Sample records for hip muscle function

  1. Greater understanding of normal hip physical function may guide clinicians in providing targeted rehabilitation programmes.

    PubMed

    Kemp, Joanne L; Schache, Anthony G; Makdissi, Michael; Sims, Kevin J; Crossley, Kay M

    2013-07-01

    This study investigated tests of hip muscle strength and functional performance. The specific objectives were to: (i) establish intra- and inter-rater reliability; (ii) compare differences between dominant and non-dominant limbs; (iii) compare agonist and antagonist muscle strength ratios; (iv) compare differences between genders; and (v) examine relationships between hip muscle strength, baseline measures and functional performance. Reliability study and cross-sectional analysis of hip strength and functional performance. In healthy adults aged 18-50years, normalised hip muscle peak torque and functional performance were evaluated to: (i) establish intra-rater and inter-rater reliability; (ii) analyse differences between limbs, between antagonistic muscle groups and genders; and (iii) associations between strength and functional performance. Excellent reliability (intra-rater ICC=0.77-0.96; inter-rater ICC=0.82-0.95) was observed. No difference existed between dominant and non-dominant limbs. Differences in strength existed between antagonistic pairs of muscles: hip abduction was greater than adduction (p<0.001) and hip ER was greater than IR (p<0.001). Men had greater ER strength (p=0.006) and hop for distance (p<0.001) than women. Strong associations were observed between measures of hip muscle strength (except hip flexion) and age, height, and functional performance. Deficits in hip muscle strength or functional performance may influence hip pain. In order to provide targeted rehabilitation programmes to address patient-specific impairments, and determine when individuals are ready to return to physical activity, clinicians are increasingly utilising tests of hip strength and functional performance. This study provides a battery of reliable, clinically applicable tests which can be used for these purposes. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Effectiveness of hip muscle strengthening in patellofemoral pain syndrome patients: a systematic review.

    PubMed

    Santos, Thiago R T; Oliveira, Bárbara A; Ocarino, Juliana M; Holt, Kenneth G; Fonseca, Sérgio T

    2015-01-01

    Patellofemoral pain syndrome (PFPS) is characterized by anterior knee pain, which may limit the performance of functional activities. The influence of hip joint motion on the development of this syndrome has already been documented in the literature. In this regard, studies have investigated the effectiveness of hip muscle strengthening in patients with PFPS. The aims of this systematic review were (1) to summarize the literature related to the effects of hip muscle strengthening on pain intensity, muscle strength, and function in individuals with PFPS and (2) to evaluate the methodological quality of the selected studies. A search for randomized controlled clinical trials was conducted using the following databases: Google Scholar, MEDLINE, PEDro, LILACS, and SciELO. The selected studies had to distinguish the effects of hip muscle strengthening in a group of patients with PFPS, as compared to non-intervention or other kinds of intervention, and had to investigate the following outcomes: pain, muscle strength, and function. The methodological quality of the selected studies was analyzed by means of the PEDro scale. Seven studies were selected. These studies demonstrated that hip muscle strengthening was effective in reducing pain. However, the studies disagreed regarding the treatments' ability to improve muscle strength. Improvement in functional capabilities after hip muscle strengthening was found in five studies. Hip muscle strengthening is effective in reducing the intensity of pain and improving functional capabilities in patients with PFPS, despite the lack of evidence for its ability to increase muscle strength.

  3. Effectiveness of hip muscle strengthening in patellofemoral pain syndrome patients: a systematic review

    PubMed Central

    Santos, Thiago R. T.; Oliveira, Bárbara A.; Ocarino, Juliana M.; Holt, Kenneth G.; Fonseca, Sérgio T.

    2015-01-01

    Introduction: Patellofemoral pain syndrome (PFPS) is characterized by anterior knee pain, which may limit the performance of functional activities. The influence of hip joint motion on the development of this syndrome has already been documented in the literature. In this regard, studies have investigated the effectiveness of hip muscle strengthening in patients with PFPS. Objectives: The aims of this systematic review were (1) to summarize the literature related to the effects of hip muscle strengthening on pain intensity, muscle strength, and function in individuals with PFPS and (2) to evaluate the methodological quality of the selected studies. Method: A search for randomized controlled clinical trials was conducted using the following databases: Google Scholar, MEDLINE, PEDro, LILACS, and SciELO. The selected studies had to distinguish the effects of hip muscle strengthening in a group of patients with PFPS, as compared to non-intervention or other kinds of intervention, and had to investigate the following outcomes: pain, muscle strength, and function. The methodological quality of the selected studies was analyzed by means of the PEDro scale. Results: Seven studies were selected. These studies demonstrated that hip muscle strengthening was effective in reducing pain. However, the studies disagreed regarding the treatments' ability to improve muscle strength. Improvement in functional capabilities after hip muscle strengthening was found in five studies. Conclusion: Hip muscle strengthening is effective in reducing the intensity of pain and improving functional capabilities in patients with PFPS, despite the lack of evidence for its ability to increase muscle strength. PMID:26039034

  4. The efficacy of modified direct lateral versus posterior approach on gait function and hip muscle strength after primary total hip arthroplasty at 12months follow-up. An explorative randomised controlled trial.

    PubMed

    Rosenlund, Signe; Broeng, Leif; Overgaard, Søren; Jensen, Carsten; Holsgaard-Larsen, Anders

    2016-11-01

    The lateral and the posterior approach are the most commonly used procedures for total hip arthroplasty. Due to the detachment of the hip abductors, lateral approach is claimed to cause reduced hip muscle strength and altered gait pattern. However, this has not been investigated in a randomised controlled trial. The aim was to compare the efficacy of total hip arthroplasty performed by lateral or posterior approach on gait function and hip muscle strength up to 12months post-operatively. We hypothesised that posterior approach would be superior to lateral approach. Forty-seven patients with primary hip osteoarthritis were randomised to total hip arthroplasty with either posterior or lateral approach and evaluated pre-operatively, 3 and 12months post-operatively using 3-dimensional gait analyses as objective measures of gait function, including Gait Deviation Index, temporo-spatial parameters and range of motion. Isometric maximal hip muscle strength in abduction, flexion and extension was also tested. Post-operatively, no between-group difference in gait function was observed. However, both hip abductor and flexor muscle strength improved more in the posterior approach group: -0.20(Nm/kg)[95%CI:-0.4 to 0.0] and -0.20(Nm/kg)[95%CI:-0.4 to 0.0], respectively. Contrary to our first hypothesis, the overall gait function in the posterior approach group did not improve more than in the lateral approach group. However, in agreement with our second hypothesis, patients in the posterior approach group improved more in hip abductor and flexor muscle strength at 12months. Further investigation of the effect of reduced maximal hip muscle strength on functional capacity is needed. ClinicalTrials.gov. No.: NCT01616667. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Surgery-Induced Changes and Early Recovery of Hip-Muscle Strength, Leg-Press Power, and Functional Performance after Fast-Track Total Hip Arthroplasty: A Prospective Cohort Study

    PubMed Central

    Holm, Bente; Thorborg, Kristian; Husted, Henrik; Kehlet, Henrik; Bandholm, Thomas

    2013-01-01

    Background By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits. Objective(s) Firstly, to quantify changes (compared to pre-operative values) in hip muscle strength, leg-press power, and functional performance in the first week after THA, and secondly, to explore relationships between the muscle strength changes, and changes in hip pain, systemic inflammation, and thigh swelling. Design Prospective, cohort study. Setting Convenience sample of patients receiving a THA at Copenhagen University Hospital, Hvidovre, Denmark, between March and December 2011. Participants Thirty-five patients (65.9±7.2 years) undergoing THA. Main outcome measures Hip muscle strength, leg-press power, performance-based function, and self-reported disability were determined prior to, and 2 and 8 days after, THA (Day 2 and 8, respectively). Hip pain, thigh swelling, and C-Reactive Protein were also determined. Results Five patients were lost to follow-up. Hip muscle strength and leg press power were substantially reduced at Day 2 (range of reductions: 41–58%, P<0.001), but less pronounced at Day 8 (range of reductions: 23–31%, P<0.017). Self-reported symptoms and function (HOOS: Pain, Symptoms, and ADL) improved at Day 8 (P<0.014). Changes in hip pain, C-Reactive Protein, and thigh swelling were not related to the muscle strength and power losses. Conclusion(s) Hip muscle strength and leg-press power decreased substantially in the first week after THA – especially at Day 2 – with some recovery at Day 8. The muscle strength loss and power loss were not related to changes in hip pain, systemic inflammation, or thigh swelling. In contrast, self-reported symptoms and function improved. These data on surgery-induced changes in muscle strength may help design impairment-directed, post-operative rehabilitation to be introduced soon after surgery. Trial Registration ClinicalTrials.gov NCT01246674. PMID:23614020

  6. Cross-sectional association between muscle strength and self-reported physical function in 195 hip osteoarthritis patients.

    PubMed

    Hall, Michelle; Wrigley, Tim V; Kasza, Jessica; Dobson, Fiona; Pua, Yong Hao; Metcalf, Ben R; Bennell, Kim L

    2017-02-01

    This study aimed to evaluate associations between strength of selected hip and knee muscles and self-reported physical function, and their clinical relevance, in men and women with hip osteoarthritis (OA). Cross-sectional data from 195 participants with symptomatic hip OA were used. Peak isometric torque of hip extensors, flexors, and abductors, and knee extensors were measured, along with physical function using the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Separate linear regressions in men and women were used to determine the association between strength and physical function accounting for age, pain, and radiographic disease severity. Subsequently, magnitudes of strength associated with estimates of minimal clinically important improvement (MCII) in physical function were estimated according to severity of difficulty with physical function. For men, greater strength of the hip extensors, hip flexors and knee extensors were each associated with better physical function. For women, greater muscle strength of all tested muscles were each associated with better physical function. For men and women, increases in muscle strength between 17-32%, 133-223%, and 151-284% may be associated with estimates of MCII in physical function for those with mild, moderate, and severe physical dysfunction, respectively. Greater isometric strength of specific hip and thigh muscle groups may be associated with better self-reported physical function in men and women. In people with mild physical dysfunction, an estimate of MCII in physical function may be associated with attainable increases in strength. However, in patients with more severe dysfunction, greater and perhaps unattainable strength increases may be associated with an estimate of MCII in physical function. Longitudinal studies are required to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Structure and function of the abductors in patients with hip osteoarthritis: Systematic review and meta-analysis.

    PubMed

    Marshall, Amelia Rose; Noronha, Marcos de; Zacharias, Anita; Kapakoulakis, Theo; Green, Rodney

    2016-04-27

    Hip osteoarthritis (OA) is a major cause of morbidity. Rehabilitation for this population focuses on strengthening the hip muscles, particularly the abductors, however the deficit in function of these muscles is unclear. To review the evidence for the differences in structure and function of hip abductors (gluteus medius and minimus and tensor fascia lata) in hip OA. A systematic review was conducted using MEDLINE, AMED, CINAHL and SportDISCUS, from the earliest date to September 2013. Studies that compared hip OA patients with controls, or the unaffected contralateral hip were included. Studies needed to report data on an outcome related to gross gluteal muscle function. An initial yield of 141 studies was reduced to 22 after application of inclusion/exclusion criteria. Meta-analysis confirmed greater hip abductor strength in the control group (standardized mean difference = SMD -0.93, 95%CI -1.70 to -0.16) and the unaffected limb (SMD -0.26, 95%CI -0.48 to -0.04). Meta-analyses showed no differences in muscle size either between groups or limbs. Few electromyography studies have been reported and meta-analysis was not possible. Hip abductor strength is reduced in OA patients when compared to healthy controls and to the unaffected limb. Data on muscle size and activity is limited.

  8. Hip-abduction torque and muscle activation in people with low back pain.

    PubMed

    Sutherlin, Mark A; Hart, Joseph M

    2015-02-01

    Individuals with a history of low back pain (LBP) may present with decreased hip-abduction strength and increased trunk or gluteus maximus (GMax) fatigability. However, the effect of hip-abduction exercise on hip-muscle function has not been previously reported. To compare hip-abduction torque and muscle activation of the hip, thigh, and trunk between individuals with and without a history of LBP during repeated bouts of side-lying hip-abduction exercise. Repeated measures. Clinical laboratory. 12 individuals with a history of LBP and 12 controls. Repeated 30-s hip-abduction contractions. Hip-abduction torque, normalized root-mean-squared (RMS) muscle activation, percent RMS muscle activation, and forward general linear regression. Hip-abduction torque reduced in all participants as a result of exercise (1.57 ± 0.36 Nm/kg, 1.12 ± 0.36 Nm/kg; P < .001), but there were no group differences (F = 0.129, P = .723) or group-by-time interactions (F = 1.098, P = .358). All participants had increased GMax activation during the first bout of exercise (0.96 ± 1.00, 1.18 ± 1.03; P = .038). Individuals with a history of LBP had significantly greater GMax activation at multiple points during repeated exercise (P < .05) and a significantly lower percent of muscle activation for the GMax (P = .050) at the start of the third bout of exercise and for the biceps femoris (P = .039) at the end of exercise. The gluteal muscles best predicted hip-abduction torque in controls, while no consistent muscles were identified for individuals with a history of LBP. Hip-abduction torque decreased in all individuals after hip-abduction exercise, although individuals with a history of LBP had increased GMax activation during exercise. Gluteal muscle activity explained hip-abduction torque in healthy individuals but not in those with a history of LBP. Alterations in hip-muscle function may exist in individuals with a history of LBP.

  9. Lower extremity muscle functions during full squats.

    PubMed

    Robertson, D G E; Wilson, Jean-Marie J; St Pierre, Taunya A

    2008-11-01

    The purpose of this research was to determine the functions of the gluteus maximus, biceps femoris, semitendinosus, rectus femoris, vastus lateralis, soleus, gastrocnemius, and tibialis anterior muscles about their associated joints during full (deep-knee) squats. Muscle function was determined from joint kinematics, inverse dynamics, electromyography, and muscle length changes. The subjects were six experienced, male weight lifters. Analyses revealed that the prime movers during ascent were the monoarticular gluteus maximus and vasti muscles (as exemplified by vastus lateralis) and to a lesser extent the soleus muscles. The biarticular muscles functioned mainly as stabilizers of the ankle, knee, and hip joints by working eccentrically to control descent or transferring energy among the segments during scent. During the ascent phase, the hip extensor moments of force produced the largest powers followed by the ankle plantar flexors and then the knee extensors. The hip and knee extensors provided the initial bursts of power during ascent with the ankle extensors and especially a second burst from the hip extensors adding power during the latter half of the ascent.

  10. The effect of low back pain on trunk muscle size/function and hip strength in elite football (soccer) players.

    PubMed

    Hides, Julie A; Oostenbroek, Tim; Franettovich Smith, Melinda M; Mendis, M Dilani

    2016-12-01

    Low back pain (LBP) is a common problem in football (soccer) players. The effect of LBP on the trunk and hip muscles in this group is unknown. The relationship between LBP and trunk muscle size and function in football players across the preseason was examined. A secondary aim was to assess hip muscle strength. Twenty-five elite soccer players participated in the study, with assessments conducted on 23 players at both the start and end of the preseason. LBP was assessed with questionnaires and ultrasound imaging was used to assess size and function of trunk muscles at the start and end of preseason. Dynamometry was used to assess hip muscle strength at the start of the preseason. At the start of the preseason, 28% of players reported the presence of LBP and this was associated with reduced size of the multifidus, increased contraction of the transversus abdominis and multifidus muscles. LBP decreased across the preseason, and size of the multifidus muscle improved over the preseason. Ability to contract the abdominal and multifidus muscles did not alter across the preseason. Asymmetry in hip adductor and abductor muscle strength was found between players with and without LBP. Identifying modifiable factors in players with LBP may allow development of more targeted preseason rehabilitation programmes.

  11. The Gait Deviation Index Is Associated with Hip Muscle Strength and Patient-Reported Outcome in Patients with Severe Hip Osteoarthritis-A Cross-Sectional Study.

    PubMed

    Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten

    2016-01-01

    The Gait Deviation Index summarizes overall gait 'quality', based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait 'quality' and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the 'Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Patients with the strongest hip abductor and hip flexor muscles had the best gait 'quality'. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait 'quality'. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait 'quality' in patients with primary hip OA.

  12. The Gait Deviation Index Is Associated with Hip Muscle Strength and Patient-Reported Outcome in Patients with Severe Hip Osteoarthritis—A Cross-Sectional Study

    PubMed Central

    Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten

    2016-01-01

    Background The Gait Deviation Index summarizes overall gait ‘quality’, based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait ‘quality’ and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Method Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the ‘Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Results Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Conclusion Patients with the strongest hip abductor and hip flexor muscles had the best gait ‘quality’. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait ‘quality’. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait ‘quality’ in patients with primary hip OA. PMID:27065007

  13. Automatic assessment of volume asymmetries applied to hip abductor muscles in patients with hip arthroplasty

    NASA Astrophysics Data System (ADS)

    Klemt, Christian; Modat, Marc; Pichat, Jonas; Cardoso, M. J.; Henckel, Joahnn; Hart, Alister; Ourselin, Sebastien

    2015-03-01

    Metal-on-metal (MoM) hip arthroplasties have been utilised over the last 15 years to restore hip function for 1.5 million patients worldwide. Althoug widely used, this hip arthroplasty releases metal wear debris which lead to muscle atrophy. The degree of muscle wastage differs across patients ranging from mild to severe. The longterm outcomes for patients with MoM hip arthroplasty are reduced for increasing degrees of muscle atrophy, highlighting the need to automatically segment pathological muscles. The automated segmentation of pathological soft tissues is challenging as these lack distinct boundaries and morphologically differ across subjects. As a result, there is no method reported in the literature which has been successfully applied to automatically segment pathological muscles. We propose the first automated framework to delineate severely atrophied muscles by applying a novel automated segmentation propagation framework to patients with MoM hip arthroplasty. The proposed algorithm was used to automatically quantify muscle wastage in these patients.

  14. Hip muscle strength is decreased in middle-aged recreational male athletes with midportion Achilles tendinopathy: A cross-sectional study.

    PubMed

    Habets, B; Smits, H W; Backx, F J G; van Cingel, R E H; Huisstede, B M A

    2017-05-01

    Investigating differences in hip muscle strength between athletes with Achilles tendinopathy (AT) and asymptomatic controls. Cross-sectional case-control study. Sports medical center. Twelve recreational male athletes with mid-portion AT and twelve matched asymptomatic controls. Isometric strength of the hip abductors, external rotators, and extensors was measured using a handheld dynamometer. Functional hip muscle performance was evaluated with the single-leg squat. The Victorian Institute of Sport Assessment-Achilles (VISA-A) questionnaire was completed to determine clinical severity of symptoms. Compared to controls, participants with AT demonstrated 28.9% less isometric hip abduction strength (p = 0.012), 34.2% less hip external rotation strength (p = 0.010), and 28.3% less hip extension strength (p = 0.034) in the injured limb. Similar differences were found for the non-injured limb (26.7-41.8%; p < 0.03). No significant differences were found in functional hip muscle performance between the injured and non-injured limb or between the groups, and no significant correlation was found between hip muscle strength and VISA-A scores. Recreational male athletes with chronic mid-portion AT demonstrated bilateral weakness of hip abductors, external rotators, and extensors compared to their asymptomatic counterparts. These findings suggest that hip muscle strength may be important in the assessment and rehabilitation of those with AT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Muscle function may depend on model selection in forward simulation of normal walking

    PubMed Central

    Xiao, Ming; Higginson, Jill S.

    2008-01-01

    The purpose of this study was to quantify how the predicted muscle function would change in a muscle-driven forward simulation of normal walking when changing the number of degrees of freedom in the model. Muscle function was described by individual muscle contributions to the vertical acceleration of the center of mass (COM). We built a two-dimensional (2D) sagittal plane model and a three-dimensional (3D) model in OpenSim and used both models to reproduce the same normal walking data. Perturbation analysis was applied to deduce muscle function in each model. Muscle excitations and contributions to COM support were compared between the 2D and 3D models. We found that the 2D model was able to reproduce similar joint kinematics and kinetics patterns as the 3D model. Individual muscle excitations were different for most of the hip muscles but ankle and knee muscles were able to attain similar excitations. Total induced vertical COM acceleration by muscles and gravity was the same for both models. However, individual muscle contributions to COM support varied, especially for hip muscles. Although there is currently no standard way to validate muscle function predictions, a 3D model seems to be more appropriate for estimating individual hip muscle function. PMID:18804767

  16. Closed kinetic chain exercises with or without additional hip strengthening exercises in management of patellofemoral pain syndrome: a randomized controlled trial.

    PubMed

    Ismail, M M; Gamaleldein, M H; Hassa, K A

    2013-10-01

    Patellofemoral pain syndrome (PFPS) is a common musculoskeletal pain condition, especially in females. Decreased hip muscle strength has been implicated as a contributing factor. Isolated open kinetic chain hip abductors and lateral rotators exercises were added by many authors to the rehabilitation program. However, Closed Kinetic Chain (CKC) exercises focusing on hip and knee muscles were not investigated if they can produce similar effect of hip strengthening and decreasing pain without the need of isolated exercises for hip musculature. The aim of the present study was to determine the effect of a CKC exercises program with or without additional hip strengthening exercises on pain and hip abductors and lateral rotators peak torque. Prospective randomized clinical trial. Patients with patellofemoral pain syndrome referred to the outpatient physical therapy clinic of the faculty of physical therapy, cairo university. Thirty two patients who had patellofemoral pain syndrome with age ranged from eighteen to thirty years. Patients were randomly assigned into two groups: CKC group and CKC with hip muscles strengthening exercises as a control (CO) group. Treatment was given 3 times/week, for 6 weeks. Patients were evaluated pre- and post-treatment for their pain severity using VAS, function of knee joint using Kujala questionnaire, hip abductors and external rotators concentric/eccentric peak torque. There were significant improvements in pain, function and hip muscles peak torque in both groups (P<0.05). However, there was no statistically significant difference between groups in hip muscles torque (P<0.05) but pain and function improvements were significantly greater in the CO group (P<0.05). Six weeks CKC program focusing on knee and hip strengthening has similar effect in improving hip muscles torque in patients with PFPS as a CKC exercises with additional hip strengthening exercises. However, adding isolated hip strengthening exercises has the advantage of more pain relief. CKC exercises with additional hip strengthening could be more beneficial in decreasing pain in PFPS than CKC exercises alone.

  17. Free Neurovascular Latissimus Dorsi Muscle Transplantation for Reconstruction of Hip Abductors.

    PubMed

    Barrera-Ochoa, Sergi; Collado-Delfa, Jose Manuel; Sallent, Andrea; Lluch, Alejandro; Velez, Roberto

    2017-09-01

    Resection of tumors affecting the hip abductors can cause significant decrease in muscle strength and may lead to abnormal gait and poor function. We present a case report showing full functional recovery after resection of a synovial sarcoma affecting the right gluteus medius and minimus muscles with reconstruction free neurovascular latissimus dorsi muscle transplantation. The latissimus dorsi muscle was harvested following standard technique and fixed to the ilium and the greater trochanter. Receptor vessels were end-to-end anastomosed to the subscapular vessels followed by an end-to-end epineural suture between the superior gluteal nerve and the thoracodorsal nerve. A year after surgery, there is no evidence of recurrent disease; electromyographic analysis shows complete reinnervation of the latissimus dorsi muscle flap, and the patient has achieved full functional recovery. Free functional latisimus dorsi transfer could be considered as a viable reconstruction technique after hip abductors resection in tumor surgery.

  18. The hip adductor muscle group in caviomorph rodents: anatomy and homology.

    PubMed

    García-Esponda, César M; Candela, Adriana M

    2015-06-01

    Anatomical comparative studies including myological data of caviomorph rodents are relatively scarce, leading to a lack of use of muscular features in cladistic and morphofunctional analyses. In rodents, the hip adductor muscles constitute an important group of the hindlimb musculature, having an important function during the beginning of the stance phase. These muscles are subdivided in several distinct ways in the different clades of rodents, making the identification of their homologies hard to establish. In this contribution we provide a detailed description of the anatomical variation of the hip adductor muscle group of different genera of caviomorph rodents and identify the homologies of these muscles in the context of Rodentia. On this basis, we identify the characteristic pattern of the hip adductor muscles in Caviomorpha. Our results indicate that caviomorphs present a singular pattern of the hip adductor musculature that distinguishes them from other groups of rodents. They are characterized by having a single m. adductor brevis that includes solely its genicular part. This muscle, together with the m. gracilis, composes a muscular sheet that is medial to all other muscles of the hip adductor group. Both muscles probably have a synergistic action during locomotion, where the m. adductor brevis reinforces the multiple functions of the m. gracilis in caviomorphs. Mapping of analyzed myological characters in the context of Rodentia indicates that several features are recovered as potential synapomorphies of caviomorphs. Thus, analysis of the myological data described here adds to the current knowledge of caviomorph rodents from anatomical and functional points of view, indicating that this group has features that clearly differentiate them from other rodents. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. A pilot study examining the impact of exercise training on skeletal muscle genes related to the TLR signaling pathway in older adults following hip fracture recovery.

    PubMed

    McKenzie, Alec I; Briggs, Robert A; Barrows, Katherine M; Nelson, Daniel S; Kwon, Oh Sung; Hopkins, Paul N; Higgins, Thomas F; Marcus, Robin L; Drummond, Micah J

    2017-01-01

    Older adults after hip fracture surgery experience progressive muscle atrophy and weakness, limiting full recovery. Further understanding of the molecular mechanisms in muscle with adaptation to exercise training in this vulnerable population is necessary. Therefore, we conducted a pilot study to investigate the skeletal muscle inflammatory and ceramide biosynthesis gene expression levels associated with the toll-like receptor (TLR) pathway before (Pre) and following a 3-mo multicomponent exercise training program in older adults (3M, 4F; 78.4 ± 13.3 yr; 25.5 ± 2.3 kg/m 2 ) ~4 mo after repair from hip fracture (HipFx). Vastus lateralis biopsies from the surgical limb were obtained before (Pre) and after training. Molecular end points and muscle function data were also compared with matched nonexercise healthy controls (CON). As a follow-up analysis, we evaluated specific sphingolipid pools in HipFx and CON muscle. Following training, quadriceps cross-sectional area, strength, and 6-min walk (6MW) increased in the surgical limb (P < 0.05). Additionally, MYD88, TAK1, NFKB1, IL6, SPT2, and CERS1 gene expression decreased after training (P ≤ 0.05), but some remained elevated above CON levels. Interestingly, MYD88 mRNA was inversely correlated to quadriceps CSA, strength, and 6MW. Finally, muscle dihydroceramides and phosphoceramides in HipFx were lower than CON at Pre (P ≤ 0.05), but after training differences from CON were removed. Together, our pilot data support that exercise training alters skeletal muscle inflammation and ceramide metabolism associated with TLR signaling in older adults recovering from hip fracture surgery and may be related to improvements in muscle function recovery. These pilot data demonstrate that 3 mo of exercise training in older adults recovering from hip fracture surgery was able to mitigate skeletal muscle gene expression related to inflammation and ceramide metabolism while also improving surgical limb lean tissue, strength, and physical function. Copyright © 2017 the American Physiological Society.

  20. A 6-week hip muscle strengthening and lumbopelvic-hip core stabilization program to improve pain, function, and quality of life in persons with patellofemoral osteoarthritis: a feasibility pilot study.

    PubMed

    Hoglund, Lisa T; Pontiggia, Laura; Kelly, John D

    2018-01-01

    Patellofemoral joint (PFJ) osteoarthritis (OA) is prevalent in middle-aged and older adults. Despite this, there are minimal studies which have examined conservative interventions for PFJ OA. Weakness of proximal lower extremity muscles is associated with PFJ OA. It is unknown if a hip muscle strengthening and lumbopelvic-hip core stabilization program will improve symptoms and function in persons with PFJ OA. This study examined the feasibility and impact of a 6-week hip muscle strengthening and core stabilization program on pain, symptoms, physical performance, peak muscle torques, and quality of life in persons with PFJ OA. Ten females with PFJ OA and ten age- and sex-matched controls participated in baseline tests. PFJ OA participants attended ten twice-a-week hip strengthening and core stabilization exercise sessions. Outcome measures included questionnaires, the Timed-Up-and-Go, and peak isometric torque of hip and quadriceps muscles. Data were tested for normality; parametric and non-parametric tests were used as appropriate. At baseline, the PFJ OA group had significantly worse symptoms, slower Timed-Up-and-Go performance, and lower muscle torques than control participants. PFJ OA group adherence to supervised exercise sessions was adequate. All PFJ OA participants attended at least nine exercise sessions. Five PFJ OA participants returned 6-month follow-up questionnaires, which was considered fair retention. The PFJ OA participants' self-reported pain, symptoms, function in daily living, function in sport, and quality of life all improved at 6 weeks ( P  < 0.05). Timed-Up-and-Go time score improved at 6 weeks ( P  = 0.005). Peak hip external rotator torque increased ( P  = 0.01). Improvements in pain and self-reported function were no longer significant 6 months following completion of the intervention. PFJ OA participants were adherent to the supervised sessions of the intervention. Improvement in symptoms, physical performance, and muscle torque were found after 6 weeks. Participant retention at 6 months was fair, and significant changes were no longer present. Our findings suggest that a hip strengthening and core stabilization program may be beneficial to improve symptoms, function, and physical performance in persons with PFJ OA. Future studies are needed, and additional measures should be taken to improve long-term adherence to exercise. ClinicalTrials.gov NCT02825238. Registered 6 July 2016 (retrospectively registered).

  1. Passive versus active stretching of hip flexor muscles in subjects with limited hip extension: a randomized clinical trial.

    PubMed

    Winters, Michael V; Blake, Charles G; Trost, Jennifer S; Marcello-Brinker, Toni B; Lowe, Lynne M; Garber, Matthew B; Wainner, Robert S

    2004-09-01

    Active stretching is purported to stretch the shortened muscle and simultaneously strengthen the antagonist muscle. The purpose of this study was to determine whether active and passive stretching results in a difference between groups at improving hip extension range of motion in patients with hip flexor muscle tightness. Thirty-three patients with low back pain and lower-extremity injuries who showed decreased range of motion, presumably due to hip flexor muscle tightness, completed the study. The subjects, who had a mean age of 23.6 years (SD = 5.3, range = 18-25), were randomly assigned to either an active home stretching group or a passive home stretching group. Hip extension range of motion was measured with the subjects in the modified Thomas test position at baseline and 3 and 6 weeks after the start of the study. Range of motion in both groups improved over time, but there were no differences between groups. The results indicate that passive and active stretching are equally effective for increasing range of motion, presumably due to increased flexibility of tight hip flexor muscles. Whether the 2 methods equally improve flexibility of other muscle groups or whether active stretching improves the function of the antagonist muscles is not known. Active and passive stretching both appeared to increase the flexibility of tight hip flexor muscles in patients with musculoskeletal impairments.

  2. Iliocapsularis: Technical application of fine-wire electromyography, and direction specific action during maximum voluntary isometric contractions.

    PubMed

    Lawrenson, Peter; Grimaldi, Alison; Crossley, Kay; Hodges, Paul; Vicenzino, Bill; Semciw, Adam Ivan

    2017-05-01

    The iliocapsularis muscle of the anterior hip may play an important role in hip function, but no electromyographic (EMG) recordings have been made. This muscle provides the most substantial muscular attachment to the anterior hip capsule and is hypothesised to have a dynamic role to limit capsular impingement and to augment joint stability. Current understanding of the function of iliocapsularis is based on limited cadaveric and radiographic studies. Located deep over the hip joint it would require intramuscular fine-wire EMG to evaluate its activity directly with limited cross-talk from overlying muscles. The primary aim of this study was to describe a new technique for insertion of intramuscular EMG electrodes into iliocapsularis and to report its activation during different directions of hip maximum voluntary isometric contraction (MVIC). Fifteen healthy volunteers (10M, mean age (SD) 22 (2) years) who were free from hip pain were recruited for electrode insertion and to perform MVIC's in six directions at 0° and three directions at 90° of hip flexion. Intramuscular electrodes were successfully inserted into the iliocapsularis muscle with guidance from real-time ultrasound imaging. The greatest muscle activity occurred during resisted hip flexion at 90° (Median (IQR); 100.0 (1.2) % MVIC) and lowest activity during hip extension, 0° (0.5 (0.3) % MVIC). These findings have implications for our understanding of iliocapsularis' functional role. This paper provides the first report of intramuscular electrode insertion into iliocapsularis with guided technical instructions for future EMG investigations in other populations and tasks. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. Effects of functional stabilization training on pain, function, and lower extremity biomechanics in women with patellofemoral pain: a randomized clinical trial.

    PubMed

    Baldon, Rodrigo de Marche; Serrão, Fábio Viadanna; Scattone Silva, Rodrigo; Piva, Sara Regina

    2014-04-01

    Randomized clinical trial. To compare the effects of functional stabilization training (FST) versus standard training on knee pain and function, lower-limb and trunk kinematics, trunk muscle endurance, and eccentric hip and knee muscle strength in women with patellofemoral pain. A combination of hip- and knee-strengthening exercise may be more beneficial than quadriceps strengthening alone to improve pain and function in individuals with patellofemoral pain. However, there is limited evidence of the effectiveness of these exercise programs on the biomechanics of the lower extremity. Thirty-one women were randomized to either the FST group or standard-training group. Patients attended a baseline assessment session, followed by an 8-week intervention, and were reassessed at the end of the intervention and at 3 months after the intervention. Assessment measures were a 10-cm visual analog scale for pain, the Lower Extremity Functional Scale, and the single-leg triple-hop test. A global rating of change scale was used to measure perceived improvement. Kinematics were assessed during the single-leg squat. Outcome measures also included trunk endurance and eccentric hip and knee muscle strength assessment. The patients in the FST group had less pain at the 3-month follow-up and greater global improvement and physical function at the end of the intervention compared to those in the standard-training group. Lesser ipsilateral trunk inclination, pelvis contralateral depression, hip adduction, and knee abduction, along with greater pelvis anteversion and hip flexion movement excursions during the single-leg squat, were only observed in the FST group after the intervention. Only those in the FST group had greater eccentric hip abductor and knee flexor strength, as well as greater endurance of the anterior, posterior, and lateral trunk muscles, after training. An intervention program consisting of hip muscle strengthening and lower-limb and trunk movement control exercises was more beneficial in improving pain, physical function, kinematics, and muscle strength compared to a program of quadriceps-strengthening exercises alone.

  4. A review of the anatomy of the hip abductor muscles, gluteus medius, gluteus minimus, and tensor fascia lata.

    PubMed

    Flack, Natasha Amy May Sparks; Nicholson, Helen D; Woodley, Stephanie Jane

    2012-09-01

    The hip abductor muscles have the capability to contribute to numerous actions, including pelvic stabilization during gait, and abduction and rotation at the hip joint. To fully understand the role of these muscles, as well as their involvement in hip joint dysfunction, knowledge of their anatomical structure is essential. The clinical literature suggests anatomical diversity within these muscles, and that gluteus medius (GMed) and gluteus minimus (GMin), in particular, may be comprised of compartments. This systematic review of the English literature focuses on the gross anatomy of GMed, GMin, and tensor fascia lata (TFL) muscles. Although studies of this muscle group have generated useful descriptions, comparison of results is hindered by methodological limitations. Furthermore, there is no single comprehensive anatomical investigation of all three muscles. Several aspects of the morphology of attachment sites are unknown or unclear. There is little data on fascicle orientation, the interface between fascicles and tendons, and the specific patterning of the superior gluteal nerve. Consequently, the existence of anatomical compartmentalization within the hip abductor muscles is difficult to assess. Further research of the architecture and innervation of the hip abductor muscle group is required; a better understanding of the precise anatomy of these muscles should improve our understanding of their specific functions and their contribution to the pathogenesis of disorders affecting the hip joint. Copyright © 2011 Wiley Periodicals, Inc.

  5. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy

    PubMed Central

    Shin, Hyung-Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok

    2016-01-01

    Purpose This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Materials and Methods Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Results Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). Conclusion There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait. PMID:26632404

  6. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy.

    PubMed

    Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok

    2016-01-01

    This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.

  7. Impaired hip muscle strength in patients with femoroacetabular impingement syndrome.

    PubMed

    Kierkegaard, Signe; Mechlenburg, Inger; Lund, Bent; Søballe, Kjeld; Dalgas, Ulrik

    2017-12-01

    Patients with femoroacetabular impingement (FAI) experience hip pain as well as decreased function and lowered quality of life. The aim was to compare maximal isometric and isokinetic muscle strength (MVC) during hip flexion and extension and rate of force development (RFD) during extension between patients with FAI and a matched reference group. Secondary, the aim was to compare patient hips and subgroups defined by gender and age as well as to investigate associations between hip muscle strength and self-reported outcomes. Design Cross-sectional, comparative study Methods Sixty patients (36±9 years, 63% females) and 30 age and gender matched reference persons underwent MVC tests in an isokinetic dynamometer. During hip flexion and extension, patients' affected hip showed a strength deficit of 15-21% (p<0.001) and 10-25% (p<0.03) compared with reference MVC, respectively. The affected hip of the patients was significantly weaker than their contralateral hip. RFD was significantly decreased for both patient hips compared to the reference group (p<0.05). While age had less effect on MVC, female patients were more affected than male patients. Self-reported measures were associated with isometric hip muscle strength. Patients with FAI demonstrate decreased hip flexion and extension strength when compared to (1) reference persons and (2) their contralateral hip. There seems to be a gender specific affection which should be investigated further and addressed when planning training protocols. Furthermore, self-reported measures were associated with isometric muscle strength, which underlines the clinical importance of the reduced muscle strength. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Low-frequency electric muscle stimulation combined with physical therapy after total hip arthroplasty for hip osteoarthritis in elderly patients: a randomized controlled trial.

    PubMed

    Gremeaux, Vincent; Renault, Julien; Pardon, Laurent; Deley, Gaelle; Lepers, Romuald; Casillas, Jean-Marie

    2008-12-01

    To assess the effects of low-frequency electric muscle stimulation associated with usual physiotherapy on functional outcome after total hip arthroplasty (THA) for hip osteoarthritis (OA) in elderly subjects. Randomized controlled trial; pre- and posttreatment measurements. Hospital rehabilitation department. Subjects (N=29) referred to the rehabilitation department after THA for hip OA. The intervention group (n=16; 78+/-8 y) received simultaneous low-frequency electric muscle stimulation of bilateral quadriceps and calf muscles (highest tolerated intensity, 1h session, 5 d/wk, for 5 weeks) associated with conventional physical therapy including resistance training. The control group (n=13; 76+/-10 y) received conventional physical therapy alone (25 sessions). Maximal isometric strength of knee extensors, FIM instrument, before and after; a six-minute walk test and a 200 m fast walk test, after; length of stay (LOS). Low-frequency electric muscle stimulation was well tolerated. It resulted in a greater improvement in strength of knee extensors on the operated side (77% vs 23%; P<.01), leading to a better balance of muscle strength between the operated and nonoperated limb. The low-frequency electric muscle stimulation group also showed a greater improvement in FIM scores, though improvements in the walk tests were similar for the 2 groups, as was LOS. Low-frequency electric muscle stimulation is a safe, well-tolerated therapy after THA for hip OA. It improves knee extensor strength, which is one of the factors leading to greater functional independence after THA.

  9. Muscle power is an important measure to detect deficits in muscle function in hip osteoarthritis: a cross-sectional study.

    PubMed

    Bieler, Theresa; Magnusson, Stig Peter; Christensen, Helle Elisabeth; Kjaer, Michael; Beyer, Nina

    2017-07-01

    To investigate between-leg differences in hip and thigh muscle strength and leg extensor power in patients with unilateral hip osteoarthritis. Further, to compare between-leg differences in knee extensor strength and leg extensor power between patients and healthy peers. Seventy-two patients (60-87 years) with radiographic and symptomatic hip osteoarthritis not awaiting hip replacement and 35 healthy peers (63-82 years) were included. Hip and thigh muscle strength and leg extensor power were measured in patients and knee extensor strength and leg extensor power in healthy. The symptomatic extremity in patients was significantly (p < 0.05, paired t-test) weaker compared with the non-symptomatic extremity for five hip muscles (8-17%), knee extensors (11%) and leg extensor power (19%). Healthy older adults had asymmetry in knee extensor strength (6%, p < 0.05) comparable to that found in patients, but had no asymmetry in leg extensor power. Patients had generalized weakening of the affected lower extremity and numerically the largest asymmetry was evident for leg extensor power. In contrast, healthy peers had no asymmetry in leg extensor power. These results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with hip osteoarthritis. Implications for Rehabilitation Even in patients with mild symptoms not awaiting hip replacement a generalized muscle weakening of the symptomatic lower extremity seems to be present. Between-leg differences in leg extensor power (force × velocity) appears to be relatively large (19%) in patients with unilateral hip osteoarthritis in contrast to healthy peers who show no asymmetry. Compared to muscle strength the relationship between functional performance and leg extensor power seems to be stronger, and more strongly related to power of the symptomatic lower extremity. Our results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with mild symptoms not awaiting hip replacement.

  10. Effects of weekly and fortnightly therapeutic exercise on physical function and health-related quality of life in individuals with hip osteoarthritis.

    PubMed

    Jigami, Hirofumi; Sato, Daisuke; Tsubaki, Atsuhiro; Tokunaga, Yuta; Ishikawa, Tomoji; Dohmae, Yoichiro; Iga, Toshiroh; Minato, Izumi; Yamamoto, Noriaki; Endo, Naoto

    2012-11-01

    Most previous studies on the effects of therapeutic exercise on osteoarthritis (OA) of the hip joint included participants with knee OA or postoperative participants. Moreover, although some systematic reviews recommend therapeutic exercise for hip OA, a consensus on the effective interventional frequency has not been reached. This study aimed to investigate the effects of therapeutic exercise performed at different frequencies on physical function and health-related quality of life in participants with hip OA. Individuals diagnosed with hip OA (36 women, age 42-79 years; 19 in 2009 and 17 in 2010) were recruited from the cooperating medical institutions. They were divided into two groups depending on the frequency of therapeutic exercise: fortnightly in 2009 (fortnightly group) and weekly in 2010 (weekly group). Participants in each group performed the same land-based and aquatic exercises on the same day for a total of ten sessions. Muscle strength of the lower extremity, "timed up and go" (TUG), time of one-leg standing with open eyes (TOLS), Harris Hip Score, and scores of the Medical Outcomes Survey Short Form-36 questionnaire, were measured before and after interventions. The fortnightly group had no significant changes in lower-extremity muscle strength following intervention, but the strength of all muscles in the weekly group improved significantly after intervention. Further, in both groups, TUG and TOLS of the worse side of the hip joint significantly improved after interventions. Weekly exercise improves muscle strength of the lower extremity and may therefore be an effective interventional technique for managing hip OA. In addition, in persons with hip OA, therapeutic exercise consisting of both land- and water-based exercises markedly improved physical function.

  11. How joint torques affect hamstring injury risk in sprinting swing-stance transition.

    PubMed

    Sun, Yuliang; Wei, Shutao; Zhong, Yunjian; Fu, Weijie; Li, Li; Liu, Yu

    2015-02-01

    The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases.

  12. How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition

    PubMed Central

    SUN, YULIANG; WEI, SHUTAO; ZHONG, YUNJIAN; FU, WEIJIE; LI, LI; LIU, YU

    2015-01-01

    ABSTRACT Purpose The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Methods Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. Results During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. Conclusions During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases. PMID:24911288

  13. The influence of changes in trunk and pelvic posture during single leg standing on hip and thigh muscle activation in a pain free population.

    PubMed

    Prior, Simon; Mitchell, Tim; Whiteley, Rod; O'Sullivan, Peter; Williams, Benjamin K; Racinais, Sebastien; Farooq, Abdulaziz

    2014-03-27

    Thigh muscle injuries commonly occur during single leg loading tasks and patterns of muscle activation are thought to contribute to these injuries. The influence trunk and pelvis posture has on hip and thigh muscle activation during single leg stance is unknown and was investigated in a pain free population to determine if changes in body posture result in consistent patterns of changes in muscle activation. Hip and thigh muscle activation patterns were compared in 22 asymptomatic, male subjects (20-45 years old) in paired functionally relevant single leg standing test postures: Anterior vs. Posterior Trunk Sway; Anterior vs. Posterior Pelvic Rotation; Left vs. Right Trunk Shift; and Pelvic Drop vs. Raise. Surface EMG was collected from eight hip and thigh muscles calculating Root Mean Square. EMG was normalized to an "upright standing" reference posture. Repeated measures ANOVA was performed along with associated F tests to determine if there were significant differences in muscle activation between paired test postures. In right leg stance, Anterior Trunk Sway (compared to Posterior Sway) increased activity in posterior sagittal plane muscles, with a concurrent deactivation of anterior sagittal plane muscles (p: 0.016 - <0.001). Lateral hip abductor muscles increased activation during Left Trunk Shift (compared to Right) (p :≤ 0.001). Lateral Pelvic Drop (compared to Raise) decreased activity in hip abductors and increased hamstring, adductor longus and vastus lateralis activity (p: 0.037 - <0.001). Changes in both trunk and pelvic posture during single leg stance generally resulted in large, predictable changes in hip and thigh muscle activation in asymptomatic young males. Changes in trunk position in the sagittal plane and pelvis position in the frontal plane had the greatest effect on muscle activation. Investigation of these activation patterns in clinical populations such as hip and thigh muscle injuries may provide important insights into injury mechanisms and inform rehabilitation strategies.

  14. Distribution and severity of weakness among patients with polymyositis, dermatomyositis and juvenile dermatomyositis

    PubMed Central

    Harris-Love, M. O.; Shrader, J. A.; Koziol, D.; Pahlajani, N.; Jain, M.; Smith, M.; Cintas, H. L.; McGarvey, C. L.; James-Newton, L.; Pokrovnichka, A.; Moini, B.; Cabalar, I.; Lovell, D. J.; Wesley, R.; Plotz, P. H.; Miller, F. W.; Hicks, J. E.

    2009-01-01

    Objective. To describe the distribution and severity of muscle weakness using manual muscle testing (MMT) in 172 patients with PM, DM and juvenile DM (JDM). The secondary objectives included characterizing individual muscle group weakness and determining associations of weakness with functional status and myositis characteristics in this large cohort of patients with myositis. Methods. Strength was assessed for 13 muscle groups using the 10-point MMT and expressed as a total score, subscores based on functional and anatomical regions, and grades for individual muscle groups. Patient characteristics and secondary outcomes, such as clinical course, muscle enzymes, corticosteroid dosage and functional status were evaluated for association with strength using univariate and multivariate analyses. Results. A gradient of proximal weakness was seen, with PM weakest, DM intermediate and JDM strongest among the three myositis clinical groups (P ≤ 0.05). Hip flexors, hip extensors, hip abductors, neck flexors and shoulder abductors were the muscle groups with the greatest weakness among all three clinical groups. Muscle groups were affected symmetrically. Conclusions. Axial and proximal muscle impairment was reflected in the five weakest muscles shared by our cohort of myositis patients. However, differences in the pattern of weakness were observed among all three clinical groups. Our findings suggest a greater severity of proximal weakness in PM in comparison with DM. PMID:19074186

  15. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia

    PubMed Central

    Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z

    2011-01-01

    Purpose: To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Subjects and methods: Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by ‘timed up and go’ (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Results: Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Conclusion: Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted. PMID:21472094

  16. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia.

    PubMed

    Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z

    2011-01-01

    To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by 'timed up and go' (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted.

  17. Validity of real-time ultrasound imaging to measure anterior hip muscle size: a comparison with magnetic resonance imaging.

    PubMed

    Mendis, M Dilani; Wilson, Stephen J; Stanton, Warren; Hides, Julie A

    2010-09-01

    Clinical measurement, criterion standard. To investigate the validity of real-time ultrasound imaging (USI) to measure individual anterior hip muscle cross-sectional area. The hip flexor muscles are important for hip joint function and could be affected by joint pathology or injury. Objectively documenting individual anterior hip muscle size can be useful in identifying muscle size asymmetry and monitoring treatment efficacy for patients with hip problems. USI offers a novel method of measuring individual muscle size in the clinic, but its validity in measuring the anterior hip muscles has not been investigated. Nine healthy participants (5 males, 4 females) underwent imaging of their iliopsoas, sartorius, and rectus femoris muscles with USI and magnetic resonance imaging. Bilateral muscle cross-sectional areas were measured on images from both modalities. There was no significant difference (P>.05) in mean cross-sectional area measurements from USI and magnetic resonance imaging for each muscle. Agreement between measurements was high for the iliopsoas (left: intraclass correlation coefficient [ICC3,1] = 0.86; 95% confidence interval [CI]: 0.51, 0.97; right: ICC3,1 = 0.88; 95% CI: 0.57, 0.97), sartorius (left: ICC3,1 = 0.82; 95% CI: 0.41, 0.96; right: ICC3,1 = 0.81; 95% CI: 0.39, 0.95), and rectus femoris (left: ICC3,1 = 0.85; 95% CI: 0.49, 0.96; right: ICC3,1 = 0.89; 95% CI: 0.61, 0.97). Reliability of measuring each muscle with USI was high between 2 trials (ICCs3,1 = 0.84 to 0.94). USI is a valid measure of iliopsoas, sartorius, and rectus femoris muscle size in healthy people, as long as a strict measurement protocol is followed.

  18. Does the addition of hip strengthening exercises improve outcomes following total knee arthroplasty? A study protocol for a randomized trial.

    PubMed

    Schache, Margaret B; McClelland, Jodie A; Webster, Kate E

    2016-06-13

    Total knee arthroplasty (TKA) is effective in reducing pain and improving function for end-stage knee osteoarthritis. However, muscle weakness and functional limitations persist despite assistance from post-operative rehabilitation programs that traditionally focus on quadriceps strengthening and range of movement exercises. Hip abductor muscle weakness is evident in knee osteoarthritis and hip muscle strengthening reduces knee pain in this group. Following TKA, people with weak hip abductor strength perform more poorly on measures of physical function. However, very little is known of the effectiveness of including hip abductor strengthening exercises in post-operative rehabilitation. The aim of this trial is to compare the effects of targeted hip abductor strengthening to those of traditional care in a TKA rehabilitation program on muscle strength, patient reported outcomes and functional performance measures. This protocol describes a single-blinded randomized controlled trial, where 104 participants referred for inpatient rehabilitation following TKA will be recruited. Participants will be randomized using computer-generated numbers to one of two groups: usual care or usual care with additional hip strengthening exercises. Participants will attend physiotherapy daily during their inpatient length of stay, and will then attend between six and eight physiotherapy sessions as an outpatient. Primary outcomes are isometric hip abductor strength and the Knee Injury and Osteoarthritis Outcome Score (KOOS). Secondary outcomes are stair climb test, 6 min walk test, timed up and go, 40 m fast-paced walk test, 30 second chair stand test, isometric quadriceps strength, Lower Extremity Functional Scale (LEFS) and SF-12. Outcome measures will be recorded at baseline (admission to inpatient rehabilitation), and then 3 weeks, 6 weeks and 6 months post admission to rehabilitation. The findings of this study will determine whether the addition of targeted hip strengthening to usual care rehabilitation improves physical performance and patient reported outcomes following TKA when compared to usual care rehabilitation. This will then determine whether targeted hip strengthening exercises should be included in traditional rehabilitation programs to improve the outcomes following total knee arthroplasty. The trial protocol was registered with the Australian Clinical Trial Registry ( ACTRN12615000863538 ) on 18 August 2015.

  19. Hip adductor muscle function in forward skating.

    PubMed

    Chang, Ryan; Turcotte, Rene; Pearsall, David

    2009-09-01

    Adductor strain injuries are prevalent in ice hockey. It has long been speculated that adductor muscular strains may be caused by repeated eccentric contractions which decelerate the leg during a stride. The purpose of this study was to investigate the relationship of skating speed with muscle activity and lower limb kinematics, with a particular focus on the role of the hip adductors. Seven collegiate ice hockey players consented to participate. Surface electromyography (EMG) and kinematics of the lower extremities were measured at three skating velocities 3.33 m/s (slow), 5.00 m/s (medium) and 6.66 m/s (fast). The adductor magnus muscle exhibited disproportionately larger increases in peak muscle activation and significantly prolonged activation with increased speed. Stride rate and stride length also increased significantly with skating velocity, in contrast, hip, knee and ankle total ranges of motion did not. To accommodate for the increased stride rate with higher skating speeds, the rate of hip abduction increased significantly in concert with activations of adductor magnus indicating a substantial eccentric contraction. In conclusion, these findings highlight the functional importance of the adductor muscle group and hip abduction-adduction in skating performance as well as indirectly support the notion that groin strain injury potential increases with skating speed.

  20. Hip proprioceptors preferentially modulate reflexes of the leg in human spinal cord injury

    PubMed Central

    Onushko, Tanya; Hyngstrom, Allison

    2013-01-01

    Stretch-sensitive afferent feedback from hip muscles has been shown to trigger long-lasting, multijoint reflex responses in people with chronic spinal cord injury (SCI). These reflexes could have important implications for control of leg movements during functional activities, such as walking. Because the control of leg movement relies on reflex regulation at all joints of the limb, we sought to determine whether stretch of hip muscles modulates reflex activity at the knee and ankle and, conversely, whether knee and ankle stretch afferents affect hip-triggered reflexes. A custom-built servomotor apparatus was used to stretch the hip muscles in nine chronic SCI subjects by oscillating the legs about the hip joint bilaterally from 10° of extension to 40° flexion. To test whether stretch-related feedback from the knee or ankle would be affected by hip movement, patellar tendon percussions and Achilles tendon vibration were delivered when the hip was either extending or flexing. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Patellar tendon percussions and Achilles tendon vibration both elicited reflex responses local to the knee or ankle, respectively, and did not influence reflex responses observed at the hip. Rather, the movement direction of the hip modulated the reflex responses local to the joint. The patellar tendon reflex amplitude was larger when the perturbation was delivered during hip extension compared with hip flexion. The response to Achilles vibration was modulated by hip movement, with an increased tonic component during hip flexion compared with extension. These results demonstrate that hip-mediated sensory signals modulate activity in distal muscles of the leg and appear to play a unique role in modulation of spastic muscle activity throughout the leg in SCI. PMID:23615544

  1. Radiographic and clinical factors associated with one-leg standing and gait in patients with mild-to-moderate secondary hip osteoarthritis.

    PubMed

    Tateuchi, Hiroshige; Koyama, Yumiko; Akiyama, Haruhiko; Goto, Koji; So, Kazutaka; Kuroda, Yutaka; Ichihashi, Noriaki

    2016-09-01

    A decline in physical function associated with secondary hip osteoarthritis (OA) may be caused by both radiographic and clinical factors; however, the underlying mechanism remains unclear. The purpose of this study was to determine how joint degeneration, hip morphology, pain, hip range of motion (ROM), and hip muscle strength relate to one-leg standing (OLS) and gait in patients with mild-to-moderate secondary hip osteoarthritis. Fifty-five female patients (ages 22-65 years) with mild-to-moderate hip OA secondary to hip dysplasia were consecutively enrolled. Balance during OLS and three-dimensional hip angle changes while maintaining the OLS and at foot-off of the raised leg were measured. Gait speed and peak three-dimensional hip joint angles during gait were also measured. The associations between dependent variables (balance, gait speed, and hip kinematic changes) and independent variables (age, body mass index, pain, joint degeneration, hip morphologic abnormality, passive hip ROM, and hip muscle strength) were determined. While lower hip muscle strength was associated with hip kinematic changes such as flexion and internal rotation while maintaining OLS, decreased acetabular head index (AHI) and increased pain were associated with hip extension and abduction at foot-off in OLS. Decreased passive hip ROM was associated with decreased peak hip angles (extension, adduction, and external and internal rotation) during gait, although increased pain and decreased hip extension muscle strength were associated with slower gait speed. In this study of patients with secondary hip OA, AHI, pain, and hip impairments were associated with OLS and gait independently from age and radiographic degeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis.

    PubMed

    Park, Sang-Kyoon; Kobsar, Dylan; Ferber, Reed

    2016-10-01

    The relationship between muscle strength, gait biomechanics, and self-reported physical function and pain for patients with knee osteoarthritis is not well known. The objective of this study was to investigate these relationships in this population. Twenty-four patients with knee osteoarthritis and 24 healthy controls were recruited. Self-reported pain and function, lower-limb maximum isometric force, and frontal plane gait kinematics during treadmill walking were collected on all patients. Between-group differences were assessed for 1) muscle strength and 2) gait biomechanics. Linear regressions were computed within the knee osteoarthritis group to examine the effect of muscle strength on 1) self-reported pain and function, and 2) gait kinematics. Patients with knee osteoarthritis exhibited reduced hip external rotator, knee extensor, and ankle inversion muscle force output compared with healthy controls, as well as increased peak knee adduction angles (effect size=0.770; p=0.013). Hip abductor strength was a significant predictor of function, but not after controlling for covariates. Ankle inversion, hip abduction, and knee flexion strength were significant predictors of peak pelvic drop angle after controlling for covariates (34.4% unique variance explained). Patients with knee osteoarthritis exhibit deficits in muscle strength and while they play an important role in the self-reported function of patients with knee osteoarthritis, the effect of covariates such as sex, age, mass, and height was more important in this relationship. Similar relationships were observed from gait variables, except for peak pelvic drop, where hip, knee, and ankle strength remained important predictors of this variable after controlling for covariates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Test-Retest Reliability of Innovated Strength Tests for Hip Muscles

    PubMed Central

    Meyer, Christophe; Corten, Kristoff; Wesseling, Mariska; Peers, Koen; Simon, Jean-Pierre; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    The burden of hip muscles weakness and its relation to other impairments has been well documented. It is therefore a pre-requisite to have a reliable method for clinical assessment of hip muscles function allowing the design and implementation of a proper strengthening program. Motor-driven dynamometry has been widely accepted as the gold-standard for lower limb muscle strength assessment but is mainly related to the knee joint. Studies focusing on the hip joint are less exhaustive and somewhat discrepant with regard to optimal participants position, consequently influencing outcome measures. Thus, we aimed to develop a standardized test setup for the assessment of hip muscles strength, i.e. flexors/extensors and abductors/adductors, with improved participant stability and to define its psychometric characteristics. Eighteen participants performed unilateral isokinetic and isometric contractions of the hip muscles in the sagittal and coronal plane at two separate occasions. Peak torque and normalized peak torque were measured for each contraction. Relative and absolute measures of reliability were calculated using the intraclass correlation coefficient and standard error of measurement, respectively. Results from this study revealed higher levels of between-day reliability of isokinetic/isometric hip abduction/flexion peak torque compared to existing literature. The least reliable measures were found for hip extension and adduction, which could be explained by a less efficient stabilization technique. Our study additionally provided a first set of reference normalized data which can be used in future research. PMID:24260550

  4. Does the Addition of Hip Strengthening to a Knee-Focused Exercise Program Improve Outcomes in Patients With Patellofemoral Pain Syndrome?

    PubMed

    Bloomer, Ben A; Durall, Chris J

    2015-11-01

    Patellofemoral pain syndrome (PFPS) is one of the most common disorders affecting the lower extremities. To improve function and decrease pain, affected individuals often undergo a guided rehabilitation program. Traditional programs have concentrated on quadriceps strengthening and other knee-focused exercises, but recent literature suggests that adding hip-muscle strengthening may improve outcomes. This review was conducted to determine the extent to which current evidence supports the addition of hip-muscle strengthening to a knee-focused strengthening and stretching program in the treatment of PFPS. Focused Clinical Question: Does the addition of hip-muscle strengthening to a knee-focused strengthening and stretching program improve outcomes in patients with PFPS?

  5. Hamstring Muscle Use in Females During Hip-Extension and the Nordic Hamstring Exercise: An fMRI Study.

    PubMed

    Messer, Daniel J; Bourne, Matthew N; Williams, Morgan D; Al Najjar, Aiman; Shield, Anthony J

    2018-04-23

    Study Design Cross-sectional study. Background Understanding hamstring muscle activation patterns in resistance training exercises may have implications for the design of strength training and injury prevention programs. Unfortunately, surface electromyography studies have reported conflicting results with regard to hamstring muscle activation patterns in women. Objectives To determine the spatial patterns of hamstring muscle activity during the 45º hip-extension and Nordic hamstring exercises, in females using functional magnetic resonance imaging. Methods Six recreationally active females with no history of lower limb injury underwent functional magnetic resonance imaging (fMRI) on both thighs before and immediately after 5 sets of 6 bilateral eccentric contractions of the 45º hip-extension or Nordic exercises. Using fMRI, the transverse (T2) relaxation times were measured from pre- and post- exercise scans and the percentage increase in T2 was used as an index of muscle activation. Results fMRI revealed a significantly higher biceps femoris long head (BF LongHead ) to semitendinosus ratio during the 45° hip-extension than the Nordic exercise (P = .028). The T2 increase after 45° hip-extension was greater for BF LongHead (P < .001), semitendinosus and semimembranosus (P = .001) than that of biceps femoris short head (BF ShortHead ). During the Nordic exercise, the T2 increase for semitendinosus was greater than that of BF ShortHead (P < .001) and BF LongHead (P = .001). Conclusion While both exercises involve high levels of semitendinosus activation in women, the Nordic exercise preferentially recruits that muscle while the hip extension more evenly activates all of the biarticular hamstrings. J Orthop Sports Phys Ther, Epub 23 Apr 2018. doi:10.2519/jospt.2018.7748.

  6. Relationships between eccentric hip isokinetic torque and functional performance.

    PubMed

    Baldon, Rodrigo de Marche; Lobato D, Ferreira Moreira; Carvalho, Lívia Pinheiro; Wun P, Yan Lam; Presotti, Cátia Valéria; Serrão, Fábio Viadanna

    2012-02-01

    Recently, attention in sports has been given to eccentric hip-muscle function, both in preventing musculoskeletal injuries and improving performance. To determine the key isokinetic variables of eccentric hip torque that predict the functional performance of women in the single-leg triple long jump (TLJ) and the timed 6-m single-leg hop (TH). Within-subject correlational study. Musculoskeletal laboratory. 32 healthy women age 18-25 y. The participants performed 2 sets of 5 eccentric hip-abductor/adductor and lateral/medial-rotator isokinetic contractions (30°/s) and 3 attempts in the TLJ and TH. The independent variables were the eccentric hip-abductor and -adductor and medial- and lateral-rotator isokinetic peak torque, normalized according to body mass (Nm/kg). The dependent variables were the longest distance achieved in the TLJ normalized according to body height and the shortest time spent during the execution of the TH. The forward-stepwise-regression analysis showed that the combination of the eccentric hip lateral-rotator and -abductor isokinetic peak torque provided the most efficient estimate of both functional tests, explaining 65% of the TLJ variance (P < .001) and 55% of the TH variance (P < .001). Higher values for eccentric hip lateral-rotator and hip-abductor torques reflected better performance. Thus, the eccentric action of these muscles should be considered in the development of physical training programs that aim to increase functional performance.

  7. Effects of hip and trunk muscle strengthening on hip function and lower limb kinematics during step-down task.

    PubMed

    Araújo, Vanessa Lara; Souza, Thales Rezende; Carvalhais, Viviane Otoni do Carmo; Cruz, Aline Castro; Fonseca, Sérgio Teixeira

    2017-05-01

    Strengthening of the hip and trunk muscles has the potential to change lower limb kinematic patterns, such as excessive hip medial rotation and adduction during weight-bearing tasks. This study aimed to investigate the effect of hip and trunk muscles strengthening on hip muscle performance, hip passive properties, and lower limb kinematics during step-down task in women. Thirty-four young women who demonstrated dynamic knee valgus during step-down were divided into two groups. The experimental group underwent three weekly sessions of strengthening exercises for eight weeks, and the control group continued their usual activities. The following evaluations were carried out: (a) isokinetic maximum concentric and eccentric work of hip lateral rotators, (b) isokinetic hip passive torque of lateral rotation and resting transverse plane position, and (c) three-dimensional kinematics of the lower limb during step-down. The strengthening program increased concentric (P<0.001) and eccentric (P<0.001) work of hip lateral rotators, and changed hip resting position toward lateral rotation (P<0.001). The intervention did not significantly change hip passive torque (P=0.089, main effect). The program reduced hip (P=0.002), thigh (P=0.024) and shank (P=0.005) adduction during step-down task. Hip, thigh and knee kinematics in transverse plane and foot kinematics in frontal plane did not significantly modify after intervention (P≥0.069, main effect). Hip and trunk strengthening reduced lower limb adduction during step-down. The changes in hip maximum work and resting position may have contributed to the observed kinematic effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hip Strength as an Intrinsic Risk Factor for Lateral Ankle Sprains in Youth Soccer Players: A 3-Season Prospective Study.

    PubMed

    De Ridder, Roel; Witvrouw, Erik; Dolphens, Mieke; Roosen, Philip; Van Ginckel, Ans

    2017-02-01

    Numerous epidemiological studies have emphasized the burden of lateral ankle sprains in youth soccer players. However, no prospective study has identified intrinsic physical and modifiable risk factors for these injuries in this particular population. Although injury prevention programs in soccer incorporate proximal hip and core stability exercises, it is striking that the relationship between impaired proximal hip function and ankle sprains has not yet been prospectively investigated in youth soccer players. This prospective study aimed to examine whether hip muscle strength is a risk factor for sustaining a lateral ankle sprain in youth soccer players. We hypothesized that decreased hip muscle strength would predispose youth soccer players to an increased risk of lateral ankle sprains. Case-control study; Level of evidence, 3. This study included a total of 133 male youth soccer players (age divisions U11-U17) for analysis. At the beginning of the season, anthropometric characteristics were collected and hip muscle strength was assessed using a handheld dynamometer. Injury registration was performed by the team medical staff during 3 consecutive seasons. A principal-component, multivariate Cox regression analysis was performed to identify potential risk factors for sustaining a lateral ankle sprain. Twelve participants (18% of all reported injuries) sustained a lateral ankle sprain (0.36 per 1000 athletic-exposure hours). After adjustment for body size dependencies and other hip muscle forces, an increase in hip muscle extension force was associated with a significant decrease in the hazard of the injury (hazard ratio, 0.3; 95% confidence interval, 0.1-0.9; P = .028). No other study variable could be identified as a risk factor for lateral ankle sprains. Reduced hip extension muscle strength is an independent risk factor for lateral ankle sprains in male youth soccer players. Other hip muscle strength outcomes were not identified as risk factors. Replication in larger samples with more injured cases is warranted to further ascertain the importance of this risk factor.

  9. Patients With Chondrolabral Pathology Have Bilateral Functional Impairments 12 to 24 Months After Unilateral Hip Arthroscopy: A Cross-sectional Study.

    PubMed

    Kemp, Joanne L; Risberg, May Arna; Schache, Anthony G; Makdissi, Michael; Pritchard, Michael G; Crossley, Kay M

    2016-11-01

    Study Design Cross-sectional study. Background Functional task performance in patients with chondrolabral pathology following hip arthroscopy is unknown. Objectives To investigate in people with chondrolabral pathology following hip arthroscopy (1) the bilateral differences in functional task performance compared to controls, (2) the association of hip muscle strength with functional task performance, and (3) the association of functional task performance scores with good outcome, as measured by International Hip Outcome Tool score. Methods Seventy-one patients who had unilateral hip arthroscopy for hip pain and 60 controls were recruited. Patient-reported outcomes included the 4 subscales of the International Hip Outcome Tool. Hip muscle strength measures included abduction, adduction, extension, flexion, external rotation, and internal rotation. Functional tasks assessed included the single hop test, the side bridge test, and the single-leg rise test. For aim 1, analyses of covariance tests were used. For aim 2, stepwise multiple linear regression analyses were used. For aim 3, receiver operating characteristic curve analyses were used. Results Compared to controls, the chondrolabral pathology group had significantly worse performance on both legs for each of the functional tasks (P<.001). Greater hip abduction strength was moderately associated with better performance on functional tasks in the chondrolabral pathology group (adjusted R 2 range, 0.197-0.407; P<.001). Cutoff values associated with good outcome were 0.37 (hop distance/height) for the single hop, 16 repetitions for the single-leg rise, and 34 seconds for the side bridge test. Conclusion Patients with hip chondrolabral pathology had reduced functional task performance bilaterally 12 to 24 months after unilateral hip arthroscopy when compared to controls. Level of Evidence Therapy/symptom prevalence, level 3b. J Orthop Sports Phys Ther 2016;46(11):947-956. doi:10.2519/jospt.2016.6577.

  10. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy.

    PubMed

    Dallmeijer, A J; Baker, R; Dodd, K J; Taylor, N F

    2011-03-01

    The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0 yr) and Gross Motor Function Classification System (GMFCS) level II (n=19) and III (n=6) were tested. Hand held dynamometry was used to measure isometric strength (expressed in Nm/kg) of the hip, knee, and ankle muscles using standardized testing positions and procedures. 3D gait analysis was performed with a VICON system to calculate joint kinetics in the hip, knee and ankle during gait. Ankle peak moments exceeded by far the levels of isometric strength of the plantar flexors, while the knee and hip peak moments were just at or below maximal isometric strength of knee and hip muscles. Isometric muscle strength showed weak to moderate correlations with peak ankle and hip extension moment and power during walking. Despite considerable muscle weakness, joint moment curves were similar to norm values. Results suggest that passive stretch of the muscle-tendon complex of the triceps surae contributes to the ankle moment during walking and that muscle strength assessment may provide additional information to gait kinetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Effects of step length and step frequency on lower-limb muscle function in human gait.

    PubMed

    Lim, Yoong Ping; Lin, Yi-Chung; Pandy, Marcus G

    2017-05-24

    The aim of this study was to quantify the effects of step length and step frequency on lower-limb muscle function in walking. Three-dimensional gait data were used in conjunction with musculoskeletal modeling techniques to evaluate muscle function over a range of walking speeds using prescribed combinations of step length and step frequency. The body was modeled as a 10-segment, 21-degree-of-freedom skeleton actuated by 54 muscle-tendon units. Lower-limb muscle forces were calculated using inverse dynamics and static optimization. We found that five muscles - GMAX, GMED, VAS, GAS, and SOL - dominated vertical support and forward progression independent of changes made to either step length or step frequency, and that, overall, changes in step length had a greater influence on lower-limb joint motion, net joint moments and muscle function than step frequency. Peak forces developed by the uniarticular hip and knee extensors, as well as the normalized fiber lengths at which these muscles developed their peak forces, correlated more closely with changes in step length than step frequency. Increasing step length resulted in larger contributions from the hip and knee extensors and smaller contributions from gravitational forces (limb posture) to vertical support. These results provide insight into why older people with weak hip and knee extensors walk more slowly by reducing step length rather than step frequency and also help to identify the key muscle groups that ought to be targeted in exercise programs designed to improve gait biomechanics in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of two different rehabilitation programmes for thrust plate prosthesis: a randomized controlled study.

    PubMed

    Unver, Bayram; Karatosun, Vasfi; Gunal, Izge; Angin, Salih

    2004-02-01

    Weight bearing after total hip arthroplasty is postponed in order to prevent early loosening, but this negatively affects the rehabilitation programme. For the force transfer characteristics of thrust plate prosthesis (TPP), a new type of hip prosthesis used without cement is similar to the normal hip. We evaluated the possibilities of early weight bearing after TPP by comparing early partial with early full weight bearing. Randomized controlled study. Department of orthopaedics and traumatology in a university hospital. Sixty hips of 51 patients who underwent total hip arthroplasty with TPP were randomly assigned into two groups. Both groups received accelerated rehabilitation programmes: group 1 with early partial weight bearing and group 2 with early full weight bearing. Patients were evaluated by a blind observer preoperatively, at three months after surgery by clinical (measurement of range of hip motion (universal goniometry), muscle strength (Manual Muscle Test), functional test (6-minute walk test), hip function (Harris Hip Scoring System)) and radiographical parameters and one year after surgery by clinical (Harris Hip Scoring System) and radiographical parameters. Group 2 performed transfer activities earlier, had more walking distance at the time of discharge and shorter hospital stay than group 1. At three months, Harris Hip Score, muscle strength, 6-minute walk test, and duration of crutch use were significantly (p < 0.05) in favour of group 2. None of the patients in either group showed signs of loosening one year after the operation. These results suggest that patients with TPP can tolerate an accelerated rehabilitation programme with early weight bearing and will gain the goals of rehabilitation earlier.

  13. Decreased muscle strength is associated with impaired long-term functional outcome after intramedullary nailing of femoral shaft fracture.

    PubMed

    Larsen, P; Elsoe, R; Graven-Nielsen, T; Laessoe, U; Rasmussen, S

    2015-12-01

    To examine the long-term outcome after intramedullary nailing of femoral diaphysial fractures measured as disease-specific patient reported function, walking ability, muscle strength, pain and quality of life (QOL). Cross-sectional study. Retrospective review and follow-up with clinical examination of 48 patients treated with intramedullary nailing after femoral shaft fracture between 2007 and 2010. The patients underwent a clinical examination and assessment of walking ability, maximal muscle strength during knee flexion and extension and hip abduction. Hip disability and Osteoarthritis Outcome Score (HOOS) and questionnaire evaluating QOL (Eq5D-5L) were completed by patients. Fourty-eight patients agreed to participate. Mean time for follow-up was 4.7 years. The mean HOOS scores were 84.9 (Pain), 86.6 (ADL), 85.0 (Symptoms), 72.6 (QOL), and 69.1 (Sport). The mean muscle strength of knee flexion with the injured leg (226.0 N) was significantly lower then knee flexion with the non-injured leg (259.5 N, P < 0.0001). Likewise for knee extension (335.2 vs 406.4 N, P < 0.001) and hip abduction (129.2 vs 156.0 N, P < 0.001). Significant association between HOOS and an increase in the difference in muscle strength were observed as well as between worse HOOS outcome and increasing body mass index. This study showed that decreased muscle strength for knee flexion, knee extension and hip abduction was associated with worse long-term functional outcome measured with a disease-specific questionnaire (HOOS) after intramedullary nailing of femoral shaft fracture.

  14. Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).

    PubMed

    Williams, S B; Wilson, A M; Rhodes, L; Andrews, J; Payne, R C

    2008-10-01

    We provide quantitative anatomical data on the muscle-tendon architecture and geometry of the pelvic limb of an elite sprint athlete, the racing greyhound. Specifically, muscle masses, muscle lengths, fascicle lengths, pennation angles and muscle moment arms were measured. Maximum isometric force and power of muscles, the maximum muscle torque at joints and tendon stress and strain were estimated. We compare data with that published for a generalized breed of canid, and other cursorial mammals such as the horse and hare. The pelvic limb of the racing greyhound had a relatively large volume of hip extensor muscle, which is likely to be required for power production. Per unit body mass, some pelvic limb muscles were relatively larger than those in less specialized canines, and many hip extensor muscles had longer fascicle lengths. It was estimated that substantial extensor moments could be created about the tarsus and hip of the greyhound allowing high power output and potential for rapid acceleration. The racing greyhound hence possesses substantial specializations for enhanced sprint performance.

  15. A randomised trial into the effect of an isolated hip abductor strengthening programme and a functional motor control programme on knee kinematics and hip muscle strength.

    PubMed

    Palmer, Kathryn; Hebron, Clair; Williams, Jonathan M

    2015-05-03

    Dynamic knee valgus and internal femoral rotation are proposed to be contributory risk factors for patellofemoral pain and anterior cruciate ligament injuries. Multimodal interventions including hip abductor strengthening or functional motor control programmes have a positive impact of pain, however their effect on knee kinematics and muscle strength is less clear. The aim of this study was to examine the effect of isolated hip abductor strengthening and a functional motor control exercise on knee kinematics and hip abductor strength. This prospective, randomised, repeated measures design included 29 asymptomatic volunteers presenting with increase knee valgus and femoral internal rotation. Participants completed either isolated hip abductor strengthening or a functional motor control exercise for 5 weeks. Knee kinematics were measured using inertial sensors during 2 functional activities and hip abductor strength measured using a load cell during isometric hip abduction. There were no significant differences in dynamic knee valgus and internal rotation following the isolated hip abductor or functional motor control intervention, and no significant differences between the groups for knee angles. Despite this, the actual magnitude of reduction in valgus was 10° and 5° for the functional motor control group and strengthening group respectively. The actual magnitude of reduction in internal rotation was 9° and 18° for the functional motor control group and strengthening group respectively. Therefore there was a tendency towards clinically significant improvements in knee kinematics in both exercise groups. A statistically significant improvement in hip abductor strength was evident for the functional motor control group (27% increase; p = 0.008) and strengthening group (35% increase; p = 0.009) with no significant difference between the groups being identified (p = 0.475). Isolated hip strengthening and functional motor control exercises resulted in non-statistically significant changes in knee kinematics, however there was a clear trend towards clinically meaningful reductions in valgus and internal rotation. Both groups demonstrated similar significant gains in hip abductor strength suggesting either approach could be used to strengthen the hip abductors.

  16. Coordination of deep hip muscle activity is altered in symptomatic femoroacetabular impingement.

    PubMed

    Diamond, Laura E; Van den Hoorn, Wolbert; Bennell, Kim L; Wrigley, Tim V; Hinman, Rana S; O'Donnell, John; Hodges, Paul W

    2017-07-01

    Diagnosis of femoroacetabular impingement (FAI) is increasing, yet the associated physical impairments remain poorly defined. This morphological hip condition can cause joint pain, stiffness, impaired function, and eventually hip osteoarthritis. This exploratory study compared coordination of deep hip muscles between people with and without symptomatic FAI using analysis of muscle synergies (i.e., patterns of activity of groups of muscles activated in synchrony) during gait. Fifteen individuals (11 males) with symptomatic FAI (clinical examination and imaging) and 14 age- and sex-comparable controls without morphological FAI underwent testing. Intramuscular fine-wire and surface electrodes recorded electromyographic activity of selected deep and superficial hip muscles. A non-negative matrix factorization algorithm extracted three synergies which were compared between groups. Information regarding which muscles were activated together in the FAI group (FAI group synergy vector) was used to reconstruct individual electromyography patterns and compare groups. Variance accounted for (VAF) by three synergies was less for the control (94.8 [1.4]%) than FAI (96.0 [1.0]%) group (p = 0.03). VAF of obturator internus was significantly higher in the FAI group (p = 0.02). VAF of the reconstructed individual electromyography patterns with the FAI or control group vector were significantly higher for the FAI group (p < 0.01). Following reconstruction, VAF of quadratus femoris was significantly more reduced in controls (p = 0.04), indicating greater between-subject variability. Coordination of deep hip muscles in the synergy related to hip joint control during early swing differed between groups. This phase involves movement towards the impingement position, which has relevance for the interpretation of synergy differences and potential clinical importance. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1494-1504, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris)

    PubMed Central

    Williams, S B; Wilson, A M; Rhodes, L; Andrews, J; Payne, R C

    2008-01-01

    We provide quantitative anatomical data on the muscle–tendon architecture and geometry of the pelvic limb of an elite sprint athlete, the racing greyhound. Specifically, muscle masses, muscle lengths, fascicle lengths, pennation angles and muscle moment arms were measured. Maximum isometric force and power of muscles, the maximum muscle torque at joints and tendon stress and strain were estimated. We compare data with that published for a generalized breed of canid, and other cursorial mammals such as the horse and hare. The pelvic limb of the racing greyhound had a relatively large volume of hip extensor muscle, which is likely to be required for power production. Per unit body mass, some pelvic limb muscles were relatively larger than those in less specialized canines, and many hip extensor muscles had longer fascicle lengths. It was estimated that substantial extensor moments could be created about the tarsus and hip of the greyhound allowing high power output and potential for rapid acceleration. The racing greyhound hence possesses substantial specializations for enhanced sprint performance. PMID:18657259

  18. Hip kinetics during gait are clinically meaningful outcomes in young boys with Duchenne muscular dystrophy.

    PubMed

    Heberer, Kent; Fowler, Eileen; Staudt, Loretta; Sienko, Susan; Buckon, Cathleen E; Bagley, Anita; Sison-Williamson, Mitell; McDonald, Craig M; Sussman, Michael D

    2016-07-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic neuromuscular disorder characterized by progressive proximal to distal muscle weakness. The success of randomized clinical trials for novel therapeutics depends on outcome measurements that are sensitive to change. As the development of motor skills may lead to functional improvements in young boys with DMD, their inclusion may potentially confound clinical trials. Three-dimensional gait analysis is an under-utilized approach that can quantify joint moments and powers, which reflect functional muscle strength. In this study, gait kinetics, kinematics, spatial-temporal parameters, and timed functional tests were quantified over a one-year period for 21 boys between 4 and 8 years old who were enrolled in a multisite natural history study. At baseline, hip moments and powers were inadequate. Between the two visits, 12 boys began a corticosteroid regimen (mean duration 10.8±2.4 months) while 9 boys remained steroid-naïve. Significant between-group differences favoring steroid use were found for primary kinetic outcomes (peak hip extensor moments (p=.007), duration of hip extensor moments (p=.007), peak hip power generation (p=.028)), and spatial-temporal parameters (walking speed (p=.016) and cadence (p=.021)). Significant between-group differences were not found for kinematics or timed functional tests with the exception of the 10m walk test (p=.03), which improves in typically developing children within this age range. These results indicate that hip joint kinetics can be used to identify weakness in young boys with DMD and are sensitive to corticosteroid intervention. Inclusion of gait analysis may enhance detection of a treatment effect in clinical trials particularly for young boys with more preserved muscle function. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Recovery of function following hip resurfacing arthroplasty: a randomized controlled trial comparing an accelerated versus standard physiotherapy rehabilitation programme.

    PubMed

    Barker, Karen L; Newman, Meredith A; Hughes, Tamsin; Sackley, Cath; Pandit, Hemant; Kiran, Amit; Murray, David W

    2013-09-01

    To identify if a tailored rehabilitation programme is more effective than standard practice at improving function in patients undergoing metal-on-metal hip resurfacing arthroplasty. Randomized controlled trial. Specialist orthopaedic hospital. 80 men with a median age of 56 years. Tailored post-operative physiotherapy programme compared with standard physiotherapy. Primary outcome - Oxford Hip Score (OHS), Secondary outcomes: Hip disability and Osteoarthritis Outcome Score (HOOS), EuroQol (EQ-5D-3L) and UCLA activity score. Hip range of motion, hip muscle strength and patient selected goals were also assessed. At one year the mean (SD) Oxford Hip Score of the intervention group was higher, 45.1 (5.3), than the control group, 39.6 (8.8). This was supported by a linear regression model, which detected a 5.8 unit change in Oxford Hip Score (p < 0.001), effect size 0.76. There was a statistically significant increase in Hip disability and Osteoarthritis Outcome Score of 12.4% (p < 0.0005), effect size 0.76; UCLA activity score differed by 0.66 points (p < 0.019), effect size 0.43; EQ 5D showed an improvement of 0.85 (p < 0.0005), effect size 0.76. A total of 80% (32 of 40) of the intervention group fully met their self-selected goal compared with 55% (22 of 40) of the control group. Hip range of motion increased significantly; hip flexion by a mean difference 17.9 degrees (p < 0.0005), hip extension by 5.7 degrees (p < 0.004) and abduction by 4 degrees (p < 0.05). Muscle strength improved more in the intervention group but was not statistically significant. A tailored physiotherapy programme improved self-reported functional outcomes and hip range of motion in patients undergoing hip resurfacing.

  20. Mechanical behaviour of hamstring muscles in low-back pain patients and control subjects.

    PubMed

    Tafazzoli, F; Lamontagne, M

    1996-01-01

    The purpose of this study was to measure and compare the passive elastic moment, the stiffness and the damping coefficient of the hip joint, as functions of the hip and knee joint angles in men with and without low-back pain. Two conventional tests, the straight-leg-raising test and the trunk forward flexion, were also performed and compared between these subjects. The passive elastic moment was measured using an isokinetic device in the passive mode. This device raised the lower limb from the horizontal position to the straight-leg-raising angle at a slow and constant angular velocity. A custom-made splint connected with the lever arm of the isokinetic device maintained the knee in extension and the ankle in the neutral position. The damping coefficient of the hip joint was measured for 0, 15, 45, 60, 75 and 90% of straight leg raising angle of each subject, using the suspension method based on small oscillation theory. To ensure that muscles were inactive during the passive hip moment tests, muscle activity was monitored with surface EMG. The stiffness was computed as the ratio of the change in passive elastic moment to the change in the hip angle. The passive elastic moment, the stiffness and the normalized trunk flexion were significantly different between the two groups respectively. There was, however, no difference between the two groups in the results of straight-leg-raise and damping coefficient of the hip. The passive elastic moment was a nonlinear function of the hip flexion angle and showed large intersubject differences, especially as the joint limit was approached. The damping coefficient was a polynomial function of the hip flexion angle. The measured variables were analysed using a discriminant function and it was shown that the two groups were clearly discriminable in a meaningful manner.

  1. Increased sensory noise and not muscle weakness explains changes in non-stepping postural responses following stance perturbations in healthy elderly.

