Science.gov

Sample records for hipk2 overexpression leads

  1. Hyperglycemia triggers HIPK2 protein degradation

    PubMed Central

    Granato, Marisa; Cuomo, Laura; Pistritto, Giuseppa; Cirone, Mara; D'Orazi, Gabriella

    2017-01-01

    Homeodomain interacting protein kinase-2 (HIPK2) is an evolutionary conserved kinase that modulates several key molecular pathways to restrain tumor growth and induce p53-depending apoptotic cell-death in response to anticancer therapies. HIPK2 silencing in cancer cells leads to chemoresistance and cancer progression, in part due to p53 inhibition. Recently, hyperglycemia has been shown to reduce p53 phosphorylation at serine 46 (Ser46), the target residue of HIPK2, thus impairing p53 apoptotic function. Here we asked whether hyperglycemia could, upstream of p53, target HIPK2. We focused on the effect of high glucose (HG) on HIPK2 protein stability and the underlying mechanisms. We found that HG reduced HIPK2 protein levels, therefore impairing HIPK2-induced p53 apoptotic activity. HG-triggered HIPK2 protein downregulation was rescued by both proteasome inhibitor MG132 and by protein phosphatase inhibitors Calyculin A (CL-A) and Okadaic Acid (OA). Looking for the phosphatase involved, we found that protein phosphatase 2A (PP2A) induced HIPK2 degradation, as evidenced by directly activating PP2A with FTY720 or by silencing PP2A with siRNA in HG condition. The effect of PP2A on HIPK2 protein degradation could be in part due to hypoxia-inducible factor-1 (HIF-1) activity which has been previously shown to induce HIPK2 proteasomal degradation through several ubiquitin ligases. Validation analysed performed with HIF-1α dominant negative or with silencing of Siah2 ubiquitin ligase clearly showed rescue of HG-induced HIPK2 degradation. These findings demonstrate how hyperglycemia, through a complex protein cascade, induced HIPK2 downregulation and consequently impaired p53 apoptotic activity, revealing a novel link between diabetes/obesity and tumor resistance to therapies. PMID:27901482

  2. HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation

    PubMed Central

    De Nicola, F; Catena, V; Rinaldo, C; Bruno, T; Iezzi, S; Sorino, C; Desantis, A; Camerini, S; Crescenzi, M; Floridi, A; Passananti, C; Soddu, S; Fanciulli, M

    2014-01-01

    Che-1/AATF is an RNA polymerase II-binding protein that is involved in the regulation of gene transcription, which undergoes stabilization and accumulation in response to DNA damage. We have previously demonstrated that following apoptotic induction, Che-1 protein levels are downregulated through its interaction with the E3 ligase HDM2, which leads to Che-1 degradation by ubiquitylation. This interaction is mediated by Pin1, which determines a phosphorylation-dependent conformational change. Here we demonstrate that HIPK2, a proapoptotic kinase, is involved in Che-1 degradation. HIPK2 interacts with Che-1 and, upon genotoxic stress, phosphorylates it at specific residues. This event strongly increases HDM2/Che-1 interaction and degradation of Che-1 protein via ubiquitin-dependent proteasomal system. In agreement with these findings, we found that HIPK2 depletion strongly decreases Che-1 ubiquitylation and degradation. Notably, Che-1 overexpression strongly counteracts HIPK2-induced apoptosis. Our results establish Che-1 as a new HIPK2 target and confirm its important role in the cellular response to DNA damage. PMID:25210797

  3. Heat shock modulates the subcellular localization, stability, and activity of HIPK2.

    PubMed

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress - such as hypoxia, oxidative stress, or UV damage - is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  4. The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2

    PubMed Central

    Glenewinkel, Florian; Cohen, Michael J.; King, Cason R.; Kaspar, Sophie; Bamberg-Lemper, Simone; Mymryk, Joe S.; Becker, Walter

    2016-01-01

    DYRK1A is a constitutively active protein kinase that has a critical role in growth and development which functions by regulating cell proliferation, differentiation and survival. DCAF7 (also termed WDR68 or HAN11) is a cellular binding partner of DYRK1A and also regulates signalling by the protein kinase HIPK2. DCAF7 is an evolutionarily conserved protein with a single WD40 repeat domain and has no catalytic activity. We have defined a DCAF7 binding motif of 12 amino acids in the N-terminal domain of class 1 DYRKs that is functionally conserved in DYRK1 orthologs from Xenopus, Danio rerio and the slime mold Dictyostelium discoideum. A similar sequence was essential for DCAF7 binding to HIPK2, whereas the closely related HIPK1 family member did not bind DCAF7. Immunoprecipitation and pulldown experiments identified DCAF7 as an adaptor for the association of the adenovirus E1A protein with DYRK1A and HIPK2. Furthermore, DCAF7 was required for the hyperphosphorylation of E1A in DYRK1A or HIPK2 overexpressing cells. Our results characterize DCAF7 as a substrate recruiting subunit of DYRK1A and HIPK2 and suggest that it is required for the negative effect of DYRK1A on E1A-induced oncogenic transformation. PMID:27307198

  5. Programmed cell death 4 protein (Pdcd4) and homeodomain-interacting protein kinase 2 (Hipk2) antagonistically control translation of Hipk2 mRNA.

    PubMed

    Ohnheiser, Johanna; Ferlemann, Eva; Haas, Astrid; Müller, Jan P; Werwein, Eugen; Fehler, Olesja; Biyanee, Abhiruchi; Klempnauer, Karl-Heinz

    2015-07-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) is a highly conserved RNA-binding protein that inhibits the translation of specific mRNAs. Here, we have identified the homeobox-interacting protein kinase-2 (Hipk2) mRNA as a novel translational target of Pdcd4. Unlike most other protein kinases Hipk2 is constitutively active after being synthesized by the ribosome and its expression and activity are thought to be mainly controlled by modulation of the half-life of the kinase. Our work provides the first evidence that Hipk2 expression is also controlled on the level of translation. We show that Hipk2 stimulates the translation of its own mRNA and that Pdcd4 suppresses the translation of Hipk2 mRNA by interfering with this auto-regulatory feedback mechanism. We also show that the translation of the related kinase Hipk1 is controlled by a similar feedback loop and that Hipk2 also stimulates the translation of Hipk1 mRNA. Taken together, our work describes a novel mechanism of translational suppression by Pdcd4 and shows for the first time that Hipk2 controls its own synthesis by an auto-regulatory feedback mechanism. Furthermore, the effect of Hipk2 on the translation of Hipk1 RNA suggests that Hipk2 and Pdcd4 can act in similar manner to control the translation of other mRNAs.

  6. FHL2 mediates p53-induced transcriptional activation through a direct association with HIPK2

    SciTech Connect

    Lee, Sang-Wang . E-mail: umsj@sejong.ac.kr

    2006-01-27

    To understand the molecular mechanism underlying HIPK2 regulation of the transcriptional activation by p53, we sought to identify the protein that interacts with HIPK2. From our yeast two-hybrid screen, we found that four and a half LIM domains 2 (FHL2) could bind to the C-terminal half of HIPK2. Further assays in yeast mapped the minimal interaction domain to amino acids 812-907 in HIPK2. The interaction was confirmed using a GST pull-down assay in vitro, and an immunoprecipitation (IP) assay and fluorescence microscopy in vivo. FHL2 alone spread throughout both the cytoplasm and nucleus but was redistributed to dot-like structures in the nucleus when HIPK2 was coexpressed in HEK293 cells. When tethered to the Gal4-responsive promoter through the Gal4 DBD fusion, FHL2 showed autonomous transcriptional activity that was enhanced by wild-type HIPK2, but not by the kinase-defective mutant. In addition, FHL2 increased the p53-dependent transcriptional activation and had an additive effect on the activation when coexpressed with HIPK2, which was again not observed with the kinase-defective mutant of HIPK2. Finally, we found a ternary complex of p53, HIPK2, and FHL2 using IP, and their recruitment to the p53-responsive p21Waf1 promoter in chromatin IP assays. Overall, our findings indicate that FHL2 can also regulate p53 via a direct association with HIPK2.

  7. PARP1 regulates the protein stability and proapoptotic function of HIPK2

    PubMed Central

    Choi, Jong-Ryoul; Shin, Ki Soon; Choi, Cheol Yong; Kang, Shin Jung

    2016-01-01

    Homeodomain-interacting protein kinase 2 (HIPK2) is a nuclear serine/threonine kinase that functions in DNA damage response and development. In the present study, we propose that the protein stability and proapoptotic function of HIPK2 are regulated by poly(ADP-ribose) polymerase 1 (PARP1). We present evidence indicating that PARP1 promotes the proteasomal degradation of HIPK2. The tryptophan-glycine-arginine (WGR) domain of PARP1 was necessary and sufficient for the promotion of HIPK2 degradation independently of the PARP1 enzymatic activity. The WGR domain mediated the interaction between HIPK2 and C-terminus of HSP70-interacting protein (CHIP) via HSP70. We found that CHIP can function as a ubiquitin ligase for HIPK2. The interaction between PAPR1 and HIPK2 was weakened following DNA damage. Importantly, PARP1 reduced the HIPK2-mediated p53 phosphorylation, proapoptotic transcriptional activity and cell death. These results suggest that PARP1 can modulate the tumor-suppressing function of HIPK2 by regulating the protein stability of HIPK2. PMID:27787517

  8. HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation

    PubMed Central

    Siepi, Francesca; Gatti, Veronica; Camerini, Serena; Crescenzi, Marco; Soddu, Silvia

    2013-01-01

    HIPK2 (homeodomain-interacting protein kinase-2) binds to and phosphorylates, at Ser and Thr residues, a large number of targets involved in cell division and cell fate decision in response to different physiological or stress stimuli. Inactivation of HIPK2 has been observed in human and mouse cancers supporting its role as a tumor suppressor. Despite the biological relevance of this kinase, very little is known on how HIPK2 becomes catalytically active. Based on sequence homologies, HIPK2 has been taxonomically classified as a subfamily member of the dual-specificity tyrosine-regulated kinases (DYRKs) and the activation-loop Y354 of HIPK2 has been found phosphorylated in different cells; however, the relevance of this Y phosphorylation is presently unknown. Here, we show that HIPK2, which is extensively phosphorylated at S/T sites throughout its functional domains, becomes catalytically active by autophosphorylation at the activation-loop Y354. In particular, we found that, in analogy to DYRKs, HIPK2-Y354 phosphorylation is an autocatalytic event and its prevention, through Y354 substitution with non-phosphorylatable amino acids or by using the kinase inhibitor purvalanol A, induces a strong reduction of the HIPK2 S/T-kinase activity on different substrates. Interestingly, at variance from DYRKs, inhibition of HIPK2-Y354 phosphorylation induces a strong out-of-target Y-kinase activity in cis and a strong cytoplasmic relocalization of the kinase. Together, these results demonstrate that the catalytic activity, substrate specificity, and subcellular localization of HIPK2 are regulated by autophosphorylation of its activation-loop Y354. PMID:23485397

  9. Apoptosis induced by a HIPK2 full-length-specific siRNA is due to off-target effects rather than prevalence of HIPK2-Δe8 isoform

    PubMed Central

    Di Rocco, Giuliana; Verdina, Alessandra; Gatti, Veronica; Virdia, Ilaria; Toietta, Gabriele; Todaro, Matilde; Stassi, Giorgio; Soddu, Silvia

    2016-01-01

    Small interfering RNAs (siRNAs) are widely used to study gene function and extensively exploited for their potential therapeutic applications. HIPK2 is an evolutionary conserved kinase that binds and phosphorylates several proteins directly or indirectly related to apoptosis. Recently, an alternatively spliced isoform skipping 81 nucleotides of exon 8 (Hipk2-Δe8) has been described. Selective depletion of Hipk2 full-length (Hipk2-FL) with a specific siRNA that spares the Hipk2-Δe8 isoform has been shown to strongly induce apoptosis, suggesting an unpredicted dominant-negative effect of Hipk2-FL over the Δe8 isoform. From this observation, we sought to take advantage and assessed the therapeutic potential of generating Hipk2 isoform unbalance in tumor-initiating cells derived from colorectal cancer patients. Strong reduction of cell viability was induced in vitro and in vivo by the originally described exon 8-specific siRNA, supporting a potential therapeutic application. However, validation analyses performed with additional exon8-specific siRNAs with different stabilities showed that all exon8-targeting siRNAs can induce comparable Hipk2 isoform unbalance but only the originally reported e8-siRNA promotes cell death. These data show that loss of viability does not depend on the prevalence of Hipk2-Δe8 isoform but it is rather due to microRNA-like off-target effects. PMID:26625198

  10. Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53

    SciTech Connect

    Sung, Ki Sa; Lee, Yun-Ah; Kim, Eui Tae; Lee, Seung-Rock; Ahn, Jin-Hyun; Choi, Cheol Yong

    2011-04-15

    Homeodomain-interacting protein kinase 2 (HIPK2) is a key regulator of various transcription factors including p53 and CtBP in the DNA damage signaling pathway. PML-nuclear body (NB) is required for HIPK2-mediated p53 phosphorylation at Ser46 and induction of apoptosis. Although PML-NB targeting of HIPK2 has been shown, much is not clear about the molecular mechanism of HIPK2 recruitment to PML-NBs. Here we show that HIPK2 colocalizes specifically with PML-I and PML-IV. Mutational analysis showed that HIPK2 recruitment to PML-IV-NBs is mediated by the SUMO-interaction motifs (SIMs) of both PML-IV and HIPK2. Wild-type HIPK2 associated with SUMO-conjugated PML-IV at a higher affinity than with un-conjugated PML-IV, while the association of a HIPK2 SIM mutant with SUMO-modified PML-IV was impaired. In colony formation assays, HIPK2 strongly suppressed cell proliferation, but HIPK2 SIM mutants did not. In addition, activation and phosphorylation of p53 at the Ser46 residue were impaired by HIPK2 SIM mutants. These results suggest that SIM-mediated HIPK2 targeting to PML-NBs is crucial for HIPK2-mediated p53 activation and induction of apoptosis.

  11. Inhibition of the processing of miR-25 by HIPK2-Phosphorylated-MeCP2 induces NOX4 in early diabetic nephropathy

    PubMed Central

    Oh, Hyung Jung; Kato, Mitsuo; Deshpande, Supriya; Zhang, Erli; Sadhan, Das; Lanting, Linda; Wang, Mei; Natarajan, Rama

    2016-01-01

    Phosphorylated methyl-CpG binding protein2 (p-MeCP2) suppresses the processing of several microRNAs (miRNAs). Homeo-domain interacting protein kinase2 (HIPK2) phosphorylates MeCP2, a known transcriptional repressor. However, it is not known if MeCP2 and HIPK2 are involved in processing of miRNAs implicated in diabetic nephropathy. p-MeCP2 and HIPK2 levels were significantly increased, but Seven in Absentia Homolog1 (SIAH1), which mediates proteasomal degradation of HIPK2, was decreased in the glomeruli of streptozotocin injected diabetic mice. Among several miRNAs, miR-25 and its precursor were significantly decreased in diabetic mice, whereas primary miR-25 levels were significantly increased. NADPH oxidase4 (NOX4), a target of miR-25, was significantly increased in diabetic mice. Protein levels of p-MeCP2, HIPK2, and NOX4 were increased in high glucose (HG)- or TGF-β-treated mouse glomerular mesangial cells (MMCs). miR-25 (primary, precursor, and mature) and mRNA levels of genes indicated in the in vivo study showed similar trends of regulation in MMCs treated with HG or TGF-β. The HG- or TGF-β-induced upregulation of p-MeCP2, NOX4 and primary miR-25, but downregulation of precursor and mature miR-25, were attenuated by Hipk2 siRNA. These results demonstrate a novel role for the SIAH1/HIPK2/MeCP2 axis in suppressing miR-25 processing and thereby upregulating NOX4 in early diabetic nephropathy. PMID:27941951

  12. Homeodomain-interacting Protein Kinase-2 (HIPK2) Phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77 and Modulates Its DNA Binding Affinity

    PubMed Central

    Zhang, Qingchun; Wang, Yinsheng

    2008-01-01

    The chromosomal high-mobility group A (HMGA) proteins, comprising of HMGA1a, HMGA1b and HMGA2, play important roles in the regulation of numerous processes in eukaryotic cells, such as transcriptional regulation, DNA repair, RNA processing, and chromatin remodeling. The biological activities of HMGA1 proteins are highly regulated by their post-translational modifications (PTMs), including acetylation, methylation and phosphorylation. Recently, it was found that the homeodomain-interacting protein kinase-2 (HIPK2), a newly identified serine/threonine kinase, co-immunoprecipitated with, and phosphorylated HMGA1 proteins. However, the sites and the biological significance of the phosphorylation have not been elucidated. Here, we found that HIPK2 phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77, and HMGA1b at Thr-41 and Thr-66. In addition, we demonstrated that cdc2, which is known to phosphorylate HMGA1 proteins, could induce the phosphorylation of HMGA1 proteins at the same Ser/Thr sites. The two kinases, however, exhibited different site preferences for the phosphorylation: The preference for HIPK2 phosphorylation followed the order of Thr-77 > Thr-52 > Ser-35, whereas the order for cdc2 phosphorylation was Thr-52 > Thr-77 > Ser-35. Moreover, we found that the HIPK2-phosphorylated HMGA1a reduced the binding affinity of HMGA1a to human germ line ε promoter, and the drop in binding affinity induced by HIPK2 phosphorylation was lower than that introduced by cdc2 phosphorylation, which is consistent with the notion that the second AT-hook in HMGA1a is more important for DNA binding than the third AT-hook. Synopsis Here we report that both HIPK2 and cdc2 phosphorylate HMGA1a at Ser-35, Thr-52 and Thr-77, but the two kinases exhibit different site preferences. Moreover, we found that HIPK2-induced phosphorylation of HMGA1a reduced the binding affinity of HMGA1a to DNA, and the drop in binding affinity was lower than that introduced by cdc2 phosphorylation, confirming

  13. A natural product from Cannabis sativa subsp. sativa inhibits homeodomain-interacting protein kinase 2 (HIPK2), attenuating MPP(+)-induced apoptosis in human neuroblastoma SH-SY5Y cells.

    PubMed

    Wang, Guan; Zhu, Lingjuan; Zhao, Yuqian; Gao, Suyu; Sun, Dejuan; Yuan, Jingquan; Huang, Yuxin; Zhang, Xue; Yao, Xinsheng

    2017-03-30

    Homeodomain-interacting protein kinase 2 (HIPK2) is a conserved serine/threonine kinase, which regulate transcription, cell differentiation, proliferation and apoptosis. Previous evidences indicated that HIPK2 could be involved in the pathogenesis of neurodegenerative diseases, suggesting as a novel target for Parkinson's disease (PD) therapeutic development. Herein, gene microarray analysis was performed to verify the key regulatory function of HIPK2 in PD. (Z)-methylp-hydroxycinnamate (ZMHC, 7) with other eighteen compounds were isolated from Cannabis sativa subsp. sativa, growing in Bama Yao Autonomous County, one of the five largest longevity regions of the world. Intriguingly, ZMHC was identified to bind HIPK2 with high affinity through molecular modeling and molecular dynamics (MD) simulations. Moreover, cell morphology, flow cytometry and western blot assay suggested that ZMHC inhibited HIPK2, which attenuated MPP(+)-induced apoptosis in SH-SY5Y cells. In conclusion, these findings discovered a natural product that inhibited HIPK2, and highlighted that ZMHC could be a potential precursor agent for future PD therapy.

  14. Phosphorylation of Krüppel-like Factor 3 (KLF3/BKLF) and C-terminal Binding Protein 2 (CtBP2) by Homeodomain-interacting Protein Kinase 2 (HIPK2) Modulates KLF3 DNA Binding and Activity*

    PubMed Central

    Dewi, Vitri; Kwok, Alister; Lee, Stella; Lee, Ming Min; Tan, Yee Mun; Nicholas, Hannah R.; Isono, Kyo-ichi; Wienert, Beeke; Mak, Ka Sin; Knights, Alexander J.; Quinlan, Kate G. R.; Cordwell, Stuart J.; Funnell, Alister P. W.; Pearson, Richard C. M; Crossley, Merlin

    2015-01-01

    Krüppel-like factor 3 (KLF3/BKLF), a member of the Krüppel-like factor (KLF) family of transcription factors, is a widely expressed transcriptional repressor with diverse biological roles. Although there is considerable understanding of the molecular mechanisms that allow KLF3 to silence the activity of its target genes, less is known about the signal transduction pathways and post-translational modifications that modulate KLF3 activity in response to physiological stimuli. We observed that KLF3 is modified in a range of different tissues and found that the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) can both bind and phosphorylate KLF3. Mass spectrometry identified serine 249 as the primary phosphorylation site. Mutation of this site reduces the ability of KLF3 to bind DNA and repress transcription. Furthermore, we also determined that HIPK2 can phosphorylate the KLF3 co-repressor C-terminal binding protein 2 (CtBP2) at serine 428. Finally, we found that phosphorylation of KLF3 and CtBP2 by HIPK2 strengthens the interaction between these two factors and increases transcriptional repression by KLF3. Taken together, our results indicate that HIPK2 potentiates the activity of KLF3. PMID:25659434

  15. Targeted overexpression of calcitonin in gonadotrophs of transgenic mice leads to chronic hypoprolactinemia.

    PubMed

    Yuan, Ren; Kulkarni, Trupti; Wei, Fu; Shah, Girish V

    2005-01-14

    It was previously shown that calcitonin-like pituitary peptide (pit-CT) is synthesized and secreted by gonadotrophs, and pit-CT inhibits PRL gene transcription and lactotroph cell proliferation. Present studies examined long-term consequences of pit-CT overexpression on the functioning of mouse anterior pituitary (AP) gland. Targeted overexpression of pit-CT in gonadotrophs of mouse pituitaries was achieved by generating mice overexpressing bovine luteinizing hormone (LH)-alpha subunit promoter-pit-CT cDNA transgene. Transgenic (pit-CT+) mice displayed chronic but selective overexpression of pit-CT in gonadotrophs. The mice also displayed a dramatic decline in PRL gene expression as assessed by PRL mRNA abundance, PRL immunohistochemistry (IHC) and serum PRL levels. LH secretion in pit-CT+ mice was also reduced, without any change in FSH secretion. Reproductive abnormalities such as prolonged estrous cycles, reduced pregnancy rate, delivery of smaller litters, increased neonatal mortality and deficient lactation were also observed. Administration of PRL during early pregnancy significantly increased the pregnancy rate and neonatal survival of newborns. These results demonstrate that overexpression of pit-CT leads to chronic hypoprolactinemia and reproductive dysfunction in female mice, and reinforces the possibility that gonadotroph-derived pit-CT is an important paracrine regulator of lactotroph function.

  16. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato.

    PubMed

    Albacete, Alfonso; Cantero-Navarro, Elena; Großkinsky, Dominik K; Arias, Cintia L; Balibrea, María Encarnación; Bru, Roque; Fragner, Lena; Ghanem, Michel E; González, María de la Cruz; Hernández, Jose A; Martínez-Andújar, Cristina; van der Graaff, Eric; Weckwerth, Wolfram; Zellnig, Günther; Pérez-Alfocea, Francisco; Roitsch, Thomas

    2015-02-01

    Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the

  17. Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma

    SciTech Connect

    Sun, Shiren; Ning, Xiaoxuan; Liu, Jie; Liu, Lili; Chen, Yu; Han, Shuang; Zhang, Yanqi; Liang, Jie; Wu, Kaichun; Fan, Daiming . E-mail: fandaim@fmmu.edu.cn

    2007-05-18

    Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP), a target protein of S100, has been identified as a component of a novel ubiquitinylation complex leading to {beta}-catenin degradation, which was found to be related to the malignant phenotypes of gastric cancer. However, the roles of CacyBP/SIP in renal cell carcinoma still remain unclear. In the present study, we had analyzed the expression of the CacyBP/SIP protein in human renal cancer cells and clinical tissue samples. The possible roles of CacyBP/SIP in regulating the malignant phenotype of renal cancer cells were also investigated. The results demonstrated that the expression of CacyBP/SIP was markedly down-regulated in renal cell carcinoma tissues and cell lines. Ectopic overexpression of CacyBP/SIP in A498 cells inhibited the proliferation of this cell and delayed cell cycle progression significantly, which might be related to the down-regulation of Cyclin D1 through reducing {beta}-catenin protein. CacyBP/SIP also suppressed colony formation in soft agar and its tumorigenicity in nude mice. Taken together, our work showed that CacyBP/SIP, as a novel down-regulated gene in renal cell carcinoma, suppressed proliferation and tumorigenesis of renal cancer cells.

  18. Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma.

    PubMed

    Sun, Shiren; Ning, Xiaoxuan; Liu, Jie; Liu, Lili; Chen, Yu; Han, Shuang; Zhang, Yanqi; Liang, Jie; Wu, Kaichun; Fan, Daiming

    2007-05-18

    Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP), a target protein of S100, has been identified as a component of a novel ubiquitinylation complex leading to beta-catenin degradation, which was found to be related to the malignant phenotypes of gastric cancer. However, the roles of CacyBP/SIP in renal cell carcinoma still remain unclear. In the present study, we had analyzed the expression of the CacyBP/SIP protein in human renal cancer cells and clinical tissue samples. The possible roles of CacyBP/SIP in regulating the malignant phenotype of renal cancer cells were also investigated. The results demonstrated that the expression of CacyBP/SIP was markedly down-regulated in renal cell carcinoma tissues and cell lines. Ectopic overexpression of CacyBP/SIP in A498 cells inhibited the proliferation of this cell and delayed cell cycle progression significantly, which might be related to the down-regulation of Cyclin D1 through reducing beta-catenin protein. CacyBP/SIP also suppressed colony formation in soft agar and its tumorigenicity in nude mice. Taken together, our work showed that CacyBP/SIP, as a novel down-regulated gene in renal cell carcinoma, suppressed proliferation and tumorigenesis of renal cancer cells.

  19. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells.

    PubMed

    Carpenter, R L; Paw, I; Dewhirst, M W; Lo, H-W

    2015-01-29

    Epithelial-mesenchymal transition (EMT) is an essential step for tumor progression, although the mechanisms driving EMT are still not fully understood. In an effort to investigate these mechanisms, we observed that heregulin (HRG)-mediated activation of HER2, or HER2 overexpression, resulted in EMT, which is accompanied with increased expression of a known EMT regulator Slug, but not TWIST or Snail. We then investigated how HER2 induced Slug expression and found, for the first time, that there are four consensus HSF sequence-binding elements (HSEs), the binding sites for heat shock factor-1 (HSF-1), located in the Slug promoter. HSF-1 bound to and transactivated the Slug promoter independent of heat shock, leading to Slug expression in breast cancer cells. Mutation of the putative HSEs ablated Slug transcriptional activation induced by HRG or HSF-1 overexpression. Knockdown of HSF-1 expression by siRNA reduced Slug expression and HRG-induced EMT. The positive association between HSF-1 and Slug was confirmed by immunohistochemical staining of a cohort of 100 invasive breast carcinoma specimens. While investigating how HER2 activated HSF-1 independent of heat shock, we observed that HER2 activation resulted in concurrent phosphorylation of Akt and HSF-1. We then observed, also for the first time, that Akt directly interacted with HSF-1 and phosphorylated HSF-1 at S326. Inhibition of Akt using siRNA, dominant-negative Akt mutant, or small molecule inhibitors prevented HRG-induced HSF-1 activation and Slug expression. Conversely, constitutively active Akt induced HSF-1 phosphorylation and Slug expression. HSF-1 knockdown reduced the ability of Akt to induce Slug expression, indicating an essential role that HSF-1 plays in Akt-induced Slug upregulation. Altogether, our study uncovered the existence of a novel Akt-HSF-1 signaling axis that leads to Slug upregulation and EMT, and potentially contributes to progression of HER2-positive breast cancer.

  20. Overexpression of Transcription Factor Sp1 Leads to Gene Expression Perturbations and Cell Cycle Inhibition

    PubMed Central

    Deniaud, Emmanuelle; Baguet, Joël; Chalard, Roxane; Blanquier, Bariza; Brinza, Lilia; Meunier, Julien; Michallet, Marie-Cécile; Laugraud, Aurélie; Ah-Soon, Claudette; Wierinckx, Anne; Castellazzi, Marc; Lachuer, Joël; Gautier, Christian

    2009-01-01

    Background The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. Methodology and Principal Findings We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. Conclusion This study shows that the binding to DNA of overexpressed Sp1

  1. Overexpression of MHC Class I Heavy Chain Protein in Young Skeletal Muscle Leads to Severe Myositis

    PubMed Central

    Li, Charles Kwok-chong; Knopp, Paul; Moncrieffe, Halima; Singh, Bhanu; Shah, Sonia; Nagaraju, Kanneboyina; Varsani, Hemlata; Gao, Bin; Wedderburn, Lucy R.

    2009-01-01

    Folding and transport of proteins, such as major histocompatibility complex (MHC) class I, through the endoplasmic reticulum (ER) is tightly regulated in all cells, including muscle tissue, where the specialized ER sarcoplasmic reticulum is also critical to muscle fiber function. Overexpression of MHC class I protein is a common feature of many muscle pathologies including idiopathic myositis and can induce ER stress. However, there has been no comparison of the consequences of MHC overexpression in muscle at different ages. We have adapted a transgenic model of myositis induced by overexpression of MHC class I protein in skeletal muscle to investigate the effects of this protein overload on young muscle fibers, as compared with adult tissue. We find a markedly more severe disease phenotype in young mice, with rapid onset of muscle weakness and pathology. Gene expression profiling to compare the two models indicates rapid onset of ER stress in young muscle tissue but also that gene expression of key muscle structural proteins is affected more rapidly in young mice than adults after this insult. This novel model has important implications for our understanding of muscle pathology in dermatomyositis of both adults and children. PMID:19700752

  2. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice.

    PubMed

    Chen, Jian-Qiang; Meng, Xiu-Ping; Zhang, Yun; Xia, Mian; Wang, Xi-Ping

    2008-12-01

    The DREB transcription factors, which specifically interact with C-repeat/DRE (A/GCCGAC), play an important role in plant abiotic stress tolerance by controlling the expression of many cold or/and drought-inducible genes in an ABA-independent pathway. We have isolated three novel rice DREB genes, OsDREB1E, OsDREB1G, and OsDREB2B, which are homologous to Arabidopsis DREB genes. The yeast one-hybrid assay indicated that OsDREB1E, OsDREB1G, and OsDREB2B can specifically bind to the C-repeat/DRE element. To elucidate the function of respective OsDREB genes, we have stably introduced these to rice by Agrobacterium-mediated transformation. Transgenic rice plants analysis revealed that over-expression of OsDREB1G and OsDREB2B in rice significantly improved their tolerance to water deficit stress, while over-expression of OsDREB1E could only slightly improved the tolerance to water deficit stress, suggesting that the OsDREBs might participate in the stress response pathway in different manners.

  3. Overexpression of AaWRKY1 Leads to an Enhanced Content of Artemisinin in Artemisia annua

    PubMed Central

    Jiang, Weimin; Fu, Xueqing; Pan, Qifang; Tang, Yueli; Shen, Qian; Lv, Zongyou; Yan, Tingxiang; Shi, Pu; Li, Ling; Zhang, Lida; Wang, Guofeng; Sun, Xiaofen; Tang, Kexuan

    2016-01-01

    Artemisinin is an effective component of drugs against malaria. The regulation of artemisinin biosynthesis is at the forefront of artemisinin research. Previous studies showed that AaWRKY1 can regulate the expression of ADS, which is the first key enzyme in artemisinin biosynthetic pathway. In this study, AaWRKY1 was cloned, and it activated ADSpro and CYPpro in tobacco using dual-LUC assay. To further study the function of AaWRKY1, pCAMBIA2300-AaWRKY1 construct under 35S promoter was generated. Transgenic plants containing AaWRKY1 were obtained, and four independent lines with high expression of AaWRKY1 were analyzed. The expression of ADS and CYP, the key enzymes in artemisinin biosynthetic pathway, was dramatically increased in AaWRKY1-overexpressing A. annua plants. Furthermore, the artemisinin yield increased significantly in AaWRKY1-overexpressing A. annua plants. These results showed that AaWRKY1 increased the content of artemisinin by regulating the expression of both ADS and CYP. It provides a new insight into the mechanism of regulation on artemisinin biosynthesis via transcription factors in the future. PMID:27064403

  4. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions.

  5. Overexpression of SKI oncoprotein leads to p53 degradation through regulation of MDM2 protein sumoylation.

    PubMed

    Ding, Boxiao; Sun, Yin; Huang, Jiaoti

    2012-04-27

    Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer.

  6. Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction1[S

    PubMed Central

    Wang, Hong; Sreenivasan, Urmila; Gong, Da-Wei; O'Connell, Kelly A.; Dabkowski, Erinne R.; Hecker, Peter A.; Ionica, Nicoleta; Konig, Manige; Mahurkar, Anup; Sun, Yezhou; Stanley, William C.; Sztalryd, Carole

    2013-01-01

    Presence of ectopic lipid droplets (LDs) in cardiac muscle is associated to lipotoxicity and tissue dysfunction. However, presence of LDs in heart is also observed in physiological conditions, such as when cellular energy needs and energy production from mitochondria fatty acid β-oxidation are high (fasting). This suggests that development of tissue lipotoxicity and dysfunction is not simply due to the presence of LDs in cardiac muscle but due at least in part to alterations in LD function. To examine the function of cardiac LDs, we obtained transgenic mice with heart-specific perilipin 5 (Plin5) overexpression (MHC-Plin5), a member of the perilipin protein family. Hearts from MHC-Plin5 mice expressed at least 4-fold higher levels of plin5 and exhibited a 3.5-fold increase in triglyceride content versus nontransgenic littermates. Chronic cardiac excess of LDs was found to result in mild heart dysfunction with decreased expression of peroxisome proliferator-activated receptor (PPAR)α target genes, decreased mitochondria function, and left ventricular concentric hypertrophia. Lack of more severe heart function complications may have been prevented by a strong increased expression of oxidative-induced genes via NF-E2-related factor 2 antioxidative pathway. Perilipin 5 regulates the formation and stabilization of cardiac LDs, and it promotes cardiac steatosis without major heart function impairment. PMID:23345411

  7. NR2B overexpression leads to the enhancement of specific protein phosphorylation in the brain.

    PubMed

    Li, Chunxia; Zhang, Ning; Hu, Yinghe; Wang, Huimin

    2014-11-07

    n-methyl-d-aspartate receptors (NMDARs) are highly expressed in the central nervous system (CNS) including the cerebral cortex, and it has been found that they contribute significantly to the processes of learning and memory. Dysfunctions of NMDARs are implicated in many neurological disorders. To further investigate the specific role of the NR2B subunit of NMDARs in brain functions, we have examined differences in gene expression in the cerebral cortex between NR2B transgenic mice and their wild-type littermates using the DNA microarray. Total of 179 differentially expressed genes were identified, including genes involved in ion channel activity and/or neurotransmission, signal transduction, structure/cytoskeleton, transcription, and hormone/growth factor activity. Signal pathway analysis has indicated that multiple pathways were involved in this process, especially the Mitogen-activated protein kinases/Extracellular signal-regulated kinases (MAPK/ERK) pathway. The phosphorylation levels of ERK and cAMP response element-binding protein (CREB), and the mRNA levels of CREB target genes (C-Fos and Nr4a1) were significantly upregulated in the cerebral cortices of NR2B transgenic mice compared to their wild-type littermates. Our study suggested that a chronic increase of NMDARs activation by NR2B overexpression in the forebrain may enhance the protein serine/threonine phosphorylation levels of MAPK/ERK-CREB and thereby regulated their signaling pathway.

  8. Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes.

    PubMed

    Flachowsky, Henryk; Hättasch, Conny; Höfer, Monika; Peil, Andreas; Hanke, Magda-Viola

    2010-01-01

    To break the juvenile stage of apple (Malus x domestica Borkh.) we transferred the LFY gene of Arabidopsis into the genome of the apple cv. 'Pinova'. A total of five transgenic clones constitutively overexpressing the LFY gene were obtained. Approximately, 20 shoots of each clone were rooted and transferred to the glasshouse. No flowers were obtained on transgenic plants during the first 2 years of cultivation. Evaluation of the expression of possible LFY targets revealed that no transcripts could be detected for MdAP1-1 and MdAP1-2. MdTFL1 was unaffected. Based on the absence of the LFY core-binding sequence within promoter sequences of MdAP1-1 and MdAP1-2, it was concluded that LFY was not able to induce these genes. The LFY genes of apple were unaffected in transgenic plants and sequence alignments of the C-terminal amino acid sequence showed a high conservation of these proteins. A change in binding ability to DNA can therefore be excluded. Instead of early flowering, the transgenic plants showed an altered phenotype, which is similar to the columnar phenotype of the 'McIntosh Wijcik' mutant of apple. The transgenic plants showed shortened internodes and a significantly reduced length of the regrowing shoot. A negative correlation was observed between the length of the regrowing shoot and the LFY mRNA transcript level. Furthermore, the LFY transgenic apple plants showed an increased shoot diameter at node 20, which was positively correlated with the LFY mRNA transcript level. Based on our results, we assume an alternative role of LFY in apple.

  9. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide.

    PubMed

    Dabral, Neha; Jain-Gupta, Neeta; Seleem, Mohamed N; Sriranganathan, Nammalwar; Vemulapalli, Ramesh

    2015-01-01

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in mammals. Brucella strains containing the O-polysaccharide in their cell wall structure exhibit a smooth phenotype whereas the strains devoid of the polysaccharide show rough phenotype. B. abortus strain RB51 is a stable rough attenuated mutant which is used as a licensed live vaccine for bovine brucellosis. Previous studies have shown that the wboA gene, which encodes a glycosyltransferase required for the synthesis of O-polysaccharide, is disrupted in B. abortus RB51 by an IS711 element. Although complementation of strain RB51 with a functional wboA gene results in O-polysaccharide synthesis in the cytoplasm, it does not result in smooth phenotype. The aim of this study was to determine if overexpression of Brucella WbkA or WbkE, two additional putative glycosyltransferases essential for O-polysaccharide synthesis, in strain RB51 would result in the O-polysaccharide synthesis and smooth phenotype. Our results demonstrate that overexpression of wbkA or wbkE gene in RB51 does not result in O-polysaccharide expression as shown by Western blotting with specific antibodies. However, wbkA, but not wbkE, overexpression leads to the development of a clumping phenotype and the production of exopolysaccharide(s) containing mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine. Moreover, we found that the clumping recombinant strain displays increased adhesion to polystyrene plates. The recombinant strain was similar to strain RB51 in its attenuation characteristic and in its ability to induce protective immunity against virulent B. abortus challenge in mice.

  10. Significance of Pathways Leading to RhoC Overexpression in Breast Cancer

    DTIC Science & Technology

    2008-04-01

    AD_________________ Award Number: W81XWH-04- 1 -0395 TITLE: Significance of Pathways Leading to...0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 01-04-2008 2. REPORT TYPE Annual Summary 3. DATES COVERED (From - To) 29 Mar 2004

  11. Cdc14B depletion leads to centriole amplification and its overexpression prevents unscheduled centriole duplication

    SciTech Connect

    Wu, Jun; Plumley, Hyekyung; Rhee, David; Johnson, Dabney K; Dunlap, John; Liu, Yie; Wang, Yisong

    2008-01-01

    Centrosome duplication is tightly controlled in coordination with DNA replication. The molecular mechanism of centrosome duplication remains unclear. Previous studies found that a fraction of human proline-directed phosphatase Cdc14B associates with centrosomes. However, Cdc14B's involvement in centrosome cycle control has never been explored. Here, we show that depletion of Cdc14B by RNA interference leads to centriole amplification in both HeLa and normal human fibroblast BJ and MRC-5 cells. Induction of Cdc14B expression through a regulatable promoter significantly attenuates centriole amplification in prolonged S-phase arrested cells and proteasome inhibitor Z-L3VS-treated cells. This inhibitory function requires centriole-associated Cdc14B catalytic activity. Together, these results suggest a potential function for Cdc14B phosphatase in maintaining the fidelity of centrosome duplication cycle.

  12. Overexpression of progesterone receptor A isoform in mice leads to endometrial hyperproliferation, hyperplasia and atypia.

    PubMed

    Fleisch, M C; Chou, Y C; Cardiff, Robert D; Asaithambi, A; Shyamala, G

    2009-04-01

    A delicate balance in estrogen and progesterone signaling through their cognate receptors is characteristic for the physiologic state of the endometrium, and a shift in receptor isotype expression can be frequently found in human endometrial pathology. In this study, using a transgenic mouse model, we examined the mechanisms whereby alterations in progesterone receptor (PR) isotype expression leads to endometrial pathology. For an experimental model, we used transgenic mice (PR-A transgenics) carrying an imbalance in the native ratio of the two PR isoforms A and B (PR-A and PR-B) through the expression of additional A form and examined their uterine phenotype under different hormonal regimens, using various criteria. Uterine epithelial cell proliferation was augmented in PR-A transgenics and was abolished by PR antagonists. In particular, proliferative response to progesterone, independent of signaling through estrogen, was enhanced. Upon continuous exposure to estradiol and progesterone, the uteri in PR-A transgenics displayed gross enlargement, endometrial hyperplasia including atypical lesions, endometritis and pelvic inflammatory disease. Imbalanced expression of the two isoforms of PR in a transgenic model reveals multiple derangements in the regulation of uterine physiology, resulting in various pathologies including hyperplasias.

  13. Over-expression of Arabidopsis CAP causes decreased cell expansion leading to organ size reduction in transgenic tobacco plants.

    PubMed

    Barrero, Roberto A; Umeda, Masaaki; Yamamura, Saburo; Uchimiya, Hirofumi

    2003-04-01

    Cyclase-associated proteins (CAP) are multifunctional proteins involved in Ras-cAMP signalling and regulation of the actin cytoskeleton. It has recently been demonstrated that over-expression of AtCAP1 in transgenic arabidopsis plants causes severe morphological defects owing to loss of actin filaments. To test the generality of the function of AtCAP1 in plants, transgenic tobacco plants over-expressing an arabidopsis CAP (AtCAP1) under the regulation of a glucocorticoid-inducible promoter were produced. Over-expression of AtCAP1 in transgenic tobacco plants led to growth abnormalities, in particular a reduction in the size of leaves. Morphological alterations in leaves were the result of reduced elongation of epidermal and mesophyll cells.

  14. Keratinocyte but Not Endothelial Cell-Specific Overexpression of Tie2 Leads to the Development of Psoriasis

    PubMed Central

    Wolfram, Julie A.; Diaconu, Doina; Hatala, Denise A.; Rastegar, Jessica; Knutsen, Dorothy A.; Lowther, Abigail; Askew, David; Gilliam, Anita C.; McCormick, Thomas S.; Ward, Nicole L.

    2009-01-01

    Psoriasis is initiated and maintained through a multifaceted interplay between keratinocytes, blood vessels, gene expression, and the immune system. One previous psoriasis model demonstrated that overexpression of the angiopoietin receptor Tie2 in endothelial cells and keratinocytes led to the development of a psoriasiform phenotype; however, the etiological significance of overexpression in each cell type alone was unclear. We have now engineered two new mouse models whereby Tie2 expression is confined to either endothelial cells or keratinocytes. Both lines of mice have significant increases in dermal vasculature but only the KC-Tie2-overexpressing mice developed a cutaneous psoriasiform phenotype. These mice spontaneously developed characteristic hallmarks of human psoriasis, including extensive acanthosis, increases in dermal CD4+ T cells, infiltrating epidermal CD8+ T cells, dermal dendritic cells and macrophages, and increased expression of cytokines and chemokines associated with psoriasis, including interferon-γ, tumor necrosis factor-α, and interleukins 1α, 6, 12, 22, 23, and 17. Host-defense molecules, cathelicidin, β-defensin, and S100A8/A9, were also up-regulated in the hyperproliferative skin. All of the phenotypic traits were completely reversed without any scarring following repression of the transgene and were significantly improved following treatment with the anti-psoriasis systemic therapeutic, cyclosporin A. Therefore, confining Tie2 overexpression solely to keratinocytes results in a mouse model that meets the clinical, histological, immunophenotypic, biochemical, and pharmacological criteria required for an animal model of human psoriasis. PMID:19342373

  15. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    PubMed Central

    2012-01-01

    Background Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa. Results Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants. Conclusions Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive. PMID:22472516

  16. Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    PubMed Central

    Hopkinson, Mark; Poulet, Blandine; Pollard, Andrea S.; Shefelbine, Sandra J.; Chang, Yu-Mei; Francis-West, Philippa; Bou-Gharios, George; Pitsillides, Andrew A.

    2016-01-01

    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages. PMID:27519049

  17. Lack of Gαi2 leads to dilative cardiomyopathy and increased mortality in β1-adrenoceptor overexpressing mice

    PubMed Central

    Keller, Kirsten; Maass, Martina; Dizayee, Sara; Leiss, Veronika; Annala, Suvi; Köth, Jessica; Seemann, Wiebke K.; Müller-Ehmsen, Jochen; Mohr, Klaus; Nürnberg, Bernd; Engelhardt, Stefan; Herzig, Stefan; Birnbaumer, Lutz; Matthes, Jan

    2015-01-01

    Aims Inhibitory G (Gi) proteins have been proposed to be cardioprotective. We investigated effects of Gαi2 knockout on cardiac function and survival in a murine heart failure model of cardiac β1-adrenoceptor overexpression. Methods and results β1-transgenic mice lacking Gαi2 (β1-tg/Gαi2−/−) were compared with wild-type mice and littermates either overexpressing cardiac β1-adrenoceptors (β1-tg) or lacking Gαi2 (Gαi2−/−). At 300 days, mortality of mice only lacking Gαi2 was already higher compared with wild-type or β1-tg, but similar to β1-tg/Gαi2−/−, mice. Beyond 300 days, mortality of β1-tg/Gαi2−/− mice was enhanced compared with all other genotypes (mean survival time: 363 ± 21 days). At 300 days of age, echocardiography revealed similar cardiac function of wild-type, β1-tg, and Gαi2−/− mice, but significant impairment for β1-tg/Gαi2−/− mice (e.g. ejection fraction 14 ± 2 vs. 40 ± 4% in wild-type mice). Significantly increased ventricle-to-body weight ratio (0.71 ± 0.06 vs. 0.48 ± 0.02% in wild-type mice), left ventricular size (length 0.82 ± 0.04 vs. 0.66 ± 0.03 cm in wild types), and atrial natriuretic peptide and brain natriuretic peptide expression (mRNA: 2819 and 495% of wild-type mice, respectively) indicated hypertrophy. Gαi3 was significantly up-regulated in Gαi2 knockout mice (protein compared with wild type: 340 ± 90% in Gαi2−/− and 394 ± 80% in β1-tg/Gαi2−/−, respectively). Conclusions Gαi2 deficiency combined with cardiac β1-adrenoceptor overexpression strongly impaired survival and cardiac function. At 300 days of age, β1-adrenoceptor overexpression alone had not induced cardiac hypertrophy or dysfunction while there was overt cardiomyopathy in mice additionally lacking Gαi2. We propose an enhanced effect of increased β1-adrenergic drive by the lack of protection via Gαi2. Gαi3 up-regulation was not sufficient to compensate for Gαi2 deficiency, suggesting an isoform-specific or

  18. Overexpression of the Transcriptional Repressor Complex BCL-6/BCoR Leads to Nuclear Aggregates Distinct from Classical Aggresomes

    PubMed Central

    Buchberger, Elisabeth; El Harchi, Miriam; Payrhuber, Dietmar; Zommer, Anna; Schauer, Dominic; Simonitsch-Klupp, Ingrid; Bilban, Martin; Brostjan, Christine

    2013-01-01

    Nuclear inclusions of aggregated proteins have primarily been characterized for molecules with aberrant poly-glutamine repeats and for mutated or structurally altered proteins. They were termed “nuclear aggresomes” and misfolding was shown to promote association with molecular chaperones and proteasomes. Here, we report that two components of a transcriptional repressor complex (BCL-6 and BCoR) of wildtype amino acid sequence can independently or jointly induce the formation of nuclear aggregates when overexpressed. The observation that the majority of cells rapidly downregulate BCL-6/BCoR levels, supports the notion that expression of these proteins is under tight control. The inclusions occur when BCL-6/BCoR expression exceeds 150-fold of endogenous levels. They preferentially develop in the nucleus by a gradual increase in aggregate size to form large, spheroid structures which are not associated with heat shock proteins or marked by ubiquitin. In contrast, we find the close association of BCL-6/BCoR inclusions with PML bodies and a reduction in aggregation upon the concomitant overexpression of histone deacetylases or heat shock protein 70. In summary, our data offer a perspective on nuclear aggregates distinct from classical “nuclear aggresomes”: Large complexes of spheroid structure can evolve in the nucleus without being marked by the cellular machinery for protein refolding and degradation. However, nuclear proteostasis can be restored by balancing the levels of chaperones. PMID:24146931

  19. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato.

