The onset of these two phenomena drastically increases the rotor vibratory loads and power requirements, thereby effectively establishing a limit on the maximum achievable forward speed. The alleviation of compressibility and stall (and the associated decrease in vibratory loads and power) would potentially result in an increased maximum forward speed. In the past, several methods have been examined and implemented to reduce the vibratory hub loads. Some of these methods are aimed specifically at alleviating vibration at very high flight speeds and increasing the maximum flight speed, while others focus on vibration reduction within the conventional flight envelope. Among the later are several types passive as well as active schemes. Passive schemes include a variety of vibration absorbers such as mechanical springs, pendulums, and bifilar absorbers. These mechanism are easy to design and maintain, but incur significant weight and drag penalties. Among the popular active control schemes in consideration are Higher Harmonic Control (HHC) and Individual Blade Control (IBC). HHC uses a conventional swash plate to generate a multi-cyclic pitch input to the blade. This requires actuators capable of sufficiently high power and bandwidth, increasing the cost and weight of the aircraft. IBC places actuators in the rotating reference frame, requiring the use of slip rings capable of transferring enough power to the actuators. Both schemes cause an increase in pitch link loads. Trailing Edge Flap (TEF) deployment can also used to generate unsteady aerodynamic forces and moments that counter the original vibratory loads, and thereby reduce rotor vibrations. While the vibrations absorbers, HHC, IBC, and TEF concepts discussed above attempt to reduce the vibratory loads, they do not specifically address the phenomena causing the vibrations at high advance ratios. One passive method that attempts to directly alleviate compressibility and stall, instead of reducing the ensuing vibrations, is the use of advanced tip designs. Taper, sweep, anhedral, and the manipulation of other geometric properties of the blade tips can reduce the severity of stall and compressibility effects , as well as reduce rotor power. A completely different approach to solve these problems is the tiltrotor configuration. As the forward velocity of the aircraft increases, the rotors, in this case, are tilted forward until they are perpendicular to the flow and act as propellers. This eliminates the edgewise flow encountered by conventional rotors and circumvents all the problems associated with flow asymmetry. However, the success involves a tremendous increase in cost and complexity of the aircraft. Another possible approach that has been proposed for the alleviation of vibratory loads at high forward flight speeds involves the use of controlled lead-lag motions to reduce the asymmetry in flow. A correctly phased 1/rev controlled lag motion could be introduced such that it produces a backward velocity on the advancing side and a forward velocity on the retreating side, to delay compressibility effects and stall to a higher advance ratio. Using a large enough lead-lag amplitude, the tip velocities could be reduced to levels encountered in hover. This concept was examined by two groups in the 1950's and early 1960's. In the United States, the Research Labs Division of United Aircraft developed a large lead-lag motion rotor, meant to achieve lag motion amplitudes up to 45 degrees. In order to reduce the required actuation force, the blade hinges were moved to 40% of the blade radius to increase the rotating lag frequency to approximately 1/rev. The blade hinges were redesigned to produce a flap-lag coupling so the large flapwise aerodynamic loads could be exploited to actuate the blades in the lag direction. A wind tunnel test of this rotor concept revealed actuation and blade motion scheduling problems. The project was eventually discontinued due to these problems and high blade stresses. Around the same time, at Boelkow in Germany, a similar lead-lag rotor program was conducted under the leadership of Hans Derschmidt. Here, too, the blade hinges were moved outboard to 34% radius to reduce the actuation loads. The main difference between this and the United Aircraft program was the use of a mechanical actuation scheme with maximum lead-lag motions of 400. This program was also discontinued for unclear reasons. The present study is directed toward conducting a comprehensive analytical examination to evaluate the effectiveness of controlled lead-lag motions in reducing vibratory hub loads and increasing maximum flight speed. Since both previous studies on this subject were purely experimental, only a limited data set and physical understanding of the problem was obtained. With the currently available analytical models and computational resources, the present effort is geared toward developing an in-depth physical understanding of the precise underlying mechanisms by which vibration reduction may be achieved. Additionally, in recognition of the fact that large amplitude lead-lag motions would - (i) be difficult to implement, and (ii) produce very large blade stresses; the present study examines the potential of only moderate-to-small lead-lag motions for reduction of vibratory hub loads. Using such an approach, the emphasis is not on eliminating the periodic variations in tangential velocity at the blade tip, but at best reducing these variations slightly so that compressibility and stall are delayed to slightly higher advance ratios. This study was conducted in two steps. In the first step, a hingeless helicopter rotor was modeled using rigid blades undergoing flap-lag-torsion rotations about spring restrained hinges and bearings. This model was then modified by separating the lead-lag degree of freedom into two components, a free and a prescribed motion. Using this model, a parametric study of the effect of phase and amplitude of a prescribed lead-lag motion on hub vibration was conducted. The data gathered was analyzed to obtain an understanding of the basic physics of the problem and show the capability of this method to reduce vibration and expand the flight envelope. In the second half of the study, the similar analysis was conducted using an elastic blade model to confirm the effects predicted by the simpler model.
NASA Astrophysics Data System (ADS)
Vye-Brown, C.; Self, S.; Barry, T. L.
2013-03-01
The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.
Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.
2007-01-01
The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.
NASA Astrophysics Data System (ADS)
Dann, J. C.
2007-12-01
A challenge of Archean volcanology is to reconstruct submarine flow fields by mapping and analyzing vertically dipping sequences of lavas. Some flow fields are bound by sediments and/or seafloor alteration that mark clear gaps in volcanism. Flow fields in the Lower Komati Fm are defined by alternating layers of komatiite (26% MgO) and komatiitic basalt (15% MgO). Five komatiite flow fields (100-200m thick) repeat the same stratigraphic zoning of spinifex overlying massive komatiite, and each flow field has a distinct Al2O3/CaO, a ratio unaffected by olivine fractionation, consistent with the contention that each komatiite flow field represents a distinct batch of mantle melting. Although massive and spinifex komatiite form distinct stratigraphic units on a map scale, detailed outcrop mapping reveals that the change in flow type represents a transition within a single flow field. In one type of transition, thin massive flows alternate with spinifex flow lobes of a compound flow unit. In another, a vesicular flow along the boundary links the underlying massive komatiite and overlying spinifex flows in time. The vesicular flow has alternating spinifex and vesicular layers that form a distinctive crust above a thick massive interior. Locally, this crust is tilted, intruded by massive komatiite from the interior, and overlain by a thick breccia including a spinifex flow broken into blocks and rotated like dominoes by the tilting. These outcrop relations indicate that spinifex flow lobes were starting to flow over the vesicular flow before it had undergone differential inflation, a temporal link between the lower massive and upper spinifex komatiites consistent with their belonging to the same flow field. The transition in flow type may reflect 1) an overlap of proximal and distal facies of komatiite flows as eruption rates waned and/or 2) thermal maturation prior to eruption. Early, cooler, crystal-rich, massive lava, flowing out as thick sheet flows, was replaced by hotter, crystal-poor, less degassed lava, flowing out as spinifex flows.