    PubMed

    Afschrift, Maarten; De Groote, Friedl; Verschueren, Sabine; Jonkers, Ilse

    2018-01-01

    The response to stance perturbations changes with age. The shift from an ankle to a hip strategy with increasing perturbation magnitude occurs at lower accelerations in older than in young adults. This strategy shift has been related to age-related changes in muscle and sensory function. However, the effect of isolated changes in muscle or sensory function on the responses following stance perturbations cannot be determined experimentally since changes in muscle and sensory function occur simultaneously. Therefore, we used predictive simulations to estimate the effect of isolated changes in (rates of change in) maximal joint torques, functional base of support, and sensory noise on the response to backward platform translations. To evaluate whether these modeled changes in muscle and sensory function could explain the observed changes in strategy; simulated postural responses with a torque-driven double inverted pendulum model controlled using optimal state feedback were compared to measured postural responses in ten healthy young and ten healthy older adults. The experimentally observed peak hip angle during the response was significantly larger (5°) and the functional base of support was smaller (0.04m) in the older than in the young adults but peak joint torques and rates of joint torque were similar during the recovery. The addition of noise to the sensed states in the predictive simulations could explain the observed increase in peak hip angle in the elderly, whereas changes in muscle function could not. Hence, our results suggest that strength training alone might be insufficient to improve postural control in elderly. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Posterolateral hip muscle strengthening versus quadriceps strengthening for patellofemoral pain: a comparative control trial.

    PubMed

    Khayambashi, Khalil; Fallah, Alireza; Movahedi, Ahmadreza; Bagwell, Jennifer; Powers, Christopher

    2014-05-01

    To compare the efficacy of posterolateral hip muscle strengthening versus quadriceps strengthening in reducing pain and improving health status in persons with patellofemoral pain (PFP). Comparative control trial. Rehabilitation facility. Persons with a diagnosis of PFP (N=36; 18 men, 18 women). Patients were alternately assigned to a posterolateral hip muscle strengthening group (9 men and 9 women) or a quadriceps strengthening group (9 men and 9 women). The posterolateral hip muscle strengthening group performed hip abductor and external rotator strengthening exercises, whereas the quadriceps strengthening group performed quadriceps strengthening exercises (3 times a week for 8wk). Pain (visual analog scale [VAS]) and health status (Western Ontario McMaster Universities Osteoarthritis Index [WOMAC]) were assessed at baseline, postintervention, and 6-month follow-up. Significant improvements in VAS and WOMAC scores were observed in both groups from baseline to postintervention and baseline to 6-month follow-up (P<.001). Improvements in VAS and WOMAC scores in the posterolateral hip exercise group were superior to those in the quadriceps exercise group postintervention and at 6-month follow-up (P<.05). Although both intervention programs resulted in decreased pain and improved function in persons with PFP, outcomes in the posterolateral hip exercise group were superior to the quadriceps exercise group. The superior outcomes obtained in the posterolateral hip exercise group were maintained 6 months postintervention. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Strengthening of the Hip and Core Versus Knee Muscles for the Treatment of Patellofemoral Pain: A Multicenter Randomized Controlled Trial

    PubMed Central

    Ferber, Reed; Bolgla, Lori; Earl-Boehm, Jennifer E.; Emery, Carolyn; Hamstra-Wright, Karrie

    2015-01-01

    Context: Patellofemoral pain (PFP) is the most common injury in running and jumping athletes. Randomized controlled trials suggest that incorporating hip and core strengthening (HIP) with knee-focused rehabilitation (KNEE) improves PFP outcomes. However, no randomized controlled trials have, to our knowledge, directly compared HIP and KNEE programs. Objective: To compare PFP pain, function, hip- and knee-muscle strength, and core endurance between KNEE and HIP protocols after 6 weeks of rehabilitation. We hypothesized greater improvements in (1) pain and function, (2) hip strength and core endurance for patients with PFP involved in the HIP protocol, and (3) knee strength for patients involved in the KNEE protocol. Design: Randomized controlled clinical trial. Setting: Four clinical research laboratories in Calgary, Alberta; Chicago, Illinois; Milwaukee, Wisconsin; and Augusta, Georgia. Patients or Other Participants: Of 721 patients with PFP screened, 199 (27.6%) met the inclusion criteria (66 men [31.2%], 133 women [66.8%], age = 29.0 ± 7.1 years, height = 170.4 ± 9.4 cm, weight = 67.6 ± 13.5 kg). Intervention(s): Patients with PFP were randomly assigned to a 6-week KNEE or HIP protocol. Main Outcome Measure(s): Primary variables were self-reported visual analog scale and Anterior Knee Pain Scale measures, which were conducted weekly. Secondary variables were muscle strength and core endurance measured at baseline and at 6 weeks. Results: Compared with baseline, both the visual analog scale and the Anterior Knee Pain Scale improved for patients with PFP in both the HIP and KNEE protocols (P < .001), but the visual analog scale scores for those in the HIP protocol were reduced 1 week earlier than in the KNEE group. Both groups increased in strength (P < .001), but those in the HIP protocol gained more in hip-abductor (P = .01) and -extensor (P = .01) strength and posterior core endurance (P = .05) compared with the KNEE group. Conclusions: Both the HIP and KNEE rehabilitation protocols produced improvements in PFP, function, and strength over 6 weeks. Although outcomes were similar, the HIP protocol resulted in earlier resolution of pain and greater overall gains in strength compared with the KNEE protocol. PMID:25365133

  4. Hip Strength Testing of Soccer Players With Long-Standing Hip and Groin Pain: What are the Clinical Implications of Pain During Testing?

    PubMed

    Rafn, Bolette S; Tang, Lars; Nielsen, Martin P; Branci, Sonia; Hölmich, Per; Thorborg, Kristian

    2016-05-01

    To investigate whether self-reported pain during hip strength testing correlates to a large degree with hip muscle strength in soccer players with long-standing unilateral hip and groin pain. Cross-sectional study. Clinical assessments at Sports Orthopaedic Research Center-Copenhagen (SORC-C), Arthroscopic Centre Amager, Copenhagen University Hospital, Denmark. Twenty-four male soccer players with unilateral long-standing hip and groin pain. The soccer players performed 5 reliable hip muscle strength tests (isometric hip flexion, adduction, abduction, isometric hip flexion-modified Thomas test, and eccentric hip adduction). Muscle strength was measured with a hand-held dynamometer, and the players rated the pain during testing on a numerical rating scale (0-10). In 4 tests (isometric hip adduction, abduction, flexion, and eccentric adduction), no significant correlations were found between pain during testing and hip muscle strength (Spearman rho = -0.28 to 0.06, P = 0.09-0.39). Isometric hip flexion (modified Thomas test position) showed a moderate negative correlation between pain and hip muscle strength (Spearman rho = -0.44, P = 0.016). Self-reported pain during testing does not seem to correlate with the majority of hip muscle strength tests used in soccer players with long-standing hip and groin pain.

  5. Isometric and isokinetic hip strength and agonist/antagonist ratios in symptomatic femoroacetabular impingement.

    PubMed

    Diamond, Laura E; Wrigley, Tim V; Hinman, Rana S; Hodges, Paul W; O'Donnell, John; Takla, Amir; Bennell, Kim L

    2016-09-01

    This study investigated isometric and isokinetic hip strength in individuals with and without symptomatic femoroacetabular impingement (FAI). The specific aims were to: (i) determine whether differences exist in isometric and isokinetic hip strength measures between groups; (ii) compare hip strength agonist/antagonist ratios between groups; and (iii) examine relationships between hip strength and self-reported measures of either hip pain or function in those with FAI. Cross-sectional. Fifteen individuals (11 males; 25±5 years) with symptomatic FAI (clinical examination and imaging (alpha angle >55° (cam FAI), and lateral centre edge angle >39° and/or positive crossover sign (combined FAI))) and 14 age- and sex-matched disease-free controls (no morphological FAI on magnetic resonance imaging) underwent strength testing. Maximal voluntary isometric contraction strength of hip muscle groups and isokinetic hip internal (IR) and external rotation (ER) strength (20°/s) were measured. Groups were compared with independent t-tests and Mann-Whitney U tests. Participants with FAI had 20% lower isometric abduction strength than controls (p=0.04). There were no significant differences in isometric strength for other muscle groups or peak isokinetic ER or IR strength. The ratio of isometric, but not isokinetic, ER/IR strength was significantly higher in the FAI group (p=0.01). There were no differences in ratios for other muscle groups. Angle of peak IR torque was the only feature correlated with symptoms. Individuals with symptomatic FAI demonstrate isometric hip abductor muscle weakness and strength imbalance in the hip rotators. Strength measurement, including agonist/antagonist ratios, may be relevant for clinical management of FAI. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Patellofemoral pain and asymmetrical hip rotation.

    PubMed

    Cibulka, Michael T; Threlkeld-Watkins, Julie

    2005-11-01

    Patellofemoral joint problems are the most common overuse injury of the lower extremity, and altered femoral or hip rotation may play a role in patellofemoral pain. The purpose of this case report is to describe the evaluation of and intervention for a patient with asymmetrical hip rotation and patellofemoral pain. The patient was a 15-year-old girl with an 8-month history of anterior right knee pain, without known trauma or injury. Prior to intervention, her score on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was 24%. Right hip medial (internal) rotation was less than left hip medial rotation, and manual muscle testing showed weakness of the right hip internal rotator and abductor muscles. The intervention was aimed at increasing right hip medial rotation, improving right hip muscle strength (eg, the muscle force exerted by a muscle or a group of muscles to overcome a resistance), and eliminating anterior right knee pain. After 6 visits (14 days), passive left and right hip medial rotations were symmetrical, and her right hip internal rotator and abductor muscle grades were Good plus. Her WOMAC score was 0%. The patient had right patellofemoral pain and an uncommon pattern of asymmetrical hip rotation, with diminished hip medial rotation and excessive hip lateral (external) rotation on the right side. The patient's outcomes suggest that femoral or hip joint asymmetry may be related to patellofemoral joint pain.

  7. The anatomy of the hip abductor muscles.

    PubMed

    Flack, N A M S; Nicholson, H D; Woodley, S J

    2014-03-01

    The anatomy of the hip abductors has not been comprehensively examined, yet is important to understanding function and pathology in the gluteal region. For example, pathology of the hip abductor muscle-tendon complexes can cause greater trochanteric pain syndrome, and may be associated with gluteal atrophy and fatty infiltration. The purpose of this study was to investigate the detailed morphology of gluteus medius (GMed), gluteus minimus (GMin), and tensor fascia lata (TFL), and determine whether the muscles comprised anatomical compartments. The gluteal region from 12 cadavers was dissected and data collected on attachment sites, volume, fascicular and tendinous anatomy, and innervation. Three sites of GMed origin were identified (gluteal fossa, gluteal aponeurosis, and posteroinferior edge of the iliac crest) and the distal tendon had lateral and posterior parts. GMed was the largest in volume (27.6 ± 11.6 cm(3); GMin 14.1 ± 11.1 cm(3); TFL 1.8 ± 0.8 cm(3)). Fascicles of GMin originated from the gluteal fossa, inserting onto the deep surface of its distal tendon and the hip joint capsule. TFL was encapsulated in the fascia lata, having no bony attachment. Primary innervation patterns varied for GMed, with three or four branches supplying different regions of muscle. Distinct secondary nerve branches entered four regions of GMin; no differential innervation was observed for TFL. On the basis of architectural parameters and innervation, GMed, and GMin each comprise of four compartments but TFL is a homogenous muscle. It is anticipated that these data will be useful for future clinical and functional studies of the hip abductors. Copyright © 2013 Wiley Periodicals, Inc.

  8. Frontal plane hip and ankle sensorimotor function, not age, predicts unipedal stance time

    PubMed Central

    Allet, Lara; Kim, Hogene; Ashton-Miller, James; De Mott, Trina; Richardson, James K.

    2011-01-01

    Introduction Changes occur in muscles and nerves with aging. This study aimed to explore the relationship between unipedal stance time (UST) and frontal plane hip and ankle sensorimotor function in subjects with diabetic neuropathy. Methods UST, quantitative measures of frontal plane ankle proprioceptive thresholds, and ankle and hip motor function were tested in forty-one persons with a spectrum of lower limb sensorimotor function, ranging from healthy to moderately severe diabetic neuropathy. Results Frontal plane hip and ankle sensorimotor function demonstrated significant relationships with UST. Multivariate analysis identified only composite hip strength, composite ankle proprioceptive threshold, and age to be significant predictors of UST (R2=0.73); they explained 46%, 24% and 3% of the variance, respectively. Discussion/Conclusions Frontal plane hip strength was the single best predictor of UST and appeared to compensate for less precise ankle proprioceptive thresholds. This finding is clinically relevant given the possibility of strengthening the hip, even in patients with significant PN. . PMID:22431092

  9. Frontal plane hip and ankle sensorimotor function, not age, predicts unipedal stance time.

    PubMed

    Allet, Lara; Kim, Hogene; Ashton-Miller, James; De Mott, Trina; Richardson, James K

    2012-04-01

    Changes occur in muscles and nerves with aging. In this study we explore the relationship between unipedal stance time (UST) and frontal plane hip and ankle sensorimotor function in subjects with diabetic neuropathy. UST, quantitative measures of frontal plane ankle proprioceptive thresholds, and ankle and hip motor function were tested in 41 subjects with a spectrum of lower limb sensorimotor function ranging from healthy to moderately severe diabetic neuropathy. Frontal plane hip and ankle sensorimotor function demonstrated significant relationships with UST. Multivariate analysis identified only composite hip strength, ankle proprioceptive threshold, and age to be significant predictors of UST (R(2) = 0.73), explaining 46%, 24%, and 3% of the variance, respectively. Frontal plane hip strength was the single best predictor of UST and appeared to compensate for less precise ankle proprioceptive thresholds. This finding is clinically relevant given the possibility of strengthening the hip, even in patients with significant peripheral neuropathy. Copyright © 2011 Wiley Periodicals, Inc.

  10. Association of lower extremity range of motion and muscle strength with physical performance of community-dwelling older women.

    PubMed

    Jung, Hungu; Yamasaki, Masahiro

    2016-12-08

    Reduced lower extremity range of motion (ROM) and muscle strength are related to functional disability in older adults who cannot perform one or more activities of daily living (ADL) independently. The purpose of this study was to determine which factors of seven lower extremity ROMs and two muscle strengths play dominant roles in the physical performance of community-dwelling older women. Ninety-five community-dwelling older women (mean age ± SD, 70.7 ± 4.7 years; age range, 65-83 years) were enrolled in this study. Seven lower extremity ROMs (hip flexion, hip extension, knee flexion, internal and external hip rotation, ankle dorsiflexion, and ankle plantar flexion) and two muscle strengths (knee extension and flexion) were measured. Physical performance tests, including functional reach test (FRT), 5 m gait test, four square step test (FSST), timed up and go test (TUGT), and five times sit-to-stand test (FTSST) were performed. Stepwise regression models for each of the physical performance tests revealed that hip extension ROM and knee flexion strength were important explanatory variables for FRT, FSST, and FTSST. Furthermore, ankle plantar flexion ROM and knee extension strength were significant explanatory variables for the 5 m gait test and TUGT. However, ankle dorsiflexion ROM was a significant explanatory variable for FRT alone. The amount of variance on stepwise multiple regression for the five physical performance tests ranged from 25 (FSST) to 47% (TUGT). Hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs, as well as knee extension and flexion strengths may play primary roles in the physical performance of community-dwelling older women. Further studies should assess whether specific intervention programs targeting older women may achieve improvements in lower extremity ROM and muscle strength, and thereby play an important role in the prevention of dependence on daily activities and loss of physical function, particularly focusing on hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs as well as knee extension and flexion strength.

  11. Does hip joint positioning affect maximal voluntary contraction in the gluteus maximus, gluteus medius, tensor fasciae latae and sartorius muscles?

    PubMed

    Bernard, J; Beldame, J; Van Driessche, S; Brunel, H; Poirier, T; Guiffault, P; Matsoukis, J; Billuart, F

    2017-11-01

    Minimally invasive total hip arthroplasty (THA) is presumed to provide functional and clinical benefits, whereas in fact the literature reveals that gait and posturographic parameters following THA do not recover values found in the general population. There is a significant disturbance of postural sway in THA patients, regardless of the surgical approach, although with some differences between approaches compared to controls: the anterior and anterolateral minimally invasive approaches seem to be more disruptive of postural parameters than the posterior approach. Electromyographic (EMG) study of the hip muscles involved in surgery [gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S)] could shed light, the relevant literature involves discordant methodologies. We developed a methodology to assess EMG activity during maximal voluntary contraction (MVC) of the GMax, GMed, TFL and sartorius muscles as a reference for normalization. A prospective study aimed to assess whether hip joint positioning and the learning curve on an MVC test affect the EMG signal during a maximal voluntary contraction. Hip positioning and the learning curve on an MVC test affect EMG signal during MVC of GMax, GMed, TFL and S. Thirty young asymptomatic subjects participated in the study. Each performed 8 hip muscle MVCs in various joint positions recorded with surface EMG sensors. Each MVC was performed 3 times in 1 week, with the same schedule every day, controlling for activity levels in the preceding 24h. EMG activity during MVC was expressed as a ratio of EMG activity during unipedal stance. Non-parametric tests were applied. Statistical analysis showed no difference according to hip position for abductors or flexors in assessing EMG signal during MVC over the 3 sessions. Hip abductors showed no difference between abduction in lateral decubitus with hip straight versus hip flexed: GMax (19.8±13.7 vs. 14.5±7.8, P=0.78), GMed (13.4±9.0 vs. 9.9±6.6, P=0.21) and TFL (69.5±61.7 vs. 65.9±51.3, P=0.50). Flexors showed no difference between hip flexion/abduction/lateral rotation performed in supine or sitting position: TFL (70.6±45.9 vs. 61.6±45.8, P=0.22) and S (101.1±67.9 vs. 72.6±44.6, P=0.21). The most effective tests to assess EMG signal during MVC were for the hip abductors: hip abduction performed in lateral decubitus (36.7% for GMax, 76.7% for GMed), and for hip flexors: hip flexion/abduction/lateral rotation performed in supine decubitus (50% for TFL, 76.7% for S). The study hypothesis was not confirmed, since hip joint positioning and the learning curve on an MVC test did not affect EMG signal during MVC of GMax, GMed, TFL and S muscles. Therefore, a single session and one specific test is enough to assess MVC in hip abductors (abduction in lateral decubitus) and flexors (hip flexion/abduction/lateral rotation in supine position). This method could be applied to assess muscle function after THA, and particularly to compare different approaches. III, case-matched study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Treatment Challenges of Prosthetic Hip Infection with Associated Iliacus Muscle Abscess: Report of 5 Cases and Literature Review.

    PubMed

    Lawrenz, Joshua M; Mesko, Nathan W; Higuera, Carlos A; Molloy, Robert M; Simpfendorfer, Claus; Babic, Maja

    2017-01-01

    Prosthetic joint infection is an unfortunate though well-recognized complication of total joint arthroplasty. An iliacus and/or iliopsoas muscle abscess is a rarely documented presentation of hip prosthetic joint infection. It is thought an unrecognized retroperitoneal nidus of infection can be a source of continual seeding of the prosthetic hip joint, prolonging attempts to eradicate infection despite aggressive debridement and explant attempts. The current study presents five cases demonstrating this clinical scenario, and discusses various treatment challenges. In each case we report the patient's clinical history, pertinent imaging, management and outcome. Diagnosis of the iliacus muscle abscess was made using computed tomography imaging. In brief, the mean number of total drainage procedures (open and percutaneous) per patient was 4.2, and outcomes consisted of one patient with a hip girdlestone, two patients with delayed revisions, and two patients with retained prosthesis. All patients ended with functional pain and on oral antibiotic suppression with an average follow up of 18 months. This article highlights an iliacus muscle abscess as an unrecognized source of infection to a prosthetic hip. It demonstrates resilience to standard treatment protocols for prosthetic hip infection, and is associated with poor patient outcomes. Aggressive surgical debridement appears to remain critical to treatment success, and early retroperitoneal debridement of the abscess should be considered.

  13. A study on the relationship between muscle function, functional mobility and level of physical activity in community-dwelling elderly.

    PubMed

    Garcia, Patrícia A; Dias, João M D; Dias, Rosângela C; Santos, Priscilla; Zampa, Camila C

    2011-01-01

    to evaluate the relationship between lower extremity muscle function, calf circumference (CC), handgrip strength (HG), functional mobility and level of physical activity among age groups (65-69, 70-79, 80+) of older adults (men and women) and to identify the best parameter for screening muscle function loss in the elderly. 81 community-dwelling elderly (42 women and 39 men) participated. Walking speed (Multisprint Kit), HG (Jamar dynamometer), hip, knee and ankle muscle function (Biodex isokinetic dynamometer), level of physical activity (Human Activity Profile) and CC (tape measure) were evaluated. ANOVA, Pearson correlation and ROC curves were used for statistical analysis. Dominant CC (34.9±3 vs 37.7±3.6), habitual (1.1±0.2 vs 1.2±0.2) and fast (1.4±0.3 vs 1.7±0.3) walking speed, HG (23.8±7.5 vs 31.8±10.3), average peak torque and average hip, knee and ankle power (p<0.05) were lower for the 80+ group than for the 65-69 year-olds. There were no differences in physical activity level among age groups. Moderate significant correlations were found between muscle function parameters, walking speed and HG; a fair degree of relationship was found between muscle function parameters, CC and level of physical activity (p<0.05). The ROC curve analysis suggested a cutoff point of 14.51 Kgf for screening muscle function loss in elderly women (p=0.03). This study demonstrated an association between muscle function, HG and fast walking speed, a decrease in these parameters with age and the possibility of using HG to screen for muscle function of the lower extremities.

  14. A NEW CLINICAL MUSCLE FUNCTION TEST FOR ASSESSMENT OF HIP EXTERNAL ROTATION STRENGTH: AUGUSTSSON STRENGTH TEST.

    PubMed

    Augustsson, Jesper

    2016-08-01

    Dynamic clinical tests of hip strength applicable on patients, non-athletes and athletes alike, are lacking. The aim of this study was therefore to develop and evaluate the reliability of a dynamic muscle function test of hip external rotation strength, using a novel device. A second aim was to determine if gender differences exist in absolute and relative hip strength using the new test. Fifty-three healthy sport science students (34 women and 19 men) were tested for hip external rotation strength using a device that consisted of a strap connected in series with an elastic resistance band loop, and a measuring tape connected in parallel with the elastic resistance band. The test was carried out with the subject side lying, positioned in 45 ° of hip flexion and the knees flexed to 90 ° with the device firmly fastened proximally across the knees. The subject then exerted maximal concentric hip external rotation force against the device thereby extending the elastic resistance band. The displacement achieved by the subject was documented by the tape measure and the corresponding force production was calculated. Both right and left hip strength was measured. Fifteen of the subjects were tested on repeated occasions to evaluate test-retest reliability. No significant test-retest differences were observed. Intra-class correlation coefficients ranged 0.93-0.94 and coefficients of variation 2.76-4.60%. In absolute values, men were significantly stronger in hip external rotation than women (right side 13.2 vs 11.0 kg, p = 0.001, left side 13.2 vs 11.5 kg, p = 0.002). There were no significant differences in hip external rotation strength normalized for body weight (BW) between men and women (right side 0.17 kg/BW vs 0.17 kg/BW, p = 0.675, left side 0.17 kg/BW vs 0.18 kg/BW, p = 0.156). The new muscle function test showed high reliability and thus could be useful for measuring dynamic hip external rotation strength in patients, non-athletes and athletes. The test is practical and easy to perform in any setting and could therefore provide additional information to the common clinical hip examination, in the rehabilitation or research setting, as well as when conducting on-the-field testing in sports. 3.

  15. The Fate of the Iliopsoas Muscle in Long-term Follow-up After Open Reduction With a Medial Approach in Developmental Dysplasia of the Hip. Part 2: Isokinetic Muscle Strength Evaluation.

    PubMed

    Yilmaz, Serdar; Aksahin, Ertugrul; Ersoz, Murat; Bicimoglu, Ali

    2017-09-01

    The impact on long-term weakness of hip flexion of complete iliopsoas tenotomy during open reduction of developmental hip dysplasia with a medial approach has not yet been fully clarified. The purpose of this study was to investigate the isokinetic muscle strength (IMS) of hip flexor and extensor muscles in these patients and also to analyze the effect of spontaneous reattachment of the iliopsoas muscle on IMS measurements. The study included 20 patients. Earlier magnetic resonance imaging examination of all the patients revealed spontaneous reattachment of the iliopsoas in 18 (90%) patients. IMS measurements were performed at 60 and 150 degrees/s. The peak torque, total work (TW), average power (AP), work fatigue, and agonist to antagonist muscle ratio of the operated and nonoperated hips were recorded separately for flexors and extensors. The effect of iliopsoas reattachment on IMS was also evaluated. The mean follow-up period was 16.65±2.16 (13 to 20) years. Total work (P=0.013) and average power (P=0.009) of the flexor muscles and work fatigue of the extensor muscles (P=0.030) of the operated hip were significantly decreased when compared with the nonoperated hips at 150 degrees/s. There was no significant difference between the flexor muscles of the operated and nonoperated hips (P<0.05) at 60 degrees/s and extensor muscles (P<0.05) at 150 degrees/s. In addition, patients without reattachment had lower IMS in the operated hips. Flexor muscle strength was decreased in the operated hip against low resistance in long-term follow-up after iliopsoas tenotomy. This may reflect that hip muscle strength was decreased after prolonged activities such as sports. However, in forceful activities flexor muscle strength was retained due to iliopsoas reattachment. On the basis of this study we thought that spontaneous reattachment of the iliopsoas tendon substantially preserves muscle strength. Nonetheless possible efforts should be made to surgically reattach the psoas tendon to preserve strength of the muscle. Therapeutic level IV.

  16. Gluteal muscle attachment during proximal femoral reconstruction in a canine model.

    PubMed

    Pluhar, G Elizabeth; Manley, Paul A; Heiner, John P; Vanderby, Ray; Markel, Mark D

    2007-02-01

    In this 18 month in vivo canine study we compared three methods of attaching the gluteal muscles to the proximal femur during hip reconstruction with an allograft-prosthesis composite (APC). All three methods are commonly practiced in human hip revision surgery and data on their effectiveness in dogs is directly relevant to human treatment. The methods compared were host gluteal tendon sutured to allograft tendon, host greater trochanter apposed to allograft using a cable grip system, and host cortical bone shells around the allograft secured with cerclage wires. For each method, we assessed changes in allograft-host bone fusion, weight bearing, gluteal muscle mass, and structural properties through qualitative radiography, gait analysis, histology, and biomechanical testing. Hip reconstruction using the WRAP method resulted in the greatest limb use with complete resolution of gluteal muscle atrophy 18 months after surgery. This method yielded a stronger, more stable hip joint that allowed for more normal limb function. These hips had the more rapid rate of bony union at the host bone-allograft junction and little resorption of the graft. The increased limb use and resultant larger gluteal muscle mass conferred to the WRAP hip composites the greatest tensile strength and stiffness when tested 18 months after reconstruction. There was a large amount of new bone formation on the periosteal surface where the WRAP reconstructions had an overlay of live bone that resulted in a more rapid union and increased cortical width at the level of the osteotomy. New bone also penetrated into the allograft a greater distance from the osteotomy in the WRAP group.

  17. Myofascial treatment for patients with acetabular labral tears: a single-subject research design study.

    PubMed

    Cashman, Glenn E; Mortenson, W Ben; Gilbart, Michael K

    2014-08-01

    Single-subject research design using 4 consecutive patients. To assess whether treatment using soft tissue therapy (ART or Active Release Technique), stretching, and strengthening of the hip abductors, hip external rotators, and tensor fascia latae muscles reduces pain and improves self-reported hip function in patients with acetabular labral tears who also have posterolateral hip pain of suspected myofascial origin. Acetabular labral tears cause pain in some but not all patients. Pain commonly presents anteriorly but may also present posteriorly and laterally. The standard of care is arthroscopic repair, which helps many but not all patients. It is possible that these patients may present with extra-articular contributions to their pain, such as myofascial pain, making their clinical presentation more complex. No previous study has assessed soft tissue therapy as a treatment option for this subset of patients. This A-B-A design used repeated measures of the Hip Outcome Score and visual analog scale for pain. Four patients were treated for 6 to 8 weeks, using a combination of soft tissue therapy, stretching, and strengthening for the hip abductors, external rotators, and tensor fascia latae. Data were assessed visually, statistically, and by comparing mean differences before and after intervention. All 4 patients experienced both statistically significant and clinically meaningful improvement in posterolateral hip pain and hip-related function. Three patients also experienced reduction in anteromedial hip pain. Myofascial hip pain may contribute to hip-related symptoms and disability in patients with acetabular labral tears and posterolateral hip pain. These patients may benefit from soft tissue therapy combined with stretching and strengthening exercises targeting the hip abductors, tensor fascia latae, and hip external rotator muscles. Level of Evidence Therapy, level 4.

  18. Muscle strength and areal bone mineral density at the hip in women: a cross-sectional study.

    PubMed

    Pasco, Julie A; Holloway, Kara L; Brennan-Olsen, Sharon L; Moloney, David J; Kotowicz, Mark A

    2015-05-24

    Muscle strengthening exercises are promoted for building and maintaining a healthy skeleton. We aimed to investigate the relationship between muscle strength and areal bone mineral density (BMD) at the hip in women aged 26-97 years. This cross-sectional study utilises data from 863 women assessed for the Geelong Osteoporosis Study. Measures of hip flexor and abductor strength were made using a hand-held dynamometer (Nicholas Manual Muscle Tester). The maximal measure from three trials on each leg was used for analyses. BMD was measured at the hip using dual energy x-ray absorptiometry (DXA; Lunar DPX-L). Total lean mass, body fat mass and appendicular lean mass were determined from whole body DXA scans. Linear regression techniques were used with muscle strength as the independent variable and BMD as the dependent variable. Models were adjusted for age and indices of body composition. Measures of age-adjusted hip flexor strength and hip abductor strength were positively associated with total hip BMD. For each standard deviation (SD) increase in hip flexor strength, the increase in mean total hip BMD (SD) was 10.4 % (p = 0.009). A similar pattern was observed for hip abductor strength, with an increase in mean total hip BMD of 22.8 % (p = 0.025). All associations between hip muscle strength and total hip BMD were independent of height, but were nullified after adjusting for appendicular lean mass or total lean mass. There was a positive association observed between muscle strength and BMD at the hip. However, this association was explained by measures of lean mass.

  19. Outcomes of total hip arthroplasty: a study of patients one year postsurgery.

    PubMed

    Trudelle-Jackson, Elaine; Emerson, Roger; Smith, Sue

    2002-06-01

    Ex post facto research using prospective analysis of differences between the involved hip and uninvolved hip. To assess outcomes of total hip arthroplasty (THA) by comparing range of motion (ROM), muscle strength, and postural stability in the surgical hip to those of the uninvolved hip 1 year postsurgery. An additional objective was to assess degree of relationship among ROM, strength, and postural stability impairments to a measure of self-assessed function. Most patients who have THA receive physical therapy that consists mainly of self-care instructions and an exercise protocol that emphasizes mobility during the acute phase of recovery. But, outcomes of THA 1 year postsurgery indicate that current physical therapy programs used during the acute phase of recovery do not effectively restore physical and functional performance. Subjects consisted of 11 women and 4 men (mean age +/- standard deviation = 62 +/- 8 years) with unilateral THA performed 1 year prior to data collection. Assessment variables consisted of self-assessment of function and measures of postural stability, muscle strength, and hip ROM. The 12-Item Hip Questionnaire was used for self-assessment of function. Three separate repeated measures MANOVA were used to compare the involved side to the uninvolved side in measures of postural stability, strength, and ROM. The Spearman's rho was used to assess degree of association between the subjects' score of self-assessed function and impairments in strength and postural stability. Measures of postural stability were significantly lower (P < or = 0.01) on the side of the replaced hip. Differences in strength values between the involved and uninvolved sides were not statistically significant. Correlations between scores of self-assessed function and hip abductor and knee extensor strength were statistically significant (r = 0.56, P < or = 0.03). Self-assessed function was not significantly correlated to postural stability impairments. The brief postsurgical rehabilitation program received by patients with THA may not be sufficient. A second phase of rehabilitation implemented 4 months or more after surgery that emphasizes weight bearing and postural stability may be advisable.

  20. Functional roles of lower-limb joint moments while walking in water.

    PubMed

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2005-02-01

    To clarify the functional roles of lower-limb joint moments and their contribution to support and propulsion tasks while walking in water compared with that on land. Sixteen healthy, young subjects walked on land and in water at several different speeds with and without additional loads. Walking in water is a major rehabilitation therapy for patients with orthopedic disorders. However, the functional role of lower-limb joint moments while walking in water is still unclear. Kinematics, electromyographic activities in biceps femoris and gluteus maximums, and ground reaction forces were measured under the following conditions: walking on land and in water at a self-determined pace, slow walking on land, and fast walking in water with or without additional loads (8 kg). The hip, knee, and ankle joint moments were calculated by inverse dynamics. The contribution of the walking speed increased the hip extension moment, and the additional weight increased the ankle plantar flexion and knee extension moment. The major functional role was different in each lower-limb joint muscle. That of the muscle group in the ankle is to support the body against gravity, and that of the muscle group involved in hip extension is to contribute to propulsion. In addition, walking in water not only reduced the joint moments but also completely changed the inter-joint coordination. It is of value for clinicians to be aware that the greater the viscosity of water produces a greater load on the hip joint when fast walking in water.

  1. Comparison of EMG activity on abdominal muscles during plank exercise with unilateral and bilateral additional isometric hip adduction.

    PubMed

    Kim, Soo-Yong; Kang, Min-Hyeok; Kim, Eui-Ryong; Jung, In-Gui; Seo, Eun-Young; Oh, Jae-Seop

    2016-10-01

    The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (p<0.05). Bilateral IO, EO, and left RA muscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (p<0.05). These findings suggest that additional isometric hip adduction during the plank exercise could be a useful method to enhance abdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Preservation of the articular capsule and short lateral rotator in direct anterior approach to total hip arthroplasty.

    PubMed

    Kanda, Akio; Kaneko, Kazuo; Obayashi, Osamu; Mogami, Atsuhiko; Morohashi, Itaru

    2018-03-09

    In total hip arthroplasty via a direct anterior approach, the femur must be elevated at the time of femoral implant placement. For adequate elevation, division of the posterior soft tissues is necessary. However, if we damage and separate the posterior muscle tissue, we lose the benefits of the intermuscular approach. Furthermore, damage to the posterior soft tissue can result in posterior dislocation. We investigate that protecting the posterior soft tissue increases the joint stability in the early postoperative period and results in a lower dislocation rate. We evaluated muscle strength recovery by measuring the maximum width of the internal obturator muscle on CT images (GE-Healthcare Discovery CT 750HD). We compared the maximum width of the muscle belly preoperatively versus 10 days and 6 months postoperatively. As clinical evaluations, we also investigated the range of motion of the hip joint, hip joint function based on the Japanese Orthopaedic Association hip score (JOA score), and the dislocation rate 6 months after surgery. The width of the internal obturator muscle increased significantly from 15.1 ± 3.1 mm before surgery to 16.4 ± 2.8 mm 6 months after surgery. The JOA score improved significantly from 50.8 ± 15.1 points to 95.6 ± 7.6 points. No dislocations occurred in this study. We cut only the posterosuperior articular capsule and protected the internal obturator muscle to preserve muscle strength. We repaired the entire posterosuperior and anterior articular capsule. These treatments increase joint stability in the early postoperative period, thus reducing the dislocation rate. Therapeutic, Level IV.

  3. [Open repair of gluteus medius and minimus tendons tears with double-row technique : Clinical and radiological results].

    PubMed

    Schröder, J H; Geßlein, M; Schütz, M; Perka, C; Krüger, D

    2018-03-01

    Operative refixation is a new therapeutic option in cases of failed conservative treatment for trochanteric pain syndrome (TPS) and lesions of the hip abductors in magnetic resonance imaging (MRI). Evaluation of the clinical and radiological results after open gluteus medius and minimus tendon reconstruction with a double-row technique was carried out. Patients with failed conservative treatment for TPS and confirmed lesions of the hip abductors in MRI were treated by open hip abductor tendon reconstruction with a double-row technique. The patients were evaluated preoperatively and postoperatively (minimum follow-up 12 months) using the modified Harris hip score (mHHS) and a subjective score (subjective hip value, SHV). Preoperative and postoperative MRI evaluation included measurement of hip abductor muscle diameter and cross-sectional area as well as fatty degeneration. In this study 12 consecutive cases of open reconstruction of the hip abductor tendons were included. There was a significant improvement in the mHHS. In one case the patient showed an atraumatic rupture in the proximal anchor row. The MRI showed a significant improvement in muscle diameter and cross-sectional area for the gluteus medius muscle of the affected and the contralateral side, while the degree of fatty degeneration did not improve. The fatty degeneration showed a significant correlation with the postoperative results in the mHHS and the SHV. Operative reconstruction of lesions in the hip abductor tendons is a therapy option with significant improvement of patient satisfaction and functional scores as well as muscle diameter and cross-sectional area for the gluteus medius. The degree of fatty degeneration and possible differential diagnoses need to be taken into consideration.

  4. Testing the Hip Abductor Muscle Strength of Older Persons Using a Handheld Dynamometer.

    PubMed

    Awwad, Daniel H; Buckley, Jonathan D; Thomson, Rebecca L; O'Connor, Matthew; Carbone, Tania A; Chehade, Mellick J

    2017-09-01

    To investigate the reliability of a clinically applicable method of dynamometry to assess and monitor hip abductor muscle strength in older persons. Bilateral isometric hip abductor muscle strength measured with a handheld dynamometer, patients supine with the contralateral hip positioned directly against a wall for stabilization. Reliability determined by comparing intra-assessor and inter-assessor results and comparison to a criterion standard (stabilized dynamometer with patients in the standing position). UniSA Nutritional Physiology Research Centre. Twenty-one patients older than 65 years were recruited from the Royal Adelaide Hospital. Intraclass correlation coefficients (ICCs), bias, and limits of agreement calculated to determine reliability. Intra-assessor and inter-assessor ICCs were high (0.94 and 0.92-0.94, respectively). There was no intra-assessor bias and narrow limits of agreement (±2.4%). There was a small inter-assessor bias but narrow limits of agreement (0.6%-0.9% and ± 2.3%, respectively). There was a wide variation comparing results to the criterion standard (±5.0%-5.2% limits of agreement), highlighting problems attributed to difficulties that the test population had with the standing position used in the criterion standard test. Testing older persons' hip abductor muscle strength while in the supine position with optimal pelvic stabilization using a handheld dynamometer is highly reliable. While further studies must be done to assess patients with specific pathologies, this test has potential application to monitor and evaluate the effects of surgical interventions and/or rehabilitation protocols for a variety of conditions affecting hip abductor function such as hip fractures and arthritis.

  5. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians.

    PubMed

    Bates, Karl T; Maidment, Susannah C R; Allen, Vivian; Barrett, Paul M

    2012-03-01

    Ornithischia (the 'bird-hipped' dinosaurs) encompasses bipedal, facultative quadrupedal and quadrupedal taxa. Primitive ornithischians were small bipeds, but large body size and obligate quadrupedality evolved independently in all major ornithischian lineages. Numerous pelvic and hind limb features distinguish ornithischians from the majority of other non-avian dinosaurs. However, some of these features, notably a retroverted pubis and elongate iliac preacetabular process, appeared convergently in maniraptoran theropods, and were inherited by their avian descendants. During maniraptoran/avian evolution these pelvic modifications led to significant changes in the functions of associated muscles, involving alterations to the moment arms and the activation patterns of pelvic musculature. However, the functions of these features in ornithischians and their influence on locomotion have not been tested and remain poorly understood. Here, we provide quantitative tests of bipedal ornithischian muscle function using computational modelling to estimate 3D hind limb moment arms for the most complete basal ornithischian, Lesothosaurus diagnosticus. This approach enables sensitivity analyses to be carried out to explore the effects of uncertainties in muscle reconstructions of extinct taxa, and allows direct comparisons to be made with similarly constructed models of other bipedal dinosaurs. This analysis supports some previously proposed qualitative inferences of muscle function in basal ornithischians. However, more importantly, this work highlights ambiguities in the roles of certain muscles, notably those inserting close to the hip joint. Comparative analysis reveals that moment arm polarities and magnitudes in Lesothosaurus, basal tetanuran theropods and the extant ostrich are generally similar. However, several key differences are identified, most significantly in comparisons between the moment arms of muscles associated with convergent osteological features in ornithischians and birds. Craniad migration of the iliofemoralis group muscles in birds correlates with increased leverage and use of medial femoral rotation to counter stance phase adduction moments at the hip. In Lesothosaurus the iliofemoralis group maintains significantly higher moment arms for abduction, consistent with the hip abduction mode of lateral limb support hypothesized for basal dinosaurs. Sensitivity analysis highlights ambiguity in the role of musculature associated with the retroverted pubis (puboischiofemoralis externus group) in ornithischians. However, it seems likely that this musculature may have predominantly functioned similarly to homologous muscles in extant birds, activating during the swing phase to adduct the lower limb through lateral rotation of the femur. Overall the results suggest that locomotor muscle leverage in Lesothosaurus (and by inference basal ornithischians in general) was more similar to that of other non-avian dinosaurs than the ostrich, representing what was probably the basal dinosaur condition. This work thereby contradicts previous hypotheses of ornithischian-bird functional convergence. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  6. Effects of Imbalanced Muscle Loading on Hip Joint Development and Maturation

    PubMed Central

    Ford, Caleb A.; Nowlan, Niamh C.; Thomopoulos, Stavros; Killian, Megan L.

    2017-01-01

    The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. PMID:27391299

  7. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb.

    PubMed

    Charles, James P; Cappellari, Ornella; Spence, Andrew J; Hutchinson, John R; Wells, Dominic J

    2016-01-01

    Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion.

  8. Effectiveness of Hip External Rotator Strengthening Exercise in Korean Postural Bowleg Women.

    PubMed

    Park, Seong Hoon; Lee, Jun Won; Kim, Joo Hyun; Tak, Kyoung Seok; Lee, Byeong Ho; Suh, In Suck

    2017-08-01

    Postural bowleg is a subclinical entity with both aesthetic and functional outcomes and appears to be common in East Asian countries. Internal rotation of the hip joint is associated with varus alignment at the knee joint of the bowleg. Strengthening exercise for the hip external rotator muscles seems to be effective in improving varus alignment of bowleg, but no standardized exercise program exists. A standardized active resistance strengthening exercise for hip external rotator muscles could improve varus alignment of the lower limb in bowlegged Korean women. In this article, a case series study was conducted to observe changes following a standardized 3-month program using equipment designed for strengthening of the hip external rotator muscles. Photogrammetric and radiographic data were used to compare the gap between knees and tibiofemoral (TF) angles before and after the exercise program. As a result, on average, the knee gap decreased by 1.6 cm. The TF angle decreased by 1.5°. Regression analysis revealed a statistically significant association between changes in knee gap and TF angle. The standardized 3-month active resistance strengthening exercise program of hip external rotator muscles was effective in improving postural deviation and cosmetic outcomes in bowlegged Korean women. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  9. Ipsilateral hip abductor weakness after inversion ankle sprain.

    PubMed

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Hip stability and strength are important for proper gait mechanics and foot position during heel strike. To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Ex post facto design with the uninvolved limb serving as the control. Laboratory. A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains.

  10. Hip Abductor Muscle Volume and Strength Differences Between Women With Chronic Hip Joint Pain and Asymptomatic Controls.

    PubMed

    Mastenbrook, Matthew J; Commean, Paul K; Hillen, Travis J; Salsich, Gretchen B; Meyer, Gretchen A; Mueller, Michael J; Clohisy, John C; Harris-Hayes, Marcie

    2017-12-01

    Study Design Secondary analysis, cross-sectional study. Background Chronic hip joint pain (CHJP) can lead to limitations in activity participation, but the musculoskeletal factors associated with the condition are relatively unknown. Understanding the factors associated with CHJP may help develop rehabilitation strategies to improve quality of life of individuals with long-term hip pain. Objectives To compare measures of hip abductor muscle volume and hip abductor muscle strength between women with CHJP and asymptomatic controls. Methods Thirty women, 15 with CHJP and 15 matched asymptomatic controls (age range, 18-40 years), participated in this study. Magnetic resonance imaging was used to determine the volume of the primary hip abductor muscles, consisting of the gluteus medius, gluteus minimus, a small portion of the gluteus maximus, and the tensor fascia latae, within a defined region of interest. Break tests were performed using a handheld dynamometer to assess hip abductor strength. During the strength test, the participant was positioned in sidelying with the involved hip in 15° of abduction. Independent-samples t tests were used to compare muscle volume and strength values between those with CHJP and asymptomatic controls. Results Compared to asymptomatic controls, women with CHJP demonstrated significantly increased gluteal muscle volume (228 ± 40 cm 3 versus 199 ± 29 cm 3 , P = .032), but decreased hip abductor strength (74.6 ± 16.8 Nm versus 93.6 ± 20.2 Nm, P = .009). There were no significant differences in tensor fascia lata muscle volume between the 2 groups (P = .640). Conclusion Women with CHJP appear to have larger gluteal muscle volume, but decreased hip abductor strength, compared to asymptomatic controls. J Orthop Sports Phys Ther 2017;47(12):923-930. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7380.

  11. Effects of imbalanced muscle loading on hip joint development and maturation.

    PubMed

    Ford, Caleb A; Nowlan, Niamh C; Thomopoulos, Stavros; Killian, Megan L

    2017-05-01

    The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1128-1136, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. The effects of therapeutic hip exercise with abdominal core activation on recruitment of the hip muscles.

    PubMed

    Chan, Mandy Ky; Chow, Ka Wai; Lai, Alfred Ys; Mak, Noble Kc; Sze, Jason Ch; Tsang, Sharon Mh

    2017-07-21

    Core stabilization has been utilized for rehabilitation and prevention of lower limb musculoskeletal injuries. Previous studies showed that activation of the abdominal core muscles enhanced the hip muscle activity in hip extension and abduction exercises. However, the lack of the direct measurement and quantification of the activation level of the abdominal core muscles during the execution of the hip exercises affect the level of evidence to substantiate the proposed application of core exercises to promote training and rehabilitation outcome of the hip region. The aim of the present study was to examine the effects of abdominal core activation, which is monitored directly by surface electromyography (EMG), on hip muscle activation while performing different hip exercises, and to explore whether participant characteristics such as gender, physical activity level and contractile properties of muscles, which is assessed by tensiomyography (TMG), have confounding effect to the activation of hip muscles in enhanced core condition. Surface EMG of bilateral internal obliques (IO), upper gluteus maximus (UGMax), lower gluteus maximus (LGMax), gluteus medius (GMed) and biceps femoris (BF) of dominant leg was recorded in 20 young healthy subjects while performing 3 hip exercises: Clam, side-lying hip abduction (HABD), and prone hip extension (PHE) in 2 conditions: natural core activation (NC) and enhanced core activation (CO). EMG signals normalized to percentage of maximal voluntary isometric contraction (%MVIC) were compared between two core conditions with the threshold of the enhanced abdominal core condition defined as >20%MVIC of IO. Enhanced abdominal core activation has significantly promoted the activation level of GMed in all phases of clam exercise (P < 0.05), and UGMax in all phases of PHE exercise (P < 0.05), LGMax in eccentric phases of all 3 exercises (P < 0.05), and BF in all phases of all 3 exercises except the eccentric phase of PHE exercise (P < 0.05). The %MVIC of UGMax was significantly higher than that of LGMax in all phases of clam and HABD exercises under both CO and NC conditions (P < 0.001) while the %MVIC of LGMax was significantly higher than UGMax in concentric phase of PHE exercise under NC condition (P = 0.003). Gender, physical activity level and TMG parameters were not major covariates to activation of hip muscles under enhanced core condition. Abdominal core activation enhances the hip muscles recruitment in Clam, HABD and PHE exercises, and this enhancement is correlated with higher physical activity and stiffer hip muscle. Our results suggest the potential application of abdominal core activation for lower limb rehabilitation since the increased activation of target hip muscles may enhance the therapeutic effects of hip strengthening exercises.

  13. Ipsilateral Hip Abductor Weakness After Inversion Ankle Sprain

    PubMed Central

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Context: Hip stability and strength are important for proper gait mechanics and foot position during heel strike. Objective: To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Design: Ex post facto design with the uninvolved limb serving as the control. Setting: Laboratory. Patients or Other Participants: A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. Main Outcome Measure(s): We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Results: Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Conclusions: Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains. PMID:16619098

  14. Pilot randomized controlled trial to evaluate the effect of aquatic and land physical therapy on musculoskeletal dysfunction of sickle cell disease patients

    PubMed Central

    Zanoni, Camila Tatiana; Galvão, Fábio; Cliquet Junior, Alberto; Saad, Sara Teresinha Olalla

    2014-01-01

    Objective To compare the effect of aquatic and land-based physiotherapy in reducing musculoskeletal hip and lower back pain and increasing overall physical capabilities of sickle cell disease patients. Methods Informed written consent was obtained from all volunteers who were submitted to evaluations using different functional scales: Lequesne's Algofunctional Questionnaire and Oswestry Disability Index, trunk and hip range of motion, goniometry, trunk and hip muscle strength assessment using load cell, and surface electromyography of the iliocostalis, long dorsal (longissimus), gluteus maximus, gluteus medius and tensor fasciae latae muscles. Ten patients were randomized into two groups: aquatic physiotherapy with a mean age of 42 years (range: 25–67) and conventional physiotherapy with a mean age of 49 years (range: 43–59). Both groups were submitted to a twelve-week program of two sessions weekly. Results After the intervention, significant improvements were observed regarding the Lequesne index (p-value = 0.0217), Oswestry Disability Index (p-value = 0.0112), range of motion of trunk extension (p-value = 0.0320), trunk flexion muscle strength (p-value = 0.0459), hip extension and abduction muscle strength (p-value = 0.0062 and p-value = 0.0257, respectively). Range of motion of trunk and hip flexion, extension, adduction and abduction, trunk extensor muscle strength and all surface electromyography variables showed no significant statistical difference. Conclusion Physical therapy is efficient to treat musculoskeletal dysfunctions in sickle cell disease patients, irrespective of the technique; however, aquatic therapy showed a trend toward improvement in muscle strength. Further studies with a larger patient sample and longer periods of therapy are necessary to confirm these results. PMID:25818817

  15. Pilot randomized controlled trial to evaluate the effect of aquatic and land physical therapy on musculoskeletal dysfunction of sickle cell disease patients.

    PubMed

    Zanoni, Camila Tatiana; Galvão, Fábio; Cliquet Junior, Alberto; Saad, Sara Teresinha Olalla

    2015-01-01

    To compare the effect of aquatic and land-based physiotherapy in reducing musculoskeletal hip and lower back pain and increasing overall physical capabilities of sickle cell disease patients. Informed written consent was obtained from all volunteers who were submitted to evaluations using different functional scales: Lequesne's Algofunctional Questionnaire and Oswestry Disability Index, trunk and hip range of motion, goniometry, trunk and hip muscle strength assessment using load cell, and surface electromyography of the iliocostalis, long dorsal (longissimus), gluteus maximus, gluteus medius and tensor fasciae latae muscles. Ten patients were randomized into two groups: aquatic physiotherapy with a mean age of 42 years (range: 25-67) and conventional physiotherapy with a mean age of 49 years (range: 43-59). Both groups were submitted to a twelve-week program of two sessions weekly. After the intervention, significant improvements were observed regarding the Lequesne index (p-value=0.0217), Oswestry Disability Index (p-value=0.0112), range of motion of trunk extension (p-value=0.0320), trunk flexion muscle strength (p-value=0.0459), hip extension and abduction muscle strength (p-value=0.0062 and p-value=0.0257, respectively). Range of motion of trunk and hip flexion, extension, adduction and abduction, trunk extensor muscle strength and all surface electromyography variables showed no significant statistical difference. Physical therapy is efficient to treat musculoskeletal dysfunctions in sickle cell disease patients, irrespective of the technique; however, aquatic therapy showed a trend toward improvement in muscle strength. Further studies with a larger patient sample and longer periods of therapy are necessary to confirm these results. Copyright © 2014 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

  16. Proximal muscle weakness as a result of osteomalacia associated with celiac disease: a case report.

    PubMed

    Oz, B; Akan, O; Kocyigit, H; Gürgan, H A

    2016-02-01

    A 24-year-old woman suffering from back and hip pain with difficulty in walking was reported. She had proximal muscle weakness. Laboratory findings led to the diagnosis of osteomalacia. Positivity of antibodies strengthened suspicion of celiac disease. In patients with proximal muscle weakness, osteomalacia should be considered in differential diagnosis even in a young woman. A 24-year-old woman suffering from back pain, bilateral hip pain, and difficulty in walking was reported. Her symptoms had started in the first trimester of pregnancy. In her physical examination, proximal muscle weakness and waddling gait pattern were determined. Her lumbar spine and hip MRI revealed no obvious pathological findings. Electromyography showed a myophatic pattern. Physical examination, normal values of creatine kinase, and muscle biopsy were supplied to exclude the diagnosis of primer muscle diseases. Laboratory findings led to the diagnosis of osteomalacia with normal renal function. Gastrointestinal symptoms and positivity of anti-gliadin and anti-endomysium antibodies strengthened the suspicion of celiac disease as a cause of the osteomalacia. The diagnosis of celiac disease was confirmed with duodenal mucosal biopsy. In patients with proximal muscle weakness and waddling gait pattern, osteomalacia should be considered in differential diagnosis even in a young woman and underlying disease should be investigated.

  17. Effect of changes of femoral offset on abductor and joint reaction forces in total hip arthroplasty.

    PubMed

    Rüdiger, Hannes A; Guillemin, Maïka; Latypova, Adeliya; Terrier, Alexandre

    2017-11-01

    Anatomical reconstruction in total hip arthroplasty (THA) allows for physiological muscle function, good functional outcome and implant longevity. Quantitative data on the effect of a loss or gain of femoral offset (FO) are scarce. The aim of this study was to quantitatively describe the effect of FO changes on abductor moment arms, muscle and joint reactions forces. THA was virtually performed on 3D models built from preoperative CT scans of 15 patients undergoing THA. Virtual THA was performed with a perfectly anatomical reconstruction, a loss of 20% of FO (-FO), and a gain of 20% of FO (+FO). These models were combined with a generic musculoskeletal model (OpenSim) to predict moment arms, muscle and joint reaction forces during normal gait cycles. In average, with -FO reconstructions, muscle moment arms decreased, while muscle and hip forces increased significantly (p < 0.001). We observed the opposite with +FO reconstructions. Gluteus medius was more affected than gluteus minimus. -FO had more effect than +FO. A change of 20% of FO induced an average change 8% of abductor moment arms, 16% of their forces, and 6% of the joint reaction force. To our knowledge, this is the first report providing quantitative data on the effect of FO changes on muscle and joint forces during normal gait. A decrease of FO necessitates an increase of abductor muscle force to maintain normal gait, which in turn increases the joint reaction force. This effect underscores the importance of an accurate reconstruction of the femoral offset.

  18. Hip abduction-adduction strength and one-leg hop tests: test-retest reliability and relationship to function in elite ice hockey players.

    PubMed

    Kea, J; Kramer, J; Forwell, L; Birmingham, T

    2001-08-01

    Single group, test-retest. To determine: (1) hip abduction and adduction torques during concentric and eccentric muscle actions, (2) medial and lateral one-leg hop distances, (3) the test-retest reliability of these measurements, and (4) the relationship between isokinetic measures of hip muscle strength and hop distances in elite ice hockey players. The skating motion used in ice hockey requires strong contractions of the hip and knee musculature. However, baseline scores for hip strength and hop distances, their test-retest reliability, and measures of the extent to which these tests are related for this population are not available. The dominant leg of 27 men (mean age 20 +/- 3 yrs) was tested on 2 occasions. Hip abduction and adduction movements were completed at 60 degrees.s(-1) angular velocity, with the subject lying on the non-test side and the test leg moving vertically in the subject's coronal plane. One-leg hops requiring jumping from and landing on the same leg without losing balance were completed in the medial and lateral directions. Hip adduction torques were significantly greater than abduction torques during both concentric and eccentric muscle actions, while no significant difference was observed between medial and lateral hop distances. Although hop test scores produced excellent ICCs (> 0.75) when determined using scores on 1 occasion, torques needed to be averaged over 2 test occasions to reach this level. Correlations between the strength and hop tests ranged from slight to low (r = -0.26 to 0.27) and were characterized by wide 95% confidence intervals (-0.54 to 0.61). Isokinetic tests of hip abduction and adduction did not provide a strong indication of performance during sideways hop tests. Although isokinetic tests can provide a measure of muscular strength under specific test conditions, they should not be relied upon as a primary indicator of functional abilities or readiness to return to activity.

  19. Relationship of Hip and Trunk Muscle Function with Single Leg Step-Down Performance: Implications for Return to Play Screening and Rehabilitation.

    PubMed

    Burnham, Jeremy M; Yonz, Michael C; Robertson, Kaley E; McKinley, Rachelle; Wilson, Benjamin R; Johnson, Darren L; Ireland, Mary Lloyd; Noehren, Brian

    2016-11-01

    Evaluate the relationship of hip and trunk muscle function with the Single Leg Step-Down test (SLSD). Laboratory study. Biomechanics Laboratory. 71 healthy participants with no history of anterior cruciate ligament (ACL) or lower extremity injury in the last 3 months completed this study (38 males, 33 females; mean 25.49 ± 0.62 years). Hip abduction (HABD), external rotation (HER), and extension (HEXT) peak isometric force were measured. Trunk endurance was measured with plank (PL) and side plank (SPL) tests. SLSD repetitions in 60-s and dynamic knee valgus (VAL) were recorded. PL, SPL, HABD, HER, and HEXT were positively correlated with SLSD repetitions. PL (r = 0.598, p < 0.001) was most correlated with SLSD repetitions, and regression demonstrated that PL (p = 0.001, R 2  = 0.469) was a predictor of SLSD repetitions. VAL trended toward negative correlation with PL and SPL. Sex-specific differences were present, with PL, SPL, HABD, and HER showing stronger relationships with SLSD in females. Hip and trunk muscle function were positively correlated with SLSD performance, and these relationships were strongest in females. PL predicted performance on the SLSD. Further research is needed to investigate the utility of SLSD as a screening or return-to-play test for lower extremity conditions such as ACL injury and patellofemoral pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome.

    PubMed

    Nakagawa, Theresa H; Moriya, Erika T U; Maciel, Carlos D; Serrão, Fábio V

    2012-06-01

    Controlled laboratory study using a cross-sectional design. To determine whether there are any differences between the sexes in trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during the performance of a single-leg squat in individuals with patellofemoral pain syndrome (PFPS) and control participants. Though there is a greater incidence of PFPS in females, PFPS is also quite common in males. Trunk kinematics may affect hip and knee function; however, there is a lack of studies of the influence of the trunk in individuals with PFPS. Eighty subjects were distributed into 4 groups: females with PFPS, female controls, males with PFPS, and male controls. Trunk, pelvis, hip, and knee kinematics and gluteal muscle activation were evaluated during a single-leg squat. Hip abduction and external rotation eccentric strength was measured on an isokinetic dynamometer. Group differences were assessed using a 2-way multivariate analysis of variance (sex by PFPS status). Compared to controls, subjects with PFPS had greater ipsilateral trunk lean (mean ± SD, 9.3° ± 5.3° versus 6.7° ± 3.0°; P = .012), contralateral pelvic drop (10.3° ± 4.7° versus 7.4° ± 3.8°; P = .003), hip adduction (14.8° ± 7.8° versus 10.8° ± 5.6°; P<.0001), and knee abduction (9.2° ± 5.0° versus 5.8° ± 3.4°; P<.0001) when performing a single-leg squat. Subjects with PFPS also had 18% less hip abduction and 17% less hip external rotation strength. Compared to female controls, females with PFPS had more hip internal rotation (P<.05) and less muscle activation of the gluteus medius (P = .017) during the single-leg squat. Despite many similarities in findings for males and females with PFPS, there may be specific sex differences that warrant consideration in future studies and when clinically evaluating and treating females with PFPS.

  1. Clinical Implications for Muscle Strength Differences in Women of Different Age and Racial Groups: The WIN Study.

    PubMed

    Trudelle-Jackson, Elaine; Ferro, Emerenciana; Morrow, James R

    2011-01-01

    BACKGROUND: Reduction in muscle strength is strongly associated with functional decline in women, and women with lower quadriceps strength adjusted for body weight are more likely to develop knee osteoarthritis. OBJECTIVE: To compare body weight--adjusted strength among women of different age/racial groups. STUDY DESIGN: Cross-sectional study of muscle strength in 918 women aged 20--83 (M ± SD = 52 ± 13). METHODS: An orthopedic examination was conducted including measurement of handgrip and lower extremity strength (hip abductors/external rotators, knee flexors/extensors). Data were grouped into young (20--39 years, n = 139), middle (40--54 years, n = 300), and older (55+ years, n = 424) ages for white (n = 699) and African American (AA) (n = 164) women. Means and standard deviations for strength adjusted for body weight were calculated for each age and racial group and compared using 2-way multivariate analysis of variance and post hoc tests. RESULTS: No significant age-by-race interaction (P = .092) but significant main effects for age and race (P < .001). Pairwise comparisons revealed significant differences in knee extensor and flexor strength between all age groups. For grip and hip external rotator strength, significant differences were found between the middle and older groups. Differences in hip abductor strength were found between the young and middle-aged groups. AA women had lower strength than white women in all muscle groups (P < .05) except hip external rotators. CONCLUSIONS: Strength decreased with age in all muscle groups but magnitude of decrease varied by muscle. Strengthening programs should target different muscles, depending on a woman's age and race.

  2. Walking patterns and hip contact forces in patients with hip dysplasia.

    PubMed

    Skalshøi, Ole; Iversen, Christian Hauskov; Nielsen, Dennis Brandborg; Jacobsen, Julie; Mechlenburg, Inger; Søballe, Kjeld; Sørensen, Henrik

    2015-10-01

    Several studies have investigated walking characteristics in hip dysplasia patients, but so far none have described all hip rotational degrees of freedom during the whole gait cycle. This descriptive study reports 3D joint angles and torques, and furthermore extends previous studies with muscle and joint contact forces in 32 hip dysplasia patients and 32 matching controls. 3D motion capture data from walking and standing trials were analysed. Hip, knee, ankle and pelvis angles were calculated with inverse kinematics for both standing and walking trials. Hip, knee and ankle torques were calculated with inverse dynamics, while hip muscle and joint contact forces were calculated with static optimisation for the walking trials. No differences were found between the two groups while standing. While walking, patients showed decreased hip extension, increased ankle pronation and increased hip abduction and external rotation torques. Furthermore, hip muscle forces were generally lower and shifted to more posteriorly situated muscles, while the hip joint contact force was lower and directed more superiorly. During walking, patients showed lower and more superiorly directed hip joint contact force, which might alleviate pain from an antero-superiorly degenerated joint. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Computational Modelling and Movement Analysis of Hip Joint with Muscles

    NASA Astrophysics Data System (ADS)

    Siswanto, W. A.; Yoon, C. C.; Salleh, S. Md.; Ngali, M. Z.; Yusup, Eliza M.

    2017-01-01

    In this study, the model of hip joint and the main muscles are modelled by finite elements. The parts included in the model are hip joint, hemi pelvis, gluteus maximus, quadratus femoris and gamellus inferior. The materials that used in these model are isotropic elastic, Mooney Rivlin and Neo-hookean. The hip resultant force of the normal gait and stair climbing are applied on the model of hip joint. The responses of displacement, stress and strain of the muscles are then recorded. FEBio non-linear solver for biomechanics is employed to conduct the simulation of the model of hip joint with muscles. The contact interfaces that used in this model are sliding contact and tied contact. From the analysis results, the gluteus maximus has the maximum displacement, stress and strain in the stair climbing. Quadratus femoris and gamellus inferior has the maximum displacement and strain in the normal gait however the maximum stress in the stair climbing. Besides that, the computational model of hip joint with muscles is produced for research and investigation platform. The model can be used as a visualization platform of hip joint.

  4. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    PubMed

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.

  5. Activation of the gluteus maximus and hamstring muscles during prone hip extension with knee flexion in three hip abduction positions.

    PubMed

    Kang, Sun-Young; Jeon, Hye-Seon; Kwon, Ohyun; Cynn, Heon-Seock; Choi, Boram

    2013-08-01

    The direction of fiber alignment within a muscle is known to influence the effectiveness of muscle contraction. However, most of the commonly used clinical gluteus maximus (GM) exercises do not consider the direction of fiber alignment within the muscle. Therefore, the purpose of this study was to investigate the influence of hip abduction position on the EMG (electromyography) amplitude and onset time of the GM and hamstrings (HAM) during prone hip extension with knee flexion (PHEKF) exercise. Surface EMG signals were recorded from the GM and HAM during PHEKF exercise in three hip abduction positions: 0°, 15°, and 30°. Thirty healthy subjects voluntarily participated in this study. The results show that GM EMG amplitude was greatest in the 30° hip abduction position, followed by 15° and then 0° hip abduction during PHEKF exercise. On the other hand, the HAM EMG amplitude at 0° hip abduction was significantly greater than at 15° and 30° hip abduction. Additionally, GM EMG onset firing was delayed relative to that of the HAM at 0° hip abduction. On the contrary, the GM EMG onset occurred earlier than the HAM in the 15° and 30° hip abduction positions. These findings indicate that performing PHEKF exercise in the 30° hip abduction position may be recommended as an effective way to facilitate the GM muscle activity and advance the firing time of the GM muscle in asymptomatic individuals. This finding provides preliminary evidence that GM EMG amplitude and onset time can be modified by the degree of hip abduction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters.

    PubMed

    Sugiura, Yusaku; Saito, Tomoyuki; Sakuraba, Keishoku; Sakuma, Kazuhiko; Suzuki, Eiichi

    2008-08-01

    Prospective cohort study. In this prospective cohort study of elite sprinters, muscle strength of the hip extensors, as well as of the knee extensors and flexors, was measured to determine a possible relationship between strength deficits and subsequent hamstring injury within 12 months of testing. The method used for testing muscle strength simulated the specific muscle action during late swing and early contact phases when sprinting. There have been no prospective studies in elite sprinters that examine the concentric and eccentric isokinetic strength of the hip extensors and the quadriceps and hamstring muscles in a manner that reflects their actions in late swing or early contact phases of sprinting. Consequently, the causal relationship between hip and thigh muscle strength and hamstring injury in elite sprinters may not be fully understood. Isokinetic testing was performed on 30 male elite sprinters to assess hip extensors, quadriceps, and hamstring muscle strength. The occurrence of hamstring injury among the subjects was determined during the year following the muscle strength measurements. The strength of the hip extensors, quadriceps, and hamstring muscles, as well as the hamstrings-quadriceps and hip extensors- quadriceps ratios were compared. Hamstring injury occurred in 6 subjects during the 1-year period. Isokinetic testing at a speed of 60 degrees /s revealed weakness of the injured limb with eccentric action of the hamstring muscles and during concentric action of the hip extensors. When performing a side-to-side comparison for the injured sprinters, the hamstring injury always occurred on the weaker side. Differences in the hamstrings-quadriceps and hip extensors-quadriceps strength ratios were also evident between uninjured and injured limbs, and this was attributable to deficits in hamstring strength. Hamstring injury in elite sprinters was associated with weakness during eccentric action of the hamstrings and weakness during concentric action of the hip extensors, but only when tested at the slower speed of 60 degrees /s.

  7. [The hip joint in neuromuscular disorders].

    PubMed

    Strobl, W M

    2009-07-01

    Physiologic motor and biomechanical parameters are prerequisites for normal hip development and hip function. Disorders of muscle activity and lack of weight bearing due to neuromuscular diseases may cause clinical symptoms such as an unstable hip or reduced range of motion. Disability and handicap because of pain, hip dislocation, osteoarthritis, gait disorders, or problems in seating and positioning are dependent on the severity of the disease, the time of occurrence, and the means of prevention and treatment. Preservation of pain-free and stable hip joints should be gained by balancing muscular forces and by preventing progressive dislocation. Most important is the exact indication of therapeutic options such as movement and standing therapy as well as drugs and surgery.

  8. Hypertrophy of the tensor fascia lata muscle as a complication of total hip arthroplasty.

    PubMed

    Rodríguez-Roiz, Juan Miguel; Bori, Guillem; Tomas, Xavier; Fernández-Valencia, Jenaro A; García-Díez, Ana Isabel; Pomés, Jaume; Garcia, Sebastián

    2017-02-01

    Hypertrophy of the tensor fascia lata muscle (HTFLM) is a rare complication after total hip arthroplasty (THA) and is a potential source of pain, palpable mass, or both. We retrospectively analyzed 1285 primary THAs and 482 THA revisions (THAR) performed at our center from 2008 to 2014. Among these, five patients had HTFLM (average age 68.8 years). The type of surgery and symptoms were evaluated, as were imaging studies (CT or MRI) of both hips (10 hips), and functional outcomes with the Merle d'Aubigné score. The suspected diagnosis was established at an average of 30.2 months after surgery. Four cases occurred after THA and one case after THAR. A modified Hardinge approach was used in four cases and a Röttinger approach in one case. Two cases had pain and palpable mass in the trochanteric region and three cases only pain. The asymmetric HTFLM of the THA side against the nonsurgical side was confirmed by measuring the cross section of the tensor fascia lata muscle on imaging. The sartorius muscle was measured for reference in each case. The Merle d'Aubigne scale had a mean value of 16.6 (range 13-18) at 38 months after the procedure. HTFLM after THA is a benign condition that could be mistaken for a tumor when presenting as a palpable mass. We propose that it should be considered in the differential diagnosis of pain in the lateral aspect of hips that have previously undergone THA.

  9. Neuromuscular response of hip-spanning and low back muscles to medio-lateral foot center of pressure manipulation during gait.

    PubMed

    Solomonow-Avnon, Deborah; Levin, Daniel; Elboim-Gabyzon, Michal; Rozen, Nimrod; Peled, Eli; Wolf, Alon

    2016-06-01

    Footwear-generated medio-lateral foot center of pressure manipulation has been shown to have potential positive effects on gait parameters of hip osteoarthritis patients, ultimately reducing maximum joint reaction forces. The objective of this study was to investigate effects of medio-lateral foot center of pressure manipulation on muscle activity of hip-spanning and back muscles during gait in bilateral hip osteoarthritis patients. Foot center of pressure was shifted along the medio-lateral foot axis using a foot-worn biomechanical device allowing controlled center of pressure manipulation. Sixteen female bilateral hip osteoarthritis patients underwent electromyography analysis while walking in the device set to three parasagittal configurations: neutral (control), medial, and lateral. Seven hip-spanning muscles (Gluteus Medius, Gluteus Maximus, Tensor Fascia Latae, Rectus Femoris, Semitendinosis, Biceps Femoris, Adductor Magnus) and one back muscle (Erector Spinae) were analyzed. Magnitude and temporal parameters were calculated. The amplitude and temporal parameter varied significantly between foot center of pressure positions for 5 out of 8 muscles each for either the more or less symptomatic leg in at least one subphase of the gait cycle. Medio-lateral foot center of pressure manipulation significantly affects neuromuscular pattern of hip and back musculature during gait in female hip bilateral osteoarthritis patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Muscle mass and composition of the hip, thigh and abdominal muscles in women with and without hip osteoarthritis.

    PubMed

    Fukumoto, Yoshihiro; Ikezoe, Tome; Tateuchi, Hiroshige; Tsukagoshi, Rui; Akiyama, Haruhiko; So, Kazutaka; Kuroda, Yutaka; Yoneyama, Tomohide; Ichihashi, Noriaki

    2012-09-01

    The objective of this study was to compare muscle mass and composition between individuals with and without hip osteoarthritis. Twenty-four women with hip osteoarthritis (OA group) and 16 healthy women (healthy group) participated in this study. Muscle thickness (MT) and echo intensity (EI) were measured as indices of muscle mass and composition, respectively, using ultrasound imaging. Seven muscles were examined: gluteus maximus, gluteus medius, quadriceps femoris, rectus abdominis, external oblique, internal oblique and transversus abdominis. MT of only quadriceps femoris in the OA group was significantly thinner than that in the healthy group. EIs of gluteus medius, quadriceps femoris and rectus abdominis were significantly higher in the OA group than those in the healthy group. Thus, actual contractile tissue of gluteus medius and rectus abdominis substantially decreased, although muscle mass was similar, whereas both quantitative and qualitative changes occurred in quadriceps femoris in patients with hip OA. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Comparison of manual therapy and exercise therapy in osteoarthritis of the hip: a randomized clinical trial.

    PubMed

    Hoeksma, Hugo L; Dekker, Joost; Ronday, H Karel; Heering, Annet; van der Lubbe, Nico; Vel, Cees; Breedveld, Ferdinand C; van den Ende, Cornelia H M

    2004-10-15

    To determine the effectiveness of a manual therapy program compared with an exercise therapy program in patients with osteoarthritis (OA) of the hip. A single-blind, randomized clinical trial of 109 hip OA patients was carried out in the outpatient clinic for physical therapy of a large hospital. The manual therapy program focused on specific manipulations and mobilization of the hip joint. The exercise therapy program focused on active exercises to improve muscle function and joint motion. The treatment period was 5 weeks (9 sessions). The primary outcome was general perceived improvement after treatment. Secondary outcomes included pain, hip function, walking speed, range of motion, and quality of life. Of 109 patients included in the study, 56 were allocated to manual therapy and 53 to exercise therapy. No major differences were found on baseline characteristics between groups. Success rates (primary outcome) after 5 weeks were 81% in the manual therapy group and 50% in the exercise group (odds ratio 1.92, 95% confidence interval 1.30, 2.60). Furthermore, patients in the manual therapy group had significantly better outcomes on pain, stiffness, hip function, and range of motion. Effects of manual therapy on the improvement of pain, hip function, and range of motion endured after 29 weeks. The effect of the manual therapy program on hip function is superior to the exercise therapy program in patients with OA of the hip.

  12. Neuromuscular performance in the hip joint of elderly fallers and non-fallers.

    PubMed

    Morcelli, Mary Hellen; LaRoche, Dain Patrick; Crozara, Luciano Fernandes; Marques, Nise Ribeiro; Hallal, Camilla Zamfolini; Rossi, Denise Martineli; Gonçalves, Mauro; Navega, Marcelo Tavella

    2016-06-01

    Low strength and neuromuscular activation of the lower limbs have been associated with falls making it an important predictor of functional status in the elderly. To compare the rate of neuromuscular activation, rate of torque development, peak torque and reaction time between young and elderly fallers and non-fallers for hip flexion and extension. We evaluated 44 elderly people who were divided into two groups: elderly fallers (n = 20) and elderly non-fallers (n = 24); and 18 young people. The subjects performed three isometric hip flexion and extension contractions. Electromyography data were collected for the rectus femoris, gluteus maximus and biceps femoris muscles. The elderly had 49 % lower peak torque and 68 % lower rate of torque development for hip extension, 28 % lower rate of neuromuscular activation for gluteus maximus and 38 % lower rate of neuromuscular activation for biceps femoris than the young (p < 0.05). Furthermore, the elderly had 42 % lower peak torque and 62 % lower rate of torque development for hip flexion and 48 % lower rate of neuromuscular for rectus femoris than the young (p < 0.05). The elderly fallers showed consistent trend toward a lower rate of torque development than elderly non-fallers for hip extension at 50 ms (29 %, p = 0.298, d = 0.76) and 100 ms (26 %, p = 0.452, d = 0.68).The motor time was 30 % slower for gluteus maximus, 42 % slower for rectus femoris and 50 % slower for biceps femoris in the elderly than in the young. Impaired capacity of the elderly, especially fallers, may be explained by neural and morphological aspects of the muscles. The process of senescence affects the muscle function of the hip flexion and extension, and falls may be related to lower rate of torque development and slower motor time of biceps femoris.

  13. Treatment Success of Hip and Core or Knee Strengthening for Patellofemoral Pain: Development of Clinical Prediction Rules.

    PubMed

    Earl-Boehm, Jennifer E; Bolgla, Lori A; Emory, Carolyn; Hamstra-Wright, Karrie L; Tarima, Sergey; Ferber, Reed

    2018-06-12

      Patellofemoral pain (PFP) is a common injury that interferes with quality of life and physical activity. Clinical subgroups of patients may exist, one of which is proximal muscle dysfunction.   To develop clinical prediction rules that predict a positive outcome after either a hip and core- or knee-focused strengthening program for individuals with PFP.   Secondary analysis of data from a randomized control trial.   Four university laboratories.   A total of 199 participants with PFP.   Participants were randomly allocated to either a hip and core-focused (n = 111) or knee-focused (n = 88) rehabilitation group for a 6-week program.   Demographics, self-reported knee pain (visual analog scale) and function (Anterior Knee Pain Scale), hip strength, abdominal muscle endurance, and hip range of motion were evaluated at baseline. Treatment success was defined as a decrease in visual analog scale score by ≥2 cm or an increase in the Anterior Knee Pain Scale score by ≥8 points or both. Bivariate relationships between the outcome (treatment success) and the predictor variables were explored, followed by a forward stepwise logistic regression to predict a successful outcome.   Patients with more pain, better function, greater lateral core endurance, and less anterior core endurance were more likely to have a successful outcome after hip and core strengthening (88% sensitivity and 54% specificity). Patients with lower weight, weaker hip internal rotation, stronger hip extension, and greater trunk-extension endurance were more likely to have success after knee strengthening (82% sensitivity and 58% specificity).   The patients with PFP who have more baseline pain and yet maintain a high level of function may experience additional benefit from hip and core strengthening. The clinical prediction rules from this study remain in the developmental phase and should be applied with caution until externally validated.

  14. Trunk and lower limb biomechanics during stair climbing in people with and without symptomatic femoroacetabular impingement.

    PubMed

    Hammond, Connor A; Hatfield, Gillian L; Gilbart, Michael K; Garland, S Jayne; Hunt, Michael A

    2017-02-01

    Femoroacetabular impingement is a pathomechanical hip condition leading to pain and impaired physical function. It has been shown that those with femoroacetabular impingement exhibit altered gait characteristics during level walking and stair climbing, and decreased muscle force production during isometric muscle contractions. However, no studies to-date have looked at trunk kinematics or muscle activation during dynamic movements such as stair climbing in this patient population. The purpose of this study was to compare biomechanical outcomes (trunk and lower limb kinematics as well as lower limb kinetics and muscle activation) during stair climbing in those with and without symptomatic femoroacetabular impingement. Trunk, hip, knee and ankle kinematics, as well as hip, knee and ankle kinetics and muscle activity of nine lower limb muscles were collected during stair climbing for 20 people with clinical and radiographic femoroacetabular impingement and compared to 20 age- and sex-matched pain-free individuals. Those with femoroacetabular impingement ascended the stairs slower (effect size=0.82), had significantly increased peak trunk forward flexion angles (effect size=0.99) and external hip flexion moments (effect size=0.94) and had decreased peak external knee flexion moments (effect size=0.90) compared to the control group. Findings from this study indicate that while those with and without femoroacetabular impingement exhibit many biomechanical similarities when ascending stairs, differences in trunk forward flexion and joint kinetics indicate some important differences. Further longitudinal research is required to elucidate the cause of these differences as well as the clinical relevance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A phase II trial for the efficacy of physiotherapy intervention for early-onset hip osteoarthritis: study protocol for a randomised controlled trial.

    PubMed

    Kemp, Joanne L; Moore, Kate; Fransen, Marlene; Russell, Trevor G; Crossley, Kay M

    2015-01-27

    Early-onset hip osteoarthritis is commonly seen in people undergoing hip arthroscopy and is associated with increased pain, reduced ability to participate in physical activity, reduced quality of life and reduced range of motion and muscle strength. Despite this, the efficacy of non-surgical interventions such as exercise therapies remains unknown. The primary aim is to establish the feasibility of a phase III randomised controlled trial investigating a targeted physiotherapy intervention for people with early-onset hip osteoarthritis. The secondary aims are to determine the size of treatment effects of a physiotherapy intervention, targeted to improve hip joint range and hip-related symptoms in early-onset hip osteoarthritis following hip arthroscopy, compared to a health-education control. This protocol describes a randomised, assessor- and participant-blind, controlled clinical trial. We will include 20 participants who are (i) aged between 18 and 50 years; (ii) have undergone hip arthroscopy during the past six to 12 months; (iii) have early-onset hip osteoarthritis (defined as chondrolabral pathology) at the time of hip arthroscopy; and (iv) experience hip-related pain during activities. Primary outcome will be the feasibility of a phase III clinical trial. Secondary outcomes will be (i) perceived global change score; (ii) hip-related symptoms (measured using the Hip disability and Osteoarthritis Outcome Score (HOOS) pain subscale, activity subscale, and sport and recreation subscale); (iii) hip quality of life (measured using the HOOS quality of life subscale and International Hip Outcome tool; (iv) hip muscle strength and (v) hip range of motion. The physiotherapy intervention is semi-standardised, including joint and soft tissue mobilisation and stretching, hip and trunk muscle retraining and functional and activity-specific retraining and education. The control intervention encompasses individualised health education, with the same frequency and duration as the intervention. The trial primary end-point is the conclusion of the 12-week intervention, and follow-up measures will be collected at the 12-week post-baseline assessment. The findings of this study will provide guidance regarding the feasibility of a full-scale phase III randomised controlled trial, prior to its undertaking. The trial protocol was registered with the Australian Clinical Trials Registry (number: 12614000426684 ) on 17 April 2014.

  16. Effectiveness of land-based physiotherapy exercise following hospital discharge following hip arthroplasty for osteoarthritis: an updated systematic review.

    PubMed

    Lowe, Catherine J Minns; Davies, Linda; Sackley, Catherine M; Barker, Karen L

    2015-09-01

    Existing review required updating. To evaluate the effectiveness of physiotherapy exercise after discharge from hospital on function, walking, range of motion, quality of life and muscle strength, for patients following elective primary total hip arthroplasty for osteoarthritis. Systematic review from January 2007 to November 2013. AMED, CINAHL, EMBASE, MEDLINE, Kingsfund Database, and PEDro. Cochrane CENTRAL, BioMed Central (BMC), The Department of Health National Research Register and Clinical Trials.gov register. Searches were overseen by a librarian. Authors were contacted for missing information. No language restrictions were applied. Trials comparing physiotherapy exercise vs usual/standard care, or comparing two types of relevant exercise physiotherapy, following discharge from hospital after elective primary total hip replacement for osteoarthritis were reviewed. Functional activities of daily living, walking, quality of life, muscle strength and joint range of motion. Quality and risk of bias for studies were evaluated. Data were extracted and meta-analyses considered. 11 trials are included in the review. Trial quality was mixed. Newly included studies were assessed as having lower risk of bias than previous studies. Narrative review indicates that physiotherapy exercise after discharge following total hip replacement may potentially benefit patients in terms of function, walking and muscle strengthening. The overall quality and quantity of trials, and their diversity, prevented meta-analyses. Disappointingly, insufficient evidence still prevents the effectiveness of physiotherapy exercise following discharge to be determined for this patient group. High quality, adequately powered, trials with long term follow up are required. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  17. Comprehensive joint feedback control for standing by functional neuromuscular stimulation-a simulation study.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2010-12-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage.

  18. Comprehensive Joint Feedback Control for Standing by Functional Neuromuscular Stimulation – a Simulation Study

    PubMed Central

    Nataraj, Raviraj; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint-feedback control against postural disturbances using a bipedal, three-dimensional computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint-feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage. PMID:20923741

  19. Correlation between hip function and knee kinematics evaluated by three-dimensional motion analysis during lateral and medial side-hopping.

    PubMed

    Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke

    2016-09-01

    [Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results.

  20. Correlation between hip function and knee kinematics evaluated by three-dimensional motion analysis during lateral and medial side-hopping

    PubMed Central

    Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke

    2016-01-01

    [Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results. PMID:27799670

  1. Influence of muscle groups' activation on proximal femoral growth tendency.

    PubMed

    Yadav, Priti; Shefelbine, Sandra J; Pontén, Eva; Gutierrez-Farewik, Elena M

    2017-12-01

    Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups' activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups-hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors-to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about [Formula: see text] over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA ([Formula: see text]0.01[Formula: see text]-0.04[Formula: see text] and FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]), except hip extensors and hip adductors, which showed a tendency to increase the FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.

  2. Muscle function during jumping in frogs. I. Sarcomere length change, EMG pattern, and jumping performance.

    PubMed

    Lutz, G J; Rome, L C

    1996-08-01

    We determined the influence of temperature on muscle function during jumping to better understand how the frog muscular system is designed to generate a high level of mechanical power. Maximal jumping performance and the in vivo operating conditions of the semimembranosus muscle (SM), a hip extensor, were measured and related to the mechanical properties of the isolated SM in the accompanying paper [Muscle function during jumping in frogs. II. Mechanical properties of muscle: implication for system design. Am. J. Physiol. 271 (Cell Physiol. 40): C571-C578, 1996]. Reducing temperature from 25 to 15 degrees C caused a 1.75-fold decline in peak mechanical power generation and a proportional decline in aerial jump distance. The hip and knee joint excursions were nearly the same at both temperatures. Accordingly, sarcomeres shortened over the same range (2.4 to 1.9 microns) at both temperatures, corresponding to myofilament overlap at least 90% of maximal. At the low temperature, however, movements were made more slowly. Angular velocities were 1.2- to 1.4-fold lower, and ground contact time was increased by 1.33-fold at 15 degrees C. Average shortening velocity of the SM was only 1.2-fold lower at 15 degrees C than at 25 degrees C. The low Q10 of velocity is in agreement with that predicted for muscles shortening against an inertial load.