    PubMed

    Zhang, Chanjuan; Liu, Junxia; Zhang, Yuyang; Cai, Xiaofeng; Gong, Pengjuan; Zhang, Junhong; Wang, Taotao; Li, Hanxia; Ye, Zhibiao

    2011-03-01

    GDP-Mannose 3',5'-epimerase (GME; EC 5.1.3.18) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (AsA) biosynthesis pathway in higher plants. In this study, two members of the GME gene family were isolated from tomato (Solanum lycopersicum). Both SlGME genes encode 376 amino acids and share a 92% similarity with each other. Semi-quantitative RT-PCR indicated that SlGME1 was constantly expressed in various tissues, whereas SlGME2 was differentially expressed in different tissues. Transient expression of fused SlGME1-GFP (green fluorescent protein) and SlGME2-GFP in onion cells revealed the cytoplasmic localisation of the two proteins. Transgenic plants over-expressing SlGME1 and SlGME2 exhibited a significant increase in total ascorbic acid in leaves and red fruits compared with wild-type plants. They also showed enhanced stress tolerance based on less chlorophyll content loss and membrane-lipid peroxidation under methyl viologen (paraquat) stress, higher survival rate under cold stress, and significantly higher seed germination rate, fresh weight, and root length under salt stress. The present study demonstrates that the overexpression of two members of the GME gene family resulted in increased ascorbate accumulation in tomato and improved tolerance to abiotic stresses.

  20. Bcl-xL overexpression blocks bax-mediated mitochondrial contact site formation and apoptosis in rod photoreceptors of lead-exposed mice

    NASA Astrophysics Data System (ADS)

    He, Lihua; Perkins, Guy A.; Poblenz, Ann T.; Harris, Jeffrey B.; Hung, Michael; Ellisman, Mark H.; Fox, Donald A.

    2003-02-01

    Photoreceptor apoptosis and resultant visual deficits occur in humans and animals with inherited and disease-, injury-, and chemical-induced retinal degeneration. A clinically relevant mouse model of progressive rod photoreceptor-selective apoptosis was produced by low-level developmental lead exposure and studied in combination with transgenic mice overexpressing Bcl-xL only in the photoreceptors. A multiparametric analysis of rod apoptosis and mitochondrial structure-function was performed. Mitochondrial cristae topography and connectivity, matrix volume, and contact sites were examined by using 3D electron tomography. Lead-induced rod-selective apoptosis was accompanied by rod Ca2+ overload, rhodopsin loss, translocation of Bax from the cytosol to the mitochondria, decreased rod mitochondrial respiration and membrane potential, mitochondrial cytochrome c release, caspase-3 activation, and an increase in the number of mitochondrial contact sites. These effects occurred without mitochondrial matrix swelling, outer membrane rupture, caspase-8 activation, or Bid cleavage. Bcl-xL overexpression completely blocked all apoptotic events, except Ca2+ overload, and maintained normal rod mitochondrial function throughout adulthood. This study presents images of mitochondrial contact sites in an in vivo apoptosis model and shows that Bcl-xL overexpression blocks increased contact sites and apoptosis. These findings extend our in vitro retinal studies with Pb2+ and Ca2+ and suggest that developmental lead exposure produced rod-selective apoptosis without mitochondrial swelling by translocating cytosolic Bax to the mitochondria, which likely sensitized the Pb2+ and Ca2+ overloaded rod mitochondria to release cytochrome c. These results have relevance for therapies in a wide variety of progressive retinal and neuronal degenerations where Ca2+ overload, lead exposure, and/or mitochondrial dysfunction occur.

  1. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height.

    PubMed

    Wei, Zhigang; Qu, Zanshuang; Zhang, Lijie; Zhao, Shuanjing; Bi, Zhihong; Ji, Xiaohui; Wang, Xiaowen; Wei, Hairong

    2015-01-01

    Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the

  2. Overexpression of Poplar Xylem Sucrose Synthase in Tobacco Leads to a Thickened Cell Wall and Increased Height

    PubMed Central

    Wei, Zhigang; Qu, Zanshuang; Zhang, Lijie; Zhao, Shuanjing; Bi, Zhihong; Ji, Xiaohui; Wang, Xiaowen; Wei, Hairong

    2015-01-01

    Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the

  3. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    PubMed Central

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  4. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.

    PubMed

    Hernández, Martín A; Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo; Alvarez, Héctor M

    2015-03-01

    Oleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria. In this work, we identified and characterized a putative PAP type 2 (PAP2) encoded by the ro00075 gene in Rhodococcus jostii RHA1. Heterologous expression of ro00075 in Escherichia coli resulted in a fourfold increase in PAP activity and twofold in DAG content. The conditional deletion of ro00075 in RHA1 led to a decrease in the content of DAG and TAG, whereas its overexpression in both RHA1 and Rhodococcus opacus PD630 promoted an increase up to 10 to 15 % by cellular dry weight in TAG content. On the other hand, expression of ro00075 in the non-oleaginous strain Rhodococcus fascians F7 promoted an increase in total fatty acid content up to 7 % at the expense of free fatty acid (FFA), DAG, and TAG fractions. Moreover, co-expression of ro00075/atf2 genes resulted in a fourfold increase in total fatty acid content by a further increase of the FFA and TAG fractions. The results of this study suggest that ro00075 encodes for a PAP2 enzyme actively involved in TAG biosynthesis. Overexpression of this gene, as single one or with an atf gene, provides an alternative approach to increase the biosynthesis and accumulation of bacterial oils as a potential source of raw material for biofuel production.

  5. Overexpression of PDH45 or SUV3 helicases in rice leads to delayed leaf senescence-associated events.

    PubMed

    Macovei, Anca; Sahoo, Ranjan K; Faè, Matteo; Balestrazzi, Alma; Carbonera, Daniela; Tuteja, Narendra

    2017-03-01

    Senescence is a very complex process characterized by a highly regulated series of degenerative events which include changes in cell structure, metabolism and gene expression. In animals, one of the indicators of senescence is telomere shortening. In plants, this aspect is more puzzling because telomere shortening is not always correlated with senescence. In some cases, there were no differences in telomere length during plant developmental stages while in other cases both shortening and lengthening have been observed. Several genes involved in telomere homeostasis have been identified in plants, including some helicases. In the present study, the salinity stress-tolerant transgenic IR64 rice plants overexpressing the PDH45 (Pea DNA Helicase 45) or SUV3 (Suppressor of Var1-3) genes were used to test their performance during natural senescence at flowering (S2) and seed maturation (S4) developmental stages. Our results reveal that both PDH45 and SUV3 transgenic rice lines present decreased levels of necrosis/apoptosis as compared to wild type plants. Additionally, in these plants, some senescence-associated genes (SAGs) were downregulated at S2 and S4 stages, while genes involved in the maintenance of genome stability and DNA repair were upregulated. More interestingly, the telomeres were up to 3.8-fold longer in the SUV3 overexpressing lines as compared to wild type plants. This was associated with an increase (2.5-fold) in telomerase (OsTERT) transcript level. This is an interesting result reporting a possible involvement of SUV3 in telomere homeostasis in plants.

  6. Overexpression of wild-type PKD2 leads to increased proliferation and invasion of BON endocrine cells

    SciTech Connect

    Jackson, Lindsey N.; Li Jing; Chen, L. Andy; Townsend, Courtney M.; Evers, B. Mark . E-mail: mevers@utmb.edu

    2006-09-29

    Carcinoid tumors are rare neuroendocrine tumors with a predilection for the gastrointestinal tract. Protein kinase D (PKD), a novel serine/threonine protein kinase, has been implicated in the regulation of transport processes in certain cell types. We have reported an important role for PKD in stimulated peptide secretion from a human (BON) carcinoid cell line; however, the role of PKD isoforms, including PKD2, in the proliferation and invasion of carcinoid tumors remains unclear. In the present study, we found that overexpression of PKD2 by stable transfection of BON cells with PKD2-wild type (PKD2{sub WT}) significantly increased proliferation and invasion compared to cells transfected with PKD2-kinase dead (PKD2{sub KD}) or pcDNA3 (control). Similarly, inhibition of PKD2 activity with small interfering RNA (siRNA) significantly decreased proliferation and invasion compared to cells transfected with non-targeting control (NTC) siRNA. These data support an important role for PKD2 in carcinoid tumor progression. Targeted inhibition of the PKD family may prove to be a novel treatment option for patients with carcinoid tumors.

  7. Genomic loss of EZH2 leads to epigenetic modifications and overexpression of the HOX gene clusters in myelodysplastic syndrome.

    PubMed

    Xu, Feng; Liu, Li; Chang, Chun-Kang; He, Qi; Wu, Ling-Yun; Zhang, Zheng; Shi, Wen-Hui; Guo, Juan; Zhu, Yang; Zhao, You-Shan; Gu, Shu-Cheng; Fei, Cheng-Ming; Li, Xiao

    2016-02-16

    The role of EZH2 in cancer is complex and may vary depending on cancer type or stage. We examined the effect of altered EZH2 levels on H3K27 methylation, HOX gene expression, and malignant phenotype in myelodysplastic syndrome (MDS) cell lines and an in vivo xenograft model. We also studied links between EZH2 expression and prognosis in MDS patients. Patients with high-grade MDS exhibited lower levels of EZH2 expression than those with low-grade MDS. Low EZH2 expression was associated with high percentages of blasts, shorter survival, and increased transformation of MDS into acute myeloid leukemia (AML). MDS patients frequently had reductions in EZH2 copy number. EZH2 knockdown increased tumor growth capacity and reduced H3K27me3 levels in both MDS-derived leukemia cells and in a xenograft model. H3K27me3 levels were reduced and HOX gene cluster expression was increased in MDS patients. EZH2 knockdown also increased HOX gene cluster expression by reducing H3K27me3, and H3K27 demethylating agents increased HOX gene cluster expression in MDS-derived cell lines. These findings suggest genomic loss of EZH2 contributes to overexpression of the HOX gene clusters in MDS through epigenetic modifications.

  8. PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

    PubMed

    Corbeil-Girard, Louis-Philippe; Klein, Arnaud F; Sasseville, A Marie-Josée; Lavoie, Hugo; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Duranceau, André; Codère, François; Bouchard, Jean-Pierre; Karpati, George; Rouleau, Guy A; Massie, Bernard; Langelier, Yves; Brais, Bernard

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function.

  9. Lead uptake increases drought tolerance of wild type and transgenic poplar (Populus tremula x P. alba) overexpressing gsh 1.

    PubMed

    Samuilov, Sladjana; Lang, Friedericke; Djukic, Matilda; Djunisijevic-Bojovic, Danijela; Rennenberg, Heinz

    2016-09-01

    Growth and development of plants largely depends on their adaptation ability in a changing climate. This is particularly true on heavy metal contaminated soils, but the interaction of heavy metal stress and climate on plant performance has not been intensively investigated. The aim of the present study was to elucidate if transgenic poplars (Populus tremula x P. alba) with enhanced glutathione content possess an enhanced tolerance to drought and lead (Pb) exposure (single and in combination) and if they are good candidates for phytoremediation of Pb contaminated soil. Lead exposure reduced growth and biomass accumulation only in above-ground tissue of wild type poplar, although most of lead accumulated in the roots. Drought caused a decline of the water content rather than reduced biomass production, while Pb counteracted this decline in the combined exposure. Apparently, metals such as Pb possess a protective function against drought, because they interact with abscisic acid dependent stomatal closure. Lead exposure decreased while drought increased glutathione content in leaves of both plant types. Lead accumulation was higher in the roots of transgenic plants, presumably as a result of chelation by glutathione. Water deprivation enhanced Pb accumulation in the roots, but Pb was subject to leakage out of the roots after re-watering. Transgenic plants showed better adaptation under mild drought plus Pb exposure partially due to improved glutathione synthesis. However, the transgenic plants cannot be considered as a good candidate for phytoremediation of Pb, due to its small translocation to the shoots and its leakage out of the roots upon re-watering.

  10. Inhibitory effects of homeodomain-interacting protein kinase 2 on the aorta-gonad-mapharsen hematopoiesis

    SciTech Connect

    Ohtsu, Naoki; Nobuhisa, Ikuo; Mochita, Miyuki; Taga, Tetsuya . E-mail: taga@kaiju.medic.kumamoto-u.ac.jp

    2007-01-01

    Definitive hematopoiesis starts in the aorta-gonad-mesonephros (AGM) region of the mouse embryo. Our previous studies revealed that STAT3, a gp130 downstream transcription factor, is required for AGM hematopoiesis and that homeodomain-interacting protein kinase 2 (HIPK2) phosphorylates serine-727 of STAT3. HIPK2 is a serine/threonine kinase known to be involved in transcriptional repression and apoptosis. In the present study, we examined the role of HIPK2 in hematopoiesis in mouse embryo. HIPK2 transcripts were found in fetal hematopoietic tissues such as the mouse AGM region and fetal liver. In cultured AGM cells, HIPK2 protein was detected in adherent cells. Functional analyses of HIPK2 were carried out by introducing wild-type and mutant HIPK2 constructs into AGM cultures. Production of CD45{sup +} hematopoietic cells was suppressed by forced expression of HIPK2 in AGM cultures. This suppression required the kinase domain and nuclear localization signals of HIPK2, but the kinase activity was dispensable. HIPK2-overexpressing AGM-derived nonadherent cells did not form cobblestone-like colonies in cultures with stromal cells. Furthermore, overexpression of HIPK2 in AGM cultures impeded the expansion of CD45{sup low}c-Kit{sup +} cells, which exhibit the immature hematopoietic progenitor phenotype. These data indicate that HIPK2 plays a negative regulatory role in AGM hematopoiesis in the mouse embryo.

  11. Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn Down syndrome mice.

    PubMed

    Yin, Xiaomin; Jin, Nana; Shi, Jianhua; Zhang, Yanchong; Wu, Yue; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-04-04

    Alternative splicing of tau exon 10 generates tau isoforms with three or four microtubule-binding repeats, 3R-tau and 4R-tau, which is equally expressed in adult human brain. Imbalanced expression in 3R-tau and 4R-tau has been found in several sporadic and inherited tauopathies, suggesting that dysregulation of tau exon 10 is sufficient to cause neurodegenerative diseases. We previously reported that Dyrk1A, which is overexpressed in Down syndrome brains, regulates alternative splicing of exogenous tau exon 10. In the present study, we investigated the regulation of endogenous tau exon 10 splicing by Dyrk1A. We found that inhibition of Dyrk1A enhanced tau exon 10 inclusion, leading to an increase in 4R-tau/3R-tau ratio in differentiated-human neuronal progenitors and in the neonatal rat brains. Accompanied with overexpression of Dyrk1A, 3R-tau was increased and 4R-tau was decreased in the neonatal brains of Ts65Dn mice, a model of Down syndrome. Treatment with Dyrk1A inhibitor, green tea flavonol epigallocatechin-gallate (EGCG), from gestation to adulthood suppressed 3R-tau expression and rescued anxiety and memory deficits in Ts65Dn mouse brains. Thus, Dyrk1A might be an ideal therapeutic target for Alzheimer's disease, especially for Down syndrome and EGCG which inhibits Dyrk1A may have potential effect on the treatment or prevention of this disease.

  12. Retraction: "Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells" by Bao et al.

    PubMed

    2016-08-01

    The above article, published online on April 18, 2011 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the second author that found Figures 1C and 4C to be inappropriately re-used and re-labeled. REFERENCE Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. 2011. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112:2296-2306; doi: 10.1002/jcb.23150.

  13. Proliferative Vitreoretinopathy after Eye Injuries: An Overexpression of Growth Factors and Cytokines Leading to a Retinal Keloid

    PubMed Central

    Morescalchi, Francesco; Duse, Sarah; Gambicorti, Elena; Romano, Mario R.; Costagliola, Ciro; Semeraro, Francesco

    2013-01-01

    Eye injury is a significant disabling worldwide health problem. Proliferative Vitreoretinopathy (PVR) is a common complication that develops in up to 40–60% of patients with an open-globe injury. Our knowledge about the pathogenesis of PVR has improved in the last decades. It seems that the introduction of immune cells into the vitreous, like in penetrating ocular trauma, triggers the production of growth factors and cytokines that come in contact with intra-retinal cells, like Müller cells and RPE cells. Growth factors and cytokines drive the cellular responses leading to PVR's development. Knowledge of the pathobiological and pathophysiological mechanisms involved in posttraumatic PVR is increasing the possibilities of management, and it is hoped that in the future our treatment strategies will evolve, in particular adopting a multidrug approach, and become even more effective in vision recovery. This paper reviews the current literature and clinical trial data on the pathogenesis of PVR and its correlation with ocular trauma and describes the biochemical/molecular events that will be fundamental for the development of novel treatment strategies. This literature review included PubMed articles published from 1979 through 2013. Only studies written in English were included. PMID:24198445

  14. Epigenetic alterations leading to TMPRSS4 promoter hypomethylation and protein overexpression predict poor prognosis in squamous lung cancer patients

    PubMed Central

    Villalba, Maria; Diaz-Lagares, Angel; Redrado, Miriam; de Aberasturi, Arrate L.; Segura, Victor; Bodegas, Maria Elena; Pajares, Maria J.; Pio, Ruben; Freire, Javier; Gomez-Roman, Javier; Montuenga, Luis M.; Esteller, Manel; Sandoval, Juan; Calvo, Alfonso

    2016-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, which highlights the need of innovative therapeutic options. Although targeted therapies can be successfully used in a subset of patients with lung adenocarcinomas (ADC), they are not appropriate for patients with squamous cell carcinomas (SCC). In addition, there is an unmet need for the identification of prognostic biomarkers that can select patients at risk of relapse in early stages. Here, we have used several cohorts of NSCLC patients to analyze the prognostic value of both protein expression and DNA promoter methylation status of the prometastatic serine protease TMPRSS4. Moreover, expression and promoter methylation was evaluated in a panel of 46 lung cancer cell lines. We have demonstrated that a high TMPRSS4 expression is an independent prognostic factor in SCC. Similarly, aberrant hypomethylation in tumors, which correlates with high TMPRSS4 expression, is an independent prognostic predictor in SCC. The inverse correlation between expression and methylation status was also observed in cell lines. In vitro studies showed that treatment of cells lacking TMPRSS4 expression with a demethylating agent significantly increased TMPRSS4 levels. In conclusion, TMPRSS4 is a novel independent prognostic biomarker regulated by epigenetic changes in SCC and a potential therapeutic target in this tumor type, where targeted therapy is still underdeveloped. PMID:26989022

  15. Overexpression of PrfA Leads to Growth Inhibition of Listeria monocytogenes in Glucose-Containing Culture Media by Interfering with Glucose Uptake

    PubMed Central

    Marr, A. K.; Joseph, B.; Mertins, S.; Ecke, R.; Müller-Altrock, S.; Goebel, W.

    2006-01-01

    Listeria monocytogenes strains expressing high levels of the virulence regulator PrfA (mutant PrfA* or wild-type PrfA) show strong growth inhibition in minimal media when they are supplemented with glucose but not when they are supplemented with glucose-6-phosphate compared to the growth of isogenic strains expressing low levels of PrfA. A significantly reduced rate of glucose uptake was observed in a PrfA*-overexpressing strain growing in LB supplemented with glucose. Comparative transcriptome analyses were performed with RNA isolated from a prfA mutant and an isogenic strain carrying multiple copies of prfA or prfA* on a plasmid. These analyses revealed that in addition to high transcriptional up-regulation of the known PrfA-regulated virulence genes (group I), there was less pronounced up-regulation of the expression of several phage and metabolic genes (group II) and there was strong down-regulation of several genes involved mainly in carbon and nitrogen metabolism in the PrfA*-overexpressing strain (group III). Among the latter genes are the nrgAB, gltAB, and glnRA operons (involved in nitrogen metabolism), the ilvB operon (involved in biosynthesis of the branched-chain amino acids), and genes for some ABC transporters. Most of the down-regulated genes have been shown previously to belong to a class of genes in Bacillus subtilis whose expression is negatively affected by impaired glucose uptake. Our results lead to the conclusion that excess PrfA (or PrfA*) interferes with a component(s) essential for phosphotransferase system-mediated glucose transport. PMID:16707681

  16. Homeodomain-interacting protein kinase 2 regulates DNA damage response through interacting with heterochromatin protein 1γ.

    PubMed

    Akaike, Y; Kuwano, Y; Nishida, K; Kurokawa, K; Kajita, K; Kano, S; Masuda, K; Rokutan, K

    2015-06-01

    Homeodomain-interacting protein kinase 2 (HIPK2) is a potential tumor suppressor that has a crucial role in the DNA damage response (DDR) by regulating cell-cycle checkpoint activation and apoptosis. However, it is unclear whether HIPK2 exerts distinct roles in DNA damage repair. The aim of this study was to identify novel target molecule(s) of HIPK2, which mediates HIPK2-dependent DNA damage repair. HIPK2-knockdown human colon cancer cells (HCT116) or hipk1/hipk2 double-deficient mouse embryonic fibroblasts could not remove histone H2A.X phosphorylated at Ser139 (γH2A.X) after irradiation with a sublethal dose (10 J/m(2)) of ultraviolet (UV)-C, resulting in apoptosis. Knockdown of HIPK2 in p53-null HCT116 cells similarly promoted the UV-C-induced γH2A.X accumulation and apoptosis. Proteomic analysis of HIPK2-associated proteins using liquid chromatography-tandem mass spectrometry identified heterochromatin protein 1γ (HP1γ) as a novel target for HIPK2. Immunoprecipitation experiments with HCT116 cells expressing FLAG-tagged HIPK2 and one of the HA-tagged HP1 family members demonstrated that HIPK2 specifically associated with HP1γ, but not with HP1α or HP1β, through its chromo-shadow domain. Mutation of the HP1box motif (883-PTVSV-887) within HIPK2 abolished the association. HP1γ knockdown also enhanced accumulation of γH2A.X and apoptosis after sublethal UV-C irradiation. In vitro kinase assay demonstrated an HP1γ-phosphorylating activity of HIPK2. Sublethal UV-C irradiation phosphorylated HP1γ. This phosphorylation was absent in endogenous HIPK2-silenced cells with HIPK2 3'UTR siRNA. Overexpression of FLAG-HIPK2, but not the HP1box-mutated or kinase-dead HIPK2 mutant, in the HIPK2-silenced cells increased HP1γ binding to trimethylated (Lys9) histone H3 (H3K9me3), rescued the UV-C-induced phosphorylation of HP1γ, triggered release of HP1γ from histone H3K9me3 and suppressed γH2A.X accumulation. Our results suggest that HIPK2-dependent

  17. Lead

    MedlinePlus

    ... Worker, or other abatement discipline Lead in drinking water Lead air pollution Test your child Check and maintain your home Find a Lead-Safe Certified firm Before you renovate Before you buy or rent a home built before 1978 Test your home's drinking water Test for lead in paint, dust or soil ...

  18. Artemin overexpression in skin enhances expression of TRPV1 and TRPA1 in cutaneous sensory neurons and leads to behavioral sensitivity to heat and cold.

    PubMed

    Elitt, Christopher M; McIlwrath, Sabrina L; Lawson, Jeffery J; Malin, Sacha A; Molliver, Derek C; Cornuet, Pamela K; Koerber, H Richard; Davis, Brian M; Albers, Kathryn M

    2006-08-16

    Artemin, a neuronal survival factor in the glial cell line-derived neurotrophic factor family, binds the glycosylphosphatidylinositol-anchored protein GFRalpha3 and the receptor tyrosine kinase Ret. Expression of the GFRalpha3 receptor is primarily restricted to the peripheral nervous system and is found in a subpopulation of nociceptive sensory neurons of the dorsal root ganglia (DRGs) that coexpress the Ret and TrkA receptor tyrosine kinases and the thermosensitive channel TRPV1. To determine how artemin affects sensory neuron properties, transgenic mice that overexpress artemin in skin keratinocytes (ART-OE mice) were analyzed. Expression of artemin caused a 20.5% increase in DRG neuron number and increased the level of mRNA encoding GFRalpha3, TrkA, TRPV1, and the putative noxious cold-detecting channel TRPA1. Nearly all GFRalpha3-positive neurons expressed TRPV1 immunoreactivity, and most of these neurons were also positive for TRPA1. Interestingly, acid-sensing ion channel (ASIC) 1, 2a, 2b, and 3 mRNAs were decreased in the DRG, and this reduction was strongest in females. Analysis of sensory neuron physiological properties using an ex vivo preparation showed that cutaneous C-fiber nociceptors of ART-OE mice had reduced heat thresholds and increased firing rates in response to a heat ramp. No change in mechanical threshold was detected. Behavioral testing of ART-OE mice showed that they had increased sensitivity to both heat and noxious cold. These results indicate that the level of artemin in the skin modulates gene expression and response properties of afferents that project to the skin and that these changes lead to behavioral sensitivity to both hot and cold stimuli.

  19. Lead

    MedlinePlus

    ... ATSDR Board of Scientific Counselors Lead in the environment: Agency for Toxic Substances and Disease Registry (ATSDR) Federal partner agencies: Department of Housing and Urban Development (HUD) and U.S. Environmental Protection Agency (EPA) Data, ...

  20. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway.

    PubMed

    Ahn, Chang Sook; Ahn, Hee-Kyung; Pai, Hyun-Sook

    2015-02-01

    Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity.

  1. Overexpressions of xylA and xylB in Klebsiella pneumoniae Lead to Enhanced 1,3-Propanediol Production by Cofermentation of Glycerol and Xylose.

    PubMed

    Lu, Xinyao; Fu, Xiaomeng; Zong, Hong; Zhuge, Bin

    2016-07-28

    1,3-Propanediol (1,3-PD) is a valuable platform compound. Many studies have shown that the supplement of NADH plays a key role in the bioproduction of 1,3-PD from Klebsiella pneumoniae. In this study, the xylA and xylB genes from Escherichia coli were overexpressed individually or simultaneously in K. pneumoniae to improve the production of 1,3-PD by cofermentation of glycerol and xylose. Compared with the parent strain, the xylose consumption was significantly increased by the introduction of these two genes. The 1,3-PD titers were raised from 17.9 g/l to 23.5, 23.9, and 24.4 g/l, respectively, by the overexpression of xylA and xylB as well as their coexpression. The glycerol conversion rate (mol/mol) was enhanced from 54.1% to 73.8%. The concentration of 2,3-butanediol was increased by 50% at the middle stage but drastically decreased after that. The NADH and NADH/NAD(+) ratio were improved. This report suggests that overexpression of xylA or xylB is an effective strategy to improve the xylose assimilation rate to provide abundant reducing power for the biosynthesis of 1,3-PD in K. pneumoniae.

  2. The overexpression of the pine transcription factor PpDof5 in Arabidopsis leads to increased lignin content and affects carbon and nitrogen metabolism.

    PubMed

    Rueda-López, Marina; Cañas, Rafael A; Canales, Javier; Cánovas, Francisco M; Ávila, Concepción

    2015-12-01

    PpDof 5 is a regulator of the expression of glutamine synthetase (GS; EC 6.3.1.2) genes in photosynthetic and non-photosynthetic tissues of maritime pine. We have used Arabidopsis thaliana as a model system to study PpDof 5 function in planta, generating transgenic lines overexpressing the pine transcription factor. The overexpression of PpDof 5 resulted in a substantial increase of lignin content with a simultaneous regulation of carbon and nitrogen key genes. In addition, partitioning in carbon and nitrogen compounds was spread via various secondary metabolic pathways. These results suggest pleiotropic effects of PpDof 5 expression on various metabolic pathways of carbon and nitrogen metabolism. Plants overexpressing PpDof 5 exhibited upregulation of genes encoding enzymes for sucrose and starch biosynthesis, with a parallel increase in the content of soluble sugars. When the plants were grown under nitrate as the sole nitrogen source, they exhibited a significant regulation of the expression of genes involved mainly in signaling, but similar growth rates to wild-type plants. However, plants grown under ammonium exhibited major induction of the expression of photosynthetic genes and differential expression of ammonium and nitrate transporters. All these data suggest that in addition to controlling ammonium assimilation, PpDof 5 could be also involved in the regulation of other pathways in carbon and nitrogen metabolism in pine trees.

  3. Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells.

    PubMed

    Zhang, Xiaoling; Gu, Lubing; Li, Jiansha; Shah, Noopur; He, Jing; Yang, Lin; Hu, Qun; Zhou, Muxiang

    2010-12-01

    Berberine, a natural product derived from a plant used in Chinese herbal medicine, is reported to exhibit anticancer effects; however, its mechanism of action is not clearly defined. Herein, we demonstrate that berberine induces apoptosis in acute lymphoblastic leukemia (ALL) cells by downregulating the MDM2 oncoprotein. The proapoptotic effects of berberine were closely associated with both the MDM2 expression levels and p53 status of a set of ALL cell lines. The most potent apoptosis was induced by berberine in ALL cells with both MDM2 overexpression and a wild-type (wt)-p53, whereas no proapoptotic effect was detected in ALL cells that were negative for MDM2 and wt-p53. In contrast to the conventional chemotherapeutic drug doxorubicin, which induces p53 activation and a subsequent upregulation of MDM2, berberine strongly induced persistent downregulation of MDM2 followed by a steady-state activation of p53. We discovered that downregulation of MDM2 in ALL cells by berberine occurred at a posttranslational level through modulation of death domain-associated protein (DAXX), which disrupted the MDM2-DAXX-HAUSP interactions and thereby promoted MDM2 self-ubiquitination and degradation. Given that MDM2-overexpressing cancer cells are commonly chemoresistant, our findings suggest that this naturally derived agent may have a highly useful role in the treatment of cancer patients with refractory disease.

  4. Overexpression of an Isoprenyl Diphosphate Synthase in Spruce Leads to Unexpected Terpene Diversion Products That Function in Plant Defense1[W][OPEN

    PubMed Central

    Nagel, Raimund; Berasategui, Aileen; Paetz, Christian; Gershenzon, Jonathan; Schmidt, Axel

    2014-01-01

    Spruce (Picea spp.) and other conifers employ terpenoid-based oleoresin as part of their defense against herbivores and pathogens. The short-chain isoprenyl diphosphate synthases (IDS) are situated at critical branch points in terpene biosynthesis, producing the precursors of the different terpenoid classes. To determine the role of IDS and to create altered terpene phenotypes for assessing the defensive role of terpenoids, we overexpressed a bifunctional spruce IDS, a geranyl diphosphate and geranylgeranyl diphosphate synthase in white spruce (Picea glauca) saplings. While transcript level (350-fold), enzyme activity level (7-fold), and in planta geranyl diphosphate and geranylgeranyl diphosphate levels (4- to 8-fold) were significantly increased in the needles of transgenic plants, there was no increase in the major monoterpenes and diterpene acids of the resin and no change in primary isoprenoids, such as sterols, chlorophylls, and carotenoids. Instead, large amounts of geranylgeranyl fatty acid esters, known from various gymnosperm and angiosperm plant species, accumulated in needles and were shown to act defensively in reducing the performance of larvae of the nun moth (Lymantria monacha), a conifer pest in Eurasia. These results show the impact of overexpression of an IDS and the defensive role of an unexpected accumulation product of terpenoid biosynthesis with the potential for a broader function in plant protection. PMID:24346420

  5. The over-expression of an Arabidopsis B3 transcription factor, ABS2/NGAL1, leads to the loss of flower petals.

    PubMed

    Shao, Jingxia; Liu, Xiayan; Wang, Rui; Zhang, Gaisheng; Yu, Fei

    2012-01-01

    Transcriptional regulations are involved in many aspects of plant development and are mainly achieved through the actions of transcription factors (TF). To investigate the mechanisms of plant development, we carried out genetic screens for mutants with abnormal shoot development. Taking an activation tagging approach, we isolated a gain-of-function mutant abs2-1D (abnormal shoot 2-1D). abs2-1D showed pleiotropic growth defects at both the vegetative and reproductive developmental stages. We cloned ABS2 and it encodes a RAV sub-family of plant B3 type of transcriptional factors. Phylogenetic analysis showed that ABS2 was closely related to NGATHA (NGA) genes that are involved in flower development and was previously named NGATHA-Like 1 (NGAL1). NGAL1 was expressed mainly in the root and the filament of the stamen in flower tissues and sub-cellular localization assay revealed that NGAL1 accumulated in the nucleus. Interestingly, over-expression of NGAL1 driven by the constitutive 35S promoter led to transgenic plants with conspicuous flower defects, particularly a loss-of-petal phenotype. A loss-of-function ngal1-1 mutant did not show obvious phenotype, suggesting the existence of redundant activities and also the utility of gain-of-function genetic screens. Our results show that the over-expression of NGAL1 is capable of altering flower petal development, as well as shoot development.

  6. Overexpression of the Aspergillus niger GatA transporter leads to preferential use of D-galacturonic acid over D-xylose

    PubMed Central

    2014-01-01

    Pectin is a structural heteropolysaccharide of the primary cell walls of plants and as such is a significant fraction of agricultural waste residues that is currently insufficiently used. Its main component, D-galacturonic acid, is an attractive substrate for bioconversion. The complete metabolic pathway is present in the genome of Aspergillus niger, that is used in this study. The objective was to identify the D-galacturonic acid transporter in A. niger and to use this transporter to study D-galacturonic acid metabolism. We have functionally characterized the gene An14g04280 that encodes the D-galacturonic acid transporter in A. niger. In a mixed sugar fermentation it was found that the An14g04280 overexpression strain, in contrast to the parent control strain, has a preference for D-galacturonic acid over D-xylose as substrate. Overexpression of this transporter in A. niger resulted in a strong increase of D-galacturonic acid uptake and induction of the D-galacturonic acid reductase activity, suggesting a metabolite controlled regulation of the endogenous D-galacturonic acid catabolic pathway. PMID:25177540

  7. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin.

    PubMed

    Hurteau, Gregory J; Carlson, J Andrew; Spivack, Simon D; Brock, Graham J

    2007-09-01

    MicroRNAs are approximately 22-nucleotide sequences thought to interact with multiple mRNAs resulting in either translational repression or degradation. We previously reported that several microRNAs had variable expression in mammalian cell lines, and we examined one, miR-200c, in more detail. A combination of bioinformatics and quantitative reverse transcription-PCR was used to identify potential targets and revealed that the zinc finger transcription factor transcription factor 8 (TCF8; also termed ZEB1, deltaEF1, Nil-2-alpha) had inversely proportional expression levels to miR-200c. Knockout experiments using anti-microRNA oligonucleotides increased TCF8 levels but with nonspecific effects. Therefore, to investigate target predictions, we overexpressed miR-200c in select cells lines. Ordinarily, the expression level of miR-200c in non-small-cell lung cancer A549 cells is low in contrast to normal human bronchial epithelial cells. Stable overexpression of miR-200c in A549 cells results in a loss of TCF8, an increase in expression of its regulatory target, E-cadherin, and altered cell morphology. In MCF7 (estrogen receptor-positive breast cancer) cells, there is endogenous expression of miR-200c and E-cadherin but TCF8 is absent. Conversely, MDA-MB-231 (estrogen receptor-negative) cells lack detectable miR-200c and E-cadherin (the latter reportedly due to promoter region methylation) but express TCF8. The ectopic expression of miR-200c in this cell line also reduced levels of TCF8, restored E-cadherin expression, and altered cell morphology. Because the down-regulation of E-cadherin is a crucial event in epithelial-to-mesenchymal transition, loss of miR-200c expression could play a significant role in the initiation of an invasive phenotype, and, equally, miR-200c overexpression holds potential for its reversal.

  8. Overexpression of BDNF Increases Excitability of the Lumbar Spinal Network and Leads to Robust Early Locomotor Recovery in Completely Spinalized Rats

    PubMed Central

    Ziemlińska, Ewelina; Kügler, Sebastian; Schachner, Melitta; Wewiór, Iwona; Czarkowska-Bauch, Julita; Skup, Małgorzata

    2014-01-01

    Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of a number of impediments that axons encounter when trying to regrow beyond the lesion site, and that intraspinal rearrangements are subjected to. In the present study we evaluated (1) the possibility to improve locomotor recovery after complete transection of the spinal cord by means of an adeno-associated (AAV) viral vector expressing the neurotrophin brain-derived neurotrophic factor (BDNF) in lumbar spinal neurons caudal to the lesion site and (2) how the spinal cord transection and BDNF treatment affected neurotransmission in the segments caudal to the lesion site. BDNF overexpression resulted in clear increases in expression levels of molecules involved in glutamatergic (VGluT2) and GABAergic (GABA, GAD65, GAD67) neurotransmission in parallel with a reduction of the potassium-chloride co-transporter (KCC2) which contributes to an inhibitory neurotransmission. BDNF treated animals showed significant improvements in assisted locomotor performance, and performed locomotor movements with body weight support and plantar foot placement on a moving treadmill. These positive effects of BDNF local overexpression were detectable as early as two weeks after spinal cord transection and viral vector application and lasted for at least 7 weeks. Gradually increasing frequencies of clonic movements at the end of the experiment attenuated the quality of treadmill walking. These data indicate that BDNF has the potential to enhance the functionality of isolated lumbar circuits, but also that BDNF levels have to be tightly controlled to prevent hyperexcitability. PMID:24551172

  9. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field.

    PubMed

    Jeong, Jin Seo; Kim, Youn Shic; Redillas, Mark C F R; Jang, Geupil; Jung, Harin; Bang, Seung Woon; Choi, Yang Do; Ha, Sun-Hwa; Reuzeau, Christophe; Kim, Ju-Kon

    2013-01-01

    Drought conditions are among the most serious challenges to crop production worldwide. Here, we report the results of field evaluations of transgenic rice plants overexpressing OsNAC5, under the control of either the root-specific (RCc3) or constitutive (GOS2) promoters. Field evaluations over three growing seasons revealed that the grain yield of the RCc3:OsNAC5 and GOS2:OsNAC5 plants were increased by 9%-23% and 9%-26% under normal conditions, respectively. Under drought conditions, however, RCc3:OsNAC5 plants showed a significantly higher grain yield of 22%-63%, whilst the GOS2:OsNAC5 plants showed a reduced or similar yield to the nontransgenic (NT) controls. Both the RCc3:OsNAC5 and GOS2:OsNAC5 plants were found to have larger roots due to an enlarged stele and aerenchyma at flowering stage. Cell numbers per cortex layer and stele of developing roots were higher in both transgenic plants than NT controls, contributing to the increase in root diameter. The root diameter was enlarged to a greater extent in the RCc3:OsNAC5, suggesting the importance of this phenotype for enhanced drought tolerance. Microarray experiments identified 25 up-regulated genes by more than three-fold (P < 0.01) in the roots of both transgenic lines. Also identified were 19 and 18 up-regulated genes that are specific to the RCc3:OsNAC5 and GOS2:OsNAC5 roots, respectively. Of the genes specifically up-regulated in the RCc3:OsNAC5 roots, GLP, PDX, MERI5 and O-methyltransferase were implicated in root growth and development. Our present findings demonstrate that the root-specific overexpression of OsNAC5 enlarges roots significantly and thereby enhances drought tolerance and grain yield under field conditions.

  10. Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites

    PubMed Central

    Voss, Christiane; Ehrenman, Karen; Mlambo, Godfree; Mishra, Satish; Kumar, Kota Arun; Sacci, John B.; Sinnis, Photini

    2016-01-01

    ABSTRACT Plasmodium parasites undergo continuous cellular renovation to adapt to various environments in the vertebrate host and insect vector. In hepatocytes, Plasmodium berghei discards unneeded organelles for replication, such as micronemes involved in invasion. Concomitantly, intrahepatic parasites expand organelles such as the apicoplast that produce essential metabolites. We previously showed that the ATG8 conjugation system is upregulated in P. berghei liver forms and that P. berghei ATG8 (PbATG8) localizes to the membranes of the apicoplast and cytoplasmic vesicles. Here, we focus on the contribution of PbATG8 to the organellar changes that occur in intrahepatic parasites. We illustrated that micronemes colocalize with PbATG8-containing structures before expulsion from the parasite. Interference with PbATG8 function by overexpression results in poor development into late liver stages and production of small merosomes that contain immature merozoites unable to initiate a blood infection. At the cellular level, PbATG8-overexpressing P. berghei exhibits a delay in microneme compartmentalization into PbATG8-containing autophagosomes and elimination compared to parasites from the parental strain. The apicoplast, identifiable by immunostaining of the acyl carrier protein (ACP), undergoes an abnormally fast proliferation in mutant parasites. Over time, the ACP staining becomes diffuse in merosomes, indicating a collapse of the apicoplast. PbATG8 is not incorporated into the progeny of mutant parasites, in contrast to parental merozoites in which PbATG8 and ACP localize to the apicoplast. These observations reveal that Plasmodium ATG8 is a key effector in the development of merozoites by controlling microneme clearance and apicoplast proliferation and that dysregulation in ATG8 levels is detrimental for malaria infectivity. PMID:27353755

  11. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat.

    PubMed

    Xue, Gang-Ping; Way, Heather M; Richardson, Terese; Drenth, Janneke; Joyce, Priya A; McIntyre, C Lynne

    2011-07-01

    NAC proteins are plant-specific transcription factors and enriched with members involved in plant response to drought stress. In this study, we analyzed the expression profiles of TaNAC69 in bread wheat using Affymetrix Wheat Genome Array datasets and quantitative RT-PCR. TaNAC69 expression was positively associated with wheat responses to both abiotic and biotic stresses and was closely correlated with a number of stress up-regulated genes. The functional analyses of TaNAC69 in transgenic wheat showed that TaNAC69 driven by a barley drought-inducible HvDhn4s promoter led to marked drought-inducible overexpression of TaNAC69 in the leaves and roots of transgenic lines. The HvDhn4s:TaNAC69 transgenic lines produced more shoot biomass under combined mild salt stress and water-limitation conditions, had longer root and more root biomass under polyethylene glycol-induced dehydration. Analysis of transgenic lines with constitutive overexpression of TaNAC69 showed the enhanced expression levels of several stress up-regulated genes. DNA-binding assays revealed that TaNAC69 and its rice homolog (ONAC131) were capable of binding to the promoter elements of three rice genes (chitinase, ZIM, and glyoxalase I) and an Arabidopsis glyoxalase I family gene, which are homologs of TaNAC69 up-regulated stress genes. These data suggest that TaNAC69 is involved in regulating stress up-regulated genes and wheat adaptation to drought stress.

  12. Overexpression of Smooth Muscle Myosin Heavy Chain Leads to Activation of the Unfolded Protein Response and Autophagic Turnover of Thick Filament-associated Proteins in Vascular Smooth Muscle Cells*

    PubMed Central

    Kwartler, Callie S.; Chen, Jiyuan; Thakur, Dhananjay; Li, Shumin; Baskin, Kedryn; Wang, Shanzhi; Wang, Zhao V.; Walker, Lori; Hill, Joseph A.; Epstein, Henry F.; Taegtmeyer, Heinrich; Milewicz, Dianna M.

    2014-01-01

    Duplications spanning nine genes at the genomic locus 16p13.1 predispose individuals to acute aortic dissections. The most likely candidate gene in this region leading to the predisposition for dissection is MYH11, which encodes smooth muscle myosin heavy chain (SM-MHC). The effects of increased expression of MYH11 on smooth muscle cell (SMC) phenotypes were explored using mouse aortic SMCs with transgenic overexpression of one isoform of SM-MHC. We found that these cells show increased expression of Myh11 and myosin filament-associated contractile genes at the message level when compared with control SMCs, but not at the protein level due to increased protein degradation. Increased expression of Myh11 resulted in endoplasmic reticulum (ER) stress in SMCs, which led to a paradoxical decrease of protein levels through increased autophagic degradation. An additional consequence of ER stress in SMCs was increased intracellular calcium ion concentration, resulting in increased contractile signaling and contraction. The increased signals for contraction further promote transcription of contractile genes, leading to a feedback loop of metabolic abnormalities in these SMCs. We suggest that overexpression of MYH11 can lead to increased ER stress and autophagy, findings that may be globally implicated in disease processes associated with genomic duplications. PMID:24711452

  13. Overexpression of smooth muscle myosin heavy chain leads to activation of the unfolded protein response and autophagic turnover of thick filament-associated proteins in vascular smooth muscle cells.

    PubMed

    Kwartler, Callie S; Chen, Jiyuan; Thakur, Dhananjay; Li, Shumin; Baskin, Kedryn; Wang, Shanzhi; Wang, Zhao V; Walker, Lori; Hill, Joseph A; Epstein, Henry F; Taegtmeyer, Heinrich; Milewicz, Dianna M

    2014-05-16

    Duplications spanning nine genes at the genomic locus 16p13.1 predispose individuals to acute aortic dissections. The most likely candidate gene in this region leading to the predisposition for dissection is MYH11, which encodes smooth muscle myosin heavy chain (SM-MHC). The effects of increased expression of MYH11 on smooth muscle cell (SMC) phenotypes were explored using mouse aortic SMCs with transgenic overexpression of one isoform of SM-MHC. We found that these cells show increased expression of Myh11 and myosin filament-associated contractile genes at the message level when compared with control SMCs, but not at the protein level due to increased protein degradation. Increased expression of Myh11 resulted in endoplasmic reticulum (ER) stress in SMCs, which led to a paradoxical decrease of protein levels through increased autophagic degradation. An additional consequence of ER stress in SMCs was increased intracellular calcium ion concentration, resulting in increased contractile signaling and contraction. The increased signals for contraction further promote transcription of contractile genes, leading to a feedback loop of metabolic abnormalities in these SMCs. We suggest that overexpression of MYH11 can lead to increased ER stress and autophagy, findings that may be globally implicated in disease processes associated with genomic duplications.