NASA Astrophysics Data System (ADS)
Jacques, Dominique; Vieira, Romeu; Muchez, Philippe; Sintubin, Manuel
2018-02-01
The world-class W-Sn Panasqueira deposit consists of an extensive, subhorizontal vein swarm, peripheral to a late-orogenic greisen cupola. The vein swarm consists of hundreds of co-planar quartz veins that are overlapping and connected laterally over large distances. Various segmentation structures, a local zigzag geometry, and the occurrence of straight propagation paths indicate that they exploited a regional joint system. A detailed orientation analysis of the systematic joints reveals a geometrical relationship with the subvertical F2 fold generation, reflecting late-Variscan transpression. The joints are consistently orthogonal to the steeply plunging S0-S2 intersection lineation, both on the regional and the outcrop scale, and are thus defined as cross-fold or ac-joints. The joint system developed during the waning stages of the Variscan orogeny, when already uplifted to an upper-crustal level. Veining reactivated these cross-fold joints under the conditions of hydraulic overpressures and low differential stress. The consistent subperpendicular orientation of the veins relative to the non-cylindrical F2 hinge lines, also when having an inclined attitude, demonstrates that veining did not occur during far-field horizontal compression. Vein orientation is determined by local stress states variable on a meter-scale but with the minimum principal stress consistently subparallel to fold hinge lines. The conspicuous subhorizontal attitude of the Panasqueira vein swarm is thus dictated by the geometry of late-orogenic folds, which developed synchronous with oroclinal buckling of the Ibero-Armorican arc.
1988-04-15
granules typically last 10-15 minutes. measure- the divergence of the flow field, and (d) the SOUP flow field muerts must be made in a time short...the magnetograms and ary. If so, the random-walk diffusion of magnetic field dii- AV . I, I68 PHOTOSPIIERIC FLOW FIELDS ON SOLAR SURFACE 967 0011 cussd
NASA Astrophysics Data System (ADS)
Wang, Luwen; Zhang, Yufeng; Zhao, Youran; An, Zijiang; Zhou, Zhiping; Liu, Xiaowei
2011-10-01
An air-breathing micro direct methanol fuel cell (μDMFC) with a compound anode flow field structure (composed of the parallel flow field and the perforated flow field) is designed, fabricated and tested. To better analyze the effect of the compound anode flow field on the mass transfer of methanol, the compound flow field with different open ratios (ratio of exposure area to total area) and thicknesses of current collectors is modeled and simulated. Micro process technologies are employed to fabricate the end plates and current collectors. The performances of the μDMFC with a compound anode flow field are measured under various operating parameters. Both the modeled and the experimental results show that, comparing the conventional parallel flow field, the compound one can enhance the mass transfer resistance of methanol from the flow field to the anode diffusion layer. The results also indicate that the μDMFC with an anode open ratio of 40% and a thickness of 300 µm has the optimal performance under the 7 M methanol which is three to four times higher than conventional flow fields. Finally, a 2 h stability test of the μDMFC is performed with a methanol concentration of 7 M and a flow velocity of 0.1 ml min-1. The results indicate that the μDMFC can work steadily with high methanol concentration.
Fuel cell stack with passive air supply
Ren, Xiaoming; Gottesfeld, Shimshon
2006-01-17
A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.
Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner
NASA Astrophysics Data System (ADS)
Chong, Cheng Tung; Hochgreb, Simone
2015-03-01
The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.
Inlet flow field investigation. Part 1: Transonic flow field survey
NASA Technical Reports Server (NTRS)
Yetter, J. A.; Salemann, V.; Sussman, M. B.
1984-01-01
A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.
[Present situation and development trends of asymmetrical flow field-flow fractionation].
Liang, Qihui; Wu, Di; Qiu, Bailing; Han, Nanyin
2017-09-08
Field-flow fractionation (FFF) is a kind of mature separation technologies in the field of bioanalysis, feasible of separating analytes with the differences of certain physical and chemical properties by the combination effects of two orthogonal force fields (flow field and external force field). Asymmetrical flow field-flow fractionation (AF4) is a vital subvariant of FFF, which applying a vertical flow field as the second dimension force field. The separation in AF4 opening channel is carried out by any composition carrier fluid, universally and effectively used in separation of bioparticles and biopolymers due to the non-invasivity feature. Herein, bio-analytes are held in bio-friendly environment and easily sterilized without using degrading carrier fluid which is conducive to maintain natural conformation. In this review, FFF and AF4 principles are briefly described, and some classical and emerging applications and developments in the bioanalytical fields are concisely introduced and tabled. Also, special focus is given to the hyphenation of AF4 with highly specific, sensitive detection technologies.
NASA Astrophysics Data System (ADS)
Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.
2018-04-01
Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.
NASA Astrophysics Data System (ADS)
Byrnes, Jeffrey Myer
2002-04-01
This work examines lava emplacement processes by characterizing surface units using field and remote sensing analyses in order to understand the development of lava flow fields. Specific study areas are the 1969--1974 Mauna Ulu compound flow field, (Kilauea Volcano, Hawai'i, USA), and five lava flow fields on Venus: Turgmam Fluctus, Zipaltonal Fluctus, the Tuli Mons/Uilata Fluctus flow complex, the Var Mons flow field, and Mylitta Fluctus. Lava surface units have been examined in the field and with visible-, thermal-, and radar-wavelength remote sensing datasets for Mauna Ulu, and with radar data for the Venusian study areas. For the Mauna Ulu flow field, visible characteristics are related to color, glass abundance, and dm- to m-scale surface irregularities, which reflect the lava flow regime, cooling, and modification due to processes such as coalescence and inflation. Thermal characteristics are primarily affected by the abundance of glass and small-scale roughness elements (such as vesicles), and reflect the history of cooling, vesiculation and degassing, and crystallization of the lava. Radar characteristics are primarily affected by unit topography and fracturing, which are related to flow inflation, remobilization, and collapse, and reflect the local supply of lava during and after unit emplacement. Mauna Ulu surface units are correlated with pre-eruption topography, lack a simple relationship to the main feeder lava tubes, and are distributed with respect to their position within compound flow lobes and with distance from the vent. The Venusian lava flow fields appear to have developed through emplacement of numerous, thin, simple and compound flows, presumably over extended periods of time, and show a wider range of radar roughness than is observed at Mauna Ulu. A potential correlation is suggested between flow rheology and surface roughness. Distributary flow morphologies may result from tube-fed flows, and flow inflation is consistent with observed surface characteristics. Furthermore, the significance of inflation at Mauna Ulu and comparison of radar characteristics indicates that inflation may, in fact, be more prevalent on Venus than at Mauna Ulu. Although the Venusian flow fields display morphologies similar to those observed within terrestrial flow fields, the Venusian flow units are significantly larger.