  3. Short-term effects of hip abductors and lateral rotators strengthening in females with patellofemoral pain syndrome: a randomized controlled clinical trial.

    PubMed

    Fukuda, Thiago Yukio; Rossetto, Flavio Marcondes; Magalhães, Eduardo; Bryk, Flavio Fernandes; Lucareli, Paulo Roberto Garcia; de Almeida Aparecida Carvalho, Nilza

    2010-11-01

    Randomized clinical trial. To investigate the influence of strengthening the hip abductor and lateral rotator musculature on pain and function of females with patellofemoral pain syndrome (PFPS). Hip muscle weakness in women athletes has been the focus of many recent studies and is suggested as an important impairment to address in the conservative treatment of women with PFPS. However, it is still not well established if strengthening these muscles is associated with clinical improvement in pain and function in sedentary females with PFPS. Seventy females (average±SD age, 25±07 years), with a diagnosis of unilateral PFPS, were distributed randomly into 3 groups: 22 females in the knee exercise group, who received a conventional treatment that emphasized stretching and strengthening of the knee musculature; 23 females in the knee and hip exercise group, who performed exercises to strengthen the hip abductors and external rotators in addition to the same exercises performed by those in the knee exercise group; and of the 25 females who did not receive any treatment. The females of the nontreatment group (control) were instructed to maintain their normal daily activities. An 11-point numerical pain rating scale (NPRS) was used to assess pain during stair ascent and descent. The lower extremity functional scale (LEFS) and the anterior knee pain scale (AKPS) were used to assess function. The single-limb single hop test was also used as a functional outcome to measure preintervention and 4-week postintervention function. The 3 groups were homogeneous prior to treatment in respect to demographic, pain, and functional scales data. Both the knee exercise and the knee and hip exercise groups showed significant improvement in the LEFS, the AKPS, and the NPRS, when compared to the control group (P<.05 and P<.001, respectively). But, when we considered minimal clinically important differences, only the knee and hip exercise group demonstrated mean improvements in AKPS and pain scores that were large enough to be clinically meaningful. For the single-limb single hop test, both groups receiving an intervention showed greater improvement than the control group, but there was no difference between the 2 interventions (P>.05). Rehabilitation programs focusing on knee strengthening exercises and knee strengthening exercises supplemented by hip strengthening exercises were both effective in improving function and reducing pain in sedentary women with PFPS. Improvements of pain and function were greater for the group that performed the hip strengthening exercises, but the difference was significant only for pain rating while descending stairs. Therapy, level 1b-.

  4. M-Mode Ultrasound Reveals Earlier Gluteus Minimus Activity in Individuals With Chronic Hip Pain During a Step-down Task.

    PubMed

    Dieterich, Angela V; Deshon, Louise; Strauss, Geoffrey R; McKay, Jan; Pickard, Christine M

    2016-04-01

    Controlled laboratory study. The hip abductor muscles are important hip joint stabilizers. Hip joint pain may alter muscle recruitment. Motion-mode (M-mode) ultrasound enables noninvasive measurements of the onset of deep and superficial muscle motion, which is associated with activation onset. To compare (1) the onset of superficial and deep gluteus medius and gluteus minimus muscle motion relative to the instant of peak ground reaction force and (2) the level of swing-phase muscle motion during step-down between subjects with chronic hip pain and controls using M-mode ultrasound. Thirty-five subjects with anterior, nontraumatic hip pain for more than 6 months (mean ± SD age, 54 ± 9 years) and 35 controls (age, 57 ± 7 years) were scanned on the lateral hip of the leading leg during frontal step-down onto a force platform using M-mode ultrasound. Computerized motion detection with the Teager-Kaiser energy operator was applied on the gluteus minimus and the deep and superficial gluteus medius to determine the time lag between muscle motion onset and instant of peak ground reaction force and the level of gluteus minimus motion during the swing phase. Time lags and motion levels were averaged per subject, and t tests were used to determine between-group differences. In participants with hip pain, gluteus minimus motion onset was 103 milliseconds earlier (P = .002) and superficial gluteus medius motion was 70 milliseconds earlier (P = .047) than those in healthy control participants. The level of gluteus minimus swing-phase motion was higher with pain (P = .006). Increased gluteus minimus motion during the swing phase and earlier gluteus minimus and superficial gluteus medius motion in individuals with hip pain suggest an overall increase of muscle activity, possibly a protective behavior.

  5. The Influence of Body Mass Index, Sex, & Muscle Activation on Pressure Distribution During Lateral Falls on the Hip.

    PubMed

    Pretty, Steven P; Martel, Daniel R; Laing, Andrew C

    2017-12-01

    Hip fracture incidence rates are influenced by body mass index (BMI) and sex, likely through mechanistic pathways that influence dynamics of the pelvis-femur system during fall-related impacts. The goal of this study was to extend our understanding of these impact dynamics by investigating the effects of BMI, sex, and local muscle activation on pressure distribution over the hip region during lateral impacts. Twenty participants underwent "pelvis-release experiments" (which simulate a lateral fall onto the hip), including muscle-'relaxed' and 'contracted' trials. Males and low-BMI individuals exhibited 44 and 55% greater peak pressure, as well as 66 and 56% lower peripheral hip force, compared to females and high-BMI individuals, respectively. Local muscle activation increased peak force by 10%, contact area by 17%, and peripheral hip force by 11% compared to relaxed trials. In summary, males and low-BMI individuals exhibited more concentrated loading over the greater trochanter. Muscle activation increased peak force, but this force was distributed over a larger area, preventing increased localized loading over the greater trochanter. These findings suggest potential value in incorporating sex, gender, and muscle activation-specific force distributions as inputs into computational tissue-level models, and have implications for the design of personalized protective devices including wearable hip protectors.

  6. Functional performance testing of the hip in athletes: a systematic review for reliability and validity.

    PubMed

    Kivlan, Benjamin R; Martin, Robroy L

    2012-08-01

    The purpose of this study was to systematically review the literature for functional performance tests with evidence of reliability and validity that could be used for a young, athletic population with hip dysfunction. A search of PubMed and SPORTDiscus databases were performed to identify movement, balance, hop/jump, or agility functional performance tests from the current peer-reviewed literature used to assess function of the hip in young, athletic subjects. The single-leg stance, deep squat, single-leg squat, and star excursion balance tests (SEBT) demonstrated evidence of validity and normative data for score interpretation. The single-leg stance test and SEBT have evidence of validity with association to hip abductor function. The deep squat test demonstrated evidence as a functional performance test for evaluating femoroacetabular impingement. Hop/Jump tests and agility tests have no reported evidence of reliability or validity in a population of subjects with hip pathology. Use of functional performance tests in the assessment of hip dysfunction has not been well established in the current literature. Diminished squat depth and provocation of pain during the single-leg balance test have been associated with patients diagnosed with FAI and gluteal tendinopathy, respectively. The SEBT and single-leg squat tests provided evidence of convergent validity through an analysis of kinematics and muscle function in normal subjects. Reliability of functional performance tests have not been established on patients with hip dysfunction. Further study is needed to establish reliability and validity of functional performance tests that can be used in a young, athletic population with hip dysfunction. 2b (Systematic Review of Literature).

  7. Hip and trunk muscles activity during nordic hamstring exercise.

    PubMed

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-04-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21-36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t -test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles ( P <0.05). The decreased Gmax/ES ratio was significantly related to peak knee extension angle in downward ( r =0.687) and upward motions ( r =0.753) ( P <0.05). These findings indicate the importance of synergistic muscles and trunk muscles coactivation in eccentric and concentric hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk.

  8. Hip and trunk muscles activity during nordic hamstring exercise

    PubMed Central

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-01-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21–36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t-test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles (P<0.05). The decreased Gmax/ES ratio was significantly related to peak knee extension angle in downward (r=0.687) and upward motions (r=0.753) (P<0.05). These findings indicate the importance of synergistic muscles and trunk muscles coactivation in eccentric and concentric hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk. PMID:29740557

  9. Eccentric activation and muscle damage: biomechanical and physiological considerations during downhill running.

    PubMed Central

    Eston, R G; Mickleborough, J; Baltzopoulos, V

    1995-01-01

    An eccentric muscle activation is the controlled lengthening of the muscle under tension. Functionally, most leg muscles work eccentrically for some part of a normal gait cycle, to support the weight of the body against gravity and to absorb shock. During downhill running the role of eccentric work of the 'anti-gravity' muscles--knee extensors, muscles of the anterior and posterior tibial compartments and hip extensors--is accentuated. The purpose of this paper is to review the relationship between eccentric muscle activation and muscle damage, particularly as it relates to running, and specifically, downhill running. PMID:7551767

  10. Reliability of handheld dynamometry in assessment of hip strength in adult male football players.

    PubMed

    Fulcher, Mark L; Hanna, Chris M; Raina Elley, C

    2010-01-01

    The aim of this study was to evaluate the intra- and interrater reliability of handheld dynamometry (HHD) for measuring hip muscle strength in a sample of 30 healthy semi-professional adult male football players. The reliability of HHD had not been assessed in athletes who were likely to be stronger than populations tested previously. Maximal isometric strength of resisted hip flexion and adduction were measured. Mean strength ranged from 51.5 kg for dominant hip flexion to 26.7 kg for hip adduction at 90 degrees of hip flexion. Intrarater reliability intraclass correlation coefficients (ICCs) ranged from 0.70 to 0.89. ICCs for interrater reliability ranged from 0.66 to 0.87. As expected, muscle strength in this group of athletes was significantly higher than that of populations in which HHD reliability has been assessed. Despite this, muscle strength testing of hip flexor and adductor muscles can be performed with good to excellent intra- and interrater reliability in this population. Copyright (c) 2009. Published by Elsevier Ltd.

  11. Hip and ankle range of motion and hip muscle strength in young female ballet dancersand controls

    PubMed Central

    Bennell, K.; Khan, K. M.; Matthews, B.; De Gruyter, M.; Cook, E.; Holzer, K.; Wark, J. D.

    1999-01-01

    OBJECTIVES: To compare the hip and ankle range of motion and hip muscle strength in 8-11 year old novice female ballet dancers and controls. METHODS: Subjects were 77 dancers and 49 controls (mean (SD) age 9.6 (0.8) and 9.6 (0.7) years respectively). Supine right active hip external rotation (ER) and internal rotation (IR) were measured using an inclinometer. A turnout protractor was used to assess standing active turnout range. The measure of ER achieved from below the hip during turnout (non-hip ER) was calculated by subtracting hip ER range from turnout range, and hip ER:IR was derived by dividing ER range by IR range. Range of right weight bearing ankle dorsiflexion was measured in a standing lunge using two methods: the distance from the foot to the wall (in centimetres) and the angle of the shank to the vertical via an inclinometer (in degrees). Right calf muscle range was measured in weight bearing using an inclinometer. A manual muscle tester was used to assess right isometric hip flexor, internal rotator, external rotator, abductor, and adductor strength. RESULTS: Dancers had less ER (p<0.05) and IR (p<0.01) range than controls but greater ER:IR (p<0.01). Although there was no difference in turnout between groups, the dancers had greater non-hip ER. Dancers had greater range of ankle dorsiflexion than controls, measured in both centimetres (p<0.01) and degrees (p<0.05), but similar calf muscle range. After controlling for body weight, controls had stronger hip muscles than dancers except for hip abductor strength which was similar. Regression analyses disclosed a moderate relation between turnout and hip ER (r = 0.40). There were no significant correlations between range of motion and training years and weekly training hours. CONCLUSIONS: Longitudinal follow up will assist in determining whether or not hip and ankle range in young dancers is genetically fixed and unable to be improved with further balletic training. 


 PMID:10522638

  12. Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis.

    PubMed

    Valente, Giordano; Taddei, Fulvia; Jonkers, Ilse

    2013-09-03

    The weakness of hip abductor muscles is related to lower-limb joint osteoarthritis, and joint overloading may increase the risk for disease progression. The relationship between muscle strength, structural joint deterioration and joint loading makes the latter an important parameter in the study of onset and follow-up of the disease. Since the relationship between hip abductor weakness and joint loading still remains an open question, the purpose of this study was to adopt a probabilistic modeling approach to give insights into how the weakness of hip abductor muscles, in the extent to which normal gait could be unaltered, affects ipsilateral joint contact forces. A generic musculoskeletal model was scaled to each healthy subject included in the study, and the maximum force-generating capacity of each hip abductor muscle in the model was perturbed to evaluate how all physiologically possible configurations of hip abductor weakness affected the joint contact forces during walking. In general, the muscular system was able to compensate for abductor weakness. The reduced force-generating capacity of the abductor muscles affected joint contact forces to a mild extent, with 50th percentile mean differences up to 0.5 BW (maximum 1.7 BW). There were greater increases in the peak knee joint loads than in loads at the hip or ankle. Gluteus medius, particularly the anterior compartment, was the abductor muscle with the most influence on hip and knee loads. Further studies should assess if these increases in joint loading may affect initiation and progression of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling.

    PubMed

    Chang, Chia-Yuan; Rupp, Jonathan D; Reed, Matthew P; Hughes, Richard E; Schneider, Lawrence W

    2009-11-01

    In a previous study, the authors reported on the development of a finite-element model of the midsize male pelvis and lower extremities with lower-extremity musculature that was validated using PMHS knee-impact response data. Knee-impact simulations with this model were performed using forces from four muscles in the lower extremities associated with two-foot bracing reported in the literature to provide preliminary estimates of the effects of lower-extremity muscle activation on knee-thigh-hip injury potential in frontal impacts. The current study addresses a major limitation of these preliminary simulations by using the AnyBody three-dimensional musculoskeletal model to estimate muscle forces produced in 35 muscles in each lower extremity during emergency one-foot braking. To check the predictions of the AnyBody Model, activation levels of twelve major muscles in the hip and lower extremities were measured using surface EMG electrodes on 12 midsize-male subjects performing simulated maximum and 50% of maximum braking in a laboratory seating buck. Comparisons between test results and the predictions of the AnyBody Model when it was used to simulate these same braking tests suggest that the AnyBody model appropriately predicts agonistic muscle activations but under predicts antagonistic muscle activations. Simulations of knee-to-knee-bolster impacts were performed by impacting the knees of the lower-extremity finite element model with and without the muscle forces predicted by the validated AnyBody Model. Results of these simulations confirm previous findings that muscle tension increases knee-impact force by increasing the effective mass of the KTH complex due to tighter coupling of muscle mass to bone. They also indicate that muscle activation preferentially couples mass distal to the hip, thereby accentuating the decrease in femur force from the knee to the hip. However, the reduction in force transmitted from the knee to the hip is offset by the increased force at the knee and by increased compressive forces at the hip due to activation of lower-extremity muscles. As a result, approximately 45% to 60% and 50% to 65% of the force applied to the knee is applied to the hip in the simulations without and with muscle tension, respectively. The simulation results suggest that lower-extremity muscle tension has little effect on the risk of hip injuries, but it increases the bending moments in the femoral shaft, thereby increasing the risk of femoral shaft fractures by 20%-40%. However, these findings may be affected by the inability of the AnyBody Model to appropriately predict antagonistic muscle forces.

  14. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor expression and function.

    PubMed

    Bill, Anke; Rosethorne, Elizabeth M; Kent, Toby C; Fawcett, Lindsay; Burchell, Lynn; van Diepen, Michiel T; Marelli, Anthony; Batalov, Sergey; Miraglia, Loren; Orth, Anthony P; Renaud, Nicole A; Charlton, Steven J; Gosling, Martin; Gaither, L Alex; Groot-Kormelink, Paul J

    2014-01-01

    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.

  15. High Throughput Mutagenesis for Identification of Residues Regulating Human Prostacyclin (hIP) Receptor Expression and Function

    PubMed Central

    Kent, Toby C.; Fawcett, Lindsay; Burchell, Lynn; van Diepen, Michiel T.; Marelli, Anthony; Batalov, Sergey; Miraglia, Loren; Orth, Anthony P.; Renaud, Nicole A.; Charlton, Steven J.; Gosling, Martin; Gaither, L. Alex; Groot-Kormelink, Paul J.

    2014-01-01

    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs. PMID:24886841

  16. The relationship of hip muscle performance to leg, ankle and foot injuries: a systematic review.

    PubMed

    Steinberg, Nili; Dar, Gali; Dunlop, Martin; Gaida, James Edmund

    2017-02-01

    Hip control affects movement and muscle firing patterns in the leg, ankle and foot, and may contribute to overuse injuries. Muscle performance can be measured as strength, endurance or muscle activation patterns. Our objective was to systematically review whether hip muscle performance is associated with leg, ankle and foot injuries. A structured and comprehensive search of six medical literature databases was combined with forward and backward citation tracking (AMED, CINAHL, EMBASE, Medline, Scopus and SportDiscus). Eligible studies measured hip muscle performance in individuals with musculoskeletal injuries below the tibial tuberosity, using dynamometry or electromyography (EMG). All studies compared an injured group with a control group or compared the injured and non-injured limb in the same individual. Data was extracted from each study independently by two authors. Twenty case-control and four prospective studies (n = 24) met the inclusion criteria. Injury classifications included chronic ankle instability (n = 18), Achilles tendinopathy (n = 2), medial tibial stress syndrome and tibial stress fracture (n = 1), posterior tibial tendon dysfunction (n = 1), and exertional medial tibial pain (n = 2). Eleven of the studies revealed differences in hip muscle performance indicating less strength, delayed onset activation and decreased duration of activation in the injured groups. Two studies found evidence for differences between groups only in some of their measurements. Three out of the four prospective studies revealed that hip muscle performance was not a risk factor for leg, ankle and foot injuries. This review provides limited evidence that hip muscle performance variables are related to leg, ankle and foot injuries. Emerging evidence indicates this might be a result of the injury rather than a contributor to the injury.

  17. Physical examination findings and their relationship with performance-based function in adults with knee osteoarthritis.

    PubMed

    Iversen, Maura D; Price, Lori Lyn; von Heideken, Johan; Harvey, William F; Wang, Chenchen

    2016-07-12

    Many physical examination (PE) maneuvers exist to assess knee function, none of which are specific to knee osteoarthritis (KOA). The Osteoarthritis Research Society International also recommends the use of six functional performance measures to assess function in adults with KOA. While earlier studies have examined the relationship between PE findings and self-reported function or PE findings and select performance tests in adults with knee pain and KOA, few have examined the all three types of measures. This cross-sectional study specifically examines the relationships between results of PE findings, functional performance tests and self-reported function in adults with symptomatic KOA. We used baseline PE data from a prospective randomized controlled trial in 87 participants aged ≥40 years with symptomatic and radiographic KOA. The PE performed by three experienced physical therapists included: muscle assessment, function and special tests. Participants also completed functional performance tests and the Western Ontario and McMaster Osteoarthritis Index (WOMAC). Multivariate linear regression identified contributions of PE findings towards functional performance and WOMAC scores, adjusting for age and gender. Participants' mean age was 60.4 years (SD = 10.5), mean disease duration was 8.4 years (SD = 10.1) and 27 participants had varus knee alignment. Mean WOMAC pain and function scores were 211 (SD = 113) and 709 (SD = 394), respectively. Weakness was present in major hip and knee muscles. Seventy-nine participants had a positive Ely's, 65 a positive Waldron and 49 a positive Grind. Mean 6-min walk was 404 m (SD = 83) and mean Berg Balance was 53 (SD = 4). Regression analysis identified positive findings on 5 special tests (P < 0.05) as indicative of poorer 6 min walk. Positive Apley's was associated (P < 0.05) with slower 20 m walk and a positive Ober with poorer balance scores (P < 0.05). Diminished hip muscle strength and flexibility, and patella dysfunction were prevalent in these adults with symptomatic KOA. Results of functional performance tests suggest balance and walking ability are impaired and are associated with PE findings of muscle length imbalance, hip muscle weakness and patella dysfunction. None of the PE measures were associated with self-reported function. Therefore, performance-based test results may be more useful in informing rehabilitation interventions.

  18. Changes in hip and ankle range of motion and hip muscle strength in 8–11 year old novice female ballet dancers and controls: a 12 month follow up study

    PubMed Central

    Bennell, K; Khan, K; Matthews, B; Singleton, C

    2001-01-01

    Objectives—To evaluate in a 12 month longitudinal study changes in hip and ankle range of motion and hip muscle strength in young female novice ballet dancers. Methods—Fifty three of the original 77 (69%) female dancers aged 8–11 years and 40 of the original 49 (82%) controls returned for follow up measurements one year later. Supine right active hip external (ER) and internal (IR) rotation were measured using an inclinometer. A turnout protractor was used to assess standing active turnout range. Range of right weight bearing ankle dorsiflexion and calf muscle length were measured in a standing lunge position using an inclinometer. A manual muscle tester was used to assess right hip flexor, IR, ER, abductor and adductor strength. Results—The mean (SD) 12 month change in hip ER did not differ between dancers (11.7 (11.3)°) and controls (8.1 (17.6)°). Dancers gained 12.5 (13.5)° hip IR which was significantly greater than controls (0.5 (13.9)°). Greater IR change was associated with improved IR strength (r = 0.34, p<0.001). Dancers increased total turnout (12.0 (16.7)°) significantly more than controls (2.2 (20.0)°). There was no significant change in ankle dorsiflexion range in either group. Dancers and controls increased in all measures of hip muscle strength (p<0.001) and dancers achieved significantly greater gains in three out of five muscle groups (all, p<0.05). Conclusions—Total hip range of motion increased in both ballet students and controls at this young age. However, ankle dorsiflexion did not, which is probably due to this movement being blocked by bony apposition, rather than soft tissue stretch. This has implications for ballet teachers, as it has long been accepted that this movement could be improved with training. Dancers had greater increases in hip strength after 12 months compared with controls in muscles specific for ballet, suggesting that hip strength can be trained at this young age. Whether these gains are permanent requires further study. Key Words: dance; ballet; range of motion; muscle strength PMID:11157464

  19. Inferring muscle functional roles of the ostrich pelvic limb during walking and running using computer optimization.

    PubMed

    Rankin, Jeffery W; Rubenson, Jonas; Hutchinson, John R

    2016-05-01

    Owing to their cursorial background, ostriches (Struthio camelus) walk and run with high metabolic economy, can reach very fast running speeds and quickly execute cutting manoeuvres. These capabilities are believed to be a result of their ability to coordinate muscles to take advantage of specialized passive limb structures. This study aimed to infer the functional roles of ostrich pelvic limb muscles during gait. Existing gait data were combined with a newly developed musculoskeletal model to generate simulations of ostrich walking and running that predict muscle excitations, force and mechanical work. Consistent with previous avian electromyography studies, predicted excitation patterns showed that individual muscles tended to be excited primarily during only stance or swing. Work and force estimates show that ostrich gaits are partially hip-driven with the bi-articular hip-knee muscles driving stance mechanics. Conversely, the knee extensors acted as brakes, absorbing energy. The digital extensors generated large amounts of both negative and positive mechanical work, with increased magnitudes during running, providing further evidence that ostriches make extensive use of tendinous elastic energy storage to improve economy. The simulations also highlight the need to carefully consider non-muscular soft tissues that may play a role in ostrich gait. © 2016 The Authors.

  20. The immediate effects of foot orthoses on hip and knee kinematics and muscle activity during a functional step-up task in individuals with patellofemoral pain.

    PubMed

    Lack, Simon; Barton, Christian; Woledge, Roger; Laupheimer, Markus; Morrissey, Dylan

    2014-11-01

    Evidence shows that anti-pronating foot orthoses improve patellofemoral pain, but there is a paucity of evidence concerning mechanisms. We investigated the immediate effects of prefabricated foot orthoses on (i) hip and knee kinematics; (ii) electromyography variables of vastus medialis oblique, vastus lateralis and gluteus medius during a functional step-up task, and (iii) associated clinical measures. Hip muscle activity and kinematics were measured during a step-up task with and without an anti-pronating foot orthoses, in people (n=20, 9 M, 11 F) with patellofemoral pain. Additionally, we measured knee function, foot posture index, isometric hip abductor and knee extensor strength and weight-bearing ankle dorsiflexion. Reduced hip adduction (0.82°, P=0.01), knee internal rotation (0.46°, P=0.03), and decreased gluteus medius peak amplitude (0.9mV, P=0.043) were observed after ground contact in the 'with orthoses' condition. With the addition of orthoses, a more pronated foot posture correlated with earlier vastus medialis oblique onset (r=-0.51, P=0.02) whilst higher Kujala scores correlated with earlier gluteus medius onset (r=0.52, P=0.02). Although small in magnitude, reductions in hip adduction, knee internal rotation and gluteus medius amplitude observed immediately following orthoses application during a task that commonly aggravates symptoms, offer a potential mechanism for their effectiveness in patellofemoral pain management. Given the potential for cumulative effects of weight bearing repetitions completed with a foot orthoses, for example during repeated stair ascent, the differences are likely to be clinically meaningful. Copyright © 2014. Published by Elsevier Ltd.

  1. [Relationship between muscle activity and kinematics of the lower extremity in slow motions of squats in humans].

    PubMed

    Khorievin, V I; Horkovenko, A V; Vereshchaka, I V

    2013-01-01

    Squatting can be performed on ankle strategy when ankle joint is flexed more than a hip joint and on hip strategy when large changes occur at the hip joint. The relationships between changes ofjoint angles and electromyogram (EMG) of the leg muscles were studied in five healthy men during squatting that was performed at the ankle and hip strategies with a slow changes in the knee angle of 40 and 60 degrees. It is established that at ankle strategy the ankle muscles were activated ahead of joint angle changes and shifting the center of pressure (CT) on stabilographic platform, whereas activation of the thigh muscles began simultaneously with the change of the joint angles, showing the clear adaptation in successive trials and a linear relationships between the static EMG component and the angle changes of the ankle joint. In the case of hip strategy of squatting the thigh muscles were activated simultaneously with the change in the joint angles and the displacement of CT, whereas the ankle muscles were activated later than the thigh muscles, especially the muscle tibialis anterior, showing some adaptations in consecutive attempts. At the ankle strategy the EMG amplitude was greatest in thigh muscles, reproducing contour of changes in joint angles, whereas the ankle muscles were activated only slightly during changes of joint angles. In the case of hip strategy dominated the EMG amplitude of the muscle tibialis anterior, which was activated when driving down the trunk and fixation of the joint angles that was accompanied by a slight coactivation of the calf muscles with the step-like increase in the amplitude of the EMG of the thigh muscles. Choice of leg muscles to start the squatting on both strategies occurred without a definite pattern, which may indicate the existence of a wide range of options for muscle activity in a single strategy.

  2. Muscle atrophy and metal-on-metal hip implants: a serial MRI study of 74 hips.

    PubMed

    Berber, Reshid; Khoo, Michael; Cook, Erica; Guppy, Andrew; Hua, Jia; Miles, Jonathan; Carrington, Richard; Skinner, John; Hart, Alister

    2015-06-01

    Muscle atrophy is seen in patients with metal-on-metal (MOM) hip implants, probably because of inflammatory destruction of the musculo-tendon junction. However, like pseudotumors, it is unclear when atrophy occurs and whether it progresses with time. Our objective was to determine whether muscle atrophy associated with MOM hip implants progresses with time. We retrospectively reviewed 74 hips in 56 patients (32 of them women) using serial MRI. Median age was 59 (23-83) years. The median time post-implantation was 83 (35-142) months, and the median interval between scans was 11 months. Hip muscles were scored using the Pfirrmann system. The mean scores for muscle atrophy were compared between the first and second MRI scans. Blood cobalt and chromium concentrations were determined. The median blood cobalt was 6.84 (0.24-90) ppb and median chromium level was 4.42 (0.20-45) ppb. The median Oxford hip score was 34 (5-48). The change in the gluteus minimus mean atrophy score between first and second MRI was 0.12 (p = 0.002). Mean change in the gluteus medius posterior portion (unaffected by surgical approach) was 0.08 (p = 0.01) and mean change in the inferior portion was 0.10 (p = 0.05). Mean pseudotumor grade increased by 0.18 (p = 0.02). Worsening muscle atrophy and worsening pseudotumor grade occur over a 1-year period in a substantial proportion of patients with MOM hip implants. Serial MRI helps to identify those patients who are at risk of developing worsening soft-tissue pathology. These patients should be considered for revision surgery before irreversible muscle destruction occurs.

  3. Resisted side-stepping: the effect of posture on hip abductor muscle activation

    PubMed Central

    Berry, Justin W.; Lee, Theresa S.; Foley, Hanna D.; Lewis, Cara L.

    2016-01-01

    Study Design Controlled laboratory study, repeated-measures design. Objectives To compare hip abductor muscle activity and hip and knee joint kinematics in the moving limb to the stance limb during resisted side-stepping and also to determine if muscle activity was affected by the posture (upright standing versus squat) used to perform the exercise. Background Hip abductor weakness has been associated with a variety of lower extremity injuries. Resisted side-stepping is often used as an exercise to increase strength and endurance of the hip abductors. Exercise prescription would benefit from knowing the relative muscle activity level generated in each limb and for different postures during the side-stepping exercise. Methods Twenty-four healthy adults participated in this study. Kinematics and surface electromyographic (EMG) data from the gluteus maximus, gluteus medius, and tensor fascia lata (TFL) were collected as participants performed side-stepping with a resistive band around the ankle while maintaining each of 2 postures: 1) upright standing and 2) squat. Results Mean normalized EMG signal amplitude of the gluteus maximus, gluteus medius, and TFL was higher in the stance limb than the moving limb (P≤.001). Gluteal muscle activity was higher, while TFL muscle activity was lower, in the squat posture compared to the upright standing posture (P<.001). Hip abduction excursion was greater in the stance limb than in the moving limb (P<.001). Conclusions The 3 hip abductor muscles respond differently to the posture variations of side-stepping exercise in healthy individuals. When prescribing resisted side-stepping exercises, therapists should consider the differences in hip abductor activation across limbs and variations in trunk posture. PMID:26161629

  4. EMG of the hip adductor muscles in six clinical examination tests.

    PubMed

    Lovell, Gregory A; Blanch, Peter D; Barnes, Christopher J

    2012-08-01

    To assess activation of muscles of hip adduction using EMG and force analysis during standard clinical tests, and compare athletes with and without a prior history of groin pain. Controlled laboratory study. 21 male athletes from an elite junior soccer program. Bilateral surface EMG recordings of the adductor magnus, adductor longus, gracilis and pectineus as well as a unilateral fine-wire EMG of the pectineus were made during isometric holds in six clinical examination tests. A load cell was used to measure force data. Test type was a significant factor in the EMG output for all four muscles (all muscles p < 0.01). EMG activation was highest in Hips 0 or Hips 45 for adductor magnus, adductor longus and gracilis. EMG activation for pectineus was highest in Hips 90. Injury history was a significant factor in the EMG output for the adductor longus (p < 0.05), pectineus (p < 0.01) and gracilis (p < 0.01) but not adductor magnus. For force data, clinical test type was a significant factor (p < 0.01) with Hips 0 being significantly stronger than Hips 45, Hips 90 and Side lay. BMI (body mass index) was a significant factor (p < 0.01) for producing a higher force. All other factors had no significant effect on the force outputs. Hip adduction strength assessment is best measured at hips 0 (which produced most force) or 45° flexion (which generally gave the highest EMG output). Muscle EMG varied significantly with clinical test position. Athletes with previous groin injury had a significant fall in some EMG outputs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Effect of stretching with and without muscle strengthening exercises for the foot and hip in patients with plantar fasciitis: A randomized controlled single-blind clinical trial.

    PubMed

    Kamonseki, Danilo H; Gonçalves, Geiseane A; Yi, Liu C; Júnior, Império Lombardi

    2016-06-01

    To compare the effect of stretching with and without muscle strengthening of the foot alone or foot and hip on pain and function in patients with plantar fasciitis. Single blind randomized controlled trial. Eighty-three patients with plantar fasciitis were allocated to one of three treatment options for an eight-week period: Foot Exercise Group (FEG - extrinsic and intrinsic foot muscles), Foot and Hip Exercise Group (FHEG - abductor and lateral rotator muscles) and Stretching Alone Exercise Group (SAEG). A visual analog scale for pain, the Foot and Ankle Outcome Score and the Star Excursion Balance Test. All evaluations were performed before treatment and after the last treatment session. Improvements were found in all groups regarding the visual analog scale, the pain, activities of daily living, sports and recreation, quality of life (p < 0.001) and other symptoms (p < 0.01) subscales of the Foot and Ankle Outcome Score as well as posterolateral movement, posteromedial movement and composite score (p < 0.001) on the Star Excursion Balance Test. No time-group interactions were found for any of the variables (p > 0.05). All three exercise protocols analyzed led to improvements at eight-week follow-up in pain, function and dynamic lower limb stability in patients with plantar fasciitis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. FUNCTIONAL PERFORMANCE TESTING OF THE HIP IN ATHLETES: A SYSTEMATIC REVIEW FOR RELIABILITY AND VALIDITY

    PubMed Central

    Martin, RobRoy L.

    2012-01-01

    Purpose/Background: The purpose of this study was to systematically review the literature for functional performance tests with evidence of reliability and validity that could be used for a young, athletic population with hip dysfunction. Methods: A search of PubMed and SPORTDiscus databases were performed to identify movement, balance, hop/jump, or agility functional performance tests from the current peer-reviewed literature used to assess function of the hip in young, athletic subjects. Results: The single-leg stance, deep squat, single-leg squat, and star excursion balance tests (SEBT) demonstrated evidence of validity and normative data for score interpretation. The single-leg stance test and SEBT have evidence of validity with association to hip abductor function. The deep squat test demonstrated evidence as a functional performance test for evaluating femoroacetabular impingement. Hop/Jump tests and agility tests have no reported evidence of reliability or validity in a population of subjects with hip pathology. Conclusions: Use of functional performance tests in the assessment of hip dysfunction has not been well established in the current literature. Diminished squat depth and provocation of pain during the single-leg balance test have been associated with patients diagnosed with FAI and gluteal tendinopathy, respectively. The SEBT and single-leg squat tests provided evidence of convergent validity through an analysis of kinematics and muscle function in normal subjects. Reliability of functional performance tests have not been established on patients with hip dysfunction. Further study is needed to establish reliability and validity of functional performance tests that can be used in a young, athletic population with hip dysfunction. Level of Evidence: 2b (Systematic Review of Literature) PMID:22893860

  7. Muscle strength, gait, and balance in 20 patients with hip osteoarthritis followed for 2 years after THA

    PubMed Central

    Dalén, Nils; Berg, Hans E

    2010-01-01

    Background Patients with hip osteoarthritis (OA) have muscular weakness, impaired balance, and limp. Deficits in the different limb muscles and their recovery courses are largely unknown, however. We hypothesized that there is persisting muscular weakness in lower limb muscles and an impaired balance and gait 2 years after THA. Patients and methods 20 elderly patients with unilateral OA were assessed before, and 6 and 24 months after surgery for maximal voluntary isometric strength of hip and knee muscles and by gait analysis, postural stability, and clinical scores (HHS, SF-36, EuroQoL). Results Hip muscles showed a remaining 6% weakness compared to the contralateral healthy limb 2 years after THA. Preoperatively and 6 months postoperatively, that deficit was 18% and 12%, respectively. Knee extensors fully recovered a preoperative 27% deficit after 2 years. Gait analysis demonstrated a shorter single stance phase for the OA limb compared to healthy limb preoperatively, that had already recovered at the 6-month follow-up. Balance of two-foot standing showed improvement in both sagittal and lateral sway after operation. All clinical scores improved. Interpretation Muscle strength data demonstrated a slow but full recovery of muscles acting about the knee, but there was still a deficit in hip muscle strength 2 years after THA. Gait and balance recovered after the operation. To accelerate improvement in muscular strength after THA, postoperative training should probably be more intense and target hip abductors. PMID:20367414

  8. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians

    PubMed Central

    Bates, Karl T; Maidment, Susannah C R; Allen, Vivian; Barrett, Paul M

    2012-01-01

    Ornithischia (the ‘bird-hipped’ dinosaurs) encompasses bipedal, facultative quadrupedal and quadrupedal taxa. Primitive ornithischians were small bipeds, but large body size and obligate quadrupedality evolved independently in all major ornithischian lineages. Numerous pelvic and hind limb features distinguish ornithischians from the majority of other non-avian dinosaurs. However, some of these features, notably a retroverted pubis and elongate iliac preacetabular process, appeared convergently in maniraptoran theropods, and were inherited by their avian descendants. During maniraptoran/avian evolution these pelvic modifications led to significant changes in the functions of associated muscles, involving alterations to the moment arms and the activation patterns of pelvic musculature. However, the functions of these features in ornithischians and their influence on locomotion have not been tested and remain poorly understood. Here, we provide quantitative tests of bipedal ornithischian muscle function using computational modelling to estimate 3D hind limb moment arms for the most complete basal ornithischian, Lesothosaurus diagnosticus. This approach enables sensitivity analyses to be carried out to explore the effects of uncertainties in muscle reconstructions of extinct taxa, and allows direct comparisons to be made with similarly constructed models of other bipedal dinosaurs. This analysis supports some previously proposed qualitative inferences of muscle function in basal ornithischians. However, more importantly, this work highlights ambiguities in the roles of certain muscles, notably those inserting close to the hip joint. Comparative analysis reveals that moment arm polarities and magnitudes in Lesothosaurus, basal tetanuran theropods and the extant ostrich are generally similar. However, several key differences are identified, most significantly in comparisons between the moment arms of muscles associated with convergent osteological features in ornithischians and birds. Craniad migration of the iliofemoralis group muscles in birds correlates with increased leverage and use of medial femoral rotation to counter stance phase adduction moments at the hip. In Lesothosaurus the iliofemoralis group maintains significantly higher moment arms for abduction, consistent with the hip abduction mode of lateral limb support hypothesized for basal dinosaurs. Sensitivity analysis highlights ambiguity in the role of musculature associated with the retroverted pubis (puboischiofemoralis externus group) in ornithischians. However, it seems likely that this musculature may have predominantly functioned similarly to homologous muscles in extant birds, activating during the swing phase to adduct the lower limb through lateral rotation of the femur. Overall the results suggest that locomotor muscle leverage in Lesothosaurus (and by inference basal ornithischians in general) was more similar to that of other non-avian dinosaurs than the ostrich, representing what was probably the basal dinosaur condition. This work thereby contradicts previous hypotheses of ornithischian–bird functional convergence. PMID:22211275

  9. Does gender influence neuromotor control of the knee and hip?

    PubMed

    Cowan, Sallie M; Crossley, Kay M

    2009-04-01

    Patellofemoral pain (PFP) is a common condition that occurs more frequently in females. Anatomical, hormonal and neuromuscular factors have been proposed to contribute to the increased incidence of PFP in females, with neuromuscular factors considered to be of particular importance. This cross-sectional study aimed to evaluate differences in the neuromotor control of the knee and hip muscles between genders and to investigate whether clinical measures of hip rotation range and strength were associated with EMG measures of hip and thigh motor control. Twenty-nine (16 female and 13 male) asymptomatic participants completed a visual choice reaction-time stair stepping task. EMG activity was recorded from vastus medialis oblique, vastus lateralis, anterior and posterior gluteus medius muscles. In addition hip rotation range of motion and hip external rotation, abduction and trunk strength were assessed. There were no differences in the timing or peak of EMG activation of the vasti or gluteus medius muscle between genders during the stepping task. There were however significant associations between EMG measures of motor control of the vasti and hip strength in both females and males. These findings are suggestive of a link between hip muscle control and vasti neuromotor control.

  10. Is a sphygmomanometer a valid and reliable tool to measure the isometric strength of hip muscles? A systematic review.

    PubMed

    Toohey, Liam Anthony; De Noronha, Marcos; Taylor, Carolyn; Thomas, James

    2015-02-01

    Muscle strength measurement is a key component of physiotherapists' assessment and is frequently used as an outcome measure. A sphygmomanometer is an instrument commonly used to measure blood pressure that can be potentially used as a tool to assess isometric muscle strength. To systematically review the evidence on the reliability and validity of a sphygmomanometer for measuring isometric strength of hip muscles. A literature search was conducted across four databases. Studies were eligible if they presented data on reliability and/or validity, used a sphygmomanometer to measure isometric muscle strength of the hip region, and were peer reviewed. The individual studies were evaluated for quality using a standardized critical appraisal tool. A total of 644 articles were screened for eligibility, with five articles chosen for inclusion. The use of a sphygmomanometer to objectively assess isometric muscle strength of the hip muscles appears to be reliable with intraclass correlation coefficient values ranging from 0.66 to 0.94 in elderly and young populations. No studies were identified that have assessed the validity of a sphygmomanometer. The sphygmomanometer appears to be reliable for assessment of isometric muscle strength around the hip joint, but further research is warranted to establish its validity.

  11. Patient-specific musculoskeletal modeling of the hip joint for preoperative planning of total hip arthroplasty: A validation study based on in vivo measurements

    PubMed Central

    Schick, Fabian; Asseln, Malte; Damm, Philipp; Radermacher, Klaus

    2018-01-01

    Validation of musculoskeletal models for application in preoperative planning is still a challenging task. Ideally, the simulation results of a patient-specific musculoskeletal model are compared to corresponding in vivo measurements. Currently, the only possibility to measure in vivo joint forces is to implant an instrumented prosthesis in patients undergoing a total joint replacement. In this study, a musculoskeletal model of the AnyBody Modeling System was adapted patient-specifically and validated against the in vivo hip joint force measurements of ten subjects performing one-leg stance and level walking. The impact of four model parameters was evaluated; hip joint width, muscle strength, muscle recruitment, and type of muscle model. The smallest difference between simulated and in vivo hip joint force was achieved by using the hip joint width measured in computed tomography images, a muscle strength of 90 N/cm2, a third order polynomial muscle recruitment, and a simple muscle model. This parameter combination reached mean deviations between simulation and in vivo measurement during the peak force phase of 12% ± 14% in magnitude and 11° ± 5° in orientation for one-leg stance and 8% ± 6% in magnitude and 10° ± 5° in orientation for level walking. PMID:29649235

  12. Gluteal muscle fatty atrophy is not associated with elevated blood metal ions or pseudotumors in patients with a unilateral metal-on-metal hip replacement.

    PubMed

    Reito, Aleksi; Elo, Petra; Nieminen, Jyrki; Puolakka, Timo; Eskelinen, Antti

    2016-02-01

    There are no international guidelines to define adverse reaction to metal debris (ARMD). Muscle fatty atrophy has been reported to be common in patients with failing metal-on-metal (MoM) hip replacements. We assessed whether gluteal muscle fatty atrophy is associated with elevated blood metal ion levels and pseudotumors. 263 consecutive patients with unilateral ASR XL total hip replacement using a posterior approach and with an unoperated contralateral hip were included in the study. All patients had undergone a standard screening program at our institution, including MRI and blood metal ion measurement. Muscle fatty atrophy was graded as being absent, mild, moderate, or severe in each of the gluteal muscles. The prevalence of moderate-to-severe gluteal muscle atrophy was low (12% for gluteus minimus, 10% for gluteus medius, and 2% for gluteus maximus). Muscle atrophy was neither associated with elevated blood metal ion levels (> 5 ppb) nor with the presence of a clear (solid- or mixed-type) pseudotumor seen in MRI. A combination of moderate-to-severe atrophy in MRI, elevated blood metal ion levels, and MRI-confirmed mixed or solid pseudotumor was rare. Multivariable regression revealed that "preoperative diagnosis other than osteoarthrosis" was the strongest predictor of the presence of fatty atrophy. Gluteal muscle atrophy may be a clinically significant finding with influence on hip muscle strength in patients with MoM hip replacement. However, our results suggest that gluteal muscle atrophy seen in MRI is not associated with either the presence or severity of ARMD, at least not in patients who have been operated on using the posterior approach.

  13. Impact of exercise selection on hamstring muscle activation.

    PubMed

    Bourne, Matthew N; Williams, Morgan D; Opar, David A; Al Najjar, Aiman; Kerr, Graham K; Shield, Anthony J

    2017-07-01

    To determine which strength training exercises selectively activate the biceps femoris long head (BF LongHead ) muscle. We recruited 24 recreationally active men for this two-part observational study . Part 1: We explored the amplitudes and the ratios of lateral (BF) to medial hamstring (MH) normalised electromyography (nEMG) during the concentric and eccentric phases of 10 common strength training exercises. Part 2: We used functional MRI (fMRI) to determine the spatial patterns of hamstring activation during two exercises which (1) most selectively and (2) least selectively activated the BF in part 1. Eccentrically, the largest BF/MH nEMG ratio occurred in the 45° hip-extension exercise; the lowest was in the Nordic hamstring (Nordic) and bent-knee bridge exercises. Concentrically, the highest BF/MH nEMG ratio occurred during the lunge and 45° hip extension; the lowest was during the leg curl and bent-knee bridge. fMRI revealed a greater BF (LongHead) to semitendinosus activation ratio in the 45° hip extension than the Nordic (p<0.001). The T2 increase after hip extension for BF LongHead , semitendinosus and semimembranosus muscles was greater than that for BF ShortHead (p<0.001). During the Nordic, the T2 increase was greater for the semitendinosus than for the other hamstring muscles (p≤0.002). We highlight the heterogeneity of hamstring activation patterns in different tasks. Hip-extension exercise selectively activates the long hamstrings, and the Nordic exercise preferentially recruits the semitendinosus. These findings have implications for strategies to prevent hamstring injury as well as potentially for clinicians targeting specific hamstring components for treatment (mechanotherapy). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.

    PubMed

    Dembia, Christopher L; Silder, Amy; Uchida, Thomas K; Hicks, Jennifer L; Delp, Scott L

    2017-01-01

    Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work.

  15. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads

    PubMed Central

    Silder, Amy; Uchida, Thomas K.; Hicks, Jennifer L.; Delp, Scott L.

    2017-01-01

    Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work. PMID:28700630

  16. No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.

    PubMed

    Gibson, W; Campbell, A; Allison, G

    2013-09-01

    Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Measures of functional performance and their association with hip and thigh strength.

    PubMed

    Kollock, Roger; Van Lunen, Bonnie L; Ringleb, Stacie I; Oñate, James A

    2015-01-01

    Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. To determine if functional performance tests are valid indicators of hip and thigh strength. Descriptive laboratory study. Research laboratory. Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r (2). We used Pearson correlations to evaluate the associations between functional performance and strength. In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r(2) = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r(2) = 38, P ≤ .01) and hip-flexor (r(2) = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r(2) = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r(2) = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r(2) = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups.

  18. Carryover effect of hip and knee exercises program on functional performance in individuals with patellofemoral pain syndrome

    PubMed Central

    Ahmed Hamada, Hamada; Hussein Draz, Amira; Koura, Ghada Mohamed; Saab, Ibtissam M.

    2017-01-01

    [Purpose] This study was carried out to investigate the carryover effect of hip and knee exercises program on functional performance (single legged hop test as functional performance test and Kujala score for functional activities). [Subjects and Methods] Thirty patients with patellofemoral pain syndrome were randomly assigned into two equal groups. Group (A) consisted of 15 patients undergoing hip strengthening exercises for four weeks then measuring all variables followed by additional four weeks of knee exercises program then measuring all variables again. Group (B): consisted of 15 patients undergoing knee exercises program for four weeks then measuring all variables followed by additional four weeks of hip strengthening exercises then measuring all variables. Functional abilities and knee muscles performance were assessed using Kujala questionnaire and single legged hop test respectively pre and after the completion of the first 4 weeks then after 8 weeks for both groups. [Results] Significantly increase in Kujala questionnaire in group A compared with group B was observed. While, there were significant increase in single legged hop performance test in group B compared with group A. [Conclusion] Starting with hip exercises improve the performance of subjects more than functional activities while starting with knee exercises improve the functional activities of subjects more than performance. PMID:28878459

  19. Carryover effect of hip and knee exercises program on functional performance in individuals with patellofemoral pain syndrome.

    PubMed

    Ahmed Hamada, Hamada; Hussein Draz, Amira; Koura, Ghada Mohamed; Saab, Ibtissam M

    2017-08-01

    [Purpose] This study was carried out to investigate the carryover effect of hip and knee exercises program on functional performance (single legged hop test as functional performance test and Kujala score for functional activities). [Subjects and Methods] Thirty patients with patellofemoral pain syndrome were randomly assigned into two equal groups. Group (A) consisted of 15 patients undergoing hip strengthening exercises for four weeks then measuring all variables followed by additional four weeks of knee exercises program then measuring all variables again. Group (B): consisted of 15 patients undergoing knee exercises program for four weeks then measuring all variables followed by additional four weeks of hip strengthening exercises then measuring all variables. Functional abilities and knee muscles performance were assessed using Kujala questionnaire and single legged hop test respectively pre and after the completion of the first 4 weeks then after 8 weeks for both groups. [Results] Significantly increase in Kujala questionnaire in group A compared with group B was observed. While, there were significant increase in single legged hop performance test in group B compared with group A. [Conclusion] Starting with hip exercises improve the performance of subjects more than functional activities while starting with knee exercises improve the functional activities of subjects more than performance.

  20. Quadriceps combined with hip abductor strengthening versus quadriceps strengthening in treating knee osteoarthritis: a study protocol for a randomized controlled trial.

    PubMed

    Xie, Yujie; Zhang, Chi; Jiang, Wei; Huang, Juan; Xu, Lili; Pang, Guoyin; Tang, Haiyan; Chen, Ruyan; Yu, Jihua; Guo, Shengmin; Xu, Fangyuan; Wang, Jianxiong

    2018-05-15

    Lower limb strengthening, especially the quadriceps training, is of much necessity for patients with knee osteoarthritis (KOA). Previous studies suggest that strengthening of the hip muscles, especially the hip abductor, can potentially relieve the KOA-associated symptoms. Nevertheless, the effects of quadriceps combined with hip abductor strengthening remain unclear. Therefore, the current randomized controlled trial is designed aiming to observe whether quadriceps in combination with hip abductor strengthening can better improve the function and reduce pain in KOA patients than quadriceps training alone. A total of 80 subjects with symptomatic KOA will be recruited from the communities and hospital outpatient, and will be randomly assigned to the experiment group (Quadriceps-plus-hip-abductor-strengthening) or the control group (Quadriceps-strengthening). Specifically, participants in the experiment group will complete 4 exercises to train the quadriceps and hip abductor twice a day for 6 weeks at home, while those in the control group will only perform 2 exercises to strengthen the quadriceps. Besides, all patients will also receive usual care management, including health education and physical agent therapy when necessary. Knee pain will be measured using the Visual Analogue Scale (VAS) at baseline, in every week during the course of treatment, as well as 8 and 12 weeks after randomization. Furthermore, knee function will be measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scale, and the quality of life will be measured using the MOS Item Short-form Health Survey (SF-36). In this study, several simple tests will be applied to assess the objective function. All the assessments except for VAS will be carried out at baseline, and in the 6th, 8th and 12th weeks respectively. Our findings will provide more evidence for the effects of hip abductor strengthening on relieving pain and improving function in KOA patients. Hip abductor strengthening can be added into the muscle training program for KOA patients as a supplementary content if it is proved to be effective. The current study has been registered with the Chinese Clinical Trials Registry (the registration number is ChiCTR-IOC-15007590 , 3rd December, 2015).

  1. The Fate of Iliopsoas Muscle in the Long-term Follow-up After Open Reduction of Developmental Dysplasia of the Hip by Medial Approach. Part 1: MRI Evaluation.

    PubMed

    Yilmaz, Serdar; Aksahin, Ertugrul; Duran, Semra; Bicimoglu, Ali

    2017-09-01

    There has been little information about the long-term status of the iliopsoas, which is the main flexor of the hip, after iliopsoas tenotomy in the treatment of developmental dysplasia of the hip (DDH). The aim of this study was to assess the status of the iliopsoas muscle and other flexors and extensors of the hip in long-term follow-up with magnetic resonance imaging after complete iliopsoas tenotomy in patients with unilateral DDH treated with open reduction with a medial approach. The study included 20 patients who underwent open reduction with a medial approach for unilateral DDH and had long-term follow-up. Magnetic resonance imaging assessment of iliopsoas, rectus femoris, tensor fasia lata, sartorius, and gluteus maximus muscles was applied and the muscles of the hip that was operated on were compared with the unoperated hip. In addition, the iliopsoas muscle was examined for reattachment and the effect of reattachment was evaluated. The mean age at the time of operation was 10.53±3.61 months (range, 5 to 18 mo), and mean follow-up was 16.65±2.16 years (range, 13 to 20 y). Spontaneous reattachment of the iliopsoas was observed in 18 patients (90%), either in the lesser trochanter (65%) or the superior part of it (25%). There was no significant difference between the hips that were operated on and those that were not with regard to the mean cross-sectional areas (CSA) of the tensor fascia lata, rectus femoris, sartorius, and gluteus maximus muscles. The CSA of the tensor fascia lata, rectus femoris, sartorius, and gluteus maximus muscles showed no significant difference (P>0.05); however, CSA of iliopsoas muscle was significantly reduced in the operated hip (P<0.001). Although the iliopsoas tendon was atrophied after complete iliopsoas tenotomy, it was reattached in 90% of the patients spontaneously in long-term follow-up. There was no statistically significant compensatory hypertrophy in any muscles in response to iliopsoas atrophy. Level IV-Therapeutic.

  2. In vitro investigation of biomechanical changes of the hip after Salter pelvic osteotomy.

    PubMed

    Pfeifer, R; Hurschler, C; Ostermeier, S; Windhagen, H; Pressel, T

    2008-03-01

    Salter innominate osteotomy of the pelvis is widely used to improve the coverage of the femoral head in developmental dysplasia of the hip, but the biomechanical and geometric changes after this osteotomy are not well understood. A CT dataset of an 8-year-old child with severe dysplasia of both hips was used to create a polyamide model of the left hemipelvis and proximal femur. The hemipelvis was mounted to a holding device and the proximal femur attached to a sensor guided industrial robot. The robot was programmed to apply joint forces and torques based on single-leg stance. Two major muscles were represented by wires connected to hydraulic cylinders; muscle forces were adjusted to balance the joint moments. Resulting joint forces were measured using a pressure measuring sensor before and after Salter osteotomy of the hip. Geometric changes were recorded using a three-dimensional ultrasound measurement system. The preoperative hip joint resultant force was 583N (270% body weight), while after the operation a mean force of 266N (120% body weight) was measured. Postoperative muscle forces were roughly half the preoperative values. The hip joint was translated medially and caudally. Postoperatively, the length of gluteus medius and maximus muscles increased. The preoperative value of the resultant hip joint force is comparable to values reported in the literature. The results suggest that Salter innominate osteotomy leads to a reduction of hip joint and muscle forces in addition to increasing joint contact area.

  3. Modifying the hip abduction angle during bridging exercise can facilitate gluteus maximus activity.

    PubMed

    Kang, Sun-Young; Choung, Sung-Dae; Jeon, Hye-Seon

    2016-04-01

    To investigate how the erector spinae (ES) and gluteus maximus (GM) muscle activity and the anterior pelvic tilt angle change with different hip abduction angles during a bridging exercise. Twenty healthy participants (10 males and 10 females, aged 21.6 ± 1.6) voluntarily participated in this study. Surface electromyography (EMG) signals were recorded from the ES and GM during bridging at three hip abduction angles: 0°, 15°, and 30°. Simultaneously, the anterior pelvic tilt angle was measured using Image J software. The EMG amplitude of the GM muscle and the GM/ES EMG ratio were greatest at 30° hip abduction, followed by 15° and then 0° hip abduction during the bridging exercise. In contrast, the ES EMG amplitude at 30° hip abduction was significantly lesser than that at 0° and 15° abduction. Additionally, the anterior pelvic tilt angle was significantly lower at 30° hip abduction than at 0° or 15°. Bridging with 30° hip abduction can be recommended as an effective method to selectively facilitate GM muscle activity, minimize compensatory ES muscle activity, and decrease the anterior pelvic tilt angle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Lower Serum Creatinine Is Associated with Low Bone Mineral Density in Subjects without Overt Nephropathy

    PubMed Central

    Huh, Ji Hye; Choi, Soo In; Lim, Jung Soo; Chung, Choon Hee; Shin, Jang Yel; Lee, Mi Young

    2015-01-01

    Background Low skeletal muscle mass is associated with deterioration of bone mineral density. Because serum creatinine can serve as a marker of muscle mass, we evaluated the relationship between serum creatinine and bone mineral density in an older population with normal renal function. Methods Data from a total of 8,648 participants (4,573 men and 4,075 postmenopausal women) aged 45–95 years with an estimated glomerular filtration rate >60 ml/min/1.73 m2 were analyzed from the Fourth Korea National Health and Nutrition Examination Survey (2008–2010). Bone mineral density (BMD) and appendicular muscle mass (ASM) were measured using dual-energy X-ray absorptiometry. Receiver operating characteristic curve analysis revealed that the cut points of serum creatinine for sarcopenia were below 0.88 mg/dl in men and 0.75 mg/dl in women. Subjects were divided into two groups: low creatinine and upper normal creatinine according to the cut point value of serum creatinine for sarcopenia. Results In partial correlation analysis adjusted for age, serum creatinine was positively associated with both BMD and ASM. Subjects with low serum creatinine were at a higher risk for low BMD (T-score ≤ –1.0) at the femur neck, total hip and lumbar spine in men, and at the total hip and lumbar spine in women after adjustment for confounding factors. Each standard deviation increase in serum creatinine was significantly associated with reduction in the likelihood of low BMD at the total hip and lumbar spine in both sexes (men: odds ratio (OR) = 0.84 [95% CI = 0.74−0.96] at the total hip, OR = 0.8 [95% CI = 0.68−0.96] at the lumbar spine; women: OR = 0.83 [95% CI = 0.73–0.95] at the total hip, OR=0.81 [95% CI = 0.67–0.99] at the lumbar spine). Conclusions Serum creatinine reflected muscle mass, and low serum creatinine was independently associated with low bone mineral density in subjects with normal kidney function. PMID:26207750

  5. Primary obturator externus pyomyositis in a child presenting as hip pain: a case report.

    PubMed

    Kumar, Abhishek; Anderson, David

    2008-02-01

    Hip pain in children often poses a diagnostic dilemma. Septic arthritis, Perthes disease, and slipped capital femoral epiphysis are among the most important causes. Pyomyositis involving muscles around the hip can present with similar features as septic arthritis and are difficult to diagnose because of their rarity and indolent presentation. Obturator internus and iliopsoas muscle abscess have been most commonly reported, with only 1 such report on isolated obturator externus muscle abscess. Routine laboratory investigations are nonspecific, and the diagnosis rests on imaging modalities. Magnetic resonance scan is the most useful investigation in the diagnosis and can pick up early changes in the muscle. Treatment involves appropriate antibiotic therapy with or without drainage. Most cases resolve completely. We report here a case of isolated obturator externus muscle abscess in an 11-year-old child illustrating the similarities with septic arthritis of hip and problems encountered during diagnosis and management.

  6. Validity and reliability of isometric muscle strength measurements of hip abduction and abduction with external hip rotation in a bent-hip position using a handheld dynamometer with a belt.

    PubMed

    Aramaki, Hidefumi; Katoh, Munenori; Hiiragi, Yukinobu; Kawasaki, Tsubasa; Kurihara, Tomohisa; Ohmi, Yorikatsu

    2016-07-01

    [Purpose] This study aimed to investigate the relatedness, reliability, and validity of isometric muscle strength measurements of hip abduction and abduction with an external hip rotation in a bent-hip position using a handheld dynamometer with a belt. [Subjects and Methods] Twenty healthy young adults, with a mean age of 21.5 ± 0.6 years were included. Isometric hip muscle strength in the subjects' right legs was measured under two posture positions using two devices: a handheld dynamometer with a belt and an isokinetic dynamometer. Reliability was evaluated using an intra-class correlation coefficient (ICC); relatedness and validity were evaluated using Pearson's product moment correlation coefficient. Differences in measurements of devices were assessed by two-way ANOVA. [Results] ICC (1, 1) was ≥0.9; significant positive correlations in measurements were found between the two devices under both conditions. No main effect was found between the measurement values. [Conclusion] Our findings revealed that there was relatedness, reliability, and validity of this method for isometric muscle strength measurements using a handheld dynamometer with a belt.

  7. Patients with sacroiliac joint dysfunction exhibit altered movement strategies when performing a sit-to-stand task.

    PubMed

    Capobianco, Robyn A; Feeney, Daniel F; Jeffers, Jana R; Nelson-Wong, Erika; Morreale, Joseph; Grabowski, Alena M; Enoka, Roger M

    2018-04-03

    The ability to rise from a chair is a basic functional task that is frequently compromised in individuals diagnosed with orthopedic disorders in the low back and hip. There is no published literature that describes how this task is altered by sacroiliac joint dysfunction (SIJD). The objective of this study was to compare lower extremity biomechanics and the onset of muscle activity when rising from a chair in subjects with SIJD and in healthy persons. Six women with unilateral SIJD and six age-matched healthy controls performed a sit-to-stand task while we measured kinematics, kinetics, and muscle activity. Subjects stood up at a preferred speed from a seated position on an armless and backless adjustable stool. We measured kinematics with a 10-camera motion capture system, ground reaction forces for each leg with force plates, and muscle activity with surface electromyography. Joint angles and torques were calculated using inverse dynamics. Leg-loading rate was quantified as the average slope of vertical ground reaction (VGRF) force during the 500-millisecond interval preceding maximal knee extension. Between-leg differences in loading rates and peak VGRFs were significantly greater for the SIJD group than for the control group. Maximal hip angles were significantly less for the SIJD group (p=.001). Peak hip moment in the SIJD group was significantly greater in the unaffected leg (0.75±0.22 N⋅m/kg) than in the affected leg (0.47±0.29 N⋅m/kg, p=.005). There were no between-leg or between-group differences for peak knee or ankle moments. The onset of activity in the latissimus dorsi muscle on the affected side was delayed and the erector spinae muscles were activated earlier in the SIJD group than in the control group. Subjects with SIJD have a greater VGRF on the unaffected leg, generate a greater peak hip moment in the unaffected leg, use a smaller range of motion at the hip joint of the affected leg, and delay the onset of a key muscle on the affected side when rising from a seated position. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Acute Effects of Different Agonist and Antagonist Stretching Arrangements on Static and Dynamic Range of Motion.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2015-12-01

    Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles.

  9. Hominin Hip Biomechanics: Changing Perspectives.

    PubMed

    Warrener, Anna G

    2017-05-01

    The shape of the human pelvis reflects the unique demands placed on the hip abductor muscles (gluteus medius and gluteus minimus), which stabilize the body in the frontal plane during bipedal locomotion. This morphological shift occurred early in hominin evolution, yet important shape differences between hominin species have led to significant disagreement about abductor function and locomotor capability in these extinct taxa. A static biomechanical model that relies on a close association between skeletal measurements of the pelvis and femur has traditionally been used to reconstruct hip biomechanics in these species. However, experimental biomechanical approaches have highlighted the dynamic nature of mediolateral balance in walking and running, challenging the assumptions of the static hip model. This article reviews traditional approaches for understanding hip abductor function, shows how they have been applied to the fossil hominin record, and discusses new techniques that integrate the dynamic nature of mediolateral balance during human locomotion. Anat Rec, 300:932-945, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Invariant hip moment pattern while walking with a robotic hip exoskeleton

    PubMed Central

    Lewis, Cara L.; Ferris, Daniel P.

    2011-01-01

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 minutes of the powered condition and the unpowered condition. After completing three 30-minute training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. PMID:21333995

  11. Passive moment about the hip in straight leg raising.

    PubMed

    Lee, R Y; Munn, J

    2000-06-01

    The purpose of this examine is to study the load-deformation characteristics of the hip in straight leg raising. An experimental study in which passive moment about the hip was determined as a function of hip angle. Straight leg raising is widely employed in clinical examination, and there is little information on its mechanical characteristics. Fourteen healthy volunteers were recruited for this study. Three trials of straight leg raise tests were performed while subjects lay supine on a plinth that was fitted with load cells. An electrogoniometer was employed to measure hip flexion during the test. Resistive moment at the hip was determined using a dynamic biomechanical model. The present experimental method was shown to be highly reliable. The moment-angle curves of all subjects were shown to follow an exponential function. Stiffness and strain energy of posterior hip tissues could be derived from the moment-angle curves. Evaluation of such elastic properties is clinically important as they may be altered with injuries of the tissues. Clinically, contracture of hamstring muscles and other posterior hip tissues is evaluated by measuring the available range of hip flexion in straight leg raising. However, this does not provide any information on the elastic properties of the tissues. The present study reports a reliable method of evaluating such properties.

  12. Mcconnell's patellar taping does not alter knee and hip muscle activation differences during proprioceptive exercises: A randomized placebo-controlled trial in women with patellofemoral pain syndrome.

    PubMed

    Araújo, Cynthia Gobbi Alves; de Souza Guerino Macedo, Christiane; Ferreira, Daiene; Shigaki, Leonardo; da Silva, Rubens A

    2016-12-01

    The purpose of this study was to assess the effect of patellar taping on muscle activation of the knee and hip muscles in women with Patellofemoral Pain Syndrome during five proprioceptive exercises. Forty sedentary women with syndrome were randomly allocated in two groups: Patellar Taping (based in McConnell) and Placebo (vertical taping on patella without any stretching of lateral structures of the knee). Volunteers performed five proprioceptive exercises randomly: Swing apparatus, Mini-trampoline, Bosu balance ball, Anteroposterior sway on a rectangular board and Mediolateral sway on a rectangular board. All exercises were performed in one-leg stance position with injured knee at flexion of 30° during 15s. Muscle activation was measured by surface electromyography across Vastus Medialis, Vastus Lateralis and Gluteus medius muscles. Maximal voluntary contraction was performed for both hip and knee muscles in order to normalize electromyography signal relative to maximum effort during the exercises. ANOVA results reported no significant interaction (P>0.05) and no significant differences (P>0.05) between groups and intervention effects in all exercise conditions. Significant differences (P<0.01) were only reported between muscles, where hip presented higher activity than knee muscles. Patellar taping is not better than placebo for changes in the muscular activity of both hip and knee muscles during proprioceptive exercises. ClinicalTrials.gov NCT02322515. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Maximising functional recovery following hip fracture in frail seniors.

    PubMed

    Beaupre, Lauren A; Binder, Ellen F; Cameron, Ian D; Jones, C Allyson; Orwig, Denise; Sherrington, Cathie; Magaziner, Jay

    2013-12-01

    This review discusses factors affecting recovery following hip fracture in frail older people as well as interventions associated with improved functional recovery. Prefracture function, cognitive status, co-morbidities, depression, nutrition and social support impact recovery and may interact to affect post-fracture outcome. There is mounting evidence that exercise is beneficial following hip fracture with higher-intensity/duration programmes showing more promising outcomes. Pharmacologic management for osteoporosis has benefits in preventing further fractures, and interest is growing in pharmacologic treatments for post-fracture loss of muscle mass and strength. A growing body of evidence suggests that sub-populations - those with cognitive impairment, residing in nursing homes or males - also benefit from rehabilitation after hip fracture. Optimal post-fracture care may entail the use of multiple interventions; however, more work is needed to determine optimal exercise components, duration and intensity as well as exploring the impact of multimodal interventions that combine exercise, pharmacology, nutrition and other interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Maximising functional recovery following hip fracture in frail seniors

    PubMed Central

    Beaupre, Lauren A.; Binder, Ellen F.; Cameron, Ian D.; Jones, C. Allyson; Orwig, Denise; Sherrington, Cathie; Magaziner, Jay

    2015-01-01

    This review discusses factors affecting recovery following hip fracture in frail older people as well as interventions associated with improved functional recovery. Prefracture function, cognitive status, co-morbidities, depression, nutrition and social support impact recovery and may interact to affect post-fracture outcome. There is mounting evidence that exercise is beneficial following hip fracture with higher-intensity/duration programmes showing more promising outcomes. Pharmacologic management for osteoporosis has benefits in preventing further fractures, and interest is growing in pharmacologic treatments for post-fracture loss of muscle mass and strength. A growing body of evidence suggests that sub-populations – those with cognitive impairment, residing in nursing homes or males – also benefit from rehabilitation after hip fracture. Optimal post-fracture care may entail the use of multiple interventions; however, more work is needed to determine optimal exercise components, duration and intensity as well as exploring the impact of multimodal interventions that combine exercise, pharmacology, nutrition and other interventions. PMID:24836335

  15. Overuse Injury Assessment Model

    DTIC Science & Technology

    2005-03-01

    superficialis Hip (Pelvis) Flexion Iliopsoas complex, rectus femoris, tensor fasciae latae, sartorius, pectineus Extension Semitendinosus, semimembranosus...Plantar flexion Gastrocnemius, soleus, tibialis posterior, peroneous muscles, Foot flexor muscles Spine Flexion Rectus abdominis, oblique muscles Extension...digitorum superficialis Hip Flexion Iliopsoas complex, rectus femoris, tensor fasciae latae, sartorius, pectineus, adductor magnus, adductor longus

  16. Hip rate of force development and strength are impaired in females with patellofemoral pain without signs of altered gluteus medius and maximus morphology.

    PubMed

    Nunes, Guilherme S; Barton, Christian John; Serrão, Fábio Viadanna

    2018-02-01

    To compare rate of force development (RFD) and isometric muscle strength of the hip abductors and extensors; and the thickness and the amount of non-contractile tissue of the gluteus medius and maximus between females with and without patellofemoral pain (PFP). Cross-sectional study. Fifty-four physically active females (27 with PFP and 27 healthy individuals) were studied. Hip muscle isometric strength and RFD was evaluated using isokinetic dynamometry. RFD was measured until 30%, 60%, and 90% of the maximal isometric torque (MIT). Hip muscle morphology was evaluated using ultrasonography. The PFP group possessed slower RFD compared to the control group by 33% for hip abductors until 90%MIT (-0.23%/ms, 95%CI -0.44 to -0.02, ES=0.59); by 51% for hip extensors until 30%MIT (-0.42%/ms, 95%CI -0.66 to -0.18, ES=0.97); and by 55% for hip extensors until 60%MIT (-0.36%/ms, 95%CI -0.60 to -0.12, ES=0.81). The PFP group possessed reduced isometric torque compared to the control group by 10% for hip abduction (-16.0Nm/kg×100, 95% CI -30.2 to -1.9, ES=0.61) and by 15% for hip extension (-30.1Nm/kg×100, 95%CI -51.4 to -8.9, ES=0.76). No significant between group differences for the thickness and the amount of non-contractile tissue of the gluteus medius and maximus were identified. Females with PFP have deficits in isometric strength and RFD in hip abduction and extension. RFD deficits are greater than strength deficits which may highlight their potential importance. Hip muscle strength and RFD deficits do not appear to be explained by muscle thickness or proportion of non-contractile tissue of the gluteal musculature as measured by ultrasound. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Hip-Extensor Strength, Trunk Posture, and Use of the Knee-Extensor Muscles During Running.

    PubMed

    Teng, Hsiang-Ling; Powers, Christopher M

    2016-07-01

    Diminished hip-muscle performance has been proposed to contribute to various knee injuries. To determine the association between hip-extensor muscle strength and sagittal-plane trunk posture and the relationships among hip-extensor muscle strength and hip- and knee-extensor work during running. Descriptive laboratory study. Musculoskeletal biomechanical laboratory. A total of 40 asymptomatic recreational runners, 20 men (age = 27.1 ± 7.0 years, height = 1.74 ± 0.69 m, mass = 71.1 ± 8.2 kg) and 20 women (age = 26.2 ± 5.8 years, height = 1.65 ± 0.74 m, mass = 60.6 ± 6.6 kg), participated. Maximum isometric strength of the hip extensors was assessed using a dynamometer. Sagittal-plane trunk posture (calculated relative to the global vertical axis) and hip- and knee-extensor work (sum of energy absorption and generation) during the stance phase of running were quantified while participants ran over ground at a controlled speed of 3.4 m/s. We used Pearson product moment correlations to examine the relationships among hip-extensor strength, mean sagittal-plane trunk-flexion angle, hip-extensor work, and knee-extensor work. Hip-extensor strength was correlated positively with trunk-flexion angle (r = 0.55, P < .001) and hip-extensor work (r = 0.46, P = .003). It was correlated inversely with knee-extensor work (r = -0.39, P = .01). All the correlations remained after adjusting for sex. Our findings suggest that runners with hip-extensor weakness used a more upright trunk posture. This strategy led to an overreliance on the knee extensors and may contribute to overuse running injuries at the knee.

  18. Hip-Extensor Strength, Trunk Posture, and Use of the Knee-Extensor Muscles During Running

    PubMed Central

    Teng, Hsiang-Ling; Powers, Christopher M.

    2016-01-01

    Context:  Diminished hip-muscle performance has been proposed to contribute to various knee injuries. Objective:  To determine the association between hip-extensor muscle strength and sagittal-plane trunk posture and the relationships among hip-extensor muscle strength and hip- and knee-extensor work during running. Design:  Descriptive laboratory study. Setting:  Musculoskeletal biomechanical laboratory. Patients or Other Participants:  A total of 40 asymptomatic recreational runners, 20 men (age = 27.1 ± 7.0 years, height = 1.74 ± 0.69 m, mass = 71.1 ± 8.2 kg) and 20 women (age = 26.2 ± 5.8 years, height = 1.65 ± 0.74 m, mass = 60.6 ± 6.6 kg), participated. Main Outcome Measure(s):  Maximum isometric strength of the hip extensors was assessed using a dynamometer. Sagittal-plane trunk posture (calculated relative to the global vertical axis) and hip- and knee-extensor work (sum of energy absorption and generation) during the stance phase of running were quantified while participants ran over ground at a controlled speed of 3.4 m/s. We used Pearson product moment correlations to examine the relationships among hip-extensor strength, mean sagittal-plane trunk-flexion angle, hip-extensor work, and knee-extensor work. Results:  Hip-extensor strength was correlated positively with trunk-flexion angle (r = 0.55, P < .001) and hip-extensor work (r = 0.46, P = .003). It was correlated inversely with knee-extensor work (r = −0.39, P = .01). All the correlations remained after adjusting for sex. Conclusions:  Our findings suggest that runners with hip-extensor weakness used a more upright trunk posture. This strategy led to an overreliance on the knee extensors and may contribute to overuse running injuries at the knee. PMID:27513169

  19. Relationship between Physical Impairments and Movement Patterns During Gait in Patients With End-stage Hip Osteoarthritis

    PubMed Central

    Zeni, Joseph; Pozzi, Federico; Abujaber, Sumayah; Miller, Laura

    2014-01-01

    Patients with hip osteoarthritis demonstrate limited range of motion, muscle weakness and altered biomechanics; however, few studies have evaluated the relationships between physical impairments and movement asymmetries. The purpose of this study was to identify the physical impairments related to movement abnormalities in patients awaiting total hip arthroplasty. We hypothesized that muscle weakness and pain would be related to greater movement asymmetries. Fifty-six subjects who were awaiting total hip arthroplasty were enrolled. Pain was assessed using a 0 to 10 scale, range of motion was assessed with the Harris Hip Score and isometric hip abductor strength was tested using a hand-held dynamometer. Trunk, pelvis and hip angles and moments in the frontal and sagittal planes were measured during walking using three dimensional motion analysis. During gait, subjects had 3.49 degrees less peak hip flexion and 8.82 degrees less extension angles (p<0.001) and had 0.03 Nm/k*m less hip abduction moment on the affected side (p=0.043). Weaker hip muscles were related to greater pelvis (r=−0.291) and trunk (r=−0.332) rotations in the frontal plane. These findings suggest that hip weakness drives abnormal movement patterns at the pelvis and trunk in patients with hip osteoarthritis to a greater degree than hip pain. PMID:25492583

  20. [Effects of surgery on muscles on clinical and radiographic findings in the hip joint region in cerebral palsy patients].

    PubMed

    Schejbalová, A; Havlas, V

    2008-10-01

    PURPOSE OF THE STUDY Isolated or combined surgical procedures on muscles around the hip joint are currently indicated by many authors. In cerebral palsy patients they are regarded as essential intervention. MATERIAL In the years 2005-2007, surgery in the hip joint region was essential for 150 children between 3 and 18 years of age. At the time of surgery, the patients' locomotion ranged from stage 1 to stage 7 of the Vojta system. METHODS The outcome was evaluated by clinical and radiographic examination at 2 and 6 months post-operatively and hip migration percentage and Wiberg's CE angle were measured. RESULTS The best clinical and radiographic outcomes were achieved in children younger than 6 years of age. On the other hand, isolated transfer of the distal rectus femoris muscle significantly affected pelvis anteflexion in adolescent patients. The most marked decrease in migration percentage was found after adductor tenotomy combined with surgery on the iliopsoas muscle (55.6 %) or when the two procedures were combined with distal rectus femoris transfer. DISCUSSION Combined surigical procedures, i.e., adductor tenotomy, surgery on the iliopsoas muscle or rectus femoris muscle and medial hamstrings, with fixation using an abduction modified Atlanta brace, are effective in patients with marked lateral hip migration who are younger that 6 years. Isolated adductor tenotomy and distal transfer of the rectus femoris muscle markedly improve standing position in walking patients. CONCLUSION An appropriate combination of surgical procedures on muscles in the hip region and on medial hamstrings can significantly improve the patient's locomotion and, if lateral migration is present, help to avoid surgery on bones.

  1. Efficacy of Hip Strengthening Exercises Compared With Leg Strengthening Exercises on Knee Pain, Function, and Quality of Life in Patients With Knee Osteoarthritis.

    PubMed

    Lun, Victor; Marsh, Andrew; Bray, Robert; Lindsay, David; Wiley, Preston

    2015-11-01

    The purpose of this study was to compare the efficacy of hip and leg strengthening exercise programs on knee pain, function, and quality of life (QOL) of patients with knee osteoarthritis (KOA). Single-Blinded Randomized Clinical Trial. Patients with KOA. Male and female subjects were recruited from patients referred to the University of Calgary Sport Medicine Center and from newspaper advertisements. Thirty-seven and 35 patients with KOA were randomly assigned to either a 12-week hip or leg strengthening exercise program, respectively. Both exercise programs consisted of strengthening and flexibility exercises, which were completed 3 to 5 days a week. The first 3 weeks of exercise were supervised and the remaining 9 weeks consisted of at-home exercise. Knee Injury and Osteoarthritis Score (KOOS) and Western Ontario McMaster Arthritis Index (WOMAC) questionnaires, 6-minute walk test, hip and knee range of motion (ROM), and hip and leg muscle strength. Statistically and clinically significant improvements in the KOOS and WOMAC pain subscale scores were observed in both the hip and leg strengthening programs. There was no statistical difference in the change in scores observed between the 2 groups. Equal improvements in the KOOS and WOMAC function and QOL subscales were observed for both programs. There was no change in hip and knee ROM or hip and leg strength in either group. Isolated hip and leg strengthening exercise programs seem to similarly improve knee pain, function, and QOL in patients with KOA. The results of this study show that both hip and leg strengthening exercises improve pain and QOL in patients with KOA and should be incorporated into the exercise prescription of patients with KOA.

  2. Vitamin D-deficiency and post-fracture changes in lower extremity function and falls in women with hip fractures

    PubMed Central

    Hawkes, W. G.; Glowacki, J.; Yu-Yahiro, J.; Hurwitz, S.; Magaziner, J.

    2008-01-01

    Summary We determined the prevalence of vitamin D deficiency and lower extremity function in women with hip fractures. Women with extremely low vitamin D levels had reduced lower extremity muscle function and increased falls 1 year later. Ensuring vitamin D sufficiency after a hip fracture may improve function and reduce falls. Introduction Hip fractures are the most devastating of fractures, commonly leading to loss of independent ambulation and living. In this retrospective analysis we determined the prevalence of vitamin D deficiency in women with hip fractures and the association between 25-hydroxyvitamin D [25(OH)D] levels and functional impairment one year later. Methods One hundred ten community-dwelling women with hip fractures were recruited from Boston, MA (n= 30) and Baltimore, MD (n=80) before 1998 and 25(OH)D levels were measured by radioimmunoassay. In a subset of women from Baltimore, a performance measure of the lower extremities using the lower extremity gain scale (LEGS) was measured at 2, 6, and 12 months. Falls, grip strength, chair rise time, walking speed, and balance were also determined. Results Vitamin D insufficiency defined as a 25(OH)D ≤32 ng/mL was present in 96% of the women with hip fractures and 38% had extremely low levels ≤9 ng/mL. At 1 year post-fracture, compared to women with a 25(OH) D >9 ng/mL, those with 25(OH)D ≤9 ng/mL had poorer LEGS performance (p<0.0001) and higher fall rates, without group differences in grip strength or balance. Conclusion Vitamin D sufficiency may have important effects on lower extremity function following hip fractures, without excessive healthcare costs. PMID:18373057

  3. Relation between functional mobility and dynapenia in institutionalized frail elderly.

    PubMed

    Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes

    2017-01-01

    To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test.

  4. [Orthopedic management of spina bifida].

    PubMed

    Biedermann, R

    2014-07-01

    Spina bifida is associated with congenital deformities, such as kyphosis, spinal malformations, teratological hip dislocations, clubfeet, vertical talus and also with acquired deformities due to muscle imbalance and impaired biomechanics. The degree of the acquired deformities and the mobility of the patient depend on the level of the spinal lesion. Neurological symptoms are mostly asymmetric and there is an inconsistent correlation between the anatomical level of the lesion and muscle function. Deficits of sensation are usually one to two levels lower than the motor level. An exact neurological diagnosis should not be made before the second or third year of life and an early prognosis about walking ability should be avoided. The level L3 and therefore function of the quadriceps is a functional milestone after which modified independent ambulation with the use of ankle foot orthoses (AFO) and crutches is possible. The basic principle is to support verticalization and gait even when loss of ambulation is later expected. It is also important to support and maintain sitting ability for high lesions, if necessary with correction of the spinal deformity. Findings in gait analysis have shifted the focus of treatment from radiological criteria to functional improvement, thus maintenance of the flexibility of the hip is the main goal of hip surgery. Reduction of the hip often leads to stiffness and has a high redislocation rate. Clubfoot deformities should be treated early and foot arthrodesis and stiffness have to be avoided. Another focus is the prevention of joint contracture by early prophylactic treatment. The purpose of management is to maximize the functional potential of the child. Subjective well-being, absence of pain, mobility and socialization are the main goals. This does not necessarily imply ambulation; nevertheless, verticalization and associated orthotic management is one major objective of the orthopedic management of spina bifida.

  5. Relationship of moderate and low isometric lumbar extension through architectural and muscular activity variables: a cross sectional study

    PubMed Central

    2013-01-01

    Background No study relating the changes obtained in the architecture of erector spinae (ES) muscle were registered with ultrasound and different intensities of muscle contraction recorded by surface EMG (electromyography) on the ES muscle was found. The aim of this study was analyse the relationship in the response of the ES muscle during isometric moderate and light lumbar isometric extension considering architecture and functional muscle variables. Methods Cross-sectional study. 46 subjects (52% men) with a group mean age of 30.4 (±7.78). The participants developed isometric lumbar extension while performing moderate and low isometric trunk and hip extension in a sitting position with hips flexed 90 degrees and the lumbar spine in neutral position. During these measurements, electromyography recordings and ultrasound images were taken bilaterally. Bilaterally pennation angle, muscle thickness, torque and muscle activation were measured. This study was developed at the human movement analysis laboratory of the Health Science Faculty of the University of Malaga (Spain). Results Strong and moderate correlations were found at moderate and low intensities contraction between the variable of the same intensity, with correlation values ranging from 0.726 (Torque Moderate – EMG Left Moderate) to 0.923 (Angle Left Light – Angle Right Light) (p < 0.001). This correlation is observed between the variables that describe the same intensity of contraction, showing a poor correlation between variables of different intensities. Conclusion There is a strong relationship between architecture and function variables of ES muscle when describe an isometric lumbar extension at light or moderate intensity. PMID:24252273

  6. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting.

    PubMed

    Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru

    2018-06-01

    This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.

  7. Gluteus Minimus and Gluteus Medius Muscle Activity During Common Rehabilitation Exercises in Healthy Postmenopausal Women.

    PubMed

    Ganderton, Charlotte; Pizzari, Tania; Cook, Jill; Semciw, Adam

    2017-12-01

    Study Design Controlled laboratory study, cross-sectional. Background The gluteus medius (GMed) and gluteus minimus (GMin) provide dynamic stability of the hip joint and pelvis. These muscles are susceptible to atrophy and injury in individuals during menopause, aging, and disease. Numerous studies have reported on the ability of exercises to elicit high levels of GMed activity; however, few studies have differentiated between the portions of the GMed, and none have examined the GMin. Objectives To quantify and rank the level of muscle activity of the 2 segments of the GMin (anterior and posterior fibers) and 3 segments of the GMed (anterior, middle, and posterior fibers) during 4 isometric and 3 dynamic exercises in a group of healthy, postmenopausal women. Methods Intramuscular electrodes were inserted into each segment of the GMed and GMin in 10 healthy, postmenopausal women. Participants completed 7 gluteal rehabilitation exercises, and average normalized muscle activity was used to rank the exercises from highest to lowest. Results The isometric standing hip hitch with contralateral hip swing was the highest-ranked exercise for all muscle segments except the anterior GMin, where it was ranked second. The highest-ranked dynamic exercise for all muscle segments was the dip test. Conclusion The hip hitch and its variations maximally activate the GMed and GMin muscle segments, and may be useful in hip muscle rehabilitation in postmenopausal women. J Orthop Sports Phys Ther 2017;47(12):914-922. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7229.