  14. A Novel Function for the nm23-Hl Gene: Overexpression in Human Breast Carcinoma Cells Leads to the Formation of Basement Membrane and Growth Arrest

    SciTech Connect

    Howlett, Anthony R; Petersen, Ole W; Steeg, Patricia S; Bissell, Mina J

    1994-01-01

    We have developed a culture system using reconstituted basement membrane components in which normal human mammary epithelial cells exhibit several aspects of the development and differentiation process, including formation of acinar-like structures, production and basal deposition of basement membrane components, and production and apical secretion of sialomucins. Cell lines and cultures from human breast carcinomas failed to recapitulate this process. The data indicate the importance of cellular interactions with the basement membrane in the regulation of normal breast differentiation and, potentially, its loss in neoplasia. Our purpose was to use this assay to investigate the role of the putative metastasis suppressor gene nm23-H1 in mammary development and differentiation. The metastatic human breast carcinoma cell line MDA-MB-435, clones transfected with a control pCMVBamneo vector, and clones transfected with pCMVBamneo vector containing nm23-H1 complementary DNA (the latter of which exhibited a substantial reduction in spontaneous metastatic potential in vivo) were cultured within a reconstituted basement membrane. Clones were examined for formation of acinus-like spheres, deposition of basement membrane components, production of sialomucin, polarization, and growth arrest. In contrast to the parental cell line and control transfectants, MDA-MB-435 breast carcinoma cells overexpressing Nm23-H1 protein regained several aspects of the normal phenotype within reconstituted basement membrane. Nm23-H1 protein-positive cells formed organized acinus-like spheres, deposited the basement membrane components type IV collagen and, to some extent, laminin to the outside of the spheres, expressed sialomucin, and growth arrested. Growth arrest of Nm23-H1 protein-positive cells was preceded by and correlated with formation of a basement membrane, suggesting a causal relationship. The data indicate a previously unidentified cause-and-effect relationship between nm23-H1 gene

  15. Over-Expression of the Pikh Gene with a CaMV 35S Promoter Leads to Improved Blast Disease (Magnaporthe oryzae) Tolerance in Rice

    PubMed Central

    Azizi, Parisa; Rafii, Mohd Y.; Abdullah, Siti N. A.; Hanafi, Mohamed M.; Maziah, M.; Sahebi, Mahbod; Ashkani, Sadegh; Taheri, Sima; Jahromi, Mohammad F.

    2016-01-01

    Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g−1 in transgenic plants. The M. oryzae population was constant at 31, 48

  16. Over-Expression of the Pikh Gene with a CaMV 35S Promoter Leads to Improved Blast Disease (Magnaporthe oryzae) Tolerance in Rice.

    PubMed

    Azizi, Parisa; Rafii, Mohd Y; Abdullah, Siti N A; Hanafi, Mohamed M; Maziah, M; Sahebi, Mahbod; Ashkani, Sadegh; Taheri, Sima; Jahromi, Mohammad F

    2016-01-01

    Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g(-1) in transgenic plants. The M. oryzae population was constant at 31, 48

  17. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet.

    PubMed

    Lo, Amy C Y; Chen, Ann Y S; Hung, Victor K L; Yaw, Lai Ping; Fung, Maggie K L; Ho, Maggie C Y; Tsang, Margaret C S; Chung, Stephen S M; Chung, Sookja K

    2005-08-01

    Stroke patients have increased levels of endothelin-1 (ET-1), a strong vasoconstrictor, in their plasma or cerebrospinal fluid. Previously, we showed high level of ET-1 mRNA expression in astrocytes after hypoxia/ischemia. It is unclear whether the contribution of ET-1 induction in astrocytes is protective or destructive in cerebral ischemia. Here, we generated a transgenic mouse model that overexpress ET-1 in astrocytes (GET-1) using the glial fibrillary acidic protein promoter to examine the role of astrocytic ET-1 in ischemic stroke by challenging these mice with transient middle cerebral artery occlusion (MCAO). Under normal condition, GET-1 mice showed no abnormality in brain morphology, cerebrovasculature, absolute cerebral blood flow, blood-brain barrier (BBB) integrity, and mean arterial blood pressure. Yet, GET-1 mice subjected to transient MCAO showed more severe neurologic deficits and increased infarct, which were partially normalized by administration of ABT-627 (ET(A) antagonist) 5 mins after MCAO. In addition, GET-1 brains exhibited more Evans blue extravasation and showed decreased endothelial occludin expression after MCAO, correlating with higher brain water content and increased cerebral edema. Aquaporin 4 expression was also more pronounced in astrocytic end-feet on blood vessels in GET-1 ipsilateral brains. Our current data suggest that astrocytic ET-1 has deleterious effects on water homeostasis, cerebral edema and BBB integrity, which contribute to more severe ischemic brain injury.

  18. Cloning of zebrafish BAD, a BH3-only proapoptotic protein, whose overexpression leads to apoptosis in COS-1 cells and zebrafish embryos.

    PubMed

    Hsieh, Yueh-Chun; Chang, Mau-Sun; Chen, Jeou-Yuan; Yen, Jeffrey Jong-Young; Lu, I-Ching; Chou, Chih-Ming; Huang, Chang-Jen

    2003-05-16

    The BH3-only proapoptotic protein, BAD, was cloned from zebrafish embryos and its properties were characterized. Zebrafish BAD (zBAD) is a protein with 147 amino acids that contains a BH3 domain and a putative 14-3-3 binding site with the sequence of RPRSRS(84)AP, corresponding to S(136) in mouse BAD (mBAD). zBAD shares 34%, 28%, and 29% amino acid sequence identity to the human, mouse, and rat BAD, respectively. RT-PCR analysis revealed that the expression of zBAD gene is found in various parts of zebrafish tissues. The treatment with the z-VAD fmk, a broad-range caspase inhibitor, in COS-1 cells significantly increased the expression of zebrafish BAD fusion proteins (GFP-zBAD and HA-zBAD), indicating that zebrafish BAD fusion proteins may be cleaved by caspase(s). zBAD was shown to induce apoptosis when it was overexpressed in COS-1 cells. In addition, zBAD was also expressed in muscle cells under the muscle-specific promoter from zebrafish alpha-actin gene. Abnormality in the skeletal muscles and the loss of green fluorescence signal in the same region were observed. Taken together, our results indicate that zBAD could induce apoptosis in vitro and in vivo and may have biological implications in apoptosis during zebrafish development.

  19. Hyperhomocysteinemia in ApoE-/- Mice Leads to Overexpression of Enhancer of Zeste Homolog 2 via miR-92a Regulation

    PubMed Central

    Shengchao, Ma; Anning, Yang; Ning, Ding; Nan, Li; Yuexia, Jia; Xiaoming, Yang; Guizhong, Li; Yideng, Jiang

    2016-01-01

    Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases, such as atherosclerosis. HHcy promotes atherogenesis by modifying the histone methylation patterns and miRNA regulation. In this study, we investigated the effects of homocysteine (Hcy) on the expression of enhancer of zeste homolog 2 (EZH2), and tested our hypothesis that Hcy-induced atherosclerosis is mediated by increased EZH2 expression, which is regulated by miR-92a. The levels of EZH2 and H3K27me3 were increased in the aorta of ApoE-/- mice fed a high-methionine diet for 16 weeks, whereas miR-92a expression was decreased. Over-expression of EZH2 increased H3K27me3 level and the accumulation of total cholesterol and triglycerides in the foam cells. Furthermore, upregulation of miR-92a reduced EZH2 expression in the foam cells. These data suggested that EZH2 plays a key role in Hcy-mediated lipid metabolism disorders, and that miR-92a may be a novel therapeutic target in Hcy-related atherosclerosis. PMID:27936205

  20. Variant Rett syndrome in a girl with a pericentric X-chromosome inversion leading to epigenetic changes and overexpression of the MECP2 gene.

    PubMed

    Vieira, José Pedro; Lopes, Fátima; Silva-Fernandes, Anabela; Sousa, Maria Vânia; Moura, Sofia; Sousa, Susana; Costa, Bruno M; Barbosa, Mafalda; Ylstra, Bauke; Temudo, Teresa; Lourenço, Teresa; Maciel, Patrícia

    2015-11-01

    Rett syndrome is a neurodevelopmental disorder caused by mutations in the MECP2 gene. We investigated the genetic basis of disease in a female patient with a Rett-like clinical. Karyotype analysis revealed a pericentric inversion in the X chromosome -46,X,inv(X)(p22.1q28), with breakpoints in the cytobands where the MECP2 and CDKL5 genes are located. FISH analysis revealed that the MECP2 gene is not dislocated by the inversion. However, and in spite of a balanced pattern of X inactivation, this patient displayed hypomethylation and an overexpression of the MECP2 gene at the mRNA level in the lymphocytes (mean fold change: 2.55±0.38) in comparison to a group of control individuals; the expression of the CDKL5 gene was similar to that of controls (mean fold change: 0.98±0.10). No gains or losses were detected in the breakpoint regions encompassing known or suspected transcription regulatory elements. We propose that the de-regulation of MECP2 expression in this patient may be due to alterations in long-range genomic interactions caused by the inversion and hypothesize that this type of epigenetic de-regulation of the MECP2 may be present in other RTT-like patients.

  1. Overexpression of an endo-1,4-β-glucanase V gene (EGV) from Trichoderma reesei leads to the accumulation of cellulase activity in transgenic rice.

    PubMed

    Li, X Y; Liu, F; Hu, Y F; Xia, M; Cheng, B J; Zhu, S W; Ma, Q

    2015-12-21

    The ectopic expression of cellulase in biomass can reduce the cost of biofuel conversion. This trait modification technique is highly beneficial for biofuel production. In this study, we isolated an endo-1,4-beta-glucanase gene (EGV) from Trichoderma reesei and inserted this gene downstream of a fragment encoding the signal peptide Apo-SP in a modified pCAMBIA1301 vector to obtain an Apo-SP and AsRed fusion protein. Transient expression of this fusion protein in onion epidermal cells showed that the Apo-SP signal was localized to the plastids. EGV transgenic rice plants that did not carry screening marker genes were obtained through overexpression of the pDTB double T-DNA vector. Western blotting showed that EGV was expressed in the dry straw of T0 generation transgenic rice plants and in fresh leaves of the T1 generation. More importantly, our results also showed that the peptide product of EGV in the transgenic plants folded correctly and was capable of digesting the cellulase substrate CMC. Additionally, cellulase activity remained stable in the straw that had been dried at room temperature for three months. This study presents an important technical approach for the development of transgenic rice straw that has stable cellulase activity and can be used for biofuel conversion.

  2. E2F7 overexpression leads to tamoxifen resistance in breast cancer cells by competing with E2F1 at miR-15a/16 promoter.

    PubMed

    Chu, Junjun; Zhu, Yinghua; Liu, Yujie; Sun, Lijuan; Lv, Xiaobin; Wu, Yanqin; Hu, Pengnan; Su, Fengxi; Gong, Chang; Song, Erwei; Liu, Bodu; Liu, Qiang

    2015-10-13

    About 50-70% of breast cancers are estrogen receptor α (ERα) positive and most of them are sensitive to endocrine therapy including tamoxifen. However, one third of these patients will eventually develop resistance and relapse. We found that the expression of miR-15a and miR-16 were significantly decreased in tamoxifen resistant ER positive breast cancer cell lines. Exogenous expression of miR-15a/16 mimics re-sensitized resistant cells to tamoxifen by inhibiting Cyclin E1 and B cell lymphoma-2 (Bcl-2) to induce cell growth arrest and apoptosis respectively. Further, we identified that a repressive member of E2F family, E2F7, was responsible for the suppression of miR-15a/16 cluster by competing with E2F1 for E2F binding site at the promoter of their host gene DLEU2. Moreover, high expression of E2F7 is correlated with high risk of relapse and poor prognosis in breast cancer patients receiving tamoxifen treatment. Together, our results suggest that overexpression of E2F7 represses miR-15a/16 and then increases Cyclin E1 and Bcl-2 that result in tamoxifen resistance. E2F7 may be a valuable prognostic marker and a therapeutic target of tamoxifen resistance in breast cancer.

  3. E2F7 overexpression leads to tamoxifen resistance in breast cancer cells by competing with E2F1 at miR-15a/16 promoter

    PubMed Central

    Chu, Junjun; Zhu, Yinghua; Liu, Yujie; Sun, Lijuan; Lv, Xiaobin; Wu, Yanqin; Hu, Pengnan; Su, Fengxi; Gong, Chang; Song, Erwei; Liu, Bodu; Liu, Qiang

    2015-01-01

    About 50–70% of breast cancers are estrogen receptor α (ERα) positive and most of them are sensitive to endocrine therapy including tamoxifen. However, one third of these patients will eventually develop resistance and relapse. We found that the expression of miR-15a and miR-16 were significantly decreased in tamoxifen resistant ER positive breast cancer cell lines. Exogenous expression of miR-15a/16 mimics re-sensitized resistant cells to tamoxifen by inhibiting Cyclin E1 and B cell lymphoma-2 (Bcl-2) to induce cell growth arrest and apoptosis respectively. Further, we identified that a repressive member of E2F family, E2F7, was responsible for the suppression of miR-15a/16 cluster by competing with E2F1 for E2F binding site at the promoter of their host gene DLEU2. Moreover, high expression of E2F7 is correlated with high risk of relapse and poor prognosis in breast cancer patients receiving tamoxifen treatment. Together, our results suggest that overexpression of E2F7 represses miR-15a/16 and then increases Cyclin E1 and Bcl-2 that result in tamoxifen resistance. E2F7 may be a valuable prognostic marker and a therapeutic target of tamoxifen resistance in breast cancer. PMID:26397135

  4. Overexpression of sulfatase-1 in murine hepatocarcinoma Hca-F cell line downregulates mesothelin and leads to reduction in lymphatic metastasis, both in vitro and in vivo

    PubMed Central

    Mahmoud, Salma; Ibrahim, Mohammed; Hago, Ahmed; Huang, Yuhong; Wei, Yuanyi; Zhang, Jun; Zhang, Qingqing; Xiao, Yu; Wang, Jingwen; Adam, Munkaila; Guo, Yu; Wang, Li; Zhou, Shuting; Xin, Boyi; Xuan, Wei; Tang, Jianwu

    2016-01-01

    Lymphatic vessels function as transport channels for tumor cells to metastasize from the primary site into the lymph nodes. In this experiment we evaluated the effect of Sulfatase-1 (Sulf-1) on metastasis by upregulating it in murine hepatocarcinoma cell line Hca-F with high lymph node metastatic rate of >75%. The study in vitro showed that upregulation of Sulf-1 in Hca-F cells significantly reduced cell proliferation, migration and invasion (p<0.05). Also, the forced expression of Sulf-1 downregulated Mesothelin (Msln) at both the protein and mRNA levels. The experiment in vivo further showed that up-regulation of Sulf-1 with the attendant downregulation of mesothelin delayed tumor growth and decreased lymph node metastasis. In conclusion, our findings show that Sulf-1 is an important tumor suppressor gene in hepatocellular carcinoma (HCC), and its overexpression downregulates Msln and results in a decrease in HCC cell proliferation, migration, invasion, and lymphatic metastasis. This functional relationship between Sulf-1 and Msln could be exploited for the development of a novel liver cancer therapy. PMID:27626699

  5. ALOX5AP Overexpression in Adipose Tissue Leads to LXA4 Production and Protection Against Diet-Induced Obesity and Insulin Resistance.

    PubMed

    Elias, Ivet; Ferré, Tura; Vilà, Laia; Muñoz, Sergio; Casellas, Alba; Garcia, Miquel; Molas, Maria; Agudo, Judith; Roca, Carles; Ruberte, Jesús; Bosch, Fatima; Franckhauser, Sylvie

    2016-08-01

    Eicosanoids, such as leukotriene B4 (LTB4) and lipoxin A4 (LXA4), may play a key role during obesity. While LTB4 is involved in adipose tissue inflammation and insulin resistance, LXA4 may exert anti-inflammatory effects and alleviate hepatic steatosis. Both lipid mediators derive from the same pathway, in which arachidonate 5-lipoxygenase (ALOX5) and its partner, arachidonate 5-lipoxygenase-activating protein (ALOX5AP), are involved. ALOX5 and ALOX5AP expression is increased in humans and rodents with obesity and insulin resistance. We found that transgenic mice overexpressing ALOX5AP in adipose tissue had higher LXA4 rather than higher LTB4 levels, were leaner, and showed increased energy expenditure, partly due to browning of white adipose tissue (WAT). Upregulation of hepatic LXR and Cyp7a1 led to higher bile acid synthesis, which may have contributed to increased thermogenesis. In addition, transgenic mice were protected against diet-induced obesity, insulin resistance, and inflammation. Finally, treatment of C57BL/6J mice with LXA4, which showed browning of WAT, strongly suggests that LXA4 is responsible for the transgenic mice phenotype. Thus, our data support that LXA4 may hold great potential for the future development of therapeutic strategies for obesity and related diseases.

  6. Over-expression of a pepper plastid lipid-associated protein in tobacco leads to changes in plastid ultrastructure and plant development upon stress.

    PubMed

    Rey, P; Gillet, B; Römer, S; Eymery, F; Massimino, J; Peltier, G; Kuntz, M

    2000-03-01

    Proteins homologous to fibrillin, a pepper plastid lipid-associated protein involved in carotenoid storage in fruit chromoplasts, have been recently identified in leaf chloroplasts from several species and shown to be induced upon environmental stress. To further investigate the role of the protein, transgenic Nicotiana tabacum plants over-expressing fibrillin using a constitutive promoter were generated. Transgenics grown under standard light intensities (300 micromol photons m-2 sec-1) were found to contain substantial amounts of fibrillin in flowers and leaves. In leaves, the protein was immunolocalized within chloroplasts in both stromal and thylakoid subfractions. No change was noticed in thylakoid structures from transgenics, but chloroplasts contained an increased number of plastoglobules organized in clusters. In petals, leucoplasts were also found to contain more agglutinated plastoglobules. The effects of environmental factors on fibrillin gene expression and protein localization were studied in tobacco leaves. Less fibrillin was present in plants grown under low light intensities, which can be explained by the involvement of a light-dependent splicing step in the control of fibrillin gene expression in leaves. Analysis of protein subfractions from plants subjected to drought or high light showed that both stresses resulted in fibrillin association with thylakoids. Whereas no growth difference between wild-type (WT) and transgenic plants was noticed under low light conditions, transgenics exhibit a longer main stem, enhanced development of lateral stems and accelerated floral development under higher light intensities. These data suggest that fibrillin-related proteins fulfil an important function in plant development in relation to environmental constraints.

  7. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    PubMed

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  8. Combined exposure to protons and 56Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung

    PubMed Central

    Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R.; Pathak, Rupak; Allen, Antino R.; Latendresse, John; Olsen, Reid H.J.; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor

    2015-01-01

    Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions (56Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and 56Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation). Exposure to 56Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and 56Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed. PMID:26553631

  9. Combined exposure to protons and 56Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung

    NASA Astrophysics Data System (ADS)

    Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R.; Pathak, Rupak; Allen, Antiño R.; Latendresse, John; Olsen, Reid H. J.; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor

    2015-11-01

    Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions (56Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and 56Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to 56Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and 56Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed.

  10. Characterization of mutations in regulatory genes of Tyl cluster leading to overexpression of tylosin in mutant γ-1 of Streptomyces fradiae NRRL-2702.

    PubMed

    Khaliq, Shazia; Ghauri, Muhammad A; Akhtar, Kalsoom

    2014-01-01

    Tylosin is a veterinary antibiotic and is commercially produced using Streptomyces fradiae. Previously, we developed a mutant γ-1 of S. fradiae NRRL-2702 with a 6.87-fold increase in tylosin yield as compared with the wild-type strain through irradiation mutagenesis. The present studies were conducted to explore mutational changes in regulatory genes (TylQ, TylP, TylS, TylR, and TylT) of Tyl cluster that may lead to an enhanced expression of tylosin. Expression analysis by RT-PCR revealed that TylQ was switched off earlier in mutant γ-1 while no change in expression pattern of TylP was observed between the wild-type and mutant γ-1 strains. However, a point mutation with a substitution of T to A was recorded at position 214 in the 420-bp product of TylP from mutant γ-1 that resulted in a change of one amino acid (serine to threonine) at position 72. Moreover, no mutation in the nucleotide sequence of TylS, TylR, and TylT genes was detected.

  11. Substitution of a highly conserved histidine in the Escherichia coli heat shock transcription factor, sigma32, affects promoter utilization in vitro and leads to overexpression of the biofilm-associated flu protein in vivo.

    PubMed

    Kourennaia, Olga V; Dehaseth, Pieter L

    2007-12-01

    The heat shock sigma factor (sigma(32) in Escherichia coli) directs the bacterial RNA polymerase to promoters of a specific sequence to form a stable complex, competent to initiate transcription of genes whose products mitigate the effects of exposure of the cell to high temperatures. The histidine at position 107 of sigma(32) is at the homologous position of a tryptophan residue at position 433 of the main sigma factor of E. coli, sigma(70). This tryptophan is essential for the strand separation step leading to the formation of the initiation-competent RNA polymerase-promoter complex. The heat shock sigma factors of all gammaproteobacteria sequenced have a histidine at this position, while in the alpha- and deltaproteobacteria, it is a tryptophan. In vitro the alanine-for-histidine substitution at position 107 (H107A) destabilizes complexes between the GroE promoter and RNA polymerase containing sigma(32), implying that H107 plays a role in formation or maintenance of the strand-separated complex. In vivo, the H107A substitution in sigma(32) impedes recovery from heat shock (exposure to 42 degrees C), and it also leads to overexpression at lower temperatures (30 degrees C) of the Flu protein, which is associated with biofilm formation.

  12. Overexpression of the Trehalase Gene AtTRE1 Leads to Increased Drought Stress Tolerance in Arabidopsis and Is Involved in Abscisic Acid-Induced Stomatal Closure1[W][OA

    PubMed Central

    Van Houtte, Hilde; Vandesteene, Lies; López-Galvis, Lorena; Lemmens, Liesbeth; Kissel, Ewaut; Carpentier, Sebastien; Feil, Regina; Avonce, Nelson; Beeckman, Tom; Lunn, John E.; Van Dijck, Patrick

    2013-01-01

    Introduction of microbial trehalose biosynthesis enzymes has been reported to enhance abiotic stress resistance in plants but also resulted in undesirable traits. Here, we present an approach for engineering drought stress tolerance by modifying the endogenous trehalase activity in Arabidopsis (Arabidopsis thaliana). AtTRE1 encodes the Arabidopsis trehalase, the only enzyme known in this species to specifically hydrolyze trehalose into glucose. AtTRE1-overexpressing and Attre1 mutant lines were constructed and tested for their performance in drought stress assays. AtTRE1-overexpressing plants had decreased trehalose levels and recovered better after drought stress, whereas Attre1 mutants had elevated trehalose contents and exhibited a drought-susceptible phenotype. Leaf detachment assays showed that Attre1 mutants lose water faster than wild-type plants, whereas AtTRE1-overexpressing plants have a better water-retaining capacity. In vitro studies revealed that abscisic acid-mediated closure of stomata is impaired in Attre1 lines, whereas the AtTRE1 overexpressors are more sensitive toward abscisic acid-dependent stomatal closure. This observation is further supported by the altered leaf temperatures seen in trehalase-modified plantlets during in vivo drought stress studies. Our results show that overexpression of plant trehalase improves drought stress tolerance in Arabidopsis and that trehalase plays a role in the regulation of stomatal closure in the plant drought stress response. PMID:23341362

  13. Ectopic over-expression of BhHsf1, a heat shock factor from the resurrection plant Boea hygrometrica, leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco.

    PubMed

    Zhu, Yan; Wang, Zhi; Jing, Yanjun; Wang, Lili; Liu, Xia; Liu, Yongxiu; Deng, Xin

    2009-11-01

    Plant heat shock transcription factors (Hsfs) are commonly found to be involved in various stress responses. Several Hsfs displayed dwarf phenotype while conferred stress tolerance when over-expressed. However, the underlying mechanisms were not fully understood. Here we report the cloning and characterization of an Hsf (BhHsf1) from the resurrection plant Boea hygrometrica. Drought, heat and wound can induce BhHsf1 expression. The over-expression of BhHsf1 conferred growth retardation and stress tolerance in both Arabidopsis and tobacco. Evidence was presented to show that the growth retardation of aerial organs in the transgenic plants was resulted from the reduction of cell proliferation. Gene expression profiling using microarray hybridization and pathway analysis showed that Hsps and stress-associated genes were induced whereas the genes related to DNA replication and mitotic cell cycle were down-regulated in BhHsf1 over-expression Arabidopsis, which was in consistence with the observation of the impaired nuclear endoreduplication. Taking together, our results suggest that BhHsf1 may play dual roles in mediating the processes in heat stress tolerance and growth retardation via regulation of target genes related to stress protection and mitotic cell cycle.

  14. Overexpression of the transcription factor RAP2.6 leads to enhanced callose deposition in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii in Arabidopsis roots

    PubMed Central

    2013-01-01

    Background Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is their source of nutrients throughout their life. A transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that gene expression in the syncytium is different from that of the root with thousands of genes upregulated or downregulated. Among the downregulated genes are many which code for defense-related proteins. One gene which is strongly downregulated codes for the ethylene response transcription factor RAP2.6. The genome of Arabidopsis contains 122 ERF transcription factor genes which are involved in a variety of developmental and stress responses. Results Expression of RAP2.6 was studied with RT-PCR and a promoter::GUS line. During normal growth conditions the gene was expressed especially in roots and stems. It was inducible by Pseudomonas syringae but downregulated in syncytia from a very early time point on. Overexpression of the gene enhanced the resistance against H. schachtii which was seen by a lower number of nematodes developing on these plants as well as smaller syncytia and smaller female nematodes. A T-DNA mutant had a reduced RAP2.6 transcript level but this did not further increase the susceptibility against H. schachtii. Neither overexpression lines nor mutants had an effect on P. syringae. Overexpression of RAP2.6 led to an elevated expression of JA-responsive genes during early time points after infection by H. schachtii. Syncytia developing on overexpression lines showed enhanced deposition of callose. Conclusions Our results showed that H. schachtii infection is accompanied by a downregulation of RAP2.6. It seems likely that the nematodes use effectors to actively downregulate the expression of this and other defense-related genes to avoid resistance responses of the host plant. Enhanced resistance of RAP2.6 overexpression lines seemed to be due to enhanced

  15. let-7 Overexpression Leads to an Increased Fraction of Cells in G2/M, Direct Down-regulation of Cdc34, and Stabilization of Wee1 Kinase in Primary Fibroblasts*S⃞

    PubMed Central

    Legesse-Miller, Aster; Elemento, Olivier; Pfau, Sarah J.; Forman, Joshua J.; Tavazoie, Saeed; Coller, Hilary A.

    2009-01-01

    microRNAs play a critically important role in a wide array of biological processes including those implicated in cancer, neuro-degenerative and metabolic disorders, and viral infection. Although we have begun to understand microRNA biogenesis and function, experimental demonstration of their functional effects and the molecular mechanisms by which they function remains a challenge. Members of the let-7/miR-98 family play a critical role in cell cycle control with respect to differentiation and tumorigenesis. In this study, we show that exogenous addition of pre-let-7 in primary human fibroblasts results in a decrease in cell number and an increased fraction of cells in the G2/M cell cycle phase. Combining microarray techniques with DNA sequence analysis to identify potential let-7 targets, we discovered 838 genes with a let-7 binding site in their 3′-untranslated region that were down-regulated upon overexpression of let-7b. Among these genes is cdc34, the ubiquitin-conjugating enzyme of the Skp1/cullin/F-box (SCF) complex. Cdc34 protein levels are strongly down-regulated by let-7 overexpression. Reporter assays demonstrated direct regulation of the cdc34 3′-untranslated region by let-7. We hypothesized that low Cdc34 levels would result in decreased SCF activity, stabilization of the SCF target Wee1, and G2/M accumulation. Consistent with this hypothesis, small interfering RNA-mediated down-regulation of Wee1 reversed the G2/M phenotype induced by let-7 overexpression. We conclude that Cdc34 is a functional target of let-7 and that let-7 induces down-regulation of Cdc34, stabilization of the Wee1 kinase, and an increased fraction of cells in G2/M in primary fibroblasts. PMID:19126550

  16. Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function.

    PubMed

    Margalit, Ofer; Simon, Amos J; Yakubov, Eduard; Puca, Rosa; Yosepovich, Ady; Avivi, Camila; Jacob-Hirsch, Jasmine; Gelernter, Ilana; Harmelin, Alon; Barshack, Iris; Rechavi, Gideon; D'Orazi, Gabriella; Givol, David; Amariglio, Ninette

    2012-08-15

    Activated p53 is necessary for tumor suppression. Homeodomain-interacting protein kinase-2 (HIPK2) is a positive regulator of functional p53. HIPK2 modulates wild-type p53 activity toward proapoptotic transcription and tumor suppression by the phosphorylation of serine 46. Knock-down of HIPK2 interferes with tumor suppression and sensitivity to chemotherapy. Combined administration of adriamycin and zinc restores activity of misfolded p53 and enables the induction of its proapoptotic and tumor suppressor functions in vitro and in vivo. We therefore looked for a cancer model where HIPK2 expression is low. MMTV-neu transgenic mice overexpressing HER2/neu, develop mammary tumors at puberty with a long latency, showing very low expression of HIPK2. Here we show that whereas these tumors are resistant to adriamycin treatment, a combination of adriamycin and zinc suppresses tumor growth in vivo in these mice, an effect evidenced by the histological features of the mammary tumors. The combined treatment of adriamycin and zinc also restores wild-type p53 conformation and induces proapoptotic transcription activity. These findings may open up new possibilities for the treatment of human cancers via the combination of zinc with chemotherapeutic agents, for a selected group of patients expressing low levels of HIPK2, with an intact p53. In addition, HIPK2 may serve as a new biomarker for tumor aggressiveness.

  17. Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells.

    PubMed

    Colombara, Michaela; Antonini, Valeria; Riviera, Anna Pia; Mainiero, Fabrizio; Strippoli, Raffaele; Merola, Marcello; Fracasso, Giulio; Poffe, Ornella; Brutti, Nadia; Tridente, Giuseppe; Colombatti, Marco; Ramarli, Dunia

    2005-11-15

    Myasthenia gravis (MG) is an autoimmune disease of neuromuscular junctions where thymus plays a pathogenetic role. Thymectomy benefits patients, and thymic hyperplasia, a lymphoid infiltration of perivascular spaces becoming site of autoantibody production, is recurrently observed. Cytokines and chemokines, produced by thymic epithelium and supporting survival and migration of T and B cells, are likely to be of great relevance in pathogenesis of thymic hyperplasia. In thymic epithelial cell (TEC) cultures derived "in vitro" from normal or hyperplastic age-matched MG thymuses, we demonstrate by gene profiling analysis that MG-TEC basally overexpress genes coding for p38 and ERK1/2 MAPKs and for components of their signaling pathways. Immunoblotting experiments confirmed that p38 and ERK1/2 proteins were overexpressed in MG-TEC and, in addition, constitutively activated. Pharmacological blockage with specific inhibitors confirmed their role in the control of IL-6 and RANTES gene expression. According to our results, IL-6 and RANTES levels were abnormally augmented in MG-TEC, either basally or upon induction by adhesion-related stimuli. The finding that IL-6 and RANTES modulate, respectively, survival and migration of peripheral lymphocytes of myasthenic patients point to MAPK transcriptional and posttranscriptional abnormalities of MG-TEC as a key step in the pathological remodelling of myasthenic thymus.

  18. Primary over-expression of AβPP in muscle does not lead to the development of inclusion body myositis in a new lineage of the MCK-AβPP transgenic mouse.

    PubMed

    Luo, Yue-Bei; Johnsen, Russell D; Griffiths, Lisa; Needham, Merrilee; Fabian, Victoria A; Fletcher, Sue; Wilton, Steve D; Mastaglia, Frank L

    2013-12-01

    The aim of this study is to determine whether primary over-expression of AβPP in skeletal muscle results in the development of features of inclusion body myositis (IBM) in a new lineage of the MCK-AβPP transgenic mouse. Quantitative histological, immunohistochemical and western blotting studies were performed on muscles from 3 to 18 month old transgenic and wild-type C57BL6/SJL mice. Electron microscopy was also performed on muscle sections from selected animals. Although western blotting confirmed that there was over-expression of full length AβPP in transgenic mouse muscles, deposition of amyloid-β and fibrillar amyloid could not be demonstrated histochemically or with electron microscopy. Additionally, other changes typical of IBM such as rimmed vacuoles, cytochrome C oxidase-deficient fibres, upregulation of MHC antigens, lymphocytic inflammatory infiltration and T cell fibre invasion were absent. The most prominent finding in both transgenic and wild-type animals was the presence of tubular aggregates which was age-related and largely restricted to male animals. Expression of full length AβPP in this MCK-AβPP mouse lineage did not reach the levels required for immunodetection or deposition of amyloid-β as in the original transgenic strains, and was not associated with the development of pathological features of IBM. These negative results emphasise the potential pitfalls of re-deriving transgenic mouse strains in different laboratories.

  19. Decreased Expression of Multidrug Resistance-Associated Protein 4 (MRP4/ABCC4) Leads to Reduced Glucuronidation of Flavonoids in UGT1A1-Overexpressing HeLa Cells: The Role of Futile Recycling.

    PubMed

    Sun, Hua; Zhou, Xiaotong; Zhang, Xingwang; Wu, Baojian

    2015-07-08

    In this study, the role of futile recycling (or deglucuronidation) in the disposition of two flavonoids (i.e., genistein and apigenin) was explored using UGT1A1-overexpressing HeLa cells (or HeLa1A1 cells). Glucuronidation of the flavonoids by HeLa1A1 cell lysate followed the substrate inhibition kinetics (Vmax = 0.10 nmol/min/mg, Km = 0.54 μM, and Ksi = 2.0 μM for genistein; Vmax = 0.19 nmol/min/mg, Km = 0.56 μM, and Ksi = 3.7 μM for apigenin). Glucuronide was efficiently generated and excreted after incubation of the cells with the aglycone (at doses of 1.25-20 nmol). The excretion rates were 0.40-0.69 and 0.84-1.1 nmol/min/mg protein for genistein glucuronide (GG) and apigenin glucuronide (AG), respectively. Furthermore, glucuronide excretion and total glucuronidation were significantly reduced in MRP4 knocked-down as compared to control cells. The alterations were well characterized by a two-compartment pharmacokinetic model incorporating the process of futile recycling (defined by a first-order rate constant, Kde). The derived Kde values were 15 and 25 h(-1) for GG and AG, respectively. This was well consistent with the in vitro observation that AG was subjected to more efficient futile recycling compared to GG. In conclusion, futile recycling was involved in cellular glucuronidation, accounting for transporter-dependent glucuronidation of flavonoids.

  20. Physiological Response to Membrane Protein Overexpression in E. coli*

    PubMed Central

    Gubellini, Francesca; Verdon, Grégory; Karpowich, Nathan K.; Luff, Jon D.; Boël, Grégory; Gauthier, Nils; Handelman, Samuel K.; Ades, Sarah E.; Hunt, John F.

    2011-01-01

    Overexpression represents a principal bottleneck in structural and functional studies of integral membrane proteins (IMPs). Although E. coli remains the leading organism for convenient and economical protein overexpression, many IMPs exhibit toxicity on induction in this host and give low yields of properly folded protein. Different mechanisms related to membrane biogenesis and IMP folding have been proposed to contribute to these problems, but there is limited understanding of the physical and physiological constraints on IMP overexpression and folding in vivo. Therefore, we used a variety of genetic, genomic, and microscopy techniques to characterize the physiological responses of Escherichia coli MG1655 cells to overexpression of a set of soluble proteins and IMPs, including constructs exhibiting different levels of toxicity and producing different levels of properly folded versus misfolded product on induction. Genetic marker studies coupled with transcriptomic results indicate only minor perturbations in many of the physiological systems implicated in previous studies of IMP biogenesis. Overexpression of either IMPs or soluble proteins tends to block execution of the standard stationary-phase transcriptional program, although these effects are consistently stronger for the IMPs included in our study. However, these perturbations are not an impediment to successful protein overexpression. We present evidence that, at least for the target proteins included in our study, there is no inherent obstacle to IMP overexpression in E. coli at moderate levels suitable for structural studies and that the biochemical and conformational properties of the proteins themselves are the major obstacles to success. Toxicity associated with target protein activity produces selective pressure leading to preferential growth of cells harboring expression-reducing and inactivating mutations, which can produce chemical heterogeneity in the target protein population, potentially

  1. Overexpression of Colligin 2 in Glioma Vasculature is Associated with Overexpression of Heat Shock Factor 2.

    PubMed

    Mustafa, Dana A M; Sieuwerts, Anieta M; Zheng, Ping Pin; Kros, Johan M

    2010-10-20

    In previous studies we found expression of the protein colligin 2 (heat shock protein 47 (HSP47), SERPINH1) in glioma neovasculature while not in normal brain tissue. Generally, the regulation of heat shock gene expression in eukaryotes is mediated by heat shock factors (HSF). In mammals, three heat shock transcription factors, HSF-1, -2, and -4, have been isolated. Here we investigated the relation between the expression of colligin 2 and these heat shock factors at the mRNA level using real-time reverse transcriptase PCR (qRT-PCR) in different grades of astrocytic tumorigenesis, viz., low-grade glioma and glioblastoma. Endometrium samples, representing physiological angiogenesis, were included as controls. Since colligin 2 is a chaperon for collagens, the gene expression of collagen I (COL1A1) was also investigated. The blood vessel density of the samples was monitored by expression of the endothelial marker CD31 (PECAM1). Because NG2-immunopositive pericytic cells are involved in glioma neovascularization, the expression of NG2 (CSPG4) was also measured.We demonstrate overexpression of HSF2 in both stages of glial tumorigenesis (reaching significance only in low-grade glioma) and also minor elevated levels of HSF1 as compared to normal brain. There were no differences in expression of HSF4 between low-grade glioma and normal brain while HSF4 was downregulated in glioblastoma. In the endometrium samples, none of the HSFs were upregulated. In the low-grade gliomas SERPINH appeared to be slightly overexpressed with a parallel 4-fold upregulation of COL1A1, while in glioblastoma there was over 5-fold overexpression of SERPINH1 and more than 150-fold overexpression of COL1A1. In both the lowgrade gliomas and the glioblastomas overexpression of CSPG4 was found and overexpression of PECAM1 was only found in the latter. Our data suggest that the upregulated expression of colligin 2 in glioma is accompanied by upregulation of COL1A1, CSPG4, HSF2 and to a lesser extent

  2. Modification of photosynthetic regulation in tomato overexpressing glutathione peroxidase.

    PubMed

    Herbette, Stephane; Menn, Aline Le; Rousselle, Patrick; Ameglio, Thierry; Faltin, Zehava; Branlard, Gérard; Eshdat, Yuval; Julien, Jean-Louis; Drevet, Joël R; Roeckel-Drevet, Patricia

    2005-06-20

    To investigate the function of glutathione peroxidase (GPX) in plants, we produced transgenic tomato plants overexpressing an eukaryotic selenium-independent GPX (GPX5). We show here that total GPX activity was increased by 50% in transgenic plants, when compared to control plants transformed with the binary vector without the insert (PZP111). A preliminary two-dimensional electrophoretic protein analysis of the GPX overexpressing plants showed notably a decrease in the accumulation of proteins identified as rubisco small subunit 1 and fructose-1,6-bisphosphate aldolase, two proteins involved in photosynthesis. These observations, together with the fact that in standard culture conditions, GPX-overexpressing plants were not phenotypically distinct from control plants prompted us to challenge the plants with a chilling treatment that is known to affect photosynthesis activity. We found that upon chilling treatment with low light level, photosynthesis was not affected in GPX-overexpressing plants while it was in control plants, as revealed by chlorophyll fluorescence parameters and fructose-1,6-biphosphatase activity. These results suggest that overexpression of a selenium-independent GPX in tomato plants modifies specifically gene expression and leads to modifications of photosynthetic regulation processes.

  3. LEADING WITH LEADING INDICATORS

    SciTech Connect

    PREVETTE, S.S.

    2005-01-27

    This paper documents Fluor Hanford's use of Leading Indicators, management leadership, and statistical methodology in order to improve safe performance of work. By applying these methods, Fluor Hanford achieved a significant reduction in injury rates in 2003 and 2004, and the improvement continues today. The integration of data, leadership, and teamwork pays off with improved safety performance and credibility with the customer. The use of Statistical Process Control, Pareto Charts, and Systems Thinking and their effect on management decisions and employee involvement are discussed. Included are practical examples of choosing leading indicators. A statistically based color coded dashboard presentation system methodology is provided. These tools, management theories and methods, coupled with involved leadership and employee efforts, directly led to significant improvements in worker safety and health, and environmental protection and restoration at one of the nation's largest nuclear cleanup sites.

  4. NUCKS overexpression in breast cancer

    PubMed Central

    Drosos, Yiannis; Kouloukoussa, Mirsini; Østvold, Anne Carine; Grundt, Kirsten; Goutas, Nikos; Vlachodimitropoulos, Dimitrios; Havaki, Sophia; Kollia, Panagoula; Kittas, Christos; Marinos, Evangelos; Aleporou-Marinou, Vassiliki

    2009-01-01

    Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate) is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR), real-time PCR (qRT-PCR) and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS). It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non malignant breast lesions and

  5. Abetalipoproteinemia induced by overexpression of ORP150 in mice.

    PubMed

    Kobayashi, Tomohiro; Iguchi, Taisen; Ohta, Yasuhiko

    2007-06-01

    ORP150 is an endoplasmic-resident, hypoxic stress-induced protein, but little is known about the effects of its systemic overexpression. We have produced a transgenic strain of mice that overexpress ORP150 (ORP-Tg mice). These mice exhibit severe growth retardation concomitant with vacuolar degeneration in the heart. To investigate the cause of the observed growth retardation in response to ORP150 overexpression, we conducted a clinical evaluation of the ORP-Tg mice. Blood analysis showed significantly lower concentrations of serum triglyceride, cholesterol, glucose and insulin. The triglyceride components that were reduced in ORP-Tg mice were localized mainly at the origin and in the pre-beta fraction on agarose gel electrophoresis, corresponding to chylomicrons and very low-density lipoproteins. A lipid-loading test of ORP-Tg mice revealed reduced triglyceride uptake, which mainly was due to suppressed uptake of very low-density lipoproteins. An intraperitoneal glucose tolerance test indicated that the ORP-Tg mice have a significantly higher rate of glucose degradation. These findings suggest that overexpression of ORP150 in mice leads to abetalipoproteinemia with alteration of glucose and lipid metabolism. These data could provide clues for a therapeutic target of dyslipidemia or diabetes.

  6. The effect of aquaporin 5 overexpression on the Ras signaling pathway

    SciTech Connect

    Woo, Janghee; Lee, Juna; Kim, Myoung Sook; Jang, Se Jin; Sidransky, David; Moon, Chulso

    2008-03-07

    Human aquaporin 5 (AQP5) has been shown to be overexpressed in multiple cancers, such as pancreatic cancer and colon cancer. Furthermore, it has been reported that ectopic expression of AQP5 leads to many phenotypic changes characteristic of transformation. However, the biochemical mechanism leading to transformation in AQP5-overexpressing cells has not been clearly elucidated. In this report, the overexpression of AQP5 in NIH3T3 cells demonstrated a significant effect on Ras activity and, thus, cell proliferation. Furthermore, this influence was shown to be mediated by phosphorylation of the PKA consensus site of AQP5. This is the first evidence demonstrating an association between AQP5 and a signaling pathway, namely the Ras signal transduction pathway, which may be the basis of the oncogenic properties seen in AQP-overexpressing cells.

  7. Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1.

    PubMed

    Gabellini, Davide; D'Antona, Giuseppe; Moggio, Maurizio; Prelle, Alessandro; Zecca, Chiara; Adami, Raffaella; Angeletti, Barbara; Ciscato, Patrizia; Pellegrino, Maria Antonietta; Bottinelli, Roberto; Green, Michael R; Tupler, Rossella

    2006-02-23

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that is not due to a classical mutation within a protein-coding gene. Instead, almost all FSHD patients carry deletions of an integral number of tandem 3.3-kilobase repeat units, termed D4Z4, located on chromosome 4q35 (ref. 3). D4Z4 contains a transcriptional silencer whose deletion leads to inappropriate overexpression in FSHD skeletal muscle of 4q35 genes located upstream of D4Z4 (ref. 4). To identify the gene responsible for FSHD pathogenesis, we generated transgenic mice selectively overexpressing in skeletal muscle the 4q35 genes FRG1, FRG2 or ANT1. We find that FRG1 transgenic mice develop a muscular dystrophy with features characteristic of the human disease; by contrast, FRG2 and ANT1 transgenic mice seem normal. FRG1 is a nuclear protein and several lines of evidence suggest it is involved in pre-messenger RNA splicing. We find that in muscle of FRG1 transgenic mice and FSHD patients, specific pre-mRNAs undergo aberrant alternative splicing. Collectively, our results suggest that FSHD results from inappropriate overexpression of FRG1 in skeletal muscle, which leads to abnormal alternative splicing of specific pre-mRNAs.

  8. SUN2 Overexpression Deforms Nuclear Shape and Inhibits HIV

    PubMed Central

    Amraoui, Sonia; di Nunzio, Francesca; Kieffer, Camille; Porrot, Françoise; Opp, Silvana; Diaz-Griffero, Felipe; Casartelli, Nicoletta

    2016-01-01

    ABSTRACT In a previous screen of putative interferon-stimulated genes, SUN2 was shown to inhibit HIV-1 infection in an uncharacterized manner. SUN2 is an inner nuclear membrane protein belonging to the linker of nucleoskeleton and cytoskeleton complex. We have analyzed here the role of SUN2 in HIV infection. We report that in contrast to what was initially thought, SUN2 is not induced by type I interferon, and that SUN2 silencing does not modulate HIV infection. However, SUN2 overexpression in cell lines and in primary monocyte-derived dendritic cells inhibits the replication of HIV but not murine leukemia virus or chikungunya virus. We identified HIV-1 and HIV-2 strains that are unaffected by SUN2, suggesting that the effect is specific to particular viral components or cofactors. Intriguingly, SUN2 overexpression induces a multilobular flower-like nuclear shape that does not impact cell viability and is similar to that of cells isolated from patients with HTLV-I-associated adult T-cell leukemia or with progeria. Nuclear shape changes and HIV inhibition both mapped to the nucleoplasmic domain of SUN2 that interacts with the nuclear lamina. This block to HIV replication occurs between reverse transcription and nuclear entry, and passaging experiments selected for a single-amino-acid change in capsid (CA) that leads to resistance to overexpressed SUN2. Furthermore, using chemical inhibition or silencing of cyclophilin A (CypA), as well as CA mutant viruses, we implicated CypA in the SUN2-imposed block to HIV infection. Our results demonstrate that SUN2 overexpression perturbs both nuclear shape and early events of HIV infection. IMPORTANCE Cells encode proteins that interfere with viral replication, a number of which have been identified in overexpression screens. SUN2 is a nuclear membrane protein that was shown to inhibit HIV infection in such a screen, but how it blocked HIV infection was not known. We show that SUN2 overexpression blocks the infection of certain

  9. Lead Poisoning

    MedlinePlus

    ... be exposed to lead by Eating food or drinking water that contains lead. Water pipes in older homes ... herbs or foods that contain lead Breathing air, drinking water, eating food, or swallowing or touching dirt that ...