Numerical Investigation of Near-Field Plasma Flows in Magnetic Nozzles
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2009-01-01
The development and application of a multidimensional numerical simulation code for investigating near-field plasma processes in magnetic nozzles are presented. The code calculates the time-dependent evolution of all three spatial components of both the magnetic field and velocity in a plasma flow, and includes physical models of relevant transport phenomena. It has been applied to an investigation of the behavior of plasma flows found in high-power thrusters, employing a realistic magnetic nozzle configuration. Simulation of a channel-flow case where the flow was super-Alfvenic has demonstrated that such a flow produces adequate back-emf to significantly alter the shape of the total magnetic field, preventing the flow from curving back to the magnetic field coil in the near-field region. Results from this simulation can be insightful in predicting far-field behavior and can be used as a set of self-consistent boundary conditions for far-field simulations. Future investigations will focus on cases where the inlet flow is sub-Alfvenic and where the flow is allowed to freely expand in the radial direction once it is downstream of the coil.
Cebral, J R; Mut, F; Chung, B J; Spelle, L; Moret, J; van Nijnatten, F; Ruijters, D
2017-06-01
Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms. The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases. Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate. © 2017 by American Journal of Neuroradiology.
Electric-field-induced flow-aligning state in a nematic liquid crystal.
Fatriansyah, Jaka Fajar; Orihara, Hiroshi
2015-04-01
The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric field is changed at a constant shear rate: the flow aligning and non-flow aligning states. The director lies in the shear plane in the flow aligning state and out of the plane in the non-flow aligning state. Through application of dc electric field, the non-flow aligning state can be changed to the flow aligning state. In the transition from the flow aligning state to the non-flow aligning state, it is found that the response increases and the relaxation time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the Ericksen-Leslie theory.
NASA Tech Briefs, September 2003
NASA Technical Reports Server (NTRS)
2003-01-01
Topics include: Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask; Three-Dimensional Venturi Sensor for Measuring Extreme Winds; Swarms of Micron-Sized Sensors; Monitoring Volcanoes by Use of Air-Dropped Sensor Packages; Capacitive Sensors for Measuring Masses of Cryogenic Fluids; UHF Microstrip Antenna Array for Synthetic- Aperture Radar; Multimode Broad-Band Patch Antennas; 164-GHz MMIC HEMT Frequency Doubler; GPS Position and Heading Circuitry for Ships; Software for Managing Parametric Studies; Software Aids Visualization of Computed Unsteady Flow; Software for Testing Electroactive Structural Components; Advanced Software for Analysis of High-Speed Rolling-Element Bearings; Web Program for Development of GUIs for Cluster Computers; XML-Based Generator of C++ Code for Integration With GUIs; Oxide Protective Coats for Ir/Re Rocket Combustion Chambers; Simplified Waterproofing of Aerogels; Improved Thermal-Insulation Systems for Low Temperatures; Device for Automated Cutting and Transfer of Plant Shoots; Extension of Liouville Formalism to Postinstability Dynamics; Advances in Thrust-Based Emergency Control of an Airplane; Ultrasonic/Sonic Mechanisms for Drilling and Coring; Exercise Device Would Exert Selectable Constant Resistance; Improved Apparatus for Measuring Distance Between Axles; Six Classes of Diffraction-Based Optoelectronic Instruments; Modernizing Fortran 77 Legacy Codes; Active State Model for Autonomous Systems; Shields for Enhanced Protection Against High-Speed Debris; Scaling of Two-Phase Flows to Partial-Earth Gravity; Neutral-Axis Springs for Thin-Wall Integral Boom Hinges.
What can the dihedral angle of conjugate-faults tell us?
NASA Astrophysics Data System (ADS)
Ismat, Zeshan
2015-04-01
Deformation within the upper crust (elastico-frictional regime) is largely accommodated by fractures and conjugate faults. The Coulomb fracture criterion leads us to expect that the average dihedral angle of conjugate-fault sets is expected to be ∼60°. Experiments, however, reveal a significant amount of scatter from this 60° average. The confining pressure under which these rocks are deformed is a contributing factor to this scatter. The Canyon Range syncline, Sevier fold-thrust belt (USA) and the Jebel Bani, Anti-Atlas fold-belt (Morocco) both folded under different depths, within the elastico-frictional regime, by cataclastic flow. Conjugate-fault sets assisted deformation by cataclastic flow. The Canyon Range syncline and the Jebel Bani are used here as natural examples to test the relationship between the dihedral angle of conjugate-faults and confining pressure. Variations is confining pressure are modeled by the difference in depth of deformation and position within the folds. Results from this study show that the dihedral angle increases with an increase in depth and within the hinge regions of folds, where space problems commonly occur. Moreover, the shortening directions based on the acute bisectors of conjugate-faults may not be accurately determined if the dihedral angles are unusually large or small, leading to incorrect kinematic analyses.