  8. Adductor magnus: An EMG investigation into proximal and distal portions and direction specific action.

    PubMed

    Benn, Matthew L; Pizzari, Tania; Rath, Leanne; Tucker, Kylie; Semciw, Adam I

    2018-05-01

    Cadaveric studies indicate that adductor magnus is structurally partitioned into at least two regions. The aim of this study was to investigate the direction-specific actions of proximal and distal portions of adductor magnus, and in doing so determine if these segments have distinct functional roles. Fine-wire EMG electrodes were inserted into two portions of adductor magnus of 12 healthy young adults. Muscle activity was recorded during maximum voluntary isometric contractions (MVICs) across eight tests (hip flexion/extension, internal/external rotation, abduction, and adduction at 0°, 45°, and 90° hip flexion). Median activity within each action (normalized to peak) was compared between segments using repeated measures nonparametric tests (α = 0.05). An effect size (ES = z-score/√sample size) was calculated to determine the magnitude of difference between muscle segments. The relative contribution of each muscle segment differed significantly during internal rotation (P < 0.001; ES = 0.88) and external rotation (P = 0.003, ES = 0.79). The distal portion was most active during extension [median (interquartile range); 100(0)% MVIC)] and internal rotation [58(34)% MVIC]. The proximal portion was most active during extension [100(49)% MVIC] and adduction [59(64)%MVIC], with low level activity during external rotation [15(41)%MVIC]. This study suggests that adductor magnus has at least two functionally unique regions. Differences were most evident during rotation. The different direction-specific actions may imply that each segment performs separate roles in hip stability and movement. These findings may have implications on injury prevention and rehabilitation for adductor-related groin injuries, hamstring strain injury, and hip pathology. Clin. Anat. 31:535-543, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  9. Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models.

    PubMed

    Plüss, Michael; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2018-01-01

    Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM). The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations.

  10. Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models

    PubMed Central

    Plüss, Michael; Schellenberg, Florian

    2018-01-01

    Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM). The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations. PMID:29796082

  11. Invariant hip moment pattern while walking with a robotic hip exoskeleton.

    PubMed

    Lewis, Cara L; Ferris, Daniel P

    2011-03-15

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Changes in gluteal muscle forces with alteration of footstrike pattern during running.

    PubMed

    Vannatta, Charles Nathan; Kernozek, Thomas W; Gheidi, Naghmeh

    2017-10-01

    Gait retraining is a common form of treatment for running related injuries. Proximal factors at the hip have been postulated as having a role in the development of running related injuries. How altering footstrike affects hip muscles forces and kinematics has not been described. Thus, we aimed to quantify differences in hip muscle forces and hip kinematics that may occur when healthy runners are instructed to alter their foot strike pattern from their habitual rear-foot strike to a forefoot strike. This may gain insight on the potential etiology and treatment methods of running related lower extremity injury. Twenty-five healthy female runners completed a minimum of 10 running trials in a controlled laboratory setting under rear-foot strike and instructed forefoot strike conditions. Kinetic and kinematic data were used in an inverse dynamic based static optimization to estimate individual muscle forces during running. Within subject differences were investigated using a repeated measures multi-variate analysis of variance. Peak gluteus medius and minimus and hamstring forces were reduced while peak gluteus maximus force was increased when running with an instructed forefoot strike pattern. Peak hip adduction, hip internal rotation, and heel-COM distance were also reduced. Therefore, instructing habitual rearfoot strike runners to run with a forefoot strike pattern resulted in changes in peak gluteal and hamstring muscle forces and hip kinematics. These changes may be beneficial to the development and treatment of running related lower extremity injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Acute Effects of Different Agonist and Antagonist Stretching Arrangements on Static and Dynamic Range of Motion

    PubMed Central

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2015-01-01

    Background: Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. Objectives: The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Materials and Methods: Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). Results: DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). Conclusions: In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles. PMID:26715975

  14. Effects of wide step walking on swing phase hip muscle forces and spatio-temporal gait parameters.

    PubMed

    Bajelan, Soheil; Nagano, Hanatsu; Sparrow, Tony; Begg, Rezaul K

    2017-07-01

    Human walking can be viewed essentially as a continuum of anterior balance loss followed by a step that re-stabilizes balance. To secure balance an extended base of support can be assistive but healthy young adults tend to walk with relatively narrower steps compared to vulnerable populations (e.g. older adults and patients). It was, therefore, hypothesized that wide step walking may enhance dynamic balance at the cost of disturbed optimum coupling of muscle functions, leading to additional muscle work and associated reduction of gait economy. Young healthy adults may select relatively narrow steps for a more efficient gait. The current study focused on the effects of wide step walking on hip abductor and adductor muscles and spatio-temporal gait parameters. To this end, lower body kinematic data and ground reaction forces were obtained using an Optotrak motion capture system and AMTI force plates, respectively, while AnyBody software was employed for muscle force simulation. A single step of four healthy young male adults was captured during preferred walking and wide step walking. Based on preferred walking data, two parallel lines were drawn on the walkway to indicate 50% larger step width and participants targeted the lines with their heels as they walked. In addition to step width that defined walking conditions, other spatio-temporal gait parameters including step length, double support time and single support time were obtained. Average hip muscle forces during swing were modeled. Results showed that in wide step walking step length increased, Gluteus Minimus muscles were more active while Gracilis and Adductor Longus revealed considerably reduced forces. In conclusion, greater use of abductors and loss of adductor forces were found in wide step walking. Further validation is needed in future studies involving older adults and other pathological populations.

  15. Trunk and Hip Muscle Activation Patterns Are Different During Walking in Young Children With and Without Cerebral Palsy

    PubMed Central

    Lee, Samuel C.K.; VanSant, Ann F.; Barbe, Mary F.; Lauer, Richard T.

    2010-01-01

    Background Poor control of postural muscles is a primary impairment in people with cerebral palsy (CP). Objective The purpose of this study was to investigate differences in the timing characteristics of trunk and hip muscle activity during walking in young children with CP compared with children with typical development (TD). Methods Thirty-one children (16 with TD, 15 with CP) with an average of 28.5 months of walking experience participated in this observational study. Electromyographic data were collected from 16 trunk and hip muscles as participants walked at a self-selected pace. A custom-written computer program determined onset and offset of activity. Activation and coactivation data were analyzed for group differences. Results The children with CP had greater total activation and coactivation for all muscles except the external oblique muscle and differences in the timing of activation for all muscles compared with the TD group. The implications of the observed muscle activation patterns are discussed in reference to existing postural control literature. Limitations The potential influence of recording activity from adjacent deep trunk muscles is discussed, as well as the influence of the use of an assistive device by some children with CP. Conclusions Young children with CP demonstrate excessive, nonreciprocal trunk and hip muscle activation during walking compared with children with TD. Future studies should investigate the efficacy of treatments to reduce excessive muscle activity and improve coordination of postural muscles in CP. PMID:20430948

  16. Influence of modified muscle morphology and activity pattern on the results of musculoskeletal system modelling in cerebral palsy patient.

    PubMed

    Ogrodnik, Justyna; Piszczatowski, Szczepan

    2017-01-01

    The aim of the present study was to evaluate the influence of modified morphological parameters of the muscle model and excitation pattern on the results of musculoskeletal system numerical simulation in a cerebral palsy patient. The modelling of the musculoskeletal system was performed in the AnyBody Modelling System. The standard model (MoCap) was subjected to modifications consisting of changes in morphological parameters and excitation patterns of selected muscles. The research was conducted with the use of data of a 14-year-old cerebral palsy patient. A reduction of morphological parameters (variant MI) caused a decrease in the value of active force generated by the muscle with changed geometry, and as a consequence the changes in active force generated by other muscles. A simulation of the abnormal excitation pattern (variant MII) resulted in the muscle's additional activity during its lengthening. The simultaneous modification of the muscle morphology and excitation pattern (variant MIII) points to the interdependence of both types of muscle model changes. A significant increase in the value of the reaction force in the hip joint was observed as a consequence of modification of the hip abductor activity. The morphological parameters and the excitation pattern of modelled muscles have a significant influence on the results of numerical simulation of the musculoskeletal system functioning.

  17. Isokinetic Evaluation of the Hip Flexor and Extensor Muscles: A Systematic Review.

    PubMed

    Zapparoli, Fabricio Yuri; Riberto, Marcelo

    2017-11-01

    Isokinetic dynamometry testing is a safe and reliable method accepted as the "gold standard" in the evaluation of muscle strength in the open kinetic chain. Isokinetic hip examinations face problems in the standardization of the position of the equipment axis, in the individual being examined, and in the adjustment of the lever arm and in stabilization strategies for the patients during the tests. Identification of the methodologic procedures with best reproducibility is also needed. To review the literature to evaluate the parameters used for the isokinetic evaluation of the hip flexor and extensor muscles and its reproducibility. This is a systematic literature review of the Cochrane, LILACS, PEDro, PubMed, and SciELO databases. The inclusion criteria were articles on the evaluation of hip flexor and/or extensor muscular strength with an isokinetic dynamometer and articles that analyzed the ICC or Pearson's reproducibility. The information extracted was positioning of the patient; positioning of the dynamometer axis; positioning of the lever arm; angular speed; sample size, pathology; type of contraction; and ICC and Pearson's results. 204 articles were found, from which 14 were selected that evaluated hip flexor and extensor muscles, involving 550 individuals who were submitted to an isokinetic hip evaluation. Five articles obtained the best result in reproducibility and had their methodology analyzed. To obtain better reproducibility of the isokinetic evaluation of the hip flexor and extensor muscles, the following recommendations must be followed: the individual must be positioned in the supine position and the dynamometer axis must be aligned with the greater trochanter of the femur. The positioning of the lever arm must be in the most distal region of the thigh possible. The angular speed used to analyze torque peak and muscle work was 60°/s, and to evaluate the muscle power it was 180°/s, with concentric and eccentric contractions being analyzed.

  18. Hip and groin pain in a cyclist resolved after performing a pelvic floor fascial mobilization.

    PubMed

    Navot, Sivan; Kalichman, Leonid

    2016-07-01

    Pelvic floor muscle assessment in situations of hip/groin pain in both male and female patients can be a key element in treatment success. We present herein, a 32 year old male professional cyclist, exhibiting right hip and groin pain during cycling and prolonged sitting. The pain commenced after the patient suffered a right hip severe contusion in 2013 causing a tear in the tensor fascia lata and gluteus medius muscle. The patient did not complain of pelvic floor dysfunctions. After receiving several series of conventional physical therapy for the hip/groin pain, the patient experienced partial pain relief and slight improvement of hip range of motion. His pelvic floor muscles and fascial involvement were subsequently assessed. Two sessions of Pelvic Floor Fascial Mobilization (PFFM) were performed and the patient fully recovered. The authors suggest that PFFM, a novel fascial-oriented manual therapy of the pelvic floor approach, can be used for both hip/groin and pelvic floor pain or dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Relationship between lower extremity isometric muscle strength and standing balance in patients with multiple sclerosis.

    PubMed

    Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla

    2013-01-01

    Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.

  20. Predicting the Functional Roles of Knee Joint Muscles from Internal Joint Moments.

    PubMed

    Flaxman, Teresa E; Alkjær, Tine; Simonsen, Erik B; Krogsgaard, Michael R; Benoit, Daniel L

    2017-03-01

    Knee muscles are commonly labeled as flexors or extensors and aptly stabilize the knee against sagittal plane loads. However, how these muscles stabilize the knee against adduction-abduction and rotational loads remains unclear. Our study sought 1) to classify muscle roles as they relate to joint stability by quantifying the relationship between individual muscle activation patterns and internal net joint moments in all three loading planes and 2) to determine whether these roles change with increasing force levels. A standing isometric force matching protocol required subjects to modulate ground reaction forces to elicit various combinations and magnitudes of sagittal, frontal, and transverse internal joint moments. Surface EMG measured activities of 10 lower limb muscles. Partial least squares regressions determined which internal moment(s) were significantly related to the activation of individual muscles. Rectus femoris and tensor fasciae latae were classified as moment actuators for knee extension and hip flexion. Hamstrings were classified as moment actuators for hip extension and knee flexion. Gastrocnemius and hamstring muscles were classified as specific joint stabilizers for knee rotation. Vastii were classified as general joint stabilizers because activation was independent of moment generation. Muscle roles did not change with increasing effort levels. Our findings indicate muscle activation is not dependent on anatomical orientation but perhaps on its role in maintaining knee joint stability in the frontal and transverse loading planes. This is useful for delineating the roles of biarticular knee joint muscles and could have implications in robotics, musculoskeletal modeling, sports sciences, and rehabilitation.

  1. Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: A comparative study using subject-specific musculoskeletal models.

    PubMed

    Harris, Michael D; MacWilliams, Bruce A; Bo Foreman, K; Peters, Christopher L; Weiss, Jeffrey A; Anderson, Andrew E

    2017-03-21

    Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Higher Medially-directed Joint Reaction Forces are a Characteristic of Dysplastic Hips: A Comparative Study Using Subject-Specific Musculoskeletal Models

    PubMed Central

    Harris, Michael D.; MacWilliams, Bruce A.; Foreman, K. Bo; Peters, Christopher L.; Weiss, Jeffrey A.; Anderson, Andrew E.

    2018-01-01

    Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. PMID:28233552

  3. Strength deficit of knee flexors is dependent on hip position in adults with chronic hemiparesis.

    PubMed

    Michaelsen, Stella M; Ovando, Angélica C; Bortolotti, Adriano; Bandini, Bruno

    2013-01-01

    The extent to which muscle length affects force production in paretic lower limb muscles after stroke in comparison to controls has not been established. To investigate knee flexor strength deficits dependent on hip joint position in adults with hemiparesis and compare with healthy controls. a cross-sectional study with ten subjects with chronic (63±40 months) hemiparesis with mild to moderate lower limb paresis (Fugl-Meyer score 26±3) and 10 neurologically healthy controls. Isometric knee flexion strength with the hip positioned at 90° and 0° of flexion was assessed randomly on the paretic and non-paretic side of hemiparetic subjects and healthy controls. Subjects were asked to perform a maximal isometric contraction sustained for four seconds and measured by a dynamometer. The ratio of knee flexor strength between these two hip positions was calculated: Hip 0°/Hip 90°. Also, locomotor capacity was evaluated by the timed up and go test and by walking velocity over 10 meters. In subjects with hemiparesis, absolute knee flexion torque decreased (p<0.001) with the hip in extension (at 0°). The ratio of knee flexor torque Hip 0°/Hip 90° on the paretic side in hemiparetics was lower than in controls (p=0.02). Weakness dependent on joint position is more significant in the paretic lower limb of adults with hemiparesis when compared to controls. More attention should be given to lower limb muscle strengthening exercises in individuals with stroke, with emphasis on the strengthening exercises in positions in which the muscle is shortened.

  4. The effects of performing a one-legged bridge with hip abduction and use of a sling on trunk and lower extremity muscle activation in healthy adults.

    PubMed

    Choi, Kyuju; Bak, Jongwoo; Cho, Minkwon; Chung, Yijung

    2016-09-01

    [Purpose] This study investigated the changes in the muscle activities of the trunk and lower limbs of healthy adults during a one-legged bridge exercise using a sling, and with the addition of hip abduction. [Subjects and Methods] Twenty-seven healthy individuals participated in this study (14 males and 13 females). The participants were instructed to perform the bridge exercises under five different conditions. Trunk and lower limb muscle activation of the erector spinae (ES), external oblique (EO), gluteus maximus (GM), and biceps femoris (BF) was measured using surface electromyography. Data analysis was performed using the mean scores of three trials performed under each condition. [Results] There was a significant increase in bilateral EO and contralateral GM with the one-legged bridge compared with the one-legged bridge with sling exercise. Muscle activation of the ipsilateral GM and BF was significantly less during the one-legged bridge exercise compared to the one-legged bridge with sling exercise, and was significantly greater during the one-legged bridge with hip abduction compared to the one-legged bridge exercise. The muscle activation of the contralateral GM and BF was significantly greater with the one-legged bridge with hip abduction compared to the general bridge exercise. [Conclusion] With the one-legged bridge with hip abduction, the ipsilateral EO, GM and BF muscle activities were significantly greater than those of the one-legged bridge exercise. The muscle activation of all trunk and contralateral lower extremity muscles increased with the bridge with sling exercises compared with general bridge exercises.

  5. Measures of Functional Performance and Their Association With Hip and Thigh Strength

    PubMed Central

    Kollock, Roger; Van Lunen, Bonnie L.; Ringleb, Stacie I.; Oñate, James A.

    2015-01-01

    Context: Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. Objective: To determine if functional performance tests are valid indicators of hip and thigh strength. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. Intervention(s): During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Main Outcome Measure(s): Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r 2. We used Pearson correlations to evaluate the associations between functional performance and strength. Results: In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r2 = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r2 = 38, P ≤ .01) and hip-flexor (r2 = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r2 = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r2 = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r2 = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Conclusions: Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups. PMID:25347236

  6. Computational tools for calculating alternative muscle force patterns during motion: a comparison of possible solutions.

    PubMed

    Martelli, Saulo; Calvetti, Daniela; Somersalo, Erkki; Viceconti, Marco; Taddei, Fulvia

    2013-08-09

    Comparing the available electromyography (EMG) and the related uncertainties with the space of muscle forces potentially driving the same motion can provide insights into understanding human motion in healthy and pathological neuromotor conditions. However, it is not clear how effective the available computational tools are in completely sample the possible muscle forces. In this study, we compared the effectiveness of Metabolica and the Null-Space algorithm at generating a comprehensive spectrum of possible muscle forces for a representative motion frame. The hip force peak during a selected walking trial was identified using a lower-limb musculoskeletal model. The joint moments, the muscle lever arms, and the muscle force constraints extracted from the model constituted the indeterminate equilibrium equation at the joints. Two spectra, each containing 200,000 muscle force samples, were calculated using Metabolica and the Null-Space algorithm. The full hip force range was calculated using optimization and compared with the hip force ranges derived from the Metabolica and the Null-Space spectra. The Metabolica spectrum spanned a much larger force range than the NS spectrum, reaching 811N difference for the gluteus maximus intermediate bundle. The Metabolica hip force range exhibited a 0.3-0.4 BW error on the upper and lower boundaries of the full hip force range (3.4-11.3 BW), whereas the full range was imposed in the NS spectrum. The results suggest that Metabolica is well suited for exhaustively sample the spectrum of possible muscle recruitment strategy. Future studies will investigate the muscle force range in healthy and pathological neuromotor conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Size and symmetry of trunk muscles in ballet dancers with and without low back pain.

    PubMed

    Gildea, Jan E; Hides, Julie A; Hodges, Paul W

    2013-08-01

    Cross-sectional, observational study. To investigate the cross-sectional area (CSA) of trunk muscles in professional ballet dancers with and without low back pain (LBP). LBP is the most prevalent chronic injury in classical ballet dancers. Research on nondancers has found changes in trunk muscle size and symmetry to be associated with LBP. There are no studies that examine these changes in ballet dancers. Magnetic resonance imaging was performed in 14 male and 17 female dancers. The CSAs of 4 muscles (multifidus, lumbar erector spinae, psoas, and quadratus lumborum) were measured and compared among 3 groups of dancers: those without LBP or hip pain (n = 8), those with LBP only (n = 13), and those with both hip-region pain and LBP (n = 10). Dancers with no pain had larger multifidus muscles compared to those with LBP at L3-5 (P<.024) and those with both hip-region pain and LBP at L3 and L4 on the right side (P<.027). Multifidus CSA was larger on the left side at L4 and L5 in dancers with hip-region pain and LBP compared to those with LBP only (P<.033). Changes in CSA were not related to the side of pain (all, P>.05). The CSAs of the other muscles did not differ between groups. The psoas (P<.0001) and quadratus lumborum (P<.01) muscles were larger in male dancers compared to female dancers. There was a positive correlation between the size of the psoas muscles and the number of years of professional dancing (P = .03). In classical ballet dancers, LBP and hip-region pain and LBP are associated with a smaller CSA of the multifidus but not the erector spinae, psoas, or quadratus lumborum muscles.

  8. ASSOCIATION OF ISOMETRIC STRENGTH OF HIP AND KNEE MUSCLES WITH INJURY RISK IN HIGH SCHOOL CROSS COUNTRY RUNNERS.

    PubMed

    Luedke, Lace E; Heiderscheit, Bryan C; Williams, D S Blaise; Rauh, Mitchell J

    2015-11-01

    High school cross country runners have a high incidence of overuse injuries, particularly to the knee and shin. As lower extremity strength is modifiable, identification of strength attributes that contribute to anterior knee pain (AKP) and shin injuries may influence prevention and management of these injuries. To determine if a relationship existed between isometric hip abductor, knee extensor and flexor strength and the incidence of AKP and shin injury in high school cross country runners. Sixty-eight high school cross country runners (47 girls, 21 boys) participated in the study. Isometric strength tests of hip abductors, knee extensors and flexors were performed with a handheld dynamometer. Runners were prospectively followed during the 2014 interscholastic cross country season for occurrences of AKP and shin injury. Bivariate logistic regression was used to examine risk relationships between strength values and occurrence of AKP and shin injury. During the season, three (4.4%) runners experienced AKP and 13 (19.1%) runners incurred a shin injury. Runners in the tertiles indicating weakest hip abductor (chi-square = 6.140; p=0.046), knee extensor (chi-square = 6.562; p=0.038), and knee flexor (chi-square = 6.140; p=0.046) muscle strength had a significantly higher incidence of AKP. Hip and knee muscle strength was not significantly associated with shin injury. High school cross country runners with weaker hip abductor, knee extensor and flexor muscle strength had a higher incidence of AKP. Increasing hip and knee muscle strength may reduce the likelihood of AKP in high school cross country runners. 2b.

  9. [Altered hip muscle activation in patients with chronic non-specific low back pain].

    PubMed

    Nötzel, D; Puta, C; Wagner, H; Anders, C; Petrovich, A; Gabriel, H H W

    2011-04-01

    The aim of this study was to examine postural control in patients with chronic non-specific low back pain (CNRS). Furthermore the influence of visual information (eyes open versus eyes closed) was analyzed. A total of 8 patients with CNRS and 12 healthy control subjects were examined. Surface electromyography (SEMG) recordings were made from 5 trunk and 5 lower limb muscles as well as one hip muscle during application of distal lateral perturbation. Healthy controls (mean ± standard deviation: 96.42±64.77 µV) showed a significantly higher maximum amplitude of the gluteus medius muscle in comparison to patients with CNRS (56.29±39.63 µV). Furthermore activation of several lower limb muscles was found to be dependent on visual information. Patients showed an altered reflex response of the gluteus medius muscle which could be associated with reduced hip stability. © Deutsche Gesellschaft zum Studium des Schmerzes

  10. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy.

    PubMed

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy.

  11. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy

    PubMed Central

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy. PMID:27065561

  12. [Total hip arthroplasty through anterior "minimal invasive" approach].

    PubMed

    Moerenhout, Kevin G; Cherix, Stéphane; Rüdiger, Hannes A

    2012-12-19

    Total hip replacement has seen a tremendous development and has become one of the most successful surgical interventions in orthopaedics. While during the first decades of development of total hip arthroplasty the fixation of the implant into the bone was the main concern, the focus has shifted towards surgical technique and soft tissue handling. In order to avoid permanent soft tissue damage, muscular dysfunction and concerns in regards to cosmetics, minimal invasive and anatomic approaches have been developed. We here provide a short overview on various methods of total hip replacements and we describe our technique through a minimal invasive direct anterior approach. While muscle and nerve damage is minimal, this technique allows for a rapid rehabilitation and is associated with an excellent functional outcome and a minimal risk for dislocation.

  13. Pre- and post-alpha motoneuronal control of the soleus H-reflex during sinusoidal hip movements in human spinal cord injury

    PubMed Central

    Knikou, Maria; Chaudhuri, Debjani; Kay, Elizabeth; Schmit, Brian D.

    2006-01-01

    The aim of this study was to establish the contribution of hip-mediated sensory feedback to spinal interneuronal circuits during dynamic conditions in people with incomplete spinal cord injury (SCI). Specifically, we investigated the effects of synergistic and antagonistic group I afferents on the soleus H-reflex during imposed sinusoidal hip movements. The soleus H-reflex was conditioned by stimulating the common peroneal nerve (CPN) at short (2, 3, and 4 ms) and long (80, 100, and 120 ms) conditioning test (C-T) intervals to assess the reciprocal and pre-synaptic inhibition of the soleus H-reflex, respectively. The soleus H-reflex was also conditioned by medial gastrocnemius (MG) nerve stimulation at C-T intervals ranging from 4 to 7 ms to assess changes in autogenic Ib inhibition during hip movement. Sinusoidal hip movements were imposed to the right hip joint at 0.2 Hz by the Biodex system while subjects were supine. The effects of sinusoidal hip movement on five leg muscles along with hip, knee, and ankle joint torques were also established during sensorimotor conditioning of the reflex. Phase-dependent modulation of antagonistic and synergistic muscle afferents was present during hip movement, with the reciprocal, pre-synaptic, and Ib inhibition to be significantly reduced during hip extension and reinforced during hip flexion. Reflexive muscle and joint torque responses – induced by the hip movement – were entrained to specific phases of hip movement. This study provides evidence that hip-mediated input acts as a controlling signal of pre- and post-alpha motoneuronal control of the soleus H-reflex. The expression of these spinal interneuronal circuits during imposed sinusoidal hip movements is discussed with respect to motor recovery in humans after SCI. PMID:16782072

  14. Dynamic Ultrasonography of the Deep External Rotator Musculature of the Hip: A Descriptive Study.

    PubMed

    Battaglia, Patrick J; Mattox, Ross; Haun, Daniel W; Welk, Aaron B; Kettner, Norman W

    2016-07-01

    No detailed reports exist describing the methodology of ultrasound image acquisition of the deep external rotator muscles of the hip. Because gluteal pain and sciatica are common, ultrasound may be a useful dynamic imaging adjunct in the evaluation of these patients. To describe dynamic ultrasonography of the deep external rotator muscles of the hip for diagnostic purposes. Descriptive. University radiology department. Participants (n = 25; 14 male) without gluteal pain or sciatica were enrolled (mean age 27.6 ± 4.7 years; mean body mass index 26.0 ± 4.1 kg/m(2)). Ultrasonographic cine clips oriented to the long axis of each deep external rotator muscle were captured. In addition, cine clips of the piriformis tendon and obturator internus tendon were obtained. Cine clips were analyzed approximately 1 week after completion of image acquisition independently by 2 blinded raters. A 5-point Likert scale to evaluate the diagnostic utility of the ultrasound image. The modal Likert scores for rater 1 were as follows: piriformis muscle = 4; piriformis tendon = 4; superior gemellus muscle = 3; obturator internus muscle = 4; obturator internus tendon = 4; inferior gemellus muscle = 4; quadratus femoris muscle = 4. The modal scores for rater 2 were: piriformis muscle = 4; piriformis tendon = 3; superior gemellus muscle = 4; obturator internus muscle = 3; obturator internus tendon = 4; inferior gemellus muscle = 3; quadratus femoris muscle = 4. Dynamic ultrasonography may be useful to image the hip deep external rotator musculature for diagnostic purposes and therefore aid in the evaluation of gluteal pain and sciatica. Future work should investigate the reliability and validity of ultrasonography in the evaluation of pathology of these muscles. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Prevention: Exercise

    MedlinePlus

    ... hips and knees bent. Use your hips to push your body back to a standing position, then extend your arms ... your temple and use your neck muscles to push against your palm, holding for ... neck muscles to press back into your hands. Hold for ten seconds, and ...

  16. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers.

    PubMed

    Miyamoto, N; Hirata, K; Kanehisa, H

    2017-01-01

    The purpose of this study was to examine whether the effects of hamstring stretching on the passive stiffness of each of the long head of the biceps femoris (BFl), semitendinosus (ST), and semimembranosus (SM) vary between passive knee extension and hip flexion stretching maneuvers. In 12 male subjects, before and after five sets of 90 s static stretching, passive lengthening measurements where knee or hip joint was passively rotated to the maximal range of motion (ROM) were performed. During the passive lengthening, shear modulus of each muscle was measured by ultrasound shear wave elastography. Both stretching maneuvers significantly increased maximal ROM and decreased passive torque at a given joint angle. Passive knee extension stretching maneuver significantly reduced shear modulus at a given knee joint angle in all of BFl, ST, and SM. In contrast, the stretching effect by passive hip flexion maneuver was significant only in ST and SM. The present findings indicate that the effects of hamstring stretching on individual passive muscles' stiffness vary between passive knee extension and hip flexion stretching maneuvers. In terms of reducing the muscle stiffness of BFl, stretching of the hamstring should be performed by passive knee extension rather than hip flexion. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Increased pain sensitivity but normal function of exercise induced analgesia in hip and knee osteoarthritis--treatment effects of neuromuscular exercise and total joint replacement.

    PubMed

    Kosek, E; Roos, E M; Ageberg, E; Nilsdotter, A

    2013-09-01

    To assess exercise induced analgesia (EIA) and pain sensitivity in hip and knee osteoarthritis (OA) and to study the effects of neuromuscular exercise and surgery on these parameters. The dataset consisted of knee (n = 66) and hip (n = 47) OA patients assigned for total joint replacement at Lund University Hospital undergoing pre-operative neuromuscular exercise and 43 matched controls. Sensitivity to pressure pain was assessed by pressure algometry at 10 sites. Subjects were then instructed to perform a standardized static knee extension. Pressure pain thresholds (PPTs) were assessed at the contracting quadriceps muscle (Q) and at the resting deltoid muscle (D) before and during contraction. The relative increase in PPTs during contraction was taken as a measure of localized (Q) or generalized (D) EIA. Patients were assessed at baseline, following on average 12 weeks of neuromuscular exercise and 3 months following surgery. We found a normal function of EIA in OA patients at baseline. Previous studies have reported beneficial effects of physical exercise on pain modulation in healthy subjects. However, no treatment effects on EIA were seen in OA patients despite the increase in muscle strength following neuromuscular exercise and reduced pain following surgery. Compared to controls, OA patients had increased pain sensitivity and no beneficial effects on pain sensitivity were seen following treatment. To our knowledge, this is the first study of EIA in OA patients. Despite increased pain sensitivity, OA patients had a normal function of EIA. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Effects of William training on lumbosacral muscles function, lumbar curve and pain.

    PubMed

    Fatemi, Rouholah; Javid, Marziyeh; Najafabadi, Ebrahim Moslehi

    2015-01-01

    There are many types of treatments and recommendations for restoring back deformities depending on doctors' knowledge and opinions. The purpose of the exercises is to reduce pain and to ensure stability of the lower trunk by toning the abdominal muscles, buttocks and hamstrings. Given the duration of flares and relapses rate, it is important to apply an efficient and lasting treatment. To evaluate the effects of 8 weeks of William's training on flexibility of lumbosacral muscles and lumbar angle in females with Hyperlordosis. Forty female students with lumbar lordosis more than normal degrees (Hyperlordotic) that were randomly divided into exercise and control groups were selected as the study sample. The lumbar lordosis was measured using a flexible ruler, flexibility of hamstring muscles was measured with the active knee extension test, the hip flexor muscles strength was measured using Thomas test, the lumbar muscles flexibility measures by Schober test, abdominal muscles strength measured by Sit-Up test and back pain was measured using McGill's Visual Analogue Scales (VAS) questionnaire. Data were compared before and post-test using independent and paired t-testes. Results showed that 8 weeks of William's exercise led to significant decreases in lumbar angle and back pain, increases in flexibility of hamstring muscles, hip flexor muscles flexibility, lumbar extensor muscles flexibility and abdominal muscles strength. The findings show that William's corrective training can be considered as a useful and valid method for restoring and refining back deformities like as accentuated back-arc and became wreaked muscles' performance in lumbar areas.

  19. Test-retest reliability of cardinal plane isokinetic hip torque and EMG.

    PubMed

    Claiborne, Tina L; Timmons, Mark K; Pincivero, Danny M

    2009-10-01

    The objective of the present study was to establish test-retest reliability of isokinetic hip torque and prime mover electromyogram (EMG) through the three cardinal planes of motion. Thirteen healthy young adults participated in two experimental sessions, separated by approximately one week. During each session, isokinetic hip torque was evaluated on the Biodex Isokinetic Dynamometer at a velocity of 60 deg/s. Subjects performed three maximal-effort concentric and eccentric contractions, separately, for right and left hip abduction/adduction, flexion/extension, and internal/external rotation. Surface EMGs were sampled from the gluteus maximus, gluteus medius, adductor, medial and lateral hamstring, and rectus femoris muscles during all contractions. Intraclass correlation coefficients (ICC - 2,1) and standard errors of measurement (SEM) were calculated for peak torque for each movement direction and contraction mode, while ICCs were only computed for the EMG data. Motions that demonstrated high torque reliability included concentric hip abduction (right and left), flexion (right and left), extension (right) and internal rotation (right and left), and eccentric hip abduction (left), adduction (left), flexion (right), and extension (right and left) (ICC range=0.81-0.91). Motions with moderate torque reliability included concentric hip adduction (right), extension (left), internal rotation (left), and external rotation (right), and eccentric hip abduction and adduction (right), flexion (left), internal rotation (right and left), and external rotation (right and left) (ICC range=0.49-0.79). The majority of the EMG sampled muscles (n=12 and n=11 for concentric and eccentric contractions, respectively) demonstrated high reliability (ICC=0.81-0.95). Instances of low, or unacceptable, EMG reliability values occurred for the medial hamstring muscle of the left leg (both contraction modes) and the adductor muscle of the right leg during eccentric internal rotation. The major finding revealed high and moderate levels of between-day reliability of isokinetic hip peak torque and prime mover EMG. It is recommended that the day-to-day variability estimates concomitant with acceptable levels of reliability be considered when attempting to objectify intervention effects on hip muscle performance.

  20. Relation between functional mobility and dynapenia in institutionalized frail elderly

    PubMed Central

    Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes

    2017-01-01

    ABSTRACT Objective To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. Methods A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Results Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). Conclusion A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test. PMID:29091148

  1. The Aftermath of Hip Fracture: Discharge Placement, Functional Status Change, and Mortality

    PubMed Central

    Bentler, Suzanne E.; Liu, Li; Obrizan, Maksym; Cook, Elizabeth A.; Wright, Kara B.; Geweke, John F.; Chrischilles, Elizabeth A.; Pavlik, Claire E.; Wallace, Robert B.; Ohsfeldt, Robert L.; Jones, Michael P.; Rosenthal, Gary E.; Wolinsky, Fredric D.

    2009-01-01

    The authors prospectively explored the consequences of hip fracture with regard to discharge placement, functional status, and mortality using the Survey on Assets and Health Dynamics Among the Oldest Old (AHEAD). Data from baseline (1993) AHEAD interviews and biennial follow-up interviews were linked to Medicare claims data from 1993–2005. There were 495 postbaseline hip fractures among 5,511 respondents aged ≥69 years. Mean age at hip fracture was 85 years; 73% of fracture patients were white women, 45% had pertrochanteric fractures, and 55% underwent surgical pinning. Most patients (58%) were discharged to a nursing facility, with 14% being discharged to their homes. In-hospital, 6-month, and 1-year mortality were 2.7%, 19%, and 26%, respectively. Declines in functional-status-scale scores ranged from 29% on the fine motor skills scale to 56% on the mobility index. Mean scale score declines were 1.9 for activities of daily living, 1.7 for instrumental activities of daily living, and 2.2 for depressive symptoms; scores on mobility, large muscle, gross motor, and cognitive status scales worsened by 2.3, 1.6, 2.2, and 2.5 points, respectively. Hip fracture characteristics, socioeconomic status, and year of fracture were significantly associated with discharge placement. Sex, age, dementia, and frailty were significantly associated with mortality. This is one of the few studies to prospectively capture these declines in functional status after hip fracture. PMID:19808632

  2. Associations of maximal voluntary isometric hip extension torque with muscle size of hamstring and gluteus maximus and intra-abdominal pressure.

    PubMed

    Tayashiki, Kota; Hirata, Kosuke; Ishida, Kiraku; Kanehisa, Hiroaki; Miyamoto, Naokazu

    2017-06-01

    Muscle size of the hamstring and gluteus maximus (GM) as well as intra-abdominal pressure (IAP) are considered as factors affecting the torque development during hip extension. This study examined the associations of torque development during maximal voluntary isometric hip extension with IAP and muscle size of the hamstring and GM. Anatomical cross-sectional area (ACSA) of the hamstring and thickness of GM were determined in 20 healthy young males using an ultrasonography apparatus (Experiment 1). Torque and IAP were simultaneously measured while subjects performed maximal voluntary isometric hip extension. The IAP was measured using a pressure transducer placed in the rectum and determined at the time at which the developed torque reached to the maximal. In Experiment 2, torque and IAP were measured during maximal voluntary isometric hip flexion in 18 healthy young males. The maximal hip extension torque was significantly correlated with the IAP (r = 0.504, P = 0.024), not with the ACSA of the hamstring (r = 0.307, P = 0.188) or the thickness of GM (r = 0.405, P = 0.076). The relationship was still significant even when the ACSA of the hamstring and the thickness of GM were adjusted statistically (r = 0.486, P = 0.041). The maximal hip flexion torque was not significantly correlated with the IAP (r = -0.118, P = 0.642). The current results suggest that IAP can contribute independently of the muscle size of the agonists to maximal voluntary hip extension torque.

  3. Normative values of hip strength in adult male association football players assessed by handheld dynamometry.

    PubMed

    Hanna, Chris M; Fulcher, Mark L; Elley, C Raina; Moyes, Simon A

    2010-05-01

    Chronic groin pain is a common problem in association football players. Normative values for the strength of hip muscles, measured in an accurate and accessible manner, are needed to gauge strength and inform return to play decisions in this group. The purpose of this study was to define normative values of hip muscle strength using handheld dynamometry. A series of reliable clinical tests that are commonly used when making return to sport decisions in athletes with chronic adductor related groin pain have been selected. One hundred and twenty adult male association football players, free from injury, were recruited. Isometric strength of the hip flexors and adductor muscles was measured using a handheld dynamometer. Mean age was 24.9 years (SD 5.9). Eighty participants (67%) had experienced groin pain in the past. Mean strength for dominant leg hip flexion was 47.3 kg (95% confidence interval 45.6-49.0), non-dominant leg hip flexion was 42.5 kg (41.1-43.9), adduction at 0 degrees hip flexion was 35.6 kg (34.1-37.1), adduction at 45 degrees was 32.0 kg (30.9-33.1), and adduction at 90 degrees was 25.5 kg (24.4-26.5). This study establishes reference ranges and predictive equations for maximal isometric contraction strength of the hip muscles in non-injured adult male association football players. This information will assist assessment and management of an athlete's return to play following injury. 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off

    PubMed Central

    Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Molino Lova, Raffaele; Micera, Silvestro; Vitiello, Nicola

    2018-01-01

    We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding the placement of the EMG electrodes at the human–robot interface can reduce discomfort issues for the user and motion artifacts of the recorded signals; second, using a powerful signal for control, such as the GM, could improve the reliability of the control system. The control strategy has been tested on eight healthy subjects, walking with the robotic hip exoskeleton on the treadmill. We evaluated the controller performance and the effect of the assistance on muscle activities. The tuning of the assistance timing in the controller was subject dependent and varied across subjects. Two muscles could benefit more from the assistive strategy, namely the Rectus Femoris (directly assisted) and the Tibialis Anterior (indirectly assisted). A significant correlation was found between the timing of the delivered assistance (i.e., synchronism with the biological hip torque), and reduction of the hip flexors muscular activity during walking; instead, no significant correlations were found for peak torque and peak power. Results suggest that the timing of the assistance is the most significant parameter influencing the effectiveness of the control strategy. The findings of this work could be important for future studies aimed at developing assistive strategies for walking assistance exoskeletons. PMID:29491830

  5. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off.

    PubMed

    Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Molino Lova, Raffaele; Micera, Silvestro; Vitiello, Nicola

    2018-01-01

    We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding the placement of the EMG electrodes at the human-robot interface can reduce discomfort issues for the user and motion artifacts of the recorded signals; second, using a powerful signal for control, such as the GM, could improve the reliability of the control system. The control strategy has been tested on eight healthy subjects, walking with the robotic hip exoskeleton on the treadmill. We evaluated the controller performance and the effect of the assistance on muscle activities. The tuning of the assistance timing in the controller was subject dependent and varied across subjects. Two muscles could benefit more from the assistive strategy, namely the Rectus Femoris (directly assisted) and the Tibialis Anterior (indirectly assisted). A significant correlation was found between the timing of the delivered assistance (i.e., synchronism with the biological hip torque), and reduction of the hip flexors muscular activity during walking; instead, no significant correlations were found for peak torque and peak power. Results suggest that the timing of the assistance is the most significant parameter influencing the effectiveness of the control strategy. The findings of this work could be important for future studies aimed at developing assistive strategies for walking assistance exoskeletons.

  6. CT of Patients With Hip Fracture: Muscle Size and Attenuation Help Predict Mortality

    PubMed Central

    Boutin, Robert D.; Bamrungchart, Sara; Bateni, Cyrus P.; Beavers, Daniel P.; Beavers, Kristen M.; Meehan, John P.; Lenchik, Leon

    2018-01-01

    OBJECTIVE Our objective was to determine the association between muscle cross-sectional area and attenuation, as measured on routine CT scans, and mortality in older patients with hip fracture. MATERIALS AND METHODS A retrospective 10-year study of patients with hip fracture was conducted with the following inclusion criteria: age 65 years or older, first-time hip fracture treated with surgery, and CT of the chest, abdomen, or pelvis. This yielded 274 patients (70.4% women; mean [± SD] age, 81.3 ± 8.3 years). On each CT scan, two readers independently measured the size (cross-sectional area, indexed for patient height) and attenuation of the paravertebral muscle at T12 and the psoas muscle at L4. We then determined the association between overall mortality and the muscle size and muscle attenuation, while adjusting for demographic variables (age, sex, ethnicity, and body mass index), American Society of Anesthesiologists (ASA) classification, and Charlson comorbidity index (CCI). RESULTS The overall mortality rate increased from 28.3% at 1 year to 79.5% at 5 years. Mortality was associated with decreased thoracic muscle size (odds ratio [OR], 0.66; 95% CI, 0.49–0.87). This association persisted after adjusting for demographic variables (OR, 0.69; 95% CI, 0.50–0.95), the ASA classification (OR, 0.70; CI, 0.51–0.97), and the CCI (OR, 0.72; 95% CI, 0.52–1.00). Similarly, decreased survival was associated with decreased thoracic muscle attenuation after adjusting for all of these combinations of covariates (OR, 0.67–0.72; 95% CI, 0.49–0.99). Decreased lumbar muscle size and attenuation trended with decreased survival but did not reach statistical significance. CONCLUSION In older adults with hip fractures, CT findings of decreased thoracic paravertebral muscle size and attenuation are associated with decreased overall survival. PMID:28267356

  7. Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Duchenne Muscular Dystrophy: Safety and Feasibility Study in India.

    PubMed

    Rajput, B S; Chakrabarti, Swarup K; Dongare, Vaishali S; Ramirez, Christina M; Deb, Kaushik D

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a musculo-degenerative disease characterized by lack of dystrophin production with no definite cure available currently. Discarded umbilical cord is a potential source of mesenchymal stem cells which are non-immunogenic and can be used for transplantation in allogenic set ups. Given the regenerative and anti-inflammatory properties of mesenchymal stem cells (MSCs), here we investigated its role in the cellular therapy of DMD patients. This is a single-blinded study conducted in various hospitals of India situated in Mumbai, Delhi, and Lucknow. Inclusion criteria for enrolling the patients in the study were boys aged between 5 to 18 years, absence of dystrophin in the immunohistochemistry of muscle biopsy and mutation in dystrophin gene in cytogenetic analysis. The exclusion criteria were presence of dystrophin in the muscle biopsy, patients on corticosteroids etc. UC-MSCs (2 millions/kg body weight) were administered through IV and IM injection. Muscle power in muscles of proximal upper limb, distal upper limb, proximal lower limb, distal lower limb, hip flexors, hip extensors, hip abductors, and paraspinal muscles were measured in 11 DMD patients after UC-MSCs transplantation and were followed for up to 3 years (average follow up 1.5 years). 5 DMD patients did not receive any UC-MSCs transplantation and served as the control group. The treatment group (N = 11 at baseline) had a pretransplantation strength of 3.45 ± 1.0357 and 4.090 ± 0.8312 in muscles of proximal upper limb and distal upper limb respectively. After 1 year (N = 9) these strengths remained stable with an average of 3.78 (1.03) and 4.22 (0.83). In contrast, the control group (N = 5) has a pre-transplantation strength of 3.6 (0.54) and 4 (1) in the proximal and distal upper limb respectively. After 1 year, (N = 5) 3/5 subjects had a slight but not statistically significant decrease in the proximal upper limb, mean 3.0 (1.0) and 5/5 had a lunit decrease in strength, mean 3.0 (1.0). The treatment group had a pre-transplantation strength of 2.0909 ± 0.8312 and 3.1181 ± 0.8738 in muscles of distal and proximal lower limbs respectively. At 1 year (N = 9), 4/9 subjects had a 1 unit increase in strength in the distal lower limb (mean 3.78 (0.97)) and 8/9 subjects had a lunit increase in strength in the proximal lower limb, mean 3.11 (1.05). The control group has a mean of 3.41 (0.54) and 3.0 (1.0) at baseline in the distal and proximal lower limb respectively. By 1 year, 3/5 subjects had a 1 unit decrease (mean 2.8 (0.45)) and 5/5 had a lunit decrease, mean 2.0 (1.0) in distal and proximal lower limb strength. Stability in muscle function was also achieved in muscles of hip flexors, hip extensors, hip abductors, and paraspinal muscles at one year as compared to untreated group. UC-MSCs administration not only resulted in the stabilization of muscle power but also did not show GVHD or any deleterious effects on the patients and thus may be considered as safe option for treatment of DMD as compared to control untreated group although further larger double-blinded studies are needed.

  8. Clinical effectiveness of the obturator externus muscle injection in chronic pelvic pain patients.

    PubMed

    Kim, Shin Hyung; Kim, Do Hyeong; Yoon, Duck Mi; Yoon, Kyung Bong

    2015-01-01

    Because of its anatomical location and function, the obturator externus (OE) muscle can be a source of pain; however, this muscle is understudied as a possible target for therapeutic intervention in pain practice. In this retrospective observational study, we evaluated the clinical effectiveness of the OE muscle injection with a local anesthetic in chronic pelvic pain patients with suspected OE muscle problems. Twenty-three patients with localized tenderness on the inferolateral side of the pubic tubercle accompanied by pain in the groin, anteromedial thigh, or hip were studied. After identifying the OE with contrast dye under fluoroscopic guidance, 5 to 8 mL of 0.3% lidocaine was injected. Pain scores were assessed before and after injection; patient satisfaction was also assessed. Mean pain score decreased by 44.7% (6.6 ± 1.8 to 3.5 ± 0.9, P < 0.001) 2 weeks after OE muscle injection as compared with pain score before injection. In addition, 82% of patients (19 of 23 patients) reported excellent or good satisfaction during 2 weeks after injection. No patients reported complications from OE muscle injection. Fluoroscopy-guided injection of the OE muscle with local anesthetic reduced pain scores and led to a high level of satisfaction at short-term follow-up in patients with suspected OE muscle problem. The results of this study suggest that OE muscle injection may be a valuable therapeutic option for a select group of chronic pelvic pain patients who present with localized tenderness in the OE muscle that is accompanied by groin, anteromedial thigh, or hip pain. © 2013 World Institute of Pain.

  9. Circuit strength training improves muscle strength, functional performance and anthropometric indicators in sedentary elderly women.

    PubMed

    Mazini Filho, Mauro L; Aidar, Felipe J; Gama de Matos, Dihogo; Costa Moreira, Osvaldo; Patrocínio de Oliveira, Cláudia E; de Oliveira Venturini, Gabriela R; Magalhães Curty, Victor; Menezes Touguinha, Henrique; Caputo Ferreira, Maria E

    2017-04-26

    This study aimed to investigate the effects of circuit strength training on the muscle strength, functional autonomy and anthropometric indicators of the elderly. Were included 65 women divided in two groups: strength training (TG, n= 34) and control group (CG, n = 31). The strength-training group was subjected to a circuit shaped training program, three days per week, for a period of 12 weeks. In each training session, the circuit was repeated three times. In each circuit, all exercises wereperformed once, with 8 to 12 repetitions per exercise, with 30-seconds intervals between each exercise. TG showed significantly changes in body composition post 12 weeks, as decreases in body weight (Δ -1.5±1.8 kg) and BMI (Δ-0.57 ±0.74 kg/m²), and decreases in abdominal (Δ -3±1.61 cm), waist (Δ -1 ± 1.61 cm), hip (Δ -2.75±1.44 cm) and waist hip ratio circumference (Δ -0.02 ± 0.15 cm). For functional autonomy, TG showed increases post 12 weeks by 30-second chair stand (Δ 3.5±0.4 reps), six minute walk (Δ60.95±7.91 m), back scratch (Δ 3.2 ± 1.36 cm), and time up and go tests (Δ -1,62 ±0,15s). TG also showed increases in muscle strength post 12 weeks in both leg press (Δ 11±1,29 kg) and lat pulldown (Δ11 ±0,75 Kg). For CG, Body composition, functional autonomy and muscle strength did not improved in any moment. Hence, circuit strength training provides significant improvements inmuscle strength, functional performance and anthropometric indicators in sedentary elderly women.

  10. Muscle MRI and functional outcome measures in Becker muscular dystrophy.

    PubMed

    Barp, Andrea; Bello, Luca; Caumo, Luca; Campadello, Paola; Semplicini, Claudio; Lazzarotto, Annalisa; Sorarù, Gianni; Calore, Chiara; Rampado, Alessandro; Motta, Raffaella; Stramare, Roberto; Pegoraro, Elena

    2017-11-22

    Becker muscular dystrophy (BMD) is a neuromuscular disorder allelic to Duchenne muscular dystrophy (DMD), caused by in-frame mutations in the dystrophin gene, and characterized by a clinical progression that is both milder and more heterogeneous than DMD. Muscle magnetic resonance imaging (MRI) has been proposed as biomarker of disease progression in dystrophinopathies. Correlation with clinically meaningful outcome measures such as North Star Ambulatory Assessment (NSAA) and 6 minute walk test (6MWT) is paramount for biomarker qualification. In this study, 51 molecularly confirmed BMD patients (aged 7-69 years) underwent muscle MRI and were evaluated with functional measures (NSAA and 6MWT) at the time of the MRI, and subsequently after one year. We confirmed a pattern of fatty substitution involving mainly the hip extensors and most thigh muscles. Severity of muscle fatty substitution was significantly correlated with specific DMD mutations: in particular, patients with an isolated deletion of exon 48, or deletions bordering exon 51, showed milder involvement. Fat infiltration scores correlated with baseline functional measures, and predicted changes after 1 year. We conclude that in BMD, skeletal muscle MRI not only strongly correlates with motor function, but also helps in predicting functional deterioration within a 12-month time frame.

  11. Movement Strategies among Groups of Chronic Ankle Instability, Coper, and Control.

    PubMed

    Son, S Jun; Kim, Hyunsoo; Seeley, Matthew K; Hopkins, J Ty

    2017-08-01

    Comprehensive evaluation of movement strategies during functional movement is a difficult undertaking. Because of this challenge, studied movements have been oversimplified. Furthermore, evaluating movement strategies at only a discrete time point(s) provide limited insight into how movement strategies may change or adapt in chronic ankle instability (CAI) patients. This study aimed to identify abnormal movement strategies in individuals with a history of ankle sprain injury during a sports maneuver compared with healthy controls. Sixty-six participants, consisting of 22 CAI patients, 22 ankle sprain copers, and 22 healthy controls, participated in this study. Functional profiles of lower extremity kinematics, kinetics, and EMG activation from initial contact (0% of stance) to toe-off (100% of stance) were collected and analyzed during a jump landing/cutting task using a functional data analysis approach. Compared with copers, CAI patients displayed landing positions of less plantarflexion, less inversion, more knee flexion, more hip flexion, and less hip abduction during the first 25% of stance. However, restricted dorsiflexion angle was observed in both CAI patients and copers relative to controls during the midlanding to mid-side-cutting phase when the ankle and knee reached its peak range of motion (e.g., dorsiflexion and knee flexion). Reduced EMG activation of tibialis anterior, peroneus longus, medial gastrocnemius, and gluteus medius may be due to altered kinematics that reduce muscular demands on the involved muscles. CAI patients displayed altered movement strategies, perhaps in an attempt to avoid perceived positions of risk. Although sagittal joint positions seemed to increase the external torque on the knee and hip extensors, frontal joint positions appeared to reduce the muscular demands on evertor and hip abductor muscles.

  12. Volume and fat infiltration of spino-pelvic musculature in adults with spinal deformity

    PubMed Central

    Moal, Bertrand; Bronsard, Nicolas; Raya, José G; Vital, Jean Marc; Schwab, Frank; Skalli, Wafa; Lafage, Virginie

    2015-01-01

    AIM: To investigate fat infiltration and volume of spino-pelvic muscles in adults spinal deformity (ASD) with magnetic resonance imaging (MRI) and 3D reconstructions. METHODS: Nineteen female ASD patients (mean age 60 ± 13) were included prospectively and consecutively and had T1-weighted Turbo Spin Echo sequence MRIs with Dixon method from the proximal tibia up to T12 vertebra. The Dixon method permitted to evaluate the proportion of fat inside each muscle (fat-water ratio). In order to investigate the accuracy of the Dixon method for estimating fat vs water, the same MRI acquisition was performed on phantoms of four vials composed of different proportion of fat vs water. With Muscl’X software, 3D reconstructions of 17 muscles or group of muscles were obtained identifying the muscle’s contour on a limited number of axial images [Deformation of parametric specific objects (DPSO) Method]. Musclar volume (Vmuscle), infiltrated fat volume (Vfat) and percentage of fat infiltration [Pfat, calculated as follow: Pfat = 100 × (Vfat/Vmuscle)] were characterized by extensor or flexor function respectively for the spine, hip and knee and theirs relationship with demographic data were investigated. RESULTS: Phantom acquisition demonstrated a non linear relation between Dixon fat-water ratio and the real fat-water ratio. In order to correct the Dixon fat-water ratio, the non linear relation was approximated with a polynomial function of degree three using the phantom acquisition. On average, Pfat was 13.3% ± 5.3%. Muscles from the spinal extensor group had a Pfat significantly greater than the other muscles groups, and the largest variability (Pfat = 31.9% ± 13.8%, P < 0.001). Muscles from the hip extensor group ranked 2nd in terms of Pfat (14% ± 8%), and were significantly greater than those of the knee extensor (P = 0.030). Muscles from the knee extensor group demonstrated the least Pfat (12% ± 8%). They were also the only group with a significant correlation between Vmuscle and Pfat (r = -0.741, P < 0.001), however this correlation was lacking in the other groups. No correlation was found between the Vmuscle total and age or body mass index. Except for the spine flexors, Pfat was correlated with age. Vmuscle and Vfat distributions demonstrated that muscular degeneration impacted the spinal extensors most. CONCLUSION: Mechanisms of fat infiltration are not similar among the muscle groups. Degeneration impacted the spinal and hip extensors most, key muscles of the sagittal alignment. PMID:26495250

  13. Muscle Strength Imbalance in the Hip Joint Caused by Fast Movements

    NASA Astrophysics Data System (ADS)

    Pontaga, I.

    2003-07-01

    Eleven male sportsmen at the age of 24.3 ± 4.5 were examined. Their hip joint flexors and extensors were tested by an "REV-9000" Technogym dynamometer system during isokinetic movements at angular velocities of 100 (low) and 200 (high) °/s. The range of hip joint movements was from 30 (in flexion) to 130° (in extension). Torque values and their ratios for hip flexors and extensors at different angular positions were obtained and compared. It is shown that, at high speeds, the flexion movement significantly raises ( p < 0.001) the torque ratios of flexors and extensors in flexion positions of the hip (50 and 60°). These ratios approximately twofold exceed their values at moderate velocities. The weakness of hip joint extensors in extreme flexion positions of the hip may cause injury of this group of muscles at fast movements.

  14. Changes in Knee Biomechanics After a Hip-Abductor Strengthening Protocol for Runners With Patellofemoral Pain Syndrome

    PubMed Central

    Ferber, Reed; Kendall, Karen D.; Farr, Lindsay

    2011-01-01

    Abstract Context: Very few authors have investigated the relationship between hip-abductor muscle strength and frontal-plane knee mechanics during running. Objective: To investigate this relationship using a 3-week hip-abductor muscle-strengthening program to identify changes in strength, pain, and biomechanics in runners with patellofemoral pain syndrome (PFPS). Design: Cohort study. Setting: University-based clinical research laboratory. Patients or Other Participants: Fifteen individuals (5 men, 10 women) with PFPS and 10 individuals without PFPS (4 men, 6 women) participated. Intervention(s): The patients with PFPS completed a 3-week hip-abductor strengthening protocol; control participants did not. Main Outcome Measure(s): The dependent variables of interest were maximal isometric hip-abductor muscle strength, 2-dimensional peak knee genu valgum angle, and stride-to-stride knee-joint variability. All measures were recorded at baseline and 3 weeks later. Between-groups differences were compared using repeated-measures analyses of variance. Results: At baseline, the PFPS group exhibited reduced strength, no difference in peak genu valgum angle, and increased stride-to-stride knee-joint variability compared with the control group. After the 3-week protocol, the PFPS group demonstrated increased strength, less pain, no change in peak genu valgum angle, and reduced stride-to-stride knee-joint variability compared with baseline. Conclusions: A 3-week hip-abductor muscle-strengthening protocol was effective in increasing muscle strength and decreasing pain and stride-to-stride knee-joint variability in individuals with PFPS. However, concomitant changes in peak knee genu valgum angle were not observed. PMID:21391799

  15. Inter-Tester Reliability and Precision of Manual Muscle Testing and Hand-Held Dynamometry in Lower Limb Muscles of Children with Spina Bifida

    ERIC Educational Resources Information Center

    Mahony, Kate; Hunt, Adrienne; Daley, Deborah; Sims, Susan; Adams, Roger

    2009-01-01

    Reliability and measurement precision of manual muscle testing (MMT) and hand-held dynamometry (HHD) were compared for children with spina bifida. Strength measures were obtained of the hip flexors, hip abductors, and knee extensors of 20 children (10 males, 10 females; mean age 9 years 10 months; range: 5 to 15 years) by two experienced physical…

  16. Voluntary ambulation using voluntary upper limb muscle activity and Hybrid Assistive Limb® (HAL®) in a patient with complete paraplegia due to chronic spinal cord injury: A case report.

    PubMed

    Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Saotome, Kousaku; Ueno, Tomoyuki; Abe, Tetsuya; Marushima, Aiki; Watanabe, Hiroki; Endo, Ayumu; Tsurumi, Kazue; Ishimoto, Ryu; Matsushita, Akira; Koda, Masao; Matsumura, Akira; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi

    2018-01-19

    We sought to describe our experience with the Hybrid Assistive Limb® (HAL®) for active knee extension and voluntary ambulation with remaining muscle activity in a patient with complete paraplegia after spinal cord injury. A 30-year-old man with complete paraplegia used the HAL® for 1 month (10 sessions) using his remaining muscle activity, including hip flexor and upper limb activity. Electromyography was used to evaluate muscle activity of the gluteus maximus, tensor fascia lata, quadriceps femoris, and hamstring muscles in synchronization with the Vicon motion capture system. A HAL® session included a knee extension session with the hip flexor and voluntary gait with upper limb activity. After using the HAL® for one month, the patient's manual muscle hip flexor scores improved from 1/5 to 2/5 for the right and from 2/5 to 3/5 for the left knee, and from 0/5 to 1/5 for the extension of both knees. Knee extension sessions with HAL®, and hip flexor and upper-limb-triggered HAL® ambulation seem a safe and feasible option in a patient with complete paraplegia due to spinal cord injury.

  17. Fatigue-induced changes in decline running.

    PubMed

    Mizrahi, J; Verbitsky, O; Isakov, E

    2001-03-01

    Study the relation between muscle fatigue during eccentric muscle contractions and kinematics of the legs in downhill running. Decline running on a treadmill was used to acquire data on shock accelerations, muscle activity and kinematics, for comparison with level running. In downhill running, local muscle fatigue is the cause of morphological muscle damage which leads to reduced attenuation of shock accelerations. Fourteen subjects ran on a treadmill above level-running anaerobic threshold speed for 30 min, in level and -4 degrees decline running. The following were monitored: metabolic fatigue by means of respiratory parameters; muscle fatigue of the quadriceps by means of elevation in myoelectric activity; and kinematic parameters including knee and ankle angles and hip vertical excursion by means of computerized videography. Data on shock transmission reported in previous studies were also used. Quadriceps fatigue develops in parallel to an increasing vertical excursion of the hip in the stance phase of running, enabled by larger dorsi flexion of the ankle rather than by increased flexion of the knee. The decrease in shock attenuation can be attributed to quadriceps muscle fatigue in parallel to increased vertical excursion of the hips.

  18. Effect of combined actions of hip adduction/abduction on the force generation and maintenance of pelvic floor muscles in healthy women

    PubMed Central

    Amorim, Amanda C.; Cacciari, Licia P.; Passaro, Anice C.; Silveira, Simone R. B.; Amorim, Cesar F.; Loss, Jefferson F.

    2017-01-01

    Pelvic floor muscle (PFM) force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs) while performing three different tasks: (a) isolated PFM contraction; (b) PFM contraction combined with hip adduction (30% and 50% maximum hip force); and (c) PFM contraction combined with hip abduction (30% and 50% maximum hip force). Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Δ Adduction and Δ Abduction) for all variables: Maximum force (N), instant of maximum-force occurrence (s), mean force in an 8-second window (N), and PFM force loss (N.s). We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p>.05). PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance. PMID:28542276

  19. Effect of combined actions of hip adduction/abduction on the force generation and maintenance of pelvic floor muscles in healthy women.

    PubMed

    Amorim, Amanda C; Cacciari, Licia P; Passaro, Anice C; Silveira, Simone R B; Amorim, Cesar F; Loss, Jefferson F; Sacco, Isabel C N

    2017-01-01

    Pelvic floor muscle (PFM) force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs) while performing three different tasks: (a) isolated PFM contraction; (b) PFM contraction combined with hip adduction (30% and 50% maximum hip force); and (c) PFM contraction combined with hip abduction (30% and 50% maximum hip force). Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Δ Adduction and Δ Abduction) for all variables: Maximum force (N), instant of maximum-force occurrence (s), mean force in an 8-second window (N), and PFM force loss (N.s). We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p>.05). PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance.

  20. Movement-Pattern Training to Improve Function in People With Chronic Hip Joint Pain: A Feasibility Randomized Clinical Trial.

    PubMed

    Harris-Hayes, Marcie; Czuppon, Sylvia; Van Dillen, Linda R; Steger-May, Karen; Sahrmann, Shirley; Schootman, Mario; Salsich, Gretchen B; Clohisy, John C; Mueller, Michael J

    2016-06-01

    Study Design Feasibility randomized clinical trial. Background Rehabilitation may be an appropriate treatment strategy for patients with chronic hip joint pain; however, the evidence related to the effectiveness of rehabilitation is limited. Objectives To assess feasibility of performing a randomized clinical trial to investigate the effectiveness of movement-pattern training (MPT) to improve function in people with chronic hip joint pain. Methods Thirty-five patients with chronic hip joint pain were randomized into a treatment (MPT) group or a control (wait-list) group. The MPT program included 6 one-hour supervised sessions and incorporated (1) task-specific training for basic functional tasks and symptom-provoking tasks, and (2) strengthening of hip musculature. The wait-list group received no treatment. Primary outcomes for feasibility were patient retention and adherence. Secondary outcomes to assess treatment effects were patient-reported function (Hip disability and Osteoarthritis Outcome Score), lower extremity kinematics, and hip muscle strength. Results Retention rates did not differ between the MPT (89%) and wait-list groups (94%, P = 1.0). Sixteen of the 18 patients (89%) in the MPT group attended at least 80% of the treatment sessions. For the home exercise program, 89% of patients reported performing their home program at least once per day. Secondary outcomes support the rationale for conduct of a superiority randomized clinical trial. Conclusion Based on retention and adherence rates, a larger randomized clinical trial appears feasible and warranted to assess treatment effects more precisely. Data from this feasibility study will inform our future clinical trial. Level of Evidence Therapy, level 2b-. J Orthop Sports Phys Ther 2016;46(6):452-461. Epub 26 Apr 2016. doi:10.2519/jospt.2016.6279.

  1. A Review of the Biomechanical Differences Between the High-Bar and Low-Bar Back-Squat.

    PubMed

    Glassbrook, Daniel J; Helms, Eric R; Brown, Scott R; Storey, Adam G

    2017-09-01

    Glassbrook, DJ, Helms, ER, Brown, SR, and Storey, AG. A review of the biomechanical differences between the high-bar and low-bar back-squat. J Strength Cond Res 31(9): 2618-2634, 2017-The back-squat is a common exercise in strength and conditioning for a variety of sports. It is widely regarded as a fundamental movement to increase and measure lower-body and trunk function, as well as an effective injury rehabilitation exercise. There are typically 2 different bar positions used when performing the back-squat: the traditional "high-bar" back-squat (HBBS) and the "low-bar" back-squat (LBBS). Different movement strategies are used to ensure that the center of mass remains in the base of support for balance during the execution of these lifts. These movement strategies manifest as differences in (a) joint angles, (b) vertical ground reaction forces, and (c) the activity of key muscles. This review showed that the HBBS is characterized by greater knee flexion, lesser hip flexion, a more upright torso, and a deeper squat. The LBBS is characterized by greater hip flexion and, therefore, a greater forward lean. However, there are limited differences in vertical ground reaction forces between the HBBS and LBBS. The LBBS can also be characterized by a greater muscle activity of the erector spinae, adductors, and gluteal muscles, whereas the HBBS can be characterized by greater quadriceps muscle activity. Practitioners seeking to develop the posterior-chain hip musculature (i.e., gluteal, hamstring, and erector muscle groups) may seek to use the LBBS. In comparison, those seeking to replicate movements with a more upright torso and contribution from the quadriceps may rather seek to use the HBBS in training.

  2. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.

    PubMed

    Xu, Hang; Merryweather, Andrew; Bloswick, Donald; Mao, Qi; Wang, Tong

    2015-01-01

    Marker placement can be a significant source of error in biomechanical studies of human movement. The toe marker placement error is amplified by footwear since the toe marker placement on the shoe only relies on an approximation of underlying anatomical landmarks. Three total knee replacement subjects were recruited and three self-speed gait trials per subject were collected. The height variation between toe and heel markers of four types of footwear was evaluated from the results of joint kinematics and muscle forces using OpenSim. The reference condition was considered as the same vertical height of toe and heel markers. The results showed that the residual variances for joint kinematics had an approximately linear relationship with toe marker placement error for lower limb joints. Ankle dorsiflexion/plantarflexion is most sensitive to toe marker placement error. The influence of toe marker placement error is generally larger for hip flexion/extension and rotation than hip abduction/adduction and knee flexion/extension. The muscle forces responded to the residual variance of joint kinematics to various degrees based on the muscle function for specific joint kinematics. This study demonstrates the importance of evaluating marker error for joint kinematics and muscle forces when explaining relative clinical gait analysis and treatment intervention.

  3. Prone Hip Extension Muscle Recruitment is Associated with Hamstring Injury Risk in Amateur Soccer.

    PubMed

    Schuermans, Joke; Van Tiggelen, Damien; Witvrouw, Erik

    2017-09-01

    'Core stability' is considered essential in rehabilitation and prevention. Particularly with respect to hamstring injury prevention, assessment and training of lumbo-pelvic control is thought to be key. However, supporting scientific evidence is lacking. To explore the importance of proximal neuromuscular function with regard to hamstring injury susceptibility, this study investigated the association between the Prone Hip Extension (PHE) muscle activation pattern and hamstring injury incidence in amateur soccer players. 60 healthy male soccer players underwent a comprehensive clinical examination, comprising a range of motion assessments and the investigation of the posterior chain muscle activation pattern during PHE. Subsequently, hamstring injury incidence was recorded prospectively throughout a 1.5-season monitoring period. Players who were injured presented a PHE activation pattern that differed significantly from those who did not. Contrary to the controls, hamstring activity onset was significantly delayed (p=0.018), resulting in a shifted activation sequence. Players were 8 times more likely to get injured if the hamstring muscles were activated after the lumbar erector spinae instead of vice versa (p=0.009). Assessment of muscle recruitment during PHE demonstrated to be useful in injury prediction, suggesting that neuromuscular coordination in the posterior chain influences hamstring injury vulnerability. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Does Using a Chair Backrest or Reducing Seated Hip Flexion Influence Trunk Muscle Activity and Discomfort? A Systematic Review.

    PubMed

    Curran, Máire; O'Sullivan, Leonard; O'Sullivan, Peter; Dankaerts, Wim; O'Sullivan, Kieran

    2015-11-01

    This paper systematically reviews the effect of chair backrests and reducing seated hip flexion on low back discomfort (LBD) and trunk muscle activation. Prolonged sitting commonly exacerbates low back pain (LBP). Several modifications to seated posture and chair design have been recommended, including using chairs with backrests and chairs that reduce hip flexion. Electronic databases were searched by two independent assessors. Part 1 of this review includes 26 studies comparing the effect of sitting with at least two different hip angles. In Part 2, seven studies that compared the effect of sitting with and without a backrest were eligible. Study quality was assessed using the PEDro scale. Significant confounding variables and a relatively small number of randomized controlled trials (RCTs) involving people with LBP complicates analysis of the results. There was moderate evidence that chair backrests reduce paraspinal muscle activation, and limited evidence that chair backrests reduce LBD. There was no evidence that chairs involving less hip flexion reduce LBP or LBD, or consistently alter trunk muscle activation. However, participants in several studies subjectively preferred the modified chairs involving less hip flexion. The limited evidence to support the use of chairs involving less seated hip flexion, or the effect of a backrest, is consistent with the limited evidence that other isolated chair design features can reduce LBP. LBP management is likely to require consideration of several factors in addition to sitting position. Larger RCTs involving people with LBP are required. © 2015, Human Factors and Ergonomics Society.

  5. Core strength and lower extremity alignment during single leg squats.

    PubMed

    Willson, John D; Ireland, Mary Lloyd; Davis, Irene

    2006-05-01

    Muscles of the trunk, hip, and knee influence the orientation of the lower extremity during weight bearing activities. The purpose of this study was threefold: first, to compare the orientation of the lower extremity during a single leg (SL) squat among male and female athletes; second, to compare the strength of muscle groups in the trunk, hips, and knees between these individuals; and third, to evaluate the association between trunk, hip, and knee strength and the orientation of the knee joint during this activity. Twenty-four male and 22 female athletes participated in this study. Peak isometric torque was determined for the following muscle actions: trunk flexion, extension, and lateral flexion, hip abduction and external rotation, and knee flexion and extension. The frontal plane projection angle (FPPA) of the knee during a 45 degrees SL squat was determined using photo editing software. Males and females moved in opposite directions during the SL squat test (F(1,42) = 5.05, P = 0.03). Females typically moved toward more extreme FPPA during SL squats (P = 0.056), while males tended to move toward more neutral alignment (P = 0.066). Females also generated less torque in all muscle groups, with the exception of trunk extension. The projection angle of the knee during the SL squat test was most closely associated with hip external rotation strength. Using instruments suitable for a clinical setting, females were found to have greater FPPA and generally decreased trunk, hip, and knee isometric torque. Hip external rotation strength was most closely associated with the frontal plane projection angle.

  6. Post-fracture management of patients with hip fracture: a perspective.

    PubMed

    Bruyere, O; Brandi, M-L; Burlet, N; Harvey, N; Lyritis, G; Minne, H; Boonen, S; Reginster, J-Y; Rizzoli, R; Akesson, K

    2008-10-01

    Hip fracture creates a worldwide morbidity, mortality and economic burden. After surgery, many patients experience long-term disability or die as a consequence of the fracture. A fracture is a major risk factor for a subsequent fracture, which may occur within a short interval. A literature search on post-fracture management of patients with hip fracture was performed on the Medline database. Key experts convened to develop a consensus document. Management of hip-fracture patients to optimize outcome after hospital discharge requires several stages of care co-ordinated by a multidisciplinary team from before admission through to discharge. Further studies that specifically assess prevention and post-fracture management of hip fracture are needed, as only one study to date has assessed an osteoporosis medication in patients with a recent hip fracture. Proper nutrition is vital to assist bone repair and prevent further falls, particularly in malnourished patients. Vitamin D, calcium and protein supplementation is associated with an increase in hip BMD and reduction in falls. Rehabilitation is essential to improve functional disabilities and survival rates. Fall prevention and functional recovery strategies should include patient education and training to improve balance and increase muscle strength and mobility. Appropriate management can prevent further fractures and it is critical that high-risk patients are identified and treated. To foster this process, clinical pathways have been established to support orthopaedic surgeons. Although hip fracture is generally associated with poor outcomes, appropriate management can ensure optimal recovery and survival, and should be prioritized after a hip fracture to avoid deterioration of health and prevent subsequent fracture.

  7. A mathematical model of hiking positions in a sailing dinghy.

    PubMed

    Putnam, C A

    1979-01-01

    A mathematical model of the human body designed to calculate the resultant muscle torques required at the hip and knee joints for specific hiking techniques is presented. Data for the model were obtained from ten male subjects who adopted three basic positions: Position 1 with the knees located at the inside edge of the sidedeck, Position 2 with the knees at the middle of the sidedeck, and Position 3 with the knees at the outside edge of the sidedeck. Each resultant muscle torque was expressed as a percentage of each subject's maximum voluntary hip flexion or knee extension torque. It was found that where Positions 1 and 2 were equally effective in keeping the boat upright, Position 2 was superior to Position 1 in regard to the per cent of maximum muscle torque required. The superiority of Position 2 over Position 3 depended on the individual's relative muscle strength at the hip and knee joints. The stronger the hip flexors with respect to the knee estensors, the more desirable was Position 2 and vice versa.

  8. Extreme Kinematics in Selected Hip Hop Dance Sequences.

    PubMed

    Bronner, Shaw; Ojofeitimi, Sheyi; Woo, Helen

    2015-09-01

    Hip hop dance has many styles including breakdance (breaking), house, popping and locking, funk, streetdance, krumping, Memphis jookin', and voguing. These movements combine the complexity of dance choreography with the challenges of gymnastics and acrobatic movements. Despite high injury rates in hip hop dance, particularly in breakdance, to date there are no published biomechanical studies in this population. The purpose of this study was to compare representative hip hop steps found in breakdance (toprock and breaking) and house and provide descriptive statistics of the angular displacements that occurred in these sequences. Six expert female hip hop dancers performed three choreographed dance sequences, top rock, breaking, and house, to standardized music-based tempos. Hip, knee, and ankle kinematics were collected during sequences that were 18 to 30 sec long. Hip, knee, and ankle three-dimensional peak joint angles were compared in repeated measures ANOVAs with post hoc tests where appropriate (p<0.01). Peak angles of the breaking sequence, which included floorwork, exceeded the other two sequences in the majority of planes and joints. Hip hop maximal joint angles exceeded reported activities of daily living and high injury sports such as gymnastics. Hip hop dancers work at weight-bearing joint end ranges where muscles are at a functional disadvantage. These results may explain why lower extremity injury rates are high in this population.

  9. Artificial Walking Technologies to Improve Gait in Cerebral Palsy: Multichannel Neuromuscular Stimulation.

    PubMed

    Rose, Jessica; Cahill-Rowley, Katelyn; Butler, Erin E

    2017-11-01

    Cerebral palsy (CP) is the most common childhood motor disability and often results in debilitating walking abnormalities, such as flexed-knee and stiff-knee gait. Current medical and surgical treatments are only partially effective in improving gait abnormalities and may cause significant muscle weakness. However, emerging artificial walking technologies, such as step-initiated, multichannel neuromuscular electrical stimulation (NMES), can substantially improve gait patterns and promote muscle strength in children with spastic CP. NMES may also be applied to specific lumbar-sacral sensory roots to reduce spasticity. Development of tablet computer-based multichannel NMES can leverage lightweight, wearable wireless stimulators, advanced control design, and surface electrodes to activate lower-limb muscles. Musculoskeletal models have been used to characterize muscle contributions to unimpaired gait and identify high muscle demands, which can help guide multichannel NMES-assisted gait protocols. In addition, patient-specific NMES-assisted gait protocols based on 3D gait analysis can facilitate the appropriate activation of lower-limb muscles to achieve a more functional gait: stance-phase hip and knee extension and swing-phase sequence of hip and knee flexion followed by rapid knee extension. NMES-assisted gait treatment can be conducted as either clinic-based or home-based programs. Rigorous testing of multichannel NMES-assisted gait training protocols will determine optimal treatment dosage for future clinical trials. Evidence-based outcome evaluation using 3D kinematics or temporal-spatial gait parameters will help determine immediate neuroprosthetic effects and longer term neurotherapeutic effects of step-initiated, multichannel NMES-assisted gait in children with spastic CP. Multichannel NMES is a promising assistive technology to help children with spastic CP achieve a more upright, functional gait. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. Identifying Low Muscle Mass in Patients with Hip Fracture: Validation of Biolectrical Impedance Analysis and Anthropometry Compared to Dual Energy X-ray Absorptiometry.

    PubMed

    Steihaug, O M; Gjesdal, C G; Bogen, B; Ranhoff, A H

    2016-01-01

    Older hip fracture patients often have reduced muscle mass, which is associated with adverse outcomes. Dual energy X-ray absorptiometry (DXA) can determine muscle mass, but is not practical in the acute phase. We investigated bioelectrical impedance analysis (BIA) and anthropometry compared against DXA for detecting low muscle mass in hip fracture patients. This was a cross-sectional validation study at two Norwegian hospitals on 162 hip fracture patients aged ≥ 65 years. Appendicular lean mass (ALM) was determined by DXA, BIA and anthropometry 3 months after hip fracture. ALM by BIA was calculated by the Kyle, Janssen, Tengvall and Sergi equations, and ALM by anthropometry by the Heymsfield and Villani equations. The area under the receiver operating characteristic curve (AUC) was used to compare BIA and anthropometry for determining low ALM (≤5.67 kg/m2 for women and ≤7.25kg/m2 for men). Mean age was 79 years (SD 7.9), 74% were female. Mean ALM by DXA was 14.8 kg (SD 2.3) for women and 20.8 kg (SD 4.2) for men and 45% of women and 60% of men had low ALM. BIA (Kyle) in women (AUC 0.81, 95% confidence interval 0.72-0.89) and BIA (Sergi) in men (AUC 0.89, 95% CI 0.80-0.98) were best able to discriminate between low and normal ALM. Anthropometry (Heymsfield) was less accurate than BIA in women (AUC 0.64, 95% CI 0.54-0.75), and equal to BIA in men (AUC 0.72, 95% CI 0.72 0.56-0.87). BIA (Sergi, Kyle and Tengvall) and anthropometry (Heymsfield) can identify low muscle mass in hip fracture patients.

  11. A patient-specific model of the biomechanics of hip reduction for neonatal Developmental Dysplasia of the Hip: Investigation of strategies for low to severe grades of Developmental Dysplasia of the Hip.

    PubMed

    Huayamave, Victor; Rose, Christopher; Serra, Sheila; Jones, Brendan; Divo, Eduardo; Moslehy, Faissal; Kassab, Alain J; Price, Charles T

    2015-07-16

    A physics-based computational model of neonatal Developmental Dysplasia of the Hip (DDH) following treatment with the Pavlik Harness (PV) was developed to obtain muscle force contribution in order to elucidate biomechanical factors influencing the reduction of dislocated hips. Clinical observation suggests that reduction occurs in deep sleep involving passive muscle action. Consequently, a set of five (5) adductor muscles were identified as mediators of reduction using the PV. A Fung/Hill-type model was used to characterize muscle response. Four grades (1-4) of dislocation were considered, with one (1) being a low subluxation and four (4) a severe dislocation. A three-dimensional model of the pelvis-femur lower limb of a representative 10 week-old female was generated based on CT-scans with the aid of anthropomorphic scaling of anatomical landmarks. The model was calibrated to achieve equilibrium at 90° flexion and 80° abduction. The hip was computationally dislocated according to the grade under investigation, the femur was restrained to move in an envelope consistent with PV restraints, and the dynamic response under passive muscle action and the effect of gravity was resolved. Model results with an anteversion angle of 50° show successful reduction Grades 1-3, while Grade 4 failed to reduce with the PV. These results are consistent with a previous study based on a simplified anatomically-consistent synthetic model and clinical reports of very low success of the PV for Grade 4. However our model indicated that it is possible to achieve reduction of Grade 4 dislocation by hyperflexion and the resultant external rotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Atrophy of the quadriceps muscle in children with a painful hip.

    PubMed

    Robben, S G; Lequin, M H; Meradji, M; Diepstraten, A F; Hop, W C

    1999-09-01

    The objective of this study was to determine the degree of muscle wasting of various components of the quadriceps muscle in children with a painful hip. Between January 1994 and September 1997, 327 consecutive children with a unilateral painful hip and/or limping were evaluated prospectively with ultrasonography. Quadriceps thickness was measured on both sides. Moreover, muscle thickness was measured in 59 control subjects. The patients were divided into eight groups; transient synovitis (n = 134), Perthes' disease (n = 35), slipped capital femoral epiphysis (n = 5), osteomyelitis (n = 4), aspecific synovitis (n = 5), rheumatoid arthritis (n = 3) and miscellaneous (n = 16). In 125 patients, no sonographic and radiological abnormalities were found and during follow-up the symptoms disappeared ('no pathology' group). Ipsilateral muscle wasting was present in all patient groups, whereas the control subjects showed no significant difference in muscle thickness between legs. The degree of muscle wasting was compared between transient synovitis, the 'no pathology' group, Perthes' disease and control subjects. For both quadriceps and vastus intermedius muscles, there was a significant difference between these groups, except between control subjects and the 'no pathology' group. For the rectus femoris muscle, there was a significant difference between these groups, except between transient synovitis and 'no pathology'. Muscle wasting showed a positive correlation with duration of symptoms and pre-existing muscle mass. In conclusion, different diseases show different degrees of muscle wasting, and there are different patterns of muscle wasting of various components of the quadriceps femoris muscle.

  13. Differences in Knee and Hip Adduction and Hip Muscle Activation in Runners With and Without Iliotibial Band Syndrome.

    PubMed

    Baker, Robert L; Souza, Richard B; Rauh, Mitchell J; Fredericson, Michael; Rosenthal, Michael D

    2018-04-26

    Iliotibial band syndrome has been associated with altered hip and knee kinematics in runners. Previous studies have recommended further research on neuromuscular factors at the hip. The frontal plane hip muscles have been a strong focus in strength comparison but not for electromyography investigation. To compare hip surface electromyography, and frontal plane hip and knee kinematics, in runners with and without iliotibial band syndrome. Observational cross-sectional study. Thirty participants were tested for motion capture at the hip and knee and muscle activation in the lateral and posterior hip. Biomechanics research laboratory within a university. Thirty subjects were recruited consisting of 15 injured runners with iliotibial band syndrome and 15 gender-, age-, and body mass index-matched controls. In each group, 8 were male runners and 7 were female runners. Inclusion criteria for the injured group were pain within 2 months related to iliotibial band syndrome and a positive Noble compression test. Participants were excluded if they reported other lower extremity diagnoses within the last year or active lower extremity or low back pain not related to iliotibial band syndrome. Controls were excluded if they reported a history of iliotibial band syndrome. Convenience sampling was used based on referrals from local running clinics and orthopedic clinics. Three-dimensional motion capture was performed with 10 high-speed cameras synchronized with wireless surface electromyography during a 30-minute run. The first data point was at 3 minutes, using a constant speed of 2.74 meters per second. A second data point was at 30 minutes, using a self-selected pace by the participant to allow for a challenging run until completion at 30 minutes. Motion capture was reported as peak kinematic values from heel strike to peak knee flexion for hip adduction and knee adduction. Surface electromyography was reported as a percentage of maximal voluntary contraction for the gluteus maximus, gluteus medius and tensor fascia latae muscles. Injured runners demonstrated increased knee adduction compared with control runners at 30 minutes (P = .002, control = -1.48°, injured = 3.74°). Tensor fasciae latae muscle activation in injured runners was increased compared with control runners at 3 minutes (P = .017, control = 7% maximal voluntary isometric contraction, injured = 11% maximal voluntary isometric contraction). The results of this study suggest that lateral knee pain in runners localized to the distal iliotibial band is associated with increased knee adduction at 30 minutes. Increased tensor fasciae latae muscle activation at three minutes is noted, but more investigation is needed to better understand the clinical meaning. These findings are consistent with but not conclusive evidence supporting the theory that neuromuscular factors of the hip muscles may contribute to increased knee adduction in runners with iliotibial band syndrome. We advise caution using these findings to support treatments intended to modify tensor fasciae latae activation, given the small differences of 4% in muscle activation. Increased knee adduction in runners at 30 minutes was over 5° and beyond the minimal detectable difference. Additional research is needed to confirm whether the degree of knee adduction changes earlier versus later in a run and whether fatigue is a clinically relevant factor. To be determined. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  14. Elastography Study of Hamstring Behaviors during Passive Stretching

    PubMed Central

    Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine

    2015-01-01

    Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862

  15. The effects of isolated ankle strengthening and functional balance training on strength, running mechanics, postural control and injury prevention in novice runners: design of a randomized controlled trial.