  10. Lead Toxicity

    MedlinePlus

    ... including some imported jewelry. What are the health effects of lead? • More commonly, lower levels of lead in children over time may lead to reduced IQ, slow learning, Attention Deficit Hyperactivity Disorder (ADHD), or behavioral issues. • Lead also affects other ...

  11. Lead poisoning

    SciTech Connect

    Rekus, J.F.

    1992-08-01

    Construction workers who weld, cut or blast structural steel coated with lead-based paint are at significant risk of lead poisoning. Although technology to control these exposures may not have existed when the lead standard was promulgated, it is available today. Employers who do not take steps to protect their employees from lead exposure may be cited and fined severely for their failure.

  12. Craniosynostosis in transgenic mice overexpressing Nell-1

    PubMed Central

    Zhang, Xinli; Kuroda, Shun’ichi; Carpenter, Dale; Nishimura, Ichiro; Soo, Chia; Moats, Rex; Iida, Keisuke; Wisner, Eric; Hu, Fei-Ya; Miao, Steve; Beanes, Steve; Dang, Catherine; Vastardis, Heleni; Longaker, Michael; Tanizawa, Katsuyuki; Kanayama, Norihiro; Saito, Naoaki; Ting, Kang

    2002-01-01

    Previously, we reported NELL-1 as a novel molecule overexpressed during premature cranial suture closure in patients with craniosynostosis (CS), one of the most common congenital craniofacial deformities. Here we describe the creation and analysis of transgenic mice overexpressing Nell-1. Nell-1 transgenic animals exhibited CS-like phenotypes that ranged from simple to compound synostoses. Histologically, the osteogenic fronts of abnormally closing/closed sutures in these animals revealed calvarial overgrowth and overlap along with increased osteoblast differentiation and reduced cell proliferation. Furthermore, anomalies were restricted to calvarial bone, despite generalized, non-tissue-specific overexpression of Nell-1. In vitro, Nell-1 overexpression accelerated calvarial osteoblast differentiation and mineralization under normal culture conditions. Moreover, Nell-1 overexpression in osteoblasts was sufficient to promote alkaline phosphatase expression and micronodule formation. Conversely, downregulation of Nell-1 inhibited osteoblast differentiation in vitro. In summary, Nell-1 overexpression induced calvarial overgrowth resulting in premature suture closure in a rodent model. Nell-1, therefore, has a novel role in CS development, perhaps as part of a complex chain of events resulting in premature suture closure. On a cellular level, Nell-1 expression may modulate and be both sufficient and required for osteoblast differentiation. PMID:12235118

  13. Lead Poisoning

    MedlinePlus

    ... from lead poisoning in New Hampshire and in Alabama. Lead poisoning has also been associated with juvenile ... for decades—after it first enters the blood stream. (The same process can occur with the onset ...

  14. Lead poisoning

    MedlinePlus

    ... Failure at school Hearing problems Kidney damage Reduced IQ Slowed body growth The symptoms of lead poisoning ... can have a permanent impact on attention and IQ. People with higher lead levels have a greater ...

  15. Transgenic mice overexpressing desmocollin-2 (DSC2) develop cardiomyopathy associated with myocardial inflammation and fibrotic remodeling

    PubMed Central

    Garnett, Lauren; Martens, Kristina; Abdelfatah, Nelly; Rodriguez, Marcela; Diao, Catherine; Chen, Yong-Xiang; Gordon, Paul M. K.; Nygren, Anders; Gerull, Brenda

    2017-01-01

    Background Arrhythmogenic cardiomyopathy is an inherited heart muscle disorder leading to ventricular arrhythmias and heart failure, mainly as a result of mutations in cardiac desmosomal genes. Desmosomes are cell-cell junctions mediating adhesion of cardiomyocytes; however, the molecular and cellular mechanisms underlying the disease remain widely unknown. Desmocollin-2 is a desmosomal cadherin serving as an anchor molecule required to reconstitute homeostatic intercellular adhesion with desmoglein-2. Cardiac specific lack of desmoglein-2 leads to severe cardiomyopathy, whereas overexpression does not. In contrast, the corresponding data for desmocollin-2 are incomplete, in particular from the view of protein overexpression. Therefore, we developed a mouse model overexpressing desmocollin-2 to determine its potential contribution to cardiomyopathy and intercellular adhesion pathology. Methods and results We generated transgenic mice overexpressing DSC2 in cardiac myocytes. Transgenic mice developed a severe cardiac dysfunction over 5 to 13 weeks as indicated by 2D-echocardiography measurements. Corresponding histology and immunohistochemistry demonstrated fibrosis, necrosis and calcification which were mainly localized in patches near the epi- and endocardium of both ventricles. Expressions of endogenous desmosomal proteins were markedly reduced in fibrotic areas but appear to be unchanged in non-fibrotic areas. Furthermore, gene expression data indicate an early up-regulation of inflammatory and fibrotic remodeling pathways between 2 to 3.5 weeks of age. Conclusion Cardiac specific overexpression of desmocollin-2 induces necrosis, acute inflammation and patchy cardiac fibrotic remodeling leading to fulminant biventricular cardiomyopathy. PMID:28339476

  16. Leading Democratically

    ERIC Educational Resources Information Center

    Brookfield, Stephen

    2010-01-01

    Democracy is the most venerated of American ideas, the one for which wars are fought and people die. So most people would probably agree that leaders should be able to lead well in a democratic society. Yet, genuinely democratic leadership is a relative rarity. Leading democratically means viewing leadership as a function or process, rather than…

  17. Extending the Impact of RAC1b Overexpression to Follicular Thyroid Carcinomas

    PubMed Central

    Faria, Márcia; Capinha, Liliana; Simões-Pereira, Joana; Bugalho, Maria João; Silva, Ana Luísa

    2016-01-01

    RAC1b is a hyperactive variant of the small GTPase RAC1 known to be a relevant molecular player in different cancers. Previous studies from our group lead to the evidence that its overexpression in papillary thyroid carcinoma (PTC) is associated with an unfavorable prognosis. In the present study, we intended to extend the analysis of RAC1b expression to thyroid follicular neoplasms and to seek for clinical correlations. RAC1b expression levels were determined by RT-qPCR in thyroid follicular tumor samples comprising 23 follicular thyroid carcinomas (FTCs) and 33 follicular thyroid adenomas (FTAs). RAC1b was found to be overexpressed in 33% of carcinomas while no RAC1b overexpression was documented among follicular adenomas. Patients with a diagnosis of FTC were divided into two groups based on longitudinal evolution and final outcome. RAC1b overexpression was significantly associated with both the presence of distant metastases (P = 0.01) and poorer clinical outcome (P = 0.01) suggesting that, similarly to that previously found in PTCs, RAC1b overexpression in FTCs is also associated with worse outcomes. Furthermore, the absence of RAC1b overexpression in follicular adenomas hints its potential as a molecular marker likely to contribute, in conjunction with other putative markers, to the preoperative differential diagnosis of thyroid follicular lesions. PMID:27127508

  18. Ecotoxicology: Lead

    USGS Publications Warehouse

    Scheuhammer, A.M.; Beyer, W.N.; Schmitt, C.J.; Jorgensen, Sven Erik; Fath, Brian D.

    2008-01-01

    Lead (Pb) is a naturally occurring metallic element; trace concentrations are found in all environmental media and in all living things. However, certain human activities, especially base metal mining and smelting; combustion of leaded gasoline; the use of Pb in hunting, target shooting, and recreational angling; the use of Pb-based paints; and the uncontrolled disposal of Pb-containing products such as old vehicle batteries and electronic devices have resulted in increased environmental levels of Pb, and have created risks for Pb exposure and toxicity in invertebrates, fish, and wildlife in some ecosystems.

  19. An apple rootstock overexpressing a peach CBF gene alters growth and flowering in the scion but does not impact cold hardiness or dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The C-repeat Binding Factor (CBF) transcription factor is involved in responses to low temperature and water deficit in many plant species. Overexpression of CBF genes leads to enhanced freezing tolerance and growth inhibition in many species. The overexpression of a peach CBF (PpCBF1) gene in a t...

  20. Tetraethyl lead

    Integrated Risk Information System (IRIS)

    Tetraethyl lead ; CASRN 78 - 00 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  1. Overexpression of neurofilament H disrupts normal cell structure and function

    NASA Technical Reports Server (NTRS)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  2. Capsule Depolymerase Overexpression Reduces Bacillus anthracis Virulence

    DTIC Science & Technology

    2010-01-01

    Friedlander, A. M. (2004). The NheA component of the non- hemolytic enterotoxin of Bacillus cereus is produced by Bacillus anthracis but is not required for...Capsule depolymerase overexpression reduces Bacillus anthracis virulence Angelo Scorpio,3 Donald J. Chabot, William A. Day,4 Timothy A. Hoover and...depolymerase (CapD) is a c-glutamyl transpeptidase and a product of the Bacillus anthracis capsule biosynthesis operon. In this study, we examined the

  3. Who Leads China's Leading Universities?

    ERIC Educational Resources Information Center

    Huang, Futao

    2017-01-01

    This study attempts to identify the major characteristics of two different groups of institutional leaders in China's leading universities. The study begins with a review of relevant literature and theory. Then, there is a brief introduction to the selection of party secretaries, deputy secretaries, presidents and vice presidents in leading…

  4. Overexpression of MMP-7 increases collagen 1A2 in the aging kidney

    PubMed Central

    Ślusarz, Anna; Nichols, LaNita A; Grunz-Borgmann, Elizabeth A; Chen, Gang; Akintola, Adebayo D; Catania, Jeffery M; Burghardt, Robert C; Trzeciakowski, Jerome P; Parrish, Alan R

    2013-01-01

    The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis that leads to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however, it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, with over a 500-fold upregulation in 2-year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of protein kinase A (PKA), src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 upregulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src, and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD. PMID:24273653

  5. Nuclear overexpression of the overexpressed in lung cancer 1 predicts worse prognosis in gastric adenocarcinoma.

    PubMed

    Wang, Jue; Shen, Hongchang; Fu, Guobin; Zhao, Dandan; Wang, Weibo

    2017-02-07

    We have performed this retrospective study to elucidate whether elevated expression of the overexpressed in lung cancer 1 (OLC1) was related to the clinicopathological parameters and prognosis of patients with gastric adenocarcinoma. Additionally, different effects of various subcellular OLC1 expression on gastric adeno-carcinogenesis were focused on in our study. Both overall and subcellular expression of OLC1 was evaluated by immunohistochemistry(IHC) via tissue microarrays from total 393 samples. The Kaplan-Meier method and Cox's proportional hazard model were exerted to further explore the correlation between OLC1 and prognosis. Total overexpression of OLC1 was significantly associated with stage (P = 0.004) and differentiation (P = 0.009), and only the strong total expression could predict a poor prognosis (HR = 1.31, P = 0.04). There were significant associations found between nuclear overexpression and tumor invasion depth(P = 0.002), lymph node (P < 0.001), stage (P = 0.004), differentiation (P < 0.001) and smoking history (P = 0.045). Furthermore, over-expressed nuclear OLC1 protein could be an independent risk factor for gastric adenocarcinoma (univariate: HR = 1.43, P = 0.003; multivariate: HR = 1.39, P = 0.011). In general, both total and nuclear overexpression of OLC1 could be the signs of gastric adeno-carcinogenesis, which might be served as the biomarkers for diagnosis at an early stage, even at the onset of tumorigenesis. Rather than the total expression, nuclear overexpression of OLC1 was correlated with most clinicopathological parameters and could predict a poor overall survival as an independent factor for prognosis, which made it a more effective and sensitive biomarker for gastric adenocarcinoma.

  6. Overexpression of facioscapulohumeral muscular dystrophy region gene 1 causes primary defects in myogenic stem cells.

    PubMed

    Xynos, Alexandros; Neguembor, Maria Victoria; Caccia, Roberta; Licastro, Danilo; Nonis, Alessandro; Di Serio, Clelia; Stupka, Elia; Gabellini, Davide

    2013-05-15

    Overexpression of facioscapulohumeral muscular dystrophy region gene 1 (FRG1) in mice, frogs and worms leads to muscular and vascular abnormalities. Nevertheless, the mechanism that follows FRG1 overexpression and finally leads to muscular defects is currently unknown. Here, we show that the earliest phenotype displayed by mice overexpressing FRG1 is a postnatal muscle-growth defect. Long before the development of muscular dystrophy, FRG1 mice also exhibit a muscle regeneration impairment. Ex vivo and in vivo experiments revealed that FRG1 overexpression causes myogenic stem cell activation and proliferative, clonogenic and differentiation defects. A comparative gene expression profiling of muscles from young pre-dystrophic wild-type and FRG1 mice identified differentially expressed genes in several gene categories and networks that could explain the emerging tissue and myogenic stem cell defects. Overall, our study provides new insights into the pathways regulated by FRG1 and suggests that muscle stem cell defects could contribute to the pathology of FRG1 mice.

  7. Overexpression of multisubunit replication factors in yeast.

    PubMed

    Burgers, P M

    1999-07-01

    Facile genetic and biochemical manipulation coupled with rapid cell growth and low cost of growth media has established the yeast Saccharomyces cerevisiae as a versatile workhorse. This article describes the use of yeast expression systems for the overproduction of complex multipolypeptide replication factors. The regulated overexpression of these factors in yeast provides for a readily accessible and inexpensive source of these factors in large quantities. The methodology is illustrated with the five-subunit replication factor C. Whole-cell extracts are prepared by blending yeast cells with glass beads or frozen yeast with dry ice. Procedures are described that maximize the yield of these factors while minimizing proteolytic degradation.

  8. Nucleophosmin is overexpressed in thyroid tumors

    SciTech Connect

    Pianta, Annalisa; Puppin, Cinzia; Franzoni, Alessandra; Fabbro, Dora; Di Loreto, Carla; Bulotta, Stefania; Deganuto, Marta; Paron, Igor; Tell, Gianluca; Puxeddu, Efisio; Filetti, Sebastiano; Russo, Diego; Damante, Giuseppe

    2010-07-02

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed in tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.

  9. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction.

    PubMed

    Weiss, N; Zhang, Y Y; Heydrick, S; Bierl, C; Loscalzo, J

    2001-10-23

    Homocyst(e)ine (Hcy) inhibits the expression of the antioxidant enzyme cellular glutathione peroxidase (GPx-1) in vitro and in vivo, which can lead to an increase in reactive oxygen species that inactivate NO and promote endothelial dysfunction. In this study, we tested the hypothesis that overexpression of GPx-1 can restore the normal endothelial phenotype in hyperhomocyst(e)inemic states. Heterozygous cystathionine beta-synthase-deficient (CBS((-/+))) mice and their wild-type littermates (CBS((+/+))) were crossbred with mice that overexpress GPx-1 [GPx-1((tg+)) mice]. GPx-1 activity was 28% lower in CBS((-/+))/GPx-1((tg-)) compared with CBS((+/+))/GPx-1((tg-)) mice (P < 0.05), and CBS((-/+)) and CBS((+/+)) mice overexpressing GPx-1 had 1.5-fold higher GPx-1 activity compared with GPx-1 nontransgenic mice (P < 0.05). Mesenteric arterioles of CBS((-/+))/GPx-1((tg-)) mice showed vasoconstriction to superfusion with beta-methacholine and bradykinin (P < 0.001 vs. all other groups), whereas nonhyperhomocyst(e)inemic mice [CBS((+/+))/GPx-1((tg-)) and CBS((+/+))/GPx-1((tg+)) mice] demonstrated dose-dependent vasodilation in response to both agonists. Overexpression of GPx-1 in hyperhomocyst(e)inemic mice restored the normal endothelium-dependent vasodilator response. Bovine aortic endothelial cells (BAEC) were transiently transfected with GPx-1 and incubated with dl-homocysteine (HcyH) or l-cysteine. HcyH incubation decreased GPx-1 activity in sham-transfected BAEC (P < 0.005) but not in GPx-1-transfected cells. Nitric oxide release from BAEC was significantly decreased by HcyH but not cysteine, and GPx-1 overexpression attenuated this decrease. These findings demonstrate that overexpression of GPx-1 can compensate for the adverse effects of Hcy on endothelial function and suggest that the adverse vascular effects of Hcy are at least partly mediated by oxidative inactivation of NO.

  10. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction

    PubMed Central

    Weiss, Norbert; Zhang, Ying-Yi; Heydrick, Stanley; Bierl, Charlene; Loscalzo, Joseph

    2001-01-01

    Homocyst(e)ine (Hcy) inhibits the expression of the antioxidant enzyme cellular glutathione peroxidase (GPx-1) in vitro and in vivo, which can lead to an increase in reactive oxygen species that inactivate NO and promote endothelial dysfunction. In this study, we tested the hypothesis that overexpression of GPx-1 can restore the normal endothelial phenotype in hyperhomocyst(e)inemic states. Heterozygous cystathionine β-synthase-deficient (CBS(−/+)) mice and their wild-type littermates (CBS(+/+)) were crossbred with mice that overexpress GPx-1 [GPx-1(tg+) mice]. GPx-1 activity was 28% lower in CBS(−/+)/GPx-1(tg−) compared with CBS(+/+)/GPx-1(tg−) mice (P < 0.05), and CBS(−/+) and CBS(+/+) mice overexpressing GPx-1 had 1.5-fold higher GPx-1 activity compared with GPx-1 nontransgenic mice (P < 0.05). Mesenteric arterioles of CBS(−/+)/GPx-1(tg−) mice showed vasoconstriction to superfusion with β-methacholine and bradykinin (P < 0.001 vs. all other groups), whereas nonhyperhomocyst(e)inemic mice [CBS(+/+)/GPx-1(tg−) and CBS(+/+)/GPx-1(tg+) mice] demonstrated dose-dependent vasodilation in response to both agonists. Overexpression of GPx-1 in hyperhomocyst(e)inemic mice restored the normal endothelium-dependent vasodilator response. Bovine aortic endothelial cells (BAEC) were transiently transfected with GPx-1 and incubated with dl-homocysteine (HcyH) or l-cysteine. HcyH incubation decreased GPx-1 activity in sham-transfected BAEC (P < 0.005) but not in GPx-1-transfected cells. Nitric oxide release from BAEC was significantly decreased by HcyH but not cysteine, and GPx-1 overexpression attenuated this decrease. These findings demonstrate that overexpression of GPx-1 can compensate for the adverse effects of Hcy on endothelial function and suggest that the adverse vascular effects of Hcy are at least partly mediated by oxidative inactivation of NO. PMID:11606774

  11. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex. Differential effects on GABAergic synapses and neuronal migration

    PubMed Central

    Fekete, Christopher D.; Chiou, Tzu-Ting; Miralles, Celia P.; Harris, Rachel S.; Fiondella, Christopher G.; LoTurco, Joseph J.; De Blas, Angel L.

    2015-01-01

    We have studied the effect of clonal overexpression of neuroligin 3 (NL3) or neuroligin 2 (NL2) in the adult rat cerebral cortex following in utero electroporation (IUEP) at embryonic stage E14. Overexpression of NL3 leads to a large increase in vGAT and GAD65 in the GABAergic contacts that the overexpressing neurons receive. Overexpression of NL2 produced a similar effect but to a lesser extent. In contrast, overexpression of NL3 or NL2 after IUEP, does not affect vGlut1 in the glutamatergic contacts that the NL3 or NL2 overexpressing neurons receive. The NL3 or NL2 overexpressing neurons do not show increased innervation by parvalbumin-containing GABAergic terminals or increased parvalbumin in the same terminals that show increased vGAT. These results indicate that the observed increase in vGAT and GAD65 is not due to increased GABAergic innervation but to increased expression of vGAT and GAD65 in the GABAergic contacts that NL3 or NL2 overexpressing neurons receive. The majority of bright vGAT puncta contacting the NL3 overexpressing neurons have no gephyrin juxtaposed to them indicating that many of these contacts are non-synaptic. This contrasts with the majority of the NL2 overexpressing neurons, which show plenty of synaptic gephyrin clusters juxtaposed to vGAT. Besides having an effect on GABAergic contacts, overexpression of NL3 interferes with the neuronal radial migration, in the cerebral cortex, of the neurons overexpressing NL3. PMID:25565602

  12. Statins Reduce Melanoma Development and Metastasis through MICA Overexpression.

    PubMed

    Pich, Christine; Teiti, Iotefa; Rochaix, Philippe; Mariamé, Bernard; Couderc, Bettina; Favre, Gilles; Tilkin-Mariamé, Anne-Françoise

    2013-01-01

    Survival of melanoma patients after metastases detection remains short. Several clinical trials have shown moderate efficiency in improving patient survival, and the search for pharmacological agents to enhance the immune response and reduce melanoma metastases is still necessary. Statins block the mevalonate pathway, which leads to decreases in GTPase isoprenylation and activity, particularly those of the Ras superfamily. They are widely used as hypocholesterolemic agents in cardiovascular diseases and several studies have shown that they also have protective effects against cancers. Furthermore, we have previously demonstrated that treatment of melanoma cells with inhibitors of the mevalonate pathway, such as statins, favor the development of specific adaptive immune responses against these tumors. In the present study, we tested statin impact on the innate immune response against human metastatic melanoma cells. Our data shows that treatment of two human melanoma cell lines with statins induced a weak but significant increase of MHC class I Chain-related protein A (MICA) membrane expression. Peroxisome Proliferator-Activated Receptor gamma is involved in this statin-induced MICA overexpression, which is independent of Ras and Rho GTPase signaling pathways. Interestingly, this MICA overexpression makes melanoma cells more sensitive to in vitro lysis by NK cells. The impact of statin treatment on in vivo development of melanoma tumors and metastases was investigated in nude mice, because murine NK cells, which express NKG2D receptors, are able to recognize and kill human tumor cells expressing MICA. The results demonstrated that both local tumor growth and pulmonary metastases were strongly inhibited in nude mice injected with statin-treated melanoma cells. These results suggest that statins could be effective in melanoma immunotherapy treatments.

  13. CD3-epsilon overexpressed in prothymocytes acts as an oncogene.

    PubMed Central

    Wang, B.; She, J.; Salio, M.; Allen, D.; Lacy, E.; Lonberg, N.; Terhorst, C.

    1997-01-01

    BACKGROUND: Upon engagement of the T cell receptor for antigen, its associated CD3 proteins recruit signal transduction molecules, which in turn regulate T lymphocyte proliferation, apoptosis, and thymocyte development. Because some signal transducing molecules recruited by CD3-epsilon, i.e., p56lck and p59fyn, are oncogenic and since we previously found that overexpression of CD3-epsilon transgenes causes a block in T lymphocyte and NK cell development, we tested the hypothesis that aberrant CD3-epsilon signaling leads both to abnormal T lymphocyte death and lymphomagenesis. MATERIALS AND METHODS: Ten independently derived transgenic mouse lines were generated with four different genomic CD3-epsilon constructs. Mice either homozygous or hemizygous for each transgene were analyzed for an arrest in T lymphocyte development and for the occurrence of T cell lymphomas. RESULTS: Aggressive clonal T cell lymphomas developed at very high frequencies in seven mouse lines with intermediate levels of copies of CD3-epsilon derived transgenes. However, these lymphomas were not found when high copy numbers of CD3-epsilon transgenes caused a complete block in early thymic development or when a transgene was used in which the exons coding for the CD3-epsilon protein were deleted. Analyses of a series of double mutant mice, tgCD3-epsilon x RAG-2null, indicated that lymphomagenesis was initiated in lineage-committed prothymocytes, i.e., before rearrangement of the T cell receptor genes. In addition, the transgene coding for the CD3-epsilon cytoplasmic domain and its transmembrane region induced a T cell differentiation signal in premalignant tgCD3-epsilon x RAG-2null mice. CONCLUSION: The nonenzymatic CD3-epsilon protein acted as a potent oncogene when overexpressed early in T lymphocyte development. Lymphomagenesis was dependent on signal transduction events initiated by the cytoplasmic domain of CD3-epsilon. Images FIG. 2 FIG. 4 FIG. 5 PMID:9132282

  14. The influence of follistatin on mechanical properties of bone tissue in growing mice with overexpression of follistatin.

    PubMed

    Gajos-Michniewicz, Anna; Pawlowska, Elzbieta; Ochedalski, Tomasz; Piastowska-Ciesielska, Agnieszka

    2012-07-01

    Mechanical competence of bones is mainly associated with tissue quality that depends on proper bone metabolism processes. An imbalance in the regulation of bone metabolism leads to pathological changes in bone tissue leading to susceptibility to bone fractures and bone deterioration processes. Bone metabolism is regulated to a large extent by the members of the transforming growth factor-β superfamily, i.e., activins and bone morphogenetic proteins. However, their function is regulated by a single-chain protein called follistatin (FS). The aim of this study was to test the hypothesis that overexpression of FS in growing mice results in impairments in bone morphology and mechanical properties. Moreover, we wanted to investigate how geometrical, structural and material properties of bone tissue change with age. The experiment was performed on growing C57BL/6 TgNK14-mFst/6J mice, overexpressing FS (F mice) versus C57BL/6J mice used as controls (C mice). To establish how overexpression of FS influences bone tissue quality, we studied mice femurs to determine geometrical, structural and material properties of the skeleton. To determine mechanical resistance of bone tissue, femurs were loaded to failure in a three-point bending test. Obtained results indicated that overexpression of FS negatively influences bone metabolism. It was found that mutation results with a significant decrease of all measured biomechanical strength variables in F mice in comparison to C mice. Overexpression of FS leads to decreased quality of skeleton, increasing susceptibility to bone fractures.

  15. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors.

    PubMed

    Kobayashi, Koichi; Sasaki, Daichi; Noguchi, Ko; Fujinuma, Daiki; Komatsu, Hirohisa; Kobayashi, Masami; Sato, Mayuko; Toyooka, Kiminori; Sugimoto, Keiko; Niyogi, Krishna K; Wada, Hajime; Masuda, Tatsuru

    2013-08-01

    In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.

  16. Linear correlation between bacterial overexpression of recombinant peptides and cell light scatter.

    PubMed Central

    Lavergne-Mazeau, F; Maftah, A; Cenatiempo, Y; Julien, R

    1996-01-01

    Fusion of multiple copies of a test peptide leads to insoluble inclusion bodies. Their presence within bacteria increases either forward-angle light scattering or, to a lesser extent, right-angle light scattering. A linear correlation has been established between cell forward-angle scattering and the level of overexpression of atrial natriuretic peptide. The correlation is valid only for unlysed cells and is protein product specific. PMID:8702299

  17. Overexpression of membrane proteins using Pichia pastoris.

    PubMed

    Bornert, Olivier; Alkhalfioui, Fatima; Logez, Christel; Wagner, Renaud

    2012-02-01

    Among the small number of expression systems validated for the mass production of eukaryotic membrane proteins (EMPs), the methylotrophic yeast Pichia pastoris stands as one of the most efficient hosts. This system has been used to produce crystallization-grade proteins for a variety of EMPs, from which high-resolution 3D structures have been determined. This unit describes a set of guidelines and instructions to overexpress membrane proteins using the P. pastoris system. Using a G protein-coupled receptor (GPCR) as a model EMP, these protocols illustrate the necessary steps, starting with the design of the DNA sequence to be expressed, through the preparation and analysis of samples containing the corresponding membrane protein of interest. In addition, recommendations are given on a series of experimental parameters that can be optimized to substantially improve the amount and/or the functionality of the expressed EMPs.

  18. MARCKS protein overexpression in inflammatory breast cancer

    PubMed Central

    Manai, Maroua; Lopez, Marc; Eghozzi, Radhia; Ayadi, Sinda; Lamine, Olfa Ben; Manai, Mohamed; Rahal, Khaled; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Viens, Patrice; Birnbaum, Daniel; Boussen, Hamouda; Chaffanet, Max; Bertucci, François

    2017-01-01

    Background Inflammatory breast cancer (IBC) is the most aggressive form of locally-advanced breast cancer. Identification of new therapeutic targets is crucial. We previously reported MARCKS mRNA overexpression in IBC in the largest transcriptomics study reported to date. Here, we compared MARCKS protein expression in IBC and non-IBC samples, and searched for correlations between protein expression and clinicopathological features. Results Tumor samples showed heterogeneity with respect to MARCKS staining: 18% were scored as MARCKS-positive (stained cells ≥ 1%) and 82% as MARCKS-negative. MARCKS expression was more frequent in IBC (36%) than in non-IBC (11%; p = 1.4E−09), independently from molecular subtypes and other clinicopathological variables. We found a positive correlation between protein and mRNA expression in the 148/502 samples previously analyzed for MARCKS mRNA expression. MARCKS protein expression was associated with other poor-prognosis features in the whole series of samples such as clinical axillary lymph node or metastatic extension, high pathological grade, ER-negativity, PR-negativity, HER2-positivity, and triple-negative and HER2+ statutes. In IBC, MARCKS expression was the sole tested variable associated with poor MFS. Materials and Methods We retrospectively analyzed MARCKS protein expression by immunohistochemistry in 502 tumors, including 133 IBC and 369 non-IBC, from Tunisian and French patients. All samples were pre-therapeutic clinical samples. We searched for correlations between MARCKS expression and clinicopathological features including the IBC versus non-IBC phenotype and metastasis-free survival (MFS). Conclusions MARCKS overexpression might in part explain the poor prognosis of IBC. As an oncogene associated with poor MFS, MARCKS might represent a new potential therapeutic target in IBC. PMID:28009981

  19. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  20. Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger.

    PubMed

    Meijer, S; Otero, J; Olivares, R; Andersen, M R; Olsson, L; Nielsen, J

    2009-03-01

    In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards glyoxylate would increase, leading to excess formation of malate and succinate compared to the wild-type. However,metabolic network analysis showed that an increased icl expression did not result in an increased glyoxylate bypass flux. The analysis did show a global response with respect to gene expression, leading to an increased flux through the oxidative part of the TCA cycle. Instead of an increased production of succinate and malate, a major increase in fumarate production was observed. The effect of malonate, a competitive inhibitor of succinate dehydrogenase (SDH), on the physiological behaviour of the cells was investigated. Inhibition of SDH was expected to lead to succinate production, but this was not observed. There was an increase in citrate and oxalate production in the wild-type strain. Further more, in the strain with over-expression of icl the organic acid production shifted from fumarate towards malate production when malonate was added to the cultivation medium. Overall,the icl over-expression and malonate addition had a significant impact on metabolism and on organic acid production profiles. Although the expected succinate and malate formation was not observed, a distinct and interesting production of fumarate and malate was found.

  1. Over-expression of catalase in myeloid cells confers acute protection following myocardial infarction.

    PubMed

    Cabigas, E Bernadette; Somasuntharam, Inthirai; Brown, Milton E; Che, Pao Lin; Pendergrass, Karl D; Chiang, Bryce; Taylor, W Robert; Davis, Michael E

    2014-05-21

    Cardiovascular disease is the leading cause of death in the United States and new treatment options are greatly needed. Oxidative stress is increased following myocardial infarction and levels of antioxidants decrease, causing imbalance that leads to dysfunction. Therapy involving catalase, the endogenous scavenger of hydrogen peroxide (H2O2), has been met with mixed results. When over-expressed in cardiomyocytes from birth, catalase improves function following injury. When expressed in the same cells in an inducible manner, catalase showed a time-dependent response with no acute benefit, but a chronic benefit due to altered remodeling. In myeloid cells, catalase over-expression reduced angiogenesis during hindlimb ischemia and prevented monocyte migration. In the present study, due to the large inflammatory response following infarction, we examined myeloid-specific catalase over-expression on post-infarct healing. We found a significant increase in catalase levels following infarction that led to a decrease in H2O2 levels, leading to improved acute function. This increase in function could be attributed to reduced infarct size and improved angiogenesis. Despite these initial improvements, there was no improvement in chronic function, likely due to increased fibrosis. These data combined with what has been previously shown underscore the need for temporal, cell-specific catalase delivery as a potential therapeutic option.

  2. The relation between xyr1 overexpression in Trichoderma harzianum and sugarcane bagasse saccharification performance.

    PubMed

    da Silva Delabona, Priscila; Rodrigues, Gisele Nunes; Zubieta, Mariane Paludetti; Ramoni, Jonas; Codima, Carla Aloia; Lima, Deise Juliana; Farinas, Cristiane Sanchez; da Cruz Pradella, José Geraldo; Seiboth, Bernhard

    2017-03-20

    This work investigates the influence of the positive regulator XYR1 of Trichoderma harzianum on the production of cellulolytic enzymes, using sugarcane bagasse as carbon source. Constitutive expression of xyr1 was achieved under the control of the strong Trichoderma reesei pki1 promoter. Five clones with xyr1 overexpression achieved higher xyr1 expression and greater enzymatic productivity when cultivated under submerged fermentation, hence validating the genetic construction for T. harzianum. Clone 5 presented a relative expression of xyr1 26-fold higher than the parent strain and exhibited 66, 37, and 36% higher values for filter paper activity, xylanase activity, and β-glucosidase activity, respectively, during cultivation in a stirred-tank bioreactor. The overexpression of xyr1 in T. harzianum resulted in an enzymatic complex with significantly improved performance in sugarcane bagasse saccharification, with an enhancement of 25% in the first 24h. Our results also show that constitutive overexpression of xyr1 leads to the induction of several important players in biomass degradation at early (24h) and also late (48h) timepoints of inoculation. However, we also observed that the carbon catabolite repressor CRE1 was upregulated in xyr1 overexpression mutants. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression and suggest an attractive approach for increasing total cellulase productivity in T. harzianum.

  3. Overexpression of a novel regulator of p120 catenin, NLBP, promotes lung adenocarcinoma proliferation

    PubMed Central

    Kim, Chang Hee; Nam, Hae-Seong; Lee, Eun Hee; Han, Seung Hun; Cho, Hyun Jung; Chung, Hee Jin; Lee, Nam Soo; Choi, Suk Jin; Kim, Hojoong; Ryu, Jeong Seon; Kwon, Junhye; Kim, Hongtae

    2013-01-01

    NLBP (novel LZAP-binding protein) was recently shown to function as a tumor suppressor capable of inhibiting the NFκB signaling pathway. NLBP is also known as a negative regulator of cell invasion, and its expression is reduced in several cancer cell lines that have little invasive activity. Although these phenomena suggest that NLBP may be a potential tumor suppressor, its role as a tumor suppressor in human lung cancer is not well established. In contrast to our expectation, NLBP was highly expressed in the early stage of lung adenocarcinoma tissues, and overexpression of NLBP promoted proliferation of H1299 lung adenocarcinoma cells. We also found that p120 catenin (p120ctn) was a novel binding partner of NLBP, and that NLBP binds to the regulatory domain of p120ctn, and p120ctn associates with N-terminal region of NLBP, respectively. This binding leads to p120ctn stability to inhibit proteasomal degradation of p120ctn by inhibiting its ubiqutination. In addition, we also found that overexpression of NLBP and p120ctn in human lung cancer are closely related with adenocarcinoma compared with squamous cell carcinoma. Taken together, our findings reveal that NLBP is highly overexpressed in human lung adenocarcinoma, and that overexpression of NLBP promotes the cell proliferation of lung adenocarcinoma through interacting with p120ctn and suggest that NLBP may function as an oncogene in early stage carcinogenesis of lung adenocarcinoma. PMID:23839039

  4. Over-expression of Topoisomerase II Enhances Salt Stress Tolerance in Tobacco

    PubMed Central

    John, Riffat; Ganeshan, Uma; Singh, Badri N.; Kaul, Tanushri; Reddy, Malireddy K.; Sopory, Sudhir K.; Rajam, Manchikatla V.

    2016-01-01

    Topoisomerases are unique enzymes having an ability to remove or add DNA supercoils and untangle the snarled DNA. They can cut, shuffle, and religate DNA strands and remove the torsional stress during DNA replication, transcription or recombination events. In the present study, we over-expressed topoisomerase II (TopoII) in tobacco (Nicotiana tabaccum) and examined its role in growth and development as well as salt (NaCl) stress tolerance. Several putative transgenic plants were generated and the transgene integration and expression was confirmed by PCR and Southern blot analyses, and RT-PCR analysis respectively. Percent seed germination, shoot growth, and chlorophyll content revealed that transgenic lines over-expressing the NtTopoIIα-1 gene exhibited enhanced tolerance to salt (150 and 200 mM NaCl) stress. Moreover, over-expression of TopoII lead to the elevation in proline and glycine betaine levels in response to both concentrations of NaCl as compared to wild-type. In response to NaCl stress, TopoII over-expressing lines showed reduced lipid peroxidation derived malondialdehyde (MDA) generation. These results suggest that TopoII plays a pivotal role in salt stress tolerance in plants. PMID:27630644

  5. EphB6 overexpression and Apc mutation together promote colorectal cancer.

    PubMed

    Xu, Dan; Yuan, Liang; Liu, Xin; Li, Mingqi; Zhang, Fubin; Gu, Xin Yue; Zhang, Dongwei; Yang, Youlin; Cui, Binbin; Tong, Jinxue; Zhou, Jin; Yu, Zhiwei

    2016-05-24

    The erythropoietin-producing hepatocyte (Eph) family tyrosine kinases play important roles in tumorigenesis and cancer aggression. In this study, we investigated the role of EphB6 in oncogenic transformation of colorectal epithelial cells in vitro and in vivo. EphB6 is upregulated in human colorectal cancer (CRC) tissues as compared to normal tissues, and its overexpression promotes proliferation, migration and invasion by IMCE colorectal adenoma cells, in which one Apc allele is mutated. EphB6 overexpression together with Apc mutation leads to the development of colorectal tumors in vivo. Expression microarrays using mRNAs and lncRNAs isolated from EphB6-overexpresssing IMCE and control cells revealed a large number of dysregulated genes involved in cancer-related functions and pathways. The present study is the first to demonstrate that EphB6 overexpression together with Apc gene mutations may enhance proliferation, invasion and metastasis by colorectal epithelial cells. Microarray data and pathway analysis of differentially expressed genes provided insight into possible EphB6-regulated mechanisms promoting tumorigenesis and cancer progression. EphB6 overexpression may represent a novel, effective biomarker predictive of cell proliferation, invasion and metastasis patterns in CRC tumors.

  6. SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis

    PubMed Central

    Shi, Jian-Xia; Wang, Qi-Jin; Li, Hui; Huang, Qin

    2017-01-01

    Diabetic nephropathy is a diabetic complication associated with capillary damage and increased mortality. Sirtuin 4 (SIRT4) plays an important role in mitochondrial function and the pathogenesis of metabolic diseases, including aging kidneys. The aim of the present study was to investigate the association between SIRT4 and diabetic nephropathy in a glucose-induced mouse podocyte model. A CCK-8 assay showed that glucose simulation significantly inhibited podocyte proliferation in a time- and concentration-dependent manner. Reverse transcription-quantitative polymerase chain reaction and western blot analysis showed that the mRNA and protein levels of SIRT4 were notably decreased in a concentration-dependent manner in glucose-simulated podocytes. However, SIRT4 overexpression increased proliferation and suppressed apoptosis, which was accompanied by increases in mitochondrial membrane potential and reduced production of reactive oxygen species (ROS). Notably, SIRT4 overexpression downregulated the expression of apoptosis-related proteins NOX1, Bax and phosphorylated p38 and upregulated the expression of Bcl-2 in glucose-simulated podocytes. In addition, SIRT4 overexpression significantly attenuated the inflammatory response, indicated by reductions in the levels of TNF-α, IL-1β and IL-6. These results demonstrate for the first time that the overexpression of SIRT4 prevents glucose-induced podocyte apoptosis and ROS production and suggest that podocyte apoptosis represents an early pathological mechanism leading to diabetic nephropathy. PMID:28123512

  7. Overexpression of Akt1 Enhances Adipogenesis and Leads to Lipoma Formation in Zebrafish

    PubMed Central

    Rajendran, R. Samuel; Shen, Chia-Ning; Chen, Te-Hao; Yen, Chueh-Chuan; Chuang, Chih-Kuang; Lin, Dar-Shong; Hsiao, Chung-Der

    2012-01-01

    Background Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the Akt1 gene. Methodology/Principal Findings Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1)cy18 displays severely obese phenotypes at the adult stage. In Tg(krt4:Hsa.myrAkt1)cy18, the expression of exogenous human constitutively active Akt1 (myrAkt1) can activate endogenous downstream targets of mTOR, GSK-3α/β, and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf) onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(krt4:Hsa.myrAkt1)cy18 caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(krt4:Hsa.myrAkt1)cy18. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(krt4:Hsa.myrAkt1)cy18, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues. Conclusion/Significance Collectively, the findings of this study provide direct evidence that Akt1 signaling plays an important role in balancing normal levels of fat tissue in vivo. The obese zebrafish examined in this study could be a new powerful model to screen novel drugs for the treatment of human obesity. PMID:22623957

  8. Significance of Pathways Leading to RhoC Overexpression in Breast Cancer

    DTIC Science & Technology

    2006-04-01

    13. SUPPLEMENTARY NOTES 14. ABSTRACT: Tumor biology is a recognized determinant of tumor behavior , including growth rate, motility...recurrence data, will be combined with gene expression data. Molecular and statistical analysis will occur in collaboration with the University of...begin the analysis of the data for key results. Although case identification and key patient level information had already been collected, it was

  9. Impact of pr-10a overexpression on the cryopreservation success of Solanum tuberosum suspension cultures.

    PubMed

    Vaas, Lea A I; Marheine, Maja; Seufert, Stephanie; Schumacher, Heinz Martin; Kiesecker, Heiko; Heine-Dobbernack, Elke

    2012-06-01

    Although many genes are supposed to be a part of plant cell tolerance mechanisms against osmotic or salt stress, their influence on tolerance towards stress during cryopreservation procedures has rarely been investigated. For instance, the overexpression of the pathogenesis-related gene 10a (pr-10a) leads to improved osmotic tolerance in a transgenic cell culture of Solanum tuberosum cv. Désirée. In this study, a cryopreservation method, consisting of osmotic pretreatment, cryoprotection with DMSO and controlled-rate freezing, was used to characterize the relation between cryopreservation success and pr-10a expression in suspension cultures of S. tuberosum wild-type cells and cells overexpressing pathogenesis-related protein 10a (Pr-10a). By varying the sorbitol concentration, thus modifying the strength of the osmotic stress during the pretreatment phase, it can be shown that the wild type can successfully be cryopreserved only in a relatively narrow range of sorbitol concentrations, while the pr-10a overexpression leads to an enhanced cryopreservation success over the whole range of applied sorbitol concentrations. Together with transcription data we show that the pr-10a overexpression causes an enhanced osmotic tolerance, which in turn leads to enhanced cryopreservability, but also indicates a role of pr-10a in signal transduction. An increased cryopreservability of the transgenic cell line occurs for pretreatments longer than 24 h. Since both genotypes, characterized by distinct baseline levels of expression, exhibited similar patterns of expression induction, the induction of pr-10a appears to be a key step in the stress signal transduction of plant cells under osmotic stress.

  10. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice.

    PubMed

    Cui, Li-Li; Lu, Yu-Sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense.

  11. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice

    PubMed Central

    Cui, Li-Li; Lu, Yu-sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense. PMID:27540387

  12. Heterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Song, Xueqing; Yu, Xiang; Hori, Chiaki; Demura, Taku; Ohtani, Misato; Zhuge, Qiang

    2016-01-01

    Subfamily 2 of SNF1-related protein kinase (SnRK2) plays important roles in plant abiotic stress responses as a global positive regulator of abscisic acid signaling. In the genome of the model tree Populus trichocarpa, 12 SnRK2 genes have been identified, and some are upregulated by abiotic stresses. In this study, we heterologously overexpressed the PtSnRK2 genes in Arabidopsis thaliana and found that overexpression of PtSnRK2.5 and PtSnRK2.7 genes enhanced stress tolerance. In the PtSnRK2.5 and PtSnRK2.7 overexpressors, chlorophyll content, and root elongation were maintained under salt stress conditions, leading to higher survival rates under salt stress compared with those in the wild type. Transcriptomic analysis revealed that PtSnRK2.7 overexpression affected stress-related metabolic genes, including lipid metabolism and flavonoid metabolism, even under normal growth conditions. However, the stress response genes reported to be upregulated in Arabidopsis SRK2C/SnRK2.6 and wheat SnRK2.8 overexpressors were not changed by PtSnRK2.7 overexpression. Furthermore, PtSnRK2.7 overexpression widely and largely influenced the transcriptome in response to salt stress; genes related to transport activity, including anion transport-related genes, were characteristically upregulated, and a variety of metabolic genes were specifically downregulated. We also found that the salt stress response genes were greatly upregulated in the PtSnRK2.7 overexpressor. Taken together, poplar subclass 2 PtSnRK2 genes can modulate salt stress tolerance in Arabidopsis, through the activation of cellular signaling pathways in a different manner from that by herbal subclass 2 SnRK2 genes. PMID:27242819

  13. Vldlr overexpression causes hyperactivity in rats

    PubMed Central

    2012-01-01

    Background Reelin regulates neuronal positioning in cortical brain structures and neuronal migration via binding to the lipoprotein receptors Vldlr and Lrp8. Reeler mutant mice display severe brain morphological defects and behavioral abnormalities. Several reports have implicated reelin signaling in the etiology of neurodevelopmental and psychiatric disorders, including autism, schizophrenia, bipolar disorder, and depression. Moreover, it has been reported that VLDLR mRNA levels are increased in the post-mortem brain of autistic patients. Methods We generated transgenic (Tg) rats overexpressing Vldlr, and examined their histological and behavioral features. Results Spontaneous locomotor activity was significantly increased in Tg rats, without detectable changes in brain histology. Additionally, Tg rats tended to show performance deficits in the radial maze task, suggesting that their spatial working memory was slightly impaired. Thus, Vldlr levels may be involved in determining locomotor activity and memory function. Conclusions Unlike reeler mice, patients with neurodevelopmental or psychiatric disorders do not show striking neuroanatomical aberrations. Therefore, it is notable, from a clinical point of view, that we observed behavioral phenotypes in Vldlr-Tg rats in the absence of neuroanatomical abnormalities. PMID:23110844

  14. Ovarian cancer stem cell like side populations are enriched following chemotherapy and overexpress EZH2

    PubMed Central

    Rizzo, Siân; Hersey, Jenny M.; Mellor, Paul; Dai, Wei; Santos-Silva, Alessandra; Liber, Daniel; Luk, Louisa; Titley, Ian; Carden, Craig P; Box, Garry; Hudson, David L.; Kaye, Stanley B.; Brown, Robert

    2010-01-01

    Platinum-based chemotherapy, with cytoreductive surgery, is the cornerstone of treatment of advanced ovarian cancer, however acquired drug resistance is a major clinical obstacle. It has been proposed that subpopulations of tumour cells with stem-cell like properties, such as so-called side populations (SP) which over-express ABC drug-transporters, can sustain the growth of drug resistant tumour cells, leading to tumour recurrence following chemotherapy. The histone methyltransferase EZH2 is a key component of the Polycomb Repressive Complex 2 (PRC2) required for maintenance of a stem cell state and overexpression has been implicated in drug resistance and shorter survival of ovarian cancer patients. We observe higher percentage SP in ascites from patients that have relapsed following chemotherapy compared to chemonaive patients, consistent with selection for this subpopulation during platinum-based chemotherapy. Furthermore, ABCB1 (P-glycoprotein) and EZH2 are consistently over-expressed in SP compared to non-SP from patients’ tumour cells. SiRNA knockdown of EZH2 leads to loss of SP in ovarian tumour models, reduced anchorage-independent growth and reduced tumour growth in vivo. Together these data support a key role for EZH2 in the maintenance of a drug-resistant tumour-sustaining subpopulation of cells in ovarian cancers undergoing chemotherapy. As such, EZH2 is an important target for anticancer drug development. PMID:21216927

  15. An immunological renal disease in transgenic mice that overexpress Fli-1, a member of the ets family of transcription factor genes

    SciTech Connect

    Zhang, Liqun; Teng, Yen-Tung; Melet, F.