Rethinking turbidite paleoseismology along the Cascadia subduction zone
Atwater, Brian F.; Carson, Bobb; Griggs, Gary B.; Johnson, H. Paul; Salmi, Marie
2014-01-01
A stratigraphic synthesis of dozens of deep-sea cores, most of them overlooked in recent decades, provides new insights into deep-sea turbidites as guides to earthquake and tsunami hazards along the Cascadia subduction zone, which extends 1100 km along the Pacific coast of North America. The synthesis shows greater variability in Holocene stratigraphy and facies off the Washington coast than was recognized a quarter century ago in a confluence test for seismic triggering of sediment gravity flows. That test compared counts of Holocene turbidites upstream and downstream of a deep-sea channel junction. Similarity in the turbidite counts among seven core sites provided evidence that turbidity currents from different submarine canyons usually reached the junction around the same time, as expected of widespread seismic triggering. The fuller synthesis, however, shows distinct differences between tributaries, and these differences suggest sediment routing for which the confluence test was not designed. The synthesis also bears on recent estimates of Cascadia earthquake magnitudes and recurrence intervals. The magnitude estimates hinge on stratigraphic correlations that discount variability in turbidite facies. The recurrence estimates require turbidites to represent megathrust earthquakes more dependably than they do along a flow path where turbidite frequency appears limited less by seismic shaking than by sediment supply. These concerns underscore the complexity of extracting earthquake history from deep-sea turbidites at Cascadia.
Analysis of an electrohydraulic aircraft control surface servo and comparison with test results
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1972-01-01
An analysis of an electrohydraulic aircraft control-surface system is made in which the system is modeled as a lumped, two-mass, spring-coupled system controlled by a servo valve. Both linear and nonlinear models are developed, and the effects of hinge-moment loading are included. Transfer functions of the system and approximate literal factors of the transfer functions for several cases are presented. The damping action of dynamic pressure feedback is analyzed. Comparisons of the model responses with results from tests made on a highly resonant rudder control-surface servo indicate the adequacy of the model. The effects of variations in hinge-moment loading are illustrated.
Effects of aluminum hinged shoes on the structure of contracted feet in Thoroughbred yearlings.
Tanaka, Kousuke; Hiraga, Atsushi; Takahashi, Toshiyuki; Kuwano, Atsutoshi; Morrison, Scott Edward
2015-01-01
We applied aluminum hinged shoes (AHSs) to the club foot-associated contracted feet of 11 Thoroughbred yearlings to examine the effects of the shoes on the shape of the hoof and third phalanx (P III). After 3 months of AHS use, the size of the affected hooves increased significantly, reaching the approximate size of the healthy contralateral hooves with respect to the maximum lateral width of the foot, the mean ratio of the bearing border width to the coronary band width, and the mean ratio of the solar surface width to the articular surface width. These results suggest that the AHSs corrected the contracted feet in these yearling horses.
NASA Technical Reports Server (NTRS)
Allen, E. C.
1976-01-01
Information is presented for wind tunnel tests (IA125) of a 0.004-scale orbiter, external tank, and solid rocket motor integrated vehicle model (77-0 and 74-OTS) in the MSFC Trisonic Wind Tunnel. These tests were conducted in support of MCR's 1344 and 1346. Data from these tests provide spoiler effects on wing bending/torsion and elevon hinge moments, elevon effectiveness data and the influence of solid plumes from Mach numbers of 0.6 through 2.74 at angles of attack and sideslip from -10 through 10 degrees.
Effect of flow field on the performance of an all-vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Kumar, S.; Jayanti, S.
2016-03-01
A comparative study of the electrochemical energy conversion performance of a single-cell all-vanadium redox flow battery (VRFB) fitted with three flow fields has been carried out experimentally. The charge-discharge, polarization curve, Coulombic, voltage and round-trip efficiencies of a 100 cm2 active area VRFB fitted with serpentine, interdigitated and conventional flow fields have been obtained under nearly identical experimental conditions. The effect of electrolyte circulation rate has also been investigated for each flow field. Stable performance has been obtained for each flow field for at least 40 charge/discharge cycles. Ex-situ measurements of pressure drop have been carried out using water over a range of Reynolds numbers. Together, the results show that the cell fitted with the serpentine flow field gives the highest energy efficiency, primarily due to high voltaic efficiency and also the lowest pressure drop. The electrolyte flow rate is seen to have considerable effect on the performance; a high round-trip energy efficiency of about 80% has been obtained at the highest flow rate with the serpentine flow field. The data offer interesting insights into the effect of electrolyte circulation on the performance of VRFB.
A high precision, compact electromechanical ground rotation sensor
NASA Astrophysics Data System (ADS)
Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.; O'Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Shaner, M.; Sobacchi, E.
2014-05-01
We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of {1}{ × 10^{-11}}textrm { m}/sqrt{textrm {Hz}}. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of {5.7}{ × 10^{-9}}textrm { rad}/sqrt{textrm {Hz}} at 10 mHz and {6.4}{ × 10^{-10}}textrm { rad}/sqrt{textrm {Hz}} at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.
State of the art in biobehavioral approaches to the management of chronic pain in childhood
Simons, Laura E; Basch, Molly C
2016-01-01
Chronic pain in childhood is prevalent, persistent and significantly impactful on most domains of life. The chronic pain experience occurs within a complex biopsychosocial framework, with particular emphasis on the social context. Currently, psychological treatments involve a cognitive–behavioral therapy treatment plan, providing some combination of psychoeducation, self-regulation training, maladaptive cognition identification, behavioral exposure and parent involvement. New treatment areas are emerging, such as group- and internet-based cognitive–behavioral therapy, motivational interviewing, comorbid obesity intervention and intensive multidisciplinary rehabilitation. Preliminary studies of emerging treatments demonstrate encouraging results; however, treatment effectiveness hinges on accurate matching of patient to treatment modality. Overall, the current direction of the field promises many innovative breakthroughs to ameliorate suffering in youth with chronic pain. PMID:26678858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zuocheng; Feng, Xiao; Wang, Jing
The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less
The Plastic Flow Field in the Vicinity of the Pin-Tool During Friction Stir Welding
NASA Technical Reports Server (NTRS)
Bernstein, E. L.; Nunes, A. C., Jr.
2000-01-01
The plastic flow field in the vicinity of the pin-tool during Friction Stir Welding (FSW) needs to be understood if a theoretical understanding of the process is to be attained. The structure of welds does not exhibit the flow field itself, but consists in a residue of displacements left by the plastic flow field. The residue requires analysis to extract from it the instantaneous flow field around the pin-tool. A simplified merry-go-round model makes sense of some tracer experiments reported in the literature. A quantitative comparison is made of the displacements of copper wire markers with displacements computed from a hypothetical plastic flow field. The hypothetical plastic flow field consists in a circular rotation field about a translating pin tool with angular velocity varying with radius from the pin centerline. A sharply localized rotational field comprising slip on a surface around the tool agreed better with observations than a distributed slip field occupying a substantial volume around the tool. Both the tracer and the wire displacements support the "rotating plug" model, originally invoked or thermal reasons, of the FSW process.