    PubMed

    Baltich, Jennifer; Emery, Carolyn A; Stefanyshyn, Darren; Nigg, Benno M

    2014-12-04

    Risk factors have been proposed for running injuries including (a) reduced muscular strength, (b) excessive joint movements and (c) excessive joint moments in the frontal and transverse planes. To date, many running injury prevention programs have focused on a "top down" approach to strengthen the hip musculature in the attempt to reduce movements and moments at the hip, knee, and/or ankle joints. However, running mechanics did not change when hip muscle strength increased. It could be speculated that emphasis should be placed on increasing the strength of the ankle joint for a "ground up" approach. Strengthening of the large and small muscles crossing the ankle joint is assumed to change the force distribution for these muscles and to increase the use of smaller muscles. This would be associated with a reduction of joint and insertion forces, which could have a beneficial effect on injury prevention. However, training of the ankle joint as an injury prevention strategy has not been studied. Ankle strengthening techniques include isolated strengthening or movement-related strengthening such as functional balance training. There is little knowledge about the efficacy of such training programs on strength alteration, gait or injury reduction. Novice runners will be randomly assigned to one of three groups: an isolated ankle strengthening group (strength, n = 40), a functional balance training group (balance, n = 40) or an activity-matched control group (control, n = 40). Isokinetic strength will be measured using a Biodex System 3 dynamometer. Running kinematics and kinetics will be assessed using 3D motion analysis and a force platform. Postural control will be assessed by quantifying the magnitude and temporal structure of the center of pressure trace during single leg stance on a force platform. The change pre- and post-training in isokinetic strength, running mechanics, and postural control variables will be compared following the interventions. Injuries rates will be compared between groups over 6 months. Avoiding injury will allow individuals to enjoy the benefits of participating in aerobic activities and reduce the healthcare costs associated with running injuries. Current Controlled Trial NCT01900262.

  16. Wide range of body composition measures are associated with cognitive function in community-dwelling older adults.

    PubMed

    Won, Huiloo; Abdul Manaf, Zahara; Mat Ludin, Arimi Fitri; Shahar, Suzana

    2017-04-01

    Studies of the association between body composition, both body fat and body muscle, and cognitive function are rarely reported. The aim of the present study was to determine the association between a wide range of body composition measures with cognitive function in older adults. A total of 2322 Malaysian older adults aged 60 years and older were recruited using multistage random sampling in a population-based cross-sectional study. Out of 2322 older adults recruited, 2309 (48% men) completed assessments on cognitive function and body composition. Cognitive functions were assessed using the Malay version of the Mini-Mental State Examination, the Bahasa Malaysia version of Montreal Cognitive Assessment, Digit Span Test, Digit Symbol Test and Rey Auditory Verbal Learning Test. Body composition included body mass index, mid-upper arm circumference, waist circumference, calf circumference, waist-to-hip ratio, percentage body fat and skeletal muscle mass. The association between body composition and cognitive functions was analyzed using multiple linear regression. After adjustment for age, education years, hypertension, hypercholesterolemia, diabetes mellitus, depression, smoking status and alcohol consumption, we found that calf circumference appeared as a significant predictor for all cognitive tests among both men and women (P < 0.05), except for the Rey Auditory Verbal Learning Test. Waist-to-hip ratio was detected as a significant predictor for all cognitive tests among women (P < 0.05), but was only a significant predictor for the Bahasa Malaysia version of Montreal Cognitive Assessment among men (P < 0.05). These results suggest that there is a need to maintain muscle mass and lower adipose tissue among older adults for optimal cognitive function. Geriatr Gerontol Int 2017; 17: 554-560. © 2016 Japan Geriatrics Society.

  17. PubMed Central

    Descarreaux, Martin; Blouin, Jean-Sébastien; Normand, Martin C; Hudon, Daniel

    2001-01-01

    Background: Ankylosing spondylitis (AS) produces gradual ossification in articular components of the sacro-iliac joints, spine, thoracic and scapular region. This pathology features a diminution of range of motion, muscle force and extensibility as well as functional capacities. Actual treatment of ankylosing spondylitis includes exercise program aimed at pain control, restoration of normal muscle force and extensibility and improvement in functional capacities. These programs are designed to adapt to the special characteristics of ankylosing spondylitis population. Case study: We present the case of a 30 years old man suffering from AS who participated in a 10 week exercise program based on his personal characteristics. We evaluated changes in trunk and hip muscle force and extensibility, pain level (visual pain scale) and disability level (Modified Oswerstry questionnaire). Conclusion: He showed improvement of some physical characteristics that were deficient in the initial evaluation. Improvement were noted in trunk range of motion, some muscular group forces and extensibility of certain muscles too.

  18. Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down

    USGS Publications Warehouse

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2015-01-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting.

  19. Topsy-turvy: turning the counter-current heat exchange of leatherback turtles upside down.

    PubMed

    Davenport, John; Jones, T Todd; Work, Thierry M; Balazs, George H

    2015-10-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting. © 2015 The Author(s).

  20. Muscle Damage After Total Hip Arthroplasty Through the Direct Anterior Approach for Developmental Dysplasia of the Hip.

    PubMed

    Kawasaki, Masashi; Hasegawa, Yukiharu; Okura, Toshiaki; Ochiai, Satoshi; Fujibayashi, Takayoshi

    2017-08-01

    Total hip arthroplasty (THA) through the direct anterior approach (DAA) is known to cause less muscle damage than other surgical approaches. However, more complex primary cases, such as developmental dysplasia of the hip (DDH), might often cause muscle damage. The objective of the present study was to clarify the muscle damage observed 1 year after THA through the DAA for DDH using magnetic resonance imaging. We prospectively compared the muscle cross-sectional area (M-CSA) and fatty atrophy (FA) in muscles by magnetic resonance imaging and the Harris hip score before and at 1-year follow-up after THA through the DAA in 3 groups: 37 patients with Crowe group 1 DDH (D1), 13 patients with Crowe group 2 and 3 DDH (D2 + 3), and 12 patients with osteonecrosis as a control. THA through the DAA for D1 displayed significantly decreased M-CSA and significantly increased FA in the gluteus minimus (Gmini), the tensor fasciae latae (TFL), and the obturator internus (OI). Patients with D2 + 3 group did not have decreased M-CSA in the TFL or increased FA in the Gmini. Postoperatively, a significant negative correlation was observed between the M-CSA and FA for the OI in patients with D1 and D2 + 3. THA through the DAA for DDH caused the damage in the Gmini, the TFL, and the OI; severe damage was observed in the OI, showing increased FA with decreased M-CSA in patients with both D1 and D2 + 3. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Electromyographic and kinetic analysis of two abdominal muscle performance tests.

    PubMed

    Haladay, Douglas E; Denegar, Craig R; Miller, Sayers J; Challis, John

    2015-01-01

    In order to accurately assess the abdominal muscles, clinicians need valid clinical measures. The double leg lowering test (DLLT) and lower abdominal muscle progression (LAMP) are two common tests of abdominal muscle performance. The purposes of this study were to determine the relation between surface electromyographic (EMG) activity during the DLLT and LAMP levels; hip joint resultant moments and DLLT and LAMP levels; and the two measures of DLLT and LAMP. Ten healthy participants were tested under both conditions. Surface EMG activity of the abdominal muscles was obtained, while pelvic movement was detected simultaneously. A moderate to strong association was found between rectus abdominus muscle activity and a moderate association with the external obliques with both test levels. For the internal oblique/transversus abdominus, a moderate and weak association was found with the DLLT and LAMP, respectively. A very strong association existed between the hip resultant joint moments (RJM) and the DLLT, while there was a weak correlation between hip RJM and the LAMP. No significant correlation was found between the DLLT and LAMP grades. This finding suggests that these tests may measure different qualities of muscle performance and provides preliminary support for their use. Further evaluation of these assessments with clinical populations is necessary.

  2. Knee joint motion and muscle activation patterns are altered during gait in individuals with moderate hip osteoarthritis compared to asymptomatic cohort.

    PubMed

    Rutherford, Derek; Moreside, Janice; Wong, Ivan

    2015-07-01

    Knee replacements are common after hip replacement for end stage osteoarthritis. Whether abnormal knee mechanics exist in moderate hip osteoarthritis remains undetermined and has implications for understanding early osteoarthritis joint mechanics. The purpose of this study was to determine whether three-dimensional (3D) knee motion and muscle activation patterns in individuals with moderate hip osteoarthritis differ from an asymptomatic cohort and whether these features differ between contra- and ipsilateral knees. 3D motions and medial and lateral quadriceps and hamstring surface electromyography were recorded on 20 asymptomatic individuals and 20 individuals with moderate hip osteoarthritis during treadmill walking, using standardized collection and processing procedures. Principal component analysis was used to derive electromyographic amplitude and temporal waveform features. 3D stance-phase range of motion was calculated. A 2-factor repeated analysis of variance determined significant within-group leg and muscle differences. Student's t-tests identified between group differences, with Bonferroni corrections where applicable (α=0.05). Lower sagittal plane motion between early and mid/late stance (5°, P=0.004, effect size: 0.96) and greater mid-stance quadriceps activity was found in the osteoarthritis group (P=0.01). Compared to the ipsilateral knee, a borderline significant increase in mid-stance hamstring activity was found in the contra-lateral knee of the hip osteoarthritis group (P=0.018). Bilateral knee mechanics were altered, suggesting potentially increased loads and knee muscle fatigue. There was no indication that one knee is more susceptible to osteoarthritis than the other, thus clinicians should include bilateral knee analysis when treating patients with hip osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Beyond the Bottom of the Foot: Topographic Organization of the Foot Dorsum in Walking.

    PubMed

    Klarner, Taryn; Pearcey, Gregory E P; Sun, Yao; Barss, Trevor S; Kaupp, Chelsea; Munro, Bridget; Frank, Nick; Zehr, E Paul

    2017-12-01

    Sensory feedback from the foot dorsum during walking has only been studied globally by whole nerve stimulation. Stimulating the main nerve innervating the dorsal surface produces a functional stumble corrective response that is phase-dependently modulated. We speculated that effects evoked by activation of discrete skin regions on the foot dorsum would be topographically organized, as with the foot sole. Nonnoxious electrical stimulation was delivered to five discrete locations on the dorsal surface of the foot during treadmill walking. Muscle activity from muscles acting at the ankle, knee, hip, and shoulder were recorded along with ankle, knee, and hip kinematics and kinetic information from forces under the foot. All data were sorted on the basis of stimulus occurrence in 12 step cycle phases, before being averaged together within a phase for subsequent analysis. Results reveal dynamic changes in reflex amplitudes and kinematics that are site specific and phase dependent. Most responses from discrete sites on the foot dorsum were seen in the swing phase suggesting function to conform foot trajectory to maintain stability of the moving limb. In general, responses from lateral stimulation differed from medial stimulation, and effects were largest from stimulation at the distal end of the foot at the metatarsals; that is, in anatomical locations where actual impact with an object in the environment is most likely during swing. Responses to stimulation extend to include muscles at the hip and shoulder. We reveal that afferent feedback from specific cutaneous locations on the foot dorsum influences stance and swing phase corrective responses. This emphasizes the critical importance of feedback from the entire foot surface in locomotor control and has application for rehabilitation after neurological injury and in footwear development.

  4. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.

    PubMed

    Young, Aaron J; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller. We tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG) of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s) using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects' metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers) using a force treadmill and motion capture. Compared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% ( p  = 0.005) and biological hip torque control reduced metabolic cost by 7% ( p  = 0.261). Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control. Myoelectric control had more advantages (metabolic cost and muscle activity reduction) compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific control configurations while level walking at a single speed. Further testing on different exoskeleton hardware and with more varied experimental protocols, such as testing over multiple types of terrain, is needed to fully elucidate the potential benefits of myoelectric control for exoskeleton technology.

  5. Electromiography comparison of distal and proximal lower limb muscle activity patterns during external perturbation in subjects with and without functional ankle instability.

    PubMed

    Kazemi, Khadijeh; Arab, Amir Massoud; Abdollahi, Iraj; López-López, Daniel; Calvo-Lobo, César

    2017-10-01

    Ankle sprain is one of the most common injuries among athletes and the general population. Most ankle injuries commonly affect the lateral ligament complex. Changes in postural sway and hip abductor muscle strength may be generated after inversion ankle sprain. Therefore, the consequences of ankle injury may affect proximal structures of the lower limb. The aim is to describe and compare the activity patterns of distal and proximal lower limb muscles following external perturbation in individuals with and without functional ankle instability. The sample consisted of 16 women with functional ankle instability and 18 healthy women were recruited to participate in this research. The external perturbation via body jacket using surface electromyography, amplitude and onset of muscle activity of gluteus maximums, gluteus medius, tibialis anterior, and peroneus longus was recorded and analyzed during external perturbation. There were differences between the onset of muscles activity due to perturbation direction in the two groups (healthy and functional ankle instability). In the healthy group, there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during front perturbation with eyes open and closed. In the functional ankle instability group; there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during perturbation of the front and back with eyes open. There were statistically significant differences in the onset of muscle activity and amplitude of muscle activity, with-in and between groups (P<0.05). Therefore, in the presence of functional ankle instability, activation patterns of the lower limb proximal muscles may be altered. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Compensatory strategies during walking in response to excessive muscle co-contraction at the ankle joint.

    PubMed

    Wang, Ruoli; Gutierrez-Farewik, Elena M

    2014-03-01

    Excessive co-contraction causes inefficient or abnormal movement in several neuromuscular pathologies. How synergistic muscles spanning the ankle, knee and hip adapt to co-contraction of ankle muscles is not well understood. This study aimed to identify the compensation strategies required to retain normal walking with excessive antagonistic ankle muscle co-contraction. Muscle-actuated simulations of normal walking were performed to quantify compensatory mechanisms of ankle and knee muscles during stance in the presence of normal, medium and high levels of co-contraction of antagonistic pairs gastrocnemius+tibialis anterior and soleus+tibialis anterior. The study showed that if co-contraction increases, the synergistic ankle muscles can compensate; with gastrocmemius+tibialis anterior co-contraction, the soleus will increase its contribution to ankle plantarflexion acceleration. At the knee, however, almost all muscles spanning the knee and hip are involved in compensation. We also found that ankle and knee muscles alone can provide sufficient compensation at the ankle joint, but hip muscles must be involved to generate sufficient knee moment. Our findings imply that subjects with a rather high level of dorsiflexor+plantarflexor co-contraction can still perform normal walking. This also suggests that capacity of other lower limb muscles to compensate is important to retain normal walking in co-contracted persons. The compensatory mechanisms can be useful in clinical interpretation of motion analyses, when secondary muscle co-contraction or other deficits may present simultaneously in subjects with motion disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Manual muscle testing and hand-held dynamometry in people with inflammatory myopathy: An intra- and interrater reliability and validity study

    PubMed Central

    Baschung Pfister, Pierrette; Sterkele, Iris; Maurer, Britta; de Bie, Rob A.; Knols, Ruud H.

    2018-01-01

    Manual muscle testing (MMT) and hand-held dynamometry (HHD) are commonly used in people with inflammatory myopathy (IM), but their clinimetric properties have not yet been sufficiently studied. To evaluate the reliability and validity of MMT and HHD, maximum isometric strength was measured in eight muscle groups across three measurement events. To evaluate reliability of HHD, intra-class correlation coefficients (ICC), the standard error of measurements (SEM) and smallest detectable changes (SDC) were calculated. To measure reliability of MMT linear Cohen`s Kappa was computed for single muscle groups and ICC for total score. Additionally, correlations between MMT8 and HHD were evaluated with Spearman Correlation Coefficients. Fifty people with myositis (56±14 years, 76% female) were included in the study. Intra-and interrater reliability of HHD yielded excellent ICCs (0.75–0.97) for all muscle groups, except for interrater reliability of ankle extension (0.61). The corresponding SEMs% ranged from 8 to 28% and the SDCs% from 23 to 65%. MMT8 total score revealed excellent intra-and interrater reliability (ICC>0.9). Intrarater reliability of single muscle groups was substantial for shoulder and hip abduction, elbow and neck flexion, and hip extension (0.64–0.69); moderate for wrist (0.53) and knee extension (0.49) and fair for ankle extension (0.35). Interrater reliability was moderate for neck flexion (0.54) and hip abduction (0.44); fair for shoulder abduction, elbow flexion, wrist and ankle extension (0.20–0.33); and slight for knee extension (0.08). Correlations between the two tests were low for wrist, knee, ankle, and hip extension; moderate for elbow flexion, neck flexion and hip abduction; and good for shoulder abduction. In conclusion, the MMT8 total score is a reliable assessment to consider general muscle weakness in people with myositis but not for single muscle groups. In contrast, our results confirm that HHD can be recommended to evaluate strength of single muscle groups. PMID:29596450

  8. Effects of trunk-hip strengthening on standing in children with spastic diplegia: a comparative pilot study.

    PubMed

    Kim, Joong-Hwi; Seo, Hye-Jung

    2015-05-01

    [Purpose] This study evaluated the effects of trunk-hip strengthening exercise on trunk-hip activation and pelvic tilt motion during standing in children with spastic diplegia and compared the improvement of pelvic tilt between the modified trunk-hip strengthening exercise and conventional exercise. [Subjects and Methods] Ten ambulant children with spastic diplegia were randomized to the modified trunk-hip strengthening exercise (n = 5) or conventional exercise (n = 5) group. The intervention consisted of a 6-week modified trunk-hip strengthening exercise 3 times per week. The children were tested for trunk-hip muscles activation and pelvic tilt motion during standing by surface electromyography and an inclinometer before and after the intervention. [Results] The anterior pelvic tilt angle and activation of the extensor spinae, rectus femoris, and semitendinosus during standing decreased significantly in the modified exercise group. The activation of extensor spinae differed significantly between groups. [Conclusion] Compared to the conventional exercise, the modified exercise was more effective for trunk-hip activation improvement and anterior pelvic tilt motion decrease during standing in children with spastic diplegia. We suggest clinicians use an individually tailored modified trunk-hip strengthening exercise for strengthening the weakest muscle groups in children with standing ability problems.

  9. Neuromuscular Characteristics of Individuals Displaying Excessive Medial Knee Displacement

    PubMed Central

    Padua, Darin A.; Bell, David R.; Clark, Micheal A.

    2012-01-01

    Context Knee-valgus motion is a potential risk factor for certain lower extremity injuries, including anterior cruciate ligament injury and patellofemoral pain. Identifying neuromuscular characteristics associated with knee-valgus motion, such as hip and lower leg muscle activation, may improve our ability to prevent lower extremity injuries. Objective We hypothesized that hip and lower leg muscle-activation amplitude would differ among individuals displaying knee valgus (medial knee displacement) during a double-legged squat compared with those who did not display knee valgus. We further suggested that the use of a heel lift would alter lower leg muscle activation and frontal-plane knee motion in those demonstrating medial knee displacement. Design Descriptive laboratory study. Setting Research laboratory. Patients or Other Participants A total of 37 healthy participants were assigned to the control (n = 19) or medial-knee-displacement (n = 18) group based on their double-legged squat performance. Main Outcome Measure(s) Muscle-activation amplitude for the gluteus maximus, gluteus medius, adductor magnus, medial and lateral gastrocnemius, and tibialis anterior was measured during 2 double-legged squat tasks. The first task consisted of performing a double-legged squat without a heel lift; the second consisted of performing a double-legged squat task with a 2-in (5.08-cm) lift under the heels. Results Muscle-activation amplitude for the hip adductor, gastrocnemius, and tibialis anterior was greater in those who displayed knee valgus than in those who did not (P < .05). Also, use of heel lifts resulted in decreased activation of the gluteus maximus, hip adductor, gastrocnemius, and tibialis anterior muscles (P < .05). Use of heel lifts also eliminated medially directed frontal-plane knee motion in those displaying medial knee displacement. Conclusions Medial knee displacement during squatting tasks appears to be associated with increased hip-adductor activation and increased coactivation of the gastrocnemius and tibialis anterior muscles. PMID:23068590

  10. Effects of Acute Fatigue of the Hip Flexor Muscles on Hamstring Muscle Extensibility.

    PubMed

    Muyor, José M; Arrabal-Campos, Francisco M

    2016-12-01

    The purpose of the present study was to evaluate the influence of acute fatigue of the hip flexor muscles on scores attained in tests frequently used in literature to measure hamstring muscle extensibility, namely the passive straight leg raise (PSLR), active straight leg raise (ASLR), passive knee extension (PKE), active knee extension (AKE), sit-and-reach (SR) and toe-touch (TT) tests. A total of seventy-five healthy and recreationally active adults voluntarily participated in this study. To reach fatigue, the participants actively lifted their legs alternately as many times as possible. In the passive tests, the results were 7.10 ± 5.21° and 5.68 ± 4.54° higher (p < 0.01) for PSLR and PKE tests, respectively, after acute fatigue. However, in the ASLR test, the results were lower post-fatigue than pre-fatigue (mean difference = -5.30° ± 9.51°; p < 0.01). The AKE, SR and TT tests did not show significant differences between pre- and post-fatigue (p > 0.05). Moderate (r = 0.40) to high (r = 0.97) correlation coefficients were found, which were statistically significant among all the measured flexibility tests both pre- and post-fatigue. In conclusion, the active implication of the hip flexor muscles until reaching fatigue had acute influences on the results of the PSLR, PKE and ASLR tests, but not on the results of the AKE, SR and TT tests. It is recommended to use the AKE test to assess hamstring muscle extensibility in situations where athletes show fatigue in their hip flexor muscles.

  11. The Effectiveness of PNF Versus Static Stretching on Increasing Hip-Flexion Range of Motion.

    PubMed

    Lempke, Landon; Wilkinson, Rebecca; Murray, Caitlin; Stanek, Justin

    2018-05-22

    Clinical Scenario: Stretching is applied for the purposes of injury prevention, increasing joint range of motion (ROM), and increasing muscle extensibility. Many researchers have investigated various methods and techniques to determine the most effective way to increase joint ROM and muscle extensibility. Despite the numerous studies conducted, controversy still remains within clinical practice and the literature regarding the best methods and techniques for stretching. Focused Clinical Question: Is proprioceptive neuromuscular facilitation (PNF) stretching more effective than static stretching for increasing hamstring muscle extensibility through increased hip ROM or increased knee extension angle (KEA) in a physically active population? Summary of Key Findings: Five studies met the inclusion criteria and were included. All 5 studies were randomized control trials examining mobility of the hamstring group. The studies measured hamstring ROM in a variety of ways. Three studies measured active KEA, 1 study measured passive KEA, and 1 study measured hip ROM via the single-leg raise test. Of the 5 studies, 1 study found greater improvements using PNF over static stretching for increasing hip flexion, and the remaining 4 studies found no significant difference between PNF stretching and static stretching in increasing muscle extensibility, active KEA, or hip ROM. Clinical Bottom Line: PNF stretching was not demonstrated to be more effective at increasing hamstring extensibility compared to static stretching. The literature reviewed suggests both are effective methods for increasing hip-flexion ROM. Strength of Recommendation: Using level 2 evidence and higher, the results show both static and PNF stretching effectively increase ROM; however, one does not appear to be more effective than the other.

  12. Worse self-reported outcomes but no limitations in performance-based measures in patients with long-standing hip and groin pain compared with healthy controls.

    PubMed

    Wörner, Tobias; Sigurðsson, Haraldur B; Pålsson, Anders; Kostogiannis, Ioannis; Ageberg, Eva

    2017-01-01

    This study aimed to evaluate patient-reported outcomes as well as lower extremity and trunk muscle function in patients with long-standing hip and groin pain, in comparison with matched, healthy controls. It was hypothesized that patients with long-standing hip and groin pain would report more deficiency on the Copenhagen Hip and Groin Outcome Score (HAGOS) and have worse outcomes on performance-based measures than healthy controls. Nineteen patients with long-standing hip and groin pain and 19 healthy, activity level-, age-, gender-, and weight-matched controls were assessed with the HAGOS for self-reported outcomes, and a parallel squat (w/kg), single-leg triple jump (cm), single-leg rise (n), barbell roll-out (% of height), and plank test (s) for performance-based measures. Independent sample t test was performed to assess between-group differences. The paired t test was used to analyse between-limb differences in unilateral performance tasks. The patients had worse scores than the controls in all HAGOS subscales (p ≤ 0.001), while no statistically significant differences were observed for any performance measure between groups or between symptomatic and non-symptomatic limbs. Despite significant self-reported functional limitations on the HAGOS, there were no significant differences between groups in performance-based strength or power measures. The results of this study highlight the need to identify performance-based measures, sensitive to functional deficiencies in patients with long-standing hip and groin pain in order to complement the clinical picture obtained by patient-reported outcomes such as the HAGOS. III.

  13. Is hip strengthening the best treatment option for females with patellofemoral pain? A randomized controlled trial of three different types of exercises.

    PubMed

    Saad, Marcelo Camargo; Vasconcelos, Rodrigo Antunes de; Mancinelli, Letícia Villani de Oliveira; Munno, Matheus Soares de Barros; Liporaci, Rogério Ferreira; Grossi, Débora Bevilaqua

    2018-04-04

    To evaluate the effect of three types of exercise intervention in patients with patellofemoral pain and to verify the contributions of each intervention to pain control, function, and lower extremity kinematics. A randomized controlled, single-blinded trial was conducted. Forty women with patellofemoral pain were randomly allocated into four groups: hip exercises, quadriceps exercises, stretching exercises and a control group (no intervention). Pain (using a visual analog scale), function (using the Anterior Knee Pain Scale), hip and quadriceps strength (using a handheld isometric dynamometer) and measuring lower limb kinematics during step up and down activities were evaluated at baseline and 8 weeks post intervention. All treatment groups showed significant improvements on pain and Anterior Knee Pain Scale after intervention with no statistically significant differences between groups except when compared to the control group. Only hip and quadriceps groups demonstrated improvements in muscle strength and knee valgus angle during the step activities. Hip strengthening exercises were not more effective for pain relief and function compared to quadriceps or stretching exercises in females with patellofemoral pain. Only hip and quadriceps groups were able to decrease the incidence of dynamic valgus during step-down activity. This study was approved by Brazilian Clinical Trials Registry registration number: RBR-6tc7mj (http://www.ensaiosclinicos.gov.br/rg/RBR-6tc7mj/). Copyright © 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. The effect of angle and moment of the hip and knee joint on iliotibial band hardness.

    PubMed

    Tateuchi, Hiroshige; Shiratori, Sakiko; Ichihashi, Noriaki

    2015-02-01

    Although several studies have described kinematic deviations such as excessive hip adduction in patients with iliotibial band (ITB) syndrome, the factors contributing to increased ITB hardness remains undetermined, owing to lack of direct in vivo measurement. The purpose of this study was to clarify the factors contributing to an increase in ITB hardness by comparing the ITB hardness between the conditions in which the angle, moment, and muscle activity of the hip and knee joint are changed. Sixteen healthy individuals performed the one-leg standing under five conditions in which the pelvic and trunk inclination were changed in the frontal plane. The shear elastic modulus in the ITB was measured as an indicator of the ITB hardness using shear wave elastography. The three-dimensional joint angle and external joint moment in the hip and knee joints, and muscle activities of the gluteus maximus, gluteus medius, tensor fasciae latae, and vastus lateralis, which anatomically connect to the ITB, were also measured. ITB hardness was significantly increased in the posture with pelvic and trunk inclination toward the contralateral side of the standing leg compared with that in all other conditions (increase of approximately 32% compared with that during normal one-leg standing). This posture increased both the hip adduction angle and external adduction moment at the hip and knee joint, although muscle activities were not increased. Our findings suggest that coexistence of an increased adduction moment at the hip and knee joints with an excessive hip adduction angle lead to an increase in ITB hardness. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Gait symmetry and hip strength in women with developmental dysplasia following hip arthroplasty compared to healthy subjects: A cross-sectional study.

    PubMed

    Leijendekkers, Ruud A; Marra, Marco A; Kolk, Sjoerd; van Bon, Geert; Schreurs, B Wim; Weerdesteyn, Vivian; Verdonschot, Nico

    2018-01-01

    Untreated unilateral developmental dysplasia of the hip (DDH) results in asymmetry of gait and hip strength and may lead to early osteoarthritis, which is commonly treated with a total hip arthroplasty (THA). There is limited knowledge about the obtained symmetry of gait and hip strength after the THA. The objectives of this cross-sectional study were to: a) identify asymmetries between the operated and non-operated side in kinematics, kinetics and hip strength, b) analyze if increased walking speed changed the level of asymmetry in patients c) compare these results with those of healthy subjects. Women (18-70 year) with unilateral DDH who had undergone unilateral THA were eligible for inclusion. Vicon gait analysis system was used to collect frontal and sagittal plane kinematic and kinetic parameters of the hip joint, pelvis and trunk during walking at comfortable walking speed and increased walking speed. Furthermore, hip abductor and extensor muscle strength was measured. Six patients and eight healthy subjects were included. In the patients, modest asymmetries in lower limb kinematics and kinetics were present during gait, but trunk lateral flexion asymmetry was evident. Patients' trunk lateral flexion also differed compared to healthy subjects. Walking speed did not significantly influence the level of asymmetry. The hip abduction strength asymmetry of 23% was not statistically significant, but the muscle strength of both sides were significantly weaker than those of healthy subjects. In patients with a DDH treated with an IBG THA modest asymmetries in gait kinematics and kinetics were present, with the exception of a substantial asymmetry of the trunk lateral flexion. Increased walking speed did not result in increased asymmetries in gait kinematics and kinetics. Hip muscle strength was symmetrical in patients, but significantly weaker than in healthy subjects. Trunk kinematics should be included as an outcome measure to assess the biomechanical benefits of the THA surgery after DDH.

  16. EMG activity of hip and trunk muscles during deep-water running.

    PubMed

    Kaneda, Koichi; Sato, Daisuke; Wakabayashi, Hitoshi; Nomura, Takeo

    2009-12-01

    The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.

  17. Influence of paravertebral muscles training on brain plasticity and postural control in chronic low back pain.

    PubMed

    Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril

    2016-07-01

    Isometric activation (ISOM) of deep multifidi muscles (MF) can influence postural adjustments and primary motor cortex (M1) function in chronic low back pain (CLBP). In order to better understand how ISOM impacts on CLBP condition, the present study contrasted ISOM after-effects on M1 function, MF postural activation and pain with another training, the global activation of paravertebral muscles (GLOB, hip extension). The main objective of this study was to compare the effects of ISOM and GLOB (3-week training each) on MF postural activation and M1 function in a CLBP population. Twenty-four people with CLBP were randomly allocated to ISOM and GLOB groups for a 3-week daily practice. Pre/post-training after-effects were assessed by the onset of superficial MF (MF-S) activation during ballistic limb movements (bilateral shoulder flexion in standing; unilateral hip extension in prine lying), MF-S corticomotor control tested by transcranial magnetic stimulation of M1, and assessment of pain, kinesiophobia and disability by standardized questionnaires. Both ISOM and GLOB improved pain and disability. However, only ISOM influenced M1 function (decreased corticospinal excitability and increased intracortical inhibition), fastened MF-S postural activation and decreased kinesiophobia. Changes of corticospinal excitability and of MF-S postural adjustments suggest that ISOM better influenced brain plasticity. Future studies should further test whether our novel findings relate to an influence of the exercises on the lumbopelvic control of different muscles and on cognitive function. Clinically, individual's evaluation remains warranted before prescribing one or the other of these two conventional exercises for reducing pain. This original study presents how motor control exercises can influence brain plasticity and postural control in chronic low back pain. This knowledge will impact on the decision of clinicians to prescribe specific exercises with a view of improving motor control in this musculoskeletal condition. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. MRI-Based Regional Muscle Use during Hamstring Strengthening Exercises in Elite Soccer Players.

    PubMed

    Mendez-Villanueva, Alberto; Suarez-Arrones, Luis; Rodas, Gil; Fernandez-Gonzalo, Rodrigo; Tesch, Per; Linnehan, Richard; Kreider, Richard; Di Salvo, Valter

    2016-01-01

    The present study examined site-specific hamstring muscles use with functional magnetic resonance imaging (MRI) in elite soccer players during strength training. Thirty-six players were randomized into four groups, each performing either Nordic hamstring, flywheel leg-curl, Russian belt or the hip-extension conic-pulley exercise. The transverse relaxation time (T2) shift from pre- to post-MRI were calculated for the biceps femoris long (BFl) and short (BFs) heads, semitendinosus (ST) and semimembranosus (SM) muscles at proximal, middle and distal areas of the muscle length. T2 values increased substantially after flywheel leg-curl in all regions of the BFl (from 9±8 to 16±8%), BFs (41±6-71±11%), and ST (60±1-69±7%). Nordic hamstring induced a substantial T2 increase in all regions of the BFs (13±8-16±5%) and ST (15±7-17±5%). T2 values after the Russian belt deadlift substantially increased in all regions of the BFl (6±4-7±5%), ST (8±3-11±2%), SM (6±4-10±4%), and proximal and distal regions of BFs (6±6-8±5%). T2 values substantially increased after hip-extension conic-pulley only in proximal and middle regions of BFl (11±5-7±5%) and ST (7±3-12±4%). The relevance of such MRI-based inter- and intra-muscle use in designing more effective resistance training for improving hamstring function and preventing hamstring injuries in elite soccer players should be explored with more mechanistic studies.

  19. MRI-Based Regional Muscle Use during Hamstring Strengthening Exercises in Elite Soccer Players

    PubMed Central

    Mendez-Villanueva, Alberto; Suarez-Arrones, Luis; Rodas, Gil; Fernandez-Gonzalo, Rodrigo; Tesch, Per; Linnehan, Richard; Kreider, Richard; Di Salvo, Valter

    2016-01-01

    The present study examined site-specific hamstring muscles use with functional magnetic resonance imaging (MRI) in elite soccer players during strength training. Thirty-six players were randomized into four groups, each performing either Nordic hamstring, flywheel leg-curl, Russian belt or the hip-extension conic-pulley exercise. The transverse relaxation time (T2) shift from pre- to post-MRI were calculated for the biceps femoris long (BFl) and short (BFs) heads, semitendinosus (ST) and semimembranosus (SM) muscles at proximal, middle and distal areas of the muscle length. T2 values increased substantially after flywheel leg-curl in all regions of the BFl (from 9±8 to 16±8%), BFs (41±6–71±11%), and ST (60±1–69±7%). Nordic hamstring induced a substantial T2 increase in all regions of the BFs (13±8–16±5%) and ST (15±7–17±5%). T2 values after the Russian belt deadlift substantially increased in all regions of the BFl (6±4–7±5%), ST (8±3–11±2%), SM (6±4–10±4%), and proximal and distal regions of BFs (6±6–8±5%). T2 values substantially increased after hip-extension conic-pulley only in proximal and middle regions of BFl (11±5–7±5%) and ST (7±3–12±4%). The relevance of such MRI-based inter- and intra-muscle use in designing more effective resistance training for improving hamstring function and preventing hamstring injuries in elite soccer players should be explored with more mechanistic studies. PMID:27583444

  20. Differences in kinematics and electromyographic activity between men and women during the single-legged squat.

    PubMed

    Zeller, Brian L; McCrory, Jean L; Kibler, W Ben; Uhl, Timothy L

    2003-01-01

    Numerous factors have been identified as potentially increasing the risk of anterior cruciate ligament injury in the female athlete. However, differences between the sexes in lower extremity coordination, particularly hip control, are only minimally understood. There is no difference in kinematic or electromyographic data during the single-legged squat between men and women. Descriptive comparison study. We kinematically and electromyographically analyzed the single-legged squat in 18 intercollegiate athletes (9 male, 9 female). Subjects performed five single-legged squats on their dominant leg, lowering themselves as far as possible and then returning to a standing position without losing balance. Women demonstrated significantly more ankle dorsiflexion, ankle pronation, hip adduction, hip flexion, hip external rotation, and less trunk lateral flexion than men. These factors were associated with a decreased ability of the women to maintain a varus knee position during the squat as compared with the men. Analysis of all eight tested muscles demonstrated that women had greater muscle activation compared with men. When each muscle was analyzed separately, the rectus femoris muscle activation was found to be statistically greater in women in both the area under the linear envelope and maximal activation data. Under a physiologic load in a position commonly assumed in sports, women tend to position their entire lower extremity and activate muscles in a manner that could increase strain on the anterior cruciate ligament.

  1. Displacement of the hip center of rotation after arthroplasty of Crowe III and IV dysplasia: a radiological and biomechanical study.

    PubMed

    Abolghasemian, Mansour; Samiezadeh, Saeid; Jafari, Davood; Bougherara, Habiba; Gross, Allan E; Ghazavi, Mohammad T

    2013-06-01

    To study the direction and biomechanical consequences of hip center of rotation (HCOR) migration in Crowe type III and VI hips after total hip arthroplasty, post-operative radiographs and CT scans of several unilaterally affected hips were evaluated. Using a three-dimensional model of the human hip, the HCOR was moved in all directions, and joint reaction force (JRF) and abductor muscle force (AMF) were calculated for single-leg stance configuration. Comparing to the normal side, HCOR had displaced medially and inferiorly by an average of 23.4% and 20.8%, respectively, of the normal femoral head diameter. Significant decreases in JRF (13%) and AMF (46.13%) were observed in a presumptive case with that amount of displacement. Isolated inferior displacement had a small, increasing effect on these forces. In Crowe type III and IV hips, the HCOR migrates inferiorly and medially after THA, resulting in a decrease in JRF, AMF, and abductor muscle contraction force. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Muscle torque and its relation to technique, tactics, sports level and age group in judo contestants.

    PubMed

    Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław

    2015-03-29

    The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman's r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821).

  3. Muscle Torque and its Relation to Technique, Tactics, Sports Level and Age Group in Judo Contestants

    PubMed Central

    Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław

    2015-01-01

    The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman’s r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821). PMID:25964820

  4. Muscle optimization techniques impact the magnitude of calculated hip joint contact forces.

    PubMed

    Wesseling, Mariska; Derikx, Loes C; de Groote, Friedl; Bartels, Ward; Meyer, Christophe; Verdonschot, Nico; Jonkers, Ilse

    2015-03-01

    In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization techniques, computed muscle control (CMC) and the physiological inverse approach (PIA). We investigated their subsequent effects on HCFs during gait and sit to stand and found that at the first peak in gait at 15-20% of the gait cycle, CMC calculated the highest HCFs (median 3.9 times peak GRF (pGRF)). When comparing calculated HCFs to experimental HCFs reported in literature, the former were up to 238% larger. Both static optimization techniques produced lower HCFs (median 3.0 and 3.1 pGRF), while PIA included muscle dynamics without an excessive increase in HCF (median 3.2 pGRF). The increased HCFs in CMC were potentially caused by higher muscle forces resulting from co-contraction of agonists and antagonists around the hip. Alternatively, these higher HCFs may be caused by the slightly poorer tracking of the net joint moment by the muscle moments calculated by CMC. We conclude that the use of different optimization techniques affects calculated HCFs, and static optimization approached experimental values best. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Abdominal Hollowing Reduces Lateral Trunk Displacement During Single-Leg Squats in Healthy Females But Does Not Affect Peak Hip Abduction Angle or Knee Abductio Angle/Moment.

    PubMed

    Linde, Lukas D; Archibald, Jessica; Lampert, Eve C; Srbely, John Z

    2017-07-17

    Females suffer 4-6 times more non-contact anterior cruciate ligament (ACL) injuries than males due to neuromuscular control deficits of the hip musculature leading to increases in hip adduction angle, knee abduction angle, and knee abduction moment during dynamic tasks such as single-leg squats. Lateral trunk displacement has been further related to ACL injury risk in females, leading to the incorporation of core strength/stability exercises in ACL preventative training programs. However, the direct mechanism relating lateral trunk displacement and lower limb ACL risk factors is not well established. To assess the relationship between lateral trunk displacement and lower limb measures of ACL injury risk by altering trunk control through abdominal activation techniques during single-leg squats in healthy females. Interventional Study Setting: Movement and Posture Laboratory Participants: 13 healthy females (21.3±0.88y, 1.68±0.07m, 58.27±5.46kg) Intervention: Trunk position and lower limb kinematics were recorded using an optoelectric motion capture system during single-leg squats under differing conditions of abdominal muscle activation (abdominal hollowing, abdominal bracing, control), confirmed via surface electromyography. Lateral trunk displacement, peak hip adduction angle, peak knee abduction angle/moment, and average muscle activity from bilateral internal oblique, external oblique, and erector spinae muscles. No differences were observed for peak lateral trunk displacement, peak hip adduction angle or peak knee abduction angle/moment. Abdominal hollowing and bracing elicited greater muscle activation than the control condition, and bracing was greater than hollowing in four of six muscles recorded. The lack of reduction in trunk, hip, and knee measures of ACL injury risk during abdominal hollowing and bracing suggests that these techniques alone may provide minimal benefit in ACL injury prevention training.

  6. Comparison of different strongman events: trunk muscle activation and lumbar spine motion, load, and stiffness.

    PubMed

    McGill, Stuart M; McDermott, Art; Fenwick, Chad Mj

    2009-07-01

    Strongman events are attracting more interest as training exercises because of their unique demands. Further, strongman competitors sustain specific injuries, particularly to the back. Muscle electromyographic data from various torso and hip muscles, together with kinematic measures, were input to an anatomically detailed model of the torso to estimate back load, low-back stiffness, and hip torque. Events included the farmer's walk, super yoke, Atlas stone lift, suitcase carry, keg walk, tire flip, and log lift. The results document the unique demands of these whole-body events and, in particular, the demands on the back and torso. For example, the very large moments required at the hip for abduction when performing a yoke walk exceed the strength capability of the hip. Here, muscles such as quadratus lumborum made up for the strength deficit by generating frontal plane torque to support the torso/pelvis. In this way, the stiffened torso acts as a source of strength to allow joints with insufficient strength to be buttressed, resulting in successful performance. Timing of muscle activation patterns in events such as the Atlas stone lift demonstrated the need to integrate the hip extensors before the back extensors. Even so, because of the awkward shape of the stone, the protective neutral spine posture was impossible to achieve, resulting in substantial loading on the back that is placed in a weakened posture. Unexpectedly, the super yoke carry resulted in the highest loads on the spine. This was attributed to the weight of the yoke coupled with the massive torso muscle cocontraction, which produced torso stiffness to ensure spine stability together with buttressing the abduction strength insufficiency of the hips. Strongman events clearly challenge the strength of the body linkage, together with the stabilizing system, in a different way than traditional approaches. The carrying events challenged different abilities than the lifting events, suggesting that loaded carrying would enhance traditional lifting-based strength programs. This analysis also documented the technique components of successful, joint-sparing, strongman event strategies.

  7. Muscle function in aged women in response to a water-based exercises program and progressive resistance training.

    PubMed

    Bento, Paulo Cesar Barauce; Rodacki, André Luiz Felix

    2015-11-01

    The purpose of the present study was to determine the effects of a water-based exercise program on muscle function compared with regular high-intensity resistance training. Older women (n = 87) were recruited from the local community. The inclusion criteria were, to be aged 60 years or older, able to walk and able to carry out daily living activities independently. Participants were randomly assigned to one of the following groups: water-based exercises (WBG), resistance training (RTG) or control (CG). The experimental groups carried out 12 weeks of an excise program performed on water or on land. The dynamic strength, the isometric peak, and rate of torque development for the lower limbs were assessed before and after interventions. The water-based program provided a similar improvement in dynamic strength in comparison with resistance training. The isometric peak torque increased around the hip and ankle joints in the water-based group, and around the knee joint in the resistance-training group (P < 0.05). The rate of torque development increased only in the water-based group around the hip extensors muscles (P < 0.05). Water-based programs constitute an attractive alternative to promote relevant strength gains using moderate loads and fast speed movements, which were also effective to improve the capacity to generate fast torques. © 2014 Japan Geriatrics Society.

  8. Early results of one-stage correction for hip instability in cerebral palsy.

    PubMed

    Kim, Hui Taek; Jang, Jae Hoon; Ahn, Jae Min; Lee, Jong Seo; Kang, Dong Joon

    2012-06-01

    We evaluated the clinical and radiological results of one-stage correction for cerebral palsy patients. We reviewed clinical outcomes and radiologic indices of 32 dysplastic hips in 23 children with cerebral palsy (13 males, 10 females; mean age, 8.6 years). Ten hips had dislocation, while 22 had subluxation. Preoperative Gross Motor Function Classification System (GMFCS) scores of the patients were as follows; level V (13 patients), level IV (9), and level III (1). Acetabular deficiency was anterior in 5 hips, superolateral in 7, posterior in 11 and mixed in 9, according to 3 dimensional computed tomography. The combined surgery included open reduction of the femoral head, release of contracted muscles, femoral shortening varus derotation osteotomy and the modified Dega osteotomy. Hip range of motion, GMFCS level, acetabular index, center-edge angle and migration percentage were measured before and after surgery. The mean follow-up period was 28.1 months. Hip abduction (median, 40°), sitting comfort and GMFCS level were improved after surgery, and pain was decreased. There were two cases of femoral head avascular necrosis, but no infection, nonunion, resubluxation or redislocation. All radiologic indices showed improvement after surgery. A single event multilevel surgery including soft tissue, pelvic and femoral side correction is effective in treating spastic dislocation of the hip in cerebral palsy.

  9. Changes in the activity of trunk and hip extensor muscles during bridge exercises with variations in unilateral knee joint angle.

    PubMed

    Kim, Juseung; Park, Minchul

    2016-09-01

    [Purpose] This study compared abdominal and hip extensor muscle activity during a bridge exercise with various knee joint angles. [Subjects and Methods] Twenty-two healthy male subjects performed a bridge exercise in which the knee joint angle was altered. While subjects performed the bridge exercise, external oblique, internal oblique, gluteus maximus, and semitendinosus muscle activity was measured using electromyography. [Results] The bilateral external and internal oblique muscle activity was significantly higher at 0° knee flexion compared to 120°, 90°, and 60°. The bilateral gluteus maximus muscle activity was significantly different at 0° of knee flexion compared to 120°, 90°, and 60°. The ipsilateral semitendinosus muscle activity was significantly increased at 90° and 60° of knee flexion compared to 120°, and significantly decreased at 0° knee flexion compared with 120°, 90°, and 60°. The contralateral semitendinosus muscle activity was significantly higher at 60° of knee flexion than at 120°, and significantly higher at 0° of knee flexion than at 120°, 90°, and 60°. [Conclusion] Bridge exercises performed with knee flexion less than 90° may be used to train the ipsilateral semitendinosus. Furthermore, bridge exercise performed with one leg may be used to train abdominal and hip extensor muscles.

  10. Outcomes of hip resurfacing in a professional dancer: a case report.

    PubMed

    Dunleavy, Kim

    2012-02-01

    A new surgical option (hip resurfacing arthroplasty) is now available for younger patients with hip osteoarthritis. A more aggressive rehabilitation program than the typical total hip arthroplasty protocol is needed for active individuals. This case report describes interventions used to maximize function in a 46-year-old professional dancer after hip resurfacing with a progressive therapeutic exercise program. Exercise choices were selected to address dance-specific requirements while respecting healing of the posterior capsular incision. Strengthening focused on hip abduction, extension, and external rotation. Precautions included avoiding gluteal stretching until 6 months. Pelvic alignment and weight-bearing distribution were emphasized. The patient was able to return to rehearsal by 7 months, at which time strength was equivalent to the unaffected leg. Range of motion reached unaffected side values at week 8 for internal rotation, week 11 for extension, week 13 for adduction, and week 28 for flexion. External rotation and abduction were still limited at 1 year, which influenced pelvic alignment with resultant pain on the unaffected side. Functional and impairment outcomes are presented with timelines to provide a basis for postoperative benchmarks for active clients after hip resurfacing. Although this case report presents a dance-specific program, exercise progressions for other active individuals may benefit from similar exercise intensity and sports-specific focus. Future rehabilitation programs should take into account possible flexion and external rotation range limitations and the need for gluteal muscle strengthening along with symmetry and pelvic alignment correction. Long-term studies investigating intensity of rehabilitation are warranted for patients intending to participate in higher level athletic activity.

  11. Melorheostosis--an unusual cause of amputation.

    PubMed

    Graham, L E; Parke, R C

    2005-04-01

    A 24-year-old female developed, in infancy, progressive right upper and lower limb muscle and soft tissue contractures and had a diagnosis of melorheostosis made on X-ray and pathological specimens. At the age of 11 years she began to have pain in the right hip and lower limb and this later became the dominant feature. She ultimately required amputation through the right hip joint and prosthetic fitting. She now has independent mobility with her prosthesis and has had no recurrence of pain. Her right arm remains flexed, shortened and contracted, but some hand function is retained. A review of the medical literature is discussed.

  12. Arthroscopic Surgical Procedures Versus Sham Surgery for Patients With Femoroacetabular Impingement and/or Labral Tears: Study Protocol for a Randomized Controlled Trial (HIPARTI) and a Prospective Cohort Study (HARP).

    PubMed

    Risberg, May Arna; Ageberg, Eva; Nilstad, Agnethe; Lund, Bent; Nordsletten, Lars; Løken, Sverre; Ludvigsen, Tom; Kierkegaard, Signe; Carsen, Sasha; Kostogiannis, Ioannis; Crossley, Kay M; Glyn-Jones, Sion; Kemp, Joanne L

    2018-04-01

    Study Design Study protocol for a randomized controlled trial and a prospective cohort. Background The number of arthroscopic surgical procedures for patients with femoroacetabular impingement syndrome (FAIS) has significantly increased worldwide, but high-quality evidence of the effect of such interventions is lacking. Objectives The primary objective will be to determine the efficacy of hip arthroscopic procedures compared to sham surgery on patient-reported outcomes for patients with FAIS (HIP ARThroscopy International [HIPARTI] Study). The secondary objective will be to evaluate prognostic factors for long-term outcome after arthroscopic surgical interventions in patients with FAIS (Hip ARthroscopy Prospective [HARP] Study). Methods The HIPARTI Study will include 140 patients and the HARP Study will include 100 patients. The international Hip Outcome Tool-33 will be the primary outcome measure at 1 year. Secondary outcome measures will be the Hip disability and Osteoarthritis Outcome Score, Arthritis Self-Efficacy Scale, fear of movement (Tampa Scale of Kinesiophobia), Patient-Specific Functional Scale, global rating of change score, and expectations. Other outcomes will include active hip range of motion, hip muscle strength tests, functional performance tests, as well as radiological assessments using radiographs and magnetic resonance imaging. Conclusion To determine the true effect of surgery, beyond that of placebo, double-blinded placebo-controlled trials including sham surgery are needed. The HIPARTI Study will direct future evidence-based treatment of FAIS. Predictors for long-term development and progression of degenerative changes in the hip are also needed for this young patient group with FAIS; hence, responders and nonresponders to treatment could be determined. J Orthop Sports Phys Ther 2018;48(4):325-335. doi:10.2519/jospt.2018.7931.

  13. Changes in regional activity of the psoas major and quadratus lumborum with voluntary trunk and hip tasks and different spinal curvatures in sitting.

    PubMed

    Park, Rachel J; Tsao, Henry; Claus, Andrew; Cresswell, Andrew G; Hodges, Paul W

    2013-02-01

    Cross-sectional controlled laboratory study. To investigate the function of discrete regions of psoas major (PM) and quadratus lumborum (QL) with changes in spinal curvature and hip position. Anatomically discrete regions of PM and QL may have differential function on the lumbar spine, based on anatomical and biomechanical differences in their moment arms between fascicles within each muscle. Fine-wire electrodes were inserted with ultrasound guidance into PM fascicles arising from the transverse process (PM-t) and vertebral body (PM-v) and anterior (QL-a) and posterior (QL-p) layers of QL. Recordings were made on 9 healthy participants, who performed 7 tasks with maximal voluntary efforts and adopted 3 sitting postures that involved different spinal curvatures and hip angles. Activity of PM-t was greater during trunk extension than flexion, whereas activity of PM-v was greater during hip flexion than trunk efforts. Activity of QL-p was greater during trunk extension and lateral flexion, whereas QL-a showed greater activity during lateral flexion. During sitting tasks, PM-t was more active when sitting with a short lordosis than a flat (less extended) lumbar spine posture, whereas PM-v was similarly active in both sitting postures. Activity of PM-t was more affected by changes in position of the lumbar spine than the hip, whereas PM-v was more actively involved in the movement of the hip rather than that of the lumbar spine. Moreover, from its anatomy, PM-t has a combined potential to extend/lordose the lumbar spine and flex the hip, at least in a flexed-hip position.

  14. Transitioning to the direct anterior approach in total hip arthroplasty. Is it a true muscle sparing approach when performed by a low volume hip replacement surgeon?

    PubMed

    Nistor, Dan-Viorel; Caterev, Sergiu; Bolboacă, Sorana-Daniela; Cosma, Dan; Lucaciu, Dan Osvald Gheorghe; Todor, Adrian

    2017-11-01

    We conducted this study to establish if the transition from a lateral approach (LA) to the direct anterior approach (DAA) for a low volume hip arthroplasty surgeon during the steep learning curve can be performed maintaining the muscle sparing approach of the DAA without increasing the complication rates. In this controlled, prospective, randomized clinical study we investigated 70 patients (35 DAA, 35 LA) with similar demographics that underwent a total hip arthroplasty. Assessment of the two approaches consisted of determining the invasiveness through serum markers for muscle damage (i.e. myoglobin, creatine kinase and lactate dehydrogenase), the operative parameters such as post-operative pain and rescue medication consumption, the component positioning and complication rates. Post-operative myoglobin levels were higher (p < 0.001) in the LA group (326.42 ± 84.91 ng/mL) as compared to the DAA group (242.80 ± 71.03 ng/mL), but with no differences regarding other biomarkers for muscle damage. Pain levels were overall lower in the DAA group, with a statistical and clinical difference during surgery day (p < 0.001) associated with lower (p < 0.001) rescue medication consumption (median 1 (1; 3) mg morphine vs. 3 (2; 4) mg morphine). Most patients in the LA group reported chronic post-operative pain throughout all three evaluated months, while the majority of patients in the DAA group reported no pain after week six. Component positioning did not differ significantly between groups and neither did complication rates. The DAA can be transitioned from the LA safely, without higher complication rates while maintaining its muscle spearing advantages when performed by a low volume hip arthroplasty surgeon.

  15. Weakening iliopsoas muscle in healthy adults may induce stiff knee pattern.

    PubMed

    Akalan, N Ekin; Kuchimov, Shavkat; Apti, Adnan; Temelli, Yener; Nene, Anand

    2016-12-01

    The goal of the present study was to investigate the relationship between iliopsoas muscle group weakness and related hip joint velocity reduction and stiff-knee gait (SKG) during walking in healthy individuals. A load of 5% of each individual's body weight was placed on non-dominant thigh of 15 neurologically intact, able-bodied participants (average age: 22.4 ± 0.81 years). For 33 min (135 s × 13 repetitions × 5 s rest), a passive stretch (PS) was applied with the load in place until hip flexor muscle strength dropped from 5/5 to 3+/5 according to manual muscle test. All participants underwent gait analysis before and after PS to compare sagittal plane hip, knee, and ankle kinematics and kinetics and temporo-spatial parameters. Paired t-test was used to compare pre- and post-stretch findings and Pearson correlation coefficient (r) was calculated to determine strength of correlation between SKG parameters and gait parameters of interest (p < 0.05). Reduced hip flexion velocity (mean: 21.5%; p = 0.005) was a contributor to SKG, decreasing peak knee flexion (PKF) (-20%; p = 0.0008), total knee range (-18.9%; p = 0.003), and range of knee flexion between toe-off and PKF (-26.7%; p = 0.001), and shortening duration between toe-off to PKF (-16.3%; p = 0.0005). These findings verify that any treatment protocol that slows hip flexion during gait by weakening iliopsoas muscle may have great potential to produce SKG pattern combined with reduced gait velocity. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  16. Hip abductor, trunk extensor and ankle plantar flexor endurance in females with and without patellofemoral pain.

    PubMed

    Van Cant, Joachim; Pitance, Laurent; Feipel, Véronique

    2017-01-01

    Previous studies have reported strength deficit in hip abduction, extension and external rotation in females with patellofemoral pain (PFP) when compared with healthy control; however, there is conflicting evidence for a decrease in hip muscle endurance. Therefore, it seems important to evaluate hip muscle endurance in females with PFP. Moreover, trunk extensor and ankle plantar flexor endurance have not yet been evaluate in females with PFP. To compare hip abductor, trunk extensor and ankle plantar flexor endurance between females with and without PFP. Twenty females with PFP (mean age, 21.1 years) and 76 healthy females (mean age, 20.5 years) were recruited. Subject performed three endurance clinical tests: (1) The hip abductor isometric endurance test, (2) The Sorensen test and (3) The heel rise test. Group differences were assessed using an independent t tests, or Mann-Whitney U tests for non-normally distributed data. Subjects with PFP exhibited significantly lower hip abductor, trunk extensor and ankle plantar flexor endurance than healthy controls. On average, subjects with PFP had deficits of 16% in hip abduction, 14% in trunk extension and 26% in ankle plantar flexion. Females with PFP exhibited diminished hip abductor, trunk extensor and ankle plantar flexor endurance compared to healthy controls.

  17. The effects of acute experimental hip muscle pain on dynamic single-limb balance performance in healthy middle-aged adults.

    PubMed

    Hatton, Anna L; Hug, François; Chen, Sarah H; Reid, Christine; Sorensen, Nicole A; Tucker, Kylie

    2016-10-01

    Middle-aged adults with painful hip conditions show balance impairments that are consistent with an increased risk of falls. Pathological changes at the hip, accompanied by pain, may accelerate pre-existing age-related balance deficits present in midlife. To consider the influence of pain alone, we investigated the effects of acute experimental hip muscle pain on dynamic single-limb balance in middle-aged adults. Thirty-four healthy adults aged 40-60 years formed two groups (Group-1: n=16; Group-2: n=18). Participants performed four tasks: Reactive Sideways Stepping (ReactSide); Star Excursion Balance Test (SEBT); Step Test; Single-Limb Squat; before and after an injection of hypertonic saline into the right gluteus medius muscle (Group-1) or ∼5min rest (Group-2). Balance measures included the range and standard deviation of centre of pressure (CoP) movement in mediolateral and anterior-posterior directions, and CoP total path velocity (ReactSide, Squat); reach distance (SEBT); and number of completed steps (Step Test). Data were assessed using three-way analysis of variance. Motor outcomes were altered during the second repetition of tasks irrespective of exposure to experimental hip muscle pain or rest, with reduced SEBT anterior reach (-1.2±4.1cm, P=0.027); greater step number during Step Test (1.5±1.7 steps, P<0.001); and slower CoP velocity during Single-Limb Squat (-4.9±9.4mms -1 , P=0.024). Factors other than the presence of pain may play a greater role in balance impairments in middle-aged adults with hip pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Intratester Reliability and Construct Validity of a Hip Abductor Eccentric Strength Test.

    PubMed

    Brindle, Richard A; Ebaugh, David; Milner, Clare E

    2018-06-06

    Side-lying hip abductor strength tests are commonly used to evaluate muscle strength. In a "break" test, the tester applies sufficient force to lower the limb to the table while the patient resists. The peak force is postulated to occur while the leg is lowering, thus representing the participant's eccentric muscle strength. However, it is unclear whether peak force occurs before or after the leg begins to lower. To determine intrarater reliability and construct validity of a hip abductor eccentric strength test. Intrarater reliability and construct validity study. Twenty healthy adults (26 [6] y; 1.66 [0.06] m; 62.2 [8.0] kg) made 2 visits to the laboratory at least 1 week apart. During the hip abductor eccentric strength test, a handheld dynamometer recorded peak force and time to peak force, and limb position was recorded via a motion capture system. Intrarater reliability was determined using intraclass correlation, SEM, and minimal detectable difference. Construct validity was assessed by determining if peak force occurred after the start of the lowering phase using a 1-sample t test. The hip abductor eccentric strength test had substantial intrarater reliability (intraclass correlation (3,3)  = .88; 95% confidence interval, .65-.95), SEM of 0.9 %BWh, and a minimal detectable difference of 2.5 %BWh. Construct validity was established as peak force occurred 2.1 (0.6) seconds (range: 0.7-3.7 s) after the start of the lowering phase of the test (P ≤ .001). The hip abductor eccentric strength test is a valid and reliable measure of eccentric muscle strength. This test may be used clinically to assess changes in eccentric muscle strength over time.

  19. Glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners.

    PubMed

    Tai, Suh-Jun; Liu, Ren-Shyan; Kuo, Ya-Chen; Hsu, Chi-Yang; Chen, Chi-Hsien

    2010-04-30

    The aim of this study was to determine glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners. Positron emission tomography (PET) using 18F-fluoro-2-deoxyglucose (FDG) was performed to determine the patterns of glucose uptake in lower limbs of short-distance (SD group, n=8) and long-distance (LD group, n=8) male runners after a modified 20 min Bruce treadmill test. Magnetic resonance imaging (MRI) was used to delineate the muscle groups in lower limbs. Muscle groups from hip, knee, and ankle movers were measured. The total FDG uptake and the standard uptake value (SUV) for each muscle group were compared between the 2 groups. For the SD and LD runners, the 2 major muscle groups utilizing glucose during running were knee extensors and ankle plantarflexors, which accounted for 49.3 +/- 8.1% (25.1 +/- 4.7% and 24.2 +/- 6.0%) of overall lower extremity glucose uptake for SD group, and 51.3 +/- 8.0% (27.2 +/- 2.7% and 24.0 +/- 8.1%) for LD group. No difference in muscle glucose uptake was noted for other muscle groups. For SD runners, the SUVs for the muscle groups varied from 0.49 +/- 0.27 for the ankle plantarflexors, to 0.20 +/- 0.08 for the hip flexor. For the LD runners, the highest and lowest SUVs were 0.43 +/- 0.15 for the ankle dorsiflexors and 0.21 +/- 0.19 for the hip. For SD and LD groups, no difference in muscle SUV was noted for the muscle groups. However, the SUV ratio between the ankle dorsiflexors and plantarflexors in the LD group was significantly greater than that in the SD group. We thus conclude that the major propelling muscle groups account for approximately 50% of lower limb glucose utilization during running. Thus, the other muscle groups involving maintenance of balance, limb deceleration, and shock absorption utilize an equal amount. This result provides a new insight into glucose distribution in skeletal muscle, suggesting that propellers and supporters are both energetically important during running. Furthermore, for each unit muscle volume, movers of ankle are more glucose-demanding than those of hip.

  20. The effectiveness of an exercise programme on dynamic balance in patients with medial knee osteoarthritis: A pilot study.

    PubMed

    Al-Khlaifat, Lara; Herrington, Lee C; Tyson, Sarah F; Hammond, Alison; Jones, Richard K

    2016-10-01

    Dynamic balance and quiet standing balance are decreased in knee osteoarthritis (OA), with dynamic balance being more affected. This study aimed to investigate the effectiveness of a group exercise programme of lower extremity muscles integrated with education on dynamic balance using the Star Excursion Balance test (SEBT) in knee OA. Experimental before-and-after pilot study design. Nineteen participants with knee OA attended the exercise sessions once a week for six weeks, in addition to home exercises. Before and after the exercise programme, dynamic balance was assessed using the SEBT in the anterior and medial directions in addition to hip and knee muscle strength, pain, and function. Fourteen participants completed the study. Dynamic balance on the affected side demonstrated significant improvements in the anterior and medial directions (p=0.02 and p=0.01, respectively). The contralateral side demonstrated significant improvements in dynamic balance in the anterior direction (p<0.001). However, balance in the medial direction did not change significantly (p=0.07). Hip and knee muscle strength, pain, and function significantly improved (p<0.05) after the exercise programme. This is the first study to explore the effect of an exercise programme on dynamic balance using the SEBT in knee OA. The exercise programme was effective in improving dynamic balance which is required in different activities of daily living where the patients might experience the risk of falling. This might be attributed to the improvement in muscle strength and pain after the exercise programme. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Quantifying the magnitude of torque physiotherapists apply when stretching the hamstring muscles of people with spinal cord injury.

    PubMed

    Harvey, Lisa A; McQuade, Lea; Hawthorne, Scott; Byak, Adrian

    2003-07-01

    To quantify the magnitude of stretch that physiotherapists apply to the hamstring muscles of people with spinal cord injury (SCI). Repeated-measures design. SCI unit in Australia. Fifteen individuals with motor complete paraplegia or tetraplegia. Twelve physiotherapists manually administered a stretch to the hamstring muscles of each subject. The stretch was applied by flexing the hip with the knee extended. Applied hip flexor torque. Therapists applied median hip flexor torques of between 30 and 68Nm, although some torques were as large as 121Nm. The stretch applied by different therapists to any 1 subject varied as much as 40-fold. There is a large range of stretch torques provided by physiotherapists to patients with SCI. Some therapists provide stretch torques well in excess of those tolerated by individuals with intact sensation.

  2. Parallel facilitatory reflex pathways from the foot and hip to flexors and extensors in the injured human spinal cord

    PubMed Central

    Knikou, Maria; Kay, Elizabeth; Schmit, Brian D.

    2007-01-01

    Spinal integration of sensory signals associated with hip position, muscle loading, and cutaneous sensation of the foot contributes to movement regulation. The exact interactive effects of these sensory signals under controlled dynamic conditions are unknown. The purpose of the present study was to establish the effects of combined plantar cutaneous afferent excitation and hip movement on the Hoffmann (H) and flexion reflexes in people with a spinal cord injury (SCI). The flexion and H-reflexes were elicited through stimulation of the right sural (at non-nociceptive levels) and posterior tibial nerves respectively. Reflex responses were recorded from the ipsilateral tibialis anterior (TA) (flexion reflex) and soleus (H-reflex) muscles. The plantar cutaneous afferents were stimulated at three times the perceptual threshold (200 Hz, 24-ms pulse train) at conditioning–test intervals that ranged from 3 to 90 ms. Sinusoidal movements were imposed to the right hip joint at 0.2 Hz with subjects supine. Control and conditioned reflexes were recorded as the hip moved in flexion and extension. Leg muscle activity and sagittal-plane joint torques were recorded. We found that excitation of plantar cutaneous afferents facilitated the soleus H-reflex and the long latency flexion reflex during hip extension. In contrast, the short latency flexion reflex was depressed by plantar cutaneous stimulation during hip flexion. Oscillatory joint forces were present during the transition phase of the hip movement from flexion to extension when stimuli were delivered during hip flexion. Hip-mediated input interacts with feedback from the foot sole to facilitate extensor and flexor reflex activity during the extension phase of movement. The interactive effects of these sensory signals may be a feature of impaired gait, but when they are appropriately excited, they may contribute to locomotion recovery in these patients. PMID:17543951

  3. The influence of muscles on knee flexion during the swing phase of gait.

    PubMed

    Piazza, S J; Delp, S L

    1996-06-01

    Although the movement of the leg during swing phase is often compared to the unforced motion of a compound pendulum, the muscles of the leg are active during swing and presumably influence its motion. To examine the roles of muscles in determining swing phase knee flexion, we developed a muscle-actuated forward dynamic simulation of the swing phase of normal gait. Joint angles and angular velocities at toe-off were derived from experimental measurements, as were pelvis motions and muscle excitations. Joint angles and joint moments resulting from the simulation corresponded to experimental measurements made during normal gait. Muscular joint moments and initial joint angular velocities were altered to determine the effects of each upon peak knee flexion in swing phase. As expected, the simulation demonstrated that either increasing knee extension moment or decreasing toe-off knee flexion velocity decreased peak knee flexion. Decreasing hip flexion moment or increasing toe-off hip flexion velocity also caused substantial decreases in peak knee flexion. The rectus femoris muscle played an important role in regulating knee flexion; removal of the rectus femoris actuator from the model resulted in hyperflexion of the knee, whereas an increase in the excitation input to the rectus femoris actuator reduced knee flexion. These findings confirm that reduced knee flexion during the swing phase (stiff-knee gait) may be caused by overactivity of the rectus femoris. The simulations also suggest that weakened hip flexors and stance phase factors that determine the angular velocities of the knee and hip at toe-off may be responsible for decreased knee flexion during swing phase.

  4. The outcome of hip exercise in patellofemoral pain: A systematic review.

    PubMed

    Thomson, Catherine; Krouwel, Oliver; Kuisma, Raija; Hebron, Clair

    2016-12-01

    Patellofemoral pain (PFP) is one of the most common lower extremity conditions seen in clinical practice. Current evidence shows that there are hip strength deficits, delayed onset and shorter activation of gluteus medius in people with PFP. The aim of this review was to systematically review the literature to investigate the outcome of hip exercise in people with PFP. AMED, CINAHL, Cochrane, EMBASE, PEDro, Pubmed, Science direct and SPORTDiscus databases were searched from inception to November 2014 for RCTs, non-randomised studies and case studies. Two independent reviewers assessed each paper for inclusion and quality. Twenty one papers were identified; eighteen investigating strengthening exercise, two investigating the effect of neuromuscular exercise and one study investigated the effect of hip exercise for the prevention of PFP. Hip and knee strengthening programmes were shown to be equally effective. Limited evidence indicates that the addition of hip exercise to an exercise programme is beneficial. Limited evidence demonstrates that motor skill retraining in a participant group who displayed abnormal hip alignment in running improves pain. The evidence consistently demonstrated that both hip strengthening and neuromuscular exercise has a beneficial effect on pain and function in people with PFP. Strengthening exercise predominantly addressed abductor and external rotator muscle groups. A consensus from PFP researchers for standardisation of methodology is recommended to enable meaningful comparison between trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Isokinetic imbalance of adductor-abductor hip muscles in professional soccer players with chronic adductor-related groin pain.

    PubMed

    Belhaj, K; Meftah, S; Mahir, L; Lmidmani, F; Elfatimi, A

    2016-11-01

    This study aims to compare the isokinetic profile of hip abductor and adductor muscle groups between soccer players suffering from chronic adductor-related groin pain (ARGP), soccer players without ARGP and healthy volunteers from general population. Study included 36 male professional soccer players, who were randomly selected and followed-up over two years. Of the 21 soccer players eligible to participate in the study, 9 players went on to develop chronic ARGP and 12 players did not. Ten healthy male volunteers were randomly selected from the general population as a control group. Comparison between the abductor and adductor muscle peak torques for players with and without chronic ARGP found a statistically significant difference on the dominant and non-dominant sides (p < .005), with the abductor muscle significantly stronger than the adductor muscle. In the group of healthy volunteers, the adductor muscle groups were significantly stronger than the abductor muscle groups on both dominant and non-dominant sides (p < .05). For the group of players who had developed chronic ARGP, abductor-adductor torque ratios were significantly higher on the affected side (p = .008). The adductor muscle strength was also significantly decreased on the affected side. This imbalance appears to be a risk factor for adductor-related groin injury. Therefore, restoring the correct relationship between these two agonist and antagonist hip muscles may be an important preventative measure that should be a primary concern of training and rehabilitation programmes.

  6. Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study.

    PubMed

    Shen, Wei; Scherzer, Rebecca; Gantz, Madeleine; Chen, Jun; Punyanitya, Mark; Lewis, Cora E; Grunfeld, Carl

    2012-04-01

    An increasing number of studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Our previous study of Caucasian women demonstrated that there is an inverse relationship between BMAT and whole-body bone mineral density (BMD). It is unknown whether visceral adipose tissue (VAT), sc adipose tissue (SAT), and skeletal muscle had an effect on the relationship between BMAT and BMD. In the present study we investigated the relationship between pelvic, hip, and lumbar spine BMAT with hip and lumbar spine BMD in the population-based Coronary Artery Risk Development in Young Adults (CARDIA) sample with adjustment for whole-body magnetic resonance imaging (MRI)-measured VAT, SAT, and skeletal muscle. T1-weighted MRI was acquired for 210 healthy African-American and Caucasian men and women (age 38-52 yr). Hip and lumbar spine BMD were measured by dual-energy x-ray absorptiometry. Pelvic, hip, and lumbar spine BMAT had negative correlations with hip and lumbar spine BMD (r = -0.399 to -0.550, P < 0.001). The inverse associations between BMAT and BMD remained strong after adjusting for demographics, weight, skeletal muscle, SAT, VAT, total adipose tissue (TAT), menopausal status, lifestyle factors, and inflammatory markers (standardized regression coefficients = -0. 296 to -0.549, P < 0.001). Among body composition measures, skeletal muscle was the strongest correlate of BMD after adjusting for BMAT (standardized regression coefficients = 0.268-0.614, P < 0.05), with little additional contribution from weight, SAT, VAT, or total adipose tissue. In this middle-aged population, a negative relationship existed between MRI-measured BMAT and hip and lumbar spine BMD independent of demographics and body composition. These observations support the growing evidence linking BMAT with low bone density.

  7. Relationship between MRI-Measured Bone Marrow Adipose Tissue and Hip and Spine Bone Mineral Density in African-American and Caucasian Participants: The CARDIA Study

    PubMed Central

    Scherzer, Rebecca; Gantz, Madeleine; Chen, Jun; Punyanitya, Mark; Lewis, Cora E.; Grunfeld, Carl

    2012-01-01

    Context: An increasing number of studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Our previous study of Caucasian women demonstrated that there is an inverse relationship between BMAT and whole-body bone mineral density (BMD). It is unknown whether visceral adipose tissue (VAT), sc adipose tissue (SAT), and skeletal muscle had an effect on the relationship between BMAT and BMD. Objective: In the present study we investigated the relationship between pelvic, hip, and lumbar spine BMAT with hip and lumbar spine BMD in the population-based Coronary Artery Risk Development in Young Adults (CARDIA) sample with adjustment for whole-body magnetic resonance imaging (MRI)-measured VAT, SAT, and skeletal muscle. Design: T1-weighted MRI was acquired for 210 healthy African-American and Caucasian men and women (age 38–52 yr). Hip and lumbar spine BMD were measured by dual-energy x-ray absorptiometry. Results: Pelvic, hip, and lumbar spine BMAT had negative correlations with hip and lumbar spine BMD (r = −0.399 to −0.550, P < 0.001). The inverse associations between BMAT and BMD remained strong after adjusting for demographics, weight, skeletal muscle, SAT, VAT, total adipose tissue (TAT), menopausal status, lifestyle factors, and inflammatory markers (standardized regression coefficients = −0. 296 to −0.549, P < 0.001). Among body composition measures, skeletal muscle was the strongest correlate of BMD after adjusting for BMAT (standardized regression coefficients = 0.268–0.614, P < 0.05), with little additional contribution from weight, SAT, VAT, or total adipose tissue. Conclusion: In this middle-aged population, a negative relationship existed between MRI-measured BMAT and hip and lumbar spine BMD independent of demographics and body composition. These observations support the growing evidence linking BMAT with low bone density. PMID:22319043

  8. Acute experimental hip muscle pain alters single-leg squat balance in healthy young adults.

    PubMed

    Hatton, Anna L; Crossley, Kay M; Hug, François; Bouma, James; Ha, Bonnie; Spaulding, Kara L; Tucker, Kylie

    2015-05-01

    Clinical musculoskeletal pain commonly accompanies hip pathology and can impact balance performance. Due to the cross-sectional designs of previous studies, and the multifactorial nature of musculoskeletal pain conditions, it is difficult to determine whether pain is a driver of balance impairments in this population. This study explored the effects of experimentally induced hip muscle pain on static and dynamic balance. Twelve healthy adults (4 women, mean[SD]: 27.1[3] years) performed three balance tasks on each leg, separately: single-leg standing (eyes closed), single-leg squat (eyes open), forward step (eyes open); before and after hypertonic saline injection (1ml, 5% NaCl) into the right gluteus medius. Range, standard deviation (SD), and velocity of the centre of pressure (CoP) in medio-lateral (ML) and anterior-posterior (AP) directions were considered. During the single-leg squat task, experimental hip pain was associated with significantly reduced ML range (-4[13]%, P=0.028), AP range (-14[21]%, P=0.005), APSD (-15[28]%, P=0.009), and AP velocity (-6[13]%, P=0.032), relative to the control condition, in both legs. No effect of pain was observed during single-leg standing and forward stepping. Significant between-leg differences in ML velocity were observed during the forward stepping task (P=0.034). Pain is a potentially modifiable patient-reported outcome in individuals with hip problems. This study demonstrates that acute hip muscle pain alone, without interference of musculoskeletal pathology, does not lead to the same impairments in balance as exhibited in clinical populations with hip pathologies. This is the first step in understanding how and why balance is altered in painful hip pathologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Intra- and Inter-Rater Reliability of the Rate of Force Development of Hip Abductor Muscles Measured by Hand-Held Dynamometer

    ERIC Educational Resources Information Center

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Nagai, Tomoko; Sakurai, Hiroaki; Kanada, Yoshikiyo; Shomoto, Koji

    2018-01-01

    The aim of this study was to clarify the intra- and inter-rater reliability of the rate of force development in hip abductor muscle force measurements using a hand-held dynamometer. Thirty healthy adults were separately assessed by two independent raters on two separate days. Rate of force development was calculated from the slope of the…

  10. Accuracy of clinical techniques for evaluating lower limb sensorimotor functions associated with increased fall risk

    PubMed Central

    Donaghy, Alex; DeMott, Trina; Allet, Lara; Kim, Hogene; Ashton-Miller, James; Richardson, James K.

    2015-01-01

    Background In prior work laboratory-based measures of hip motor function and ankle proprioceptive precision were critical to maintaining unipedal stance and fall/fall-related injury risk. However, the optimal clinical evaluation techniques for predicting these measures are unknown. Objective To evaluate the diagnostic accuracy of common clinical maneuvers in predicting laboratory-based measures of frontal plane hip rate of torque development (HipRTD) and ankle proprioceptive thresholds (AnkPRO) associated with increased fall risk. Design Prospective, observational study. Setting Biomechanical research laboratory. Participants Forty-one older subjects (age 69.1 ± 8.3 years), 25 with varying degrees of diabetic distal symmetric polyneuropathy and 16 without. Assessments Clinical hip strength was evaluated by manual muscle testing (MMT) and lateral plank time (LPT), defined as the number seconds the laterally lying subject could lift hips from the support surface. Foot/ankle evaluation included Achilles reflex, and vibratory, proprioceptive, monofilament, and pinprick sensations at the great toe. Main Outcome Measures HipRTD, abduction and adduction, using a custom whole-body dynamometer. AnkPRO determined with subjects standing using a foot cradle system and a staircase series of 100 frontal plane rotational stimuli. Results Pearson correlation coefficients (r) and receiver operator characteristic (ROC) curves revealed that LPT correlated more strongly with HipRTD (r/p = .61/<.001 and .67/<.001, for abductor/adductor, respectively) than did hip abductor MMT (r/p = .31/.044). Subjects with greater vibratory and proprioceptive sensation, and intact Achilles reflexes, monofilament, and pin sensation had more precise AnkPRO. LPT of < 12 seconds yielded a sensitivity/specificity of 91%/80% for identifying HipRTD < .25 (body size in Newton-meters), and vibratory perception of < 8 seconds yielded a sensitivity/specificity of 94%/80% for the identification of AnkPRO > 1.0 degree. Conclusions LPT is a more effective measure of HipRTD than MMT. Similarly, clinical vibratory sense and monofilament testing are effective measures of AnkPRO, whereas clinical proprioceptive sense is not. PMID:26409195

  11. Physical performance measures that predict faller status in community-dwelling older adults.

    PubMed

    Macrae, P G; Lacourse, M; Moldavon, R

    1992-01-01

    Falls are a leading cause of fatal and nonfatal injuries among the elderly. Accurate determination of risk factors associated with falls in older adults is necessary, not only for individual patient management, but also for the development of fall prevention programs. The purpose of this study was to evaluate the effectiveness of clinical measures, such as the one-legged stance test (OLST), sit-to-stand test (STST), manual muscle tests (MMT), and response speed in predicting faller status in community-dwelling older adults (N = 94, age 60-89 years). The variables assessed were single-leg standing (as measured by OLST), STST, and MMT of 12 different muscle groups (hip flexors, hip abductors, hip adductors, knee flexors, knee extensors, ankle dorsiflexors, ankle plantarflexors, shoulder flexors, shoulder abductors, elbow flexors, elbow extensors, and finger flexors), and speed of response (as measured by a visual hand reaction and movement time task). Of the 94 older adults assessed, 28 (29.7%) reported at least one fall within the previous year. The discriminant analysis revealed that there were six variables that significantly discriminated between fallers and nonfallers. These variables included MMT of the ankle dorsiflexors, knee flexors, hip abductors, and knee extensors, as well as time on the OLST and the STST. The results indicate that simple clinical measures of musculoskeletal function can discriminate fallers from nonfallers in community-dwelling older adults. J Orthop Sports Phys Ther 1992;16(3):123-128.

  12. The Immediate Effect of Neuromuscular Joint Facilitation (NJF) Treatment on Hip Muscle Strength.

    PubMed

    Wang, Hongdan; Huo, Ming; Huang, Qiuchen; Li, Desheng; Maruyama, Hitoshi

    2013-11-01

    [Purpose] This study investigated the change in hip muscle strength of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 45 healthy young people, who were divided into two groups: a NJF group and a proprioceptive neuromuscular facilitation (PNF) group. The NJF group consisted of 21 subjects (11 males, 10 females), and the PNF group consisted of 24 subjects (11 males, 13 females). [Methods] Participants in the NJF group received NJF treatment. We measured the maximal flexor strength and the maximal extensor strength during isokinetic movement of the hip joint before and after intervention in both groups. The angular velocities used were 60°/sec and 180°/sec. [Results] The NJF group showed significant increases in the maximal flexor strength and the maximal extensor strength after the intervention at each angular velocity. In the PNF group, the maximal flexor strength of 60°/sec and the maximal extensor strength of 180°/sec were significant increases. [Conclusion] These results suggest that there is an immediate effect of NJF intervention on hip muscle strength.

  13. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.

    PubMed

    Chang, Sarah R; Nandor, Mark J; Li, Lu; Kobetic, Rudi; Foglyano, Kevin M; Schnellenberger, John R; Audu, Musa L; Pinault, Gilles; Quinn, Roger D; Triolo, Ronald J

    2017-05-30

    Functional neuromuscular stimulation, lower limb orthosis, powered lower limb exoskeleton, and hybrid neuroprosthesis (HNP) technologies can restore stepping in individuals with paraplegia due to spinal cord injury (SCI). However, a self-contained muscle-driven controllable exoskeleton approach based on an implanted neural stimulator to restore walking has not been previously demonstrated, which could potentially result in system use outside the laboratory and viable for long term use or clinical testing. In this work, we designed and evaluated an untethered muscle-driven controllable exoskeleton to restore stepping in three individuals with paralysis from SCI. The self-contained HNP combined neural stimulation to activate the paralyzed muscles and generate joint torques for limb movements with a controllable lower limb exoskeleton to stabilize and support the user. An onboard controller processed exoskeleton sensor signals, determined appropriate exoskeletal constraints and stimulation commands for a finite state machine (FSM), and transmitted data over Bluetooth to an off-board computer for real-time monitoring and data recording. The FSM coordinated stimulation and exoskeletal constraints to enable functions, selected with a wireless finger switch user interface, for standing up, standing, stepping, or sitting down. In the stepping function, the FSM used a sensor-based gait event detector to determine transitions between gait phases of double stance, early swing, late swing, and weight acceptance. The HNP restored stepping in three individuals with motor complete paralysis due to SCI. The controller appropriately coordinated stimulation and exoskeletal constraints using the sensor-based FSM for subjects with different stimulation systems. The average range of motion at hip and knee joints during walking were 8.5°-20.8° and 14.0°-43.6°, respectively. Walking speeds varied from 0.03 to 0.06 m/s, and cadences from 10 to 20 steps/min. A self-contained muscle-driven exoskeleton was a feasible intervention to restore stepping in individuals with paraplegia due to SCI. The untethered hybrid system was capable of adjusting to different individuals' needs to appropriately coordinate exoskeletal constraints with muscle activation using a sensor-driven FSM for stepping. Further improvements for out-of-the-laboratory use should include implantation of plantar flexor muscles to improve walking speed and power assist as needed at the hips and knees to maintain walking as muscles fatigue.

  14. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

    PubMed

    Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A

    2007-01-01

    Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.