    1995-12-01

    This report describes how expression of the proto-oncogene Fli-1 is involved in the regulation of lymphopoiesis. Transgenic mice were generated which overexpressed the oncogene, leading to a high incidence of immunological renal diseases and death. The data suggests that overexpression of Fli-1 perturbs normal lymphoid cell function and programmed cell death, making these transgenic mice suitable as a biological model for autoimmune disease in humans. 35 refs., 6 figs., 4 tabs.

  16. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    SciTech Connect

    Wang, Jiying; Rao, Qing; Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  17. Beclin1 overexpression inhibitis proliferation, invasion and migration of CaSki cervical cancer cells.

    PubMed

    Sun, Yang; Liu, Jia-hua; Sui, Yu-xia; Jin, Long; Yang, Yin; Lin, Sai-mei; Shi, Hong

    2011-01-01

    The influence of the autophagy-related gene Beclin1 on proliferation, invasion and metastasis of the cervical cancer CaSki cells and its possible mechanism in vitro were here targeted. After the overexpression vector pcDNA3.1-Beclin1 and RNA interference vector pSUPER-Beclin1 were transfected into CaSki cells in vitro, stable expression cell lines demonstration Beclin1 expression was upregulated, and VEGF and MMP-9 expression were decreased, leading to cell arrest in the G0/G1 phase of the cell cycle. MTT assays further revealed proliferation of cells was significantly inhibited in Beclin1-overexpressing transfectant cells, with invasion and metastasis also being inhibited in Transwell chamber assays. The present results suggest that Beclin1 inhibits invasion and metastasis of cervical cancer CaSki cells in vitro. Mechanisms probably involve Beclin1 inhibition of cell proliferation, and decreased expression of VEGF and MMP-9 proteins.

  18. Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion

    PubMed Central

    Delic, Marizela; Graf, Alexandra B.; Koellensperger, Gunda; Haberhauer-Troyer, Christina; Hann, Stephan; Mattanovich, Diethard; Gasser, Brigitte

    2014-01-01

    Oxidative folding of secretory proteins in the endoplasmic reticulum (ER) is a redox active process, which also impacts the redox conditions in the cytosol. As the transcription factor Yap1 is involved in the transcriptional response to oxidative stress, we investigate its role upon the production of secretory proteins, using the yeast Pichia pastoris as model, and report a novel important role of Yap1 during oxidative protein folding. Yap1 is needed for the detoxification of reactive oxygen species (ROS) caused by increased oxidative protein folding. Constitutive co-overexpression of PpYAP1 leads to increased levels of secreted recombinant protein, while a lowered Yap1 function leads to accumulation of ROS and strong flocculation. Transcriptional analysis revealed that more than 150 genes were affected by overexpression of YAP1, in particular genes coding for antioxidant enzymes or involved in oxidation-reduction processes. By monitoring intracellular redox conditions within the cytosol and the ER using redox-sensitive roGFP1 variants, we could show that overexpression of YAP1 restores cellular redox conditions of protein-secreting P. pastoris by reoxidizing the cytosolic redox state to the levels of the wild type. These alterations are also reflected by increased levels of oxidized intracellular glutathione (GSSG) in the YAP1 co-overexpressing strain. Taken together, these data indicate a strong impact of intracellular redox balance on the secretion of (recombinant) proteins without affecting protein folding per se. Re-establishing suitable redox conditions by tuning the antioxidant capacity of the cell reduces metabolic load and cell stress caused by high oxidative protein folding load, thereby increasing the secretion capacity. PMID:28357216

  19. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    PubMed Central

    Yue, Yongping; Wasala, Nalinda B; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity. PMID:27419194

  20. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Melén, Karin; Blomberg, Anders; von Heijne, Gunnar

    2006-07-01

    Large-scale protein overexpression phenotype screens provide an important complement to the more common gene knockout screens. Here, we have targeted the so far poorly understood Saccharomyces cerevisiae membrane proteome and report growth phenotypes for a strain collection overexpressing 600 C-terminally tagged integral membrane proteins grown both under normal and three different stress conditions. Although overexpression of most membrane proteins reduce the growth rate in synthetic defined medium, we identify a large number of proteins that, when overexpressed, confer specific resistance to various stress conditions. Our data suggest that regulation of glycosylphosphatidylinositol anchor biosynthesis and the Na+/K+ homeostasis system constitute major downstream targets of the yeast PKA/RAS pathway and point to a possible connection between the early secretory pathway and the cells' response to oxidative stress. We also have quantified the expression levels for >550 membrane proteins, facilitating the choice of well expressing proteins for future functional and structural studies. caffeine | paraquat | salt tolerance | yeast

  1. [Overexpression of FKS1 to improve yeast autolysis-stress].

    PubMed

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing.

  2. Overexpression of c-Myc alters G(1)/S arrest following ionizing radiation.

    PubMed

    Sheen, Joon-Ho; Dickson, Robert B

    2002-03-01

    Study of the mechanism(s) of genomic instability induced by the c-myc proto-oncogene has the potential to shed new light on its well-known oncogenic activity. However, an underlying mechanism(s) for this phenotype is largely unknown. In the present study, we investigated the effects of c-Myc overexpression on the DNA damage-induced G(1)/S checkpoint, in order to obtain mechanistic insights into how deregulated c-Myc destabilizes the cellular genome. The DNA damage-induced checkpoints are among the primary safeguard mechanisms for genomic stability, and alterations of cell cycle checkpoints are known to be crucial for certain types of genomic instability, such as gene amplification. The effects of c-Myc overexpression were studied in human mammary epithelial cells (HMEC) as one approach to understanding the c-Myc-induced genomic instability in the context of mammary tumorigenesis. Initially, flow-cytometric analyses were used with two c-Myc-overexpressing, nontransformed immortal lines (184A1N4 and MCF10A) to determine whether c-Myc overexpression leads to alteration of cell cycle arrest following ionizing radiation (IR). Inappropriate entry into S phase was then confirmed with a bromodeoxyuridine incorporation assay measuring de novo DNA synthesis following IR. Direct involvement of c-Myc overexpression in alteration of the G(1)/S checkpoint was then confirmed by utilizing the MycER construct, a regulatable c-Myc. A transient excess of c-Myc activity, provided by the activated MycER, was similarly able to induce the inappropriate de novo DNA synthesis following IR. Significantly, the transient expression of full-length c-Myc in normal mortal HMECs also facilitated entry into S phase and the inappropriate de novo DNA synthesis following IR. Furthermore, irradiated, c-Myc-infected, normal HMECs developed a sub-G(1) population and a >4N population of cells. The c-Myc-induced alteration of the G(1)/S checkpoint was also compared to the effects of expression of MycS (N

  3. Lead - nutritional considerations

    MedlinePlus

    Lead poisoning - nutritional considerations; Toxic metal - nutritional considerations ... utensils . Old paint poses the greatest danger for lead poisoning , especially in young children. Tap water from lead ...

  4. Decreased proliferation kinetics of mouse myoblasts overexpressing FRG1.

    PubMed

    Chen, Steven C; Frett, Ellie; Marx, Joseph; Bosnakovski, Darko; Reed, Xylena; Kyba, Michael; Kennedy, Brian K

    2011-01-01

    Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD) to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overexpressing FRG1. Myoblasts isolated from thigh muscle of FRG1 transgenic mice, an affected dystrophic muscle, exhibit delayed proliferation as measured by decreased clone size, whereas myoblasts isolated from the unaffected diaphragm muscle proliferated normally. To confirm the observation that overexpression of FRG1 could impair myoblast proliferation, we examined C2C12 myoblasts with inducible overexpression of FRG1, finding increased doubling time and G1-phase cells in mass culture after induction of FRG1 and decreased levels of pRb phosphorylation. We propose that depressed myoblast proliferation may contribute to the pathology of mice overexpressing FRG1 and may play a part in FSHD.

  5. A systematic assessment of mature MBP in membrane protein production: overexpression, membrane targeting and purification.

    PubMed

    Hu, Jian; Qin, Huajun; Gao, Fei Philip; Cross, Timothy A

    2011-11-01

    Obtaining enough membrane protein in native or native-like status is still a challenge in membrane protein structure biology. Maltose binding protein (MBP) has been widely used as a fusion partner in improving membrane protein production. In the present work, a systematic assessment on the application of mature MBP (mMBP) for membrane protein overexpression and purification was performed on 42 membrane proteins, most of which showed no or poor expression level in membrane fraction fused with an N-terminal Histag. It was found that most of the small membrane proteins were overexpressed in the native membrane of Escherichia coli when using mMBP. In addition, the proteolysis of the fusions were performed on the membrane without solubilization with detergents, leading to the development of an efficient protocol to directly purify the target membrane proteins from the membrane fraction through a one-step affinity chromatography. Our results indicated that mMBP is an excellent fusion partner for overexpression, membrane targeting and purification of small membrane proteins. The present expression and purification method may be a good solution for the large scale preparation of small membrane proteins in structural and functional studies.

  6. NDRG1 overexpressing gliomas are characterized by reduced tumor vascularization and resistance to antiangiogenic treatment.

    PubMed

    Broggini, Thomas; Wüstner, Marie; Harms, Christoph; Stange, Lena; Blaes, Jonas; Thomé, Carina; Harms, Ulrike; Mueller, Susanne; Weiler, Markus; Wick, Wolfgang; Vajkoczy, Peter; Czabanka, Marcus

    2016-10-01

    Hypoxia-regulated molecules play an important role in vascular resistance to antiangiogenic treatment. N-myc downstream-regulated-gene 1 (NDRG1) is significantly upregulated during hypoxia in glioma. It was the aim of the present study to analyze the role of NDRG1 on glioma angiogenesis and on antiangiogenic treatment. Orthotopically implanted NDRG1 glioma showed reduced tumor growth and vessel density compared to controls. RT-PCR gene array analysis revealed a 30-fold TNFSF15 increase in NDRG1 tumors. Consequently, the supernatant from NDRG1 transfected U87MG glioma cells resulted in reduced HUVEC proliferation, migration and angiogenic response in tube formation assays in vitro. This effect was provoked by increased TNFSF15 promoter activity in NDRG1 cells. Mutations in NF-κB and AP-1 promoter response elements suppressed TNFSF15 promoter activity. Moreover, U87MG glioma NDRG1 knockdown supernatant contained multiple proangiogenic proteins and increased HUVEC spheroid sprouting. Sunitinib treatment of orhotopically implanted mice reduced tumor volume and vessel density in controls; in NDRG1 overexpressing cells no reduction of tumor volume or vessel density was observed. NDRG1 overexpression leads to reduced tumor growth and angiogenesis in experimental glioma via upregulation of TNFSF15. In NDRG1 overexpressing glioma antiangiogenic treatment does not yield a therapeutic response.

  7. Metabolic effects of transgenic melanocyte-stimulating hormone overexpression in lean and obese mice.

    PubMed

    Savontaus, Eriika; Breen, Tracy L; Kim, Andrea; Yang, Lucy M; Chua, Streamson C; Wardlaw, Sharon L

    2004-08-01

    The proopiomelanocortin-derived peptide, alpha-MSH, inhibits feeding via melanocortin receptors in the hypothalamus and genetic defects inactivating the melanocortin system have been shown to lead to obesity in experimental animals and humans. To determine whether long-term melanocortinergic activation has significant effects on body weight and composition and insulin sensitivity, transgenic mice overexpressing N-terminal proopiomelanocortin, including alpha- and gamma(3)-MSH, under the control of the cytomegalovirus-promoter were generated. The transgene was expressed in multiple tissues including the hypothalamus, in which both alpha-MSH and gamma(3)-MSH levels were increased approximately 2-fold, compared with wild-type controls. Transgene homozygous mice were also crossed with obese leptin receptor-deficient db(3J) and obese yellow A(y) mice. MSH overexpression led to uniform, dose- dependent darkening of coat color. MSH overexpression reduced weight gain and adiposity and improved glucose tolerance in lean male mice. In female transgenic mice, there was no significant effect on body weight, but there was a significant decrease in insulin levels. Obesity was attenuated in obese db(3J)/db(3J) male and female mice, but there was no improvement in glucose metabolism. In contrast, the MSH transgene improved glucose tolerance in male A(y) mice. These results support the hypothesis that long-term melanocortinergic activation could serve as a potential strategy for anti-obesity and/or antidiabetic therapy.

  8. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    SciTech Connect

    Fang, Liping; Xu, Yinghui; Zou, Lijuan

    2014-03-28

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9 expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis.

  9. N-Myc overexpression increases cisplatin resistance in neuroblastoma via deregulation of mitochondrial dynamics

    PubMed Central

    Casinelli, Gabriella; LaRosa, Jeff; Sharma, Manika; Cherok, Edward; Banerjee, Swati; Branca, Maria; Edmunds, Lia; Wang, Yudong; Sims-Lucas, Sunder; Churley, Luke; Kelly, Samantha; Sun, Ming; Stolz, Donna; Graves, J Anthony

    2016-01-01

    N-Myc is a global transcription factor that regulates the expression of genes involved in a number of essential cellular processes including: ribosome biogenesis, cell cycle and apoptosis. Upon deregulation, N-Myc can drive pathologic expression of many of these genes, which ultimately defines its oncogenic potential. Overexpression of N-Myc has been demonstrated to contribute to tumorigenesis, most notably for the pediatric tumor, neuroblastoma. Herein, we provide evidence that deregulated N-Myc alters the expression of proteins involved in mitochondrial dynamics. We found that N-Myc overexpression leads to increased fusion of the mitochondrial reticulum secondary to changes in protein expression due to aberrant transcriptional and post-translational regulation. We believe the structural changes in the mitochondrial network in response to N-Myc amplification in neuroblastoma contributes to two important aspects of tumor development and maintenance—bioenergetic alterations and apoptotic resistance. Specifically, we found that N-Myc overexpressing cells are resistant to programmed cell death in response to exposure to low doses of cisplatin, and demonstrated that this was dependent on increased mitochondrial fusion. We speculate that these changes in mitochondrial structure and function may contribute significantly to the aggressive clinical ph9enotype of N-Myc amplified neuroblastoma. PMID:28028439

  10. Skp2 is oncogenic and overexpressed in human cancers.

    PubMed

    Gstaiger, M; Jordan, R; Lim, M; Catzavelos, C; Mestan, J; Slingerland, J; Krek, W

    2001-04-24

    Skp2 is a member of the F-box family of substrate-recognition subunits of SCF ubiquitin-protein ligase complexes that has been implicated in the ubiquitin-mediated degradation of several key regulators of mammalian G(1) progression, including the cyclin-dependent kinase inhibitor p27, a dosage-dependent tumor suppressor protein. In this study, we examined Skp2 and p27 protein expression by immunohistochemistry in normal oral epithelium and in different stages of malignant oral cancer progression, including dysplasia and oral squamous cell carcinoma. We found that increased levels of Skp2 protein are associated with reduced p27 in a subset of oral epithelial dysplasias and carcinomas compared with normal epithelial controls. Tumors with high Skp2 (>20% positive cells) expression invariably showed reduced or absent p27 and tumors with high p27 (>20% positive cells) expression rarely showed Skp2 positivity. Increased Skp2 protein levels were not always correlated with increased cell proliferation (assayed by Ki-67 staining), suggesting that alterations of Skp2 may contribute to the malignant phenotype without affecting proliferation. Skp2 protein overexpression may lead to accelerated p27 proteolysis and contribute to malignant progression from dysplasia to oral epithelial carcinoma. Moreover, we also demonstrate that Skp2 has oncogenic potential by showing that Skp2 cooperates with H-Ras(G12V) to malignantly transform primary rodent fibroblasts as scored by colony formation in soft agar and tumor formation in nude mice. The observations that Skp2 can mediate transformation and is up-regulated during oral epithelial carcinogenesis support a role for Skp2 as a protooncogene in human tumors.

  11. Wnt-11 overexpression promoting the invasion of cervical cancer cells.

    PubMed

    Wei, Heng; Wang, Ning; Zhang, Yao; Wang, Shizhuo; Pang, Xiaoao; Zhang, Shulan

    2016-09-01

    Wnt-11 is a positive regulator of the Wnt signaling pathway, which plays a crucial role in carcinogenesis. However, Wnt-11 expression in cervical cancer has not been well investigated. The aim of this study was to investigate the role of Wnt-11 in cervical tumor proliferation and invasion. This study examined 24 normal cervical squamous epithelia, 29 cervical intraepithelial neoplasia (CIN), and 78 cervical cancer samples. The expression of Wnt-11 was investigated by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction analysis. The expression of the high-risk human papilloma virus (HR-HPV) E6 oncoprotein was also investigated by immunohistochemistry. In addition, the expression of Wnt-11, HR-HPV E6, JNK-1, phosphorylated JNK-1(P-JNK1), and β-catenin was examined by western blot analysis following Wnt-11 knockdown or overexpression in HeLa or SiHa cells, respectively. The promotion of cervical cancer cell proliferation and invasion was investigated using the cell counting kit-8 and Matrigel invasion assay, respectively. Wnt-11 and HR-HPV E6 expression increased in a manner that corresponded with the progression of cervical cancer and was significantly correlated with the International Federation of Gynecology and Obstetrics cancer stage, lymph node metastasis, tumor size, and HPV infection. Wnt-11 protein expression was positively associated with HR-HPV E6 protein expression in all 78 cervical cancer samples (P < 0.001). Furthermore, Wnt-11 was positively associated with P-JNK1 expression and promoted cervical cancer cell proliferation and invasion. These observations suggest that the increased Wnt-11 expression observed in cervical cancer cells may lead to the phosphorylation and activation of JNK-1 and significantly promote tumor cell proliferation and cell migration/invasion through activation of the Wnt/JNK pathway. Consequently, Wnt-11 may serve as a novel target for cervical cancer therapy.

  12. Lead and Your Baby

    MedlinePlus

    ... yourself and your family from lead in drinking water? Drinking water may contain lead if you have ... yourself and your family from lead in drinking water? Drinking water may contain lead if you have ...

  13. Dendrosomal nanocurcumin and p53 overexpression synergistically trigger apoptosis in glioblastoma cells

    PubMed Central

    Keshavarz, Reihaneh; Bakhshinejad, Babak; Babashah, Sadegh; Baghi, Narges; Sadeghizadeh, Majid

    2016-01-01

    Objective(s): Glioblastoma is the most lethal tumor of the central nervous system. Here, we aimed to evaluate the effects of exogenous delivery of p53 and a nanoformulation of curcumin called dendrosomal curcumin (DNC), alone and in combination, on glioblastoma tumor cells. Materials and Methods: MTT assay was exploited to measure the viability of U87-MG cells against DNC treatment. Cells were separately subjected to DNC treatment and transfected with p53-containing vector and then were co-exposed to DNC and p53 overexpression[A GA1][B2]. Annexin-V-FLUOS staining followed by flow cytometry and real-time PCR were applied to examine apoptosis and analyze the expression levels of the genes involved in cell cycle and oncogenesis, respectively. Results: The results of cell viability assay through MTT indicated that DNC inhibits the proliferation of U87-MG cells in a time- and dose-dependent manner. Apoptosis evaluation revealed that p53 overexpression accompanied by DNC treatment can act in a synergistic manner to significantly enhance the number of apoptotic cells (90%) compared with their application alone (15% and 38% for p53 overexpression and DNC, respectively). Also, real-time PCR data showed that the concomitant exposure of cells to both DNC and p53 overexpression leads to an enhanced expression of GADD45 and a reduced expression of NF-κB and c-Myc. Conclusion: The findings of the current study suggest that our combination strategy, which merges two detached gene (p53) and drug (curcumin) delivery systems into an integrated platform, may represent huge potential as a novel and efficient modality for glioblastoma treatment. PMID:28096969

  14. Loss of tolerance of anti-dsDNA B cells in mice overexpressing CD19.

    PubMed

    Taylor, Devon K; Ito, Emi; Thorn, Mitchell; Sundar, Krishnan; Tedder, Thomas; Spatz, Linda A

    2006-04-01

    Mice transgenic for the R4A-Cmu heavy chain of an anti-dsDNA antibody, maintain tolerance by anergy and deletion. In C57BL/6 mice overexpressing CD19, a molecule, which lowers the threshold for B cell activation, elevated levels of serum autoantibodies have been observed. In the present study, we wished to determine whether CD19 overexpression could alter the induction of tolerance in R4A-Cmu mice and lead to the secretion of transgenic anti-dsDNA antibodies. We, therefore, bred R4A-Cmu transgenic mice-to-mice transgenic for human CD19 (hCD19) and generated R4A-Cmu mice heterozygous and homozygous for hCD19. We, now report the spontaneous secretion of transgenic IgM anti-dsDNA antibody in the sera of R4A-Cmu mice overexpressing CD19, indicative of a loss of B cell tolerance. We observe that transgenic B cells secreting anti-dsDNA antibody in these mice are T independent and display a marginal zone like phenotype althought they do not reside in the MZ. In addition, they appear to be derived from the conventional B2 subset rather than the B1 subset. Interestingly, a subset of the anti-dsDNA B cells in these mice still display the phenotype and functional characteristics of anergic B cells. These B cells cannot be activated to secrete antibody following BCR crosslinking, however, they are hyper-responsive to activation by innate signaling mechanisms. This suggests that CD19 overexpression may promote anergic B cells to escape tolerance by converging with BCR independent pathways, thereby rendering these B cells hyper-responsive to innate signaling.

  15. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    SciTech Connect

    Ham, Young-Mi; Mahoney, Sarah Jane

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  16. Immunohistochemical COX-2 overexpression correlates with HER-2/neu overexpression in invasive breast carcinomas: a pilot study.

    PubMed

    Çiriş, Ibrahim Metin; Bozkurt, Kemal Kürşat; Başpinar, Sirin; Kapucuoğlu, Fatma Nilgün

    2011-03-15

    Cyclooxygenase-2 (COX-2) is a prostaglandin synthase that catalyzes the synthesis of prostaglandin G2 and H2. It has been shown that COX-2 plays an important role in tumorigenesis of different tumor types and it is thought to take part in breast carcinogenesis. In the present study, we aimed to investigate the relationship of immunohistochemical COX-2 expression with clinicopathological parameters, including HER-2/neu overexpression in invasive breast carcinoma (IBC). Our study population comprised 10 normal breasts, 25 ductal carcinomas in situ (DCIS), and 51 invasive breast carcinomas. Immunohistochemical overexpressions of COX-2 and HER-2/neu were investigated in sections of formalin-fixed, paraffin-embedded blocks by 3 observers. In normal breast, DCIS and IBC, the COX-2 overexpression rate was 0%, 84%, and 58.8%, respectively. In IBC, COX-2 overexpression had a significant relationship with HER-2/neu overexpression (p=0.026) and a high histological grade (p=0.026). COX-2 expression in both DCIS (n=25) and IBC (n=51) was significantly higher than in normal breast tissue (p<0.0001). In addition, the COX-2 expression rate was significantly higher in DCIS than in IBC (p=0.042). Our results indicated that COX-2 overexpression correlates with aggressive phenotypic features, such as HER-2/neu overexpression and high histological grade in IBC. Increased expression of COX-2 in both DCIS and IBC in comparison to normal breast could indicate a role in breast carcinogenesis. COX-2 overexpression may provide a clinically useful biomarker for estimating tumor aggressiveness.

  17. Lead in petrol. The isotopic lead experiment

    SciTech Connect

    Facchetti, S. )

    1989-10-01

    Many studies were dedicated to the evaluation of the impact of automotive lead on the environment and to the assessment of its absorption in the human population. They can be subdivided into two groups, those based on changes of air and blood lead concentrations and those based on changes of air and blood lead isotopic compositions. According to various authors, 50-66% of the lead added to petrol is mobilized in the atmosphere, while most of the remainder adheres to the walls of the exhaust system from which it is expelled by mechanical and thermal shocks in the forms of easily sedimented particles. The fraction directly emitted by engine exhaust fumes is found in the form of fine particles, which can be transferred a long way from the emitting sources. However important the contribution of petrol lead to the total airborne lead may be, our knowledge does not permit a straightforward calculation of the percentage of petrol lead in total blood lead, which of course can also originate from other sources (e.g., industrial, natural). To evaluate this percentage in 1973, the idea of the Isotopic Lead Experiment (ILE project) was conceived to label, on a regional scale, petrol with a nonradioactive lead of an isotopic composition sufficiently different from that of background lead and sufficiently stable in time. This Account summarizes the main results obtained by the ILE project.

  18. Functional Characterization of Fission Yeast Transcription Factors by Overexpression Analysis

    PubMed Central

    Vachon, Lianne; Wood, Justin; Kwon, Eun-Joo Gina; Laderoute, Amy; Chatfield-Reed, Kate; Karagiannis, Jim; Chua, Gordon

    2013-01-01

    In Schizosaccharomyces pombe, over 90% of transcription factor genes are nonessential. Moreover, the majority do not exhibit significant growth defects under optimal conditions when deleted, complicating their functional characterization and target gene identification. Here, we systematically overexpressed 99 transcription factor genes with the nmt1 promoter and found that 64 transcription factor genes exhibited reduced fitness when ectopically expressed. Cell cycle defects were also often observed. We further investigated three uncharacterized transcription factor genes (toe1+–toe3+) that displayed cell elongation when overexpressed. Ectopic expression of toe1+ resulted in a G1 delay while toe2+ and toe3+ overexpression produced an accumulation of septated cells with abnormalities in septum formation and nuclear segregation, respectively. Transcriptome profiling and ChIP-chip analysis of the transcription factor overexpression strains indicated that Toe1 activates target genes of the pyrimidine-salvage pathway, while Toe3 regulates target genes involved in polyamine synthesis. We also found that ectopic expression of the putative target genes SPBC3H7.05c, and dad5+ and SPAC11D3.06 could recapitulate the cell cycle phenotypes of toe2+ and toe3+ overexpression, respectively. Furthermore, single deletions of the putative target genes urg2+ and SPAC1399.04c, and SPBC3H7.05c, SPACUNK4.15, and rds1+, could suppress the phenotypes of toe1+ and toe2+ overexpression, respectively. This study implicates new transcription factors and metabolism genes in cell cycle regulation and demonstrates the potential of systematic overexpression analysis to elucidate the function and target genes of transcription factors in S. pombe. PMID:23695302

  19. Bone lead, hypertension, and lead nephropathy

    SciTech Connect

    Wedeen, R.P.

    1988-06-01

    There is considerable clinical evidence that excessive lead absorption causes renal failure with hypertension and predisposes individuals to hypertension even in the absence of detectable renal failure. Recent analyses of transiliac bone biopsies indicate that unsuspected elevated bone leads may reflect the cause (or contributing cause) of end-stage renal disease in 5% of the European dialysis population. In these patients, bone lead levels were four times higher than in unexposed cadavers (6 micrograms/g wet weight) and approximated levels found in lead workers (30 micrograms/g). At present, the most reliable index of the body lead burden is the CaNa2 EDTA lead mobilization test. In vivo tibial X-ray-induced X-ray fluorescence (XRF) is a more practical noninvasive technique for assessing bone lead, which should find widespread application as a diagnostic tool and for epidemiologic studies.

  20. Phytochrome a overexpression inhibits hypocotyl elongation in transgenic Arabidopsis.

    PubMed Central

    Boylan, M T; Quail, P H

    1991-01-01

    To develop a model plant system for efficient functional analysis of mutagenized phytochrome polypeptides, we have overexpressed oat phytochrome A in Arabidopsis thaliana. R1 seedlings from selfed primary transformants segregated for hypocotyl length, when grown in the light, with a ratio of 3 short to 1 of normal length. When homozygous lines were established from these two size classes, accumulation of immunologically detectable oat phytochrome cosegregated with the short-hypocotyl trait. The short-hypocotyl seedlings contained substantially more spectrally active phytochrome than their normal-sized siblings, indicating that the introduced oat protein was photoreversible. The short-hypocotyl phenotype was strictly light-dependent, since no morphological effects of phytochrome overexpression could be seen in etiolated seedlings. Overexpression of only the chromophore-bearing, N-terminal domain of phytochrome A did not induce short hypocotyls in light-grown seedlings, indicating that additional sequence is essential for photoreceptor function. Similarly, overexpression of a full-length sequence mutated at the chromophore attachment site had no effect on phenotype, indicating the absence of any detectable dominant negative effect of the chromophoreless polypeptide on the activity of endogenous Arabidopsis phytochrome. Thus, the readily scorable short-hypocotyl phenotype of Arabidopsis seedlings overexpressing phytochrome A provides a simple visual assay for rapidly monitoring the biological activity of mutagenized phytochrome A polypeptides. Images PMID:11607244

  1. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    PubMed

    Lacruz, Rodrigo S; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L; White, Shane N; Paine, Michael L; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  2. Clinical significance of Her2/neu overexpression in urothelial carcinomas.

    PubMed

    Alexa, Aurora; Baderca, Flavia; Zăhoi, Delia Elena; Lighezan, Rodica; Izvernariu, D; Raica, M

    2010-01-01

    HER2/neu is a defective transmembrane tyrosine kinase receptor, homologue to the epidermal growth factor receptor, showing overexpression in a large variety of tumor cells. There are no studies published so far regarding HER2/neu overexpression and sensitivity of the urothelial tumors of the urinary bladder to anti-HER2/neu therapy. There are a relatively high number of articles in the literature referring to HER2/neu expression in urothelial tumors of the urinary bladder, but only two of them had investigated HER2/neu expression in patients with urothelial tumors of the upper urinary tract. We have studied HER2/neu overexpression in 59 patients with urothelial carcinomas of the urinary tract by immunohistochemistry. Normal urothelium and the elements of the neighboring renal parenchyma were negative. Out of the 59 cases of urothelial carcinomas, 38 were negative (0 and +1) and 21 were positive: eight were moderately and 13 were intensely positive (+2 and +3). The percentage of positive cases was 35.59%. The negative cases were mostly well-differentiated, G1 tumors, no matter the T-tumor stage. Most of the cases were diagnosed as papillary or, rarely, infiltrative. There is no correlation between HER2/neu overexpression and the tumor stage. The same was true for the lymph node status. The expression intensity, however, was significantly correlated with the differentiation grade. Overexpression was most likely present in tumors with high differentiation grade (p<0.05).

  3. PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae

    PubMed Central

    2010-01-01

    Background In Saccharomyces cerevisiae galactose is initially metabolized through the Leloir pathway after which glucose 6-phosphate enters glycolysis. Galactose is controlled both by glucose repression and by galactose induction. The gene PGM2 encodes the last enzyme of the Leloir pathway, phosphoglucomutase 2 (Pgm2p), which catalyses the reversible conversion of glucose 1-phosphate to glucose 6-phosphate. Overexpression of PGM2 has previously been shown to enhance aerobic growth of S. cerevisiae in galactose medium. Results In the present study we show that overexpression of PGM2 under control of the HXT7'promoter from an integrative plasmid increased the PGM activity 5 to 6 times, which significantly reduced the lag phase of glucose-pregrown cells in an anaerobic galactose culture. PGM2 overexpression also increased the anaerobic specific growth rate whereas ethanol production was less influenced. When PGM2 was overexpressed from a multicopy plasmid instead, the PGM activity increased almost 32 times. However, this increase of PGM activity did not further improve aerobic galactose fermentation as compared to the strain carrying PGM2 on the integrative plasmid. Conclusion PGM2 overexpression in S. cerevisiae from an integrative plasmid is sufficient to reduce the lag phase and to enhance the growth rate in anaerobic galactose fermentation, which results in an overall decrease in fermentation duration. This observation is of particular importance for the future development of stable industrial strains with enhanced PGM activity. PMID:20507616

  4. Expanded Terminal Fields of Gustatory Nerves Accompany Embryonic BDNF Overexpression in Mouse Oral Epithelia

    PubMed Central

    Sun, Chengsan; Dayal, Arjun

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is expressed in gustatory epithelia and is required for gustatory neurons to locate and innervate their correct target during development. When BDNF is overexpressed throughout the lingual epithelium, beginning embryonically, chorda tympani fibers are misdirected and innervate inappropriate targets, leading to a loss of taste buds. The remaining taste buds are hyperinnervated, demonstrating a disruption of nerve/target matching in the tongue. We tested the hypothesis here that overexpression of BDNF peripherally leads to a disrupted terminal field organization of nerves that carry taste information to the brainstem. The chorda tympani, greater superficial petrosal, and glossopharyngeal nerves were labeled in adult wild-type (WT) mice and in adult mice in which BDNF was overexpressed (OE) to examine the volume and density of their central projections in the nucleus of the solitary tract. We found that the terminal fields of the chorda tympani and greater superficial petrosal nerves and overlapping fields that included these nerves in OE mice were at least 80% greater than the respective field volumes in WT mice. The shapes of terminal fields were similar between the two groups; however, the density and spread of labels were greater in OE mice. Unexpectedly, there were also group-related differences in chorda tympani nerve function, with OE mice showing a greater relative taste response to a concentration series of sucrose. Overall, our results show that disruption in peripheral innervation patterns of sensory neurons have significant effects on peripheral nerve function and central organization of their terminal fields. PMID:25568132

  5. Lead and the Romans

    ERIC Educational Resources Information Center

    Reddy, Aravind; Braun, Charles L.

    2010-01-01

    Lead poisoning has been a problem since early history and continues into modern times. An appealing characteristic of lead is that many lead salts are sweet. In the absence of cane and beet sugars, early Romans used "sugar of lead" (lead acetate) to sweeten desserts, fruits, and sour wine. People most at risk would have been those who…

  6. Combinatorial Method for Overexpression of Membrane Proteins in Escherichia coli*

    PubMed Central

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-01-01

    Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters. PMID:20525689

  7. Combinatorial method for overexpression of membrane proteins in Escherichia coli.

    PubMed

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-07-30

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.

  8. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    PubMed

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells.

  9. Lead levels - blood

    MedlinePlus

    ... is used to screen people at risk for lead poisoning. This may include industrial workers and children who ... also used to measure how well treatment for lead poisoning is working. Lead is common in the environment, ...

  10. Overexpressed of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability

    SciTech Connect

    Schild, David; Wiese, Claudia

    2009-10-15

    RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the 'recombination mediators'. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as 'recombination co-mediators'. Defects in either recombination mediators or comediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic restabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51.

  11. Mannose 6-Phosphate Receptor Is Reduced in -Synuclein Overexpressing Models of Parkinsons Disease

    PubMed Central

    Matrone, Carmela; Dzamko, Nicolas; Madsen, Peder; Nyegaard, Mette; Pohlmann, Regina; Søndergaard, Rikke V.; Lassen, Louise B.; Andresen, Thomas L.; Halliday, Glenda M.; Jensen, Poul Henning

    2016-01-01

    Increasing evidence points to defects in autophagy as a common denominator in most neurodegenerative conditions. Progressive functional decline in the autophagy-lysosomal pathway (ALP) occurs with age, and the consequent impairment in protein processing capacity has been associated with a higher risk of neurodegeneration. Defects in cathepsin D (CD) processing and α-synuclein degradation causing its accumulation in lysosomes are particularly relevant for the development of Parkinson's disease (PD). However, the mechanism by which alterations in CD maturation and α-synuclein degradation leads to autophagy defects in PD neurons is still uncertain. Here we demonstrate that MPR300 shuttling between endosomes and the trans Golgi network is altered in α-synuclein overexpressing neurons. Consequently, CD is not correctly trafficked to lysosomes and cannot be processed to generate its mature active form, leading to a reduced CD-mediated α-synuclein degradation and α-synuclein accumulation in neurons. MPR300 is downregulated in brain from α-synuclein overexpressing animal models and in PD patients with early diagnosis. These data indicate MPR300 as crucial player in the autophagy-lysosomal dysfunctions reported in PD and pinpoint MRP300 as a potential biomarker for PD. PMID:27509067

  12. Overexpression of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability

    PubMed Central

    Schild, David; Wiese, Claudia

    2010-01-01

    RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA-binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the ‘recombination mediators’. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as ‘recombination co-mediators’. Defects in either recombination mediators or co-mediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic re-stabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51 expression. PMID:19942681

  13. Overexpression of Wild-Type Murine Tau Results in Progressive Tauopathy and Neurodegeneration

    PubMed Central

    Adams, Stephanie J.; Crook, Richard J.P.; DeTure, Michael; Randle, Suzanne J.; Innes, Amy E.; Yu, Xin Z.; Lin, Wen-Lang; Dugger, Brittany N.; McBride, Melinda; Hutton, Mike; Dickson, Dennis W.; McGowan, Eileen

    2009-01-01

    Here, we describe the generation and characterization of a novel tau transgenic mouse model (mTau) that overexpresses wild-type murine tau protein by twofold compared with endogenous levels. Transgenic tau expression was driven by a BAC transgene containing the entire wild-type mouse tau locus, including the endogenous promoter and the regulatory elements associated with the tau gene. The mTau model therefore differs from other tau models in that regulation of the genomic mouse transgene mimics that of the endogenous gene, including normal exon splicing regulation. Biochemical data from the mTau mice demonstrated that modest elevation of mouse tau leads to tau hyperphosphorylation at multiple pathologically relevant epitopes and accumulation of sarkosyl-insoluble tau. The mTau mice show a progressive increase in hyperphosphorylated tau pathology with age up to 15 to 18 months, which is accompanied by gliosis and vacuolization. In contrast, older mice show a decrease in tau pathology levels, which may represent hippocampal neuronal loss occurring in this wild-type model. Collectively, these results describe a novel model of tauopathy that develops pathological changes reminiscent of early stage Alzheimer’s disease and other related neurodegenerative diseases, achieved without overexpression of a mutant human tau transgene. This model will provide an important tool for understanding the early events leading to the development of tau pathology and a model for analysis of potential therapeutic targets for sporadic tauopathies. PMID:19717642

  14. Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A

    PubMed Central

    Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectible WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes. PMID:17870066

  15. Overexpression of Robo2 causes defects in the recruitment of metanephric mesenchymal cells and ureteric bud branching morphogenesis

    SciTech Connect

    Ji, Jiayao; Li, Qinggang; Xie, Yuansheng; Zhang, Xueguang; Cui, Shaoyuan; Shi, Suozhu; Chen, Xiangmei

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Overexpression of Robo2 caused reduced UB branching and glomerular number. Black-Right-Pointing-Pointer Fewer MM cells surrounding the UB after overexpression of Robo2 in vitro. Black-Right-Pointing-Pointer No abnormal Epithelial Morphology of UB or apoptosis of mm cells in the kidney. Black-Right-Pointing-Pointer Overexpression of Robo2 affected MM cells migration and caused UB deficit. Black-Right-Pointing-Pointer The reduced glomerular number can also be caused by fewer MM cells. -- Abstract: Roundabout 2 (Robo2) is a member of the membrane protein receptor family. The chemorepulsive effect of Slit2-Robo2 signaling plays vital roles in nervous system development and neuron migration. Slit2-Robo2 signaling is also important for maintaining the normal morphogenesis of the kidney and urinary collecting system, especially for the branching of the ureteric bud (UB) at the proper site. Slit2 or Robo2 mouse mutants exhibit multilobular kidneys, multiple ureters, and dilatation of the ureter, renal pelvis, and collecting duct system, which lead to vesicoureteral reflux. To understand the effect of Robo2 on kidney development, we used microinjection and electroporation to overexpress GFP-Robo2 in an in vitro embryonic kidney model. Our results show reduced UB branching and decreased glomerular number after in vitro Robo2 overexpression in the embryonic kidneys. We found fewer metanephric mesenchymal (MM) cells surrounding the UB but no abnormal morphology in the branching epithelial UB. Meanwhile, no significant change in MM proliferation or apoptosis was observed. These findings indicate that Robo2 is involved in the development of embryonic kidneys and that the normal expression of Robo2 can help maintain proper UB branching and glomerular morphogenesis. Overexpression of Robo2 leads to reduced UB branching caused by fewer surrounding MM cells, but MM cell apoptosis is not involved in this effect. Our study demonstrates that

  16. Aquaporin 1 and aquaporin 4 overexpression in bovine spongiform encephalopathy in a transgenic murine model and in cattle field cases.

    PubMed

    Costa, Carme; Tortosa, Raül; Rodríguez, Agustín; Ferrer, Isidre; Torres, Juan Maria; Bassols, Anna; Pumarola, Martí

    2007-10-17

    Aquaporins (AQP) are a family of transmembrane proteins that act as water selective channels. AQP1 and AQP4 are widely expressed in the central nervous system where they play several roles. Overexpression of AQP has been reported in some human and animal transmissible spongiform encephalopathies, but information is scanty about their distribution in the central nervous system in bovine spongiform encephalopathy (BSE). Double immunohistochemistry for AQP1, AQP4 and GFAP was developed in a transgenic mouse line overexpressing the bovine cellular prion protein (BoTg110), intracerebrally infected with cattle BSE. Western blot for AQP1 and AQP4, and immunohistochemistry for both AQP and GFAP were carried out in cases of BSE-diagnosed cattle as part of surveillance plan in Catalonia (Spain). A marked increase in AQP1 and AQP4 was observed in mice at the terminal stage of the disease, when they had a wide range of clinical signs, whereas no increase could be observed in the early stage before the onset of the clinical signs. In cattle which did not show evidence of clinical signs, both AQP already showed a great increase. The AQP overexpression correlated with GFAP-immunoreactive astrocytes and PrPres deposition in both cases. The results of this study suggest that AQP overexpression in glial cells could lead to an imbalance in water and ion homeostasis which could contribute to triggering the typical histopathological changes of BSE.

  17. Transplantation of PDGF-AA-Overexpressing Oligodendrocyte Precursor Cells Promotes Recovery in Rat Following Spinal Cord Injury.

    PubMed

    Yao, Zong-Feng; Wang, Ying; Lin, Yu-Hong; Wu, Yan; Zhu, An-You; Wang, Rui; Shen, Lin; Xi, Jin; Qi, Qi; Jiang, Zhi-Quan; Lü, He-Zuo; Hu, Jian-Guo

    2017-01-01

    Our previous study showed that Schwann cells (SCs) promote survival, proliferation and migration of co-transplanted oligodendrocyte progenitor cells (OPCs) and neurological recovery in rats with spinal cord injury (SCI). A subsequent in vitro study confirmed that SCs modulated OPC proliferation and migration by secreting platelet-derived growth factor (PDGF)-AA and fibroblast growth factor-2 (FGF)-2. We also found that PDGF-AA stimulated OPC proliferation and their differentiation into oligodendrocytes (OLs) at later stages. We therefore speculated that PDGF-AA administration can exert the same effect as SC co-transplantation in SCI repair. To test this hypothesis, in this study we investigated the effect of transplanting PDGF-AA-overexpressing OPCs in a rat model of SCI. We found that PDGF-AA overexpression in OPCs promoted their survival, proliferation, and migration and differentiation into OLs in vivo. OPCs overexpressing PDGF-AA were also associated with increased myelination and tissue repair after SCI, leading to the recovery of neurological function. These results indicate that PDGF-AA-overexpressing OPCs may be an effective treatment for SCI.

  18. Transplantation of PDGF-AA-Overexpressing Oligodendrocyte Precursor Cells Promotes Recovery in Rat Following Spinal Cord Injury

    PubMed Central

    Yao, Zong-Feng; Wang, Ying; Lin, Yu-Hong; Wu, Yan; Zhu, An-You; Wang, Rui; Shen, Lin; Xi, Jin; Qi, Qi; Jiang, Zhi-Quan; Lü, He-Zuo; Hu, Jian-Guo

    2017-01-01

    Our previous study showed that Schwann cells (SCs) promote survival, proliferation and migration of co-transplanted oligodendrocyte progenitor cells (OPCs) and neurological recovery in rats with spinal cord injury (SCI). A subsequent in vitro study confirmed that SCs modulated OPC proliferation and migration by secreting platelet-derived growth factor (PDGF)-AA and fibroblast growth factor-2 (FGF)-2. We also found that PDGF-AA stimulated OPC proliferation and their differentiation into oligodendrocytes (OLs) at later stages. We therefore speculated that PDGF-AA administration can exert the same effect as SC co-transplantation in SCI repair. To test this hypothesis, in this study we investigated the effect of transplanting PDGF-AA-overexpressing OPCs in a rat model of SCI. We found that PDGF-AA overexpression in OPCs promoted their survival, proliferation, and migration and differentiation into OLs in vivo. OPCs overexpressing PDGF-AA were also associated with increased myelination and tissue repair after SCI, leading to the recovery of neurological function. These results indicate that PDGF-AA-overexpressing OPCs may be an effective treatment for SCI. PMID:28377695

  19. Lead Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on lead exposure is presented including forms of lead, sources, hematologic effects, neurologic effects, endocrine effects, renal effects, and reproductive and developmental effects. The purpose of the Lead Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Lead Exposure at LeRC are discussed.