Marts, Donna J.; Barker, Stacey G.; Wowczuk, Andrew; Vellenoweth, Thomas E.
2002-01-01
A portable barrier strip having retractable tire-puncture spikes for puncturing a vehicle tire. The tire-puncture spikes have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture spikes removably disposed in a shaft that is rotatably disposed in each barrier block. The plurality of barrier blocks hare hingedly interconnected by complementary hinges integrally formed into the side of each barrier block which allow the strip to be rolled for easy storage and retrieval, but which prevent irregular or back bending of the strip. The shafts of adjacent barrier blocks are pivotally interconnected via a double hinged universal joint to accommodate irregularities in a roadway surface and to transmit torsional motion of the shaft from block to block. A single flexshaft cable is connected to the shaft of an end block to allow a user to selectively cause the shafts of a plurality of adjacently connected barrier blocks to rotate the tire-puncture spikes to the armed position for puncturing a vehicle tire, and to the retracted position for not puncturing the tire. The flexshaft is provided with a resiliently biased retracting mechanism, and a release latch for allowing the spikes to be quickly retracted after the intended vehicle tire is punctured.
AP-2α and AP-2β cooperatively orchestrate homeobox gene expression during branchial arch patterning.
Van Otterloo, Eric; Li, Hong; Jones, Kenneth L; Williams, Trevor
2018-01-25
The evolution of a hinged moveable jaw with variable morphology is considered a major factor behind the successful expansion of the vertebrates. DLX homeobox transcription factors are crucial for establishing the positional code that patterns the mandible, maxilla and intervening hinge domain, but how the genes encoding these proteins are regulated remains unclear. Herein, we demonstrate that the concerted action of the AP-2α and AP-2β transcription factors within the mouse neural crest is essential for jaw patterning. In the absence of these two proteins, the hinge domain is lost and there are alterations in the size and patterning of the jaws correlating with dysregulation of homeobox gene expression, with reduced levels of Emx, Msx and Dlx paralogs accompanied by an expansion of Six1 expression. Moreover, detailed analysis of morphological features and gene expression changes indicate significant overlap with various compound Dlx gene mutants. Together, these findings reveal that the AP-2 genes have a major function in mammalian neural crest development, influencing patterning of the craniofacial skeleton via the DLX code, an effect that has implications for vertebrate facial evolution, as well as for human craniofacial disorders. © 2018. Published by The Company of Biologists Ltd.
Design and Analysis of Wind Turbine Rotors Using Hinged Structures and Rods
NASA Astrophysics Data System (ADS)
Lu, Hongya; Zeng, Pan; Lei, Liping
2018-03-01
Light weight and high stiffness are key design factors in ensuring cost effectiveness and reliability of wind turbines, especially for the inboard region of the rotor blades. In this study, several novel designs were developed to improve the mechanical performance of the rotor. Experiments were performed on an isolated blade incorporating the new features of a hinged structure and rods. The results validated the effectiveness of these features at alleviating the root-bending moment of the blade under varying wind loads and enhancing the stiffness of the blade. A numerical investigation was carried out to further examine the bending moment distribution, shear and axial force, and rod tension of these novel rotor designs under uniform loads. Longitudinal geometrical variations of the blade were considered in the model. Results showed that two designs realized a favorable bending moment distribution and improved the modal frequencies of the edgewise modes: bisymmetrical rods on a single-hinged structure and interveined symmetrical rods on a cantilevered structure. However, these designs have different deformation mechanisms. In addition, the first group of edgewise modal frequencies of these two designs were improved compared with the traditional rotor design. Their potential values in the application to the design of a lightweight, high-stiffness, and reliable wind turbine rotor were discussed.
A glasses-type wearable device for monitoring the patterns of food intake and facial activity
NASA Astrophysics Data System (ADS)
Chung, Jungman; Chung, Jungmin; Oh, Wonjun; Yoo, Yongkyu; Lee, Won Gu; Bang, Hyunwoo
2017-01-01
Here we present a new method for automatic and objective monitoring of ingestive behaviors in comparison with other facial activities through load cells embedded in a pair of glasses, named GlasSense. Typically, activated by subtle contraction and relaxation of a temporalis muscle, there is a cyclic movement of the temporomandibular joint during mastication. However, such muscular signals are, in general, too weak to sense without amplification or an electromyographic analysis. To detect these oscillatory facial signals without any use of obtrusive device, we incorporated a load cell into each hinge which was used as a lever mechanism on both sides of the glasses. Thus, the signal measured at the load cells can detect the force amplified mechanically by the hinge. We demonstrated a proof-of-concept validation of the amplification by differentiating the force signals between the hinge and the temple. A pattern recognition was applied to extract statistical features and classify featured behavioral patterns, such as natural head movement, chewing, talking, and wink. The overall results showed that the average F1 score of the classification was about 94.0% and the accuracy above 89%. We believe this approach will be helpful for designing a non-intrusive and un-obtrusive eyewear-based ingestive behavior monitoring system.
Zhu, Lizhe; Jiang, Hanlun; Sheong, Fu Kit; Cui, Xuefeng; Gao, Xin; Wang, Yanli; Huang, Xuhui
2016-03-17
Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Ago's but rigid for eukaryotic Ago's.
NASA Technical Reports Server (NTRS)
Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.
2014-01-01
Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.
NASA Technical Reports Server (NTRS)
Mennell, R. C.
1976-01-01
Wind tunnel investigations were conducted on an 0.010-scale representation of the VL70-000140C Integrated Space Shuttle Launch Vehicle. The primary test objective was to obtain Reynolds number effects on orbiter elevon hinge moments and wing bending/torsional moments. Launch vehicle aerodynamic force data were also recorded. The elevon hinge moments, wing bending/torsional moments, and vehicle force data were recorded over an angle of attack range of -6 deg to +6 deg, an angle of sideslip range of -6 deg to +6 deg, at Mach numbers of 0.6, 0.975, 1.05 and 1.25. The Reynolds number was varied from a minimum of 4.5 million/foot to a maximum of 11.5 million/foot. The complete integrated configuration was tested with the orbiter elevons set at 0 deg and deflected to 9 deg on the outboard elevon and 10 deg on the inboard elevon. Testing was conducted in the TWT 19.7% porous transonic test section with the model sting mounted through the orbiter base. All aerodynamic force data were obtained from internal strain gage balance located in the orbiter.