  15. Expressing the joint moments of drop jumps and sidestep cutting in different reference frames--does it matter?

    PubMed

    Kristianslund, Eirik; Krosshaug, Tron; Mok, Kam-Ming; McLean, Scott; van den Bogert, Antonie J

    2014-01-03

    Joint moments help us understand joint loading and muscle function during movement. However, the interpretation depends on the choice of reference frame, but the different reference frames have not been compared in dynamic, high-impact sporting movements. We have compared the magnitude and the resulting ranking of hip and knee joint moments expressed in the laboratory coordinate system, the local system of the distal segment and projected or decomposed to the Joint Coordinate System (JCS) axes. Hip and knee joint moments of drop jumps and sidestep cutting in 70 elite female handball players were calculated based on recordings from an eight-camera 240 Hz system and two force platforms and expressed with the four methods. The greatest variations in magnitude between conditions were seen for drop jump hip internal rotation (range: 0.31-0.71 Nm/kg) and sidestep cutting knee flexion (2.87-3.39 Nm/kg) and hip internal rotation (0.87-2.36 Nm/kg) and knee internal rotation (0.10-0.40 Nm/kg) moments. The rank correlations were highest between conditions for flexion moments (0.88-1.00) and sidestep cutting abduction moments (0.71-0.98). The rank correlations ranged from 0.64 to 0.73 for drop jump knee abduction moments and between -0.17 and 0.67 for hip and knee internal rotation moments. Expression of joint moments in different reference systems affects the magnitude and ranking of athletes. This lack of consistency may complicate the comparison and combination of results. Projection to the JCS is the only method where joint moments correspond to muscle and ligament loading. More widespread adoption of this convention could facilitate comparison of studies and ease the interpretation of results. © 2013 Elsevier Ltd. All rights reserved.

  16. Imaging of Sports-Related Hip and Groin Injuries

    PubMed Central

    Lischuk, Andrew W.; Dorantes, Thomas M.; Wong, William; Haims, Andrew H.

    2010-01-01

    A normally functioning hip joint is imperative for athletes who use their lower extremities with running, jumping, or kicking activities. Sports-related injuries of the hip and groin are far less frequent than injuries to the more distal aspect of the extremity, accounting for less than 10% of lower extremity injuries. Despite the lower incidence, hip and groin injuries can lead to significant clinical and diagnostic challenges related to the complex anatomy and biomechanical considerations of this region. Loads up to 8 times normal body weight have been documented in the joint in common daily activities, such as jogging, with significantly greater force expected during competitive athletics. Additionally, treatment for hip and groin injuries can obviate the participation of medical and surgical specialties, with a multidisciplinary approach frequently required. Delay in diagnosis and triage of these injuries may cause loss of time from competition and, potentially, early onset of degenerative changes. Magnetic resonance imaging (MRI) of the hip has proven to be the gold standard for the diagnosis of sports-related hip and groin injuries in the setting of negative radiographs. With its exquisite soft tissue contrast, multiplanar capabilities, and lack of ionizing radiation, MRI is unmatched in the noninvasive diagnosis of intra-articular and extra-articular pathology, as well as intraosseous processes. This review focuses on MRI of common athletic injuries of the hip and groin, including acetabular labral tears, femoral acetabular impingement syndrome, muscle injuries around the hip and groin (including athletic pubalgia), and athletic osseous injuries. PMID:23015946

  17. Imaging of sports-related hip and groin injuries.

    PubMed

    Lischuk, Andrew W; Dorantes, Thomas M; Wong, William; Haims, Andrew H

    2010-05-01

    A normally functioning hip joint is imperative for athletes who use their lower extremities with running, jumping, or kicking activities. Sports-related injuries of the hip and groin are far less frequent than injuries to the more distal aspect of the extremity, accounting for less than 10% of lower extremity injuries. Despite the lower incidence, hip and groin injuries can lead to significant clinical and diagnostic challenges related to the complex anatomy and biomechanical considerations of this region. Loads up to 8 times normal body weight have been documented in the joint in common daily activities, such as jogging, with significantly greater force expected during competitive athletics. Additionally, treatment for hip and groin injuries can obviate the participation of medical and surgical specialties, with a multidisciplinary approach frequently required. Delay in diagnosis and triage of these injuries may cause loss of time from competition and, potentially, early onset of degenerative changes. Magnetic resonance imaging (MRI) of the hip has proven to be the gold standard for the diagnosis of sports-related hip and groin injuries in the setting of negative radiographs. With its exquisite soft tissue contrast, multiplanar capabilities, and lack of ionizing radiation, MRI is unmatched in the noninvasive diagnosis of intra-articular and extra-articular pathology, as well as intraosseous processes. This review focuses on MRI of common athletic injuries of the hip and groin, including acetabular labral tears, femoral acetabular impingement syndrome, muscle injuries around the hip and groin (including athletic pubalgia), and athletic osseous injuries.

  18. Gait Characteristics When Walking on Different Slippery Walkways.

    PubMed

    Whitmore, Mariah W; Hargrove, Levi J; Perreault, Eric J

    2016-01-01

    This study sought to determine the changes in muscle activity about the ankle, knee, and hip in able-bodied people walking at steady state on surfaces with different degrees of slipperiness. Muscle activity was measured through electromyographic signals from selected lower limb muscles and quantified to directly compare changes across surface conditions. Our results showed distinct changes in the patterns of muscle activity controlling each joint. Muscles controlling the ankle showed a significant reduction in activity as the surface became more slippery, presumably resulting in a compliant distal joint to facilitate full contact with the surface. Select muscles about the knee and hip showed a significant increase in activity as the surface became more slippery. This resulted in increased knee and hip flexion likely contributing to a lowering of the body's center of mass and stabilization of the proximal leg and trunk. These findings suggest a proximal-distal gradient in the control of muscle activity that could inform the future design of adaptable prosthetic controllers. Walking on a slippery surface is extremely difficult, especially for individuals with lower limb amputations because current prostheses do not allow the compensatory changes in lower limb dynamics that occur involuntarily in unimpaired subjects. With recent advances in prosthetic control, there is the potential to provide some of these compensatory changes; however, we first need to understand how able-bodied individuals modulate their gait under these challenging conditions.

  19. Isokinetic muscle performance of the hip and ankle muscles in women with fibromyalgia.

    PubMed

    Yetişgin, Alparslan; Tiftik, Tülay; Kara, Murat; Karabay, İlkay; Akkuş, Selami; Ersöz, Murat

    2016-06-01

    To compare isokinetic muscle performances of a proximal (hip) and a distal (ankle) muscle of fibromyalgia syndrome (FMS) patients with those of age- and body mass index (BMI)-matched healthy subjects. Thirty female patients with FMS (mean age: 41.5 ± 6.7 years [range, 27-54]) and 30 age- (mean age: 40.6 ± 6.0 years [range, 27-54]) and BMI-matched female healthy controls were consecutively enrolled. Demographic and clinical characteristics of the subjects were recorded. Isokinetic measurements of hip and ankle flexion and extension at angular velocities of 60°/s and 180°/s, peak torques, flexor-extensor torque ratios, muscle fatigue resistance values and average power were obtained. Mean disease duration of FMS patients was 2.4 ± 1.9 years. Mean weight, height and BMI values were 70.4 ± 12.5 kg, 159.5 ± 6.0 cm and 27.7 ± 4.7 kg/m² (FMS patients) and 69.3 ± 10.1 kg, 161.7 ± 6.2 cm and 26.6 ± 4.3 kg/m² (control subjects), respectively (all P > 0.05). All isokinetic values were statistically decreased in the FMS group when compared with the control group, except for the peak torques at angular velocity of 180°/s on flexion of the hip and extension of the ankle and the total work and average power on extension of the ankle. We did not find any correlation between isokinetic values and disease related parameters of FMS patients. In the light of our results, we may conclude that muscle strength and muscle fatigue seem to decrease in FMS patients' both proximal and distal lower extremity muscles. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  20. Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy.

    PubMed

    Gomes, Aline A; Ackermann, Marko; Ferreira, Jean P; Orselli, Maria Isabel V; Sacco, Isabel C N

    2017-11-09

    Muscle force estimation could advance the comprehension of the neuromuscular strategies that diabetic patients adopt to preserve walking ability, which guarantees their independence as they deal with their neural and muscular impairments due to diabetes and neuropathy. In this study, the lower limb's muscle force distribution during gait was estimated and compared in diabetic patients with and without polyneuropathy. Thirty individuals were evaluated in a cross-sectional study, equally divided among controls (CG) and diabetic patients with (DNG) and without (DG) polyneuropathy. The acquired ground reaction forces and kinematic data were used as input variables for a scaled musculoskeletal model in the OpenSim software. The maximum isometric force of the ankle extensors and flexors was reduced in the model of DNG by 30% and 20%, respectively. The muscle force was calculated using static optimization, and peak forces were compared among groups (flexors and extensors of hip, knee, and ankle; ankle evertors; and hip abductors) using MANOVAs, followed by univariate ANOVAs and Newman-Keuls post-hoc tests (p < 0.05). From the middle to late stance phase, DG showed a lower soleus muscle peak force compared to the CG (p=0.024) and the DNG showed lower forces in the gastrocnemius medialis compared to the DG (p=0.037). At the terminal swing phase, the semitendinosus and semimembranosus peak forces showed lower values in the DG compared to the CG and DNG. At the late stance, the DNG showed a higher peak force in the biceps short head, semimembranosus, and semitendinosus compared to the CG and DG. Peak forces of ankle (flexors, extensors, and evertors), knee (flexors and extensors), and hip abductors distinguished DNG from DG, and both of those from CG. Both diabetic groups showed alterations in the force production of the ankle extensors with reductions in the forces of soleus (DG) and gastrocnemius medialis (DNG) seen in both diabetic groups, but only DNG showed an increase in the hamstrings (knee flexor) at push-off. A therapeutic approach focused on preserving the functionality of the knee muscles is a promising strategy, even if the ankle dorsiflexors and plantarflexors are included in the resistance training.

  1. The recognition and evaluation of patterns of compensatory injury in patients with mechanical hip pain.

    PubMed

    Hammoud, Sommer; Bedi, Asheesh; Voos, James E; Mauro, Craig S; Kelly, Bryan T

    2014-03-01

    In active individuals with femoroacetabular impingement (FAI), the resultant reduction in functional range of motion leads to high impaction loads at terminal ranges. These increased forces result in compensatory effects on bony and soft tissue structures within the hip joint and hemipelvis. An algorithm is useful in evaluating athletes with pre-arthritic, mechanical hip pain and associated compensatory disorders. A literature search was performed by a review of PubMed articles published from 1976 to 2013. Level 4. Increased stresses across the bony hemipelvis result when athletes with FAI attempt to achieve supraphysiologic, terminal ranges of motion (ROM) through the hip joint required for athletic competition. This can manifest as pain within the pubic joint (osteitis pubis), sacroiliac joint, and lumbosacral spine. Subclinical posterior hip instability may result when attempts to increase hip flexion and internal rotation are not compensated for by increased motion through the hemipelvis. Prominence of the anterior inferior iliac spine (AIIS) at the level of the acetabular rim can result in impingement of the anterior hip joint capsule or iliocapsularis muscle origin against the femoral head-neck junction, resulting in a distinct form of mechanical hip impingement (AIIS subspine impingement). Iliopsoas impingement (IPI) has also been described as an etiology for anterior hip pain. IPI results in a typical 3-o'clock labral tear as well as an inflamed capsule in close proximity to the overlying iliopsoas tendon. Injury in athletic pubalgia occurs during high-energy twisting activities in which abnormal hip ROM and resultant pelvic motion lead to shearing across the pubic symphysis. Failure to recognize and address concomitant compensatory injury patterns associated with intra-articular hip pathology can result in significant disability and persistent symptoms in athletes with pre-arthritic, mechanical hip pain. B.

  2. Prevalence of pre-sarcopenia and sarcopenia in Hong Kong Chinese geriatric patients with hip fracture and its correlation with different factors.

    PubMed

    Ho, A Wh; Lee, M Ml; Chan, E Wc; Ng, H My; Lee, C W; Ng, W S; Wong, S H

    2016-02-01

    Sarcopenia and osteoporosis are age-related declines in the quantity of muscle and bone, respectively. Both contribute in disability, fall, and hip fracture in the elderly. This study reported the prevalence of sarcopenia in Chinese geriatric patients with hip fracture, and the correlation between relative appendicular skeletal muscle mass index and other factors. This case series was conducted in Kowloon West Cluster Orthopaedic Rehabilitation Centre in Hong Kong. Data of all geriatric patients with primary hip fracture admitted to the above Centre from June to December 2014 were studied. Isometric grip strength, the maximal handgrip strength, was measured using a JAMAR hand dynamometer. Body composition including appendicular and whole-body lean body mass was measured using dual-energy X-ray absorptiometry. Pearson's correlation was used to examine the correlation between relative appendicular skeletal muscle mass index and other factors. A total of 239 patients with a mean age of 82 years were included in the study. Stratifying patients as male or female, the mean (± standard deviation) hand grip strength was 20.6 ± 7.3 kg and 13.6 ± 4.5 kg, the mean relative appendicular skeletal muscle mass index was 5.72 ± 0.83 kg/m(2) and 4.87 ± 0.83 kg/m(2), and the mean hip bone mineral density was 0.696 ± 0.13 g/cm(2) and 0.622 ± 0.12 g/cm(2), respectively. The prevalence of sarcopenia based on relative appendicular skeletal muscle mass index and hand grip strength according to the Asian Working Group for Sarcopenia definition was 73.6% in males and 67.7% in females. According to the European Working Group on Sarcopenia definition, the prevalence of pre-sarcopenia was 20.8% in males and 12.4% in females. Relative appendicular skeletal muscle mass index was positively correlated with hand grip strength, body weight, hip bone mineral density, body mass index, and total fat mass in males; and hand grip strength, body weight, body height, body mass index, and total fat mass in females. Except for body height in females, all correlations were statistically significant. The prevalence of sarcopenia was very high in geriatric hip fracture patients, and much higher than that in community-dwelling elderly population. Apart from the need to prescribe osteoporosis medicine, sarcopenia screening and treatment should be offered and is essential to reduce subsequent fall, subsequent fracture, fracture-related complications and economic burden to Hong Kong.

  3. The effect of hip abduction on the EMG activity of vastus medialis obliquus, vastus lateralis longus and vastus lateralis obliquus in healthy subjects

    PubMed Central

    Bevilaqua-Grossi, Débora; Monteiro-Pedro, Vanessa; de Vasconcelos, Rodrigo Antunes; Arakaki, Juliano Coelho; Bérzin, Fausto

    2006-01-01

    Study design Controlled laboratory study. Objectives The purposes of this paper were to investigate (d) whether vastus medialis obliquus (VMO), vastus lateralis longus (VLL) and vastus lateralis obliquus (VLO) EMG activity can be influenced by hip abduction performed by healthy subjects. Background Some clinicians contraindicate hip abduction for patellofemoral patients (with) based on the premise that hip abduction could facilitate the VLL muscle activation leading to a VLL and VMO imbalance Methods and measures Twenty-one clinically healthy subjects were involved in the study, 10 women and 11 men (aged X = 23.3 ± 2.9). The EMG signals were collected using a computerized EMG VIKING II, with 8 channels and three pairs of surface electrodes. EMG activity was obtained from MVIC knee extension at 90° of flexion in a seated position and MVIC hip abduction at 0° and 30° with patients in side-lying position with the knee in full extension. The data were normalized in the MVIC knee extension at 50° of flexion in a seated position, and were submitted to ANOVA test with subsequent application of the Bonferroni multiple comparisons analysis test. The level of significance was defined as p ≤ 0.05. Results The VLO muscle demonstrated a similar pattern to the VMO muscle showing higher EMG activity in MVIC knee extension at 90° of flexion compared with MVIC hip abduction at 0° and 30° of abduction for male (p < 0.0007) and MVIC hip abduction at 0° of abduction for female subjects (p < 0.02196). There were no statistically significant differences in the VLL EMG activity among the three sets of exercises tested. Conclusion The results showed that no selective EMG activation was observed when comparison was made between the VMO, VLL and VLO muscles while performing MVIC hip abduction at 0° and 30° of abduction and MVIC knee extension at 90° of flexion in both male and female subjects. Our findings demonstrate that hip abduction do not facilitated VLL and VLO activity in relation to the VMO, however, this study included only healthy subjects performing maximum voluntary isometric contraction contractions, therefore much remains to be discovered by future research PMID:16817971

  4. Longitudinal Changes in Hip Strength and Range of Motion in Female Youth Soccer Players: Implications for ACL Injury, A Pilot Study.

    PubMed

    Nguyen, Anh-Dung; Zuk, Emma F; Baellow, Andrea L; Pfile, Kate R; DiStefano, Lindsay J; Boling, Michelle C

    2017-09-01

    Risk of anterior cruciate ligament (ACL) injuries in young female athletes increases with age, appearing to peak during maturation. Changes in hip muscle strength and range of motion (ROM) during this time may contribute to altered dynamic movement patterns that are known to increase risk of ACL injuries. Understanding the longitudinal changes in hip strength and ROM is needed to develop appropriate interventions to reduce the risk of ACL injuries. To examine the longitudinal changes in hip strength and ROM in female youth soccer players. Longitudinal descriptive study. Field setting. 14 female youth soccer athletes (14.1 ± 1.1 y, 165.8 ± 5.3 cm, 57.5 ± 9.9 kg) volunteered as part of a multiyear risk factor screening project. Clinical measures of hip strength and ROM were collected annually over 3 consecutive years. Passive hip internal rotation (IR), external rotation (ER), abduction (ABD), and adduction (ADD) ROM were measured with a digital inclinometer. Isometric hip ABD and extension (EXT) strength were evaluated using a hand-held dynamometer. Separate repeated-measures ANOVAs compared hip strength and ROM values across 3 consecutive years (P < .05). As youth female soccer players increased in age, there were no changes in normalized hip ABD (P = .830) or EXT strength (P = .062) across 3 consecutive years. Longitudinal changes in hip ROM were observed with increases in hip IR (P = .001) and ABD (P < .001), while hip ADD (P = .009) and ER (P < .001) decreased. Anatomical changes at the hip occur as youth female soccer players increase in age. While there are no changes in hip strength, there is an increase in hip IR and ABD ROM with a concomitant decrease in hip ER and ADD ROM. The resulting asymmetries in hip ROM may decrease the activation and force producing capabilities of the hip muscles during dynamic activities, contributing to altered lower extremity mechanics known to increase the risk of ACL injuries.

  5. 'Bald trochanter' spontaneous rupture of the conjoined tendons of the gluteus medius and minimus presenting as a trochanteric bursitis.

    PubMed

    LaBan, Myron M; Weir, Susan K; Taylor, Ronald S

    2004-10-01

    A 66-yr-old white woman presented with progressive complaints of right lateral hip and thigh pain associated with a disabling limp without an antecedent history of trauma. Physical examination revealed localized pain over the right greater trochanter to palpation. A full pain-free range of motion of the right hip was associated with weakness in the hip abductors. The patient ambulated with a compensated right Trendelenburg gait. Subsequent magnetic resonance imaging demonstrated a trochanteric bursitis and an effusion of the hip and a full-thickness tear of the gluteus medius muscle, with both a disruption and retraction of the tendon of an atretic gluteus minimus muscle. Conjoined tendon pathology of both the gluteus medius and minimus as, revealed by magnetic resonance examination, is probably more frequent than heretofore commonly recognized. In patients presenting with "intractable" complaints of a trochanteric bursitis and an ambulatory limp due to weakness in the hip abductors, imaging studies calling attention to a possible tendon rupture may be diagnostic.

  6. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.

    PubMed

    Ashkani, O; Maleki, A; Jamshidi, N

    2017-03-01

    Exoskeleton is a walking assistance device that improves human gait cycle through providing auxiliary force and transferring physical load to the stronger muscles. This device takes the natural state of organ and follows its natural movement. Exoskeleton functions as an auxiliary device to help those with disabilities in hip and knee such as devotees, elderly farmers and agricultural machinery operators who suffer from knee complications. In this research, an exoskeleton designed with two screw jacks at knee and hip joints. To simulate extension and flexion movements of the leg joints, bearings were used at the end of hip and knee joints. The generated torque and motion angles of these joints obtained as well as the displacement curves of screw jacks in the gait cycle. Then, the human gait cycle was simulated in stance and swing phases and the obtained torque curves were compared. The results indicated that they followed the natural circle of the generated torque in joints with a little difference from each other. The maximum displacement obtained 4 and 6 cm in hip and knee joints jack respectively. The maximum torques in hip and knee joints were generated in foot contact phase. Also the minimum torques in hip and knee joints were generated in toe off and heel off phases respectively.

  7. [Clinical examination of the hip joint in adults].

    PubMed

    Grifka, J; Keshmiri, A; Maderbacher, G; Craiovan, B

    2014-12-01

    Complaints in the region of the hips and pelvis are often difficult to classify. This is due to the fact that pain projection and overlapping can occur; therefore, the complete region of the lumbar spine, pelvis and hips must be considered as a single entity in which alterations can result in radiation throughout the whole region. There are many different anatomical structures within the pelvic region so that the function of various muscle components can be impaired and cause pathological alterations to positional relationships of bony structures or even alterations to other soft tissues, such as ligaments, tendons and labra. In terms of differential diagnostics the groin must be seen as the weak point of the peritoneum and vascular system and taken into consideration. Therefore, a detailed and targeted medical history, functional testing and specific examinations and tests are necessary to narrow down the pathology in question and reach a definitive diagnosis. Orthopedic surgeons must know which conspicuous features can lead to which problems and which anatomical structures are likely to be affected by irritation. The results of the clinical examination are the basis for targeted imaging diagnostics and subsequent therapy.

  8. [Clinical examination of the hip joint in adults].

    PubMed

    Grifka, J; Keshmiri, A; Maderbacher, G; Craiovan, B

    2015-07-01

    Complaints in the region of the hips and pelvis are often difficult to classify. This is due to the fact that pain projection and overlapping can occur; therefore, the complete region of the lumbar spine, pelvis and hips must be considered as a single entity in which alterations can result in radiation throughout the whole region. There are many different anatomical structures within the pelvic region so that the function of various muscle components can be impaired and cause pathological alterations to positional relationships of bony structures or even alterations to other soft tissues, such as ligaments, tendons and labra. In terms of differential diagnostics the groin must be seen as the weak point of the peritoneum and vascular system and taken into consideration. Therefore, a detailed and targeted medical history, functional testing and specific examinations and tests are necessary to narrow down the pathology in question and reach a definitive diagnosis. Orthopedic surgeons must know which conspicuous features can lead to which problems and which anatomical structures are likely to be affected by irritation. The results of the clinical examination are the basis for targeted imaging diagnostics and subsequent therapy.

  9. Age-Related Differences in Maximal and Rapid Torque Characteristics of the Hip Extensors and Dynamic Postural Balance in Healthy, Young and Old Females.

    PubMed

    Palmer, Ty B; Thiele, Ryan M; Thompson, Brennan J

    2017-02-01

    Palmer, TB, Thiele, RM, and Thompson, BJ. Age-related differences in maximal and rapid torque characteristics of the hip extensors and dynamic postural balance in healthy, young and old females. J Strength Cond Res 31(2): 480-488, 2017-The purpose of this study was to examine age-related differences in maximal and rapid torque characteristics of the hip extensor muscles and dynamic postural balance in healthy, young and older females. Eleven younger (age, 26 ± 8 years) and 11 older (age, 67 ± 8 years) females performed 2 isometric maximal voluntary contractions (MVCs) of the hip extensor muscles. Absolute and relative peak torque (PT) and rate of torque development (RTD) at early (0-50 ms) and late (0-200 ms) phases of muscle contraction were examined during each MVC. Dynamic postural balance was assessed using a commercially designed balance testing device, which provides a measurement of dynamic stability based on the overall stability index (OSI). Results indicated that absolute PT and early (RTD50) and late (RTD200) RTD variables were lower (p = 0.009-0.050), and postural OSI was higher (p = 0.011) in the old compared with the younger females; however, no differences were observed for relative PT or RTD variables (p = 0.113-0.895). A significant relationship was also observed in the older (r = -0.601; p = 0.050) but not the younger (r = -0.132; p = 0.698) females between RTD50 and OSI. The lower absolute PT and RTD and higher OSI values for the old females may contribute to the increased functional limitations often observed in older adults. The significant relationship observed in the older females between OSI and RTD50 perhaps suggests that these age-related declines in explosive strength may be an important characteristic relevant to dynamic balance scores, especially in older populations.

  10. The influence of hip strength on lower-limb, pelvis, and trunk kinematics and coordination patterns during walking and hopping in healthy women.

    PubMed

    Smith, Jo Armour; Popovich, John M; Kulig, Kornelia

    2014-07-01

    Cross-sectional laboratory study. To compare peak lower-limb, pelvis, and trunk kinematics and interjoint and intersegmental coordination in women with strong and weak hip muscle performance. Persons with lower extremity musculoskeletal disorders often demonstrate a combination of weak hip musculature and altered kinematics during weight-bearing dynamic tasks. However, the association between hip strength and kinematics independent of pathology or pain is unclear. Peak hip extensor and abductor torques were measured in 150 healthy young women. Of these, 10 fit the criteria for the strong group and 9 for the weak group, representing those with the strongest and weakest hip musculature, respectively, of the 150 screened individuals. Kinematics of the hip, knee, pelvis, and trunk were measured during the stance phases of walking and rate-controlled hopping. Hip/knee and pelvis/trunk coordination were calculated using the vector coding technique. There were no group differences in peak hip, knee, or pelvis kinematics. Participants in the weak group demonstrated greater trunk lateral bend toward the stance limb during hopping (P = .002, effect size [d] = 1.88). In the transverse plane, those in the weak group utilized less inphase coordination between the hip and the knee during walking (P = .036, d = 1.45) and more antiphase coordination between the hip and knee during hopping (P = .03, d = 1.47). In the absence of pain or pathology, poor hip muscle performance does not affect peak hip or knee joint kinematics in young women, but is associated with significantly different lower-limb and trunk/pelvis coordination during weight-bearing dynamic tasks. J Orthop Sports Phys Ther 2014;44(7):525-531. Epub 10 May 2014. doi:10.2519/jospt.2014.5028.

  11. Electromyographic activity during active prone hip extension did not discriminate individuals with and without low back pain.

    PubMed

    Guimarães, Cristiano Q; Sakamoto, Ana C L; Laurentino, Glória E C; Teixeira-Salmela, Luci F

    2010-01-01

    Changes in activation of the trunk and hip extensor muscles can result in excessive stress on the lumbar spinal structures, predisposing them to lesions and pain. To compare electromyographic activity of the gluteus maximus, semitendinosus and the erector spinae muscles between asymptomatic and individuals with low back pain during active prone hip extension exercises. Fifty individuals were recruited and divided into two groups: 30 asymptomatic (24.5 ± 3.47 years) and 20 with mechanical low back pain (28.75 ± 5.52 years). They performed active prone hip extension exercises, while the activation parameters (latency, duration and quantity of activation) of the investigated muscles were recorded by electromyography. The beginnings of the movements were detected by a motion capture system. Differences between the groups were investigated employing Student t-tests or Mann-Whitney-U tests, according to the data distribution. No significant differences were found between the groups for any of the investigated muscles. Muscular activation patterns were similar for both groups, starting with the semitendinosus, followed by the erector spinae, and then, by the gluteus maximus. For both groups, significant delays in the onset of the gluteus maximus were observed. The assessment of the electromyographic activity was not capable of discriminating individuals with and without low back pain, suggesting an overlap in the studied populations.

  12. Factors that influence soft tissue thickness over the greater trochanter: application to understanding hip fractures.

    PubMed

    Levine, Iris C; Minty, Lauren E; Laing, Andrew C

    2015-03-01

    Fall-related hip injuries are a concern for the growing population of older adults. Evidence suggests that soft tissue overlying the greater trochanter attenuates the forces transmitted to the proximal femur during an impact, reducing mechanical risk of hip fracture. However, there is limited information about the factors that influence trochanteric soft tissue thickness. The current study used ultrasonography and electromyography to determine whether trochanteric soft tissue thickness could be quantified reproducibly and whether it was influenced by: (1) gender; (2) hip postures associated with potential falling configurations in the sagittal plane (from 30° of extension to 60° of flexion, at 15° intervals), combined adduction-flexion, and combined adduction-extension; and (3) activation levels of the tensor fascia lata (TFL) and gluteus medius (GM) muscles. Our results demonstrated that soft tissue thickness can be measured reliably in nine hip postures and three muscle activation conditions (for all conditions, ICC >0.98). Mean (SD) thickness in quiet stance was 2.52 cm. Thickness was 27.0% lower for males than females during quiet stance. It was 16.4% greater at maximum flexion than quiet standing, 27.2% greater at maximum extension, and 12.5% greater during combined adduction-flexion. However, there was no significant difference between combined adduction-extension and quiet standing. Thickness was not affected by changes in muscle activity. Forces applied to the femoral neck during a lateral fall decrease as trochanteric soft tissue thickness increases; gender and postural configuration at impact could influence the loads applied to the proximal femur (and thus hip fracture risk) during falls on the hip. © 2014 Wiley Periodicals, Inc.

  13. Hip kinematics and kinetics in persons with and without cam femoroacetabular impingement during a deep squat task.

    PubMed

    Bagwell, Jennifer J; Snibbe, Jason; Gerhardt, Michael; Powers, Christopher M

    2016-01-01

    Previous studies have indicated that hip and pelvis kinematics may be altered during functional tasks in persons with femoroacetabular impingement. The purpose of this study was to compare hip and pelvis kinematics and kinetics during a deep squat task between persons with cam femoroacetabular impingement and pain-free controls. Fifteen persons with cam femoroacetabular impingement and 15 persons without cam femoroacetabular impingement performed a deep squat task. Peak hip flexion, abduction, and internal rotation, and mean hip extensor, adductor, and external rotator moments were quantified. Independent t-tests (α<0.05) were used to evaluate between group differences. Compared to the control group, persons with cam femoroacetabular impingement demonstrated decreased peak hip internal rotation (15.2° (SD 9.5°) vs. 9.4° (SD 7.8°); P=0.041) and decreased mean hip extensor moments (0.56 (SD 0.12) Nm/kg vs. 0.45 (SD 0.15) Nm/kg; P=0.018). In addition persons in the cam femoroacetabular impingement group demonstrated decreased posterior pelvis tilt during squat descent compared to the control group, resulting in a more anteriorly tilted pelvis at the time peak hip flexion (12.5° (SD 17.1°) vs. 23.0° (SD 12.4°); P=0.024). The decreased hip internal rotation observed in persons with cam femoroacetabular impingement may be the result of bony impingement. Furthermore, the decrease in posterior pelvis tilt may contribute to impingement by further approximating the femoral head-neck junction with the acetabulum. Additionally, decreased hip extensor moments suggest that diminished hip extensor muscle activity may contribute to decreased posterior pelvis tilt. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The side of chronic low back pain matters: evidence from the primary motor cortex excitability and the postural adjustments of multifidi muscles.

    PubMed

    Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril

    2017-03-01

    Hemispheric lateralization of pain processing was reported with overactivation of the right frontal lobe. Specifically in chronic low back pain (CLBP), functional changes in the left primary motor cortex (M1) with impaired anticipatory postural activation (APA) of trunk muscles have been observed. Given the connections between frontal and M1 areas for motor planning, it is hypothesized that the pain side could differently influence M1 function and APA of paravertebral multifidus (MF) muscles. This study aimed at testing whether people with right- versus left-sided CLBP showed different M1 excitability and APA. Thirty-five individuals with lateralized CLBP (19 right-sided and 16 left-sided) and 13 pain-free subjects (normative values) were tested for the excitability of MF M1 area (active motor threshold-AMT) with transcranial magnetic stimulation and for the latency of MF APA during bilateral shoulder flexion and during unilateral hip extension in prone lying. In the right-sided CLBP group, the AMT of both M1 areas was lower than in the left-sided group and the pain-free subjects; the latency of MF APA was shorter in bilateral shoulder flexion and in the left hip extension tasks as compared to the left-sided group. In CLBP, an earlier MF APA was correlated with lower AMT in both tasks. People with right-sided CLBP presented with increased M1 excitability in both hemispheres and earlier MF APA. These results likely rely on cortical motor adaptation related to the tasks and axial muscles tested. Future studies should investigate whether CLBP side-related differences have a clinical impact, e.g. in diagnosis and intervention.

  15. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.

    PubMed

    Hussain, Shahid; Jamwal, Prashant K; Ghayesh, Mergen H

    2017-05-01

    While body weight support (BWS) intonation is vital during conventional gait training of neurologically challenged subjects, it is important to evaluate its effect during robot assisted gait training. In the present research we have studied the effect of BWS intonation on muscle activities during robotic gait training using dynamic simulations. Two dimensional (2-D) musculoskeletal model of human gait was developed conjointly with another 2-D model of a robotic orthosis capable of actuating hip, knee and ankle joints simultaneously. The musculoskeletal model consists of eight major muscle groups namely; soleus (SOL), gastrocnemius (GAS), tibialis anterior (TA), hamstrings (HAM), vasti (VAS), gluteus maximus (GLU), uniarticular hip flexors (iliopsoas, IP), and Rectus Femoris (RF). BWS was provided at levels of 0, 20, 40 and 60% during the simulations. In order to obtain a feasible set of muscle activities during subsequent gait cycles, an inverse dynamics algorithm along with a quadratic minimization algorithm was implemented. The dynamic parameters of the robot assisted human gait such as joint angle trajectories, ground contact force (GCF), human limb joint torques and robot induced torques at different levels of BWS were derived. The patterns of muscle activities at variable BWS were derived and analysed. For most part of the gait cycle (GC) the muscle activation patterns are quite similar for all levels of BWS as is apparent from the mean of muscle activities for the complete GC. Effect of BWS variation during robot assisted gait on muscle activities was studied by developing dynamic simulation. It is expected that the proposed dynamic simulation approach will provide important inferences and information about the muscle function variations consequent upon a change in BWS during robot assisted gait. This information shall be quite important while investigating the influence of BWS intonation on neuromuscular parameters of interest during robotic gait training.

  16. Imaging of athletic pubalgia and core muscle injuries: clinical and therapeutic correlations.

    PubMed

    Palisch, Andrew; Zoga, Adam C; Meyers, William C

    2013-07-01

    Athletes frequently injure their hips and core muscles. Accurate diagnosis and proper treatment of groin pain in the athlete can be tricky, frequently posing vexing problem for trainers and physicians. Clinical presentations of the various hip problems overlap with respect to history and physical examination. This article reviews clinical presentations and magnetic resonance imaging findings specific to the various causes of groin pain in the athlete. The focus is on the core muscle injuries (athletic pubalgia or "sports hernia"). The goal is to raise awareness about the variety of injuries that occur and therapeutic options. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Core Muscle Activity during TRX Suspension Exercises with and without Kinesiology Taping in Adults with Chronic Low Back Pain: Implications for Rehabilitation.

    PubMed

    Fong, Shirley S M; Tam, Y T; Macfarlane, Duncan J; Ng, Shamay S M; Bae, Young-Hyeon; Chan, Eleanor W Y; Guo, X

    2015-01-01

    This study aimed to examine the effects of kinesiology taping (KT) and different TRX suspension workouts on the amplitude of electromyographic (EMG) activity in the core muscles among people with chronic low back pain (LBP). Each participant (total n = 21) was exposed to two KT conditions: no taping and taping, while performing four TRX suspension exercises: (1) hamstring curl, (2) hip abduction in plank, (3) chest press, and (4) 45-degree row. Right transversus abdominis/internal oblique (TrAIO), rectus abdominis (RA), external oblique (EO), and superficial lumbar multifidus (LMF) activity was recorded with surface EMG and expressed as a percentage of the EMG amplitude recorded during a maximal voluntary isometric contraction of the respective muscles. Hip abduction in plank increased TrAIO, RA, and LMF EMG amplitude compared with other TRX positions (P < 0.008). Only the hamstring curl was effective in inducing a high EMG amplitude of LMF (P < 0.001). No significant difference in EMG magnitude was found between the taping and no taping conditions overall (P > 0.05). Hip abduction in plank most effectively activated abdominal muscles, whereas the hamstring curl most effectively activated the paraspinal muscles. Applying KT conferred no immediate benefits in improving the core muscle activation during TRX training in adults with chronic LBP.

  18. Evaluating abdominal core muscle fatigue: Assessment of the validity and reliability of the prone bridging test.

    PubMed

    De Blaiser, C; De Ridder, R; Willems, T; Danneels, L; Vanden Bossche, L; Palmans, T; Roosen, P

    2018-02-01

    The aims of this study were to research the amplitude and median frequency characteristics of selected abdominal, back, and hip muscles of healthy subjects during a prone bridging endurance test, based on surface electromyography (sEMG), (a) to determine if the prone bridging test is a valid field test to measure abdominal muscle fatigue, and (b) to evaluate if the current method of administrating the prone bridging test is reliable. Thirty healthy subjects participated in this experiment. The sEMG activity of seven abdominal, back, and hip muscles was bilaterally measured. Normalized median frequencies were computed from the EMG power spectra. The prone bridging tests were repeated on separate days to evaluate inter and intratester reliability. Significant differences in normalized median frequency slope (NMF slope ) values between several abdominal, back, and hip muscles could be demonstrated. Moderate-to-high correlation coefficients were shown between NMF slope values and endurance time. Multiple backward linear regression revealed that the test endurance time could only be significantly predicted by the NMF slope of the rectus abdominis. Statistical analysis showed excellent reliability (ICC=0.87-0.89). The findings of this study support the validity and reliability of the prone bridging test for evaluating abdominal muscle fatigue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.

    PubMed

    Fox, Melanie D; Delp, Scott L

    2010-05-28

    Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds

    PubMed Central

    Fox, Melanie D.; Delp, Scott L.

    2010-01-01

    Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. PMID:20236644

  1. Large strengthening effect of a hip-flexor training programme: a randomized controlled trial.

    PubMed

    Thorborg, Kristian; Bandholm, Thomas; Zebis, Mette; Andersen, Lars Louis; Jensen, Jesper; Hölmich, Per

    2016-07-01

    To investigate the effect on hip-flexion strength of a 6-week hip-flexor training programme using elastic bands as resistance. We hypothesized that the training group, compared to a control group, would increase their hip-flexion strength more. Thirty-three healthy subjects (45 % females), 24(5) years of age, were included in a randomized controlled trial and allocated to heavy strength training of the hip-flexor muscles or to control (no strength training). Strength training of the hip-flexors (dominant leg) was performed three times 10 min per week for 6 weeks. The strength training group progressed from 15 repetition maximum (RM) (week 1) to 8 RM (week 6). Isometric hip-flexion strength (primary outcome) was measured by a blinded assessor using a reliable test procedure. In the strength training group, the isometric hip-flexion strength of the trained leg increased by 17 %, (p < 0.001). The between-group difference in hip-flexion strength change in the trained leg (dominant leg, training group) versus the non-trained leg (dominant leg, control group) was significantly different from baseline to follow-up, corresponding to a mean change of 0.34 (95 % CI 0.17-0.52) Nm/kg, in favour of the strength training group (p < 0.001). Simple hip-flexor strength training using elastic bands as external loading, for only 6 weeks, substantially improves hip-flexor muscle strength. This simple exercise programme seems promising for future prevention and treatment of acute and longstanding hip-flexor injuries, such as acute rectus femoris injuries and longstanding iliopsoas-related pain and impingement. I.

  2. The impact of different cross-training modalities on performance and injury-related variables in high school cross country runners.

    PubMed

    Paquette, Max R; Peel, Shelby A; Smith, Ross E; Temme, Mark; Dwyer, Jeffrey N

    2017-11-29

    There are many different types of aerobic cross-training modalities currently available. It is important to consider the effects that these different modalities have on running performance and injury risks. The purpose of this study was to compare movement quality, running economy and performance, injury-related biomechanical variables and, hip muscle strength before and after training with different cross-training modalities in high school runners. Thirty-one high school male runners trained for four weeks in one of three cross-training modalities, in addition to a running-only (RUN, n=9) group, for which training sessions replaced two easy runs per week: cycling (CYCLE; n=6), indoor elliptical (ELLIP; n=7) and, outdoor elliptical bike (EBIKE; n=9). Functional movement screen (FMS), running economy (RE), 3,000m performance, hip kinematics, hip muscle strength were assessed. Paired t-tests and Cohen's d effect sizes were used to assess mean differences for each variable before and after training within each group. EBIKE training was the only modality that improved FMS scores (d = 1.36) and RE before and after training (d = 0.48). All groups showed improvements in 3,000m performance but large effects were only found for the CYCLE (d = 1.50) and EBIKE (d = 1.41) groups. RUN (d = 1.25), CYCLE (d = 1.17) and, EBIKE (d = 0.82) groups showed improvements in maximal hip extensor strength. Outdoor cycling and elliptical bike cross-training may be the most effective cross-training modalities to incorporate in early season training to improve running performance in high school runners.

  3. Obturator externus was larger, while obturator internus size was similar in ballet dancers compared to nondancing athletes.

    PubMed

    Mayes, Susan; Ferris, April-Rose; Smith, Peter; Cook, Jill

    2018-06-02

    To compare the cross-sectional area (CSA) of hip external rotators, obturator externus (OE) and obturator internus (OI), in ballet dancers and nondancing athletes, and evaluate the relationship between obturator muscle size and hip pain. Case-control study. Elite ballet and sport. 33 male and female professional ballet dancers and 33 age and sex-matched athletes. CSA's of OE and OI measured on magnetic resonance imaging (MRI) of one hip. Hip pain was scored with the Copenhagen Hip and Groin Outcome Score (HAGOS): HAGOS pain score of 100 was defined as no pain and a score less than 100 was defined as pain. Participants weight and height. Estimated marginal mean CSA of OE was 14% larger in dancers than athletes (p = 0.01, ηp2 = 0.1); the size of OI was similar (p > 0.05). Men and women in both groups had similar sized OI and OE. There was no interaction between the estimated marginal mean CSA of either obturator and hip pain. It appears that ballet selectively increases muscle size of OE, but not OI. Obturator size was not related to mild hip pain, as OE and OI size was similar in dancers and athletes with and without pain. Copyright © 2018. Published by Elsevier Ltd.

  4. Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I.

    PubMed

    Takken, Tim; Terlingen, Heike C; Helders, Paul J M; Pruijs, Hans; Van der Ent, Cornelis K; Engelbert, Raoul H H

    2004-12-01

    To evaluate cardiopulmonary function, muscle strength, and cardiopulmonary fitness (VO 2 peak) in patients with osteogenesis imperfecta (OI). In 17 patients with OI type I (mean age 13.3 +/- 3.9 years) cardiopulmonary function was assessed at rest using spirometry, plethysmography, electrocardiography, and echocardiography. Exercise capacity was measured using a maximal exercise test on a bicycle ergometer and an expired gas analysis system. Muscle strength in shoulder abductors, hip flexors, ankle dorsal flexor, and grip strength were measured. All results were compared with reference values. Cardiopulmonary function at rest was within normal ranges, but when it was compared with normal height for age and sex, vital capacities were reduced. Mean absolute and relative VO 2 peak were respectively -1.17 (+/- 0.67) and -1.41 (+/- 1.52) standard deviations lower compared with reference values ( P < .01). Muscle strength also was significantly reduced in patients with OI, ranging from -1.24 +/- 1.40 to -2.88 +/- 2.67 standard deviations lower compared with reference values. In patients with OI type I, no pulmonary or cardiac abnormalities at rest were found. The exercise tolerance and muscle strength were significantly reduced in patients with OI, which might account for their increased levels of fatigue during activities of daily living.

  5. Electromyographic analysis of gluteus maximus and hamstring activity during the supine resisted hip extension exercise versus supine unilateral bridge to neutral.

    PubMed

    Youdas, James W; Hartman, James P; Murphy, Brooke A; Rundle, Ashley M; Ugorowski, Jenna M; Hollman, John H

    2017-02-01

    Hip extension strengthening exercises which maximize gluteus maximus contributions and minimize hamstring influences may be beneficial for persons with hip pain. This study's aim was to compare muscle activation of the gluteus maximus and hamstrings from healthy subjects during a supine resisted hip extension exercise versus supine unilateral bridge to neutral. Surface electromyographic (EMG) signals were obtained from the right gluteus maximus and hamstrings in 13 healthy male and 13 healthy female subjects. Maximum voluntary isometric contractions (MVICs) were collected to normalize data and permit meaningful comparisons across muscles. Peak median activation of the gluteus maximus was 33.8% MVIC for the bridge and 34.7% MVIC for the hip extension exercise, whereas peak median recruitment for hamstrings was 28.4% MVIC for the bridge and 51% MVIC for the hip extension exercise. The gluteus maximus to hamstrings ratio was compared between the two exercises using the Wilcoxon signed-ranks test (α = 0.05). The ratio (p = 0.014) was greater in the supine unilateral bridge (median = 111.3%) than supine hip extension exercise (median = 59.2%), suggesting a reduction of hamstring recruitment in the unilateral bridge to neutral compared to the supine resisted hip extension exercise. The supine hip extension exercise demonstrated higher EMG activity of hamstrings in comparison with supine unilateral bridge and, therefore, may be less appropriate in subjects who need to increase gluteus maximus activation.

  6. Effects of Plyometric Training on Muscle-Activation Strategies and Performance in Female Athletes

    PubMed Central

    Swanik, Kathleen A.; Swanik, C. Buz; Straub, Stephen J.

    2004-01-01

    Objective: To evaluate the effects of plyometric training on muscle-activation strategies and performance of the lower extremity during jumping exercises. Subjects: Twenty healthy National Collegiate Athletic Association Division I female athletes. Design and Setting: A pretest and posttest control group design was used. Experimental subjects performed plyometric exercises 2 times per week for 6 weeks. Measurements: We used surface electromyography to assess preparatory and reactive activity of the vastus medialis and vastus lateralis, medial and lateral hamstrings, and hip abductors and adductors. Vertical jump height and sprint speed were assessed with the VERTEC and infrared timing devices, respectively. Results: Multivariate analyses of variance revealed significant (P < .05) increases in firing of adductor muscles during the preparatory phase, with significant interactions for area, mean, and peak. A Tukey honestly significant difference post hoc analysis revealed significant increases in preparatory adductor area, mean, and peak for experimental group. A significant (P = .037) increase in preparatory adductor-to-abductor muscle coactivation in the experimental group was identified, as well as a trend (P = .053) toward reactive quadriceps-to- hamstring muscle coactivation in the experimental group. Pearson correlation coefficients revealed significant between-groups adaptations in muscle activity patterns pretest to posttest. Although not significant, experimental and control subjects had average increases of 5.8% and 2.0% in vertical jump height, respectively. Conclusions: The increased preparatory adductor activity and abductor-to-adductor coactivation represent preprogrammed motor strategies learned during the plyometric training. These data strongly support the role of hip-musculature activation strategies for dynamic restraint and control of lower extremity alignment at ground contact. Plyometric exercises should be incorporated into the training regimens of female athletes and may reduce the risk of injury by enhancing functional joint stability in the lower extremity. PMID:15085208

  7. Individuals with chronic low back pain demonstrate delayed onset of the back muscle activity during prone hip extension.

    PubMed

    Suehiro, Tadanobu; Mizutani, Masatoshi; Ishida, Hiroshi; Kobara, Kenichi; Osaka, Hiroshi; Watanabe, Susumu

    2015-08-01

    Prone hip extension (PHE) is commonly used in the evaluation of the stability of the lumbopelvic region. There is little evidence of difference in muscle activity onset timing between healthy individuals and individuals with chronic low back pain (CLBP) during PHE. The purpose of this study was to determine if individuals with and without CLBP differ in the onset time of the trunk and hip extensor muscles activity during PHE. The participants were 20 patients with CLBP and 20 healthy individuals. Electromyography data of the erector spinae, multifidus, gluteus maximus, and semitendinosus were collected during PHE using a surface electromyograph. Relative differences in the onset times between each muscle and the prime mover (i.e., the semitendinosus) were calculated. The onsets of the bilateral multifidus and contralateral erector spinae were significantly delayed in the CLBP group compared with the healthy group (p<0.001), despite the onset timings of leg movement not being significantly different between the groups. The onset times of the gluteus maximus and ipsilateral erector spinae showed no significant differences between the groups. These results suggest that individuals with CLBP use an altered, and possibly inadequate, trunk muscle recruitment pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The Effects of Psoas Major and Lumbar Lordosis on Hip Flexion and Sprint Performance

    ERIC Educational Resources Information Center

    Copaver, Karine; Hertogh, Claude; Hue, Olivier

    2012-01-01

    In this study, we analyzed the correlations between hip flexion power, sprint performance, lumbar lordosis (LL) and the cross-sectional area (CSA) of the psoas muscle (PM). Ten young adults performed two sprint tests and isokinetic tests to determine hip flexion power. Magnetic resonance imaging was used to determine LL and PM CSA. There were…

  9. A surgical technique for lengthening tight hamstring muscles in patients with low back pain.

    PubMed

    Anglès, F G; Manubens, X B; Anglès, F C

    1997-01-01

    An original technique for lengthening primary tight semitendinosus and semimembranosus muscles in their proximal portion is presented. The authors consider that primary shortening of these muscles rebounds on hip biomechanics and on the spine kinematics chain.

  10. Association of activities of daily living with the load during step ascent motion in nursing home-residing elderly individuals.

    PubMed

    Masaki, Mitsuhiro; Ikezoe, Tome; Kamiya, Midori; Araki, Kojiro; Isono, Ryo; Kato, Takehiro; Kusano, Ken; Tanaka, Masayo; Sato, Syunsuke; Hirono, Tetsuya; Kita, Kiyoshi; Tsuboyama, Tadao; Ichihashi, Noriaki

    2018-04-19

    This study aimed to examine the association of independence in ADL with the loads during step ascent motion and other motor functions in 32 nursing home-residing elderly individuals. Independence in ADL was assessed by using the functional independence measure (FIM). The loads at the upper (i.e., pulling up) and lower (i.e., pushing up) levels during step ascent task was measured on a step ascent platform. Hip extensor, knee extensor, plantar flexor muscle, and quadriceps setting strengths; lower extremity agility using the stepping test; and hip and knee joint pain severities were measured. One-legged stance and functional reach distance for balance, and maximal walking speed, timed up-and-go (TUG) time, five-chair-stand time, and step ascent time were also measured to assess mobility. Stepwise regression analysis revealed that the load at pushing up during step ascent motion and TUG time were significant and independent determinants of FIM score. FIM score decreased with decreased the load at pushing up and increased TUG time. The study results suggest that depending on task specificity, both one step up task's push up peak load during step ascent motion and TUG, can partially explain ADL's FIM score in the nursing home-residing elderly individuals. Lower extremity muscle strength, agility, pain or balance measures did not add to the prediction.

  11. Male and female gluteal muscle activity and lower extremity kinematics during running.

    PubMed

    Willson, John D; Petrowitz, Isaac; Butler, Robert J; Kernozek, Thomas W

    2012-12-01

    Patellofemoral pain is one of the most common lower extremity overuse injuries in runners and is significantly more common in females. This study evaluated differences in the timing and magnitude of gluteal muscle activity as well as hip and knee joint frontal and transverse plane kinematics between male and female runners in the context of this gender bias. Twenty healthy male and 20 healthy female runners were participants. Three-dimensional lower extremity kinematics, and gluteus medius and gluteus maximus muscle activation were recorded using motion analysis and electromyography as subjects ran at 3.7 m/s (+/-5%). Comparisons of hip and knee joint kinematic and gluteus muscle activation data were made using independent t-tests (α=0.05). Females ran with 40% greater peak gluteus maximus activation level (P=0.028, effect size=0.79) and 53% greater average activation level (P=0.013, effect size=0.93) than males. Female runners also displayed greater hip adduction (P=.001, effect size=1.20) and knee abduction (P=0.011, effect size=0.87) angles at initial contact, greater hip adduction at peak vertical ground reaction force (P<0.001, effect size=1.31), and less knee internal rotation excursion than males (P=0.035, effect size=0.71). Greater gluteus maximus activation levels during running may predispose females to earlier gluteus maximus fatigue, promoting altered lower extremity running kinematics thought to be associated with the etiology of patellofemoral pain. Gender differences in transverse and frontal plane hip and knee kinematics observed in this study may also contribute to the gender bias for patellofemoral pain among females. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Differences in neuromuscular control between impact and no impact roundhouse kick in athletes of different skill levels.

    PubMed

    Quinzi, Federico; Camomilla, Valentina; Felici, Francesco; Di Mario, Alberto; Sbriccoli, Paola

    2013-02-01

    This study aimed at investigating two aspects of neuromuscular control around the hip and knee joint while executing the roundhouse kick (RK) using two techniques: Impact RK (IRK) at trunk level and No-Impact RK at face level (NIRK). The influence of technical skill level was also investigated by comparing two groups: elite Karateka and Amateurs. Surface electromyographic (sEMG) signals have been recorded from the Vastus Lateralis (VL), Biceps Femoris (BF), Rectus Femoris (RF), Gluteus Maximum (GM) and Gastrocnemious (GA) muscles of the kicking leg in six Karateka and six Amateurs performing the RKs. Hip and knee kinematics were also assessed. EMG data were rectified, filtered and normalized to the maximal value obtained for each muscle over all trials; co-activation (CI) indexes of antagonist vs. overall (agonist and antagonist) activity were computed for hip and knee flexion and extension. Muscle Fiber Conduction Velocity (CV) obtained from VL and BF muscles was assessed as well. The effect of group and kick on angular velocity, CIs, and CVs was tested through a two-way ANOVA (p < 0.05). An effect of group was showed in both kicks. Karateka presented higher knee and hip angular velocity; higher BF-CV (IRK: 5.1 ± 1.0 vs. 3.5 ± 0.5 m/s; NIRK: 5.7 ± 1.3 vs. 4.1 ± 0.5 m/s), higher CIs for hip movements and knee flexion and lower CI for knee extension. The results obtained suggest the presence of a skill-dependent activation strategy in the execution of the two kicks. CV results are suggestive of an improved ability of elite Karateka to recruit fast MUs as a part of training induced neuromuscular adaptation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Activation of the hip adductor muscles varies during a simulated weight-bearing task.

    PubMed

    Hides, Julie A; Beall, Paula; Franettovich Smith, Melinda M; Stanton, Warren; Miokovic, Tanja; Richardson, Carolyn

    2016-01-01

    To investigate the pattern of muscle activation of the individual hip adductor muscles using a standardised simulated unilateral weight-bearing task. A repeated measures design. Laboratory. 20 healthy individuals (11 females, 9 males) participated in the study. Age ranged from 20 to 25 years. Surface electromyography recordings from adductor magnus and adductor longus muscles were taken at levels representing 10-50% of body weight during a simulated weight-bearing task. Electromyography (EMG) data were normalised to maximal voluntary isometric contraction. The adductor magnus was recruited at significantly higher levels than the adductor longus muscle during a simulated weight-bearing task performed across 10-50% of body weight (p < 0.01). Adductor magnus and adductor longus muscles are recruited to different extents during a simulated weight-bearing task. This information should be considered when selecting exercises for management and prevention of groin strains. Closed chain exercises with weight-bearing through the lower limb are more likely to recruit the adductor magnus muscle over the adductor longus muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Supervised Versus Home Exercise Training Programs on Functional Balance in Older Subjects.

    PubMed

    Youssef, Enas Fawzy; Shanb, Alsayed Abd Elhameed

    2016-11-01

    Aging is associated with a progressive decline in physical capabilities and a disturbance of both postural control and daily living activities. The aim of this study was to evaluate the effects of supervised versus home exercise programs on muscle strength, balance and functional activities in older participants. Forty older participants were equally assigned to a supervised exercise program (group-I) or a home exercise program (group-II). Each participant performed the exercise program for 35-45 minutes, two times per week for four months. Balance indices and isometric muscle strength were measured with the Biodex Balance System and Hand-Held Dynamometer. Functional activities were evaluated by the Berg Balance Scale (BBS) and the timed get-up-and-go test (TUG). The mean values of the Biodex balance indices and the BBS improved significantly after both the supervised and home exercise programs ( P < 0.05). However, the mean values of the TUG and muscle strength at the ankle, knee and hip improved significantly only after the supervised program. A comparison between the supervised and home exercise programs revealed there were only significant differences in the BBS, TUG and muscle strength. Both the supervised and home exercise training programs significantly increased balance performance. The supervised program was superior to the home program in restoring functional activities and isometric muscle strength in older participants.

  15. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation.

    PubMed

    Normann, R A; Dowden, B R; Frankel, M A; Wilder, A M; Hiatt, S D; Ledbetter, N M; Warren, D A; Clark, G A

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  16. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation

    NASA Astrophysics Data System (ADS)

    Normann, R. A.; Dowden, B. R.; Frankel, M. A.; Wilder, A. M.; Hiatt, S. D.; Ledbetter, N. M.; Warren, D. A.; Clark, G. A.

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  17. Which factors differentiate athletes with hip/groin pain from those without? A systematic review with meta-analysis

    PubMed Central

    Mosler, Andrea B; Agricola, Rintje; Weir, Adam; Hölmich, Per; Crossley, Kay M

    2015-01-01

    Background Hip and groin injuries are common in many sports. Understanding the factors differentiating athletes with hip/groin pain from those without these injuries could facilitate management and prevention. Objective Conduct a systematic review and meta-analysis of the literature on factors differentiating athletes with and without hip/groin pain. Methods The review was registered as PROSPERO CRD42014007416 and a comprehensive, systematic search was conducted in June 2014. Inclusion criteria were: cross-sectional, cohort or case–control study designs of n>10 that examined outcome measures differentiating athletes with and without hip/groin pain. Two authors independently screened search results, assessed study quality, and performed data extraction. Methodological heterogeneity was determined and data pooled for meta-analysis when appropriate. A best evidence synthesis was performed on the remaining outcome measures. Results Of 2251 titles identified, 17 articles were included of which 10 were high quality. Sixty two different outcome measures were examined, 8 underwent meta-analysis. Pooled data showed strong evidence that athletes with hip/groin pain demonstrated: pain and lower strength on the adductor squeeze test, reduced range of motion in hip internal rotation and bent knee fall out; however, hip external rotation range was equivalent to controls. Strong evidence was found that lower patient-reported outcome (PRO) scores, altered trunk muscle function, and moderate evidence of bone oedema and secondary cleft sign were associated with hip/groin pain. Conclusions PROs, pain and reduced strength on the adductor squeeze test, reduced range of motion in internal rotation and bent knee fall out are the outcome measures that best differentiate athletes with hip/groin pain from those without this pain. PMID:26031646

  18. A literature review of studies evaluating gluteus maximus and gluteus medius activation during rehabilitation exercises.

    PubMed

    Reiman, Michael P; Bolgla, Lori A; Loudon, Janice K

    2012-05-01

    Recently, clinicians have focused much attention on the importance of hip strength for the rehabilitation of not only patients with low back pain but also lower extremity pathology. Properly designing a rehabilitation program for the gluteal muscles requires careful consideration of biomechanical principles, such as length of the external moment arm, gravity, and subject positioning. Understanding the anatomy and function of these muscles also is essential. Electromyography (EMG) provides a useful means to determine muscle activation levels during specific exercises. Descriptions of specific exercises, as they relate to the gluteal muscles, are described. The specific performance of these exercises, the reliability of such EMG measures, and descriptive figures are also detailed. Of utmost importance to practicing clinicians is the interpretation of such data and how it can be best used in exercise prescription when formulating a treatment plan.

  19. Accuracy of Clinical Techniques for Evaluating Lower Limb Sensorimotor Functions Associated With Increased Fall Risk.

    PubMed

    Donaghy, Alex; DeMott, Trina; Allet, Lara; Kim, Hogene; Ashton-Miller, James; Richardson, James K

    2016-04-01

    In prior work, laboratory-based measures of hip motor function and ankle proprioceptive precision were critical to maintaining unipedal stance and fall/fall-related injury risk. However, the optimal clinical evaluation techniques for predicting these measures are unknown. To evaluate the diagnostic accuracy of common clinical maneuvers in predicting laboratory-based measures of frontal plane hip rate of torque development (Hip(RTD)) and ankle proprioceptive thresholds (AnkPRO) associated with increased fall risk. Prospective, observational study. Biomechanical research laboratory. A total of 41 older subjects (aged 69.1 ± 8.3 years), 25 with varying degrees of diabetic distal symmetric polyneuropathy and 16 without. Clinical hip strength was evaluated by manual muscle testing (MMT) and lateral plank time, defined as the number of seconds that the laterally lying subject could lift the hips from the support surface. Foot/ankle evaluation included Achilles reflex and vibratory, proprioceptive, monofilament, and pinprick sensations at the great toe. Hip(RTD), abduction and adduction, using a custom whole-body dynamometer. AnkPRO determined with subjects standing using a foot cradle system and a staircase series of 100 frontal plane rotational stimuli. Pearson correlation coefficients (r) and receiver operator characteristic (ROC) curves revealed that LPT correlated more strongly with Hip(RTD) (r/P = 0.61/<.001 and 0.67/<.001, for abductor/adductor, respectively) than did hip abductor MMT (r/P = 0.31/.044). Subjects with greater vibratory and proprioceptive sensation, and intact Achilles reflexes, monofilament, and pin sensation had more precise AnkPRO. LPT of <12 seconds yielded a sensitivity/specificity of 91%/80% for identifying Hip(RTD) < 0.25 (body size in Newton-meters), and vibratory perception of <8 seconds yielded a sensitivity/specificity of 94%/80% for the identification of AnkPRO >1.0°. LPT is a more effective measure of Hip(RTD) than MMT. Similarly, clinical vibratory sense and monofilament testing are effective measures of AnkPRO, whereas clinical proprioceptive sense is not. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  20. [Hip Fracture--Epidemiology, Management and Liaison Service. Risk factor for hip fracture].

    PubMed

    Fujiwara, Saeko

    2015-04-01

    Many risk factors have been identified for hip fracture, including female, advanced age, osteoporosis, previous fractures, low body weight or low body mass index, alcohol drinking, smoking, family history of fractures, use of glucocorticoid, factors related to falls, and bone strength. The factors related to falls are number of fall, frail, post stroke, paralysis, muscle weakness, anti-anxiety drugs, anti-depression drugs, and sedatives. Dementia and respiratory disease and others have been reported to be risk factors for secondary hip fracture.

  1. Influence of altered gait patterns on the hip joint contact forces.

    PubMed

    Carriero, Alessandra; Zavatsky, Amy; Stebbins, Julie; Theologis, Tim; Lenaerts, Gerlinde; Jonkers, Ilse; Shefelbine, Sandra J

    2014-01-01

    Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.

  2. [Influence of body posture in the prevalence of craniomandibular dysfunction].

    PubMed

    Fuentes, R; Freesmeyer, W; Henríquez, J

    1999-09-01

    Postural alterations of the shoulders, dorsal spine and hips could have an influence on the development of craniomandibular dysfunctions. To study the influence of body posture on the prevalence of craniomandibular dysfunction. One hundred thirty six dental students and 41 patients assisting to the temporomandibular joints (TMJ) clinic at the Freie Universität at Berlin, were studied. Masticator, cervical muscles, temporomandibular joints and occlusions were clinically examined. The position of shoulders and hips was measured with the use of an acromiopelvimeter. No relationship was found between postural alterations of the hips and shoulders, articular noises and sensibility or pain while palpating the temporomandibular joints. Among students, a relationship between postural alterations of the shoulders and the sensibility or pain while palpating the TMJ, was observed. When all muscles were considered, a significant relationship between asymmetric shoulders or hips and muscular pain while palpating was observed among students. Some symptoms, especially muscular sensibility is more pronounced in people with hip and shoulder asymmetries. This relation is more pronounced in dental students than in patients.

  3. Muscle function in glenohumeral joint stability during lifting task.

    PubMed

    Blache, Yoann; Begon, Mickaël; Michaud, Benjamin; Desmoulins, Landry; Allard, Paul; Dal Maso, Fabien

    2017-01-01

    Ensuring glenohumeral stability during repetitive lifting tasks is a key factor to reduce the risk of shoulder injuries. Nevertheless, the literature reveals some lack concerning the assessment of the muscles that ensure glenohumeral stability during specific lifting tasks. Therefore, the purpose of this study was to assess the stabilization function of shoulder muscles during a lifting task. Kinematics and muscle electromyograms (n = 9) were recorded from 13 healthy adults during a bi-manual lifting task performed from the hip to the shoulder level. A generic upper-limb OpenSim model was implemented to simulate glenohumeral stability and instability by performing static optimizations with and without glenohumeral stability constraints. This procedure enabled to compute the level of shoulder muscle activity and forces in the two conditions. Without the stability constraint, the simulated movement was unstable during 74%±16% of the time. The force of the supraspinatus was significantly increased of 107% (p<0.002) when the glenohumeral stability constraint was implemented. The increased supraspinatus force led to greater compressive force (p<0.001) and smaller shear force (p<0.001), which contributed to improved glenohumeral stability. It was concluded that the supraspinatus may be the main contributor to glenohumeral stability during lifting task.

  4. Muscle function in glenohumeral joint stability during lifting task

    PubMed Central

    Begon, Mickaël; Michaud, Benjamin; Desmoulins, Landry; Allard, Paul

    2017-01-01

    Ensuring glenohumeral stability during repetitive lifting tasks is a key factor to reduce the risk of shoulder injuries. Nevertheless, the literature reveals some lack concerning the assessment of the muscles that ensure glenohumeral stability during specific lifting tasks. Therefore, the purpose of this study was to assess the stabilization function of shoulder muscles during a lifting task. Kinematics and muscle electromyograms (n = 9) were recorded from 13 healthy adults during a bi-manual lifting task performed from the hip to the shoulder level. A generic upper-limb OpenSim model was implemented to simulate glenohumeral stability and instability by performing static optimizations with and without glenohumeral stability constraints. This procedure enabled to compute the level of shoulder muscle activity and forces in the two conditions. Without the stability constraint, the simulated movement was unstable during 74%±16% of the time. The force of the supraspinatus was significantly increased of 107% (p<0.002) when the glenohumeral stability constraint was implemented. The increased supraspinatus force led to greater compressive force (p<0.001) and smaller shear force (p<0.001), which contributed to improved glenohumeral stability. It was concluded that the supraspinatus may be the main contributor to glenohumeral stability during lifting task. PMID:29244838

  5. What Is the Role of Nutritional Supplements in Support of Total Hip Replacement and Total Knee Replacement Surgeries? A Systematic Review.

    PubMed

    Burgess, Louise C; Phillips, Stuart M; Wainwright, Thomas W

    2018-06-25

    Nutritional supplements can influence outcomes for individuals undergoing major surgery, particularly in older persons whose functional reserve is limited. Accelerating recovery from total hip replacement (THR) and total knee replacement (TKR) may offer significant benefits. Therefore, we explored the role of nutritional supplements in improving recovery following THR and TKR. A systematic review was conducted to source randomized clinical trials that tested nutritional supplements in cohorts of THR or TKR patients. Our search yielded nine relevant trials. Intake of a carbohydrate-containing fluid is reported to improve insulin-like growth factor levels, reduce hunger, nausea, and length of stay, and attenuate the decrease in whole-body insulin sensitivity and endogenous glucose release. Amino acid supplementation is reported to reduce muscle atrophy and accelerate return of functional mobility. One paper reported a suppressive effect of beta-hydroxy beta-methylbutyrate, L-arginine, and L-glutamine supplementation on muscle strength loss following TKR. There is limited evidence for nutritional supplementation in THR and TKR pathways; however, the low risk profile and potential benefits to adjunctive treatment methods, such as exercise programs, suggest nutritional supplements may have a role. Optimizing nutritional status pre-operatively may help manage the surgical stress response, with a particular benefit for undernourished, frail, or elderly individuals.

  6. Effects of the progressive walking-to-running technique on gait kinematics, ultrasound imaging, and motor function in spastic diplegic cerebral palsy - an experimenter-blind case study.

    PubMed

    Lee, Nam Gi; Jeong, Su Ji; You, Joshua Sung Hyun; Cho, Kang Hee; Lee, Tae Heon

    2013-01-01

    The purpose of this study was to investigate the effects of the progressive walking-to-running technique (PWRT) in a child with spastic diplegic cerebral palsy (CP). A single case study with pre-/post-test. An 11-year-old male, diagnosed with spastic diplegic CP. The PWRT was provided for 60 minutes a day, 2 times a week for 12 weeks. Gross motor function tests, ultrasound imaging, hand-held dynamometer, and the Vicon motion capture system were used to determine motor function, muscle size and strength, and gait kinematics. Gross motor function was improved after the intervention. The size of right and left rectus femoris and tibialis anterior muscles in their contracted states were enhanced by 1.36, 5.09, 83.74, and 54.37%, respectively. Associated muscle strength was also increased by 58.8, 30.8, 28.0, and 118.2% in both rectus femoris and tibialis anterior muscles. Left stride length, walking speed, maximal flexion-extension angular excursion of the hip joint were enhanced by 95.7, 87.8, and 100.4% after PWRT, respectively. Our novel walking-running training paradigm was effective for restoring gait and running ability in a child with spastic diplegic CP.

  7. Evaluation of the Hip: History and Physical Examination

    PubMed Central

    2007-01-01

    Examination of a painful hip is fairly concise and reliable at detecting the presence of a hip joint problem. Hip joint disorders often go undetected, leading to the development of secondary disorders. Using a thoughtful approach and methodical examination techniques, most hip joint problems can be detected and a proper treatment strategy can then be implemented based on an accurate diagnosis. The purpose of this clinical commentary is to present a systematic examination process that outlines important components in each of the evaluation areas of history and physical examination (including inspection, measurements, symptom localization, muscle strength, and special tests). PMID:21509142

  8. Metal-on-Metal Hip Retrieval Analysis: A Case Report

    PubMed Central

    Pace, Thomas B.; Rusaw, Kara A.; Minette, Lawrence J.; Shirley, Brayton R.; Snider, Rebecca G.; DesJardins, John D.

    2013-01-01

    This is a case report involving a single case with severe bone and soft tissue destruction in a young male patient with a 10-year-metal on-metal total hip arthroplasty. Following complete aseptic erosion of the affected hip greater trochanter and abductor muscles, the hip was revised for recurrent instability. Histological examination of the patient's periprosthetic tissues, serological studies, and review of recent medical reports of similar cases were used to support an explanation of the destructive process and better contribute to our understanding of human reaction to metal debris in some patients following metal-on-metal hip arthroplasty. PMID:23840999

  9. Asymmetric pelvic bracing and altered kinematics in patients with posterior pelvic pain who present with postural muscle delay.

    PubMed

    Bussey, Melanie D; Milosavljevic, Stephan

    2015-01-01

    The purpose of the study was to examine the muscle activity and hip-spine kinematics in a group of individuals diagnosed with posterior pelvic girdle pain and confirmed postural muscle delay during a repeated fast hip flexion task. Twenty-four (12 pain and 12 control) age and sex matched participants performed a repeated fast hip flexion task to auditory signal. Surface EMG activity in the external and internal oblique, the multifidus, the gluteus maximus and biceps femoris in the stance-limb was examined for onset timing and EMG integral. Sagittal plane hip (swing limb) and spine kinematics were examined for group and side differences over the repeated trials. While the pain group lacked significant feedforward muscle activity they displayed higher muscle activity at movement onset in the biceps femoris bilaterally (p<0.05) as well as the external oblique (p<0.05) during motion of the symptomatic side. Furthermore, the pain group experienced asymmetrical spinal range of motion with increased motion on the contralateral side (p<0.001) and reduced flexion velocity on the symptomatic side (p<0.001). The findings support previous hypotheses regarding the effect of increased biceps activity on pelvic control during lumbo-pelvic rotation. Further, there appears to be a symptom led strategy for bracing the innominate through opposing tension in the biceps and external oblique during movement of the painful side. Such asymmetrical pelvic girdle bracing may be a strategy to increase the stability of the pelvis in light of the failed load transfer mechanism. Putatively, this strategy may increase the mechanical stress on the sacroiliac joint exacerbating pain complaints. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Teaching "Not So Exact" Science: The Controversial Pectineus

    ERIC Educational Resources Information Center

    Freedman, Alan D.; Ross, Scott E.; Gayle, Richard C.

    2008-01-01

    Anatomy scholars agree that the pectineus muscle adducts and flexes the hip joint. While some scholars have reported that the pectineus muscle acts as a lateral rotator, others have reported that this muscle acts a medial rotator. This problem is further complicated because a group of scholars does not specify the pectineus muscle's role in hip…

  11. Effect of modified bridge exercise on trunk muscle activity in healthy adults: a cross sectional study.

    PubMed

    Yoon, Jeong-Oh; Kang, Min-Hyeok; Kim, Jun-Seok; Oh, Jae-Seop

    This is a cross-sectional study. University research laboratory. Fifteen healthy adults (mean age: 27.47 years) volunteered for this study. The individuals performed standard bridge exercise and modified bridge exercises with right leg-lift (single-leg-lift bridge exercise, single-leg-lift bridge exercise on an unstable surface, and single-leg-lift hip abduction bridge exercise). During the bridge exercises, electromyography of the rectus abdominis, internal oblique, erector spinae, and multifidus muscles was recorded using a wireless surface electromyography system. Two-way repeated-measures analysis of variance (exercise by side) with post hoc pairwise comparisons using Bonferroni correction was used to compare the electromyography data collected from each muscle. Bilateral internal oblique muscle activities showed significantly greater during single-leg-lift bridge exercise (95% confidence interval: right internal oblique=-8.99 to -1.08, left internal oblique=-6.84 to -0.10), single-leg-lift bridge exercise on an unstable surface (95% confidence interval: right internal oblique=-7.32 to -1.78, left internal oblique=-5.34 to -0.99), and single-leg-lift hip abduction bridge exercise (95% confidence interval: right internal oblique=-17.13 to -0.89, left internal oblique=-8.56 to -0.60) compared with standard bridge exercise. Bilateral rectus abdominis showed greater electromyography activity during single-leg-lift bridge exercise on an unstable surface (95% confidence interval: right rectus abdominis=-9.33 to -1.13, left rectus abdominis=-4.80 to -0.64) and single-leg-lift hip abduction bridge exercise (95% confidence interval: right rectus abdominis=-14.12 to -1.84, left rectus abdominis=-6.68 to -0.16) compared with standard bridge exercise. In addition, the right rectus abdominis muscle activity was greater during single-leg-lift hip abduction bridge exercise compared with single-leg-lift bridge exercise on an unstable surface (95% confidence interval=-7.51 to -0.89). For erector spinae, muscle activity was greater in right side compared with left side during all exercises (95% confidence interval: standard bridge exercise=0.19-4.53, single-leg-lift bridge exercise=0.24-10.49, single-leg-lift bridge exercise on an unstable surface=0.74-8.55, single-leg-lift hip abduction bridge exercise=0.47-11.43). There was no significant interaction and main effect for multifidus. Adding hip abduction and unstable conditions to bridge exercises may be useful strategy to facilitate the co-activation of trunk muscles. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Gain of postural responses increases in response to real and anticipated pain.

    PubMed

    Hodges, Paul W; Tsao, Henry; Sims, Kevin

    2015-09-01

    This study tested two contrasting theories of adaptation of postural control to pain. One proposes alteration to the postural strategy including inhibition of muscles that produce painful movement; another proposes amplification of the postural adjustment to recruit strategies normally reserved for higher load. This study that aimed to determine which of these alternatives best explains pain-related adaptation of the hip muscle activity associated with stepping down from steps of increasing height adaptation of postural control to increasing load was evaluated from hip muscle electromyography (fine-wire and surface electrodes) as ten males stepped from steps of increasing height (i.e. increasing load). In one set of trials, participants stepped from a low step (5 cm) and pain was induced by noxious electrical stimulation over the sacrum triggered from foot contact with a force plate or was anticipated. Changes in EMG amplitude and onset timing were compared between conditions. Hip muscle activation was earlier and larger when stepping from higher steps. Although ground reaction forces (one of the determinants of joint load) were unchanged before, during and after pain, trials with real or anticipated noxious stimulation were accompanied by muscle activity indistinguishable from that normally reserved for higher steps (EMG amplitude increased from 9 to 17 % of peak). These data support the notion that muscle activation for postural control is augmented when challenged by real/anticipated noxious stimulation. Muscle activation was earlier and greater than that required for the task and is likely to create unnecessary joint loading. This could have long-term consequences if maintained.

  13. Greater inadvertent muscle damage in direct anterior approach when compared with the direct superior approach for total hip arthroplasty.

    PubMed

    Amanatullah, D F; Masini, M A; Roger, D J; Pagnano, M W

    2016-08-01

    We wished to quantify the extent of soft-tissue damage sustained during minimally invasive total hip arthroplasty through the direct anterior (DA) and direct superior (DS) approaches. In eight cadavers, the DA approach was performed on one side, and the DS approach on the other, a single brand of uncemented hip prosthesis was implanted by two surgeons, considered expert in their surgical approaches. Subsequent reflection of the gluteus maximus allowed the extent of muscle and tendon damage to be measured and the percentage damage to each anatomical structure to be calculated. The DA approach caused substantially greater damage to the gluteus minimus muscle and tendon when compared with the DS approach (t-test, p = 0.049 and 0.003, respectively). The tensor fascia lata and rectus femoris muscles were damaged only in the DA approach. There was no difference in the amount of damage to the gluteus medius muscle and tendon, piriformis tendon, obturator internus tendon, obturator externus tendon or quadratus femoris muscle between approaches. The posterior soft-tissue releases of the DA approach damaged the gluteus minimus muscle and tendon, piriformis tendon and obturator internus tendon. The DS approach caused less soft-tissue damage than the DA approach. However the clinical relevance is unknown. Further clinical outcome studies, radiographic evaluation of component position, gait analyses and serum biomarker levels are necessary to evaluate and corroborate the safety and efficacy of the DS approach. Cite this article: Bone Joint J 2016;98-B1036-42. ©2016 The British Editorial Society of Bone & Joint Surgery.

  14. The Physiotherapy for Femoroacetabular Impingement Rehabilitation STudy (physioFIRST): A Pilot Randomized Controlled Trial.

    PubMed

    Kemp, Joanne L; Coburn, Sally L; Jones, Denise M; Crossley, Kay M

    2018-04-01

    Study Design A pilot double-blind randomized controlled trial (RCT). Background The effectiveness of physical therapy for femoroacetabular impingement syndrome (FAIS) is unknown. Objectives To determine the feasibility of an RCT investigating the effectiveness of a physical therapy intervention for FAIS. Methods Participants were 17 women and 7 men (mean ± SD age, 37 ± 8 years; body mass index, 25.4 ± 3.4 kg/m 2 ) with FAIS who received physical therapy interventions provided over 12 weeks. The FAIS-specific physical therapy group received personalized progressive strengthening and functional retraining. The control group received standardized stretching exercises. In addition, both groups received manual therapy, progressive physical activity, and education. The primary outcome was feasibility, including integrity of the protocol, recruitment and retention, outcome measures, randomization procedure, and sample-size estimate. Secondary outcomes included hip pain and function (international Hip Outcome Tool-33 [iHOT-33]) and hip muscle strength. Poststudy interviews were conducted to determine potential improvements for future studies. Results Twenty-four (100%) patients with known eligibility agreed to participate. Four patients (17%) were lost to follow-up. All participants and the tester remained blinded, and the control intervention was acceptable to participants. The between-group mean differences in change scores were 16 (95% confidence interval [CI]: -9, 38) for the iHOT-33 and 0.24 (95% CI: 0.02, 0.47) Nm/kg for hip adduction strength, favoring the FAIS-specific physical therapy group. Using an effect size of 0.61, between-group improvements for the iHOT-33 suggest that 144 participants are required for a full-scale RCT. Conclusion A full-scale RCT of physical therapy for FAIS is feasible. A FAIS-specific physical therapy program has the potential for a moderate to large positive effect on hip pain, function, and hip adductor strength. Level of Evidence Therapy, level 2b. J Orthop Sports Phys Ther 2018;48(4):307-315. doi:10.2519/jospt.2018.7941.

  15. Longitudinal Association Between Gross Motor Capacity and Neuromusculoskeletal Function in Children and Youth With Cerebral Palsy.

    PubMed

    Vos, Rimke C; Becher, Jules G; Voorman, Jeanine M; Gorter, Jan Willem; van Eck, Mirjam; van Meeteren, Jetty; Smits, Dirk-Wouter; Twisk, Jos W; Dallmeijer, Annet J

    2016-08-01

    To examine associations over longitudinal measurements between neuromusculoskeletal function and gross motor capacity in children and youth with cerebral palsy (CP). A prospective cohort study. Rehabilitation departments of university medical centers and rehabilitations centers. A sample (N=327) consisting of 148 children (aged 5-9y) and 179 youth (aged 11-20y) with CP, Gross Motor Function Classification System level I (n=180), level II (n=44), level III (n=36), level IV (n=34), and level V (n=33). Not applicable. Gross motor capacity was assessed with the Gross Motor Function Measure-66 over a period of 2 to 4 years in different age cohorts. Neuromusculoskeletal function included selective motor control (SMC), muscle strength, spasticity, and range of motion (ROM) of the lower extremities. Multilevel analyses showed that SMC was significantly associated with gross motor capacity in children and youth with CP, showing higher values and a more favorable course of gross motor capacity in those with better SMC. Strength was only associated with gross motor capacity in youth. Reduced ROM of hip (children) and knee extension (youth) and spasticity of the hip adductors (youth) were additionally-but more weakly-associated with lower values and a less favorable course of gross motor capacity. Results indicate that children and youth with more severely impaired SMC and youth with reduced muscle strength have a less favorable course of gross motor capacity, while spasticity and reduced ROM are less determinative. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Effect of hip and knee position on tensor fasciae latae elongation during stretching: An ultrasonic shear wave elastography study.

    PubMed

    Umehara, Jun; Ikezoe, Tome; Nishishita, Satoru; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Fujita, Kosuke; Ichihashi, Noriaki

    2015-12-01

    Decreased flexibility of the tensor fasciae latae is one factor that causes iliotibial band syndrome. Stretching has been used to improve flexibility or tightness of the muscle. However, no studies have investigated the effective stretching position for the tensor fasciae latae using an index to quantify muscle elongation in vivo. The aim of this study was to investigate the effects of hip rotation and knee angle on tensor fasciae latae elongation during stretching in vivo using ultrasonic shear wave elastography. Twenty healthy men participated in this study. The shear elastic modulus of the tensor fasciae latae was calculated using ultrasonic shear wave elastography. Stretching was performed at maximal hip adduction and maximal hip extension in 12 different positions with three hip rotation conditions (neutral, internal, and external rotations) and four knee angles (0°, 45°, 90°, and 135°). Two-way analysis of variance showed a significant main effect for knee angle, but not for hip rotation. The post-hoc test for knee angle indicated that the shear elastic modulus at 90° and 135° were significantly greater than those at 0° and 45°. Our results suggest that adding hip rotation to the stretching position with hip adduction and extension may have less effect on tensor fasciae latae elongation, and that stretching at >90° of knee flexion may effectively elongate the tensor fasciae latae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters.

    PubMed

    Handsfield, G G; Knaus, K R; Fiorentino, N M; Meyer, C H; Hart, J M; Blemker, S S

    2017-10-01

    Sprint runners achieve much higher gait velocities and accelerations than average humans, due in part to large forces generated by their lower limb muscles. Various factors have been explored in the past to understand sprint biomechanics, but the distribution of muscle volumes in the lower limb has not been investigated in elite sprinters. In this study, we used non-Cartesian MRI to determine muscle sizes in vivo in a group of 15 NCAA Division I sprinters. Normalizing muscle sizes by body size, we compared sprinter muscles to non-sprinter muscles, calculated Z-scores to determine non-uniformly large muscles in sprinters, assessed bilateral symmetry, and assessed gender differences in sprinters' muscles. While limb musculature per height-mass was 22% greater in sprinters than in non-sprinters, individual muscles were not all uniformly larger. Hip- and knee-crossing muscles were significantly larger among sprinters (mean difference: 30%, range: 19-54%) but only one ankle-crossing muscle was significantly larger (tibialis posterior, 28%). Population-wide asymmetry was not significant in the sprint population but individual muscle asymmetries exceeded 15%. Gender differences in normalized muscle sizes were not significant. The results of this study suggest that non-uniform hypertrophy patterns, particularly large hip and knee flexors and extensors, are advantageous for fast sprinting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Increased frequency of rhabdomyolysis in familial dysautonomia.

    PubMed

    Palma, Jose-Alberto; Roda, Ricardo; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio

    2015-11-01

    Familial dysautonomia (FD; OMIM # 223900) is an autosomal recessive disease with features of impaired pain and temperature perception and lack of functional muscle spindles. After 3 FD patients presented with rhabdomyolysis in a short time span, we aimed to determine the frequency of rhabdomyolysis is this population. This study was a retrospective chart review of 665 FD patients. Eight patients had at least 1 episode of rhabdomyolysis. Two patients had 2 episodes. The average incidence of rhabdomyolysis in FD was 7.5 per 10,000 person-years. By comparison, the average incidence with statins has been reported to be 0.44 per 10,000 person-years. Mean maximum creatine kinase (CK) level was 32,714 ± 64,749 U/L. Three patients had hip magnetic resonance imaging showing gluteal hyperintensities. Patients with FD have an increased incidence of rhabdomyolysis. We hypothesize that this may result from a combination of absent functional muscle spindles and muscle mitochondrial abnormalities. © 2015 Wiley Periodicals, Inc.

  19. The Recognition and Evaluation of Patterns of Compensatory Injury in Patients With Mechanical Hip Pain

    PubMed Central

    Hammoud, Sommer; Bedi, Asheesh; Voos, James E.; Mauro, Craig S.; Kelly, Bryan T.