  20. POMC overexpression in the ventral tegmental area ameliorates dietary obesity.

    PubMed

    Andino, Lourdes M; Ryder, Daniel J; Shapiro, Alexandra; Matheny, Michael K; Zhang, Yi; Judge, Melanie K; Cheng, K Y; Tümer, Nihal; Scarpace, Philip J

    2011-08-01

    The activation of proopiomelanocortin (POMC) neurons in different regions of the brain, including the arcuate nucleus of the hypothalamus (ARC) and the nucleus of the solitary tract curtails feeding and attenuates body weight. In this study, we compared the effects of delivery of a recombinant adeno-associated viral (rAAV) construct encoding POMC to the ARC with delivery to the ventral tegmental area (VTA). F344×Brown Norway rats were high-fat (HF) fed for 14 days after which self-complementary rAAV constructs expressing either green fluorescent protein or the POMC gene were injected using coordinates targeting either the VTA or the ARC. Corresponding increased POMC levels were found at the predicted injection sites and subsequent α-melanocyte-stimulating hormone levels were observed. Food intake and body weight were measured for 4 months. Although caloric intake was unaltered by POMC overexpression, weight gain was tempered with POMC overexpression in either the VTA or the ARC compared with controls. There were parallel decreases in adipose tissue reserves. In addition, levels of oxygen consumption and brown adipose tissue uncoupling protein 1 were significantly elevated with POMC treatment in the VTA. Interestingly, tyrosine hydroxylase levels were increased in both the ARC and VTA with POMC overexpression in either the ARC or the VTA. In conclusion, these data indicate a role for POMC overexpression within the VTA reward center to combat HF-induced obesity.

  1. Moesin overexpression is a unique biomarker of adenomyosis.

    PubMed

    Ohara, Rena; Michikami, Hiroo; Nakamura, Yuko; Sakata, Akiko; Sakashita, Shingo; Satomi, Kaishi; Shiba-Ishii, Aya; Kano, Junko; Yoshikawa, Hiroyuki; Noguchi, Masayuki

    2014-03-01

    Adenomyosis is characterized by extension of endometrial glands and stromal cells into the myometrium. Here we proved that 'moesin' is a unique biomarker of adenomyosis. We selected two cases of adenomyosis that had been surgically resected and fixed with formalin. Proteins were extracted from the infiltrating adenomyosis lesions and normal endometrium by tissue microdissection. The extracted proteins were examined using a LC-MS/MS system and the expression profiles of each region were compared. Two hundred and sixty proteins were detected, among which 73 were expressed more in adenomyosis than in normal endometrium. Among these proteins, we focused on overexpression of moesin in adenomyosis. Expression of moesin estimated semiquantitatively using an immunohistochemistry score was higher in adenomyosis than in normal endometrium. In particular, moesin was significanly overexpressed in stromal cells of adenomyosis than in those of normal endometrium. Relative to normal endometrium, moesin was also overexpressed at the RNA level in 9 of 14 cases of adenomyosis and at the protein level in all 14 cases. We also detected activated (phosphorylated) moesin in adenomyosis lesions. The present findings suggest that moesin is characteristically overexpressed and activated in adenomyosis, and that moesin activation may be related to extension of adenomyosis in the myometrium.

  2. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer.

    PubMed

    Mansilla, Francisco; da Costa, Kerry-Ann; Wang, Shuli; Kruhøffer, Mogens; Lewin, Tal M; Orntoft, Torben F; Coleman, Rosalind A; Birkenkamp-Demtröder, Karin

    2009-01-01

    The alteration of the choline metabolite profile is a well-established characteristic of cancer cells. In colorectal cancer (CRC), phosphatidylcholine is the most prominent phospholipid. In the present study, we report that lysophosphatidylcholine acyltransferase 1 (LPCAT1; NM_024830.3), the enzyme that converts lysophosphatidylcholine into phosphatidylcholine, was highly overexpressed in colorectal adenocarcinomas when compared to normal mucosas. Our microarray transcription profiling study showed a significant (p < 10(-8)) transcript overexpression in 168 colorectal adenocarcinomas when compared to ten normal mucosas. Immunohistochemical analysis of colon tumors with a polyclonal antibody to LPCAT1 confirmed the upregulation of the LPCAT1 protein. Overexpression of LPCAT1 in COS7 cells localized the protein to the endoplasmic reticulum and the mitochondria and increased LPCAT1 specific activity 38-fold. In cultured cells, overexpressed LPCAT1 enhanced the incorporation of [(14)C]palmitate into phosphatidylcholine. COS7 cells transfected with LPCAT1 showed no growth rate alteration, in contrast to the colon cancer cell line SW480, which significantly (p < 10(-5)) increased its growth rate by 17%. We conclude that LPCAT1 may contribute to total choline metabolite accumulation via phosphatidylcholine remodeling, thereby altering the CRC lipid profile, a characteristic of malignancy.

  3. Laboratory and field studies of guayule modified to overexpress HMGR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the genetic modification of guayule to overexpress the isoprenoid pathway enzyme HMGR. The rubber content of two-month old in vitro transformed plantlets showed a 65% increase in rubber over the control for one line (HMGR6), and lower resin for another (HMGR2). In field evaluations HMGR6...

  4. Tumor Necrosis Factor–α Overexpression in Lung Disease

    PubMed Central

    Lundblad, Lennart K. A.; Thompson-Figueroa, John; Leclair, Timothy; Sullivan, Michael J.; Poynter, Matthew E.; Irvin, Charles G.; Bates, Jason H. T.

    2005-01-01

    Rationale: Tumor necrosis factor α (TNF-α) has been implicated as a key cytokine in many inflammatory lung diseases. These effects are currently unclear, because a transgenic mouse overexpressing TNF-α in the lung has been shown in separate studies to produce elements of both emphysema and pulmonary fibrosis. Objectives: We sought to elucidate the phenotypic effects of TNF-α overexpression in a mouse model. Measurements: We established the phenotype by measuring lung impedance and thoracic gas volume, and using micro–computed tomography and histology. Main Results: We found that airways resistance in this mouse was not different to control mice, but that lung tissue dampening, elastance, and hysteresivity were significantly elevated. Major heterogeneous abnormalities of the parenchyma were also apparent in histologic sections and in micro–computed tomography images of the lung. These changes included airspace enlargement, loss of small airspaces, increased collagen, and thickened pleural septa. We also found significant increases in lung and chest cavity volumes in the TNF-α–overexpressing mice. Conclusions: We conclude that TNF-α overexpression causes pathologic changes consistent with both emphysema and pulmonary fibrosis combined with a general lung inflammation, and consequently does not model any single human disease. Our study thus confirms the pleiotropic effects of TNF-α, which has been implicated in multiple inflammatory disorders, and underscores the necessity of using a wide range of investigative techniques to link gene expression and phenotype in animal models of disease. PMID:15805183

  5. Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction

    PubMed Central

    Thapa, Dharendra; Nichols, Cody E.; Lewis, Sara E.; Shepherd, Danielle L.; Jagannathan, Rajaganapathi; Croston, Tara L.; Tveter, Kevin J.; Holden, Anthony A.; Baseler, Walter A.; Hollander, John M.

    2014-01-01

    Mitofilin, also known as heart muscle protein, is an inner mitochondrial membrane structural protein that plays a central role in maintaining cristae morphology and structure. It is a critical component of the mitochondrial contact site and cristae organizing system (MICOS) complex which is important for mitochondrial architecture and cristae morphology. Our laboratory has previously reported alterations in mitochondrial morphology and proteomic make-up during type 1 diabetes mellitus, with mitofilin being significantly down-regulated in interfibrillar mitochondria (IFM). The goal of this study was to investigate whether overexpression of mitofilin can limit mitochondrial disruption associated with the diabetic heart through restoration of mitochondrial morphology and function. A transgenic mouse line overexpressing mitofilin was generated and mice injected intraperitoneally with streptozotocin using a multi low-dose approach. Five weeks following diabetes mellitus onset, cardiac contractile function was assessed. Restoration of ejection fraction and fractional shortening was observed in mitofilin diabetic mice as compared to wild-type controls (P<0.05 for both). Decrements observed in electron transport chain (ETC) complexes I, III, IV and V activities, state 3 respiration, lipid peroxidation as well as mitochondria membrane potential in type 1 diabetic IFM were restored in mitofilin diabetic mice (P<0.05 for all). Qualitative analyses of electron micrographs revealed restoration of mitochondrial cristae structure in mitofilin diabetic mice as compared to wild-type controls. Furthermore measurement of mitochondrial internal complexity using flow cytometry displayed significant reduction in internal complexity in diabetic IFM which was restored in mitofilin diabetic IFM (P<0.05). Taken together these results suggest that transgenic overexpression of mitofilin preserves mitochondrial structure, leading to restoration of mitochondrial function and attenuation of

  6. A transgenic mouse model of neuroepithelial cell specific inducible overexpression of dopamine D1-receptor

    PubMed Central

    Fujimoto, Kumiko; Araki, Kiyomi; McCarthy, Deirdre M.; Sims, John R.; Ren, Jia-Qian; Zhang, Xuan; Bhide, Pradeep G.

    2010-01-01

    Dopamine and its receptors appear in the brain during early embryonic period suggesting a role for dopamine in brain development. In fact, dopamine receptor imbalance resulting from impaired physiological balance between D1- and D2-receptor activities can perturb brain development and lead to persisting changes in brain structure and function. Dopamine receptor imbalance can be produced experimentally using pharmacological or genetic methods. Pharmacological methods tend to activate or antagonize the receptors in all cell types. In the traditional gene knockout models the receptor imbalance occurs during development and also at maturity. Therefore, assaying the effects of dopamine imbalance on specific cell types (e.g. precursor versus postmitotic cells) or at specific periods of brain development (e.g. pre- or postnatal periods) is not feasible in these models. We describe a novel transgenic mouse model based on the tetracycline dependent inducible gene expression system in which dopamine D1-receptor transgene expression is induced selectively in neuroepithelial cells of the embryonic brain at experimenter-chosen intervals of brain development. In this model, doxycycline-induced expression of the transgene causes significant overexpression of the D1-receptor and significant reductions in the incorporation of the S-phase marker bromodeoxyuridine into neuroepithelial cells of the basal and dorsal telencephalon indicating marked effects on telencephalic neurogenesis. The D1-receptor overexpression occurs at higher levels in the medial ganglionic eminence than the lateral ganglionic eminence or cerebral wall. Moreover, although the transgene is induced selectively in the neuroepithelium, D1-receptor protein overexpression appears to persist in postmitotic cells. The mouse model can be modified for neuroepithelial cell-specific inducible expression of other transgenes or induction of the D1-receptor transgene in other cells in specific brain regions by crossbreeding

  7. Astrocyte-Dependent Vulnerability to Excitotoxicity in Spermine Oxidase-Overexpressing Mouse.

    PubMed

    Cervetto, Chiara; Vergani, Laura; Passalacqua, Mario; Ragazzoni, Milena; Venturini, Arianna; Cecconi, Francesco; Berretta, Nicola; Mercuri, Nicola; D'Amelio, Marcello; Maura, Guido; Mariottini, Paolo; Voci, Adriana; Marcoli, Manuela; Cervelli, Manuela

    2016-03-01

    Transgenic mice overexpressing spermine oxidase (SMO) in the cerebral cortex (Dach-SMO mice) showed increased vulnerability to excitotoxic brain injury and kainate-induced epileptic seizures. To investigate the mechanisms by which SMO overexpression leads to increased susceptibility to kainate excitotoxicity and seizure, in the cerebral cortex of Dach-SMO and control mice we assessed markers for astrocyte proliferation and neuron loss, and the ability of kainate to evoke glutamate release from nerve terminals and astrocyte processes. Moreover, we assessed a possible role of astrocytes in an in vitro model of epileptic-like activity in combined cortico-hippocampal slices recorded with a multi-electrode array device. In parallel, as the brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms, we analyzed the oxidative status of the cerebral cortex of both SMO-overexpressing and control mice by evaluating enzymatic and non-enzymatic scavengers such as metallothioneins. The main findings in the cerebral cortex of Dach-SMO mice as compared to controls are the following: astrocyte activation and neuron loss; increased oxidative stress and activation of defense mechanisms involving both neurons and astrocytes; increased susceptibility to kainate-evoked cortical epileptogenic activity, dependent on astrocyte function; appearance of a glutamate-releasing response to kainate from astrocyte processes due to activation of Ca(2+)-permeable AMPA receptors in Dach-SMO mice. We conclude that reactive astrocytosis and activation of glutamate release from astrocyte processes might contribute, together with increased reactive oxygen species production, to the vulnerability to kainate excitotoxicity in Dach-SMO mice. This mouse model with a deregulated polyamine metabolism would shed light on roles for astrocytes in increasing vulnerability to excitotoxic neuron injury.

  8. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    SciTech Connect

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.

  9. Overexpression of Reelin prevents the manifestation of behavioral phenotypes related to schizophrenia and bipolar disorder.

    PubMed

    Teixeira, Cátia M; Martín, Eduardo D; Sahún, Ignasi; Masachs, Nuria; Pujadas, Lluís; Corvelo, André; Bosch, Carles; Rossi, Daniela; Martinez, Albert; Maldonado, Rafael; Dierssen, Mara; Soriano, Eduardo

    2011-11-01

    Despite the impact of schizophrenia and mood disorders, which in extreme cases can lead to death, recent decades have brought little progress in the development of new treatments. Recent studies have shown that Reelin, an extracellular protein that is critical for neuronal development, is reduced in schizophrenia and bipolar disorder patients. However, data on a causal or protective role of Reelin in psychiatric diseases is scarce. In order to study the direct influence of Reelin's levels on behavior, we subjected two mouse lines, in which Reelin levels are either reduced (Reelin heterozygous mice) or increased (Reelin overexpressing mice), to a battery of behavioral tests: open-field, black-white box, novelty-suppressed-feeding, forced-swim-test, chronic corticosterone treatment followed by forced-swim-test, cocaine sensitization and pre-pulse inhibition (PPI) deficits induced by N-methyl-D-aspartate (NMDA) antagonists. These tests were designed to model some aspects of psychiatric disorders such as schizophrenia, mood, and anxiety disorders. We found no differences between Reeler heterozygous mice and their wild-type littermates. However, Reelin overexpression in the mouse forebrain reduced the time spent floating in the forced-swim-test in mice subjected to chronic corticosterone treatment, reduced behavioral sensitization to cocaine, and reduced PPI deficits induced by a NMDA antagonist. In addition, we demonstrate that while stress increased NMDA NR2B-mediated synaptic transmission, known to be implicated in depression, Reelin overexpression significantly reduced it. Together, these results point to the Reelin signaling pathway as a relevant drug target for the treatment of a range of psychiatric disorders.

  10. Field Evaluation of Transgenic Switchgrass Plants Overexpressing PvMYB4 for Reduced Biomass Recalcitrance

    DOE PAGES

    Baxter, Holly L.; Poovaiah, Charleson R.; Yee, Kelsey L.; ...

    2015-01-07

    High biomass yields and minimal agronomic input requirements have made switchgrass, Panicum virgatum L., a leading candidate lignocellulosic bioenergy crop. Large-scale lignocellulosic biofuel production from such crops is limited by the difficulty to deconstruct cell walls into fermentable sugars: the recalcitrance problem. In this study, we assessed the field performance of switchgrass plants overexpressing the switchgrass MYB4 (PvMYB4) transcription factor gene. PvMYB4 transgenic switchgrass can have great lignin reduction, which commensurately increases sugar release and biofuel production. Our results over two growing seasons showed that one transgenic event (out of eight) had important gains in both biofuel (32% more) andmore » biomass (63% more) at the end of the second growing season relative to non-transgenic controls. These gains represent a doubling of biofuel production per hectare, which is the highest gain reported from any field-grown modified feedstock. In contrast to this transgenic event, which had relatively low ectopic overexpression of the transgene, five of the eight transgenic events planted did not survive the first field winter. The dead plants were all high-overexpressing events that performed well in the earlier greenhouse studies. Disease susceptibility was not compromised in any transgenic events over the field experiments. These results demonstrate the power of modifying the expression of an endogenous transcription factor to improve biofuel and biomass simultaneously, and also highlight the importance of field studies for "sorting" transgenic events. In conclusion, further research is needed to develop strategies for fine-tuning temporal-spatial transgene expression in feedstocks to optimize desired phenotypes.« less

  11. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy.

    PubMed

    Turdi, Subat; Han, Xuefeng; Huff, Anna F; Roe, Nathan D; Hu, Nan; Gao, Feng; Ren, Jun

    2012-09-15

    Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy.

  12. Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency.

    PubMed

    Tsai, Steven C; Chang, David F; Hong, Chang-Mu; Xia, Ping; Senadheera, Dinithi; Trump, Lisa; Mishra, Suparna; Lutzko, Carolyn

    2014-06-15

    Our knowledge of the molecular mechanisms underlying human embryonic stem cell (hESC) self-renewal and differentiation is incomplete. The level of octamer-binding transcription factor 4 (Oct4), a critical regulator of pluripotency, is precisely controlled in mouse embryonic stem cells. However, studies of human OCT4 are often confounded by the presence of three isoforms and six expressed pseudogenes, which has complicated the interpretation of results. Using an inducible lentiviral overexpression and knockdown system to manipulate OCT4A above or below physiological levels, we specifically examine the functional role of the OCT4A isoform in hESC. (We also designed and generated a comparable series of vectors, which were not functional, for the overexpression and knockdown of OCT4B.) We show that specific knockdown of OCT4A results in hESC differentiation, as indicated by morphology changes, cell surface antigen expression, and upregulation of ectodermal genes. In contrast, inducible overexpression of OCT4A in hESC leads to a transient instability of the hESC phenotype, as indicated by changes in morphology, cell surface antigen expression, and transcriptional profile, that returns to baseline within 5 days. Interestingly, sustained expression of OCT4A past 5 days enhances hESC cloning efficiency, suggesting that higher levels of OCT4A can support self-renewal. Overall, our results indicate that high levels of OCT4A increase hESC cloning efficiency and do not induce differentiation (whereas OCT4B expression cannot be induced in hESC), highlighting the importance of isoform-specific studies in a stable and inducible expression system for human OCT4. Additionally, we demonstrate the utility of an efficient method for conditional gene expression in hESC.

  13. Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis.

    PubMed

    Goepfert, Thea M; Adigun, Yetunde E; Zhong, Ling; Gay, Jason; Medina, Daniel; Brinkley, William R

    2002-07-15

    The cells of many solid tumors have been found to contain supernumerary centrosomes, a condition known as centrosome amplification. Centrosome amplification, accompanied by the overexpression of an associated kinase, Aurora A (AurA), has been implicated in mechanisms leading to mitotic spindle aberrations, aneuploidy, and genomic instability. Using a well-established rat mammary model favorable for experimental carcinogenesis, we analyzed centrosome amplification as a cellular marker for early stages of transformation and its regulation by the kinase ratAurA. Parity or treatment with estrogen and progesterone conferred resistance to tumorigenesis, as well as to overexpression of ratAurA and to centrosome amplification. ratAurA, cloned from a rat mammary gland cDNA library, is a bona fide Ser/Thr kinase, and sequence comparison demonstrated high homology to members of the entire AurA kinase family. Using immunocytochemical localization with confocal microscopy, we found ratAurA to be localized at the centrosome in normal and neoplastic tissues of the rat mammary gland. Normal ductal epithelium and stromal cells displayed an expected complement of one to two centrosomes/cell, whereas comparable cells in methylnitrosourea-treated animals displayed significantly elevated centrosome numbers. In tumors, 46% of cells showed more than two centrosomes/cell, and ratAurA expression levels coincided with higher centrosome numbers. Both centrosome numbers and ratAurA expression were permanently elevated. Centrosome amplification was found to occur at a very early, premalignant stage prior to detectable lesions after treatment with methylnitrosourea, a condition that was not detected in mammary glands of rats made refractory to the carcinogen via pregnancy or estrogen and progesterone treatment. Our results indicate that hormones influence kinase expression, and progesterone had the major effect on ratAurA expression levels. Cumulatively, these results suggest that rat

  14. Transboundary atmospheric lead pollution.

    PubMed

    Erel, Yigal; Axelrod, Tamar; Veron, Alain; Mahrer, Yitzak; Katsafados, Petros; Dayan, Uri

    2002-08-01

    A high-temporal resolution collection technique was applied to refine aerosol sampling in Jerusalem, Israel. Using stable lead isotopes, lead concentrations, synoptic data, and atmospheric modeling, we demonstrate that lead detected in the atmosphere of Jerusalem is not only anthropogenic lead of local origin but also lead emitted in other countries. Fifty-seven percent of the collected samples contained a nontrivial fraction of foreign atmospheric lead and had 206Pb/207Pb values which deviated from the local petrol-lead value (206Pb/207Pb = 1.113) by more than two standard deviations (0.016). Foreign 206Pb/207Pb values were recorded in Jerusalem on several occasions. The synoptic conditions on these dates and reported values of the isotopic composition of lead emitted in various countries around Israel suggest that the foreign lead was transported to Jerusalem from Egypt, Turkey, and East Europe. The average concentration of foreign atmospheric lead in Jerusalem was 23 +/- 17 ng/m3, similar to the average concentration of local atmospheric lead, 21 +/- 18 ng/ m3. Hence, the load of foreign atmospheric lead is similar to the load of local atmospheric lead in Jerusalem.

  15. Lead (Pb) Air Pollution

    MedlinePlus

    ... and 2014. In 2008, EPA significantly strengthened the air quality standards for lead to provide health protection for ... time? Setting and Reviewing Standards What are lead air quality standards? How are they developed and reviewed? What ...

  16. Lead Poisoning (For Parents)

    MedlinePlus

    ... metal used in everything from construction materials to batteries, can cause serious health problems, particularly in young ... introduce lead dust into the home. water that flows through old lead pipes or faucets, if the ...

  17. Lead Content of Foodstuffs

    PubMed Central

    Mitchell, Douglas G.; Aldous, Kenneth M.

    1974-01-01

    The lead content of a number of foodstuffs, particularly baby fruit juices and milk, is reported. Samples were analyzed in quadruplicate by using an automated Delves cup atomic absorption procedure. A large proportion of the products examined contained significant amounts of lead. Of 256 metal can examined, the contents of 62% contained a lead level of 100 μg/l. or more, 37% contained 200 μg/l. or more and 12% contained 400 μg/l. lead or more. Of products in glass and aluminum containers, only 1% had lead levels in excess of 200 μg/l. Lead levels of contents also correlate with the seam length/volume ratio of the leaded seam can. A survey of bulk milk showed a mean lead level of 40 μg/l. for 270 samples; for canned evaporated milk the mean level was 202 μg/l. These data indicate a potential health hazard. PMID:4406645

  18. VOLUMETRIC LEAD ASSAY

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua; David Roelant; Sachin Kumar

    2001-01-01

    This report describes a system for handling and radioassay of lead, consisting of a robot, a conveyor, and a gamma spectrometer. The report also presents a cost-benefit analysis of options: radioassay and recycling lead vs. disposal as waste.

  19. Lead and tap water

    MedlinePlus

    Water contaminated with lead ... The Environmental Protection Agency (EPA) monitors drinking water in the United States. It requires water suppliers to produce annual water quality reports. These reports include information about lead amounts, and they ...

  20. Proteomic insight into reduced cell elongation resulting from overexpression of patatin-related phospholipase pPLAIIIδ in Arabidopsis thaliana

    PubMed Central

    Zheng, Yong; Li, Maoyin; Wang, Xuemin

    2014-01-01

    Patatin-containing phospholipase A (pPLA) hydrolyzes membrane glycerolipids, producing free fatty acids and lysoglycerolipids. Ten pPLAs in the Arabidopsis thaliana genome are grouped into 3 subfamilies, and pPLAIIIs differ from pPLAI and IIs in their catalytic motifs and overexpression (OE) of pPLAIIIs reduces cell elongation and cellulose content. To probe the question of how pPLAIII overexpression results in the changes, comparative proteomic analyses were conducted between pPLAIIIδ-OE and WT seedlings. The data indicate a change in the microtubule-associated protein, MAP18. MAP18 is involved in destabilizing cortical microtubules and modulating directional cell growth. The result suggests that pPLAIII and their derived products may regulate cytoskeletal dynamics leading to retardation in anisotropic growth. PMID:24705037

  1. Transplacental transport of lead

    SciTech Connect

    Goyer, R.A. )

    1990-11-01

    Neurotoxicity is the major health effect from exposure to lead for infants and young children, and there is current concern regarding possible toxic effects of lead on the child while in utero. there is no placental-fetal barrier to lead transport. Maternal and fetal blood lead levels are nearly identical, so lead passes through the placenta unencumbered. Lead has been measured in the fetal brain as early as the end of the first trimester (13 weeks). There is a similar rate of increase in brain size and lead content throughout pregnancy in the fetus of mothers in the general population, so concentration of lead probably does not differ greatly during gestation unless exposure of the mother changes. Cell-specific sensitivity to the toxic effects of lead, however, may be greater the younger the fetus. Lead toxicity to the nervous system is characterized by edema or swelling of the brain due to altered permeability of capillary endothelial cells. Experimental studies suggest that immature endothelial cells forming the capillaries of the developing brain are less resistant to the effects of lead, permitting fluid and cations including lead to reach newly formed components of the brain, particularly astrocytes and neurons. Also, the ability of astrocytes and neurons to sequester lead in the form of lead protein complexes occurs only in the later stages of fetal development, permitting lead in maturing brain cells to interact with vital subcellular organelles, particularly mitochondria, which are the major cellular energy source. Intracellular lead also affects binding sites for calcium which, in turn, may affect numerous cell functions including neurotransmitter release.

  2. Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae.

    PubMed

    Lee, Min Young; Kurioka, Takaomi; Nelson, Megan M; Prieskorn, Diane M; Swiderski, Donald L; Takada, Yohei; Beyer, Lisa A; Raphael, Yehoash

    2016-01-01

    Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing.

  3. Steroidogenic acute regulatory protein (StAR) overexpression reduces inflammation and insulin resistance in obese mice.

    PubMed

    Qiu, Yanyan; Sui, Xianxian; Cao, Shengxuan; Li, Xiaobo; Ning, Yanxia; Wang, Songmei; Yin, Lianhua; Zhi, Xiuling

    2017-04-12

    Steroidogenic acute regulatory protein (StAR), a mitochondrial cholesterol delivery protein, plays a beneficial role in hyperlipidemia, NAFLD and endothelial inflammation. Elevated circulating fatty acids and low grade inflammation are known as key risk factors of insulin resistance and type 2 diabetes. In the present study, C57BL/6J mice were fed with a HFD and infected with recombinant adenovirus expressing StAR by tail-vein injection. Intraperitoneal glucose/insulin tolerance test was performed to assess the insulin sensitivity. Morphological analysis and intramuscular lipid determination were used to illustrate the adipose hypertrophy and ectopic fat accumulation in skeletal muscle. The levels of inflammatory factor and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. The fatty acids composition was analysis using gas chromatography -mass spectrometry (GC-MS). The expression of genes associated with inflammation and insulin resistance were determined by Western blotting and qPCR to elucidate the underlying mechanism.We demonstrated that StAR overexpression ameliorated insulin resistance and systemic inflammatory response with the reduction of adipose hypertrophy and intramuscular lipid in HFD fed mice. In addition, StAR overexpression increased serum unsaturated fatty acids and PPARγ expression in muscle and adipose tissue of obese mice. In conclusion, StAR may activate PPARγ by increasing unsaturated fatty acids, which leads to a protective role in systemic inflammation and insulin resistance in obese mice. This article is protected by copyright. All rights reserved.

  4. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination.

    PubMed

    Klemens, Patrick A W; Patzke, Kathrin; Trentmann, Oliver; Poschet, Gernot; Büttner, Michael; Schulz, Alexander; Marten, Irene; Hedrich, Rainer; Neuhaus, H Ekkehard

    2014-04-01

    Arabidopsis vacuoles harbor, besides sugar transporter of the TMT-type, an early response to dehydration like 6 (ERDL6) protein involved in glucose export into the cytosol. However, the mode of transport of ERDL6 and the plant's feedback to overexpression of its activity on essential properties such as, for example, seed germination or freezing tolerance, remain unexplored. Using patch-clamp studies on vacuoles expressing AtERDL6 we demonstrated directly that this carrier operates as a proton-driven glucose exporter. Overexpression of BvIMP, the closest sugar beet (Beta vulgaris) homolog to AtERDL6, in Arabidopsis leads surprisingly to impaired seed germination under both conditions, sugar application and low environmental temperatures, but not under standard conditions. Upon cold treatment, BvIMP overexpressor plants accumulated lower quantities of monosaccharides than the wild-type, a response in line with the reduced frost tolerance of the transgenic Arabidopsis plants, and the fact that cold temperatures inhibits BvIMP transcription in sugar beet leaves. With these findings we show that the tight control of vacuolar sugar import and export is a key requisite for cold tolerance and seed germination of plants.

  5. Genome-wide overexpression screen for sodium acetate resistance in Saccharomyces cerevisiae.

    PubMed

    Peña, Pedro V; Glasker, Steven; Srienc, Friedrich

    2013-03-10

    The production of biofuels from cellulosic biomass is a promising technology for developing a renewable source of energy. Efforts to produce ethanol from cellulosic biomass using microbes, such as the yeast Saccharomyces cerevisiae, face major challenges, including the need for detoxification. Here, we apply a strategy to discover genetic alterations that lead to improved robustness of S. cerevisiae in the presence of acetate, which is present at toxic concentrations in hemicellulose hydrolysates. Acetate in its protonated form (acetic acid) enters the cell through passive diffusion and dissociates into a proton and acetate, acidifying the cytosol and inhibiting cell function, an effect that is exacerbated in the presence of sodium. Through flow cytometry analysis, implemented as part of a novel cell culture technique, the Cytostat, we characterized the deleterious effects of sodium acetate on growth and on cell size homeostasis. Further, using the Cytostat to screen a genome-wide, gene overexpression library, we identified that overexpressing the ENA2 gene, a P-type sodium pump ATPase, provides a significant growth improvement in the presence of sodium acetate. Together, our data support the proposed mechanism for the synergistic growth inhibition exerted by acetate and sodium, as well as the mechanism that develops resistance.

  6. OsLBD3-7 Overexpression Induced Adaxially Rolled Leaves in Rice

    PubMed Central

    Zhang, Chunyu; Shao, Qinghao; Liu, Jun; Liu, Bin; Li, Hongyu

    2016-01-01

    Appropriate leaf rolling enhances erect-leaf habits and photosynthetic efficiency, which consequently improves grain yield. Here, we reported the novel lateral organ boundaries domain (LBD) gene OsLBD3-7, which is involved in the regulation of leaf rolling. OsLBD3-7 works as a transcription activator and its protein is located on the plasma membrane and in the nucleus. Overexpression of OsLBD3-7 leads to narrow and adaxially rolled leaves. Microscopy of flag leaf cross-sections indicated that overexpression of OsLBD3-7 led to a decrease in both bulliform cell size and number. Transcriptional analysis showed that key genes that had been reported to be negative regulators of bulliform cell development were up-regulated in transgenic plants. These results indicated that OsLBD3-7 might acts as an upstream regulatory gene of bulliform cell development to regulate leaf rolling, which will give more insights on the leaf rolling regulation mechanism. PMID:27258066

  7. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.).

    PubMed

    Lu, Yao; Li, Yajun; Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H(2)O(2) content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.

  8. The GRK2 Overexpression Is a Primary Hallmark of Mitochondrial Lesions during Early Alzheimer Disease

    PubMed Central

    Obrenovich, Mark E.; Palacios, Hector H.; Gasimov, Eldar; Leszek, Jerzy; Aliev, Gjumrakch

    2009-01-01

    Increasing evidence points to vascular damage as an early contributor to the development of two leading causes of age-associated dementia, namely Alzheimer disease (AD) and AD-like pathology such as stroke. This review focuses on the role of G protein-coupled receptor kinases (GRKs) as they relate to dementia and how the cardio and cerebrovasculature is involved in AD pathogenesis. The exploration of GRKs in AD pathogenesis may help bridge gaps in our understanding of the heart-brain connection in relation to neurovisceral damage and vascular complications of AD. The a priori basis for this inquiry stems from the fact that kinases of this family regulate numerous receptor functions in the brain, myocardium and elsewhere. The aim of this review is to discuss the finding of GRK2 overexpression in the context of early AD pathogenesis. Also, we consider the consequences for this overexpression as a loss of G-protein coupled receptor (GPCR) regulation, as well as suggest a potential role for GPCRs and GRKs in a unifying theory of AD pathogenesis through the cerebrovasculature. Finally, we synthesize this newer information in an attempt to put it into context with GRKs as regulators of cellular function, which makes these proteins potential diagnostic and therapeutic targets for future pharmacological intervention. PMID:20204079

  9. Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation

    PubMed Central

    Touvier, T; De Palma, C; Rigamonti, E; Scagliola, A; Incerti, E; Mazelin, L; Thomas, J-L; D'Antonio, M; Politi, L; Schaeffer, L; Clementi, E; Brunelli, S

    2015-01-01

    Mitochondrial fission and fusion are essential processes in the maintenance of the skeletal muscle function. The contribution of these processes to muscle development has not been properly investigated in vivo because of the early lethality of the models generated so far. To define the role of mitochondrial fission in muscle development and repair, we have generated a transgenic mouse line that overexpresses the fission-inducing protein Drp1 specifically in skeletal muscle. These mice displayed a drastic impairment in postnatal muscle growth, with reorganisation of the mitochondrial network and reduction of mtDNA quantity, without the deficiency of mitochondrial bioenergetics. Importantly we found that Drp1 overexpression activates the stress-induced PKR/eIF2α/Fgf21 pathway thus leading to an attenuated protein synthesis and downregulation of the growth hormone pathway. These results reveal for the first time how mitochondrial network dynamics influence muscle growth and shed light on aspects of muscle physiology relevant in human muscle pathologies. PMID:25719247

  10. Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae

    PubMed Central

    Lee, Min Young; Kurioka, Takaomi; Nelson, Megan M; Prieskorn, Diane M; Swiderski, Donald L; Takada, Yohei; Beyer, Lisa A; Raphael, Yehoash

    2016-01-01

    Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing. PMID:27525291

  11. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    PubMed Central

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  12. Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility.

    PubMed

    Yamazaki, Ken; Takamura, Masaaki; Masugi, Yohei; Mori, Taisuke; Du, Wenlin; Hibi, Taizo; Hiraoka, Nobuyoshi; Ohta, Tsutomu; Ohki, Misao; Hirohashi, Setsuo; Sakamoto, Michiie

    2009-04-01

    Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior. To characterize the aggressiveness of pancreatic cancers on gene expression, pancreatic cancer xenografts transplanted into severe combined immunodeficient mice served as a panel for gene-expression profiling. As a result of profiling, the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts. The expression of CAP1 protein in all 73 cases of pancreatic cancer was recognized by immunohistochemical analyses. The ratio of CAP1-positive tumor cells in clinical specimens was correlated with the presence of lymph node metastasis and neural invasion, and also with the poor prognosis of patients. Immunocytochemical analyses in pancreatic cancer cells demonstrated that CAP1 colocalized to the leading edge of lamellipodia with actin. Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells. This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement of CAP1 in the aggressive behavior of pancreatic cancer cells.

  13. Overexpression of Cystathionine γ-Lyase Suppresses Detrimental Effects of Spinocerebellar Ataxia Type 3

    PubMed Central

    Snijder, Pauline M; Baratashvili, Madina; Grzeschik, Nicola A; Leuvenink, Henri G D; Kuijpers, Lucas; Huitema, Sippie; Schaap, Onno; Giepmans, Ben N G; Kuipers, Jeroen; Miljkovic, Jan Lj; Mitrovic, Aleksandra; Bos, Eelke M; Szabó, Csaba; Kampinga, Harm H; Dijkers, Pascale F; den Dunnen, Wilfred F A; Filipovic, Milos R; van Goor, Harry; Sibon, Ody C M

    2015-01-01

    Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 (ATXN3) gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3. Here we show that overexpression of cystathionine γ-lyase, a central enzyme in cysteine metabolism, is protective in a Drosophila model for SCA3. SCA3 flies show eye degeneration, increased oxidative stress, insoluble protein aggregates, reduced levels of protein persulfidation and increased activation of the innate immune response. Overexpression of Drosophila cystathionine γ-lyase restores protein persulfidation, decreases oxidative stress, dampens the immune response and improves SCA3-associated tissue degeneration. Levels of insoluble protein aggregates are not altered; therefore, the data implicate a modifying role of cystathionine γ-lyase in ameliorating the downstream consequence of protein aggregation leading to protection against SCA3-induced tissue degeneration. The cystathionine γ-lyase expression is decreased in affected brain tissue of SCA3 patients, suggesting that enhancers of cystathionine γ-lyase expression or activity are attractive candidates for future therapies. PMID:26467707

  14. Effects of ADH2 overexpression in Saccharomyces bayanus during alcoholic fermentation.

    PubMed

    Maestre, Oscar; García-Martínez, Teresa; Peinado, Rafael A; Mauricio, Juan C

    2008-02-01

    The effect of overexpression of the gene ADH2 on metabolic and biological activity in Saccharomyces bayanus V5 during alcoholic fermentation has been evaluated. This gene is known to encode alcohol dehydrogenase II (ADH II). During the biological aging of sherry wines, where yeasts have to grow on ethanol owing to the absence of glucose, this isoenzyme plays a prominent role by converting the ethanol into acetaldehyde and producing NADH in the process. Overexpression of the gene ADH2 during alcoholic fermentation has no effect on the proteomic profile or the net production of some metabolites associated with glycolysis and alcoholic fermentation such as ethanol, acetaldehyde, and glycerol. However, it affects indirectly glucose and ammonium uptakes, cell growth, and intracellular redox potential, which lead to an altered metabolome. The increased contents in acetoin, acetic acid, and L-proline present in the fermentation medium under these conditions can be ascribed to detoxification by removal of excess acetaldehyde and the need to restore and maintain the intracellular redox potential balance.

  15. Overexpression of gamma-sarcoglycan induces severe muscular dystrophy. Implications for the regulation of Sarcoglycan assembly.

    PubMed

    Zhu, X; Hadhazy, M; Groh, M E; Wheeler, M T; Wollmann, R; McNally, E M

    2001-06-15

    The sarcoglycan complex is found normally at the plasma membrane of muscle. Disruption of the sarcoglycan complex, through primary gene mutations in dystrophin or sarcoglycan subunits, produces membrane instability and muscular dystrophy. Restoration of the sarcoglycan complex at the plasma membrane requires reintroduction of the mutant sarcoglycan subunit in a manner that will permit normal assembly of the entire sarcoglycan complex. To study sarcoglycan gene replacement, we introduced transgenes expressing murine gamma-sarcoglycan into muscle of normal mice. Mice expressing high levels of gamma-sarcoglycan, under the control of the muscle-specific creatine kinase promoter, developed a severe muscular dystrophy with greatly reduced muscle mass and early lethality. Marked gamma-sarcoglycan overexpression produced cytoplasmic aggregates that interfered with normal membrane targeting of gamma-sarcoglycan. Overexpression of gamma-sarcoglycan lead to the up-regulation of alpha- and beta-sarcoglycan. These data suggest that increased gamma-sarcoglycan and/or mislocalization of gamma-sarcoglycan to the cytoplasm is sufficient to induce muscle damage and provides a new model of muscular dystrophy that highlights the importance of this protein in the assembly, function, and downstream signaling of the sarcoglycan complex. Most importantly, gene dosage and promoter strength should be given serious consideration in replacement gene therapy to ensure safety in human clinical trials.

  16. Overexpression of Notch1 ectodomain in myeloid cells induces vascular malformations through a paracrine pathway.

    PubMed

    Li, Xiujie; Calvo, Ezequiel; Cool, Marc; Chrobak, Pavel; Kay, Denis G; Jolicoeur, Paul

    2007-01-01

    We previously reported that truncation of Notch1 (N1) by provirus insertion leads to overexpression of both the intracellular (N1(IC)) and the extracellular (N1(EC)) domains. We produced transgenic (Tg) mice expressing N1(EC) in T cells and in cells of the myeloid lineage under the regulation of the CD4 gene. These CD4C/N1(EC) Tg mice developed vascular disease, predominantly in the liver: superficial distorted vessels, cavernae, lower branching of parenchymal vessels, capillarized sinusoids, and aberrant smooth muscle/endothelial cell topography. The disease developed in lethally irradiated normal mice transplanted with Tg bone marrow or fetal liver cells as well as in Rag-/- Tg mice. In nude mice transplanted with fetal liver cells from (ROSA26 x CD4C/N1(EC)) F1 Tg mice, abnormal vessels were of recipient origin. Transplantation of Tg peritoneal macrophages into normal recipients also induced abnormal vessels. These Tg macrophages showed impaired functions, and their conditioned medium inhibited the proliferation of liver sinusoid endothelial cells in vitro. The Egr-1 gene and some of its targets (Jag1, FIII, FXIII-A, MCP-1, and MCP-5), previously implicated in hemangioma or vascular malformations, were overexpressed in Tg macrophages. These results show that myeloid cells can be reprogrammed by N1(EC) to induce vascular malformations through a paracrine pathway.

  17. Lead Poisoning in Schools.

    ERIC Educational Resources Information Center

    Guyaux, Susan

    1990-01-01

    Overexposure to lead can permanently impair a child's mental and physical development. This article discusses sources of lead paint, survey and testing methods, management and abatement plans, drinking water contamination, and associated federal standards. Although lead is present in soil and in art, theater, and vocational programs, no federal…

  18. Lead Poisoning in Childhood.

    ERIC Educational Resources Information Center

    Pueschel, Siegfried M., Ed.; Linakis, James G., Ed.; Anderson, Angela C., Ed.

    The magnitude of childhood lead poisoning has been inexplicably neglected by modern medicine and by legislators. However, since the 1970s, increased attention has been focused on lead poisoning, and advances have been made in several areas, including understanding of the neurodevelopmental and behavioral ramifications of lead poisoning, and…

  19. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Drummond, A. H., Jr.

    1981-01-01

    Early symptoms of lead poisoning in children are often overlooked. Lead poisoning has its greatest effects on the brain and nervous system. The obvious long-term solution to the lead poisoning problem is removal of harmful forms of the metal from the environment. (JN)

  20. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Boeckx, Roger L.

    1986-01-01

    Urban children are exposed to lead through the air they breathe, the water they drink, and the food and nonfood substances they ingest. The history, diagnosis, and treatment of lead poisoning in these children are discussed. Includes information on the toxicology of lead and the various risk classes. (JN)

  1. Lead poisoning: An overview

    NASA Technical Reports Server (NTRS)

    Gendel, Neil

    1993-01-01

    A problem that should be of great concern to all of us is the lead poisoning of children. First, I would like to present a short overview concerning the reasons everyone should care about lead poisoning, then discuss the history of lead poisoning, what is happening today across the country, and the future.

  2. Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse

    PubMed Central

    Coelho, Paula A.; Bury, Leah; Shahbazi, Marta N.; Liakath-Ali, Kifayathullah; Tate, Peri H.; Wormald, Sam; Hindley, Christopher J.; Huch, Meritxell; Archer, Joy; Skarnes, William C.; Zernicka-Goetz, Magdalena; Glover, David M.

    2015-01-01

    To address the long-known relationship between supernumerary centrosomes and cancer, we have generated a transgenic mouse that permits inducible expression of the master regulator of centriole duplication, Polo-like-kinase-4 (Plk4). Over-expression of Plk4 from this transgene advances the onset of tumour formation that occurs in the absence of the tumour suppressor p53. Plk4 over-expression also leads to hyperproliferation of cells in the pancreas and skin that is enhanced in a p53 null background. Pancreatic islets become enlarged following Plk4 over-expression as a result of equal expansion of α- and β-cells, which exhibit centrosome amplification. Mice overexpressing Plk4 develop grey hair due to a loss of differentiated melanocytes and bald patches of skin associated with a thickening of the epidermis. This reflects an increase in proliferating cells expressing keratin 5 in the basal epidermal layer and the expansion of these cells into suprabasal layers. Such cells also express keratin 6, a marker for hyperplasia. This is paralleled by a decreased expression of later differentiation markers, involucrin, filaggrin and loricrin. Proliferating cells showed an increase in centrosome number and a loss of primary cilia, events that were mirrored in primary cultures of keratinocytes established from these animals. We discuss how repeated duplication of centrioles appears to prevent the formation of basal bodies leading to loss of primary cilia, disruption of signalling and thereby aberrant differentiation of cells within the epidermis. The absence of p53 permits cells with increased centrosomes to continue dividing, thus setting up a neoplastic state of error prone mitoses, a prerequisite for cancer development. PMID:26701933

  3. Overexpression of esterase D in kidney from trisomy 13 fetuses.

    PubMed Central

    Loughna, S; Bennett, P; Gau, G; Nicolaides, K; Blunt, S; Moore, G

    1993-01-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. Images Figure 1 Figure 2 Figure 3 PMID:8213811

  4. Overexpression of ankyrin1 promotes pancreatic cancer cell growth

    PubMed Central

    Omura, Noriyuki; Mizuma, Masamichi; MacGregor, Anne; Hong, Seung-Mo; Ayars, Michael; Almario, Jose Alejandro; Borges, Michael; Kanda, Mitsuro; Li, Ang; Vincent, Audrey; Maitra, Anirban; Goggins, Michael

    2016-01-01

    The methylation status of a promoter influences gene expression and aberrant methylation during tumor development has important functional consequences for pancreatic and other cancers. Using methylated CpG island amplification and promoter microarrays, we identified ANK1 as hypomethylated in pancreatic cancers. Expression analysis determined ANK1 as commonly overexpressed in pancreatic cancers relative to normal pancreas. ANK1 was co-expressed with miR-486 in pancreatic cancer cells. Stable knockdown of ANK1 in the pancreatic cancer cell line AsPC1 led to changes in cell morphology, and decreases in colony formation. Stable knockdown of ANK1 also marked reduced the growth of tumors in athymic nude mice. Among patients undergoing pancreaticoduodenectomy, those with pancreatic cancers expressing ANK1 had a poorer prognosis than those without ANK1 expression. These findings indicate a role for ANK1 overexpression in mediating pancreatic cancer tumorigenicity. PMID:27144336

  5. Enhanced learning after genetic overexpression of a brain growth protein.

    PubMed

    Routtenberg, A; Cantallops, I; Zaffuto, S; Serrano, P; Namgung, U

    2000-06-20

    Ramón y Cajal proposed 100 years ago that memory formation requires the growth of nerve cell processes. One-half century later, Hebb suggested that growth of presynaptic axons and postsynaptic dendrites consequent to coactivity in these synaptic elements was essential for such information storage. In the past 25 years, candidate growth genes have been implicated in learning processes, but it has not been demonstrated that they in fact enhance them. Here, we show that genetic overexpression of the growth-associated protein GAP-43, the axonal protein kinase C substrate, dramatically enhanced learning and long-term potentiation in transgenic mice. If the overexpressed GAP-43 was mutated by a Ser --> Ala substitution to preclude its phosphorylation by protein kinase C, then no learning enhancement was found. These findings provide evidence that a growth-related gene regulates learning and memory and suggest an unheralded target, the GAP-43 phosphorylation site, for enhancing cognitive ability.

  6. The Angiogenic Secretome in VEGF overexpressing Breast Cancer Xenografts

    PubMed Central

    Dore-Savard, Louis; Lee, Esak; Kakkad, Samata; Popel, Aleksander S.; Bhujwalla, Zaver M.