NASA Astrophysics Data System (ADS)
Varela, Sebastian; ‘Saiid' Saiidi, M.
2016-07-01
This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Self-centering and energy dissipation in the column were provided by unbonded superelastic nickel-titanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the ‘virgin’ model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.
Deployment Analysis of a Simple Tape-Spring Hinge Using Probabilistic Methods
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Horta, Lucas G.
2012-01-01
Acceptance of new deployable structures architectures and concepts requires validated design methods to minimize the expense involved with technology validation flight testing. Deployable concepts for large lightweight spacecraft include booms, antennae, and masts. This paper explores the implementation of probabilistic methods in the design process for the deployment of a strain-energy mechanism, specifically a simple tape-spring hinge. Strain-energy mechanisms are attractive for deployment in very lightweight systems because they do not require the added mass and complexity associated with motors and controllers. However, designers are hesitant to include free deployment, strain-energy mechanisms because of the potential for uncontrolled behavior. In the example presented here, the tapespring cross-sectional dimensions have been varied and a target displacement during deployment has been selected as the design metric. Specifically, the tape-spring should reach the final position in the shortest time with the minimal amount of overshoot and oscillations. Surrogate models have been used to reduce computational expense. Parameter values to achieve the target response have been computed and used to demonstrate the approach. Based on these results, the application of probabilistic methods for design of a tape-spring hinge has shown promise as a means of designing strain-energy components for more complex space concepts.
Wang, Qiang; Liu, Feiyang; Wang, Beilei; Zou, Fengming; Qi, Ziping; Chen, Cheng; Yu, Kailin; Hu, Chen; Qi, Shuang; Wang, Wenchao; Hu, Zhenquan; Liu, Juan; Wang, Wei; Wang, Li; Liang, Qianmao; Zhang, Shanchun; Ren, Tao; Liu, Qingsong; Liu, Jing
2017-01-12
The discovery of a novel potent type II ABL/c-KIT dual kinase inhibitor compound 34 (CHMFL-ABL/KIT-155), which utilized a hydrogen bond formed by NH on the kinase backbone and carbonyl oxygen of 34 as a unique hinge binding, is described. 34 potently inhibited purified ABL (IC 50 : 46 nM) and c-KIT kinase (IC 50 : 75 nM) in the biochemical assays and displayed high selectivity (S Score (1) = 0.03) at the concentration of 1 μM among 468 kinases/mutants in KINOMEscan assay. It exhibited strong antiproliferative activities against BCR-ABL/c-KIT driven CML/GISTs cancer cell lines through blockage of the BCR-ABL/c-KIT mediated signaling pathways, arresting cell cycle progression and induction of apoptosis. 34 possessed a good oral PK property and effectively suppressed the tumor progression in the K562 (CML) and GIST-T1 (GISTs) cells mediated xenograft mouse model. The distinct hinge-binding mode of 34 provided a novel pharmacophore for expanding the chemical structure diversity for the type II kinase inhibitors discovery.
Self-Folded Gripper-Like Architectures from Stimuli-Responsive Bilayers.
Abdullah, Arif M; Li, Xiuling; Braun, Paul V; Rogers, John A; Hsia, K Jimmy
2018-06-19
Self-folding microgrippers are an emerging class of smart structures that have widespread applications in medicine and micro/nanomanipulation. To achieve their functionalities, these architectures rely on spatially patterned hinges to transform into 3D configurations in response to an external stimulus. Incorporating hinges into the devices requires the processing of multiple layers which eventually increases the fabrication costs and actuation complexities. The goal of this work is to demonstrate that it is possible to achieve gripper-like configurations in an on-demand manner from simple planar bilayers that do not require hinges for their actuation. Finite element modeling of bilayers is performed to understand the mechanics behind their stimuli-responsive shape transformation behavior. The model predictions are then experimentally validated and axisymmetric gripper-like shapes are realized using millimeter-scale poly(dimethylsiloxane) bilayers that undergo differential swelling in organic solvents. Owing to the nature of the computational scheme which is independent of length scales and material properties, the guidelines reported here would be applicable to a diverse array of gripping systems and functional devices. Thus, this work not only demonstrates a simple route to fabricate functional microgrippers but also contributes to self-assembly in general. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morphologic-echocardiographic correlates of Ebstein's malformation.
Rusconi, P G; Zuberbuhler, J R; Anderson, R H; Rigby, M L
1991-07-01
The cross-sectional echocardiographic findings were analysed retrospectively in 26 patients with Ebstein's malformation in the light of studies of autopsied specimens from different patients showing this lesion. The salient anatomical feature in diagnosis is the finding of the hinge point of the septal and mural leaflets of the valve within the inlet component of the right ventricle rather than at the atrioventricular junction. The other important feature is the nature of the distal attachment of the leaflets, particularly the anterosuperior one, which can either be in focal or linear fashion. The hinge point of the septal leaflet was noted echocardiographically to be displaced in 19 patients but, significantly, the leaflet was absent in the other seven. Also significant was that the hinge point of the mural leaflet at the crux had been visualized in only 15 of the patients. The anterosuperior leaflet had a distal linear attachment in 20 of the patients, with the anteroseptal commissure becoming a keyhole in six of these through which blood passed to the functional right ventricle. The valve remained a competent structure, even though closing at the junction of atrialized and functional components of the right ventricle rather than at the atrioventricular junction. Cross-sectional echocardiography is the technique of choice with which to display the salient morphological features of Ebstein's malformation.
Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine
NASA Astrophysics Data System (ADS)
Jarvis, S.; Justham, T.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.
2006-07-01
Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.
Probe measures gas and liquid mass flux in high mass flow ratio two-phase flows
NASA Technical Reports Server (NTRS)
Burick, R. J.
1972-01-01
Deceleration probe constructed of two concentric tubes with separator inlet operates successfully in flow fields where ratio of droplet flow rate to gas flow rate ranges from 1.0 to 20, and eliminates problems of local flow field disturbances and flooding. Probe is effective tool for characterization of liquid droplet/gas spray fields.
Plocková, J; Chmelík, J
2001-05-25
Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.