    2014-01-01

    Context: In active individuals with femoroacetabular impingement (FAI), the resultant reduction in functional range of motion leads to high impaction loads at terminal ranges. These increased forces result in compensatory effects on bony and soft tissue structures within the hip joint and hemipelvis. An algorithm is useful in evaluating athletes with pre-arthritic, mechanical hip pain and associated compensatory disorders. Evidence Acquisition: A literature search was performed by a review of PubMed articles published from 1976 to 2013. Level of Evidence: Level 4. Results: Increased stresses across the bony hemipelvis result when athletes with FAI attempt to achieve supraphysiologic, terminal ranges of motion (ROM) through the hip joint required for athletic competition. This can manifest as pain within the pubic joint (osteitis pubis), sacroiliac joint, and lumbosacral spine. Subclinical posterior hip instability may result when attempts to increase hip flexion and internal rotation are not compensated for by increased motion through the hemipelvis. Prominence of the anterior inferior iliac spine (AIIS) at the level of the acetabular rim can result in impingement of the anterior hip joint capsule or iliocapsularis muscle origin against the femoral head-neck junction, resulting in a distinct form of mechanical hip impingement (AIIS subspine impingement). Iliopsoas impingement (IPI) has also been described as an etiology for anterior hip pain. IPI results in a typical 3-o’clock labral tear as well as an inflamed capsule in close proximity to the overlying iliopsoas tendon. Injury in athletic pubalgia occurs during high-energy twisting activities in which abnormal hip ROM and resultant pelvic motion lead to shearing across the pubic symphysis. Conclusion: Failure to recognize and address concomitant compensatory injury patterns associated with intra-articular hip pathology can result in significant disability and persistent symptoms in athletes with pre-arthritic, mechanical hip pain. Strength-of-Recommendation Taxonomy (SORT): B PMID:24587859

  20. Propulsion phase of the single leg triple hop test in women with patellofemoral pain syndrome: a biomechanical study.

    PubMed

    Bley, Andre Serra; Correa, João Carlos Ferrari; Dos Reis, Amir Curcio; Rabelo, Nayra Deise Dos Anjos; Marchetti, Paulo Henrique; Lucareli, Paulo Roberto Garcia

    2014-01-01

    Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress.

  1. Propulsion Phase of the Single Leg Triple Hop Test in Women with Patellofemoral Pain Syndrome: A Biomechanical Study

    PubMed Central

    Bley, Andre Serra; Correa, João Carlos Ferrari; Reis, Amir Curcio Dos; Rabelo, Nayra Deise Dos Anjos; Marchetti, Paulo Henrique; Lucareli, Paulo Roberto Garcia

    2014-01-01

    Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress. PMID:24830289

  2. Effects of Stimulating Hip and Trunk Muscles on Seated Stability, Posture and Reach after Spinal Cord Injury

    PubMed Central

    Triolo, Ronald J.; Bailey, Stephanie Nogan; Miller, Michael E.; Lombardo, Lisa M.; Audu, Musa L.

    2014-01-01

    Objective To determine the stimulated strength of the paralyzed gluteal and paraspinal muscles and their effects on the seated function of individuals with paralysis. Design Case series with subjects acting as their own concurrent controls. Setting Hospital-based clinical biomechanics laboratory. Participants Eight users of implanted neuroprostheses for lower extremity function with low-cervical or thoracic level injuries. Interventions Dynamometry and digital motion capture both with and without stimulation to the hip and trunk muscles. Main Outcome Measure(s) Isometric trunk extension moment at 0, 15 and 30 degrees of flexion; seated stability in terms of simulated isokinetic rowing; pelvic tilt, shoulder height, loaded and unloaded bimanual reaching to different heights, and subjective ratings of difficulty during unsupported sitting. Results Stimulation produced significant increases in mean trunk extension moment (9.2±9.5Nm, p=0.0001) and rowing force (27.4±23.1N, p=0.0123) over baseline volitional values. Similarly, stimulation induced positive changes in average pelvic tilt (16.7±15.7deg) and shoulder height (2.2±2.5cm) during quiet sitting and bimanual reaching, and increased mean reach distance (5.5±6.6cm) over all subjects, target heights and loading conditions. Subjects consistently rated tasks with stimulation easier than voluntary effort alone. Conclusions In spite of considerable inter-subject variability, stabilizing the paralyzed trunk with electrical stimulation can positively impact seated posture, extend forward reach and allow exertion of larger forces on objects in the environment. PMID:23500182

  3. Orchard evaluation of ergonomically modified apple bucket.

    PubMed

    Earle-Richardson, Giulia; Jenkins, Paul L; Strogatz, David; Bell, Erin M; Sorensen, Julie A; May, John J

    2006-01-01

    While preliminary laboratory tests indicate that a hip belt reduces the load on the back, neck and shoulders associated with musculoskeletal strain, an orchard trial is needed to more realistically assess both effectiveness and acceptability. to evaluate the hip belt's effectiveness in three areas: worker acceptance, worker productivity, and one-day muscle fatigue of the back and shoulder. Ninety-six New York apple harvest workers were randomly assigned to use the intervention hip belt or placebo belt for one week. In a second week all workers switched conditions. Subjects were interviewed at the end of each week to ascertain intervention acceptance. Employer records were reviewed to determine bushels picked per day. Subjects also underwent muscle fatigue testing at the beginning and again at the end of one workday during each week. Ninety-one percent of the subjects favored the intervention hip belt. Use of the intervention did not appreciably slow picking speed (bushels per hour) as compared to placebo (8.8 bu/ hr vs. 8.89 bu/hr). Both were significantly faster than the regular equipment condition (8.13 bu/hr). No significant differences in one-day muscle fatigue were found with intervention use. The belt was acceptable to the workers and did not hinder productivity. However, the anticipated ergonomic benefits were not demonstrable using one-day strength testing.

  4. Effects of squats accompanied by hip joint adduction on the selective activity of the vastus medialis oblique.

    PubMed

    Hyong, In Hyouk

    2015-06-01

    [Purpose] This study evaluated the effective selective activation method of the vastus medialis oblique for knee joint stabilization in patients with patellofemoral pain syndrome. [Subjects and Methods] Fifteen healthy college students (9 males, 6 females); mean age, height, and weight: 22.2 years, 167.8 cm, and 61.4 kg, respectively) participated. The knee angle was held at 60°. Muscle activities were measured once each during an ordinary squat and a squat accompanied by hip joint adduction. The muscle activities of the vastus medialis oblique and vastus lateralis were measured by electromyography for five seconds while maintaining 60° knee flexion. Electromyography signals were obtained at a sampling rate of 1,000 Hz and band pass filtering at 20-50 Hz. The obtained raw root mean square was divided by the maximal voluntary isometric contraction and expressed as a percentage. The selective activity of the vastus medialis oblique was assessed according to the muscle activity ratio of the vastus medialis oblique to the vastus lateralis. [Results] The activity ratio of the vastus medialis oblique was higher during a squat with hip joint adduction than without. [Conclusion] A squat accompanied by hip joint adduction is effective for the selective activation of the vastus medialis oblique.

  5. Which is the best predictor of excessive hip internal rotation in women with patellofemoral pain: Rearfoot eversion or hip muscle strength? Exploring subgroups.

    PubMed

    Ferreira, Amanda Schenatto; de Oliveira Silva, Danilo; Briani, Ronaldo Valdir; Ferrari, Deisi; Aragão, Fernando Amâncio; Pazzinatto, Marcella Ferraz; de Azevedo, Fábio Mícolis

    2018-03-26

    Patellofemoral pain (PFP) has been linked to increased patellofemoral joint stress as a result of excessive hip internal rotation. Lower hip strength and/or excessive rearfoot eversion have been used to explain such altered movement pattern; however, it is unknown which one is the best predictor of excessive hip internal rotation. To investigate if peak rearfoot eversion and/or peak concentric hip abductor strength can predict peak hip internal rotation during stair ascent in women with PFP. This cross-sectional study included thirty-seven women with PFP which underwent three-dimensional kinematic analysis during stair ascent and hip abductor strength analysis in an isokinetic dynamometer. A forced entry linear regression model analysis was carried out to determine which independent variables present the best capability to predict the hip internal rotation. Peak concentric hip abductor strength significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.27, p = 0.001). Peak rearfoot eversion did not predict peak hip internal rotation during stair ascent (R 2  < 0.01, p = 0.62). A Post-hoc analysis was conducted to explore if a subgroup with excessive rearfoot eversion would predict hip internal rotation. Based on a previous reported cut-off point, 48.6% of the participants were classified as excessive rearfoot eversion. For the subgroup with excessive rearfoot eversion, peak concentric hip abductor strength and peak rearfoot eversion significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.26, p = 0.02; R 2  = 0.42, p = 0.003, respectively). For non-excessive rearfoot eversion subgroup, peak concentric hip abductor strength significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.53; p < 0.001); and peak rearfoot eversion did not (R 2  = 0.01; p = 0.65). Findings indicate that hip muscle strength seems to be related with hip internal rotation in all women with PFP. Rearfoot eversion seems to be related with hip internal rotation only in a subgroup with excessive rearfoot eversion. Copyright © 2018. Published by Elsevier B.V.

  6. A functional electrical stimulation system for human walking inspired by reflexive control principles.

    PubMed

    Meng, Lin; Porr, Bernd; Macleod, Catherine A; Gollee, Henrik

    2017-04-01

    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation-assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking.

  7. RESTRICTED HIP MOBILITY: CLINICAL SUGGESTIONS FOR SELF‐MOBILIZATION AND MUSCLE RE‐EDUCATION

    PubMed Central

    Matheson, J.W.

    2013-01-01

    Restricted hip mobility has shown strong correlation with various pathologies of the hip, lumbar spine and lower extremity. Restricted mobility can consequently have deleterious effects not only at the involved joint but throughout the entire kinetic chain. Promising findings are suggesting benefit with skilled joint mobilization intervention for clients with various hip pathologies. Supervised home program intervention, while lacking specifically for the hip joint, are demonstrating promising results in other regions of the body. Application of an accompanying home program for the purpose of complementing skilled, in clinic intervention is advisable for those clients that respond favorably to such methodology. Level of Evidence: 5 PMID:24175151

  8. Restricted hip mobility: clinical suggestions for self-mobilization and muscle re-education.

    PubMed

    Reiman, Michael P; Matheson, J W

    2013-10-01

    Restricted hip mobility has shown strong correlation with various pathologies of the hip, lumbar spine and lower extremity. Restricted mobility can consequently have deleterious effects not only at the involved joint but throughout the entire kinetic chain. Promising findings are suggesting benefit with skilled joint mobilization intervention for clients with various hip pathologies. Supervised home program intervention, while lacking specifically for the hip joint, are demonstrating promising results in other regions of the body. Application of an accompanying home program for the purpose of complementing skilled, in clinic intervention is advisable for those clients that respond favorably to such methodology. 5.

  9. Axial hypertonicity in Parkinson’s disease: Direct measurements of trunk and hip torque

    PubMed Central

    Wright, W.G.; Gurfinkel, V.S.; Nutt, J.; Horak, F.B.; Cordo, P.J.

    2007-01-01

    A cardinal feature of Parkinson’s disease (PD) is muscle hypertonicity, i.e. rigidity. Little is known about the axial tone in PD or the relation of hypertonia to functional impairment. We quantified axial rigidity to assess its relation to motor symptoms as measured by UPDRS and determine whether rigidity is affected by levodopa treatment. Axial rigidity was measured in 12 PD and 14 age-matched controls by directly measuring torsional resistance of the longitudinal axis to twisting (±10°). Feet were rotated relative to fixed hips (Hip Tone) or feet and hips were rotated relative to fixed shoulders (Trunk Tone). To assess tonic activity only, low constant velocity rotation (1°/s) and low acceleration (<12°/s2) were used to avoid eliciting phasic sensorimotor responses. Subjects stood during testing without changing body orientation relative to gravity. Body parts fixed against rotation could translate laterally within the boundaries of normal postural sway, but could not rotate. PD OFF-medication had higher axial rigidity (p<0.05) in hips (5.07 Nm) and trunk (5.30 Nm) than controls (3.51 Nm and 4.46 Nm, respectively), which didn’t change with levodopa (p>0.10). Hip-to-trunk torque ratio was greater in PD than controls (p<0.05) and unchanged by levodopa (p=0.28). UPDRS scores were significantly correlated with hip rigidity for PD OFF-medication (r=0.73, p<0.05). Torsional resistance to clockwise versus counter-clockwise axial rotation was more asymmetrical in PD than controls (p<0.05), however, there was no correspondence between direction of axial asymmetry and side of disease onset. In conclusion, these findings concerning hypertonicity may underlie functional impairments of posture and locomotion in PD. The absence of a levodopa effect on axial tone suggests axial and appendicular tone are controlled by separate neural circuits. PMID:17692315

  10. Is magnetotherapy applied to bilateral hips effective in ankylosing spondylitis patients? A randomized, double-blind, controlled study.

    PubMed

    Turan, Yasemin; Bayraktar, Kevser; Kahvecioglu, Fatih; Tastaban, Engin; Aydin, Elif; Kurt Omurlu, Imran; Berkit, Isil Karatas

    2014-03-01

    This double-blind, randomized controlled study was conducted with the aim to investigate the effect of magnetic field therapy applied to the hip region on clinical and functional status in ankylosing spondylitis (AS) patients. Patients with AS (n = 66) who were diagnosed according to modified New York criteria were enrolled in this study. Patients were randomly divided in two groups. Participants were randomly assigned to receive magnetic field therapy (2 Hz) (n = 35), or placebo magnetic field therapy (n = 31) each hip region for 20 min. Patients in each group were given heat pack and short-wave treatments applied to bilateral hip regions. Both groups had articular range of motion and stretching exercises and strengthening exercises for surrounding muscles for the hip region as well as breathing and postural exercises by the same physical therapist. These treatment protocols were continued for a total of 15 sessions (1 session per day), and patients were examined by the same physician at months 1, 3 and 6. Visual analogue scale (VAS) pain, VAS fatigue, Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Metrologic Index (BASMI), DFI, Harris hip assessment index and Ankylosing Spondylitis Quality of Life scale (ASQOL) were obtained at the beginning of therapy and at month 1, month 3 and month 6 for each patient. There were no significant differences between groups in the VAS pain, VAS fatigue, morning stiffness, BASDAI, BASFI, BASMI, DFI, Harris hip assessment index and ASQoL at baseline, month 1, month 3 or month 6 (p > 0.05). Further randomized, double-blind controlled studies are needed in order to establish the evidence level for the efficacy of modalities with known analgesic and anti-inflammatory action such as magnetotherapy, particularly in rheumatic disorders associated with chronic pain.

  11. Impact of extra-articular pathologies on groin pain: An arthroscopic evaluation.

    PubMed

    Kaya, Mitsunori

    2018-01-01

    For patients who have anterior hip pain evaluated by Patrick's test and tenderness at Scarpa's triangle, we perform periarticular debridement based on the hypothesis that extra-articular pathologies are responsible for the hip pain. The purpose of this study was to categorize the endoscopic extra-articular findings and to evaluate the clinical significance of periarticular pathologies in anterior hip pain. Arthroscopic findings of 77 patients who underwent periarthritic debridement were evaluated. As extra-articular pathologies, injuries of the direct head and reflective head of the rectus femoris muscle were evaluated. A thin layer of fat tissue normally exists on the anterior inferior iliac spine (AIIS), the attachment site of the direct head of the rectus femoris muscle. The macroscopic appearance of the fat pad on the AIIS was categorized as normal, blood vessel-rich adipose tissue or adipose tissue with fibrosis or scar formation and histologically confirmed. Adhesion of gluteal muscles to the joint capsule was also evaluated. Of the 77 patients, 75 had rupture of the direct head of the rectus femoris. In contrast, rupture of the reflective head was extremely rare. Seven patients had a normal fat pad on the AIIS, 11 had blood vessel-rich adipose tissue and 55 had adipose tissue with fibrosis. Fat tissue was completely replaced by fibrous scar tissue in another 4 patients. In 64 patients, adhesion between the anterior joint capsule and gluteus muscles was marked. Groin pain disappeared soon after the operation even when labral tears were not repaired and all patients returned to daily life and sports activities within 2 weeks after operation. Rectus femoris tendinosis, fibrosis of the AIIS fat pad, and adhesion of gluteal and rectus femoris muscles are common extra-articular pathologies in patients with anterior hip pain. Management of only these lesions induces rapid relief of anterior hip pain even in the absence of labral tear repair. My observations suggest that it is desirable to be aware of the presence of periarticular pathologies as a cause of groin pain.

  12. Anthropometric, functional capacity, and oxidative stress changes in Brazilian community-living elderly subjects. A longitudinal study.

    PubMed

    Moreira, Priscila Lucelia; Correa, Camila Renata; Corrente, José Eduardo; Martin, Luis Cuadrado; Boas, Paulo Jose Fortes Villas; Ferreira, Ana Lucia Anjos

    2016-01-01

    To examine the changes and relationships among anthropometric, functional and plasma oxidative stress markers in elderly. longitudinal study. measurements in 2008 and 2010. 103 community-dwelling men and women aged 67-92. Anthropometric parameters [waist, hip, arm and calf circumferences; waist-hip ratio, triceps skinfold thickness and others], basic (ADL) and instrumental activities of daily living (IADL)] and plasma oxidative stress markers (α-tocopherol, β-carotene and malondialdehyde) were assessed in 2008 and 2010. ADL, IADL, body weight, skinfold thickness and circumferences of calf and arm decreased and waist and waist-hip ratio increased from 2008 to 2010. α-Tocopherol decreased and malondialdehyde plasma levels increased during the study period. In multiple logistic regression analyses, increased age (OR=1.12; IC: 1.02-1.23; p=0.02), female gender (OR=8.43; IC: 1.23-57.58; p=0.03), hypertension (OR=0.22; IC: 0.06-0.79; p=0.02), arthritis/arthrosis (OR=0.09; IC: 0.009-0.87; p=0.04) and depression (OR=0.20; IC: 0.04-1.03; p=0.05) were independent risk factors for functional decline. Fat reduction, muscle loss, central obesity increase, functional decline and worsening of plasma oxidative stress were observed during 2-year follow-up. Some of the risk factors that were identified could be modified to help prevent functional decline in elderly. The factors deserving attention include hypertension, arthritis/arthrosis and depression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. The effect of subtalar inversion/eversion on the dynamic function of the tibialis anterior, soleus, and gastrocnemius during the stance phase of gait.

    PubMed

    Wang, Ruoli; Gutierrez-Farewik, Elena M

    2011-05-01

    The purpose of this study was to determine how gait deviation in one plane (i.e. excessive subtalar inversion/eversion) can affect the dynamic function of the tibialis anterior, gastrocnemius, and soleus to accelerate the subtalar, ankle, knee and hip joints, as well as the body center of mass. Induced acceleration analysis was performed based on a subject-specific three-dimensional linkage model configured by stance phase gait data and driven by one unit of muscle force. Eight healthy adult subjects were examined in gait analysis. The subtalar inversion/eversion was modeled by offsetting up to 20° from the normal subtalar angle while other configurations remained unaltered. This study showed that the gastrocnemius, soleus and tibialis anterior generally functioned as their anatomical definition in normal gait, but counterintuitive function was occasionally found in the bi-articular gastrocnemius. The plantarflexors play important roles in the body support and forward progression. Excessive subtalar eversion was found to enlarge the plantarflexors and tibialis anterior's function. Induced acceleration analysis demonstrated its ability to isolate the contributions of individual muscle to a given factor, and as a means of studying effect of pathological gait on the dynamic muscle functions. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Methodological Challenges of Multiple-Component Intervention: Lessons Learned from a Randomized Controlled Trial of Functional Recovery After Hip Fracture

    PubMed Central

    Peterson, Margaret G.E.; Cornell, Charles N.; MacKenzie, C. Ronald; Robbins, Laura; Horton, Roberta; Ganz, Sandy B.; Ruchlin, Hirsch S.; Russo, Pamela Williams; Paget, Stephen A.; Charlson, Mary E.

    2006-01-01

    We conducted a randomized controlled trial to assess the efficacy and safety of a multiple-component intervention designed to improve functional recovery after hip fracture. One hundred seventy-six patients who underwent surgery for a primary unilateral hip fracture were assigned randomly to receive usual care (control arm, n = 86) or a brief motivational videotape, supportive peer counseling, and high-intensity muscle-strength training (intervention arm, n = 90). Between-group differences on the physical functioning, role-physical, and social functioning domains of the SF-36 were assessed postoperatively at 6 months. At the end of the trial, 32 intervention and 27 control patients (34%) completed the 6-month outcome assessment. Although patient compliance with all three components of the intervention was uneven, over 90% of intervention patients were exposed to the motivational videotape. Intervention patients experienced a significant (P = 0.03) improvement in the role-physical domain (mean change, −11 ± 33) compared to control patients (mean change, −37 ± 41). Change in general health (P = 0.2) and mental health (P = 0.1) domain scores was also directionally consistent with the study hypothesis. Although our findings are consistent with previous reports of comprehensive rehabilitation efforts for hip fracture patients, the trial was undermined by high attrition and the possibility of self-selection bias at 6-month follow-up. We discuss the methodological challenges and lessons learned in conducting a randomized controlled trial that sought to implement and assess the impact of a complex intervention in a population that proved difficult to follow up once they had returned to the community. PMID:18751772

  15. New controller for functional electrical stimulation systems.

    PubMed

    Fisekovic, N; Popovic, D B

    2001-07-01

    A novel, self-contained controller for functional electrical stimulation systems has been designed. The development was motivated by the need to have a general purpose, easy to use controller capable of stimulating many muscle groups, thus restoring complex motor functions (e.g. standing, walking, reaching, and grasping). The designed controller can regulate the frequency, pulse duration, and charge balance on up to 16 channels, and execute pre-programmed and sensory-driven control operations. The controller supports up to eight analog and six digital sensors, and comprises a memory block for including history of the sensory data (time series). Five independent timers provide the basis for the multi-modal and multi-level control of movement. The PC compatible interface is realised via an IR serial communication channel. The PC based software is user friendly and fully menu driven. This paper also presents a case study where the controller was implemented to restore walking in a paraplegic subject. The assistive system comprised the novel controller, the power and output stages of an eight-channel FES system (IEEE Trans Rehabil Eng, TRE-2 (1994) 234), ankle-foot orthoses, and a rolling walker. Stimulation was applied with surface electrodes positioned over the motoneurons that innervate muscles responsible for the hip and knee flexion and extension. The sensory system included goniometers at knee and hip joints, force-sensing resistors built in the shoe insoles, and digital accelerometers at the hips. A rule-based control algorithm was generated following a two-step procedure: (1) simulation and (2) machine learning as described in earlier studies (IEEE Trans Rehab Eng, TRE-7 (1999) 69). The paraplegic subject walked faster, and with less physiological effort, when automatic control was applied as compared to hand-control. This case study, as well as a previous one for assisting grasping (The design and testing of a new programmable electronic stimulator. N. Fisekovic, MS thesis. University of Belgrade, Belgrade, 2000) indicate that the novel control unit is effectively applicable to FES systems.

  16. Hardware Evaluation of the Horizontal Exercise Fixture with Weight Stack

    NASA Technical Reports Server (NTRS)

    Newby, Nate; Leach, Mark; Fincke, Renita; Sharp, Carwyn

    2009-01-01

    HEF with weight stack seems to be a very sturdy and reliable exercise device that should function well in a bed rest training setting. A few improvements should be made to both the hardware and software to improve usage efficiency, but largely, this evaluation has demonstrated HEF's robustness. The hardware offers loading to muscles, bones, and joints, potentially sufficient to mitigate the loss of muscle mass and bone mineral density during long-duration bed rest campaigns. With some minor modifications, the HEF with weight stack equipment provides the best currently available means of performing squat, heel raise, prone row, bench press, and hip flexion/extension exercise in a supine orientation.

  17. The association of visually-assessed quality of movement during jump-landing with ankle dorsiflexion range-of-motion and hip abductor muscle strength among healthy female athletes.

    PubMed

    Rabin, Alon; Einstein, Ofira; Kozol, Zvi

    2018-05-01

    To explore the association between ankle dorsiflexion (DF) range of motion (ROM), and hip abductor muscle strength, to visually-assessed quality of movement during jump-landing. Cross-sectional. Gymnasium of participating teams. 37 female volleyball players. Quality of movement in the frontal-plane, sagittal-plane, and overall (both planes) was visually rated as "good/moderate" or "poor". Weight-bearing Ankle DF ROM and hip abductor muscle strength were compared between participants with differing quality of movement. Weight-bearing DF ROM on both sides was decreased among participants with "poor" sagittal-plane quality of movement (dominant side: 50.8° versus 43.6°, P = .02; non-dominant side: 54.6° versus 45.9°, P = .01), as well as among participants with an overall "poor" quality of movement (dominant side: 51.8° versus 44.0°, P < .01; non-dominant side: 56.5° versus 45.1°, P < .01). Weight-bearing ankle DF on the non-dominant side was decreased among participants with a "poor" frontal-plane quality of movement (53.9° versus 46.0°, P = .02). No differences in hip abductor muscle strength were noted between participants with differing quality of movement. Visual assessment of jump-landing can detect differences in quality of movement that are associated with ankle DF ROM. Clinicians observing a poor quality of movement may wish to assess ankle DF ROM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Case report: A rare case of focal myositis presenting as Sartorius muscle contracture: A case report and review of literature.

    PubMed

    Wang, Jin; Jiao, Juyang; Zhao, Guanglei; Shi, Jingsheng; Xia, Jun

    2018-05-01

    Focal myositis (FM) is a very rare myopathy of unknown etiology characterized by focal enlargement within one single skeletal muscle. In particular, it occurs only involving the Sartorius muscle has never been reported. A 25-year-old man was admitted to the hospital with progressive restricted left hip joint extension, left thigh discomfort and gait disturbance for 6 years. Combining clinical manifestations with results of radiological and pathological examinations, it was consistent with the diagnosis of FM INTERVENTIONS:: The patient received a surgery under general anesthesia to release the contracted Sartorius tendon. The range of motion of the patient's left hip and ipsilateral knee has significantly improved as well as the discomfort of his left thigh relieved obviously after the surgery. This case report is the first to report FM presenting as sartorius muscle contracture and the surgery is an alternative therapy for these patients.

  19. Ultrasound-Guided Injection of Botulinum Toxin Type A for Piriformis Muscle Syndrome: A Case Report and Review of the Literature

    PubMed Central

    Santamato, Andrea; Micello, Maria Francesca; Valeno, Giovanni; Beatrice, Raffaele; Cinone, Nicoletta; Baricich, Alessio; Picelli, Alessandro; Panza, Francesco; Logroscino, Giancarlo; Fiore, Pietro; Ranieri, Maurizio

    2015-01-01

    Piriformis muscle syndrome (PMS) is caused by prolonged or excessive contraction of the piriformis muscle associated with pain in the buttocks, hips, and lower limbs because of the close proximity to the sciatic nerve. Botulinum toxin type A (BoNT-A) reduces muscle hypertonia as well as muscle contracture and pain inhibiting substance P release and other inflammatory factors. BoNT-A injection technique is important considering the difficult access of the needle for deep location, the small size of the muscle, and the proximity to neurovascular structures. Ultrasound guidance is easy to use and painless and several studies describe its use during BoNT-A administration in PMS. In the present review article, we briefly updated current knowledge regarding the BoNT therapy of PMS, describing also a case report in which this syndrome was treated with an ultrasound-guided injection of incobotulinumtoxin A. Pain reduction with an increase of hip articular range of motion in this patient with PMS confirmed the effectiveness of BoNT-A injection for the management of this syndrome. PMID:26266421

  20. Functional capacity and muscular abnormalities in subclinical hypothyroidism.

    PubMed

    Reuters, Vaneska S; Teixeira, Patrícia de Fátima S; Vigário, Patrícia S; Almeida, Cloyra P; Buescu, Alexandre; Ferreira, Márcia M; de Castro, Carmen L N; Gold, Jaime; Vaisman, Mario

    2009-10-01

    Neuromuscular abnormalities and low exercise tolerance are frequently observed in overt hypothyroidism, but it remains controversial if they can also occur in subclinical hypothyroidism (sHT). The aim of this study is to evaluate neuromuscular symptoms, muscle strength, and exercise capacity in sHT, compared with healthy euthyroid individuals. A cross-sectional study was performed with 44 sHT and 24 euthyroid outpatients from a university hospital. Neuromuscular symptoms were questioned. Muscle strength was tested for neck, shoulder, arm, and hip muscle groups, using manual muscle testing (MMT). Quadriceps muscle strength was tested with a chair dynamometer and inspiratory muscle strength (IS) by a manuvacuometer. Functional capacity was estimated based on the peak of oxygen uptake (mL/kg/min), using the Bruce treadmill protocol. Cramps (54.8% versus 25.0%; P < 0.05), weakness (45.2% versus 12.6; P < 0.05), myalgia (47.6% versus 25.0%; P = 0.07), and altered MMT (30.8% versus 8.3%; P = 0.040) were more frequent in sHT. Quadriceps strength and IS were not impaired in sHT and the same was observed for functional capacity. IS was significantly lower in patients complaining of fatigue and weakness (P < 0.05) and tended to be lower in those with altered MMT (P = 0.090). Neuromuscular complaints and altered MMT were significantly more frequent in sHT than in controls, and IS was lower in patients with these abnormalities. Results suggest that altered muscle strength by MMT and the coexistence of neuromuscular complaints in patients with sHT may indicate neuromuscular dysfunction.

  1. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance.

    PubMed

    Dorn, Tim W; Schache, Anthony G; Pandy, Marcus G

    2012-06-01

    Humans run faster by increasing a combination of stride length and stride frequency. In slow and medium-paced running, stride length is increased by exerting larger support forces during ground contact, whereas in fast running and sprinting, stride frequency is increased by swinging the legs more rapidly through the air. Many studies have investigated the mechanics of human running, yet little is known about how the individual leg muscles accelerate the joints and centre of mass during this task. The aim of this study was to describe and explain the synergistic actions of the individual leg muscles over a wide range of running speeds, from slow running to maximal sprinting. Experimental gait data from nine subjects were combined with a detailed computer model of the musculoskeletal system to determine the forces developed by the leg muscles at different running speeds. For speeds up to 7 m s(-1), the ankle plantarflexors, soleus and gastrocnemius, contributed most significantly to vertical support forces and hence increases in stride length. At speeds greater than 7 m s(-1), these muscles shortened at relatively high velocities and had less time to generate the forces needed for support. Thus, above 7 m s(-1), the strategy used to increase running speed shifted to the goal of increasing stride frequency. The hip muscles, primarily the iliopsoas, gluteus maximus and hamstrings, achieved this goal by accelerating the hip and knee joints more vigorously during swing. These findings provide insight into the strategies used by the leg muscles to maximise running performance and have implications for the design of athletic training programs.

  2. Muscle activity during the active straight leg raise (ASLR), and the effects of a pelvic belt on the ASLR and on treadmill walking.

    PubMed

    Hu, Hai; Meijer, Onno G; van Dieën, Jaap H; Hodges, Paul W; Bruijn, Sjoerd M; Strijers, Rob L; Nanayakkara, Prabath W; van Royen, Barend J; Wu, Wenhua; Xia, Chun

    2010-02-10

    Women with pregnancy-related pelvic girdle pain (PPP), or athletes with groin pain, may have trouble with the active straight leg raise (ASLR), for which a pelvic belt can be beneficial. How the problems emerge, or how the belt works, remains insufficiently understood. We assessed muscle activity during ASLR, and how it changes with a pelvic belt. Healthy nulligravidae (N=17) performed the ASLR, and walked on a treadmill at increasing speeds, without and with a belt. Fine-wire electromyography (EMG) was used to record activity of the mm. psoas, iliacus and transversus abdominis, while other hip and trunk muscles were recorded with surface EMG. In ASLR, all muscles were active. In both tasks, transverse and oblique abdominal muscles were less active with the belt. In ASLR, there was more activity of the contralateral m. biceps femoris, and in treadmill walking of the m. gluteus maximus in conditions with a belt. For our interpretation, we take our starting point in the fact that hip flexors exert a forward rotating torque on the ilium. Apparently, the abdominal wall was active to prevent such forward rotation. If transverse and oblique abdominal muscles press the ilia against the sacrum (Snijders' "force closure"), the pelvis may move as one unit in the sagittal plane, and also contralateral hip extensor activity will stabilize the ipsilateral ilium. The fact that transverse and oblique abdominal muscles were less active in conditions with a pelvic belt suggests that the belt provides such "force closure", thus confirming Snijders' theory. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Neuromuscular strategies for lumbopelvic control during frontal and sagittal plane movement challenges differ between people with and without low back pain.

    PubMed

    Nelson-Wong, E; Poupore, K; Ingvalson, S; Dehmer, K; Piatte, A; Alexander, S; Gallant, P; McClenahan, B; Davis, A M

    2013-12-01

    Observation-based assessments of movement are a standard component in clinical assessment of patients with non-specific low back pain. While aberrant motion patterns can be detected visually, clinicians are unable to assess underlying neuromuscular strategies during these tests. The purpose of this study was to compare coordination of the trunk and hip muscles during 2 commonly used assessments for lumbopelvic control in people with low back pain (LBP) and matched control subjects. Electromyography was recorded from hip and trunk muscles of 34 participants (17 with LBP) during performance of the Active Hip Abduction (AHAbd) and Active Straight Leg Raise (ASLR) tests. Relative muscle timing was calculated using cross-correlation. Participants with LBP demonstrated a variable strategy, while control subjects used a consistent proximal to distal activation strategy during both frontal and sagittal plane movements. Findings from this study provide insight into underlying neuromuscular control during commonly used assessment tests for patients with LBP that may help to guide targeted intervention approaches. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A hip abduction exercise prior to prolonged standing increased movement while reducing cocontraction and low back pain perception in those initially reporting low back pain.

    PubMed

    Viggiani, Daniel; Callaghan, Jack P

    2016-12-01

    Persons who develop low back pain from prolonged standing exhibit increased muscle cocontraction, decreased movement and increased spine extension. However, it is unclear how these factors relate to pain development. The purpose of this study was to use hip abductor fatigue to manipulate muscle activity patterns and determine its effects on standing behaviours and pain development. Forty participants stood for two hours twice, once following a hip abductor fatigue exercise (fatigue), and once without exercise beforehand (control). Trunk and gluteal muscle activity were measured to determine cocontraction. Lumbo-pelvic angles and force plates were used to assess posture and movement strategies. Visual analog scales differentiated pain (PDs) and non-pain developers (NPDs). PDs reported less low back pain during the fatigue session, with females having earlier reductions of similar scale than males. The fatigue session reduced gluteal and trunk cocontraction and increased centre of pressure movement; male and female PDs had opposing spine posture compensations. Muscle fatigue prior to standing reduced cocontraction, increased movement during standing and reduced the low back pain developed by PDs; the timing of pain reductions depended on spine postures adopted during standing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of pushing height on trunk posture and trunk muscle activity when a cart suddenly starts or stops moving.

    PubMed

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2012-01-01

    Unexpected sudden (un)loading of the trunk may induce inadequate responses of trunk muscles and uncontrolled trunk motion. These unexpected perturbations may occur in pushing tasks, when the cart suddenly starts moving (unloading) or is blocked by an obstacle (loading). In pushing, handle height affects the user's working posture, which may influence trunk muscle activity and trunk movement in response to the perturbation. Eleven healthy male subjects pushed a 200 kg cart with handles at shoulder and hip height in a start condition (sudden release of brakes) and a stop condition (bumping into an obstacle). Before the perturbation, the baseline of the trunk inclination, internal moment and trunk extensor muscle activity were significantly higher when pushing at hip height than at shoulder height. After the perturbation, the changes in trunk inclination and internal moment were significantly larger when pushing at shoulder height than at hip height in both conditions. The opposite directions of changes in trunk inclination and internal moment suggest that the unexpected perturbations caused uncontrolled trunk motion. Pushing at shoulder height may impose a high risk of low-back injury due to the low trunk stiffness and large involuntary trunk motion occurring after carts suddenly move or stop.

  6. A Maximum Muscle Strength Prediction Formula Using Theoretical Grade 3 Muscle Strength Value in Daniels et al.'s Manual Muscle Test, in Consideration of Age: An Investigation of Hip and Knee Joint Flexion and Extension.

    PubMed

    Usa, Hideyuki; Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi

    2017-01-01

    This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: M f )-the static muscular moment to support a limb segment against gravity-from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, M m ) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and M f was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between M f and M m in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.

  7. Development of mapped stress-field boundary conditions based on a Hill-type muscle model.

    PubMed

    Cardiff, P; Karač, A; FitzPatrick, D; Flavin, R; Ivanković, A

    2014-09-01

    Forces generated in the muscles and tendons actuate the movement of the skeleton. Accurate estimation and application of these musculotendon forces in a continuum model is not a trivial matter. Frequently, musculotendon attachments are approximated as point forces; however, accurate estimation of local mechanics requires a more realistic application of musculotendon forces. This paper describes the development of mapped Hill-type muscle models as boundary conditions for a finite volume model of the hip joint, where the calculated muscle fibres map continuously between attachment sites. The applied muscle forces are calculated using active Hill-type models, where input electromyography signals are determined from gait analysis. Realistic muscle attachment sites are determined directly from tomography images. The mapped muscle boundary conditions, implemented in a finite volume structural OpenFOAM (ESI-OpenCFD, Bracknell, UK) solver, are employed to simulate the mid-stance phase of gait using a patient-specific natural hip joint, and a comparison is performed with the standard point load muscle approach. It is concluded that physiological joint loading is not accurately represented by simplistic muscle point loading conditions; however, when contact pressures are of sole interest, simplifying assumptions with regard to muscular forces may be valid. Copyright © 2014 John Wiley & Sons, Ltd.

  8. A Maximum Muscle Strength Prediction Formula Using Theoretical Grade 3 Muscle Strength Value in Daniels et al.'s Manual Muscle Test, in Consideration of Age: An Investigation of Hip and Knee Joint Flexion and Extension

    PubMed Central

    Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi

    2017-01-01

    This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf)—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only. PMID:28133549

  9. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control.

    PubMed

    Daley, M A; Felix, G; Biewener, A A

    2007-02-01

    We currently know little about how animals achieve dynamic stability when running over uneven and unpredictable terrain, often characteristic of their natural environment. Here we investigate how limb and joint mechanics of an avian biped, the helmeted guinea fowl Numida meleagris, respond to an unexpected drop in terrain during running. In particular, we address how joint mechanics are coordinated to achieve whole limb dynamics. Based on muscle-tendon architecture and previous studies of steady and incline locomotion, we hypothesize a proximo-distal gradient in joint neuromechanical control. In this motor control strategy, (1) proximal muscles at the hip and knee joints are controlled primarily in a feedforward manner and exhibit load-insensitive mechanical performance, and (2) distal muscles at the ankle and tarsometatarso-phalangeal (TMP) joints are highly load-sensitive, due to intrinsic mechanical effects and rapid, higher gain proprioceptive feedback. Limb kinematics and kinetics during the unexpected perturbation reveal that limb retraction, controlled largely by the hip, remains similar to level running throughout the perturbed step, despite altered limb loading. Individual joints produce or absorb energy during both level and perturbed running steps, such that the net limb work depends on the balance of energy among the joints. The hip maintains the same mechanical role regardless of limb loading, whereas the ankle and TMP switch between spring-like or damping function depending on limb posture at ground contact. Initial knee angle sets limb posture and alters the balance of work among the joints, although the knee contributes little work itself. This distribution of joint function results in posture-dependent changes in work performance of the limb, which allow guinea fowl to rapidly produce or absorb energy in response to the perturbation. The results support the hypothesis that a proximo-distal gradient exists in limb neuromuscular performance and motor control. This control strategy allows limb cycling to remain constant, whereas limb posture, loading and energy performance are interdependent. We propose that this control strategy provides simple, rapid mechanisms for managing energy and controlling velocity when running over rough terrain.

  10. Electromyographic activity of the trunk extensor muscles: effect of varying hip position and lumbar posture during Roman chair exercise.

    PubMed

    Mayer, John M; Verna, Joe L; Manini, Todd M; Mooney, Vert; Graves, James E

    2002-11-01

    To evaluate the effect of hip position and lumbar posture on the surface electromyographic activity of the trunk extensors during Roman chair exercise. Descriptive, repeated measures. University-based musculoskeletal research laboratory. Twelve healthy volunteers (7 men, 5 women; age range, 18-35y) without a history of low back pain were recruited from a university setting. Not applicable. Surface electromyographic activity was recorded from the lumbar extensor, gluteal, and hamstring musculature during dynamic Roman chair exercise. For each muscle group, electromyographic activity (mV/rep) was compared among exercises with internal hip rotation and external hip rotation and among exercises by using a typical lumbar posture (nonbiphasic) and a posture that accentuated lumbar lordosis (biphasic). For the lumbar extensors, electromyographic activity during exercise was 18% greater with internal hip rotation than external hip rotation (P< or =.05) and was 25% greater with a biphasic posture than with a nonbiphasic posture (P< or =.05). For the gluteals and hamstrings, there was no difference in electromyographic activity between internal and external hip rotation or between biphasic and nonbiphasic postures (P >.05). The level of recruitment of the lumbar extensors can be modified during Roman chair exercise by altering hip position and lumbar posture. Clinicians can use these data to develop progressive exercise protocols for the lumbar extensors with a variety of resistance levels without the need for complex equipment. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  11. Effect of experimentally reduced distal sensation on postural response to hip abductor/ankle evertor muscle vibration.

    PubMed

    Glasser, S; Collings, R; Paton, J; Marsden, J

    2015-07-01

    This study assessed whether postural responses induced by vibratory perturbations of the hip abductors and ankle evertors, were modified when distal tactile sensation was experimentally reduced through cooling. Sixteen healthy subjects were investigated pre and post cooling. Subjects stood with their eyes closed with a stance width of 4 cm. A 2s vibratory stimulus was applied to the left or right hip abductor or ankle evertor muscle. The order of the site and side of the stimulation was randomised. The postural response to hip abductor and ankle evertor vibration was recorded using 3D motion analysis (Codamotion, Leicestershire). Medio-lateral centre of pressure motion was simultaneously recorded during quiet standing via a force plate (Kistler, UK). Pre-cooling people responded to unilateral ankle vibration with an ipsilateral translation and tilt of the pelvis, and an ipsilateral tilt of the trunk. People responded to unilateral hip vibration with a contralateral translation and tilt of the pelvis, and an ipsilateral tilt of the trunk. Following an experimental reduction in distal tactile sensation there was a significant reduction in the amplitude of pelvic tilt in response to ankle vibration (F(6.2)=P<0.05) and a significant increase in amplitude of pelvic tilt in response to hip vibration (F(5.2)=P<0.05). This suggests that the sensitivity to artificial stimulation of hip proprioception increases with distal cooling, possibly indicating a change in the gain/weighting placed upon sensory information from the hips. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Malnutrition and chronic inflammation as risk factors for sarcopenia in elderly patients with hip fracture.

    PubMed

    Yoo, Jun-Il; Ha, Yong-Chan; Choi, Hana; Kim, Kyu-Hwang; Lee, Young-Kyun; Koo, Kyung-Hoi; Park, Ki-Soo

    2018-01-01

    To evaluate malnutrition and chronic inflammation as risk factors for sarcopenia in elderly patients with hip fractures, as defined by the criteria of the Asian Working Group on Sarcopenia (AWGS). A total of 327 elderly patients with hip fractures were enrolled in this retrospective observational study. The main outcome measure was the nutritional status and nutritional risk factors for sarcopenia in elderly patients. Diagnosis of sarcopenia was made according to the guidelines of the AWGS. Whole body densitometry analysis was used to measure skeletal muscle mass, and muscle strength was evaluated by handgrip testing. Multivariable regression analysis was utilized to analyze the nutritional risk factors for sarcopenia in patients with hip fractures. Of 327 patients with hip fractures (78 men and 249 women), the prevalence of sarcopenia was 60.3% and 30.1% in men and women, respectively. The rates of three indicators of malnutrition in men and women (low BMI, hypoalbuminemia, and hypoproteinemia) in sarcopenia patients with hip fractures were 23.4%, 31.9%, and 53.2% and 21.3%, 21.3%, and 37.3%, respectively. The prevalence of markers of chronic inflammation (increased CRP and ESR) in men and women with sarcopenia and hip fractures were 74.9% and 52.2%, and 49.3% and 85.1%, respectively. After adjusting for covariates, low BMI and hypoproteinemia in women were associated with a 2.9- and 2.1-fold greater risk of sarcopenia than non-sarcopenia, respectively. The present study revealed a strong relationship between sarcopenia and malnutrition and chronic inflammatory factors in elderly patients with hip fractures.

  13. Psoas abscess masquerading as a prosthetic hip infection: A case report.

    PubMed

    Atif, Muhammad; Malik, Azeem Tariq; Noordin, Shahryar

    2018-01-01

    Psoas abscess is an unusual condition and is defined as a collection of pus in the iliopsoas compartment. Due to the unique anatomy of psoas muscle it forms a conduit for spread of infection from upper part of body to hip joint in neglected cases. A 67year old lady presented with left groin pain for three weeks. She underwent an uncemented unipolar hemiarthoplasty eight years back. Currently, she developed fever and was unable to do any active left hip range of motion. Passive motion of the left hip was restricted to 30° flexion, no internal rotation, 5° external rotation, and 10° abduction. Lab workup showed raised serum infective markers and radiographs of pelvis were normal with no evidence of any radiolucency. Ultrasound guided aspiration of left hip joint showed E coli. Arthrotomy revealed clear fluid in hip joint but pus was drained at psoas insertion. Later on, culture reported presence of E. coli and biopsy confirmed psoas abscess. Postoperatively CT scan abdomen showed pyelonephritis. Antibiotics were given for three months. Twenty months later, she remains asymptomatic without evidence of infection with normal gait. Psoas abscess is a rare clinical entity that may mimic symptoms of a primary prosthetic hip infection. Treatment outcomes are directly related to early detection with adequate dissection of the psoas muscle up to sites of attachment and complete eradication of infection. This case highlights importance of thorough initial clinical examination, lab workup and radiological assessment to rule out rare causes of hip joint pain. Copyright © 2017. Published by Elsevier Ltd.

  14. Reliability of measuring hip abductor strength following total knee arthroplasty using a hand-held dynamometer.

    PubMed

    Schache, Margaret B; McClelland, Jodie A; Webster, Kate E

    2016-01-01

    To investigate the test-retest reliability of measuring hip abductor strength in patients with total knee arthroplasty (TKA) using a hand-held dynamometer (HHD) with two different types of resistance: belt and manual resistance. Test-retest reliability of 30 subjects (17 female, 13 male, 71.9 ± 7.4 years old), 9.2 ± 2.7 days post TKA was measured using belt and therapist resistance. Retest reliability was calculated with intra-class coefficients (ICC3,1) and 95% confidence intervals (CI) for both the group average and the individual scores. A paired t-test assessed whether a difference existed between the belt and therapist methods of resistance. ICCs were 0.82 and 0.80 for the belt and therapist resisted methods, respectively. Hip abductor strength increases of 8 N (14%) for belt resisted and 14 N (17%) for therapist resisted measurements of the group average exceeded the 95% CI and may represent real change. For individuals, hip abductor strength increases of 33 N (72%) (belt resisted) and 57 N (79%) (therapist resisted) could be interpreted as real change. Hip abductor strength can be reliably measured using HHD in the clinical setting with the described protocol. Belt resistance demonstrated slightly higher test-retest reliability. Reliable measurement of hip abductor muscle strength in patients with TKA is important to ensure deficiencies are addressed in rehabilitation programs and function is maximized. Hip abductor strength can be reliably measured with a hand-held dynamometer in the clinical setting using manual or belt resistance.

  15. [Progress assessment of rehabilitation in patients after hip replacement. Preliminary report].

    PubMed

    Labecka, Monika; Pingot, Mariusz; Pingot, Julia; Woldańiska-Okońska, Marta

    2014-01-01

    Coxarthrosis is one of the most common diseases of the motor system. We distinguish primary and secondary coxarthrosis. The premises for total hip replacement include pain, damage to the surface of the acetabulum and the head of the hip, relative shortening of the limb, gluteal, femur and crus muscle atrophy and gait dysfunctions. The aim of this paper is to present the influence of rehabilitation on the improvement of physical ability, especially in respect to quality of gait and antianalgesic efficacy of the physical therapy in patients after total hip replacement. The study was carried out in 37 patients aged 35-72 (mean of age--53.78 +/- 9.92). The group consisted'of 21 women and 16 men. After the total hip replacement, all the patients underwent physical therapy which involved application of laser radiation on the postoperative scar, whirpool and classic massage of the operated limb, exercises in non-weight bearing and weight-bearing exercises and gait reeducation. Modified Laitinen Pain Indicator Questionnaire, Visual Analogue Scale-VAS and the standardized mobility test--Timed-Up-And-Go test were used in the study. The statistical analysis was carried out with the use of the STATYSTIKA 5 PL computer program. The results reached point to the analgesic efficacy of the physical therapy and a better gait quality. Multifactor physical therapy after total hip replacement shows analgesic action. Appropriate selection of exercises and physical treatment have positive influence on gait reeducation in patients after total hip replacement. The Timed Up and Go test may be used in functional assessment of gait in patients with musculoskeletal disorders.

  16. Vitamin D serum levels are associated with handgrip strength but not with muscle mass or length of hospital stay after hip fracture.

    PubMed

    Gumieiro, David Nicoletti; Murino Rafacho, Bruna Paola; Buzati Pereira, Bruna Letícia; Cavallari, Karelin Alvisi; Tanni, Suzana Erico; Azevedo, Paula Schmidt; Polegato, Bertha Furlan; Mamede Zornoff, Leonardo Antonio; Dinhane, Daniel Innocenti; Innocenti Dinhane, Kandir Genésio; Cação Pereira, Gilberto José; de Paiva, Sergio Alberto Rupp; Minicucci, Marcos Ferreira

    2015-01-01

    The aim of this study was to evaluate the association between serum levels of 25(OH) vitamin D3 with midupper arm muscle circumference (MUAMC), handgrip strength and length of hospital stay (LOS) after hip fracture. In total, 102 consecutive patients with hip fracture over the age of 65 were admitted to the orthopedic unit and prospectively evaluated. All of the patients were treated according to specific protocols depending on the type of fracture. Anthropometric measurements and handgrip strength were performed, and blood samples were taken for serum biochemistry and 25(OH) vitamin D3 analysis within the first 72 h of admission. All of the patients were followed during their hospital stay, and the length of stay was recorded. Of the patients, two were excluded because of pathologic fractures. In total, 100 patients with a mean age of 80 ± 7 y were included in the analysis. Among these patients, 73% were female, and 37% had vitamin D deficiency. The median LOS was 7 (5-11) d. Patients with vitamin D deficiency had lower handgrip strength in univariate analysis. In the multiple linear regression analysis with robust standard error, serum vitamin D levels adjusted by age and sex were associated with handgrip strength but not with MUAMC and LOS after hip fracture. In conclusion, vitamin D serum levels were associated with handgrip strength but not with muscle mass or length of hospital stay after hip fracture. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Isometric muscle strength and mobility capacity in children with cerebral palsy.

    PubMed

    Dallmeijer, Annet J; Rameckers, Eugene A; Houdijk, Han; de Groot, Sonja; Scholtes, Vanessa A; Becher, Jules G

    2017-01-01

    To determine the relationship between isometric leg muscle strength and mobility capacity in children with cerebral palsy (CP) compared to typically developing (TD) peers. Participants were 62 children with CP (6-13 years), able to walk with (n = 10) or without (n = 52) walking aids, and 47 TD children. Isometric muscle strength of five muscle groups of the leg was measured using hand-held dynamometry. Mobility capacity was assessed with the 1-min walk, the 10-m walk, sit-to-stand, lateral-step-up and timed-stair tests. Isometric strength of children with CP was reduced to 36-82% of TD. When adjusted for age and height, the percentage of variance in mobility capacity that was explained by isometric strength of the leg muscles was 21-24% (walking speed), 25% (sit-to-stand), 28% (lateral-step-up) and 35% (timed-stair) in children with CP. Hip abductors and knee flexors had the largest contribution to the explained variance, while knee extensors showed the weakest correlation. Weak or no associations were found between strength and mobility capacity in TD children. Isometric strength, especially hip abductor and knee flexor strength, is moderately related to mobility capacity in children with CP, but not in TD children. To what extent training of these muscle groups will lead to better mobility capacity needs further study. Implications for Rehabilitation Strength training in children with cerebral palsy (CP) may be targeted more specifically at hip abductors and knee flexors. The moderate associations imply that large improvements in mobility capacity may not be expected when strength increases.

  18. Female PFP patients present alterations in eccentric muscle activity but not the temporal order of activation of the vastus lateralis muscle during the single leg triple hop test.

    PubMed

    Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano

    2018-04-07

    This study aimed to compare the concentric and eccentric activity and the temporal order of peak activity of the hip and knee muscles between women with patellofemoral pain (PFP) and healthy women during the single leg triple hop test (SLTHT). Electromyographic (EMG) and Kinematic data were collected from 14 healthy women (CG) and 14 women diagnosed with PFP (PFG) during a single session of the single leg triple hop test. Integral surface electromyography (iEMG) data of the hip and knee muscles in eccentric and concentric phases and the length of time that each muscle needed to reach the maximal peak of muscle activity were calculated. The iEMG in the eccentric phase was significantly higher (p < 0.05) than the concentric phase, for the gluteus maximus and gluteus medius muscles (CG and PFG) and for the vastus lateralis muscle (PFG). The vastus lateralis muscle was the first muscle to reach the highest peak of activity in the PFG, and the third to reach this peak in the CG. In the present study, the activity of the vastus lateralis muscle during the eccentric phase of the jump was greater than concentric phase, as a temporal anticipation of its peak in activity among women with PFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Influence of evolution on cam deformity and its impact on biomechanics of the human hip joint.

    PubMed

    Anwander, Helen; Beck, Martin; Büchler, Lorenz

    2018-02-05

    Anatomy and biomechanics of the human hip joint are a consequence of the evolution of permanent bipedal gait. Habitat and behaviour have an impact on hip morphology and significant differences are present even within the same biological family. The forces acting upon the hip joint are mainly a function of gravitation and strength of the muscles. Acetabular and femoral anatomy ensure an inherently stable hip with a wide range of motion. The femoral head in first human ancestors with upright gait was spherical (coxa rotunda). Coxa rotunda is also seen in close human relatives (great apes) and remains the predominant anatomy of present-day humans. High impact sport during adolescence with open physis however can activate an underlying genetic predisposition for reinforcement of the femoral neck, causing an epiphyseal extension and the formation of an osseous asphericity at the antero-superior femoral neck (cam deformity). The morphology of cam deformity is similar to the aspherical hips of quadrupeds (coxa recta), with the difference that in quadrupeds the asphericity is posterior. It has been postulated that this is due to the fact that humans bear weight on the extended leg, while quadrupeds bear weight at 90-100° flexion. The asphericity alters the biomechanical properties of the joint and as it is forced into the acetabulum leading to secondary cartilage damage. It is considered a risk factor for later development of osteoarthritis of the hip. Clinically this presents as reduced range of motion, which can be an indicator for the structural deformity of the hip. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:XX-XX, 2018. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Hip Strength in Patients with Quadriceps Strength Deficits after ACL Reconstruction.

    PubMed

    Bell, David R; Trigsted, Stephanie M; Post, Eric G; Walden, Courtney E

    2016-10-01

    Quadriceps strength deficits persist for years after anterior cruciate ligament (ACL) reconstruction, and patients with these deficits often shift torque demands away from the knee extensors to the hip during functional tasks. However, it is not clear how quadriceps strength deficits may affect hip strength. Therefore, the purpose of this study was to investigate differences in lower extremity strength in individuals with ACL reconstruction with differing levels of quadriceps strength asymmetry. Isometric strength was recorded bilaterally in 135 participants (73 control and 62 with unilateral ACL reconstruction, time from surgery = 30.9 ± 17.6 months) from the knee extensors and flexors, hip extensors and abductors, and hip internal and external rotator muscle groups. Symmetry indices (limb symmetry index (LSI)) were created based on quadriceps strength, and subjects with ACL reconstruction were subdivided (high quadriceps (LSI ≥ 90%), n = 37; low quadriceps (LSI < 85%), n = 18). Individual group (control vs high quadriceps vs low quadriceps) by limb (reconstructed/nondominant vs healthy/dominant) repeated-measures ANOVA was used to compare strength (%BW) for each of the six joint motions of interest (knee extensors/flexors, hip abductors/extensors/external, and internal rotators) while controlling for time from surgery. An interaction was observed for quadriceps strength (P < 0.001), and the reconstructed limb in the low quadriceps group was weaker than all other limbs. A main effect for group was observed with the low quadriceps group having greater hip extension (P = 0.007) strength in both limbs compared with the other groups. Knee flexion strength was weaker in the reconstructed limb of the high quadriceps group (P = 0.047) compared with all other groups and limbs. Individuals with ACL reconstruction and involved limb quadriceps weakness have greater hip extension strength in both limbs compared with patients with bilateral strength symmetry and controls.

  1. The role of muscular co-contraction of the hip during movement.

    PubMed

    Catani, F; Hodge, A; Mann, R W; Ensini, A; Giannini, S

    1995-01-01

    The joint biomechanics of the hip was studied analyzing the kinematic, kinetic, electromyographic and in vivo pressure parameters during walking, going up stairs, and getting up from a chair. The most significant clinical and biomechanical data emerged when the temporal correlation between intra-articular pressure variations and electric activity of the bi-articular muscles was studied. The presence of co-contraction of the bi-articular muscles during the support and oscillation phases was evident. The maximum joint pressure values were measured while getting up from a chair when the hip was flexed more than 100 degrees. The posterior region of the acetabulum was that most submitted to loading. This data is useful in gaining an understanding of joint physiology, in correctly setting up physio-kinesitherapeutic protocols, and in setting up pre-clinical prosthetic mechanical tests.

  2. Effects of Psoas Muscle Thickness on Outcomes of Lumbar Fusion Surgery.

    PubMed

    Verla, Terence; Adogwa, Owoicho; Elsamadicy, Aladine; Moreno, Jessica R; Farber, Harrison; Cheng, Joseph; Bagley, Carlos A

    2016-03-01

    Lumbar arthrodesis is a surgical option for treatment of lumbar pathologies. Stability of the spinal construct partly depends on load-bearing support from back muscles. Despite the role of the psoas muscle in upright spinal stabilization, data describing its clinical significance are scarce. We evaluated the effects of the psoas muscle thickness on outcomes after lumbar fusion surgery. A retrospective review was performed of hospital records (2007-2013) of adult patients undergoing lumbar fusion surgery. Patients ≥ 18 years old who had undergone ≥ 1 level of lumbar fusion with available preoperative magnetic resonance imaging scans and at least 1 year of follow-up were included. Axial psoas muscle thickness was measured at each lumbar intervertebral space. Psoas muscle thickness at each vertebral level was compared between patients with and without the occurrence of specific clinical outcomes. There were 257 patients included. The average age was 58.15 years; about 45% of patients were men. Most of the patients underwent a transforaminal interbody fusion surgery (58.4%). The average psoas muscle thickness ranged from 11.49 mm at L1-2 to 36.51 mm at L4-5. Patients with postoperative hip flexor weakness and increased time to ambulation had significantly smaller psoas muscle thickness. Also, patients with >50% improvement in visual analog scale pain score had significantly greater psoas muscle thickness. This study shows that the psoas muscle can be beneficial in overall postoperative rehabilitation with early ambulation and greater improvement in functional outcomes. Given the role of the psoas muscle in spinal stabilization, the effect of psoas muscle thickness on postoperative functional outcomes warrants further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Clinical Muscle Testing Compared with Whole-Body Magnetic Resonance Imaging in Facio-scapulo-humeral Muscular Dystrophy.

    PubMed

    Regula, J U; Jestaedt, L; Jende, F; Bartsch, A; Meinck, H-M; Weber, M-A

    2016-12-01

    The objective of this study was to evaluate the clinical usefulness of whole-body magnetic resonance imaging (MRI) in facio-scapulo-humeral muscular dystrophy (FSHD). In 20 patients with genetically proven FSHD1, we prospectively assessed muscular involvement and correlated the results of semi-quantitative manual muscle testing and other parameters such as disease duration, creatine kinase (CK) levels and repeat length of the D4Z4 locus with whole-body MRI. Clinical muscle testing revealed the trapezius, pectoralis and infraspinatus as the most severely affected muscles in the shoulder, and the knee flexors and gluteus medius in the hip girdle. MRI revealed the trapezius and serratus anterior muscles in the shoulder, and the hamstrings and adductor muscles in the hip girdle, as the most severely affected muscle groups. Overall, degrees of fatty degeneration on MRI scans correlated significantly with clinical weakness. Moreover, we could detect clear affection of the trunk muscles. Corresponding to earlier reports, asymmetric involvement was frequent in both clinical examination and MRI scoring. Moreover, MRI revealed inhomogeneous muscle degeneration in a considerable proportion of both, muscles and patients. Both clinical and MRI scores significantly correlated to disease duration, but not to fragment size or CK levels. Fatty degeneration in whole-body MRI correlates well to clinical muscle testing of the extremities but gives more information on deeper or trunk muscles. It shows structural changes in muscular disorders and may become an excellent tool for assessment of muscle involvement and follow-up studies.

  4. Nonlinear relationship between waist to hip ratio, weight and strength in elders: is gender the key?

    PubMed

    Castillo, Carmen; Carnicero, José A; de la Torre, Mari Ángeles; Amor, Solange; Guadalupe-Grau, Amelia; Rodríguez-Mañas, Leocadio; García-García, Francisco J

    2015-10-01

    Visceral fat has a high metabolic activity with deleterious effects on health contributing to the risk for the frailty syndrome. We studied the association between waist to hip ratio (an indirect measure of visceral fat stores) on upper and lower extremities strength. 1741 individuals aged ≥65 participated in this study. The data was obtained from the Toledo Study for Healthy Aging. For each gender, we studied the relationship between the waist-to-hip ratio (WHR), body mass index (BMI) and regional muscle strength (grip, shoulder, knee and hip) using multivariate linear regression and kernel regression statistical models. WHR was higher in men than in women (0.98 ± 0.07 vs. 0.91 ± 0.08, respectively, P < 0.05). In women with high WHR, we observed a decrease in strength especially in those with a normal BMI. As the WHR lowered, the strength increased regardless of the BMI. In men, lower strength was generally related to the lowest and highest WHR's. Maximum strength in men corresponded at a WHR around 1 and the highest BMI. Muscle strength depends on the joined distribution of WHR and BMI according to gender. In consequence, sex, WHR and BMI should be analyzed conjointly to study the relationship among fat distribution, weight and muscle strength.

  5. Effect of isometric quadriceps exercise on muscle strength, pain, and function in patients with knee osteoarthritis: a randomized controlled study.

    PubMed

    Anwer, Shahnawaz; Alghadir, Ahmad

    2014-05-01

    [Purpose] The aim of present study was to investigate the effects of isometric quadriceps exercise on muscle strength, pain, and function in knee osteoarthritis. [Subjects and Methods] Outpatients (N=42, 21 per group; age range 40-65 years; 13 men and 29 women) with osteoarthritis of the knee participated in the study. The experimental group performed isometric exercises including isometric quadriceps, straight leg raising, and isometric hip adduction exercise 5 days a week for 5 weeks, whereas the control group did not performed any exercise program. The outcome measures or dependent variables selected for this study were pain intensity, isometric quadriceps strength, and knee function. These variables were measured using the Numerical Rating Scale (NRS), strength gauge device, and reduced WOMAC index, respectively. All the measurements were taken at baseline (week 0) and at the end of the trial at week 5. [Results] In between-group comparisons, the maximum isometric quadriceps strength, reduction in pain intensity, and improvement in function in the isometric exercise group at the end of the 5th week were significantly greater than those of the control group (p<0.05). [Conclusion] The 5-week isometric quadriceps exercise program showed beneficial effects on quadriceps muscle strength, pain, and functional disability in patients with osteoarthritis of the knee.

  6. Gait deficiencies associated with peripheral artery disease are different than chronic obstructive pulmonary disease.

    PubMed

    McCamley, John D; Pisciotta, Eric J; Yentes, Jennifer M; Wurdeman, Shane R; Rennard, Stephen I; Pipinos, Iraklis I; Johanning, Jason M; Myers, Sara A

    2017-09-01

    Previous studies have indicated that patients with peripheral artery disease (PAD), display significant differences in their kinetic and kinematic gait characteristics when compared to healthy, aged-matched controls. The ability of patients with chronic obstructive pulmonary disease (COPD) to ambulate is also limited. These limitations are likely due to pathology-driven muscle morphology and physiology alterations establish in PAD and COP, respectively. Gait changes in PAD were compared to gait changes due to COPD to further understand how altered limb muscle due to disease can alter walking patterns. Both groups were independently compared to healthy controls. It was hypothesized that both patients with PAD and COPD would demonstrate similar differences in gait when compared to healthy controls. Patients with PAD (n=25), patients with COPD (n=16), and healthy older control subjects (n=25) performed five walking trials at self-selected speeds. Sagittal plane joint kinematic and kinetic group means were compared. Peak values for hip flexion angle, braking impulse, and propulsive impulse were significantly reduced in patients with symptomatic PAD compared to patients with COPD. After adjusting for walking velocity, significant reductions (p<0.05) in the peak values for hip flexion angle, dorsiflexor moment, ankle power generation, propulsion force, braking impulse, and propulsive impulse were found in patients with PAD compared to healthy controls. No significant differences were observed between patients with COPD and controls. The results of this study demonstrate that while gait patterns are impaired for patients with PAD, this is not apparent for patients with COPD (without PAD). PAD (without COPD) causes changes to the muscle function of the lower limbs that affects gait even when subjects walk from a fully rested state. Altered muscle function in patients with COPD does not have a similar effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. COMPARISON OF HAMSTRING MUSCLE ACTIVATION DURING HIGH-SPEED RUNNING AND VARIOUS HAMSTRING STRENGTHENING EXERCISES

    PubMed Central

    Solheim, Jens Asmund Brevik; Bencke, Jesper

    2017-01-01

    Purpose/Background Several studies have examined the effect of hamstring strength exercises upon hamstring strains in team sports that involve many sprints. However, there has been no cross comparison among muscle activation of these hamstring training exercises with actual sprinting. Therefore, the aim of this study was to examine different hamstring exercises and compare the muscle activity in the hamstring muscle group during various exercises with the muscular activity produced during maximal sprints. Methods Twelve male sports students (age 25 ± 6.2 years, 1.80 ± 7.1 m, body mass 81.1 ± 15.6 kg) participated in this study. Surface EMG electrodes were placed on semimembranosus, semitendinosus and biceps femoris to measure muscle activity during seven hamstrings exercises and sprinting together with 3D motion capture to establish at what hip and knee angles maximal muscle activation (EMG) occurs. Maximal EMG activity during sprints for each muscle was used in order to express each exercise as a percentage of max activation during sprinting. Results The main findings were that maximal EMG activity of the different hamstring exercises were on average between 40-65% (Semitendinosus), 18-40% (biceps femoris) and 40-75% (Semimembranosus) compared with the max EMG activity in sprints, which were considered as 100%. The laying kick together with the Nordic hamstring exercises and its variations had the highest muscle activations, while the cranes showed the lowest muscle activation (in all muscles) together with the standing kick for the semimembranosus. In addition, angles at which the peak EMG activity of the hamstring muscle occurs were similar for the Nordic hamstring exercises and different for the two crane exercises (hip angle), standing kick (hip angle) and the laying kick (knee angle) compared with the sprint. Conclusions Nordic hamstring exercises with its variation together with the laying kick activates the hamstrings at high levels and at angles similar to the joint angles at which peak hamstring activation occurs during sprinting, while cranes did not reach high levels of hamstring activation compared with sprinting. Level of Evidence 1b PMID:29181249

  8. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.

    PubMed

    Salanova, Michele; Schiffl, Gudrun; Gutsmann, Martina; Felsenberg, Dieter; Furlan, Sandra; Volpe, Pompeo; Clarke, Andrew; Blottner, Dieter

    2013-01-01

    Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  9. Effect of Dry Needling on Thigh Muscle Strength and Hip Flexion in Elite Soccer Players.

    PubMed

    Haser, Christian; Stöggl, Thomas; Kriner, Monika; Mikoleit, Jörg; Wolfahrt, Bernd; Scherr, Johannes; Halle, Martin; Pfab, Florian

    2017-02-01

    Increase in muscle force, endurance, and flexibility is desired in elite athletes to improve performance and to avoid injuries, but it is often hindered by the occurrence of myofascial trigger points. Dry needling (DN) has been shown effective in eliminating myofascial trigger points. This randomized controlled study in 30 elite youth soccer players of a professional soccer Bundesliga Club investigated the effects of four weekly sessions of DN plus water pressure massage on thigh muscle force and range of motion of hip flexion. A group receiving placebo laser plus water pressure massage and a group with no intervention served as controls. Data were collected at baseline (M1), treatment end (M2), and 4 wk follow-up (M3). Furthermore, a 5-month muscle injury follow-up was performed. DN showed significant improvement of muscular endurance of knee extensors at M2 (P = 0.039) and M3 (P = 0.008) compared with M1 (M1:294.6 ± 15.4 N·m·s, M2:311 ± 25 N·m·s; M3:316.0 ± 28.6 N·m·s) and knee flexors at M2 compared with M1 (M1:163.5 ± 10.9 N·m·s, M2:188.5 ± 16.3 N·m·s) as well as hip flexion (M1: 81.5° ± 3.3°, M2:89.8° ± 2.8°; M3:91.8° ± 3.8°). Compared with placebo (3.8° ± 3.8°) and control (1.4° ± 2.9°), DN (10.3° ± 3.5°) showed a significant (P = 0.01 and P = 0.0002) effect at M3 compared with M1 on hip flexion; compared with nontreatment control (-10 ± 11.9 N·m), DN (5.2 ± 10.2 N·m) also significantly (P = 0.049) improved maximum force of knee extensors at M3 compared with M1. During the rest of the season, muscle injuries were less frequent in the DN group compared with the control group. DN showed a significant effect on muscular endurance and hip flexion range of motion that persisted 4 wk posttreatment. Compared with placebo, it showed a significant effect on hip flexion that persisted 4 wk posttreatment, and compared with nonintervention control, it showed a significant effect on maximum force of knee extensors 4 wk posttreatment in elite soccer players.

  10. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb

    PubMed Central

    Hudson, Penny E; Corr, Sandra A; Payne-Davis, Rachel C; Clancy, Sinead N; Lane, Emily; Wilson, Alan M

    2011-01-01

    The cheetah is capable of a top speed of 29 ms−1 compared to the maximum speed of 17 ms−1 achieved by the racing greyhound. In this study of the hindlimb and in the accompanying paper on the forelimb we have quantified the musculoskeletal anatomy of the cheetah and greyhound and compared them to identify any differences that may account for this variation in their locomotor abilities. Specifically, bone length, mass and mid-shaft diameter were measured, along with muscle mass, fascicle lengths, pennation angles and moment arms to enable estimates of maximal isometric force, joint torques and joint rotational velocities to be calculated. Surprisingly the cheetahs had a smaller volume of hip extensor musculature than the greyhounds, and we therefore propose that the cheetah powers acceleration using its extensive back musculature. The cheetahs also had an extremely powerful psoas muscle which could help to resist the pitching moments around the hip associated with fast accelerations. The hindlimb bones were proportionally longer and heavier, enabling the cheetah to take longer strides and potentially resist higher peak limb forces. The cheetah therefore possesses several unique adaptations for high-speed locomotion and fast accelerations, when compared to the racing greyhound. PMID:21062282

  11. Higher anterior knee laxity influences the landing biomechanics displayed by pubescent girls.

    PubMed

    Wild, Catherine Y; Munro, Bridget J; Steele, Julie R

    2017-01-01

    Despite an increase in anterior knee laxity (AKL) during the adolescent growth spurt in girls, it is unknown whether landing biomechanics are affected by this change. This study investigated whether pubescent girls with higher AKL displayed differences in their lower limb strength or landing biomechanics when performing a horizontal leap movement compared to girls with lower AKL. Forty-six pubescent girls (10-13 years) were tested at the time of their peak height velocity (PHV). Passive AKL was quantified and used to classify participants into higher (HAKL; peak displacement > 4 mm) and lower (LAKL; peak displacement < 3 mm) AKL groups (n = 15/group). Three-dimensional kinematics, ground reaction forces (GRF) and muscle activation patterns were assessed during a horizontal leap landing. HAKL participants displayed significantly (P < 0.05) reduced hip abduction, increased hip abduction moments, as well as earlier hamstring muscle and later tibialis anterior activation compared to LAKL participants. Girls with HAKL displayed compensatory landing biomechanics, which are suggested to assist the functional stability of their knees during this dynamic task. Further research is warranted, however, to confirm or refute this notion.

  12. Correlation of the Y-Balance Test with Lower-limb Strength of Adult Women

    PubMed Central

    Lee, Dong-Kyu; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop

    2014-01-01

    [Purpose] The purpose of this study was to elucidate the relationship between Y-balance test (YBT) distance and the lower-limb strength of adult women. [Subjects] Forty women aged 45 to 80 years volunteered for this study. [Methods] The participants were tested for maximal muscle strength of the lower limbs (hip extensors, hip flexors, hip abductors, knee extensors, knee flexors, and ankle dorsiflexors) and YBT distances in the anterior, posteromedial, and posterolateral directions. Pearson’s correlation coefficient was used to quantify the linear relationships between YBT distances and lower-limb strength. [Results] Hip extensor and knee flexor strength were positively correlated with YBT anterior distance. Hip extensor, hip abductor, and knee flexor strength were positively correlated with the YBT posteromedial distance. Hip extensor and knee flexor strength were positively correlated with YBT posterolateral distance. [Conclusion] There was a weak correlation between lower-limb strength (hip extensors, hip abductors, and knee flexors) and dynamic postural control as measured by the YBT. PMID:24926122

  13. Neuromuscular and lower limb biomechanical differences exist between male and female elite adolescent soccer players during an unanticipated side-cut maneuver.

    PubMed

    Landry, Scott C; McKean, Kelly A; Hubley-Kozey, Cheryl L; Stanish, William D; Deluzio, Kevin J

    2007-11-01

    Female athletes are 2 to 8 times more likely than male athletes to injure the anterior cruciate ligament during a non-contact athletic maneuver. Identifying anterior cruciate ligament injury risk factors in female athletes may help with the development of preventive training programs aimed at reducing injury rates. Differences between genders in lower limb kinematics, kinetics, and neuromuscular patterns will be identified in an adolescent soccer population during an unanticipated side-cut maneuver. Controlled laboratory study. Forty-two elite adolescent soccer players (21 male and 21 female) performed an unanticipated side-cut maneuver, with the 3-dimensional kinematic, kinetic, and electromyographic lower limb data being analyzed using principal component analysis. The female athletes had higher gastrocnemius activity, normalized to maximal voluntary isometric contractions, and a mediolateral gastrocnemius activation imbalance that was not present in the male athletes during early stance to midstance of the side-cut. Female athletes demonstrated greater rectus femoris muscle activity throughout stance, and the only hamstring difference identified was a mediolateral activation imbalance in male athletes only. Female athletes performed the side-cut with less hip flexion and more hip external rotation and also generated a smaller hip flexion moment compared with the male athletes. This is the first study to identify gender-related differences in gastrocnemius muscle activity during an unanticipated cutting maneuver. The increased and imbalanced gastrocnemius muscle activity, combined with increased rectus femoris muscle activity and reduced hip flexion angles and moments in female subjects, may all have important contributing roles in the higher noncontact ACL injury rates observed in female athletes.

  14. Muscle activation levels of the gluteus maximus and medius during standing hip-joint strengthening exercises using elastic-tubing resistance.

    PubMed

    Youdas, James W; Adams, Kady E; Bertucci, John E; Brooks, Koel J; Nelson, Meghan M; Hollman, John H

    2014-02-01

    No published studies have compared muscle activation levels simultaneously for the gluteus maximus and medius muscles of stance and moving limbs during standing hip-joint strengthening while using elastic-tubing resistance. To quantify activation levels bilaterally of the gluteus maximus and medius during resisted lower-extremity standing exercises using elastic tubing for the cross-over, reverse cross-over, front-pull, and back-pull exercise conditions. Repeated measures. Laboratory. 26 active and healthy people, 13 men (25 ± 3 y) and 13 women (24 ± 1 y). Subjects completed 3 consecutive repetitions of lower-extremity exercises in random order. Surface electromyographic (EMG) signals were normalized to peak activity in the maximum voluntary isometric contraction (MVIC) trial and expressed as a percentage. Magnitudes of EMG recruitment were analyzed with a 2 × 4 repeated-measures ANOVA for each muscle (α = .05). For the gluteus maximus an interaction between exercise and limb factor was significant (F3,75 = 21.5; P < .001). The moving-limb gluteus maximus was activated more than the stance limb's during the back-pull exercise (P < .001), and moving-limb gluteus maximus muscle recruitment was greater for the back-pull exercise than for the cross-over, reverse cross-over, and front-pull exercises (P < .001). For the gluteus medius an interaction between exercise and limb factor was significant (F3,75 = 3.7; P < .03). Gluteus medius muscle recruitment (% MVIC) was greater in the stance limb than moving limb when performing the front-pull exercise (P < .001). Moving-limb gluteus medius muscle recruitment was greater for the reverse cross-over exercise than for the cross-over, front-pull, and back-pull exercises (P < .001). From a clinical standpoint there is no therapeutic benefit to selectively activate the gluteus maximus and gluteus medius muscles on the stance limb by resisting sagittal- and frontal-plane hip movements on the moving limb using resistance supplied by elastic tubing.

  15. Adding motor control training to muscle strengthening did not substantially improve the effects on clinical or kinematic outcomes in women with patellofemoral pain: A randomised controlled trial.

    PubMed

    Rabelo, Nayra Deise Dos Anjos; Costa, Leonardo Oliveira Pena; Lima, Bruna Maria de; Dos Reis, Amir Curcio; Bley, André Serra; Fukuda, Thiago Yukio; Lucareli, Paulo Roberto Garcia

    2017-10-01

    Randomized controlled trial. Patients with Patellofemoral pain (PFP) usually present muscular weakness, pain and impaired motor control. Muscle strengthening is an effective treatment strategy for PFP, but the additional benefits of movement control training remain unknown. Therefore, the aim of this study was to compare the effects of movement control training associated with muscle strengthening, with a conventional program of strengthening alone in women with PFP. Thirty-four women were randomly assigned to two groups. The Strengthening group (S group) performed 12 sessions to strengthen the knee and hip muscles. The Movement Control & Strengthening group (MC&S group) performed the same exercises and movement control training of the trunk and lower limbs. Effects of the treatment (i.e., between-group differences) were calculated using linear mixed models. Primary outcomes were function and pain intensity after completion of the treatment protocol. Secondary outcomes were; muscle strength and kinematic outcomes during the step down task after 4 weeks of treatment; and function and pain intensity 3 and 6 months after randomization. The MC&S group did not present significantly better function (MD -2.5 points, 95% CI;-10.7-5.5) or pain (MD -0.3 points, 95% CI;-1.7-1.0) at 4 weeks. There was a small difference in favour of the MC&S group for AKPS scores at 3 months (MD -8.5 points; 95% CI;-16.8 to -0.3). No significant between-group differences were observed for the other outcomes. Movement control training was no more effective than the isolated strengthening protocol, in terms of pain, function, muscle strength, or kinematics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Water Rehabilitation Program in Patients with Hip Osteoarthritis Before and After Total Hip Replacement.

    PubMed

    Łyp, Marek; Kaczor, Ryszard; Cabak, Anna; Tederko, Piotr; Włostowska, Ewa; Stanisławska, Iwona; Szypuła, Jan; Tomaszewski, Wiesław

    2016-07-25

    BACKGROUND Pain associated with coxarthrosis, typically occurring in middle-aged and elderly patients, very commonly causes considerable limitation of motor fitness and dependence on pharmacotherapy. This article provides an assessment of a rehabilitation program with tailored water exercises in patients with osteoarthritis before and after total hip replacement. MATERIAL AND METHODS A total of 192 patients (the mean age 61.03±10.89) suffering from hip osteoarthritis (OA) were evaluated before and after total hip replacement (THR). The clinical study covered measurements of hip active ranges of motion (HAROM) and the forces generated by pelvis stabilizer muscles. Pain intensity was assessed according to analogue-visual scale of pain (VAS) and according to the Modified Laitinen Questionnaire. The patients were divided into 6 groups (4 treatment and 2 control). We compared 2 rehabilitation programs using kinesitherapy and low-frequency magnetic field. One of them also had specially designed exercises in the water. Statistical analysis was carried out at the significance level α=0.05. This was a cross-sectional study. RESULTS A positive effect of water exercises on a number of parameters was found in patients with OA both before and after total hip replacement surgery. We noted a significant reduction of pain (p<0.001), increased ranges of motion and muscle strength, and reduced use of medicines (NASAIDs) (p<0.001). A correlation was found between the degree of degenerative deforming lesions and the effects of the treatment process (p<0.01). CONCLUSIONS 1. The rehabilitation program including water exercises most significantly reduced pain in patients with OA before and after total hip replacement surgery. 2. Inclusion of water exercises in a rehabilitation program can reduce the use of medicines in patient with OA and after THR.

  17. Clinical recovery of two hip adductor longus ruptures: a case-report of a soccer player

    PubMed Central

    2013-01-01

    Background Non-operative treatment of acute hip adductor longus ruptures in athletes has been described in the literature. However, very limited information concerning the recovery of this type of injury exists. This case represented a unique possibility to study the recovery of two acute adductor longus ruptures, using novel, reliable and validated assessment methods. Case presentation A 22-year old male soccer player (Caucasian) sustained two subsequent acute adductor longus ruptures, one in each leg. The injuries occurred 10 months apart, and were treated non-surgically in both situations. He was evaluated using hip-strength assessments, self-report and ultrasonography until complete muscle-strength recovery of the hip adductors had occurred. The player was able to participate in a full soccer training session without experiencing pain 15 weeks after the first rupture, and 12 weeks after the second rupture. Full hip adductor muscle-strength recovery was obtained 52 weeks after the first rupture and 10 weeks after the second rupture. The adductor longus injuries, as verified by initial ultrasonography (10 days post-injury), showed evidence of a complete tendon rupture in both cases, with an almost identical imaging appearance. It was only at 6 and 10 weeks ultrasonographic follow-up that the first rupture was found to include a larger anatomical area than the second rupture. Conclusion From this case we can conclude that two apparently similar hip adductor longus ruptures, verified by initial ultrasonography (10 days post-injury), can have very different hip adductor strength recovery times. Assessment of adductor strength recovery may therefore in the future be a useful and important additional measure for determining when soccer players with hip adductor longus ruptures can return safely to play. PMID:23693119

  18. A dental stool with chest support reduces lower back muscle activation.

    PubMed

    Tran, Viet; Turner, Reid; MacFadden, Andrew; Cornish, Stephen M; Esliger, Dale; Komiyama, Kunio; Chilibeck, Philip D

    2016-09-01

    Activation of back musculature during work tasks leads to fatigue and potential injury. This is especially prevalent in dentists who perform much of their work from a seated position. We examined the use of an ergonomic dental stool with mid-sternum chest support for reducing lower back muscle activation. Electromyography of lower back extensors was assessed from 30 dental students for 20 s during three conditions in random order: (a) sitting upright at 90° of hip flexion on a standard stool, (b) leaning forward at 80° of hip flexion on a standard stool, and (c) leaning forward at 80° of hip flexion while sitting on an ergonomic stool. Muscular activity of the back extensors was reduced when using the ergonomic stool compared to the standard stool, by 33-50% (p < 0.01). This suggests a potential musculoskeletal benefit with use of a dental stool with mid-sternum chest support.

  19. Delivery and Outcomes of a Yearlong Home Exercise Program After Hip Fracture

    PubMed Central

    Orwig, Denise L.; Hochberg, Marc; Yu-Yahiro, Janet; Resnick, Barbara; Hawkes, William G.; Shardell, Michelle; Hebel, J. Richard; Colvin, Perry; Miller, Ram R.; Golden, Justine; Zimmerman, Sheryl; Magaziner, Jay

    2011-01-01

    Background Hip fracture affects more than 1.6 million persons worldwide and causes substantial changes in body composition, function, and strength. Usual care (UC) has not successfully restored function to most patients, and prior research has not identified an effective restorative program. Our objective was to determine whether a yearlong home-based exercise program initiated following UC could be administered to older patients with hip fracture and improve outcomes. Methods A randomized controlled trial of 180 community dwelling female patients with hip fracture, 65 years and older, randomly assigned to intervention (n=91) or UC (n=89). Patients were recruited within 15 days of fracture from 3 Baltimore-area hospitals from November 1998 through September 2004. Follow-up assessments were conducted at 2, 6, and 12 months after fracture. The Exercise Plus Program was administered by exercise trainers that included supervised and independently performed aerobic and resistive exercises with increasing intensity. Main outcome measures included bone mineral density of the contralateral femoral neck. Other outcomes included time spent and kilocalories expended in physical activity using the Yale Physical Activity Scale, muscle mass and strength, fat mass, activities of daily living, and physical and psychosocial functioning. The effect of intervention for each outcome was estimated by the difference in outcome trajectories 2 to 12 months after fracture. Results More than 80% of participants received trainer visits, with the majority receiving more than 3 quarters (79%) of protocol visits. The intervention group reported more time spent in exercise activity during follow-up (P<.05). Overall, small effect sizes of 0 to 0.2 standard deviations were seen for bone mineral density measures, and no significant patterns of time-specific between-group differences were observed for the remaining outcome measures. Conclusion Patients with hip fracture who participate in a yearlong, in-home exercise program will increase activity level compared with those in UC; however, no significant changes in other targeted outcomes were detected. PMID:21357809

  20. Nondestructive Estimation of Muscle Contributions to STS Training with Different Loadings Based on Wearable Sensor System.