    2016-01-01

    The plasticity of cancer cells and the fluidity of the tumor microenvironment continue to present major challenges in the comprehensive understanding of cancer that is essential to design effective treatments. The tumor interstitial fluid (TIF) encompasses the secretome and holds the key to several of the phenotypic characteristics of cancer. Difficulties in sampling this fluid have resulted in limited characterization of its components. Here we have sampled TIF from triple negative and estrogen receptor (ER)-positive human breast tumor xenografts with or without VEGF overexpression. Angiogenesis-related factors were characterized in the TIF and plasma, to understand the relationship between the TIF and plasma secretomes. Clear differences were observed between the TIF and plasma angiogenic secretomes in triple negative MDA-MB-231 breast cancer xenografts compared to ER-positive MCF-7 xenografts with or without VEGF overexpression that provide new insights into TIF components and the role of VEGF in modifying the angiogenic secretome. PMID:27995973

  7. Lead in the environment

    USGS Publications Warehouse

    Pattee, O.H.; Pain, D.J.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John=

    2003-01-01

    Anthropogenic uses of lead have probably altered its availability and environmental distribution more than any other toxic element. Consequently, lead concentrations in many living organisms may be approaching thresholds of toxicity for the adverse effects of lead. Such thresholds are difficult to define, as they vary with the chemical and physical form of lead, exposure regime, other elements present and also vary both within and between species. The technological capability to accurately quantify low lead concentrations has increased over the last decade, and physiological and behavioral effects have been measured in wildlife with tissue lead concentrations below those previously considered safe for humans.s.236 Consequently. lead criteria for the protection of wildlife and human health are frequently under review, and 'thresholds' of lead toxicity are being reconsidered. Proposed lead criteria for the protection of natural resources have been reviewed by Eisler. Uptake of lead by plants is limited by its generally low availability in soils and sediments, and toxicity may be limited by storage mechanisms and its apparently limited translocation within most plants. Lead does not generally accumulate within the foliar parts of plants, which limits its transfer to higher trophic levels. Although lead may concentrate in plant and animal tissues, no evidence of biomagnification exists. Acid deposition onto surface waters and soils with low buffering capacity may influence the availability of lead for uptake by plants and animals, and this may merit investigation at susceptible sites. The biological significance of chronic low-level lead exposure to wildlife is sometimes difficult to quantify. Animals living in urban environments or near point sources of lead emission are inevitably subject to greater exposure to lead and enhanced risk of lead poisoning. Increasingly strict controls on lead emissions in many countries have reduced exposure to lead from some sources

  8. Overexpression of follistatin in trout stimulates increased muscling.

    PubMed

    Medeiros, Erika F; Phelps, Michael P; Fuentes, Fernando D; Bradley, Terence M

    2009-07-01

    Deletion or inhibition of myostatin in mammals has been demonstrated to markedly increase muscle mass by hyperplasia, hypertrophy, or a combination of both. Despite a remarkably high degree of conservation with the mammalian protein, the function of myostatin remains unknown in fish, many species of which continue muscle growth throughout the lifecycle by hyperplasia. Transgenic rainbow trout (Oncorhynchus mykiss) overexpressing follistatin, one of the more efficacious antagonists of myostatin, were produced to investigate the effect of this protein on muscle development and growth. P(1) transgenics overexpressing follistatin in muscle tissue exhibited increased epaxial and hypaxial muscling similar to that observed in double-muscled cattle and myostatin null mice. The hypaxial muscling generated a phenotype reminiscent of well-developed rectus abdominus and intercostal muscles in humans and was dubbed "six pack." Body conformation of the transgenic animals was markedly altered, as measured by condition factor, and total muscle surface area increased. The increased muscling was due almost exclusively to hyperplasia as evidenced by a higher number of fibers per unit area and increases in the percentage of smaller fibers and the number of total fibers. In several individuals, asymmetrical muscling was observed, but no changes in mobility or behavior of follistatin fish were observed. The findings indicate that overexpression of follistatin in trout, a species with indeterminate growth rate, enhances muscle growth. It remains to be determined whether the double muscling in trout is due to inhibition of myostatin, other growth factors, or both.

  9. Overexpression of Lamin B Receptor Results in Impaired Skin Differentiation.

    PubMed

    Sola Carvajal, Agustín; McKenna, Tomás; Wallén Arzt, Emelie; Eriksson, Maria

    2015-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental progeroid disorder commonly caused by a point mutation in the LMNA gene that results in the increased activation of an intra-exonic splice site and the production of a truncated lamin A protein, named progerin. In our previous work, induced murine epidermal expression of this specific HGPS LMNA mutation showed impaired keratinocyte differentiation and upregulated lamin B receptor (LBR) expression in suprabasal keratinocytes. Here, we have developed a novel transgenic animal model with induced overexpression of LBR in the interfollicular epidermis. LBR overexpression resulted in epidermal hypoplasia, along with the downregulation and mislocalization of keratin 10, suggesting impaired keratinocyte differentiation. Increased LBR expression in basal and suprabasal cells did not coincide with increased proliferation. Similar to our previous report of HGPS mice, analyses of γH2AX, a marker of DNA double-strand breaks, revealed an increased number of keratinocytes with multiple foci in LBR-overexpressing mice compared with wild-type mice. In addition, suprabasal LBR-positive cells showed densely condensed and peripherally localized chromatin. Our results show a moderate skin differentiation phenotype, which indicates that upregulation of LBR is not the sole contributor to the HGPS phenotype.

  10. Overexpression of Lamin B Receptor Results in Impaired Skin Differentiation

    PubMed Central

    Sola Carvajal, Agustín; McKenna, Tomás; Wallén Arzt, Emelie; Eriksson, Maria

    2015-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental progeroid disorder commonly caused by a point mutation in the LMNA gene that results in the increased activation of an intra-exonic splice site and the production of a truncated lamin A protein, named progerin. In our previous work, induced murine epidermal expression of this specific HGPS LMNA mutation showed impaired keratinocyte differentiation and upregulated lamin B receptor (LBR) expression in suprabasal keratinocytes. Here, we have developed a novel transgenic animal model with induced overexpression of LBR in the interfollicular epidermis. LBR overexpression resulted in epidermal hypoplasia, along with the downregulation and mislocalization of keratin 10, suggesting impaired keratinocyte differentiation. Increased LBR expression in basal and suprabasal cells did not coincide with increased proliferation. Similar to our previous report of HGPS mice, analyses of γH2AX, a marker of DNA double-strand breaks, revealed an increased number of keratinocytes with multiple foci in LBR-overexpressing mice compared with wild-type mice. In addition, suprabasal LBR-positive cells showed densely condensed and peripherally localized chromatin. Our results show a moderate skin differentiation phenotype, which indicates that upregulation of LBR is not the sole contributor to the HGPS phenotype. PMID:26053873

  11. Role of overexpressed CFA/I fimbriae in bacterial swimming

    NASA Astrophysics Data System (ADS)

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, SangMu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.

  12. Overexpression of Nrdp1/FLRF sensitizes cells to oxidative stress.

    PubMed

    Zhou, An; Pan, Danmin; Yang, Xiaoming; Zhou, Jianhua

    2011-07-15

    Nrdp1 is a RING finger containing ubiquitin E3 ligase that interacts with and modulates activity of multiple proteins, including ErbB3 and Parkin, a causative protein for early onset recessive juvenile parkinsonism (AR-JP). To investigate the functions of Nrdp1, we have generated stable Tet-On inducible HEK293 cells that overexpress Flag-tagged full length Nrdp1, N-terminal Nrdp1 and C-terminal Nrdp1. We demonstrate that overexpression of full-length Nrdp1, not Nrdp1 N-terminus or Nrdp1 C-terminus in cultured HEK293 cells, inhibits cell growth. In addition, we have treated cells with hydroxynonenal (HNE), 6-hydroxydopamine (6-OHDA), and hydrogen peroxide (H(2)O(2)) at different concentrations. We have found that Nrdp1 overexpression sensitizes HEK293 cells to oxidative stressors in a dosage-dependent manner. Our data provide insights into understanding the potential role of Nrdp1 in cell growth, apoptosis and oxidative stress, and in the pathogenesis of Parkinson's disease.

  13. Neuroligin-1 Overexpression in Newborn Granule Cells In Vivo

    PubMed Central

    Schnell, Eric; Bensen, AeSoon L.; Washburn, Eric K.; Westbrook, Gary L.

    2012-01-01

    Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons. PMID:23110172

  14. Conditional overexpression of transgenes in megakaryocytes and platelets in vivo

    PubMed Central

    Nguyen, Hao G.; Yu, Guangyao; Makitalo, Maria; Yang, Dan; Xie, Hou-Xiang; Jones, Matthew R.; Ravid, Katya

    2005-01-01

    Megakaryocyte (MK)–specific transgene expression has proved valuable in studying thrombotic and hemostatic processes. Constitutive expression of genes, however, could result in altered phenotypes due to compensatory mechanisms or lethality. To circumvent these limitations, we used the tetracycline/doxycycline (Tet)–off system to conditionally over-express genes in megakaryocytes and platelets in vivo. We generated 3 transactivator transgenic lines expressing the Tet transactivator element (tTA), under the control of the MK-specific platelet factor 4 promoter (PF4-tTA-VP16). Responder lines were simultaneously generated, each with a bidirectional minimal cytomegalovirus (CMV)–tTA responsive promoter driving prokaryotic β-galactosidase gene, as a cellular reporter, and a gene of interest (in this case, the mitotic regulator Aurora-B). A transactivator founder line that strongly expressed PF4-driven tTA–viral protein 16 (VP16) was crossbred to a responder line. The homozygous double-transgenic mouse line exhibited doxycycline-dependent transgene overexpression in MKs and platelets. Using this line, platelets were conveniently indicated at sites of induced stress by β-galactosidase staining. In addition, we confirmed our earlier report on effects of constitutive expression of Aurora-B, indicating a tight regulation at protein level and a modest effect on MK ploidy. Hence, we generated a new line, PF4-tTA-VP16, that is available for conditionally overexpressing genes of interest in the MK/platelet lineage in vivo. PMID:15890684

  15. Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.

    PubMed

    Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito

    2005-04-22

    Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease.

  16. Overexpression and mutation as a genetic mechanism of fluconazole resistance in Candida albicans isolated from human immunodeficiency virus patients in Indonesia.

    PubMed

    Rosana, Yeva; Yasmon, Andi; Lestari, Delly Chipta

    2015-09-01

    Fluconazole is the standard treatment for oropharyngeal candidiasis, which is the third most common opportunistic infection in human immunodeficiency virus (HIV)/AIDS patients in Indonesia. Overuse of this drug could lead to the emergence of resistance. The objective of this study was to analyse the role of ERG11, CDR1, CDR2 and MDR1 gene overexpression and mutations in the ERG11 gene as a genetic mechanism of fluconazole resistance in Candida albicans isolated from HIV patients in Indonesia. Overexpression of ERG11, CDR1, CDR2 and MDR1 was analysed by real-time reverse transcription PCR, while ERG11 gene mutation analysis was performed using sequencing methods. Seventeen isolates out of 92 strains of C. albicans isolated from 108 HIV patients were found to be resistant to azole antifungals. The highest gene overexpression of ERG11 was found in C. albicans resistant to single fluconazole, while the highest gene overexpression of CDR2 was detected in all isolates of C. albicans resistant to multiple azoles. Amino acid substitutions were observed at six positions, i.e. D116E, D153E, I261V, E266D, V437I and V488I. The amino acid substitution I261V was identified in this study and was probably associated with fluconazole resistance. The combination of overexpression of CDR2 and ERG11 and mutation in the ERG11 gene was found to be a genetic mechanism of fluconazole resistance in C. albicans isolated from HIV patients in Indonesia.

  17. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model

    PubMed Central

    Deveza, Lorenzo; Choi, Jeffrey; Lee, Jerry; Huang, Ngan; Cooke, John; Yang, Fan

    2016-01-01

    Peripheral arterial disease affects nearly 202 million individuals worldwide, sometimes leading to non-healing ulcers or limb amputations in severe cases. Genetically modified stem cells offer potential advantages for therapeutically inducing angiogenesis via augmented paracrine release mechanisms and tuned dynamic responses to environmental stimuli at disease sites. Here, we report the application of nanoparticle-induced CXCR4-overexpressing stem cells in a mouse hindlimb ischemia model. We found that CXCR4 overexpression improved stem cell survival, modulated inflammation in situ, and accelerated blood reperfusion. These effects, unexpectedly, led to complete limb salvage and skeletal muscle repair, markedly outperforming the efficacy of the conventional angiogenic factor control, VEGF. Importantly, assessment of CXCR4-overexpressing stem cells in vitro revealed that CXCR4 overexpression induced changes in paracrine signaling of stem cells, promoting a therapeutically desirable pro-angiogenic and anti-inflammatory phenotype. These results suggest that nanoparticle-induced CXCR4 overexpression may promote favorable phenotypic changes and therapeutic efficacy of stem cells in response to the ischemic environment. PMID:27279910

  18. Alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 can support immune responses toward tumors overexpressing ganglioside D3 in mice.

    PubMed

    Eby, Jonathan M; Barse, Levi; Henning, Steven W; Rabelink, Martijn J W E; Klarquist, Jared; Gilbert, Emily R; Hammer, Adam M; Fernandez, Manuel F; Yung, Nathan; Khan, Safia; Miller, Hannah G; Kessler, Edward R; Garrett-Mayer, Elizabeth; Dilling, Daniel F; Hoeben, Rob C; Le Poole, I Caroline

    2017-01-01

    An immunotherapeutic strategy is discussed supporting anti-tumor activity toward malignancies overexpressing ganglioside D3. GD3 can be targeted by NKT cells when derived moieties are presented in the context of CD1d. NKT cells can support anti-tumor responses by secreting inflammatory cytokines and through cytotoxicity toward CD1d(+)GD3(+) tumors. To overexpress GD3, we generated expression vector DNA and an adenoviral vector encoding the enzyme responsible for generating GD3 from its ubiquitous precursor GM3. We show that DNA encoding α-N-acetyl-neuraminide α-2,8-sialyltransferase 1 (SIAT8) introduced by gene gun vaccination in vivo leads to overexpression of GD3 and delays tumor growth. Delayed tumor growth is dependent on CD1d expression by host immune cells, as shown in experiments engaging CD1d knockout mice. A trend toward greater NKT cell populations among tumor-infiltrating lymphocytes is associated with SIAT8 vaccination. A single adenoviral vaccination introduces anti-tumor activity similarly to repeated vaccination with naked DNA. Here, greater NKT tumor infiltrates were accompanied by marked overexpression of IL-17 in the tumor, later switching to IL-4. Our results suggest that a single intramuscular adenoviral vaccination introduces overexpression of GD3 by antigen-presenting cells at the injection site, recruiting NKT cells that provide an inflammatory anti-tumor environment. We propose adenoviral SIAT8 (AdV-SIAT8) can slow the growth of GD3 expressing tumors in patients.

  19. Neuroprotective potential of pleiotrophin overexpression in the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal pathways.

    PubMed

    Gombash, S E; Manfredsson, F P; Mandel, R J; Collier, T J; Fischer, D L; Kemp, C J; Kuhn, N M; Wohlgenant, S L; Fleming, S M; Sortwell, C E

    2014-07-01

    Intrastriatal injection of recombinant adeno-associated viral vector serotype 2/1 (rAAV2/1) to overexpress the neurotrophic factor pleiotrophin (PTN) provides neuroprotection for tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc), increases THir neurite density in the striatum (ST) and reverses functional deficits in forepaw use following 6-hydroxydopamine (6-OHDA) toxic insult. Glial cell line-derived neurotrophic factor (GDNF) gene transfer studies suggest that optimal neuroprotection is dependent on the site of nigrostriatal overexpression. The present study was conducted to determine whether enhanced neuroprotection could be accomplished via simultaneous rAAV2/1 PTN injections into the ST and SN compared with ST injections alone. Rats were unilaterally injected in the ST alone or injected in both the ST and SN with rAAV2/1 expressing either PTN or control vector. Four weeks later, all rats received intrastriatal injections of 6-OHDA. Rats were euthanized 6 or 16 weeks relative to 6-OHDA injection. A novel selective total enumeration method to estimate nigral THir neuron survival was validated to maintain the accuracy of stereological assessment. Long-term nigrostriatal neuroprotection and functional benefits were only observed in rats in which rAAV2/1 PTN was injected into the ST alone. Results suggest that superior preservation of the nigrostriatal system is provided by PTN overexpression delivered to the ST and restricted to the ST and SN pars reticulata and is not improved with overexpression of PTN within SNpc neurons.

  20. Lead Poison Detection

    NASA Technical Reports Server (NTRS)

    1976-01-01

    With NASA contracts, Whittaker Corporations Space Science division has developed an electro-optical instrument to mass screen for lead poisoning. Device is portable and detects protoporphyrin in whole blood. Free corpuscular porphyrins occur as an early effect of lead ingestion. Also detects lead in urine used to confirm blood tests. Test is inexpensive and can be applied by relatively unskilled personnel. Similar Whittaker fluorometry device called "drug screen" can measure morphine and quinine in urine much faster and cheaper than other methods.

  1. Lead poisoning: case studies.

    PubMed

    Gordon, J N; Taylor, A; Bennett, P N

    2002-05-01

    Early clinical features of lead toxicity are non-specific and an occupational history is particularly valuable. Lead in the body comprises 2% in the blood (t1/2 35 days) and 95% in bone and dentine (t1/2 20-30 years). Blood lead may remain elevated for years after cessation from long exposure, due to redistribution from bone. Blood lead concentration is the most widely used marker for inorganic lead exposure. Zinc protoporphyrin (ZPP) concentration in blood usefully reflects lead exposure over the prior 3 months. Symptomatic patients with blood lead concentration >2.4 micromol l-1 (50 microg dl-1) or in any event >3.8 micromol l-1 (80 microg dl-1) should receive sodium calciumedetate i.v., followed by succimer by mouth for 19 days. Asymptomatic patients with blood lead concentration >2.4 micromol l-1 (50 microg dl-1) may be treated with succimer alone. Sodium calciumedetate should be given with dimercaprol to treat lead encephalopathy.

  2. Immunosuppressive effects of lead

    USGS Publications Warehouse

    Franson, J. Christian; Feierabend, J.Scott; Russell, A.Brooke

    1986-01-01

    Immunosuppressive effects of lead were reported as early as 1966, when it was noted that lead increased the sensitivity of rats to bacterial endotoxins (Selye et al. 1966). Since then a substantial body of literature has demonstrated adverse effects of lead on the immune system in a variety of laboratory animals, but very little has been done in this area with avian species. Such immunosuppressive effects could be of significance to waterfowl populations, considering the potential for lead ingestion by waterfowl and subsequent exposure of these birds to disease agents.

  3. Childhood lead poisoning.

    PubMed

    Linakis, J G

    1995-01-01

    Lead poisoning has been referred to as the most important environmental health hazard for children in New England. Medical professionals are in a unique position to perform a number of interventions that could make a lasting impact. First, physicians and nurses, particularly in the areas of pediatrics and family medicine, can provide anticipatory guidance to all families with young children. Lead poisoning, in contrast to long held beliefs, is an affliction that affects all socioeconomic groups. Parents should thus be informed regarding sources of lead, including occupational and hobby sources, and basic nutritional and abatement information should be provided. Second, health care workers should encourage lead screening in appropriately aged children at recommended intervals based on known risk factors. Once a blood lead concentration greater than 20[symbol: see text]g/dl has been obtained in a child, treatment or referral to an established lead clinic should be undertaken in a timely fashion. For children with low or moderate lead levels, many pediatricians or family physicians prefer to supervise their patients' treatment, including chelation therapy. For children with higher levels or in instances when the health care professional elects to refer, there are several lead clinics throughout New England whose clinicians are experienced in the treatment of childhood lead poisoning. Finally the medical profession needs to publicly recognize, as child advocates, that lead poisoning is one of the most common pediatric health problems in the United States and that it is entirely preventable. Fortunately, after many years and much hard work, Rhode Island finally has laws that start to deal with the lead problem in an appropriately aggressive fashion.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Lead toxicity: a review.

    PubMed

    Wani, Ab Latif; Ara, Anjum; Usmani, Jawed Ahmad

    2015-06-01

    Lead toxicity is an important environmental disease and its effects on the human body are devastating. There is almost no function in the human body which is not affected by lead toxicity. Though in countries like US and Canada the use of lead has been controlled up to a certain extent, it is still used vehemently in the developing countries. This is primarily because lead bears unique physical and chemical properties that make it suitable for a large number of applications for which humans have exploited its benefits from historical times and thus it has become a common environmental pollutant. Lead is highly persistent in the environment and because of its continuous use its levels rise in almost every country, posing serious threats. This article reviews the works listed in the literature with recent updates regarding the toxicity of lead. Focus is also on toxic effects of lead on the renal, reproductive and nervous system. Finally the techniques available for treating lead toxicity are presented with some recent updates.

  5. Lead toxicity: a review

    PubMed Central

    Ara, Anjum; Usmani, Jawed Ahmad

    2015-01-01

    Lead toxicity is an important environmental disease and its effects on the human body are devastating. There is almost no function in the human body which is not affected by lead toxicity. Though in countries like US and Canada the use of lead has been controlled up to a certain extent, it is still used vehemently in the developing countries. This is primarily because lead bears unique physical and chemical properties that make it suitable for a large number of applications for which humans have exploited its benefits from historical times and thus it has become a common environmental pollutant. Lead is highly persistent in the environment and because of its continuous use its levels rise in almost every country, posing serious threats. This article reviews the works listed in the literature with recent updates regarding the toxicity of lead. Focus is also on toxic effects of lead on the renal, reproductive and nervous system. Finally the techniques available for treating lead toxicity are presented with some recent updates. PMID:27486361

  6. Rapid Lead Screening Test

    MedlinePlus

    ... and treated earlier before the damaging effects of lead poisoning occur. U.S. Department of Health and Human Services ... exceed 10μg/dL, the threshold used to indicate lead poisoning. The American Academy of Pediatrics (AAP) estimates one ...

  7. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Lin-Fu, Jane S.

    This publication is a guide to help social and health workers plan a preventive campaign against lead poisoning, a cause of mental retardation other neurological handicaps, and death among children. The main victims are 1- to 6-year-olds living in areas where deteriorating housing prevails. Among the causes of lead poisoning are: ingestion of…

  8. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  9. Bonding aluminum beam leads

    NASA Technical Reports Server (NTRS)

    Burkett, F. S.

    1978-01-01

    Report makes it relatively easy for hybrid-circuit manufacturers to convert integrated circuit chips with aluminum bead leads. Report covers: techniques for handling tiny chips; proper geometries for ultrasonic bonding tips; best combinations of pressure, pulse time, and ultrasonic energy for bonding; and best thickness for metal films to which beam leads are bonded.

  10. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  11. LEAD IN CANDLE EMISSIONS

    EPA Science Inventory

    The candle-using public should be made aware that the core of candle wicks may contain lead. Used as a stiffening agent to keep the wick out of the molten wax, lead can be emitted as particulate to the air and then deposited on indoor surfaces. To define the problem, 100 sets of ...

  12. FGFR2 is overexpressed in myxoid liposarcoma and inhibition of FGFR signaling impairs tumor growth in vitro

    PubMed Central

    Künstlinger, Helen; Fassunke, Jana; Schildhaus, Hans-Ulrich; Brors, Benedikt; Heydt, Carina; Ihle, Michaela Angelika; Mechtersheimer, Gunhild; Wardelmann, Eva; Büttner, Reinhard; Merkelbach-Bruse, Sabine

    2015-01-01

    Myxoid liposarcomas account for more than one third of liposarcomas and about 10% of all adult soft tissue sarcomas. The tumors are characterized by specific chromosomal translocations leading to the chimeric oncogenes FUS-DDIT3 or EWS1R-DDIT3. The encoded fusion proteins act as aberrant transcription factors. Therefore, we implemented comparative expression analyses using whole-genome microarrays in tumor and fat tissue samples. We aimed at identifying differentially expressed genes which may serve as diagnostic or prognostic biomarkers or as therapeutic targets. Microarray analyses revealed overexpression of FGFR2 and other members of the FGF/FGFR family. Overexpression of FGFR2 was validated by qPCR, immunohistochemistry and western blot analysis in primary tumor samples. Treatment of the myxoid liposarcoma cell lines MLS 402 and MLS 1765 with the FGFR inhibitors PD173074, TKI258 (dovitinib) and BGJ398 as well as specific siRNAs reduced cell proliferation, induced apoptosis and delayed cell migration. Combination of FGFR inhibitors with trabectedin further increased the effect. Our study demonstrates overexpression of FGFR2 and a functional role of FGFR signaling in myxoid liposarcoma. As FGFR inhibition showed effects on proliferation and cell migration and induced apoptosis in vitro, our data indicate the potential use of FGFR inhibitors as a targeted therapy for these tumors. PMID:26036639

  13. Overexpression of circadian clock protein cryptochrome (CRY) 1 alleviates sleep deprivation-induced vascular inflammation in a mouse model.

    PubMed

    Qin, Bing; Deng, Yunlong

    2015-01-01

    Disturbance of the circadian clock by sleep deprivation has been proposed to be involved in the regulation of inflammation. However, the underlying mechanism of circadian oscillator components in regulating the pro-inflammatory process during sleep deprivation remains poorly understood. Using a sleep deprivation mouse model, we showed here that sleep deprivation increased the expression of pro-inflammatory cytokines expression and decreased the expression of cryptochrome 1 (CRY1) in vascular endothelial cells. Furthermore, the adhesion molecules including intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin were elevated in vascular endothelial cells and the monocytes binding to vascular endothelial cells were also increased by sleep deprivation. Interestingly, overexpression of CRY1 in a mouse model by adenovirus vector significantly inhibited the expression of inflammatory cytokines and adhesion molecules, and NF-κB signal pathway activation, as well as the binding of monocytes to vascular endothelial cells. Using a luciferase reporter assay, we found that CRY1 could repress the transcriptional activity of nuclear factor (NF)-κB in vitro. Subsequently, we demonstrated that overexpression of CRY1 inhibited the basal concentration of cyclic adenosine monophosphate (cAMP), leading to decreased protein kinase A activity, which resulted in decreased phosphorylation of p65. Taken together, these results suggested that the overexpression of CRY1 inhibited sleep deprivation-induced vascular inflammation that might be associated with NF-κB and cAMP/PKA pathways.

  14. FGFR2 is overexpressed in myxoid liposarcoma and inhibition of FGFR signaling impairs tumor growth in vitro.

    PubMed

    Künstlinger, Helen; Fassunke, Jana; Schildhaus, Hans-Ulrich; Brors, Benedikt; Heydt, Carina; Ihle, Michaela Angelika; Mechtersheimer, Gunhild; Wardelmann, Eva; Büttner, Reinhard; Merkelbach-Bruse, Sabine

    2015-08-21

    Myxoid liposarcomas account for more than one third of liposarcomas and about 10% of all adult soft tissue sarcomas. The tumors are characterized by specific chromosomal translocations leading to the chimeric oncogenes FUS-DDIT3 or EWS1R-DDIT3. The encoded fusion proteins act as aberrant transcription factors. Therefore, we implemented comparative expression analyses using whole-genome microarrays in tumor and fat tissue samples. We aimed at identifying differentially expressed genes which may serve as diagnostic or prognostic biomarkers or as therapeutic targets. Microarray analyses revealed overexpression of FGFR2 and other members of the FGF/FGFR family. Overexpression of FGFR2 was validated by qPCR, immunohistochemistry and western blot analysis in primary tumor samples. Treatment of the myxoid liposarcoma cell lines MLS 402 and MLS 1765 with the FGFR inhibitors PD173074, TKI258 (dovitinib) and BGJ398 as well as specific siRNAs reduced cell proliferation, induced apoptosis and delayed cell migration. Combination of FGFR inhibitors with trabectedin further increased the effect. Our study demonstrates overexpression of FGFR2 and a functional role of FGFR signaling in myxoid liposarcoma. As FGFR inhibition showed effects on proliferation and cell migration and induced apoptosis in vitro, our data indicate the potential use of FGFR inhibitors as a targeted therapy for these tumors.

  15. Amphiregulin impairs apoptosis-stimulating protein 2 of p53 overexpression-induced apoptosis in hepatoma cells.

    PubMed

    Liu, Kai; Lin, Dongdong; Ouyang, Yabo; Pang, Lijun; Guo, Xianghua; Wang, Shanshan; Zang, Yunjin; Chen, Dexi

    2017-03-01

    Overexpression of apoptosis-stimulating protein 2 of p53 (ASPP2) induces apoptotic cell death in hepatoma cells (e.g. HepG2 cells) by enhancing the transactivation activity of p53, but long-term ASPP2 overexpression fails to induce more apoptosis since activation of the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway impairs the pro-apoptotic role of ASPP2. In this study, in recombinant adenovirus-ASPP2-infected HepG2 cells, ASPP2 overexpression induces amphiregulin expression in a p53-dependent manner. Although amphiregulin initially contributes to ASPP2-induced apoptosis, it eventually impairs the pro-apoptotic function of ASPP2 by activating the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway, leading to apoptosis resistance. Moreover, blocking soluble amphiregulin with a neutralizing antibody also significantly increased apoptotic cell death of HepG2 cells due to treatment with methyl methanesulfonate, cisplatin, or a recombinant p53 adenovirus, suggesting that the function of amphiregulin involved in inhibiting apoptosis may be a common mechanism by which hepatoma cells escape from stimulus-induced apoptosis. Thus, our data elucidate an apoptosis-evasion mechanism in hepatocellular carcinoma and have potential implications for hepatocellular carcinoma therapy.

  16. Overexpression of serum response factor in astrocytes improves neuronal plasticity in a model of early alcohol exposure.

    PubMed

    Paul, A P; Medina, A E

    2012-09-27

    Neuronal plasticity deficits underlie many of the cognitive problems seen in fetal alcohol spectrum disorders (FASD). We have developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. Recently, we showed that this deficit could be reversed by overexpression of serum response factor (SRF) in the primary visual cortex during the period of monocular deprivation (MD). Surprisingly, this restoration was observed throughout the extent of visual cortex and most of the cells transfected by the virus were positive for the astrocytic marker GFAP rather than the neuronal marker NeuN. Here we test whether overexpression of SRF exclusively in astrocytes is sufficient to restore OD plasticity in alcohol-exposed ferrets. To accomplish that, first we exposed cultured astrocytes to Sindbis viruses carrying either a constitutively active form of SRF (SRF+), a dominant negative (SRF-) or control Green Fluorescent Protein (GFP). After 24h, these astrocytes were implanted in the visual cortex of alcohol-exposed animals or saline controls one day before MD. Optical imaging of intrinsic signals showed that alcohol-exposed animals that were implanted with astrocytes expressing SRF, but not SRF- or GFP, showed robust restoration of OD plasticity in all visual cortex. These findings suggest that overexpression of SRF exclusively in astrocytes can improve neuronal plasticity in FASD.

  17. NDRG2 overexpression suppresses hepatoma cells survival during metabolic stress through disturbing the activation of fatty acid oxidation.

    PubMed

    Pan, Tao; Zhang, Mei; Zhang, Fang; Yan, Guang; Ru, Yi; Wang, Qinhao; Zhang, Yao; Wei, Xuehui; Xu, Xinyuan; Shen, Lan; Zhang, Jian; Wu, Kaichun; Yao, Libo; Li, Xia

    2017-02-05

    Because of the high nutrient consumption and inadequate vascularization, solid tumor constantly undergoes metabolic stress during tumor development. Oncogenes and tumor suppressor genes participated in cancer cells' metabolic reprogramming. N-Myc downstream regulated gene 2 (NDRG2) is a recently identified tumor suppressor gene, but its function in cancer metabolism, particularly during metabolic stress, remains unclear. In this study, we found that NDRG2 overexpression significantly reduced hepatoma cell proliferation and enhanced cell apoptosis under glucose limitation. Moreover, NDRG2 overexpression aggravated energy imbalance and oxidative stress by decreasing the intracellular ATP and NADPH generation and increasing ROS levels. Strikingly, NDRG2 inhibited the activation of fatty acid oxidation (FAO), which preserves ATP and NADPH purveyance in the absence of glucose. Finally, mechanistic investigation showed that NDRG2 overexpression suppressed the glucose-deprivation induced AMPK/ACC pathway activation in hepatoma cells, whereas the expression of a constitutively active form of AMPK abrogated glucose-deprivation induced AMPK activation and cell apoptosis. Thus, as a negative regulator of AMPK, NDRG2 disturbs the induction of FAO genes by glucose limitation, leading to dysregulation of ATP and NADPH, and thus reduces the tolerance of hepatoma cells to glucose limitation.

  18. Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus.

    PubMed

    Moyano, Elisabet; Jouhikainen, Katja; Tammela, Päivi; Palazón, Javier; Cusidó, Rosa M; Piñol, M Teresa; Teeri, Teemu H; Oksman-Caldentey, Kirsi-Marja

    2003-01-01

    In order to increase the production of the pharmaceuticals hyoscyamine and scopolamine in hairy root cultures, a binary vector system was developed to introduce the T-DNA of the Ri plasmid together with the tobacco pmt gene under the control of CaMV 35S promoter, into the genome of Datura metel and Hyoscyamus muticus. This gene codes for putrescine:SAM N-methyltransferase (PMT; EC. 2.1.1.53), which catalyses the first committed step in the tropane alkaloid pathway. Hairy root cultures overexpressing the pmt gene aged faster and accumulated higher amounts of tropane alkaloids than control hairy roots. Both hyoscyamine and scopolamine production were improved in hairy root cultures of D. metel, whereas in H. muticus only hyoscyamine contents were increased by pmt gene overexpression. These roots have a high capacity to synthesize hyoscyamine, but their ability to convert it into scopolamine is very limited. The results indicate that the same biosynthetic pathway in two related plant species can be differently regulated, and overexpression of a given gene does not necessarily lead to a similar accumulation pattern of secondary metabolites.

  19. Overexpression of TMAC2, a novel negative regulator of abscisic acid and salinity responses, has pleiotropic effects in Arabidopsis thaliana.

    PubMed

    Huang, Ming-Der; Wu, Wen-Luan

    2007-03-01

    Phytohormone abscisic acid (ABA) regulates many aspects of plant development and growth. To explore the molecular mechanism of ABA, we identified the novel ABA-regulated genes in Arabidopsis thaliana by searching for genes possessing two or more ABREs (ABA-responsive elements). One of these genes, two or more ABREs-containing gene 2 (TMAC2) is highly induced by ABA and NaC1. Database searches revealed that TMAC2 encodes a protein with no domains of known function. Expression of TMAC2-GFP fusion protein in Arabidopsis mesophyll protoplasts indicated that TMAC2 is targeted to the nucleus. Although the gene has a basal level of expression in various Arabidopsis organs/tissues except for adult leaves, a high expression level was detected in roots. Constitutive overexpression of TMAC2 in plants resulted in the insensitivity to ABA and NaCl, suggesting that TMAC2 plays a negative role in ABA and salt stress responses. Furthermore, TMAC2-overexpressing plants exhibited the short roots, late flowering and starch-excess phenotypes. RT-PCR analysis showed that decreased expression of two floral- and one starch degradation-related genes, SOC1/AGL20 and SEP3/AGL9, and SEX1, respectively, may lead to altered phenotypes of TMAC2-overexpressing plants. Taken together, our data reveal that TMAC2 acts in the nucleus and is an important negative regulator of ABA and salt stress responses, and could play a critical role in controlling root elongation, floral initiation and starch degradation.

  20. Lead toxicity: current concerns.

    PubMed Central

    Goyer, R A

    1993-01-01

    Over the 20-year period since the first issue of Environmental Health Perspectives was published, there has been considerable progress in the understanding of the potential toxicity of exposure to lead. Many of these advances have been reviewed in published symposia, conferences, and review papers in EHP. This brief review identifies major advances as well as a number of current concerns that present opportunities for prevention and intervention strategies. The major scientific advance has been the demonstration that blood lead (PbB) levels of 10-15 micrograms/dL in newborn and very young infants result in cognitive and behavioral deficits. Further support for this observation is being obtained by prospective or longitudinal studies presently in progress. The mechanism(s) for the central nervous system effects of lead is unclear but involve lead interactions within calcium-mediated intracellular messenger systems and neurotransmission. Effects of low-level lead exposure on blood pressure, particularly in adult men, may be related to the effect of lead on calcium-mediated control of vascular smooth muscle contraction and on the renin-angiotensin system. Reproductive effects of lead have long been suspected, but low-level effects have not been well studied. Whether lead is a carcinogen or its association with renal adenocarcinoma is a consequence of cystic nephropathy is uncertain. Major risk factors for lead toxicity in children in the United States include nutrition, particularly deficiencies of essential metals, calcium, iron, and zinc, and housing and socioeconomic status. A goal for the year 2000 is to reduce prevalence of blood lead levels exceeding 15 micrograms/dL. Images FIGURE 2. PMID:8354166

  1. Lead toxicity: Current concerns

    SciTech Connect

    Goyer, R.A. )

    1993-04-01

    Over the 20-year period since the first issue of Environmental Health Perspectives was published, there has been considerable progress in the understanding of the potential toxicity of exposure to lead. Many of these advances have been reviewed in published symposia, conferences, and review papers in EHP. This brief review identifies major advances as well as a number of current concerns that present opportunities for prevention and intervention strategies. The major scientific advance has been the demonstration that blood lead (PbB) levels of 10-15 micrograms/dL in newborn and very young infants result in cognitive and behavioral deficits. Further support for this observation is being obtained by prospective or longitudinal studies presently in progress. The mechanism(s) for the central nervous system effects of lead is unclear but involve lead interactions within calcium-mediated intracellular messenger systems and neurotransmission. Effects of low-level lead exposure on blood pressure, particularly in adult men, may be related to the effect of lead on calcium-mediated control of vascular smooth muscle contraction and on the renin-angiotensin system. Reproductive effects of lead have long been suspected, but low-level effects have not been well studied. Whether lead is a carcinogen or its association with renal adenocarcinoma is a consequence of cystic nephropathy is uncertain. Major risk factors for lead toxicity in children in the United States include nutrition, particularly deficiencies of essential metals, calcium, iron, and zinc, and housing and socioeconomic status. A goal for the year 2000 is to reduce prevalence of blood lead levels exceeding 15 micrograms/dL. 97 refs.

  2. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells.

    PubMed

    Wu, Yanyuan; Ginther, Charles; Kim, Juri; Mosher, Nicole; Chung, Seyung; Slamon, Dennis; Vadgama, Jaydutt V

    2012-12-01

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors, we created trastuzumab-insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression and show increase in EGF receptor (EGFR). Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab-resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab-resistant cells also promoted a partial EMT-like transition (epithelial-to-mesenchymal transition); increased N-cadherin, Twist, Slug; and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin and decreased EGFR expression in trastuzumab-resistant cells. Furthermore, the EMT markers were decreased, E-cadherin was increased, and the cell invasiveness was inhibited in response to the Wnt3 downregulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist, and Slug. The cells were less sensitive to trastuzumab than parental SKBR3 and vector-transfected cells. In summary, our data suggest that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2-overexpressing breast cancer cells.

  3. Targeting GPR110 in HER2-Overexpressing Breast Cancers

    DTIC Science & Technology

    2015-10-01

    trastuzumab (T) (L+T)), which is effective in a larger group of patients. Drugs targeting G protein-coupled receptors (GPCRs) have low toxicity because of... effects of GPR110 overexpression or knockdown on cell growth in the context of drug resistance will also be determined to understand the possible role...HER2   drug   resistance            CONCLUSIONS    REFERENCES   Figure  8.   Effects  of  GPR110

  4. Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1;6 confers salt tolerance

    PubMed Central

    2014-01-01

    Background Under saline conditions, plant growth is depressed via osmotic stress and salt can accumulate in leaves leading to further depression of growth due to reduced photosynthesis and gas exchange. Aquaporins are proposed to have a major role in growth of plants via their impact on root water uptake and leaf gas exchange. In this study, soybean plasma membrane intrinsic protein 1;6 (GmPIP1;6) was constitutively overexpressed to evaluate the function of GmPIP1;6 in growth regulation and salt tolerance in soybean. Results GmPIP1;6 is highly expressed in roots as well as reproductive tissues and the protein targeted to the plasma membrane in onion epidermis. Treatment with 100 mM NaCl resulted in reduced expression initially, then after 3 days the expression was increased in root and leaves. The effects of constitutive overexpression of GmPIP1;6 in soybean was examined under normal and salt stress conditions. Overexpression in 2 independent lines resulted in enhanced leaf gas exchange, but not growth under normal conditions compared to wild type (WT). With 100 mM NaCl, net assimilation was much higher in the GmPIP1;6-Oe and growth was enhanced relative to WT. GmPIP1;6-Oe plants did not have higher root hydraulic conductance (Lo) under normal conditions, but were able to maintain Lo under saline conditions compared to WT which decreased Lo. GmPIP1;6-Oe lines grown in the field had increased yield resulting mainly from increased seed size. Conclusions The general impact of overexpression of GmPIP1;6 suggests that it may be a multifunctional aquaporin involved in root water transport, photosynthesis and seed loading. GmPIP1;6 is a valuable gene for genetic engineering to improve soybean yield and salt tolerance. PMID:24998596

  5. Overexpression of MN1 Confers Resistance to Chemotherapy, Accelerates Leukemia Onset, and Suppresses p53 and Bim Induction

    PubMed Central

    Pardee, Timothy S.

    2012-01-01

    Background The transcriptional co-activator MN1 confers a worse prognosis for patients with acute myeloid leukemia (AML) when highly expressed; however, the mechanisms involved are unknown. We sought to model the effects of high MN1 expression in AML models to explore the underlying mechanisms. Methodology/Principal Findings We used cell lines and a genetically defined mouse model of AML to examine the effects of MN1 overexpression on prognosis and response to cytarabine and doxorubicin in vitro and in vivo. Murine AML that was engineered to overexpress MN1 became more aggressive in vivo, leading to shortened survival in both treated and control groups. In vitro murine AML cells that overexpressed MN1 became resistant to treatment with cytarabine and highly resistant to doxorubicin. This resistant phenotype was also seen in vivo, where treatment with the combination of cytarabine and doxorubicin selected for cells expressing MN1. When therapy-induced DNA damage levels were assessed by γH2AX foci, no reduction was seen in MN1 expressing cells arguing against a drug efflux mechanism. Despite no reduction in DNA damage, MN1-expressing cells showed less apoptosis as assessed by annexin V and propidium iodide staining. Following treatment, p53 and BIM induction were markedly reduced in cells expressing MN1. Pharmacologic inhibition of the p53 E3 ligase MDM2 resulted in increased p53 levels and improved response to doxorubicin in vitro. Conclusions/Significance MN1 overexpression accelerates an already aggressive leukemia, confers resistance to chemotherapy, and suppresses p53 and BIM induction, resulting in decreased apoptosis. This provides a mechanistic explanation of the poor prognosis observed with high MN1 expression and suggests that therapies directed at increasing p53 function may be useful for these patients. PMID:22905229

  6. Overexpression of the Transcription Factor Sp1 Activates the OAS-RNAse L-RIG-I Pathway

    PubMed Central

    Dupuis-Maurin, Valéryane; Brinza, Lilia; Baguet, Joël; Plantamura, Emilie; Schicklin, Stéphane; Chambion, Solène; Macari, Claire; Tomkowiak, Martine; Deniaud, Emmanuelle; Leverrier, Yann

    2015-01-01

    Deregulated expression of oncogenes or transcription factors such as specificity protein 1 (Sp1) is observed in many human cancers and plays a role in tumor maintenance. Paradoxically in untransformed cells, Sp1 overexpression induces late apoptosis but the early intrinsic response is poorly characterized. In the present work, we studied increased Sp1 level consequences in untransformed cells and showed that it turns on an early innate immune transcriptome. Sp1 overexpression does not activate known cellular stress pathways such as DNA damage response or endoplasmic reticulum stress, but induces the activation of the OAS-RNase L pathway and the generation of small self-RNAs, leading to the upregulation of genes of the antiviral RIG-I pathway at the transcriptional and translational levels. Finally, Sp1-induced intrinsic innate immune response leads to the production of the chemokine CXCL4 and to the recruitment of inflammatory cells in vitro and in vivo. Altogether our results showed that increased Sp1 level in untransformed cells constitutes a novel danger signal sensed by the OAS-RNase L axis leading to the activation of the RIG-I pathway. These results suggested that the OAS-RNase L-RIG-I pathway may be activated in sterile condition in absence of pathogen. PMID:25738304

  7. Overexpression of the transcription factor Sp1 activates the OAS-RNAse L-RIG-I pathway.

    PubMed

    Dupuis-Maurin, Valéryane; Brinza, Lilia; Baguet, Joël; Plantamura, Emilie; Schicklin, Stéphane; Chambion, Solène; Macari, Claire; Tomkowiak, Martine; Deniaud, Emmanuelle; Leverrier, Yann; Marvel, Jacqueline; Michallet, Marie-Cécile

    2015-01-01

    Deregulated expression of oncogenes or transcription factors such as specificity protein 1 (Sp1) is observed in many human cancers and plays a role in tumor maintenance. Paradoxically in untransformed cells, Sp1 overexpression induces late apoptosis but the early intrinsic response is poorly characterized. In the present work, we studied increased Sp1 level consequences in untransformed cells and showed that it turns on an early innate immune transcriptome. Sp1 overexpression does not activate known cellular stress pathways such as DNA damage response or endoplasmic reticulum stress, but induces the activation of the OAS-RNase L pathway and the generation of small self-RNAs, leading to the upregulation of genes of the antiviral RIG-I pathway at the transcriptional and translational levels. Finally, Sp1-induced intrinsic innate immune response leads to the production of the chemokine CXCL4 and to the recruitment of inflammatory cells in vitro and in vivo. Altogether our results showed that increased Sp1 level in untransformed cells constitutes a novel danger signal sensed by the OAS-RNase L axis leading to the activation of the RIG-I pathway. These results suggested that the OAS-RNase L-RIG-I pathway may be activated in sterile condition in absence of pathogen.

  8. American Lead Action Memorandum

    EPA Pesticide Factsheets

    ACTION MEMORANDUM— Request for a Time-Critical Removal Action andExemption from the $2 Million and 12-Month Statutory Limits at the AmericanLead Site, Indianapolis, Marion County, Indiana (Site ID #B56J)

  9. Leading Causes of Blindness

    MedlinePlus

    ... Cataract. Photo courtesy of National Eye Institute, NIH Cataracts Cataracts are a clouding of the lenses in your ... older people. More than 22 million Americans have cataracts. They are the leading cause of blindness in ...

  10. Learn about Lead

    MedlinePlus

    Jump to main content US EPA United States Environmental Protection Agency Search Search Lead Share Facebook Twitter Google+ ... 2 pp, 291 K, About PDF ) The most important step parents, doctors, and others can take is ...

  11. Lead Poisoning Prevention Tips

    MedlinePlus

    ... North Dakota Ohio Oklahoma Oregon Pennsylvania Philadelphia Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont ... up paint debris after work is completed. Create barriers between living/play areas and lead sources. Until ...

  12. Feature Leads That Work.

    ERIC Educational Resources Information Center

    Konkle, Bruce E.