Zhou, Ge; Liang, Feng-Xia; Romih, Rok; Wang, Zefang; Liao, Yi; Ghiso, Jorge; Luque-Garcia, Jose L.; Neubert, Thomas A.; Kreibich, Gert; Alonso, Miguel A.; Schaeren-Wiemers, Nicole; Sun, Tung-Tien
2012-01-01
The apical surface of mammalian bladder urothelium is covered by large (500–1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin–Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface. PMID:22323295
Origami Inspired Self-assembly of Patterned and Reconfigurable Particles
Pandey, Shivendra; Gultepe, Evin; Gracias, David H.
2013-01-01
There are numerous techniques such as photolithography, electron-beam lithography and soft-lithography that can be used to precisely pattern two dimensional (2D) structures. These technologies are mature, offer high precision and many of them can be implemented in a high-throughput manner. We leverage the advantages of planar lithography and combine them with self-folding methods1-20 wherein physical forces derived from surface tension or residual stress, are used to curve or fold planar structures into three dimensional (3D) structures. In doing so, we make it possible to mass produce precisely patterned static and reconfigurable particles that are challenging to synthesize. In this paper, we detail visualized experimental protocols to create patterned particles, notably, (a) permanently bonded, hollow, polyhedra that self-assemble and self-seal due to the minimization of surface energy of liquefied hinges21-23 and (b) grippers that self-fold due to residual stress powered hinges24,25. The specific protocol described can be used to create particles with overall sizes ranging from the micrometer to the centimeter length scales. Further, arbitrary patterns can be defined on the surfaces of the particles of importance in colloidal science, electronics, optics and medicine. More generally, the concept of self-assembling mechanically rigid particles with self-sealing hinges is applicable, with some process modifications, to the creation of particles at even smaller, 100 nm length scales22, 26 and with a range of materials including metals21, semiconductors9 and polymers27. With respect to residual stress powered actuation of reconfigurable grasping devices, our specific protocol utilizes chromium hinges of relevance to devices with sizes ranging from 100 μm to 2.5 mm. However, more generally, the concept of such tether-free residual stress powered actuation can be used with alternate high-stress materials such as heteroepitaxially deposited semiconductor films5,7 to possibly create even smaller nanoscale grasping devices. PMID:23407436
NASA Technical Reports Server (NTRS)
Becker, John V; Korycinski, Peter F
1944-01-01
The failure of wing panels on a number of TBF-1 and TBM-1 airplanes in flight has prompted several investigations of the possible causes of failure. This report describes tests in the Langley 16-foot high-speed tunnel to determine whether these failures could be attributed to changes in the aerodynamic characteristics of the ailerons at high speeds. The tests were made of a 12-foot-span section including the tip and aileron of the right wing of a TBF-1 airplane. Hinge moments, control-link stresses due to aerodynamic buffeting, and fabric-deflection photographs were obtained at true airspeeds ranging from 110 to 365 miles per hour. The aileron hinge-moment coefficients were found to vary only slightly with airspeed in spite of the large fabric deflections that developed as the speed was increased. An analysis of these results indicated that the resultant hinge moment of the ailerons as installed in the airplane would tend to restore the ailerons to their neutral position for all the high-speed flight conditions covered in the tests. Serious aerodynamic buffeting occurred at up aileron angles of -10 degrees or greater because of stalling of the sharp projecting lip of the Frise aileron. The peak stresses set up in the aileron control linkages in the buffeting condition were as high as three times the mean stress. During the hinge-moment investigation, flutter of the test installation occurred at airspeeds of about 150 miles per hour. This flutter condition was investigated in some detail and slow-motion pictures were made of the motion of the wing tip and aileron. The flutter was found to involve simultaneous normal bending and chordwise oscillation of the wing and flapping of the aileron. The aileron motion appeared to be coupled with this flutter condition and was investigated in some detail and slow-motion pictures were made of the motion of the wing tip and aileron. The flutter was found to involve simultaneous normal bending and chordwise oscillation of the wing and flapping of the aileron. The aileron motion appeared to be coupled with the motion of the wing through the mass unbalance of the aileron in the normal-to-chord plane due to location of the hinge line 2.17 inches below the center of gravity of the aileron. Flutter did not occur when the installation was stiffened to prevent chordwise motion or when the bending frequency of the aileron system was appreciably higher than that of the wing as in the complete airplane installation.
Graphics and Flow Visualization of Computer Generated Flow Fields
NASA Technical Reports Server (NTRS)
Kathong, M.; Tiwari, S. N.
1987-01-01
Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.
NASA Astrophysics Data System (ADS)
Murcia, H.; Németh, K.; Moufti, M. R.; Lindsay, J. M.; El-Masry, N.; Cronin, S. J.; Qaddah, A.; Smith, I. E. M.
2014-04-01
A "lava morphotype" refers to the recognizable and distinctive characteristics of the surface morphology of a lava flow after solidification, used in a similar way to a sedimentary facies. This classification method is explored on an example volcanic field in the Kingdom of Saudi Arabia, where copious lava outpourings may represent an important transition between monogenetic and flood basalt fields. Here, young and well-preserved mafic lava fields display a wide range of surface morphologies. We focussed on four post-4500 yrs. BP lava flow fields in northern Harrat Rahat (<10 Ma) and propose a framework for describing systematic changes in morphotypes down-flow. The morphotypes give insight into intrinsic and extrinsic parameters of emplacement, rheology and dominant flow behavior, as well as the occurrence and character of other lava structures. The Harrat Rahat lava flow fields studied extend up to 23 km from the source, and vary between 1-2 m and 12 m in thickness. Areas of the lava flow fields are between ˜32 and ˜61 km2, with individual flow field volumes estimated between ˜0.085 and ˜0.29 km3. They exhibit Shelly-, Slabby-, and Rubbly-pahoehoe, Platy-, Cauliflower-, and Rubbly-a'a, and Blocky morphotypes. Morphotypes reflect the intrinsic parameters of: composition, temperature, crystallinity and volatile-content/vesicularity; along with external influences, such as: emission mechanism, effusion rate, topography and slope control of flow velocity. One morphotype can transition to another in individual flow-units or lobes and they may dominate zones. Not all morphotypes were found in a single lava flow field. Pahoehoe morphotypes are related to the simple mechanical disaggregation of the crust, whereas a'a morphotypes are related to the transitional emergence and subsequent transitional disappearance of clinker. Blocky morphotypes result from fracturing and auto-brecciation. A'a morphotypes (i.e. platy-, cauliflower-, rubbly-a'a) dominate the lava flow field surfaces in northern Harrat Rahat, which suggests that core-dominated flows were predominant during flow movement. Lava structures are well-developed and well-preserved and some may be related to some morphotypes. Down-flow changes exhibit key illustrative and easy recognizable features in the lava flow fields and might provide insights into real-time monitoring of future flows in this region.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
2011-01-01
Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler temperature (23°C), exhibited significant levels of additive genetic variance. Conclusions Our results show that the genetics underlying phenotypic expression can be complex, context-dependent and different in each of the sexes. We discuss the implications of these results, particularly in terms of the evolutionary processes that hinge on good and compatible genes models. PMID:21791118
Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing
Etournay, Raphaël; Popović, Marko; Merkel, Matthias; Nandi, Amitabha; Blasse, Corinna; Aigouy, Benoît; Brandl, Holger; Myers, Gene; Salbreux, Guillaume; Jülicher, Frank; Eaton, Suzanne
2015-01-01
How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constraints exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing. DOI: http://dx.doi.org/10.7554/eLife.07090.001 PMID:26102528
Rational rates of uniform decay for strong solutions to a fluid-structure PDE system
NASA Astrophysics Data System (ADS)
Avalos, George; Bucci, Francesca
2015-06-01
In this work we investigate the uniform stability properties of solutions to a well-established partial differential equation (PDE) model for a fluid-structure interaction. The PDE system under consideration comprises a Stokes flow which evolves within a three-dimensional cavity; moreover, a Kirchhoff plate equation is invoked to describe the displacements along a (fixed) portion - say, Ω - of the cavity wall. Contact between the respective fluid and structure dynamics occurs on the boundary interface Ω. The main result in the paper is as follows: the solutions to the composite PDE system, corresponding to smooth initial data, decay at the rate of O (1 / t). Our method of proof hinges upon the appropriate invocation of a relatively recent resolvent criterion for polynomial decays of C0-semigroups. While the characterization provided by said criterion originates in the context of operator theory and functional analysis, the work entailed here is wholly within the realm of PDE.