    PubMed

    Liu, Kun; Liu, Yong; Yan, Jianchao; Sun, Zhenyuan

    2018-03-25

    Partial body weight support or loading sit-to-stand (STS) rehabilitation can be useful for persons with lower limb dysfunction to achieve movement again based on the internal residual muscle force and external assistance. To explicate how the muscles contribute to the kinetics and kinematics of STS performance by non-invasive in vitro detection and to nondestructively estimate the muscle contributions to STS training with different loadings, a wearable sensor system was developed with ground reaction force (GRF) platforms, motion capture inertial sensors and electromyography (EMG) sensors. To estimate the internal moments of hip, knee and ankle joints and quantify the contributions of individual muscle and gravity to STS movement, the inverse dynamics analysis on a simplified STS biomechanical model with external loading is proposed. The functional roles of the lower limb individual muscles (rectus femoris (RF), gluteus maximus (GM), vastus lateralis (VL), tibialis anterior (TA) and gastrocnemius (GAST)) during STS motion and the mechanism of the muscles' synergies to perform STS-specific subtasks were analyzed. The muscle contributions to the biomechanical STS subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion for body balance in the sagittal plane were quantified by experimental studies with EMG, kinematic and kinetic data.

  1. Restoration of gait by functional electrical stimulation in paraplegic patients: a modified programme of treatment.

    PubMed

    Malezic, M; Hesse, S

    1995-03-01

    Restoration of standing and of gait by functional electrical stimulation in clinically complete paraplegic patients was modified in the course of treatment and in the stimulation parameters. By substituting an initial cyclic muscle strengthening with an active stimulated standing, four patients with T3-11 lesions started walking with electrical stimulation in 10-17 days. They walked without ankle-foot orthoses. With a satisfactory stride length of 0.75-0.97 m, their gait velocity ranged from very slow to that of a leisurely healthy gait. Already established stimulation of the quadriceps muscles for standing and of the peroneal nerves for lower limb flexion during the swing phase of gait was applied. Diminished limb flexion after several weeks was restored by an increase of the stimulation frequency of the peroneal nerve from 20 to 60 Hz. EMG and kinesiological measurements displayed an improved direct response of the ankle as well as of the reflex mediated hip, knee and ankle flexion response. At the same time stimulation frequency was reduced to 16 Hz for the quadriceps muscles in order to reduce fatigue.

  2. REPETETIVE HINDLIMB MOVEMENT USING INTERMITTENT ADAPTIVE NEUROMUSCULAR ELECTRICAL STIMULATION IN AN INCOMPLETE SPINAL CORD INJURY RODENT MODEL

    PubMed Central

    Fairchild, Mallika; Kim, Seung-Jae; Iarkov, Alex; Abbas, James J.; Jung, Ranu

    2010-01-01

    The long-term objective of this work is to understand the mechanisms by which electrical stimulation based movement therapies may harness neural plasticity to accelerate and enhance sensorimotor recovery after incomplete spinal cord injury (iSCI). An adaptive neuromuscular electrical stimulation (aNMES) paradigm was implemented in adult Long Evans rats with thoracic contusion injury (T8 vertebral level, 155±2 Kdyne). In lengthy sessions with lightly anesthetized animals, hip flexor and extensor muscles were stimulated using an aNMES control system in order to generate desired hip movements. The aNMES control system, which used a pattern generator/pattern shaper structure, adjusted pulse amplitude to modulate muscle force in order to control hip movement. An intermittent stimulation paradigm was used (5-cycles/set; 20-second rest between sets; 100 sets). In each cycle, hip rotation caused the foot plantar surface to contact a stationary brush for appropriately timed cutaneous input. Sessions were repeated over several days while the animals recovered from injury. Results indicated that aNMES automatically and reliably tracked the desired hip trajectory with low error and maintained range of motion with only gradual increase in stimulation during the long sessions. Intermittent aNMES thus accounted for the numerous factors that can influence the response to NMES: electrode stability, excitability of spinal neural circuitry, non-linear muscle recruitment, fatigue, spinal reflexes due to cutaneous input, and the endogenous recovery of the animals. This novel aNMES application in the iSCI rodent model can thus be used in chronic stimulation studies to investigate the mechanisms of neuroplasticity targeted by NMES-based repetitive movement therapy. PMID:20206164

  3. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise.

    PubMed

    Farrokhi, Shawn; Pollard, Christine D; Souza, Richard B; Chen, Yu-Jen; Reischl, Stephen; Powers, Christopher M

    2008-07-01

    Experimental laboratory study. To examine how a change in trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. Altering the position of the trunk during the forward lunge exercise is thought to affect the muscular actions of the lead lower extremity. However, no studies have compared the biomechanical differences between the traditional forward lunge and its variations. Ten healthy adults (5 males, 5 females; mean age +/- SD, 26.7 +/- 3.2 years) participated. Lower extremity kinematics, kinetics, and surface electromyographic (EMG) data were obtained while subjects performed 3 lunge exercises: normal lunge with the trunk erect (NL), lunge with the trunk forward (LTF), and lunge with trunk extension (LTE). A 1-way analysis of variance with repeated measures was used to compare lower extremity kinematics, joint impulse (area under the moment-time curve), and normalized EMG (highest 1-second window of activity for selected lower extremity muscles) among the 3 lunge conditions. During the LTF condition, significant increases were noted in peak hip flexion angle, hip extensor and ankle plantar flexor impulse, as well as gluteus maximus and biceps femoris EMG (P<.015) when compared to the NL condition. During the LTE condition, a significant increase was noted in peak ankle dorsiflexion and a significant decrease was noted in peak hip flexion angle (P<.015) compared to the NL condition. Performing a lunge with the trunk forward increased the hip extensor impulse and the recruitment of the hip extensors. In contrast, performing a forward lunge with the trunk extended did not alter joint impulse or activation of the lower extremity musculature. Therapy, level 5.

  4. Athletic Hip Injuries.

    PubMed

    Lynch, T Sean; Bedi, Asheesh; Larson, Christopher M

    2017-04-01

    Historically, athletic hip injuries have garnered little attention; however, these injuries account for approximately 6% of all sports injuries and their prevalence is increasing. At times, the diagnosis and management of hip injuries can be challenging and elusive for the team physician. Hip injuries are seen in high-level athletes who participate in cutting and pivoting sports that require rapid acceleration and deceleration. Described previously as the "sports hip triad," these injuries consist of adductor strains, osteitis pubis, athletic pubalgia, or core muscle injury, often with underlying range-of-motion limitations secondary to femoroacetabular impingement. These disorders can happen in isolation but frequently occur in combination. To add to the diagnostic challenge, numerous intra-articular disorders and extra-articular soft-tissue restraints about the hip can serve as pain generators, in addition to referred pain from the lumbar spine, bowel, bladder, and reproductive organs. Athletic hip conditions can be debilitating and often require a timely diagnosis to provide appropriate intervention.

  5. Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Hanson, Andrea; Reed, Erik; Cavanagh, Peter

    2011-01-01

    Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.

  6. Joint Coordination and Muscle Activities of Ballet Dancers During Tiptoe Standing.

    PubMed

    Tanabe, Hiroko; Fujii, Keisuke; Kouzaki, Motoki

    2017-01-01

    We aimed to investigate joint coordination of lower limbs in dancers during tiptoe standing and the relationship between joint coordination and muscle coactivation. Seven female ballet dancers performed tiptoe standing with six leg positions (fi e classical dance positions and one modern dance position) for 10 s. The kinematic data of the metatarsophalangeal (MP), ankle, knee, and hip joints was collected, and surface electromyography (EMG) of over 13 lower limb muscles was conducted. Principal component analysis was performed to determine joint coordination. MP-ankle and ankle-knee had in-phase coordination, whereas knee-hip showed anti-phase coordination in the sagittal plane. In addition, most EMG-EMG coherence around the MP and ankle joints was significant up to 50 Hz when these two joints swayed with in-phase. This suggests that different joint coordination patterns are associated with neural processing related to different muscle coactivation patterns. In conclusion, ballet dancers showed in-phase coordination from the MP to knee joints, which was associated with muscle coactivation to a higher frequency domain (up to 50 Hz) in comparison with anti-phase coordination.

  7. Whole-body vibration improves neuromuscular parameters and functional capacity in osteopenic postmenopausal women.

    PubMed

    Dutra, Milena C; de Oliveira, Mônica L; Marin, Rosangela V; Kleine, Hellen C R; Silva, Orivaldo L; Lazaretti-Castro, Marise

    2016-08-01

    In this longitudinal, paired-control study, we developed special vibration platforms to evaluate the effects of low-intensity vibration on neuromuscular function and functional capacity in osteopenic postmenopausal women. Women in the platform group (PG; n = 62) stood still and barefoot on the platform for 20 minutes, 5 times a week for 12 months. Each platform vibrated with a frequency of 60 Hz, intensity of 0.6g, and amplitude of less than 1 mm. Women in the control group (CG; n = 60) were followed up and instructed not to modify their physical activity during the study. Every 3 months all volunteers were invited to a visit to check for any change in their lifestyle. Assessments were performed at baseline and at 12 months, and included isometric muscle strength in the hip flexors and back extensors, right handgrip strength, dynamic upper limb strength (arm curl test), upper trunk flexibility (reach test [RT]), mobility (timed up and go test), and static balance (unipedal stance test). Statistical analyses were performed using the intention-to-treat strategy. Both groups were similar for all variables at baseline. At the end of intervention, the PG was significantly better than CG in all parameters but in the RT. When compared with baseline, after 12 months of vibration the PG presented statistically significant improvements in isometric and dynamic muscle strength in the hip flexors (+36.7%), back extensors (+36.5%), handgrip strength (+4.4%), arm curl test (+22.8%), RT (+9.9%), unipedal stance test (+6.8%), and timed up and go test (-9.2%), whereas the CG showed no significant differences during the same period of time. As such, there were no side effects related to the study procedures during the 12 months of intervention. Low-intensity vibration improved balance, motility, and muscle strength in the upper and lower limbs in postmenopausal women.

  8. Interjoint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb

    PubMed Central

    van Antwerp, Keith W.; Burkholder, Thomas J.

    2015-01-01

    The biomechanical principles underlying the organization of muscle activation patterns during standing balance are poorly understood. The goal of this study was to understand the influence of biomechanical inter-joint coupling on endpoint forces and accelerations induced by the activation of individual muscles during postural tasks. We calculated induced endpoint forces and accelerations of 31 muscles in a 7 degree-of-freedom, 3-dimensional model of the cat hindlimb. To test the effects of inter-joint coupling, we systematically immobilized the joints (excluded kinematic degrees-of-freedom) and evaluated how the endpoint force and acceleration directions changed for each muscle in seven different conditions. We hypothesized that altered inter-joint coupling due to joint immobilization of remote joints would substantially change the induced directions of endpoint force and acceleration of individual muscles. Our results show that for most muscles crossing the knee or the hip, joint immobilization altered the endpoint force or acceleration direction by more than 90° in the dorsal and sagittal planes. Induced endpoint forces were typically consistent with behaviorally-observed forces only when the ankle was immobilized. We then activated a proximal muscle simultaneous with an ankle torque of varying magnitude, which demonstrated that the resulting endpoint force or acceleration direction is modulated by the magnitude of the ankle torque. We argue that this simple manipulation can lend insight into the functional effects of co-activating muscles. We conclude that inter-joint coupling may be an essential biomechanical principle underlying the coordination of proximal and distal muscles to produce functional endpoint actions during motor tasks. PMID:17640652

  9. Effect of a walking skill training program in patients who have undergone total hip arthroplasty: Followup one year after surgery.

    PubMed

    Heiberg, Kristi Elisabeth; Bruun-Olsen, Vigdis; Ekeland, Arne; Mengshoel, Anne Marit

    2012-03-01

    To investigate the effect of a 12-session walking skill training program of weight-bearing activities on physical functioning and self-efficacy initiated in patients 3 months after total hip arthroplasty (THA). Sixty-eight patients with THA, 35 women and 33 men, with a mean age of 66 years (95% confidence interval [95% CI] 64, 67 years), were randomized to a training group (n = 35) or a control group without physiotherapy (n = 33). Assessments were performed before the intervention at 3 months (pretest), at 5 months (posttest 1), and at 12 months (posttest 2) after surgery. The primary outcome was the 6-minute walk test (6MWT). The secondary outcomes were the stair climbing test (ST); figure-of-eight test; Index of Muscle Function (IMF); active hip range of motion (ROM) in flexion, extension, and abduction; Harris Hip Score (HHS); self-efficacy; and Hip Dysfunction and Osteoarthritis Outcome Score. The training group had larger improvements than the control group at posttest 1 on the 6MWT with an adjusted mean difference of 52 meters (95% CI 29, 74 meters; P < 0.001) and on the ST of -1 second (95% CI -2, 0 seconds; P = 0.01).There were also improvements on the figure-of-eight test (P = 0.02), IMF (P = 0.001), active hip ROM in extension (P = 0.02), HHS (P = 0.05), and self-efficacy (P = 0.04). The difference between the groups persisted at posttest 2 on the 6MWT of 52 meters (95% CI 24, 80 meters; P < 0.001) and on the ST of -1 second (95% CI -3, 0 seconds; P = 0.05). The walking skill training program was effective, especially in improving walking both immediately after the intervention and 1 year after THA surgery. Copyright © 2012 by the American College of Rheumatology.

  10. The Role of Hedgehog-Interacting Protein in Maintaining Cavernous Nerve Integrity and Adult Penile Morphology

    PubMed Central

    Angeloni, Nicholas L.; Bond, Christopher W.; Monsivais, Diana; Tang, Yi; Podlasek, Carol A.

    2010-01-01

    Introduction Sonic hedgehog (SHH) is an essential regulator of smooth muscle apoptosis in the penis that has significant clinical potential as a therapy to suppress post-prostatectomy apoptosis, an underlying cause of erectile dysfunction (ED). Thus an understanding of how SHH signaling is regulated in the adult penis is essential to move the field of ED research forward and to develop new treatment strategies. We propose that hedgehog-interacting protein (HIP), which has been shown to bind SHH protein and to play a role in SHH regulation during embryogenesis of other organs, is a critical regulator of SHH signaling, penile morphology, and apoptosis induction. Aims We have examined HIP signaling in the penis and cavernous nerve (CN) during postnatal differentiation of the penis, in CN-injured, and a diabetic model of ED. Methods HIP localization/abundance and RNA abundance were examined by immunohistochemical (IHC) analysis and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in Sprague-Dawley rats between the ages of 7 and 92 days old, in CN-injured Sprague-Dawley rats and in BioBreeding/Worcester diabetic rats. HIP signaling was perturbed in the pelvic ganglia and in the penis and TUNEL assay was performed in the penis. CN tie, lidocaine, and anti-kinesin experiments were performed to examine HIP signaling in the CN and penis. Results In this study we are the first to demonstrate that HIP undergoes anterograde transport to the penis via the CN, that HIP perturbation in the pelvic ganglia or the penis induces apoptosis, and that HIP plays a role in maintaining CN integrity, penile morphology, and SHH abundance. Conclusions These studies are significant because they show HIP involvement in cross-talk (signaling) between the pelvic ganglia and penis, which is integral for maintenance of penile morphology and they suggest a mechanism of how nerves may regulate target organ morphology and function. PMID:19515211

  11. Relationship between agility and lower limb muscle strength, targeting university badminton players.

    PubMed

    Sonoda, Takuya; Tashiro, Yuto; Suzuki, Yusuke; Kajiwara, Yu; Zeidan, Hala; Yokota, Yuki; Kawagoe, Mirei; Nakayama, Yasuaki; Bito, Tsubasa; Shimoura, Kanako; Tatsumi, Masataka; Nakai, Kengo; Nishida, Yuichi; Yoshimi, Soyoka; Aoyama, Tomoki

    2018-02-01

    [Purpose] Targeting university badminton players, this study investigated the relationship between agility, which is associated with performance in badminton, and lower limb muscle strength, and examined which muscles influence agility. [Subjects and Methods] A total of 23 male university badminton players were evaluated for side-shuffle test scores and lower limb strength. The relationships between agility, lower limb strength, and duration of experience playing badminton were evaluated using a correlation analysis. Moreover, the relationship between agility and lower limb strength was evaluated by partial correlation analysis, adjusting for the effects of experience of each badminton player. [Results] The agility score correlated with hip extension and ankle plantar flexion strength, with adjustment for badminton experience. [Conclusion] This study suggests that hip extension training and improvement in ankle plantar flexion strength may improve agility.

  12. Reconstruction of equilibrium trajectories during whole-body movements.

    PubMed

    Domen, K; Latash, M L; Zatsiorsky, V M

    1999-03-01

    The framework of the equilibrium-point hypothesis was used to reconstruct equilibrium trajectories (ETs) of the ankle, hip and body center of mass during quick voluntary hip flexions ('Japanese courtesy bow') by standing subjects. Different spring loads applied to the subject's back were used to introduce smooth perturbations that are necessary to reconstruct ETs based on a series of trials at the same task. Time patterns of muscle torques were calculated using inverse dynamics techniques. A second-order linear model was employed to calculate the instantaneous position of the spring-like joint or center of mass characteristic at different times during the movement. ETs of the joints and of the center of mass had significantly different shapes from the actual trajectories. Integral measures of electromyographic bursts of activity in postural muscles demonstrated a relation to muscle length corresponding to the equilibrium-point hypothesis.

  13. Detection and prevalence of variant sciatic nerve anatomy in relation to the piriformis muscle on MRI.

    PubMed

    Varenika, Vanja; Lutz, Amelie M; Beaulieu, Christopher F; Bucknor, Matthew D

    2017-06-01

    To determine whether known variant anatomical relationships between the sciatic nerve and piriformis muscle can be identified on routine MRI studies of the hip and to establish their imaging prevalence. Hip MRI studies acquired over a period of 4 years at two medical centers underwent retrospective interpretation. Anatomical relationship between the sciatic nerve and the piriformis muscle was categorized according to the Beaton and Anson classification system. The presence of a split sciatic nerve at the level of the ischial tuberosity was also recorded. A total of 755 consecutive scans were reviewed. Conventional anatomy (type I), in which an undivided sciatic nerve passes below the piriformis muscle, was identified in 87% of cases. The remaining 13% of cases demonstrated a type II pattern in which one division of the sciatic nerve passes through the piriformis whereas the second passes below. Only two other instances of variant anatomy were identified (both type III). Most variant cases were associated with a split sciatic nerve at the level of the ischial tuberosity (73 out of 111, 65.8%). By contrast, only 6% of cases demonstrated a split sciatic nerve at this level in the context of otherwise conventional anatomy. Anatomical variations of the sciatic nerve course in relation to the piriformis muscle are frequently identified on routine MRI of the hips, occurring in 12-20% of scans reviewed. Almost all variants identified were type II. The ability to recognize variant sciatic nerve courses on MRI may prove useful in optimal treatment planning.

  14. Knee joint contact mechanics during downhill gait and its relationship with varus/valgus motion and muscle strength in patients with knee osteoarthritis.

    PubMed

    Farrokhi, Shawn; Voycheck, Carrie A; Gustafson, Jonathan A; Fitzgerald, G Kelley; Tashman, Scott

    2016-01-01

    The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p < 0.02) and greater heel-strike joint contact point velocities (p < 0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p = 0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p < 0.01) and greater quadriceps and hip abductor muscle weakness (p = 0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p < 0.04) but not with quadriceps or hip abductor strength. Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength.

  15. Mechanical effort predicts the selection of ankle over hip strategies in nonstepping postural responses

    PubMed Central

    Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl

    2016-01-01

    Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362

  16. [Optimizing primary total hip replacement--a technique to effect saving of manpower].

    PubMed

    Huber, J F; Rink, M; Broger, I; Zumstein, M; Ruflin, G B

    2003-01-01

    Development of a standardized surgical technique for total hip replacement thereby saving manpower (one assistant) by using a retractor system. Total hip replacement is performed with the patient in a true lateral position on a tunnel cushion. By means of a direct lateral approach the pelvitrochanteric muscles are partially detached using an omega-shaped cut. The Bookwalter retractor is fixed dorsally on the operating table. The ring is centered keeping the greater trochanter in the middle. The Hohmann retractors are fixed to the ring to sufficiently expose the acetabulum. To insert the femoral stem the ring needs to be opened dorsally and the patient's leg is bent 90 degrees in the hip and the knee over the tunnel cushion. The muscles inserting at the greater trochanter are retracted by a separate Hohmann retractor with weight. In a case control study with matched pairs the patients treated with this technique were compared with those treated in supine position with the transgluteal approach. The number of assistants required and the operating time were assessed. All the hip replacements with the patient in side position were performed with one assistant, in supine position with two assistants. The operating time did not differ significantly (supine position 110 min/side position 112 min). The complication rate in both groups was comparable (one secondary wound healing, one transient ischalgia). The process of total hip replacement can be optimized. The described technique allows to spare one surgical assistant without prolonging the operating time.

  17. Muscle contributions to knee extension in the early stance phase in patients with knee osteoarthritis.

    PubMed

    Ogaya, Shinya; Kubota, Ryo; Chujo, Yuta; Hirooka, Eiko; Kwang-Ho, Kim; Hase, Kimitaka

    2017-10-01

    The aim of this study was to analyze individual muscle contributions to knee angular acceleration using a musculoskeletal simulation analysis and evaluate knee extension mechanics in the early stance phase in patients with knee osteoarthritis (OA). The subjects comprised 15 patients with medial knee OA and 14 healthy elderly individuals. All participants underwent gait performance test using 8 infrared cameras and two force plates to measure the kinetic and kinematic data. The simulation was driven by 92 Hill-type muscle-tendon units of the lower extremities and a trunk with 23° of freedom. We analyzed each muscle contribution to knee angular acceleration in the 5%-15% and 15%-25% periods of the stance phase (% SP) using an induced acceleration analysis. We compared accelerations by individual muscles between the two groups using an analysis of covariance for controlling gait speed. Patients with knee OA had a significantly lesser knee extension acceleration by the vasti muscles and higher knee acceleration by hip adductors than those in controls in 5-15% SP. In addition, knee OA resulted in significantly lesser knee extension acceleration by the vasti muscles in 15-25% SP. These results indicate that patients with knee OA have decreased dependency on the vasti muscles to control knee movements during early stance phase. Hip adductor muscles, which mainly control mediolateral motion, partly compensate for the weak knee extension by the vasti muscles in patients with knee OA. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of Quadriceps Muscle Fatigue on Stiff-Knee Gait in Patients with Hemiparesis

    PubMed Central

    Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Delouf, Eric; Bensmail, Djamel; Zory, Raphael

    2014-01-01

    The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients. PMID:24718087

  19. The deep layer of the tractus iliotibialis and its relevance when using the direct anterior approach in total hip arthroplasty: a cadaver study.

    PubMed

    Putzer, David; Haselbacher, Matthias; Hörmann, Romed; Klima, Günter; Nogler, Michael

    2017-12-01

    Surgical approaches through smaller incisions reveal less of the underlying anatomy, and therefore, detailed knowledge of the local anatomy and its variations is important in minimally invasive surgery. The aim of this study was to determine the location, extension, and histomorphology of the deep layer of the iliotibial band during minimally invasive hip surgery using the direct anterior approach (DAA). The morphology of the iliotibial tract was determined in this cadaver study on 40 hips with reference to the anterior superior iliac spine and the tibia. The deep layer of the tractus iliotibialis was exposed up to the hip-joint capsule and length and width measurements taken. Sections of the profound iliotibial tract were removed from the hips and the thickness of the sections was determined microscopically after staining. The superficial tractus iliotibialis had a length of 50.1 (SD 3.8) cm, while tensor fasciae latae total length was 18 (SD 2) cm [unattached 15 (SD 2.5) cm]. Length and width of the deep layer of the tractus iliotibialis were 10.4 (SD 1.3) × 3.3 (SD 0.6) cm. The deep iliotibial band always extended from the distal part of the tensor fascia latae (TFL) muscle to the lateral part of the hip capsule (mean maximum thickness 584 μm). Tractus iliotibialis deep layer morphology did not correlate to other measurements taken (body length, thigh length, and TFL length). The length of the deep layer is dependent on the TFL, since the profound part of the iliotibial band reaches from the TFL to the hip-joint capsule. The deep layer covers the hip-joint capsule, rectus, and lateral vastus muscles in the DAA interval. To access the precapsular fat pad and the hip-joint capsule, the deep layer has to be split in all approaches that use the direct anterior interval.

  20. Correlates of impaired function in older women.

    PubMed

    Ensrud, K E; Nevitt, M C; Yunis, C; Cauley, J A; Seeley, D G; Fox, K M; Cummings, S R

    1994-05-01

    To determine the factors associated with impaired function in older women. Cross-sectional analysis of baseline data collected for a multicenter, prospective study of risk factors for osteoporotic fractures. Four clinical centers in Portland, Oregon, Minneapolis, Minnesota, Baltimore, Maryland, and the Monongahela Valley, Pennsylvania. A total of 9,704 ambulatory, non-black women, aged 65 years and older, recruited from population-based listings. Independent variables, including demographic and historical information (medical conditions, health habits, and medications) and physiologic measures (anthropometry, blood pressure, mental status, vision, and neuromuscular performance) were obtained from a baseline questionnaire, interview, and examination. Measurement of function was assessed by self-reported ability to perform six physical and instrumental activities of daily living (ADL) and impaired function (dependent variable) was defined as difficulty performing three or more physical and instrumental ADLs. In order of decreasing strength of association, hip fracture, osteoarthritis, parkinsonism, slower walking speed, lower hip abduction force, back pain, greater Quetelet index, osteoporosis, former alcohol use, stroke, never drinking alcohol, lower mental status, use of anxiolytics and/or sleeping medications, inability to hold the tandem position, postural dizziness, cataracts, greater waist to hip ratio, lower physical activity in the past year, greater lifetime cigarette consumption, and lower grip strength were independently associated with impaired function in multivariate analyses. Age, low educational level, diabetes, current heavy alcohol use, postural hypotension, depth perception, and contrast sensitivity were not independent predictors. A combination of neuromuscular performance measures, including decreased muscle strength and impaired balance and gait, appeared to account for the effect of age on disability. A combination of many factors, including medical conditions, health habits such as obesity, smoking, alcohol abstinence, and physical inactivity, and direct measures of neuromuscular performance are associated with impaired function in older women.

  1. Individual Muscle use in Hamstring Exercises by Soccer Players Assessed using Functional MRI.

    PubMed

    Fernandez-Gonzalo, R; Tesch, P A; Linnehan, R M; Kreider, R B; Di Salvo, V; Suarez-Arrones, L; Alomar, X; Mendez-Villanueva, A; Rodas, G

    2016-06-01

    This study used functional magnetic resonance imaging (fMRI) to compare individual muscle use in exercises aimed at preventing hamstring injuries. Thirty-six professional soccer players were randomized into 4 groups, each performing either Nordic hamstring, flywheel leg curl, Russian belt or conic-pulley exercise. MRIs were performed before and immediately after a bout of 4 sets of 8 repetitions. Pre-post exercise differences in contrast shift (T2) were analyzed for the long (BFLh) and short head (BFSh) of biceps femoris, semitendinosus (ST), semimembranosus (SM) and gracilis (GR) muscles. Flywheel leg curl increased (P<0.001) T2 of GR (95%), ST (65%), BFSh (51%) and BFLh (14%). After the Nordic hamstring, GR (39%), ST (16%) and BFSh (14%) showed increased T2 (P<0.001). Russian belt and conic-pulley exercise produced subtle (P<0.02) T2 increases of ST (9 and 6%, respectively) and BFLh (7 and 6%, respectively). Russian belt increased T2 of SM (7%). Among exercises examined, flywheel leg curl showed the most substantial hamstring and GR muscle use. However, no single exercise executed was able to increase T2 of all hamstring and synergist muscles analyzed. It is therefore suggested that multiple exercises must be carried out to bring in, and fully activate all knee flexors and hip extensors. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Nondestructive Estimation of Muscle Contributions to STS Training with Different Loadings Based on Wearable Sensor System

    PubMed Central

    2018-01-01

    Partial body weight support or loading sit-to-stand (STS) rehabilitation can be useful for persons with lower limb dysfunction to achieve movement again based on the internal residual muscle force and external assistance. To explicate how the muscles contribute to the kinetics and kinematics of STS performance by non-invasive in vitro detection and to nondestructively estimate the muscle contributions to STS training with different loadings, a wearable sensor system was developed with ground reaction force (GRF) platforms, motion capture inertial sensors and electromyography (EMG) sensors. To estimate the internal moments of hip, knee and ankle joints and quantify the contributions of individual muscle and gravity to STS movement, the inverse dynamics analysis on a simplified STS biomechanical model with external loading is proposed. The functional roles of the lower limb individual muscles (rectus femoris (RF), gluteus maximus (GM), vastus lateralis (VL), tibialis anterior (TA) and gastrocnemius (GAST)) during STS motion and the mechanism of the muscles’ synergies to perform STS-specific subtasks were analyzed. The muscle contributions to the biomechanical STS subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion for body balance in the sagittal plane were quantified by experimental studies with EMG, kinematic and kinetic data. PMID:29587391

  3. Associations among pain catastrophizing, muscle strength, and physical performance after total knee and hip arthroplasty

    PubMed Central

    Hayashi, Kazuhiro; Kako, Masato; Suzuki, Kentaro; Hattori, Keiko; Fukuyasu, Saori; Sato, Koji; Kadono, Izumi; Sakai, Tadahiro; Hasegawa, Yukiharu; Nishida, Yoshihiro

    2017-01-01

    AIM To investigate whether reductions in pain catastrophizing associated with physical performance in the early period after total knee arthroplasty (TKA) or total hip arthroplasty (THA). METHODS The study group of 46 participants underwent TKA or THA. The participants were evaluated within 7 d before the operation and at 14 d afterwards. Physical performance was measured by the Timed Up and Go (TUG) test, and 10-m gait time was measured at comfortable and maximum speeds. They rated their knee or hip pain using a visual analog scale (VAS) for daily life activities. Psychological characteristics were measured by the Pain Catastrophizing Scale (PCS). Physical characteristics were measured by isometric muscle strength of knee extensors and hip abductors on the operated side. The variables of percent changes between pre- and post-operation were calculated by dividing post-operation score by pre-operation score. RESULTS Postoperative VAS and PCS were better than preoperative for both TKA and THA. Postoperative physical performance and muscle strength were poorer than preoperative for both TKA and THA. The percent change in physical performance showed no correlation with preoperative variables. In TKA patients, the percent change of PCS showed correlation with percent change of TUG (P = 0.016), 10-m gait time at comfortable speeds (P = 0.003), and 10-m gait time at maximum speeds (P = 0.042). The percent change of muscle strength showed partial correlation with physical performances. The percent change of VAS showed no correlation with physical performances. On the other hand, in THA patients, the percent change of hip abductor strength showed correlation with percent change of TUG (P = 0.047), 10-m gait time at comfortable speeds (P = 0.001), and 10-m gait time at maximum speeds (P = 0.021). The percent change of knee extensor strength showed partial correlation with physical performances. The percent change of VAS and PCS showed no correlation with physical performances. CONCLUSION Changes in pain catastrophizing significantly associated with changes in physical performance in the early period after TKA. It contributes to future postoperative rehabilitation of arthroplasty. PMID:28473962

  4. Sagittal plane gait characteristics in hip osteoarthritis patients with mild to moderate symptoms compared to healthy controls: a cross-sectional study.

    PubMed

    Eitzen, Ingrid; Fernandes, Linda; Nordsletten, Lars; Risberg, May Arna

    2012-12-20

    Existent biomechanical studies on hip osteoarthritic gait have primarily focused on the end stage of disease. Consequently, there is no clear consensus on which specific gait parameters are of most relevance for hip osteoarthritis patients with mild to moderate symptoms. The purpose of this study was to explore sagittal plane gait characteristics during the stance phase of gait in hip osteoarthritis patients not eligible for hip replacement surgery. First, compared to healthy controls, and second, when categorized into two subgroups of radiographic severity defined from a minimal joint space of ≤/>2 mm. Sagittal plane kinematics and kinetics of the hip, knee and ankle joint were calculated for total joint excursion throughout the stance phase, as well as from the specific events initial contact, midstance, peak hip extension and toe-off following 3D gait analysis. In addition, the Western Ontario and McMaster Universities Osteoarthritis Index, passive hip range of motion, and isokinetic muscle strength of hip and knee flexion and extension were included as secondary outcomes. Data were checked for normality and differences evaluated with the independent Student's t-test, Welch's t-test and the independent Mann-Whitney U-test. A binary logistic regression model was used in order to control for velocity in key variables. Fourty-eight hip osteoarthritis patients and 22 controls were included in the final material. The patients walked significantly slower than the controls (p=0.002), revealed significantly reduced joint excursions of the hip (p<0.001) and knee (p=0.011), and a reduced hip flexion moment at midstance and peak hip extension (p<0.001). Differences were primarily manifested during the latter 50% of stance, and were persistent when controlling for velocity. Subgroup analyses of patients with minimal joint space ≤/>2 mm suggested that the observed deviations were more pronounced in patients with greater radiographic severity. The biomechanical differences were, however, not reflected in self-reported symptoms or function. Reduced gait velocity, reduced sagittal plane joint excursion, and a reduced hip flexion moment in the late stance phase of gait were found to be evident already in hip osteoarthritis patients with mild to moderate symptoms, not eligible for total hip replacement. Consequently, these variables should be considered as key features in studies regarding hip osteoarthritic gait at all stages of disease. Subgroup analyses of patients with different levels of radiographic OA further generated the hypothesis that the observed characteristics were more pronounced in patients with a minimal joint space ≤2 mm.

  5. Use of clinical and computed tomography findings to assess long-term unsatisfactory outcome after femoral head and neck ostectomy in four large breed dogs.

    PubMed

    Ober, Ciprian; Pestean, Cosmin; Bel, Lucia; Taulescu, Marian; Milgram, Joshua; Todor, Adrian; Ungur, Rodica; Leșu, Mirela; Oana, Liviu

    2018-05-10

    Femoral head and neck ostectomy (FHNO) is a salvage surgical procedure intended to eliminate hip joint laxity associated pain in the immature dog, or pain due to secondary osteoarthritis in the mature dog. The outcome of the procedure is associated with the size of the dog but the cause of a generally poorer outcome in larger breeds has not been determined. The objective of this study was to assess the long-term results of FHNO associated with unsatisfactory functional outcome by means of clinical examination and computed tomography (CT) scanning. Four large mixed breed dogs underwent FHNO in different veterinary clinics. Clinical and CT scanning evaluations were carried out long time after the procedures had been done. Hip pain, muscle atrophy, decreased range of motion and chronic lameness were observed at clinical examination. Extensive remodelling, unacceptable bone-on-bone contact with bony proliferation involving the femoral neck and acetabulum, but also excessive removal with bone lysis were observed by CT scanning. Revision osteotomy was performed in one dog. Deep gluteal muscle interposition was used, but no improvements were observed postoperatively. This is the first report on the evaluation of three-dimensional CT reconstructions of the late bone remodelling associated with poor clinical outcome in large dogs. The study shows that FHNO could lead to severe functional deficits in large breed dogs. An extensive follow-study is necessary to more accurately determine the frequency of such complications.

  6. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    PubMed Central

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal segments. PMID:26919645

  7. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study.

    PubMed

    Del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-01-01

    Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance.

  8. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study

    PubMed Central

    del-Ama, Antonio J.; Gil-Agudo, Ángel; Pons, José L.; Moreno, Juan C.

    2014-01-01

    Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance. PMID:24860478

  9. The effect of targeted treatment on people with patellofemoral pain: a pragmatic, randomised controlled feasibility study.

    PubMed

    Drew, Benjamin T; Conaghan, Philip G; Smith, Toby O; Selfe, James; Redmond, Anthony C

    2017-08-04

    Targeted treatment, matched according to specific clinical criteria e.g. hip muscle weakness, may result in better outcomes for people with patellofemoral pain (PFP). However, to ensure the success of future trials, a number of questions on the feasibility of a targeted treatment need clarification. The aim of the study was to explore the feasibility of matched treatment (MT) compared to usual care (UC) management for a subgroup of people with PFP determined to have hip weakness and to explore the mechanism of effect for hip strengthening. In a pragmatic, randomised controlled feasibility study, 24 participants with PFP (58% female; mean age 29 years) were randomly allocated to receive either MT aimed specifically at hip strengthening, or UC over an eight-week period. The primary outcomes were feasibility outcomes, which included rates of adherence, attrition, eligibility, missing data and treatment efficacy. Secondary outcomes focused on the mechanistic outcomes of the intervention, which included hip kinematics. Conversion to consent (100%), missing data (0%), attrition rate (8%) and adherence to both treatment and appointments (>90%) were deemed successful endpoints. The analysis of treatment efficacy showed that the MT group reported a greater improvement for the Global Rating of Change Scale (62% vs. 9%) and the Anterior Knee Pain Scale (-5.23 vs. 1.18) but no between-group differences for either average or worst pain. Mechanistic outcomes showed a greatest reduction in peak hip internal rotation angle for the MT group (13.1% vs. -2.7%). This feasibility study indicates that a definitive randomised controlled trial investigating a targeted treatment approach is achievable. Findings suggest the mechanism of effect of hip strengthening may be to influence kinematic changes in hip function in the transverse plane. This study was registered retrospectively. ISRCTN74560952 . Registration date: 2017-02-06.

  10. Biological risk indicators for recurrent non-specific low back pain in adolescents.

    PubMed

    Jones, M A; Stratton, G; Reilly, T; Unnithan, V B

    2005-03-01

    A matched case-control study was carried out to evaluate biological risk indicators for recurrent non-specific low back pain in adolescents. Adolescents with recurrent non-specific low back pain (symptomatic; n = 28; mean (SD) age 14.9 (0.7) years) and matched controls (asymptomatic; n = 28; age 14.9 (0.7) years) with no history of non-specific low back pain participated. Measures of stature, mass, sitting height, sexual maturity (Tanner self assessment), lateral flexion of the spine, lumbar sagittal plane mobility (modified Schober), hip range of motion (Leighton flexometer), back and hamstring flexibility (sit and reach), and trunk muscle endurance (number of sit ups) were performed using standardised procedures with established reliability. Backward stepwise logistic regression analysis was performed, with the presence/absence of recurrent low back pain as the dependent variable and the biological measures as the independent variables. Hip range of motion, trunk muscle endurance, lumbar sagittal plane mobility, and lateral flexion of the spine were identified as significant risk indicators of recurrent low back pain (p<0.05). Follow up analysis indicated that symptomatic subjects had significantly reduced lateral flexion of the spine, lumbar sagittal plane mobility, and trunk muscle endurance (p<0.05). Hip range of motion, abdominal muscle endurance, lumbar flexibility, and lateral flexion of the spine were risk indicators for recurrent non-specific low back pain in a group of adolescents. These risk indicators identify the potential for exercise as a primary or secondary prevention method.

  11. Effect of foot type on knee valgus, ground reaction force, and hip muscle activation in female soccer players.

    PubMed

    Rath, Meghan E; Stearne, David J; Walker, Cameron R; Cox, Jaime C

    2016-05-01

    The purpose of this study was to determine the degree to which subtalar joint pronation resulting from a supple planus foot affects knee alignment, hip muscle activation and ground reaction force attenuation in female athletes during a broad jump-to-cut maneuver. Twelve National Collegiate Athletic Association (NCAA) Division II female soccer players (age=19.4±1.4 years, height=1.64±0.05 m, mass=64.10±4.8 kg) were identified as having either supple planus (SP) or rigid feet (RF). Participants completed three broad jump-to-cut trials onto a force plate while EMG and motion data were collected. Muscle activation levels (percentage of maximal voluntary contraction [%MVC]) in the gluteus maximus, gluteus medius, biceps femoris, and rectus femoris were calculated, and peak vertical and medial shear force, rate of loading, and valgus angle were collected for each trial. Mann-Whitney U tests revealed no statistical significance between foot-type groups, however, effect size statistics revealed practical significance for between-group %MVC biceps femoris (d=1.107), %MVC gluteus maximus (d=1.069), and vertical ground reaction force (d=1.061). Athletes with a SP foot type may experience decreased hip muscle activation associated with increased vertical ground reaction force during a broad jump-to-cut maneuver. This might result in reduced dynamic stability and neuromuscular control during deceleration, potentially increasing the risk of non-contact ACL injury in female soccer players.

  12. Anatomical study of the proximal origin of hamstring muscles.

    PubMed

    Sato, Kengo; Nimura, Akimoto; Yamaguchi, Kumiko; Akita, Keiichi

    2012-09-01

    It is relatively well accepted that the long head of the biceps femoris and the semitendinosus both originate from the ischial tuberosity as a common tendon. However, it is also widely known that the biceps femoris is consistently injured more than the semitendinosus. The purpose of this study was to examine the origins of the hamstring muscles, to find an anatomic basis for diagnosis and treatment of injuries of the posterior thigh regions. Twenty-eight hips of fourteen adult Japanese cadavers were used in this study. In twenty hips of ten cadavers, the positional relationships among the origins on the ischial tuberosity were examined. In eight hips of four cadavers, histological examination of the origins of the hamstrings was also performed. The origin of the long head of the biceps femoris adjoined that of the semitendinosus. In the proximal regions of these muscles, the long head consisted of the tendinous part; however, the semitendinosus mainly consisted of the muscular part. Some of the fibers of the biceps tendon extended to fuse with the sacrotuberous ligament. The semimembranosus muscle broadly originated from the lateral surface of the ischial tuberosity. The origins of the long head of the biceps femoris and the semitendinosus are found to be almost independent, and the tendon of the long head is partly fused with the sacrotuberous ligament. The high incidence of injuries to the long head of the biceps femoris could be explained by these anatomical configurations.

  13. A comparison of the diagnostic accuracy of MARS MRI and ultrasound of the painful metal-on-metal hip arthroplasty.

    PubMed

    Siddiqui, Imran A; Sabah, Shiraz A; Satchithananda, Keshthra; Lim, Adrian K; Cro, Suzie; Henckel, Johann; Skinner, John A; Hart, Alister J

    2014-08-01

    Metal artifact reduction sequence (MARS) MRI and ultrasound scanning (USS) can both be used to detect pseudotumors, abductor muscle atrophy, and tendinous pathology in patients with painful metal-on-metal (MOM) hip arthroplasty. We wanted to determine the diagnostic test characteristics of USS using MARS MRI as a reference for detection of pseudotumors and muscle atrophy. PatienTS AND METHODS: We performed a prospective cohort study to compare MARS MRI and USS findings in 19 consecutive patients with unilateral MOM hips. Protocolized USS was performed by consultant musculoskeletal radiologists who were blinded regarding clinical details. Reports were independently compared with MARS MRI, the imaging gold standard, to calculate predictive values. The prevalence of pseudotumors on MARS MRI was 68% (95% CI: 43-87) and on USS it was 53% (CI: 29-76). The sensitivity of USS in detecting pseudotumors was 69% (CI 39-91) and the specificity was 83% (CI: 36-97). The sensitivity of detection of abductor muscle atrophy was 47% (CI: 24-71). In addition, joint effusion was detected in 10 cases by USS and none were seen by MARS MRI. We found a poor agreement between USS and MARS MRI. USS was inferior to MARS MRI for detection of pseudotumors and muscle atrophy, but it was superior for detection of joint effusion and tendinous pathologies. MARS MRI is more advantageous than USS for practical reasons, including preoperative planning and longitudinal comparison.

  14. A 3D musculoskeletal model of the western lowland gorilla hind limb: moment arms and torque of the hip, knee and ankle.

    PubMed

    Goh, Colleen; Blanchard, Mary L; Crompton, Robin H; Gunther, Michael M; Macaulay, Sophie; Bates, Karl T

    2017-10-01

    Three-dimensional musculoskeletal models have become increasingly common for investigating muscle moment arms in studies of vertebrate locomotion. In this study we present the first musculoskeletal model of a western lowland gorilla hind limb. Moment arms of individual muscles around the hip, knee and ankle were compared with previously published data derived from the experimental tendon travel method. Considerable differences were found which we attribute to the different methodologies in this specific case. In this instance, we argue that our 3D model provides more accurate and reliable moment arm data than previously published data on the gorilla because our model incorporates more detailed consideration of the 3D geometry of muscles and the geometric constraints that exist on their lines-of-action about limb joints. Our new data have led us to revaluate the previous conclusion that muscle moment arms in the gorilla hind limb are optimised for locomotion with crouched or flexed limb postures. Furthermore, we found that bipedalism and terrestrial quadrupedalism coincided more regularly with higher moment arms and torque around the hip, knee and ankle than did vertical climbing. This indicates that the ability of a gorilla to walk bipedally is not restricted by musculoskeletal adaptations for quadrupedalism and vertical climbing, at least in terms of moment arms and torque about hind limb joints. © 2017 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  15. Reverse Less Invasive Stabilization System (LISS) Plating for Proximal Femur Fractures in Poliomyelitis Survivors: A Report of Two Cases.

    PubMed

    Yao, Chen; Jin, Dongxu; Zhang, Changqing

    2017-11-15

    BACKGROUND Poliomyelitis is a neuromuscular disease which causes muscle atrophy, skeletal deformities, and disabilities. Treatment of hip fractures on polio-affect limbs is unique and difficult, since routine fixation methods like nailing may not be suitable due to abnormal skeletal structures. CASE REPORT We report one femoral neck fracture and one subtrochanteric fracture in polio survivors successfully treated with reverse less invasive stabilization system (LISS) plating technique. Both fractures were on polio-affected limbs with significant skeletal deformities and low bone density. A contralateral femoral LISS plate was applied upside down to the proximal femur as an internal fixator after indirect or direct reduction. Both patients had uneventful bone union and good functional recovery. CONCLUSIONS Reverse LISS plating is a safe and effective technique to treat hip fractures with skeletal deformities caused by poliomyelitis.

  16. Function of a large biarticular hip and knee extensor during walking and running in guinea fowl (Numida meleagris).

    PubMed

    Carr, Jennifer A; Ellerby, David J; Marsh, Richard L

    2011-10-15

    Physiological and anatomical evidence suggests that in birds the iliotibialis lateralis pars postacetabularis (ILPO) is functionally important for running. Incorporating regional information, we estimated the mean sarcomere strain trajectory and electromyographic (EMG) amplitude of the ILPO during level and incline walking and running. Using these data and data in the literature of muscle energy use, we examined three hypotheses: (1) active lengthening will occur on the ascending limb of the length-tension curve to avoid potential damage caused by stretch on the descending limb; (2) the active strain cycle will shift to favor active shortening when the birds run uphill and shortening will occur on the plateau and shallow ascending limb of the length-tension curve; and (3) measures of EMG intensity will correlate with energy use when the mechanical function of the muscle is similar. Supporting the first hypothesis, we found that the mean sarcomere lengths at the end of active lengthening during level locomotion were smaller than the predicted length at the start of the plateau of the length-tension curve. Supporting the second hypothesis, the magnitude of active lengthening decreased with increasing slope, whereas active shortening increased. In evaluating the relationship between EMG amplitude and energy use (hypothesis 3), we found that although increases in EMG intensity with speed, slope and loading were positively correlated with muscle energy use, the quantitative relationships between these variables differed greatly under different conditions. The relative changes in EMG intensity and energy use by the muscle probably varied because of changes in the mechanical function of the muscle that altered the ratio of muscle energy use to active muscle volume. Considering the overall function of the cycle of active lengthening and shortening of the fascicles of the ILPO, we conclude that the function of active lengthening is unlikely to be energy conservation and may instead be related to promoting stability at the knee. The work required to lengthen the ILPO during stance is provided by co-contracting knee flexors. We suggest that this potentially energetically expensive co-contraction serves to stabilize the knee in early stance by increasing the mechanical impedance of the joint.

  17. Lumbar lordosis angle and trunk and lower-limb electromyographic activity comparison in hip neutral position and external rotation during back squats.

    PubMed

    Oshikawa, Tomoki; Morimoto, Yasuhiro; Kaneoka, Koji

    2018-03-01

    [Purpose] To compare the lumbar lordosis angle and electromyographic activities of the trunk and lower-limb muscles in the hip neutral position and external rotation during back squats. [Subjects and Methods] Ten healthy males without severe low back pain or lower-limb injury participated in this study. The lumbar lordosis angle and electromyographic activities were measured using three-dimensional motion-capture systems and surface electrodes during four back squats: parallel back squats in the hip neutral position and external rotation and full back squats in the hip neutral position and external rotation. A paired t-test was used to compare parallel and full back squats measurements in the hip neutral position and external rotation, respectively. [Results] During parallel back squats, the average lumbar lordosis angle was significantly larger in hip external rotation than in the hip neutral position. During full back squats, lumbar erector spinae and multifidus activities were significantly lower in hip external rotation than in the hip neutral position, whereas gluteus maximus activity was significantly higher in hip external rotation than in the hip neutral position. [Conclusion] The back squat in hip external rotation induced improvement of lumbar kyphosis, an increasing of the gluteus maximus activity and a decrease of both lumbar erector spinae and multifidus activities.

  18. Gait alterations to effectively reduce hip contact forces.

    PubMed

    Wesseling, Mariska; de Groote, Friedl; Meyer, Christophe; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2015-07-01

    Patients with hip pathology present alterations in gait which have an effect on joint moments and loading. In knee osteoarthritic patients, the relation between medial knee contact forces and the knee adduction moment are currently being exploited to define gait retraining strategies to effectively reduce pain and disease progression. However, the relation between hip contact forces and joint moments has not been clearly established. Therefore, this study aims to investigate the effect of changes in hip and pelvis kinematics during gait on internal hip moments and contact forces which is calculated using muscle driven simulations. The results showed that frontal plane kinetics have the largest effect on hip contact forces. Given the high correlation between the change in hip adduction moment and contact force at initial stance (R(2)  = 0.87), this parameter can be used to alter kinematics and predict changes in contact force. At terminal stance the hip adduction and flexion moment can be used to predict changes in contact force (R(2)  = 0.76). Therefore, gait training that focuses on decreasing hip adduction moments, a wide base gait pattern, has the largest potential to reduce hip contact forces. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. PREDICT-CP: study protocol of implementation of comprehensive surveillance to predict outcomes for school-aged children with cerebral palsy

    PubMed Central

    Boyd, Roslyn N; Davies, Peter SW; Ziviani, Jenny; Trost, Stewart; Barber, Lee; Ware, Robert; Rose, Stephen; Whittingham, Koa; Bell, Kristie; Carty, Christopher; Obst, Steven; Benfer, Katherine; Reedman, Sarah; Edwards, Priya; Kentish, Megan; Copeland, Lisa; Weir, Kelly; Davenport, Camilla; Brooks, Denise; Coulthard, Alan; Pelekanos, Rebecca; Guzzetta, Andrea; Fiori, Simona; Wynter, Meredith; Finn, Christine; Burgess, Andrea; Morris, Kym; Walsh, John; Lloyd, Owen; Whitty, Jennifer A; Scuffham, Paul A

    2017-01-01

    Objectives Cerebral palsy (CP) remains the world’s most common childhood physical disability with total annual costs of care and lost well-being of $A3.87b. The PREDICT-CP (NHMRC 1077257 Partnership Project: Comprehensive surveillance to PREDICT outcomes for school age children with CP) study will investigate the influence of brain structure, body composition, dietary intake, oropharyngeal function, habitual physical activity, musculoskeletal development (hip status, bone health) and muscle performance on motor attainment, cognition, executive function, communication, participation, quality of life and related health resource use costs. The PREDICT-CP cohort provides further follow-up at 8–12 years of two overlapping preschool-age cohorts examined from 1.5 to 5 years (NHMRC 465128 motor and brain development; NHMRC 569605 growth, nutrition and physical activity). Methods and analyses This population-based cohort study undertakes state-wide surveillance of 245 children with CP born in Queensland (birth years 2006–2009). Children will be classified for Gross Motor Function Classification System; Manual Ability Classification System, Communication Function Classification System and Eating and Drinking Ability Classification System. Outcomes include gross motor function, musculoskeletal development (hip displacement, spasticity, muscle contracture), upper limb function, communication difficulties, oropharyngeal dysphagia, dietary intake and body composition, participation, parent-reported and child-reported quality of life and medical and allied health resource use. These detailed phenotypical data will be compared with brain macrostructure and microstructure using 3 Tesla MRI (3T MRI). Relationships between brain lesion severity and outcomes will be analysed using multilevel mixed-effects models. Ethics and dissemination The PREDICT-CP protocol is a prospectively registered and ethically accepted study protocol. The study combines data at 1.5–5 then 8–12 years of direct clinical assessment to enable prediction of outcomes and healthcare needs essential for tailoring interventions (eg, rehabilitation, orthopaedic surgery and nutritional supplements) and the projected healthcare utilisation. Trial registration number ACTRN: 12616001488493 PMID:28706091

  20. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.

    PubMed

    Abe, Takashi; Loenneke, Jeremy P; Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Bemben, Michael G

    2012-07-01

    Although evidence for high-intensity resistance training-induced muscle hypertrophy has accumulated over the last several decades, the basic concept of the training can be traced back to ancient Greece: Milo of Croton lifted a bull-calf daily until it was fully grown, which would be known today as progressive overload. Now, in the 21st century, different types of training are being tested and studied, such as low-intensity exercise combined with arterial as well as venous blood flow restriction (BFR) to/from the working muscles. Because BFR training requires the use of a cuff that is placed at the proximal ends of the arms and/or legs, the BFR is only applicable to limb muscles. Consequently, most previous BFR training studies have focused on the physiological adaptations of BFR limb muscles. Muscle adaptations in non-BFR muscles of the hip and trunk are lesser known. Recent studies that have reported both limb and trunk muscle adaptations following BFR exercise training suggest that low-intensity (20-30% of 1RM) resistance training combined with BFR elicits muscle hypertrophy in both BFR limb and non-BFR muscles. However, the combination of leg muscle BFR with walk training elicits muscle hypertrophy only in the BFR leg muscles. In contrast to resistance exercise with BFR, the exercise intensity may be too low during BFR walk training to cause muscle hypertrophy in the non-BFR gluteus maximus and other trunk muscles. Other mechanisms including hypoxia, local and systemic growth factors and muscle cell swelling may also potentially affect the hypertrophic response of non-BFR muscles to BFR resistance exercise. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  1. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb.

    PubMed

    Hudson, Penny E; Corr, Sandra A; Payne-Davis, Rachel C; Clancy, Sinead N; Lane, Emily; Wilson, Alan M

    2011-04-01

    The cheetah is capable of a top speed of 29 ms(-1) compared to the maximum speed of 17 ms(-1) achieved by the racing greyhound. In this study of the hindlimb and in the accompanying paper on the forelimb we have quantified the musculoskeletal anatomy of the cheetah and greyhound and compared them to identify any differences that may account for this variation in their locomotor abilities. Specifically, bone length, mass and mid-shaft diameter were measured, along with muscle mass, fascicle lengths, pennation angles and moment arms to enable estimates of maximal isometric force, joint torques and joint rotational velocities to be calculated. Surprisingly the cheetahs had a smaller volume of hip extensor musculature than the greyhounds, and we therefore propose that the cheetah powers acceleration using its extensive back musculature. The cheetahs also had an extremely powerful psoas muscle which could help to resist the pitching moments around the hip associated with fast accelerations. The hindlimb bones were proportionally longer and heavier, enabling the cheetah to take longer strides and potentially resist higher peak limb forces. The cheetah therefore possesses several unique adaptations for high-speed locomotion and fast accelerations, when compared to the racing greyhound. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.

  2. Onset and maximum values of electromyographic amplitude during prone hip extension after neurodynamic technique in patients with lumbosciatic pain: A pilot study.

    PubMed

    Horment-Lara, Giselle; Cruz-Montecinos, Carlos; Núñez-Cortés, Rodrigo; Letelier-Horta, Pablo; Henriquez-Fuentes, Luis

    2016-04-01

    The mechanisms underlying the effects of neurodynamic techniques are still unknown. Therefore, the aim of this study was to provide a starting point for future research on explaining why neurodynamic techniques affect muscular activities in patients with sciatic pain. A double-blind trial was conducted in 12 patients with lumbosciatica. Surface electromyography activity was assessed for different muscles during prone hip extension. Pre- and post-intervention values for muscle activity onset and maximal amplitude signals were determined. There was a significant reduction in the surface electromyography activity of maximal amplitude in the erector spinae and contralateral erector spinae (p < 0.05). Additionally, gluteus maximus (p < 0.05) activity onset was delayed post-intervention. Self-neurodynamic sliding techniques modify muscular activity and onset during prone hip extension, possibly reducing unnecessary adaptations for protecting injured components. Future work will analyze the effects of self-neurodynamic sliding techniques during other physical tasks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Bone Morphogenetic Proteins and myostatin pathways: key mediator of human sarcopenia.

    PubMed

    Scimeca, Manuel; Piccirilli, Eleonora; Mastrangeli, Francesca; Rao, Cecilia; Feola, Maurizio; Orlandi, Augusto; Gasbarra, Elena; Bonanno, Elena; Tarantino, Umberto

    2017-02-15

    Sarcopenia, osteoporosis and osteoarthritis are the most frequent musculoskeletal disorders affecting older people. The main aim of this study was to test the hypothesis that the balance between BMPs and myostatin pathways regulates the age-related muscle degeneration in OP and OA patients. To this end, we investigated the relationship among the expression of BMP-2/4-7, myostatin and phosphorylated Smads1-5-8 and the muscle quality, evaluated in term of fibers atrophy and satellite cells activity. In this retrospective study, we collected 123 biopsies of vastus lateralis: 48 biopsies from patients who underwent hip arthroplasty for subcapital fractures of the femur (OP), 55 biopsies from patients who underwent hip arthroplasty for osteoarthritis (OA) and 20 biopsies from patients who underwent hip arthroplasty for high-energy hip fractures (CTRL). Muscle biopsies were fixed in 4% paraformaldehyde and paraffin embedded. Serial sections were used for morphometrical and immunohistochemical analysis (BMP/2/4-7, myostatin, Smads1-5-8, Pax7 and myogenin). In addition, 1 mm 3 of muscle tissue of each patient was embedded in epon for ultrastructural study. Morphometric data indicated an increase of the number of atrophic fibers in OP patients compare to OA. In line with these data, we found an high regenerative potential in muscle tissues of OA patients due to the significant amount of both Pax7 and myogenin positive satellite cells detected in OA group. In addition, our data showed the decrease of BMP2/4 and -7 expression in OP patients compared to both OA group and CTRL. Conversely, OP patients were characterized by high levels of myostatin expression. A different expression profile was also found for phosphorylated Smad1-5-8 between OP and OA patients. In particular, OP patients showed a low number of positive phosphorylated Smad1-5-8 nuclei. The identification of molecular pathways involved in the pathogenesis of sarcopenia open new prospective for the development of drugs able to prevent/treat the muscle impairment that occur in elderly. Results here reported, highlighting the role of BMPs and myostatin pathways in physio-pathogenesis of human sarcopenia, allow us to propose human recombinant BMP-2/7 and anti-myostatin antibodies as a possible therapeutic option for the sarcopenia.

  4. Electromyographic study of hip muscles involved in total hip arthroplasty: Surprising results using the direct anterior minimally invasive approach.

    PubMed

    Bernard, Jules; Razanabola, Fredson; Beldame, Julien; Van Driessche, Stéphane; Brunel, Helena; Poirier, Thomas; Matsoukis, Jean; Billuart, Fabien

    2018-05-16

    The functional and clinical benefit of minimally invasive total hip arthroplasty (THA) is well-known, but the literature reports impaired gait and posture parameters as compared to the general population, especially following use of the anterior minimally invasive approach, which has more severe impact on posture than the posterior approach. The reasons for this impairment, however, remain unexplained. We therefore conducted a surface electromyography (sEMG) study of the hip muscles liable to be affected by arthroplasty surgery: gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S). The study addressed the following questions: (1) Is bipodal and unipodal GMed activity greater following anterior THA than in asymptomatic subjects? (2) Is a single manual test sufficient to assess maximal voluntary contraction (MVC) in hip abductors (GMax, GMed, TFL) and flexors (TFL, S)? Bipodal and unipodal GMed activity is greater following anterior THA than in asymptomatic subjects. Eleven patients with anterior THA and 11 asymptomatic subjects, matched for age, gender and body-mass index, were included. Subjects underwent 3 postural tests: bipodal, eyes closed (BEC), unipodal on the operated side (UOP), and unipodal on the non-operated side (UnOP), with unipodal results averaged between both sides in the asymptomatic subjects. Data were recorded from 4-channel EMG and a force plate. EMG test activity was normalized as a ratio of MVC activity. Postural parameters (mean center of pressure displacement speed) were poorer and sEMG activity higher in anterior THA than asymptomatic subjects (p<0.005). On the BEC test, GMax and GMed activity was higher on both operated and non-operated sides than in asymptomatic controls (respectively, 0.15±0.12 and 0.12±0.6 versus 0.07±0.06 for GMax, and 0.13±0.08 and 0.13±0.08 versus 0.08±0.05 for GMed; p<0.05). On unipodal tests, both UOP and UnOP GMed activities were higher than in controls (respectively, 0.51±0.3 and 0.48±0.27 versus 0.28±0.13; p<0.04); GMax and TFL activities were higher than in controls only on the UOP tests (respectively, 0.49±0.43 versus 0.24±0.18, and 0.23±0.17 versus 0.12±0.16; p<0.05). sEMG activity in the hip abductors, which are the main stabilizing muscles for the pelvis, is increased following anterior THA, in parallel with impaired postural parameters. This finding may be due to intraoperative TFL and S neuromuscular spindle lesion. The present preliminary study is to be followed up by a comparison of all 3 common minimally invasive approaches (anterior, anterolateral and posterior) using the same study protocol. III, prospective case-control study. Copyright © 2018. Published by Elsevier Masson SAS.

  5. Postural threat influences vestibular-evoked muscular responses.

    PubMed

    Lim, Shannon B; Cleworth, Taylor W; Horslen, Brian C; Blouin, Jean-Sébastien; Inglis, J Timothy; Carpenter, Mark G

    2017-02-01

    Standing balance is significantly influenced by postural threat. While this effect has been well established, the underlying mechanisms of the effect are less understood. The involvement of the vestibular system is under current debate, and recent studies that investigated the effects of height-induced postural threat on vestibular-evoked responses provide conflicting results based on kinetic (Horslen BC, Dakin CJ, Inglis JT, Blouin JS, Carpenter MG. J Physiol 592: 3671-3685, 2014) and kinematic (Osler CJ, Tersteeg MC, Reynolds RF, Loram ID. Eur J Neurosci 38: 3239-3247, 2013) data. We examined the effect of threat of perturbation, a different form of postural threat, on coupling (cross-correlation, coherence, and gain) of the vestibulo-muscular relationship in 25 participants who maintained standing balance. In the "No-Threat" conditions, participants stood quietly on a stable surface. In the "Threat" condition, participants' balance was threatened with unpredictable mediolateral support surface tilts. Quiet standing immediately before the surface tilts was compared to an equivalent time from the No-Threat conditions. Surface EMG was recorded from bilateral trunk, hip, and leg muscles. Hip and leg muscles exhibited significant increases in peak cross-correlation amplitudes, coherence, and gain (1.23-2.66×) in the Threat condition compared with No-Threat conditions, and significant correlations were observed between threat-related changes in physiological arousal and medium-latency peak cross-correlation amplitude in medial gastrocnemius (r = 0.408) muscles. These findings show a clear threat effect on vestibular-evoked responses in muscles in the lower body, with less robust effects of threat on trunk muscles. Combined with previous work, the present results can provide insight into observed changes during balance control in threatening situations. This is the first study to show increases in vestibular-evoked responses of the lower body muscles under conditions of increased threat of postural perturbation. While robust findings were observed in hip and leg muscles, less consistent results were found in muscles of the trunk. The present findings provide further support in the ongoing debate for arguments that vestibular-evoked balance responses are influenced by fear and anxiety and explain previous threat-related changes in balance. Copyright © 2017 the American Physiological Society.

  6. Optimal sagittal motion axis for trunk extension and flexion tests in chronic low back trouble.

    PubMed

    Rantanen, P; Nykvist, F

    2000-11-01

    To find the optimal height for sagittal motion axis for trunk strength test in chronic low back trouble. Cross-sectional study. The strength of trunk muscles of low back pain patients is decreased. The measured strength depends on the height of the sagittal motion axis but the differences between patients and controls are not known. 114 (67 female) patients with chronic low back trouble are classified according to Quebec Task Force, 50 (31 female) patients with rheumatic disorder, but without low back trouble, and 33 (22 female) healthy controls, no appreciable physical differences but clear differences in Oswestry score. Isometric trunk extension-flexion test with different heights for the pelvic fulcrum. Force decreased in extension, increased in flexion, and torque increased both in flexion and extension in every group (P<0.001) as the fulcrum was moved caudally. The male controls were stronger than patients with low back trouble (P<0.01). The female controls were stronger only if the fulcrum was set at the hip joint level (P<0.05). There were no differences between patients with rheumatic disorder and low back trouble, except in extension if the fulcrum was at the hip joint level (P<0.02). The rotation axis in trunk extension-flexion strength test should be set at the level of the hip joint. Trunk muscle weakness is a common sign of different rheumatic disorders. Proper setting of sagittal motion axis and concomitant measurement of trunk and hip extensor or flexor muscles increases the specificity of the strength test for low back trouble.

  7. Case Report Reconstruction of Exposed Ilium With Reverse Turnover Latissimus Dorsi Muscle Flap

    PubMed Central

    Hayashida, Kenji; Endo, Yoshie; Kamebuchi, Katsuhiko

    2011-01-01

    Objective: It is difficult to cover a large skin and soft tissue defect with exposure of the ilium. We therefore performed a new reconstruction technique, using a reverse latissimus dorsi muscle flap fed by perforating branches of only the 10th intercostal artery. Methods: A 45-year-old man had a large traumatic defect located on the hip with exposure of the iliac crest. After confirming and preserving perforating branches of the 10th intercostal artery, the latissimus dorsi muscle flap was turned over just proximal to the perforating branch, and a split-thickness skin graft was performed over the flap. Results: The skin graft took place well and there were no circulation problems. Conclusions: This flap covered a larger area on the hip than the musculocutaneous flap. Furthermore, this is easier to perform and is less invasive than a vascularized free flap. Skin and soft tissue defects that expose bones of the lumbar or hip region can be reconstructed with a local flap; however, the deficit is small for this coverage and usually there is little skin and soft tissue to cover the wound defect in the surrounding area. Thus, it is often difficult to deal with large defects. We performed a reconstruction, using a reverse latissimus dorsi flap fed by perforating branches of the 10th intercostal artery for a large skin and soft tissue defect of the hip with exposure of the iliac crest, resulting in a good outcome. This technique is thought to be useful for reconstruction when the ilium is exposed, and we report the case and surgical procedure. PMID:21559059

  8. The impact of ergometer design on hip and trunk muscle activity patterns in elite rowers: an electromyographic assessment.

    PubMed

    Nowicky, Alex V; Horne, Sara; Burdett, Richard

    2005-03-01

    THIS STUDY USED SURFACE ELECTROMYOGRAPHY (SEMG) TO EXAMINE WHETHER THERE WERE DIFFERENCES IN HIP AND TRUNK MUSCLE ACTIVATION DURING THE ROWING CYCLE ON TWO OF THE MOST WIDELY USED AIR BRAKED ERGOMETERS: the Concept 2C and the Rowperfect. sEMG methods were used to record the muscle activity patterns from the right: m. Erector spinae (ES), m. Rectus Abdominus (RA), m. Rectus Femoris (RF) and m. Biceps Femoris (BF) for their contributions as agonist-antagonist pairs underlying hip and trunk extension/flexion. The sEMG activity patterns of these muscles were examined in six young male elite rowers completing a 2 minute set at a moderate training intensity (23 stroke·min(-1) and 1:47.500 m(-1) split time, 300W). The rowers closely maintained the required target pace through visual inspection of the standard LCD display of each ergometer. The measurements of duration of each rowing cycle and onset of each stroke during the test were recorded simultaneously with the sEMG activity through the additional instrumentation of a foot-pressure switch and handle accelerometry. There were no significant differences between the two ergometer designs in group means for: work rate (i.e., rowing speed and stroke rate), metabolic load as measured by mean heart rate, rowing cycle duration, or timing of the stroke in the cycle. 2-D motion analysis of hip and knee motion for the rowing cycle from the video footage taken during the test also revealed no significant differences in the joint range of motion between the ergometers. Ensemble average sEMG activity profiles based on 30+ strokes were obtained for each participant and normalised per 10% intervals of the cycle duration as well as for peak mean sEMG amplitude for each muscle. A repeated measures ANOVA on the sEMG activity per 10% interval for the four muscles contributing to hip and trunk motion during the rowing cycle revealed no significant differences between the Concept 2C and Rowperfect (F = 0.070, df = 1,5, p = 0.802). The outcome of this study suggests that the two different ergometer designs are equally useful for dry land training. Key PointsThe effects of endurance training on HR recovery after exercise and cardiac ANS modulation were investigated in female marathon runners by comparing with untrained controls.Time and frequency domain analysis of HRV was used to investigate cardiac ANS modulation.As compared with untrained controls, the female marathon runners showed faster HR recovery after exercise, which should result from their higher levels of HRV, higher aerobic capacity and exaggerated blood pressure response to exercise.

  9. The Impact of Ergometer Design on Hip and Trunk Muscle Activity Patterns in Elite Rowers: An Electromyographic Assessment

    PubMed Central

    Nowicky, Alex V.; Horne, Sara; Burdett, Richard

    2005-01-01

    This study used surface electromyography (sEMG) to examine whether there were differences in hip and trunk muscle activation during the rowing cycle on two of the most widely used air braked ergometers: the Concept 2C and the Rowperfect. sEMG methods were used to record the muscle activity patterns from the right: m. Erector spinae (ES), m. Rectus Abdominus (RA), m. Rectus Femoris (RF) and m. Biceps Femoris (BF) for their contributions as agonist-antagonist pairs underlying hip and trunk extension/flexion. The sEMG activity patterns of these muscles were examined in six young male elite rowers completing a 2 minute set at a moderate training intensity (23 stroke·min-1 and 1:47.500 m-1 split time, 300W). The rowers closely maintained the required target pace through visual inspection of the standard LCD display of each ergometer. The measurements of duration of each rowing cycle and onset of each stroke during the test were recorded simultaneously with the sEMG activity through the additional instrumentation of a foot-pressure switch and handle accelerometry. There were no significant differences between the two ergometer designs in group means for: work rate (i.e., rowing speed and stroke rate), metabolic load as measured by mean heart rate, rowing cycle duration, or timing of the stroke in the cycle. 2-D motion analysis of hip and knee motion for the rowing cycle from the video footage taken during the test also revealed no significant differences in the joint range of motion between the ergometers. Ensemble average sEMG activity profiles based on 30+ strokes were obtained for each participant and normalised per 10% intervals of the cycle duration as well as for peak mean sEMG amplitude for each muscle. A repeated measures ANOVA on the sEMG activity per 10% interval for the four muscles contributing to hip and trunk motion during the rowing cycle revealed no significant differences between the Concept 2C and Rowperfect (F = 0.070, df = 1,5, p = 0.802). The outcome of this study suggests that the two different ergometer designs are equally useful for dry land training. Key Points The effects of endurance training on HR recovery after exercise and cardiac ANS modulation were investigated in female marathon runners by comparing with untrained controls. Time and frequency domain analysis of HRV was used to investigate cardiac ANS modulation. As compared with untrained controls, the female marathon runners showed faster HR recovery after exercise, which should result from their higher levels of HRV, higher aerobic capacity and exaggerated blood pressure response to exercise. PMID:24431957

  10. Predicting muscle forces during the propulsion phase of single leg triple hop test.

    PubMed

    Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

    2018-01-01

    Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hip fracture risk in older US adults by treatment eligibility status based on new National Osteoporosis Foundation Guidance

    USDA-ARS?s Scientific Manuscript database

    Vitamin D receptors have been shown to be present in human skeletal muscle using different techniques. We developed a multi-staining immunofluorescent method to detect vitamin D receptor expression and colocalize it with myosin heavy chain isoform expression in skeletal muscle biopsies in older fema...

  12. Fatigue-Induced Changes in Movement Pattern and Muscle Activity During Ballet Releve on Demi-Pointe.

    PubMed

    Lin, Cheng-Feng; Lee, Wan-Chin; Chen, Yi-An; Hsue, Bih-Jen

    2016-08-01

    Fatigue in ballet dancers may lead to injury, particularly in the lower extremities. However, few studies have investigated the effects of fatigue on ballet dancers' performance and movement patterns. Thus, the current study examines the effect of fatigue on the balance, movement pattern, and muscle activities of the lower extremities in ballet dancers. Twenty healthy, female ballet dancers performed releve on demi-pointe before and after fatigue. The trajectory of the whole body movement and the muscle activities of the major lower extremity muscles were recorded continuously during task performance. The results show that fatigue increases the medial-lateral center of mass (COM) displacement and hip and trunk motion, but decreases the COM velocity and ankle motion. Moreover, fatigue reduces the activities of the hamstrings and tibialis anterior, but increases that of the soleus. Finally, greater proximal hip and trunk motions are applied to compensate for the effects of fatigue, leading to a greater COM movement. Overall, the present findings show that fatigue results in impaired movement control and may therefore increase the risk of dance injury.

  13. Adaptation of the walking pattern to uphill walking in normal and spinal-cord injured subjects.

    PubMed

    Leroux, A; Fung, J; Barbeau, H

    1999-06-01

    Lower-limb movements and muscle-activity patterns were assessed from seven normal and seven ambulatory subjects with incomplete spinal-cord injury (SCI) during level and uphill treadmill walking (5, 10 and 15 degrees). Increasing the treadmill grade from 0 degrees to 15 degrees induced an increasingly flexed posture of the hip, knee and ankle during initial contact in all normal subjects, resulting in a larger excursion throughout stance. This adaptation process actually began in mid-swing with a graded increase in hip flexion and ankle dorsiflexion as well as a gradual decrease in knee extension. In SCI subjects, a similar trend was found at the hip joint for both swing and stance phases, whereas the knee angle showed very limited changes and the ankle angle showed large variations with grade throughout the walking cycle. A distinct coordination pattern between the hip and knee was observed in normal subjects, but not in SCI subjects during level walking. The same coordination pattern was preserved in all normal subjects and in five of seven SCI subjects during uphill walking. The duration of electromyographic (EMG) activity of thigh muscles was progressively increased during uphill walking, whereas no significant changes occurred in leg muscles. In SCI subjects, EMG durations of both thigh and leg muscles, which were already active throughout stance during level walking, were not significantly affected by uphill walking. The peak amplitude of EMG activity of the vastus lateralis, medial hamstrings, soleus, medial gastrocnemius and tibialis anterior was progressively increased during uphill walking in normal subjects. In SCI subjects, the peak amplitude of EMG activity of the medial hamstrings was adapted in a similar fashion, whereas the vastus lateralis, soleus and medial gastrocnemius showed very limited adaptation during uphill walking. We conclude that SCI subjects can adapt to uphill treadmill walking within certain limits, but they use different strategies to adapt to the changing locomotor demands.

  14. Selective and graded recruitment of cat hamstring muscles with intrafascicular stimulation.

    PubMed

    Dowden, Brett R; Wilder, Andrew M; Hiatt, Scott D; Normann, Richard A; Brown, Nicholas A T; Clark, Gregory A

    2009-12-01

    The muscles of the hamstring group can produce different combinations of hip and knee torque. Thus, the ability to activate the different hamstring muscles selectively is of particular importance in eliciting functional movements such as stance and gait in a person with spinal cord injury. We investigated the ability of intrafascicular stimulation of the muscular branch of the sciatic nerve to recruit the feline hamstring muscles in a selective and graded fashion. A Utah Slanted Electrode Array, consisting of 100 penetrating microelectrodes, was implanted into the muscular branch of the sciatic nerve in six cats. Muscle twitches were evoked in the three compartments of biceps femoris (anterior, middle, and posterior), as well as semitendinosus and semimembranosus, using pulse-width modulated constant-voltage pulses. The resultant compound muscle action potentials were recorded using intramuscular fine-wire electrodes. 74% of the electrodes per implant were able to evoke a threshold response in these muscles, and these electrodes were evenly distributed among the instrumented muscles. Of the five muscles instrumented, on average 2.5 could be selectively activated to 90% of maximum EMG, and 3.5 could be selectively activated to 50% of maximum EMG. The muscles were recruited selectively with a mean stimulus dynamic range of 4.14 +/- 5.05 dB between threshold and either spillover to another muscle or a plateau in the response. This selective and graded activation afforded by intrafascicular stimulation of the muscular branch of the sciatic nerve suggests that it is a potentially useful stimulation paradigm for eliciting distinct forces in the hamstring muscle group in motor neuroprosthetic applications.

  15. Knee Joint Contact Mechanics during Downhill Gait and its Relationship with Varus/Valgus Motion and Muscle Strength in Patients with Knee Osteoarthritis

    PubMed Central

    Farrokhi, Shawn; Voycheck, Carrie A.; Gustafson, Jonathan A.; Fitzgerald, G. Kelley; Tashman, Scott

    2015-01-01

    Objective The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Methods Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Group differences in contact mechanics and frontal-plane motion excursions were compared using analysis of covariance with adjustments for body mass index. Differences in strength were compared using independent sample t-tests. Additionally, linear associations between contact mechanics with frontal-plane knee motion and muscle strength were evaluated using Pearson's correlation coefficients. Results Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p<0.02) and greater heel-strike joint contact point velocities (p<0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p=0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p<0.01) and greater quadriceps and hip abductor muscle weakness (p=0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p<0.04) but not with quadriceps or hip abductor strength. Conclusion Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength. PMID:27030846

  16. A clinical observational study on patient-reported outcomes, hip functional performance and return to sports activities in hip arthroscopy patients.

    PubMed

    Tijssen, Marsha; van Cingel, Robert; de Visser, Enrico; Nijhuis-van der Sanden, Maria

    2016-07-01

    To describe data of short- and midterm results of hip arthroscopy patients based on patient-reported hip function, hip functional performance and return to sports activities. Observational cohort study. Sports medical center. 37 recreational athletes (21 men) at least six months after finishing rehabilitation for hip arthroscopy. International Hip Outcome Tool 33 (IHOT-33), Pain Visual Analogue Scale (VAS), Global Perceived Effect Scale (GPE), sports questionnaires and hip functional performance tests. At a mean follow-up time of 2.3 years, 81% of participants reported improvement on the GPE and 84% returned to sports activities. The mean IHOT-33 score was 69.3; the mean VAS score was 35.0. Range of motion (ROM) and strength were within the 90% Limb Symmetry Index (LSI) limit, except for hip internal rotation ROM. A full recovery of hip functional performance, as measured with balance and hop tests, was established based on the 90% LSI limit. The overall short- and midterm results of these follow-up data show good recovery of hip arthroscopy patients on patient-reported outcomes, functional performance and return to sports activities. The functional performance tests used in this study seem adequate for measuring recovery in hip arthroscopy patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Hip1-related Mutant Mice Grow and Develop Normally but Have Accelerated Spinal Abnormalities and Dwarfism in the Absence of HIP1†

    PubMed Central

    Hyun, Teresa S.; Li, Lina; Oravecz-Wilson, Katherine I.; Bradley, Sarah V.; Provot, Melissa M.; Munaco, Anthony J.; Mizukami, Ikuko F.; Sun, Hanshi; Ross, Theodora S.

    2004-01-01

    In mice and humans, there are two known members of the Huntingtin interacting protein 1 (HIP1) family, HIP1 and HIP1-related (HIP1r). Based on structural and functional data, these proteins participate in the clathrin trafficking network. The inactivation of Hip1 in mice leads to spinal, hematopoietic, and testicular defects. To investigate the biological function of HIP1r, we generated a Hip1r mutant allele in mice. Hip1r homozygous mutant mice are viable and fertile without obvious morphological abnormalities. In addition, embryonic fibroblasts derived from these mice do not have gross abnormalities in survival, proliferation, or clathrin trafficking pathways. Altogether, this demonstrates that HIP1r is not necessary for normal development of the embryo or for normal adulthood and suggests that HIP1 or other functionally related members of the clathrin trafficking network can compensate for HIP1r absence. To test the latter, we generated mice deficient in both HIP1 and HIP1r. These mice have accelerated development of abnormalities seen in Hip1 -deficient mice, including kypholordosis and growth defects. The severity of the Hip1r/Hip1 double-knockout phenotype compared to the Hip1 knockout indicates that HIP1r partially compensates for HIP1 function in the absence of HIP1 expression, providing strong evidence that HIP1 and HIP1r have overlapping roles in vivo. PMID:15121852

  18. Hip1-related mutant mice grow and develop normally but have accelerated spinal abnormalities and dwarfism in the absence of HIP1.

    PubMed

    Hyun, Teresa S; Li, Lina; Oravecz-Wilson, Katherine I; Bradley, Sarah V; Provot, Melissa M; Munaco, Anthony J; Mizukami, Ikuko F; Sun, Hanshi; Ross, Theodora S

    2004-05-01

    In mice and humans, there are two known members of the Huntingtin interacting protein 1 (HIP1) family, HIP1 and HIP1-related (HIP1r). Based on structural and functional data, these proteins participate in the clathrin trafficking network. The inactivation of Hip1 in mice leads to spinal, hematopoietic, and testicular defects. To investigate the biological function of HIP1r, we generated a Hip1r mutant allele in mice. Hip1r homozygous mutant mice are viable and fertile without obvious morphological abnormalities. In addition, embryonic fibroblasts derived from these mice do not have gross abnormalities in survival, proliferation, or clathrin trafficking pathways. Altogether, this demonstrates that HIP1r is not necessary for normal development of the embryo or for normal adulthood and suggests that HIP1 or other functionally related members of the clathrin trafficking network can compensate for HIP1r absence. To test the latter, we generated mice deficient in both HIP1 and HIP1r. These mice have accelerated development of abnormalities seen in Hip1 -deficient mice, including kypholordosis and growth defects. The severity of the Hip1r/Hip1 double-knockout phenotype compared to the Hip1 knockout indicates that HIP1r partially compensates for HIP1 function in the absence of HIP1 expression, providing strong evidence that HIP1 and HIP1r have overlapping roles in vivo.

  19. A surgical technique for hip disarticulation.

    PubMed

    Sugarbaker, P H; Chretien, P B

    1981-09-01

    Hip disarticulation is usually elected for malignant bony and soft tissue tumors below the lesser trochanter of the femur. The operation is performed with the patient in a posterolateral position; in the first phase of the procedure the surgeon stands anterior to the patient. After incision of the skin and division of the femoral vessels and nerve, muscles of the anterior thigh are transected off the pelvic bone from lateral to medial starting with the sartorius and finishing with the adductor magnus. Muscles are divided at their origin except for the iliopsoas and obturator externus which are divided at their insertion on the lesser trochanter of the femur. The quadratus femoris muscle is identified and preserved, then the flexor muscles are transected at their site of origin from the ischial tuberosity. During the next phase the surgeon is posterior to the patient, and the pelvis is rotated from the posterolateral to the anterolateral position. After completion of the skin incision, the gluteal fascia, tensor fascia lata, and the gluteus maximus muscles are divided and dissected free of their posterior attachments to expose the muscles inserting by way of a common tendon onto the greater trochanter. These muscles are then transected at their insertion on the bone. The posterior aspect of the joint capsule is then exposed and transected. Finally, the sciatic nerve is divided and allowed to retract beneath the piriformis muscle. To close the wound the preserved muscles are approximated over the joint capsule and the gluteal fascia secured to the inguinal ligament over suction drains. The skin is closed with interrupted sutures.

  20. The control of mono-articular muscles in multijoint leg extensions in man.

    PubMed Central

    van Ingen Schenau, G J; Dorssers, W M; Welter, T G; Beelen, A; de Groot, G; Jacobs, R

    1995-01-01

    1. Movements often require control of direction and a magnitude of force exerted externally on the environment. Bi-articular upper leg muscles appear to play a unique role in the regulation of the net torques about the hip and knee joints, necessary for the control of this external force. 2. The aim of this study was to test the hypothesis that the mono-articular muscles act as work generators in powerful dynamic leg extensions, which means that they should be activated primarily in the phases during which they can contribute to work, irrespective of the net joint torques required to control the external force. 3. Cycling movements of six trained subjects were analysed by means of inverse dynamics, yielding net joint torques as well as activity patterns and shortening velocities of four mono- and four bi-articular leg muscles. 4. The results show that the mono-articular muscles exert force only in the phase in which these muscles shorten, whereas this appears not to be the case for the bi-articular muscles. 5. Reciprocal patterns of activation of the rectus femoris and hamstring muscles appear to tune the distribution of net joint torques about the hip and knee joints, necessary to control the (changing) direction of the force on the pedal. 6. An analysis of running in man and additional related literature based on animal studies appears to provide further support for the hypothesis that mono- and bi-articular muscles have essentially different roles in these powerful multijoint leg extension tasks. PMID:7602524

Top