Application of Excitation from Multiple Locations on a Simplified High-Lift System
NASA Technical Reports Server (NTRS)
Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi
2004-01-01
A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.
Eye and sheath folds in turbidite convolute lamination: Aberystwyth Grits Group, Wales
NASA Astrophysics Data System (ADS)
McClelland, H. L. O.; Woodcock, N. H.; Gladstone, C.
2011-07-01
Eye and sheath folds are described from the turbidites of the Aberystwyth Group, in the Silurian of west Wales. They have been studied at outcrop and on high resolution optical scans of cut surfaces. The folds are not tectonic in origin. They occur as part of the convolute-laminated interval of each sand-mud turbidite bed. The thickness of this interval is most commonly between 20 and 100 mm. Lamination patterns confirm previous interpretations that convolute lamination nucleated on ripples and grew during continued sedimentation of the bed. The folds amplified vertically and were sheared horizontally by continuing turbidity flow, but only to average values of about γ = 1. The strongly curvilinear fold hinges are due not to high shear strains, but to nucleation on sinuous or linguoid ripples. The Aberystwyth Group structures provide a warning that not all eye folds in sedimentary or metasedimentary rocks should be interpreted as sections through high shear strain sheath folds.
NASA Astrophysics Data System (ADS)
Petrie, E. S.; Evans, J. P.; Richey, D.; Flores, S.; Barton, C.; Mozley, P.
2015-12-01
Sedimentary rocks in the San Rafael Swell, Utah, were deformed by Laramide compression and subsequent Neogene extension. We evaluate the effect of fault damage zone morphology as a function of structural position, and changes in mechanical stratigraphy on the distribution of secondary minerals across the reservoir-seal pair of the Navajo Sandstone and overlying Carmel Formation. We decipher paleo-fluid migration and examine the effect faults and fractures have on reservoir permeability and efficacy of top seal for a range of geo-engineering applications. Map-scale faults have an increased probability of allowing upward migration of fluids along the fault plane and within the damage zone, potentially bypassing the top seal. Field mapping, mesoscopic structural analyses, petrography, and geochemical observations demonstrate that fault zone thickness increases at structural intersections, fault relay zones, fault-related folds, and fault tips. Higher densities of faults with meters of slip and dense fracture populations are present in relay zones relative to single, discrete faults. Curvature analysis of the San Rafael monocline and fracture density data show that fracture density is highest where curvature is highest in the syncline hinge and near faults. Fractures cross the reservoir-seal interface where fracture density is highest and structural diagensis includes mineralization events and bleaching and calcite and gypsum mineralization. The link between fracture distributions and structural setting implys that transmissive fractures have predictable orientations and density distributions. At the m- to cm- scale, deformation-band faults and joints in the Navajo Sandstone penetrate the reservoir-seal interface and transition into open-mode fractures in the caprock seal. Scanline analysis and petrography of veins provide evidence for subsurface mineralization and fracture reactivation, suggesting that the fractures act as loci for fluid flow through time. Heterolithic caprock seals with variable fracture distributions and morphology highlight the strong link between the variation in material properties and the response to changing stress conditions. The variable connectivity of fractures and the changes in fracture density plays a critical role in subsurface fluid flow.
Electroosmotic Flow Driven by DC and AC Electric Fields in Curved Microchannels
NASA Astrophysics Data System (ADS)
Chen, Jia-Kun; Luo, Win-Jet; Yang, Ruey-Jen
2006-10-01
The purpose of this study is to investigate electroosmotic flows driven by externally applied DC and AC electric fields in curved microchannels. For the DC electric driving field, the velocity distribution and secondary flow patterns are investigated in microchannels with various curvature ratios. We use the Dean number to describe the curvature effect of the flow field in DC electric field. The result implies that the effect of curvatures and the strength of the secondary flows become get stronger when the curvature ratio of C/A (where C is the radius of curvature of the microchannel and A is the half-height of rectangular curved tube.) is smaller. For the AC electric field, the velocity distribution and secondary flow patterns are investigated for driving frequencies in the range of 2.0 kHz (\\mathit{Wo}=0.71) to 11 kHz (\\mathit{Wo}=1.66). The numerical results reveal that the velocity at the center of the microchannel becomes lower at higher frequencies of the AC electric field and the strength of the secondary flow decreases. When the applied frequency exceeds 3.0 kHz (\\mathit{Wo}=0.87), vortices are no longer observed at the corners of the microchannel. Therefore, it can be concluded that the secondary flow induced at higher AC electric field frequencies has virtually no effect on the axial flow field in the microchannel.