    1999-01-01

    Presents advice to scholastic journalists on writing leads for feature stories. Discusses using a summary, a question, a direct quote, a first-person account, alliteration, a shocking statement, contrast, historical reference, descriptions, narratives, metaphors, and similes. (RS)

  13. Genomic Rearrangements Leading to Overexpression of Aldo-Keto Reductase YafB of Escherichia coli Confer Resistance to Glyoxal

    PubMed Central

    Kwon, Minsuk; Lee, Junghoon; Lee, Changhan

    2012-01-01

    Glyoxal is toxic and mutagenic α-oxoaldehyde generated in vivo as an oxidation by-product of sugar metabolism. We selected glyoxal-resistant mutants from an Escherichia coli strain lacking major glyoxal-detoxifying genes, gloA and yqhD, by growing cells in medium containing a lethal concentration of glyoxal. The mutants carried diverse genomic rearrangements, such as multibase deletions and recombination, in the upstream region of the yafB gene, encoding an aldo-keto reductase. Since these genomic lesions create transcriptional fusions of the yafB gene to the upstream rrn regulon or eliminate a negative regulatory site, the mutants generally enhanced an expression of the yafB gene. Glyoxal resistances of the mutants are correlated with the levels of yafB transcripts as well as the activities of aldo-keto reductase. An overproduction of YafB in the glyoxal-resistant mutant lacking the putative NsrR-binding site provides evidence that the yafB gene is negatively regulated by this protein. We also observed that the expression of yafB is enhanced with an increased concentration of glyoxal as well as a mutation in the fnr gene, encoding a putative regulator. The bindings of NsrR and Fnr to the yafB promoter were also demonstrated by gel mobility shift assays. PMID:22328670

  14. Overexpression of GLUTAMINE DUMPER1 Leads to Hypersecretion of Glutamine from Hydathodes of Arabidopsis LeavesW⃞

    PubMed Central

    Pilot, Guillaume; Stransky, Harald; Bushey, Dean F.; Pratelli, Réjane; Ludewig, Uwe; Wingate, Vincent P.M.; Frommer, Wolf B.

    2004-01-01

    Secretion is a fundamental process providing plants with the means for disposal of solutes, improvement of nutrient acquisition, and attraction of other organisms. Specific secretory organs, such as nectaries, hydathodes, and trichomes, use a combination of secretory and retrieval mechanisms, which are poorly understood at present. To study the mechanisms involved, an Arabidopsis thaliana activation tagged mutant, glutamine dumper1 (gdu1), was identified that accumulates salt crystals at the hydathodes. Chemical analysis demonstrated that, in contrast with the amino acid mixture normally present in guttation droplets, the crystals mainly contain Gln. GDU1 was cloned and found to encode a novel 17-kD protein containing a single putative transmembrane span. GDU1 is expressed in the vascular tissues and in hydathodes. Gln content is specifically increased in xylem sap and leaf apoplasm, whereas the content of several amino acids is increased in leaves and phloem sap. Selective secretion of Gln by the leaves may be explained by an enhanced release of this amino acid from cells. GDU1 study may help to shed light on the secretory mechanisms for amino acids in plants. PMID:15208395

  15. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  16. Lead-210 contamination

    SciTech Connect

    Gray, P.

    1997-12-31

    Nearly all scrap dealers, smelters and other recyclers routinely monitor for radioactivity in shipments entering their facility. These sensitive radiation gate monitors easily detect radium-226 and most other radioactive nuclides. However, the type of detector normally used, sodium iodide scintillation crystals, will not detect the low energy gamma radiation emitted by lead-210 and its progeny. Since lead-210 is a common radioactive contaminant in certain industries, contaminated scrap metal from these industries may avoid detection at the recycler. Lead-210 is a decay product of radon-222 which is produced in small concentrations with natural gas. As the natural gas liquids, particularly ethane and propane, are separated from the natural gas, the radon concentrates in the ethane/propane fraction. The natural gas industry, particularly gas processing facilities and industries using ethane and propane as feed stocks can be significantly contaminated with the radon decay products, especially lead-210, bismuth-210 and polonium-210. Unless the scrap metal is decontaminated before sending to the recycler, the lead-210 contaminated scrap may be processed, resulting in some degree of radioactive contamination of the recycling facilities. Methods of detecting the low energy gamma radiation associated with lead-210 include the pancake G-M detector and the thin crystal-thin window scintillation detector.

  17. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    PubMed

    Yao, Chunxiang; Behring, Jessica B; Shao, Di; Sverdlov, Aaron L; Whelan, Stephen A; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A; Seta, Francesca; Costello, Catherine E; Cohen, Richard A; Matsui, Reiko; Colucci, Wilson S; McComb, Mark E; Bachschmid, Markus M

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  18. Overexpression of Pto activates defense responses and confers broad resistance.

    PubMed Central

    Tang, X; Xie, M; Kim, Y J; Zhou, J; Klessig, D F; Martin, G B

    1999-01-01

    The tomato disease resistance (R) gene Pto specifies race-specific resistance to the bacterial pathogen Pseudomonas syringae pv tomato carrying the avrPto gene. Pto encodes a serine/threonine protein kinase that is postulated to be activated by a physical interaction with the AvrPto protein. Here, we report that overexpression of Pto in tomato activates defense responses in the absence of the Pto-AvrPto interaction. Leaves of three transgenic tomato lines carrying the cauliflower mosaic virus 35S::Pto transgene exhibited microscopic cell death, salicylic acid accumulation, and increased expression of pathogenesis-related genes. Cell death in these plants was limited to palisade mesophyll cells and required light for induction. Mesophyll cells of 35S::Pto plants showed the accumulation of autofluorescent compounds, callose deposition, and lignification. When inoculated with P. s. tomato without avrPto, all three 35S::Pto lines displayed significant resistance and supported less bacterial growth than did nontransgenic lines. Similarly, the 35S::Pto lines also were more resistant to Xanthomonas campestris pv vesicatoria and Cladosporium fulvum. These results demonstrate that defense responses and general resistance can be activated by the overexpression of an R gene. PMID:9878629

  19. Role of Cks1 Overexpression in Oral Squamous Cell Carcinomas

    PubMed Central

    Kitajima, Shojiro; Kudo, Yasusei; Ogawa, Ikuko; Bashir, Tarig; Kitagawa, Masae; Miyauchi, Mutsumi; Pagano, Michele; Takata, Takashi

    2004-01-01

    Down-regulation of p27 is frequently observed in various cancers due to an enhancement of its degradation. Skp2 is required for the ubiquitination and consequent degradation of p27 protein. Another protein called Cks1 is also required for p27 ubiquitination in the SCFSkp2 ubiquitinating machinery. In the present study, we examined Cks1 expression and its correlation with p27 in oral squamous cell carcinoma (OSCC) derived from tongue and gingiva. By immunohistochemical analysis, high expression of Cks1 was present in 62% of OSCCs in comparison with 0% of normal mucosae. In addition, 65% of samples with low p27 expression displayed high Cks1 levels. Finally, Cks1 expression was well correlated with Skp2 expression and poor prognosis. To study the role of Cks1 overexpression in p27 down-regulation, we transfected Cks1 with or without Skp2 into OSCC cells. Cks1 transfection could not induce a p27 down-regulation by itself, but both Cks1 and Skp2 transfection strongly induced. Moreover, we inhibited Cks1 expression by small interference RNA (siRNA) in OSCC. Cks1 siRNA transfection induced p27 accumulation and inhibited the growth of OSCC cells. These findings suggest that Cks1 overexpression may play an important role for OSCC development through Skp2-mediated p27 degradation, and that Cks1 siRNA can be a novel modality of gene therapy. PMID:15579456

  20. Overexpression of calpastatin inhibits L8 myoblast fusion

    SciTech Connect

    Barnoy, Sivia; E-mail: sivia@post.tau.ac.il; Maki, Masatoshi; Kosower, Nechama S.

    2005-07-08

    The formation of skeletal muscle fibers involves cessation of myoblast division, myoblast alignment, and fusion to multinucleated myofibers. Calpain is one of the factors shown to be involved in myoblast fusion. Using L8 rat myoblasts, we found that calpain levels did not change significantly during myoblast differentiation, whereas calpastatin diminished prior to myoblast fusion and reappeared after fusion. The transient diminution in calpastatin allows the Ca{sup 2+}-promoted activation of calpain and calpain-induced membrane proteolysis, which is required for myoblast fusion. Here we show that calpastatin overexpression in L8 myoblasts does not inhibit cell proliferation and alignment, but prevents myoblast fusion and fusion-associated protein degradation. In addition, calpastatin appears to modulate myogenic gene expression, as indicated by the lack of myogenin (a transcription factor expressed in differentiating myoblasts) in myoblasts overexpressing calpastatin. These results suggest that, in addition to the role in membrane disorganization in the fusing myoblasts, the calpain-calpastatin system may also modulate the levels of factors required for myoblast differentiation.

  1. Prothymosin α overexpression contributes to the development of pulmonary emphysema.

    PubMed

    Su, Bing-Hua; Tseng, Yau-Lin; Shieh, Gia-Shing; Chen, Yi-Cheng; Shiang, Ya-Chieh; Wu, Pensee; Li, Kuo-Jung; Yen, Te-Hsin; Shiau, Ai-Li; Wu, Chao-Liang

    2013-01-01

    Emphysema is one of the disease conditions that comprise chronic obstructive pulmonary disease. Prothymosin α transgenic mice exhibit an emphysema phenotype, but the pathophysiological role of prothymosin α in emphysema remains unclear. Here we show that prothymosin α contributes to the pathogenesis of emphysema by increasing acetylation of histones and nuclear factor-kappaB, particularly upon cigarette smoke exposure. We find a positive correlation between prothymosin α levels and the severity of emphysema in prothymosin α transgenic mice and emphysema patients. Prothymosin α overexpression increases susceptibility to cigarette smoke-induced emphysema, and cigarette smoke exposure further enhances prothymosin α expression. We show that prothymosin α inhibits the association of histone deacetylases with histones and nuclear factor-kappaB, and that prothymosin α overexpression increases expression of nuclear factor-kappaB-dependent matrix metalloproteinase 2 and matrix metalloproteinase 9, which are found in the lungs of patients with chronic obstructive pulmonary disease. These results demonstrate the clinical relevance of prothymosin α in regulating acetylation events during the pathogenesis of emphysema.

  2. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants.

  3. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis

    PubMed Central

    Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J.; Austin, Paul F.; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  4. Metabolomics Revealed an Association of Metabolite Changes and Defective Growth in Methylobacterium extorquens AM1 Overexpressing ecm during Growth on Methanol.

    PubMed

    Cui, Jinyu; Good, Nathan M; Hu, Bo; Yang, Jing; Wang, Qianwen; Sadilek, Martin; Yang, Song

    2016-01-01

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targeted metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm over-expressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. This research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.

  5. Metabolomics Revealed an Association of Metabolite Changes and Defective Growth in Methylobacterium extorquens AM1 Overexpressing ecm during Growth on Methanol

    PubMed Central

    Hu, Bo; Yang, Jing; Wang, Qianwen; Sadilek, Martin; Yang, Song

    2016-01-01

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targeted metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)–meso-diaminopimelic acid (mDAP) and Ala–mDAP–Ala, each over 45-fold higher in the ecm over-expressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. This research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens. PMID:27116459

  6. Metabolomics revealed an association of metabolite changes and defective growth in Methylobacterium extorquens AM1 overexpressing ecm during growth on methanol

    DOE PAGES

    Cui, Jinyu; Good, Nathan M.; Hu, Bo; ...

    2016-04-26

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targetedmore » metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm overexpressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. Lastly, this research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.« less

  7. Overexpression of PDGFRA cooperates with loss of NF1 and p53 to accelerate the molecular pathogenesis of malignant peripheral nerve sheath tumors.

    PubMed

    Ki, D H; He, S; Rodig, S; Look, A T

    2017-02-23

    Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, frequently metastatic sarcomas that are associated with neurofibromatosis type 1 (NF1), a prominent inherited genetic disease in humans. Although loss of the NF1 gene predisposes to MPNST induction, relatively long tumor latency in NF1 patients suggests that additional genetic or epigenetic abnormalities are needed for the development of these nerve sheath malignancies. To study the molecular pathways contributing to the formation of MPNSTs in NF1 patients, we used a zebrafish tumor model defined by nf1 loss in a p53-deficient background together with the overexpression of either wild-type or constitutively activated PDGFRA (platelet-derived growth factor receptor-α) under control of the sox10 neural crest-specific promoter. Here we demonstrate the accelerated onset and increased penetrance of MPNST formation in fish overexpressing both the wild-type and the mutant PDGFRA transgenes in cells of neural crest origin. Interestingly, overexpression of the wild-type PDGFRA was even more potent in promoting transformation than the mutant PDGFRA, which is important because ~78% of human MPNSTs have expression of wild-type PDGFRA, whereas only 5% harbor activating mutations of the gene encoding this receptor. Further analysis revealed the induction of cellular senescence in zebrafish embryos overexpressing mutant, but not wild-type, PDGFRA, suggesting a mechanism through which the oncogenic activity of the mutant receptor is tempered by the activation of premature cellular senescence in an NF1-deficient background. Taken together, our study suggests a model in which overexpression of wild-type PDGFRA associated with NF1 deficiency leads to aberrant activation of downstream RAS signaling and thus contributes importantly to MPNST development-a prediction supported by the ability of the kinase inhibitor sunitinib alone and in combination with the MEK inhibitor trametinib to retard MPNST progression in

  8. Overexpression of eIF5 or its protein mimic 5MP perturbs eIF2 function and induces ATF4 translation through delayed re-initiation

    PubMed Central

    Kozel, Caitlin; Thompson, Brytteny; Hustak, Samantha; Moore, Chelsea; Nakashima, Akio; Singh, Chingakham Ranjit; Reid, Megan; Cox, Christian; Papadopoulos, Evangelos; Luna, Rafael E.; Anderson, Abbey; Tagami, Hideaki; Hiraishi, Hiroyuki; Slone, Emily Archer; Yoshino, Ken-ichi; Asano, Masayo; Gillaspie, Sarah; Nietfeld, Jerome; Perchellet, Jean-Pierre; Rothenburg, Stefan; Masai, Hisao; Wagner, Gerhard; Beeser, Alexander; Kikkawa, Ushio; Fleming, Sherry D.; Asano, Katsura

    2016-01-01

    ATF4 is a pro-oncogenic transcription factor whose translation is activated by eIF2 phosphorylation through delayed re-initiation involving two uORFs in the mRNA leader. However, in yeast, the effect of eIF2 phosphorylation can be mimicked by eIF5 overexpression, which turns eIF5 into translational inhibitor, thereby promoting translation of GCN4, the yeast ATF4 equivalent. Furthermore, regulatory protein termed eIF5-mimic protein (5MP) can bind eIF2 and inhibit general translation. Here, we show that 5MP1 overexpression in human cells leads to strong formation of 5MP1:eIF2 complex, nearly comparable to that of eIF5:eIF2 complex produced by eIF5 overexpression. Overexpression of eIF5, 5MP1 and 5MP2, the second human paralog, promotes ATF4 expression in certain types of human cells including fibrosarcoma. 5MP overexpression also induces ATF4 expression in Drosophila. The knockdown of 5MP1 in fibrosarcoma attenuates ATF4 expression and its tumor formation on nude mice. Since 5MP2 is overproduced in salivary mucoepidermoid carcinoma, we propose that overexpression of eIF5 and 5MP induces translation of ATF4 and potentially other genes with uORFs in their mRNA leaders through delayed re-initiation, thereby enhancing the survival of normal and cancer cells under stress conditions. PMID:27325740

  9. Overexpression of PDGFRA cooperates with loss of NF1 and p53 to accelerate the molecular pathogenesis of malignant peripheral nerve sheath tumors

    PubMed Central

    Ki, D H; He, S; Rodig, S; Look, A T

    2017-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, frequently metastatic sarcomas that are associated with neurofibromatosis type 1 (NF1), a prominent inherited genetic disease in humans. Although loss of the NF1 gene predisposes to MPNST induction, relatively long tumor latency in NF1 patients suggests that additional genetic or epigenetic abnormalities are needed for the development of these nerve sheath malignancies. To study the molecular pathways contributing to the formation of MPNSTs in NF1 patients, we used a zebrafish tumor model defined by nf1 loss in a p53-deficient background together with the overexpression of either wild-type or constitutively activated PDGFRA (platelet-derived growth factor receptor-α) under control of the sox10 neural crest-specific promoter. Here we demonstrate the accelerated onset and increased penetrance of MPNST formation in fish overexpressing both the wild-type and the mutant PDGFRA transgenes in cells of neural crest origin. Interestingly, overexpression of the wild-type PDGFRA was even more potent in promoting transformation than the mutant PDGFRA, which is important because ~78% of human MPNSTs have expression of wild-type PDGFRA, whereas only 5% harbor activating mutations of the gene encoding this receptor. Further analysis revealed the induction of cellular senescence in zebrafish embryos overexpressing mutant, but not wild-type, PDGFRA, suggesting a mechanism through which the oncogenic activity of the mutant receptor is tempered by the activation of premature cellular senescence in an NF1-deficient background. Taken together, our study suggests a model in which overexpression of wild-type PDGFRA associated with NF1 deficiency leads to aberrant activation of downstream RAS signaling and thus contributes importantly to MPNST development—a prediction supported by the ability of the kinase inhibitor sunitinib alone and in combination with the MEK inhibitor trametinib to retard MPNST progression in

  10. Magnesium Diboride Current Leads

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    A recently discovered superconductor, magnesium diboride (MgB2), can be used to fabricate conducting leads used in cryogenic applications. Dis covered to be superconducting in 2001, MgB2 has the advantage of remaining superconducting at higher temperatures than the previously used material, NbTi. The purpose of these leads is to provide 2 A of electricity to motors located in a 1.3 K environment. The providing environment is a relatively warm 17 K. Requirements for these leads are to survive temperature fluctuations in the 5 K and 11 K heat sinks, and not conduct excessive heat into the 1.3 K environment. Test data showed that each lead in the assembly could conduct 5 A at 4 K, which, when scaled to 17 K, still provided more than the required 2 A. The lead assembly consists of 12 steelclad MgB2 wires, a tensioned Kevlar support, a thermal heat sink interface at 4 K, and base plates. The wires are soldered to heavy copper leads at the 17 K end, and to thin copper-clad NbTi leads at the 1.3 K end. The leads were designed, fabricated, and tested at the Forschungszentrum Karlsruhe - Institut foer Technische Physik before inclusion in Goddard's XRS (X-Ray Spectrometer) instrument onboard the Astro-E2 spacecraft. A key factor is that MgB2 remains superconducting up to 30 K, which means that it does not introduce joule heating as a resistive wire would. Because the required temperature ranges are 1.3-17 K, this provides a large margin of safety. Previous designs lost superconductivity at around 8 K. The disadvantage to MgB2 is that it is a brittle ceramic, and making thin wires from it is challenging. The solution was to encase the leads in thin steel tubes for strength. Previous designs were so brittle as to risk instrument survival. MgB2 leads can be used in any cryogenic application where small currents need to be conducted at below 30 K. Because previous designs would superconduct only at up to 8 K, this new design would be ideal for the 8-30 K range.

  11. Hyperphosphorylated Tau in an α-synuclein-overexpressing transgenic model of Parkinson's disease.

    PubMed

    Haggerty, Thomas; Credle, Joel; Rodriguez, Olga; Wills, Jonathan; Oaks, Adam W; Masliah, Eliezer; Sidhu, Anita

    2011-05-01

    Although clinically distinct diseases, tauopathies and synucleinopathies share a common genesis and mechanisms, leading to overlapping degenerative changes within neurons. In human postmortem striatum of Parkinson's disease (PD) and PD with dementia, we have recently described elevated levels of tauopathy, indexed as increased hyperphosphorylated Tau (p-Tau). Here we assessed tauopathy in striatum of a transgenic animal model of PD, overexpressing human α-synuclein under the platelet-derived growth factor promoter. At 11 months of age, large and progressive increases in p-Tau in transgenic mice, hyperphosphorylated at sites reminiscent of Alzheimer's disease, were noted, along with elevated levels of α-synuclein and glycogen synthase kinase 3β phosphorylated at Tyr216 (p-GSK-3β), a major kinase involved in the hyperphosphorylation of Tau. Differential Triton X-100 extraction of striata showed the presence of aggregated α-synuclein in the transgenic mice, along with p-Tau and p-GSK-3β, which was also confirmed through immunohistochemistry. After p-Tau formation, both Tau and microtubule-associated protein 1 (MAP1) dissociated from the cytoskeleton, consistent with the diminished ability of these cytoskeleton-binding proteins to bind microtubules. Increases in free tubulin and actin were also noted, indicative of cytoskeleton remodeling and destabilization. In vivo magnetic resonance imaging of the transgenic animals showed a reduction in brain volume of transgenic mice, indicating substantial atrophy. From immunohistochemical studies, α-synuclein, p-Tau and p-GSK-3β were found to be overexpressed and co-localized in large inclusion bodies, reminiscent of Lewy bodies. The elevated state of tauopathy seen in these platelet-derived growth factor-α-synuclein mice provides further confirmation that PD may be a tauopathic disease.

  12. Significant overexpression of DVL1 in Taiwanese colorectal cancer patients with liver metastasis.

    PubMed

    Huang, Ming-Yii; Yen, Li-Chen; Liu, Hsueh-Chiao; Liu, Po-Ping; Chung, Fu-Yen; Wang, Tsu-Nai; Wang, Jaw-Yuan; Lin, Shiu-Ru

    2013-10-14

    Undetected micrometastasis plays a key role in the metastasis of cancer in colorectal cancer (CRC) patients. The aim of this study is to identify a biomarker of CRC patients with liver metastasis through the detection of circulating tumor cells (CTCs). Microarray and bioinformatics analysis of 10 CRC cancer tissue specimens compared with normal adjacent tissues revealed that 31 genes were up-regulated (gene expression ratio of cancer tissue to paired normal tissue > 2) in the cancer patients. We used a weighted enzymatic chip array (WEnCA) including 31 prognosis-related genes to investigate CTCs in 214 postoperative stage I-III CRC patients and to analyze the correlation between gene expression and clinico-pathological parameters. We employed the immunohistochemistry (IHC) method with polyclonal mouse antibody against DVL1 to detect DVL1 expression in 60 CRC patients. CRC liver metastasis occurred in 19.16% (41/214) of the patients. Using univariate analysis and multivariate proportional hazards regression analysis, we found that DVL1 mRNA overexpression had a significant, independent predictive value for liver metastasis in CRC patients (OR: 5.764; 95% CI: 2.588-12.837; p < 0.0001 on univariate analysis; OR: 3.768; 95% CI: 1.469-9.665; p = 0.006 on multivariate analysis). IHC staining of the immunoreactivity of DVL1 showed that DVL1 was localized in the cytoplasm of CRC cells. High expression of DVL1 was observed in 55% (33/60) of CRC tumor specimens and was associated significantly with tumor depth, perineural invasion and liver metastasis status (all p < 0.05). Our experimental results demonstrated that DVL1 is significantly overexpressed in CRC patients with liver metastasis, leading us to conclude that DVL1 could be a potential prognostic and predictive marker for CRC patients.

  13. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    SciTech Connect

    Park, Choa; Lee, YoungJoo

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  14. Over-expression of microRNA-1 causes arrhythmia by disturbing intracellular trafficking system

    PubMed Central

    Su, Xiaomin; Liang, Haihai; Wang, He; Chen, Guizhi; Jiang, Hua; Wu, Qiuxia; Liu, Tianyi; Liu, Qiushuang; Yu, Tong; Gu, Yunyan; Yang, Baofeng; Shan, Hongli

    2017-01-01

    Dysregulation of intracellular trafficking system plays a fundamental role in the progression of cardiovascular disease. Up-regulation of miR-1 contributes to arrhythmia, we sought to elucidate whether intracellular trafficking contributes to miR-1-driven arrhythmia. By performing microarray analyses of the transcriptome in the cardiomyocytes-specific over-expression of microRNA-1 (miR-1 Tg) mice and the WT mice, we found that these differentially expressed genes in miR-1 Tg mice were significantly enrichment with the trafficking-related biological processes, such as regulation of calcium ion transport. Also, the qRT-PCR and western blot results validated that Stx6, Braf, Ube3a, Mapk8ip3, Ap1s1, Ccz1 and Gja1, which are the trafficking-related genes, were significantly down-regulated in the miR-1 Tg mice. Moreover, we found that Stx6 was decreased in the heart of mice after myocardial infarction and in the hypoxic cardiomyocytes, and further confirmed that Stx6 is a target of miR-1. Meanwhile, knockdown of Stx6 in cardiomyocytes resulted in the impairments of PLM and L-type calcium channel, which leads to the increased resting ([Ca2+]i). On the contrary, overexpression of Stx6 attenuated the impairments of miR-1 or hypoxia on PLM and L-type calcium channel. Thus, our studies reveals that trafficking-related gene Stx6 may regulate intracellular calcium and is involved in the occurrence of cardiac arrhythmia, which provides new insights in that miR-1 participates in arrhythmia by regulating the trafficking-related genes and pathway.

  15. Thymosin β4 overexpression regulates neuron production and spatial distribution in the developing avian optic tectum.

    PubMed

    Lever, Mael; Theiss, Carsten; Morosan-Puopolo, Gabriela; Brand-Saberi, Beate

    2016-12-10

    Thymosin β4 (Tβ4), the principal G-actin regulating entity in eukaryotic cells, has also multiple intra- and extracellular functions related to tissue regeneration and healing. While its effect in adult organs is being widely investigated, currently, little is known about its influence on embryonic tissues, i.e., in the developing nervous system. The importance of Tβ4 for neural stem cell proliferation in the embryonic chicken optic tectum (OT) has previously been shown by us for the first time. In the present study, using in ovo electroporation, we carried out a quantification of the effects of the Tβ4-overexpression on the developing chicken OT between E4 and E6 at the hemisphere as well as cellular level. We precisely examined tissue growth and characterized cells arising from the elevated mitotic activity of progenitor cells. By using spinning-disk confocal laser scanning microscopy, we were able to visualize these effects across whole OT sections. Our experiments now demonstrate more clearly that the overexpression of Tβ4 leads to a tangential expansion of the treated OT-hemisphere and that, under these circumstances, overall density of tectal and in particular of postmitotic neuronal cells is increased. Thanks to this new quantitative approach, the present results extend our previous findings that Tβ4 is important for the proliferation of progenitor cells, neurogenesis, tangential expansion, and tissue growth in the young embryonic chicken optic tectum. Taken together, our results further illustrate and support the current idea that Tβ4 is widely implicated in shaping and maintenance of the nervous system.

  16. Hepatocyte growth factor overexpression in the nervous system enhances learning and memory performance in mice.

    PubMed

    Kato, Takashi; Funakoshi, Hiroshi; Kadoyama, Keiichi; Noma, Satsuki; Kanai, Masaaki; Ohya-Shimada, Wakana; Mizuno, Shinya; Doe, Nobutaka; Taniguchi, Taizo; Nakamura, Toshikazu

    2012-09-01

    Hepatocyte growth factor (HGF) and its receptor, c-Met, play pivotal roles in the nervous system during development and in disease states. However, the physiological roles of HGF in the adult brain are not well understood. In the present study, to assess its role in learning and memory function, we used transgenic mice that overexpress HGF in a neuron-specific manner (HGF-Tg) to deliver HGF into the brain without injury. HGF-Tg mice displayed increased alternation rates in the Y-maze test compared with age-matched wild-type (WT) controls. In the Morris water maze (MWM) test, HGF-Tg mice took less time to find the platform on the first day, whereas the latency to escape to the hidden platform was decreased over training days compared with WT mice. A transfer test revealed that the incidence of arrival at the exact location of the platform was higher for HGF-Tg mice compared with WT mice. These results demonstrate that overexpression of HGF leads to an enhancement of both short- and long-term memory. Western blot analyses revealed that the levels of N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B, but not NR1, were increased in the hippocampus of HGF-Tg mice compared with WT controls, suggesting that an upregulation of NR2A and NR2B could represent one mechanism by which HGF enhances learning and memory performance. These results demonstrate that modulation of learning and memory performance is an important physiological function of HGF that contributes to normal CNS plasticity, and we propose HGF as a novel regulator of higher brain functions.

  17. Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: effect of catalase overexpression.

    PubMed

    Barbosa, Marina R; Sampaio, Igor H; Teodoro, Bruno G; Sousa, Thais A; Zoppi, Claudio C; Queiroz, André L; Passos, Madla A; Alberici, Luciane C; Teixeira, Felipe R; Manfiolli, Adriana O; Batista, Thiago M; Cappelli, Ana Paula Gameiro; Reis, Rosana I; Frasson, Danúbia; Kettelhut, Isis C; Parreiras-e-Silva, Lucas T; Costa-Neto, Claudio M; Carneiro, Everardo M; Curi, Rui; Silveira, Leonardo R

    2013-10-01

    The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids.

  18. Cytoprotective and anti-inflammatory effects of PAL31 overexpression in glial cells

    PubMed Central

    2014-01-01

    Background Acute spinal cord injury (SCI) leads to a series of reactive changes and causes severe neurological deficits. A pronounced inflammation contributes to secondary pathology after SCI. Astroglia respond to SCI by proliferating, migrating, and altering phenotype. The impact of reactive gliosis on the pathogenesis of SCI is not fully understood. Our previous study has identified an inflammatory modulating protein, proliferation related acidic leucine-rich protein (PAL31) which is upregulated in the microglia/macrophage of injured cords. Because PAL31 participates in cell cycle progression and reactive astroglia often appears in the injured cord, we aim to examine whether PAL31 is involved in glial modulation after injury. Results Enhanced PAL31 expression was shown not only in microglia/macrophages but also in spinal astroglia after SCI. Cell culture study reveal that overexpression of PAL31 in mixed glial cells or in C6 astroglia significantly reduced LPS/IFNγ stimulation. Further, enhanced PAL31 expression in C6 astroglia protected cells from H2O2 toxicity; however, this did not affect its proliferative activity. The inhibiting effect of PAL31 on LPS/IFNγ stimulation was observed in glia or C6 after co-culture with neuronal cells. The results demonstrated that the overexpressed PAL31 in glial cells protected neuronal damages through inhibiting NF-kB signaling and iNOS. Conclusions Our data suggest that PAL31upregulation might be beneficial after spinal cord injury. Reactive gliosis might become a good target for future therapeutic interventions. PMID:25034417

  19. Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy.

    PubMed

    Marchant, Vanessa; Droguett, Alejandra; Valderrama, Graciela; Burgos, M Eugenia; Carpio, Daniel; Kerr, Bredford; Ruiz-Ortega, Marta; Egido, Jesús; Mezzano, Sergio

    2015-09-15

    Diabetic nephropathy (DN) is currently a leading cause of end-stage renal failure worldwide. Gremlin was identified as a gene differentially expressed in mesangial cells exposed to high glucose and in experimental diabetic kidneys. We have described that Gremlin is highly expressed in biopsies from patients with diabetic nephropathy, predominantly in areas of tubulointerstitial fibrosis. In streptozotocin (STZ)-induced experimental diabetes, Gremlin deletion using Grem1 heterozygous knockout mice or by gene silencing, ameliorates renal damage. To study the in vivo role of Gremlin in renal damage, we developed a diabetic model induced by STZ in transgenic (TG) mice expressing human Gremlin in proximal tubular epithelial cells. The albuminuria/creatinuria ratio, determined at week 20 after treatment, was significantly increased in diabetic mice but with no significant differences between transgenic (TG/STZ) and wild-type mice (WT/STZ). To assess the level of renal damage, kidney tissue was analyzed by light microscopy (periodic acid-Schiff and Masson staining), electron microscopy, and quantitative PCR. TG/STZ mice had significantly greater thickening of the glomerular basement membrane, increased mesangial matrix, and podocytopenia vs. WT/STZ. At the tubulointerstitial level, TG/STZ showed increased cell infiltration and mild interstitial fibrosis. In addition, we observed a decreased expression of podocin and overexpression of monocyte chemoattractant protein-1 and fibrotic-related markers, including transforming growth factor-β1, Col1a1, and α-smooth muscle actin. Together, these results show that TG mice overexpressing Gremlin in renal tubules develop greater glomerular and tubulointerstitial injury in response to diabetic-mediated damage and support the involvement of Gremlin in diabetic nephropathy.

  20. Food Exposures to Lead

    PubMed Central

    Kolbye, Albert C.; Mahaffey, Kathryn R.; Fiorino, John A.; Corneliussen, Paul C.; Jelinek, Charles F.

    1974-01-01

    Exposures to lead have emanated from various sources, including food, throughout human history. Occupational and environmental exposures (especially pica) appear to account for much of the identified human disease, however, food-borne exposures deserve further investigation. Lead residues in food can result from: biological uptake from soils into plants consumed by food animals or man, usage of lead arsenate pesticides, inadvertent addition during food processing, and by leaching them improperly glazed pottery used as food storage or dining utensils. Estimates of total dietary exposure should reflect frequency distribution data on lead levels in specific food commodities in relation to the quantities actually ingested by various sample populations to distinguish degrees of risk associated with particular dietary habits. Earlier estimates of average total dietary intake of lead by adults have been reported to range from above 500 μg/day downward with more recent estimates suggesting averages of 200 μg/day or lower. The strengths and weaknesses of these data are discussed along with analytical and sampling considerations. FDA programs related to food surveillance, epidemiology, and toxicological investigation are briefly described. PMID:4406646

  1. Lead zirconate titanate ceramics

    SciTech Connect

    Walker, B.E. Jr.

    1986-12-02

    This patent describes a lead zirconate titanate (PZT) piezoelectric ceramic composition which, based on total composition weight, consists essentially of a solid solution of lead zirconate and lead titanate in a PbZrO/sub 3/:PbTiO/sub 3/ ratio from about 0.505:0.495 to about 0.54:0.46; a halide salt selected from the group consisting of fluorides and chlorides of alkali metal and alkaline earth elements and mixtures thereof except for francium and radium in an amount from about 0.5 to 2 weight percent; and an oxide selected from the group consisting of magnesium, barium, scandium, aluminum, lanthanum, praesodynium, neodymium, samarium, and mixtures thereof in an amount from about 0.5 to about 6 weight percent, the relative amount of oxide being from about 1 to about 4 times that of the halide.

  2. Pacemaker lead endocarditis

    PubMed Central

    Scheffer, M.; van der Linden, E.; van Mechelen, R.

    2003-01-01

    We present a patient with a pacemaker lead endocarditis who showed no signs of pocket infection but with high fever and signs of infection in the routine laboratory tests. A diagnosis of pacemaker lead endocarditis must be considered in all patients with fever and infection parameters who have a pacemaker inserted, not only in the first weeks after implantation but also late after implantation, as long as no other cause of infection has been found. Transthoracal echocardiography alone is not sensitive enough to establish the correct diagnosis. Transoesophageal echocardiography (TEE) is mandatory to demonstrate the presence or absence of a vegetation on a pacemaker lead. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:25696204

  3. Placental Permeability of Lead

    PubMed Central

    Carpenter, Stanley J.

    1974-01-01

    The detection of lead in fetal tissues by chemical analysis has long been accepted as prima facie evidence for the permeability of the placenta to this nonessential trace metal. However, only a few investigations, all on lower mammalian species, have contributed any direct experimental data bearing on this physiological process. Recent radioactive tracer and radioautographic studies on rodents have shown that lead crosses the placental membranes rapidly and in significant amounts even at relatively low maternal blood levels. While it is not possible to extrapolate directly the results of these experiments to humans because of differences in placental structure and other factors, the results do serve as a warning of the possible hazard to the human embryo and fetus of even low levels of lead in the maternal system. PMID:4857497

  4. Overexpression of α-2,6 sialyltransferase stimulates propagation of human influenza viruses in Vero cells.

    PubMed

    Li, N; Qi, Y; Zhang, F Y; Yu, X H; Wu, Y G; Chen, Y; Jiang, C L; Kong, W

    2011-01-01

    Human influenza viruses are major concern as the leading cause of global pandemics. In infecting cells, they preferentially bind to sialyloligosaccharides containing terminal N-acetyl sialic acid linked to galactose by an α-2,6-linkage (NeuAcα2,6Gal). The amount of NeuAcα2,6Gal in Vero cells, which are predominantly used for production of influenza vaccines over the past 30 years, may not be as high as that in epithelial cells of human respiratory tract, what leads to the suboptimal virus growth in Vero cells. In this study, we stably transfected Vero cells with cDNA of human α-2,6-sialyltransferase (SIAT1), an enzyme catalyzing α-2,6-sialylation of galactose on glycoproteins. Overexpression of SIAT1 in the transfected Vero cells (Vero-SIAT1 cells) was confirmed by Western blot analysis and immunofluorescence microscopy. Vero-SIAT1 cells expressed 7 times higher amounts of NeuAcα2,6Gal, but 3 times lower amounts of NeuAcα2,3Gal as compared to parental Vero cells. Furthermore, the influenza viruses A (H1N1 and H3N2) and B grew in Vero-SIAT1 cells to the higher titers than in Vero cells. Taken together, these results imply that Vero-SIAT1 cells are useful not only for the propagation of human influenza viruses, but also for the preparation of influenza vaccines.

  5. Environmental lead in Mexico.

    PubMed

    Albert, L A; Badillo, F

    1991-01-01

    From the data presented here, it can be concluded that environmental exposure to lead is a particularly severe problem in Mexico. As has been shown, there are very important sources of exposure to this metal: (a) for rural populations who manufacture and/or utilize lead-glazed pottery, (b) for urban populations who are exposed to high air lead concentrations due to the continued use of lead fuel additives, (c) for workers of several industries, mainly those of batteries and pigments, (d) for consumers who routinely eat canned foods such as hot peppers and fruit products, and (e) for the general population living in the vicinity of smelters, refineries and other industries that emit lead. Therefore, in Mexico only those native populations living in very primitive communities, far away from all civilized life, could be expected to be free from this exposure. At the same time, and despite the relatively few data available, it can be stated that the exposure to lead of populations in Mexico could be approaching levels that might be highly hazardous, in particular for the neuropsychological health of children. Regarding the presence of lead in the environment, despite the fact that the available studies are not enough, it is evident that pollution by this metal is widespread and that there is a serious lack of studies for most regions of the country, including several that might be expected to be highly polluted. At the same time, it is evident that the official attention paid to the problem, either in regulations, support of further studies, or implementation of effective control measures has been far from the level needed according to the available data. Lead in gasoline is still used at very high concentrations in all the country, with the exception of Mexico City and its surrounding area, while no studies have been carried out to determine the potential health and environmental impact of this practice in regions outside Mexico City. Despite the fact that the Torre

  6. Thrombus on pacemaker lead.

    PubMed

    Raut, Monish S; Maheshwari, Arun; Dubey, Sumir

    2015-12-01

    A 58-year-old male was admitted with history of shortness of breath and recurrent fever since two months. He had undergone permanent pacemaker implantation six years back for complete heart block. The patient was persistently having thrombocytopenia. Echocardiographic examination revealed mass (size 4.28 cm(2)) attached to pacemaker lead in right atrium. The patient was scheduled for open-heart surgery for removal of right atrial mass. During surgery, pacemaker leads and pulse generator were also removed along with mass considering the possible source of infection.

  7. Disruption of Inhibitory Function in the Ts65Dn Mouse Hippocampus Through Overexpression of GIRK2

    DTIC Science & Technology

    2007-10-24

    Inhibitory Function in the Ts65Dn Mouse Hippocampus Through Overexpression of GIRK2" {O\\LldC0( Date Date Dissertation and Abstract Approved: Name of...thesis manuscript entitled: "Disruption of inhibitory function in the Ts65Dn mouse hippocampus through overexpression of GIRK2" is appropriately...Disruption of inhibitory function in the Ts65Dn mouse hippocampus through overexpression of GIRK2 by Tyler K. Best Doctoral Dissertation

  8. Over-expression of secreted proteins from mammalian cell lines

    PubMed Central

    Dalton, Annamarie C; Barton, William A

    2014-01-01

    Secreted mammalian proteins require the development of robust protein over-expression systems for crystallographic and biophysical studies of protein function. Due to complex disulfide bonds and distinct glycosylation patterns preventing folding and expression in prokaryotic expression hosts, many secreted proteins necessitate production in more complex eukaryotic expression systems. Here, we elaborate on the methods used to obtain high yields of purified secreted proteins from transiently or stably transfected mammalian cell lines. Among the issues discussed are the selection of appropriate expression vectors, choice of signal sequences for protein secretion, availability of fusion tags for enhancing protein stability and purification, choice of cell line, and the large-scale growth of cells in a variety of formats. PMID:24510886

  9. RNAi and overexpression of genes in ovarian somatic cells.

    PubMed

    Saito, Kuniaki

    2014-01-01

    Emerging evidence indicates that PIWI proteins, in collaboration with PIWI-interacting RNAs (piRNAs), play a critical role in retrotransposon silencing in Drosophila gonadal somatic and germ-line cells. The recent establishment of female germ-line stem cells/ovarian somatic sheet and its derivative cell line, ovarian somatic cells (OSCs), allows researchers to study the molecular functions of several protein factors involved in the primary piRNA pathway in Drosophila. Although transgene expression is difficult to achieve in gonad-derived cell lines, transfection of both expression vectors and knockdown reagents is highly effective in OSCs. Here, I focus on techniques that knockdown or overexpress genes of interest in OSCs.

  10. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    SciTech Connect

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  11. Change, Lead, Succeed

    ERIC Educational Resources Information Center

    Munger, Linda; von Frank, Valerie

    2010-01-01

    Redefine leadership in your school, and create capacity through school leadership teams that successfully coordinate professional learning. "Change, Lead, Succeed" shows school leaders and teachers in leadership roles what they need to know to effectively create a culture for change. Find out what distinguishes a school leadership team from other…

  12. Girls Leading Outward

    ERIC Educational Resources Information Center

    Hamed, Heather; Reyes, Jazmin; Moceri, Dominic C.; Morana, Laura; Elias, Maurice J.

    2011-01-01

    The authors describe a program implemented in Red Bank Middle School in New Jersey to help at-risk, minority middle school girls realize their leadership potential. The GLO (Girls Leading Outward) program was developed by the Developing Safe and Civil Schools Project at Rutgers University and is facilitated by university students. Selected middle…

  13. Beam lead forming tool

    NASA Technical Reports Server (NTRS)

    Clemons, P. W.

    1973-01-01

    Tool was designed for table-top manual operation that can bend leads to any desired angle up to 90 degrees. It can be readily adapted to electrical, hydraulic, or pneumatic operation. This innovation may be of interest to electronics, sheet metal, and appliance industries.

  14. Lead Thickness Measurements

    SciTech Connect

    Rucinski, R.; /Fermilab

    1998-02-16

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in{sup 3}, an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  15. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Lin-Fu, Jane S.

    Designed as a public information pamphlet, the text discusses the problem of lead poisoning in children. The preventable nature of the problem is stressed as well as needed action on the part of the public, physicians and other health workers, and the legislators. The pamphlet emphasizes that each of these areas is essential in preventing death or…

  16. Lead and compounds (inorganic)

    Integrated Risk Information System (IRIS)

    Lead and compounds ( inorganic ) ; CASRN 7439 - 92 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  17. ALL AGES LEAD MODEL

    EPA Science Inventory

    The Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children (version 0.99d) was released in March 1994, and has been widely accepted in the risk assessment community as a tool for implementing the site specific risk assessment process when the issue is childhood...

  18. Transgenic cloned sheep overexpressing ovine toll-like receptor 4.

    PubMed

    Deng, Shoulong; Li, Guiguan; Zhang, Jinlong; Zhang, Xiaosheng; Cui, Maosheng; Guo, Yong; Liu, Guoshi; Li, Guangpeng; Feng, Jianzhong; Lian, Zhengxing

    2013-07-01

    An ovine fetal fibroblast cell line highly expressing TLR4 was established by inserting TLR4 into a reconstructive p3S-LoxP plasmid. Transgenic sheep overexpressing TLR4 were produced by transferring TLR4-transfected fetal fibroblasts into metaphase (M)II-stage enucleated oocytes (using SCNT). Because reconstructed embryos derived from MII-stage enucleated oocytes matured in vivo using a delayed-activated method had a higher pregnancy rate (18.52%) than that from MII-stage enucleated oocytes matured in vitro, the former procedure was used. Nine TLR4-transgenic live births were confirmed using polymerase chain reaction and Southern blot analysis. Increased expression of TLR4 at mRNA and protein levels in ear tissues of transgenic lambs were verified using reverse transcription polymerase chain reaction and immunohistochemistry, respectively. More toll-like receptor 4 protein was expressed by peripheral blood monocytes and/or macrophages collected from 3-month-old TLR4-transgenic than nontransgenic lambs at 0, 1, and 4 hours after lipopolysaccharide stimulation. Furthermore, interferon-γ and tumor necrosis factor α secreted by monocytes and/or macrophages of TLR4-transgenic lambs were significantly higher at 1 hour. Therefore, lipopolysaccharide-induced inflammatory responses from monocytes and/or macrophages occurred sooner in TLR4-transgenic lambs, consistent with an enhanced host immune response. In conclusion, transgenic sheep overexpressing TLR4 are a primary model to investigate the role of transgenic animals in disease resistance and have potential for breeding sheep with disease resistance.

  19. Pentylenetetrazol-kindling in mice overexpressing heat shock protein 70.

    PubMed

    Ammon-Treiber, Susanne; Grecksch, Gisela; Angelidis, Charalampos; Vezyraki, Patra; Höllt, Volker; Becker, Axel

    2007-04-01

    Kindling induced by the convulsant pentylenetetrazol (PTZ) is an accepted model of primary generalized epilepsy. Because seizures represent a strong distressing stimulus, stress-induced proteins such as heat shock proteins might counteract the pathology of increased neuronal excitation. Therefore, the aim of the present study was to determine whether PTZ kindling outcome parameters are influenced by heat shock protein 70 (Hsp70) overexpression in Hsp70 transgenic mice as compared to the respective wild-type mice. Kindling was performed by nine intraperitoneal injections of PTZ (ED(16) for induction of clonic-tonic seizures, every 48 h); control animals received saline instead of PTZ. Seven days after the final injection, all mice received a PTZ challenge dose. Outcome parameters included evaluation of seizure stages and overall survival rates. In addition, histopathological findings such as cell number in hippocampal subfields CA1 and CA3 were determined. The onset of the highest convulsion stage was delayed in Hsp70 transgenic mice as compared to wild-type mice, and overall survival during kindling was improved in Hsp70 transgenic mice as compared to wild-type mice. In addition, a challenge dose after termination of kindling produced less severe seizures in Hsp70 transgenic mice than in wild-type mice. PTZ kindling did not result in significant subsequent neuronal cell loss in CA1 or CA3 neither in wild-type mice nor in the Hsp70 transgenic mice. The results of the present experiments clearly demonstrate that overexpression of Hsp70 exerts protective effects regarding seizure severity and overall survival during PTZ kindling. In addition, the decreased seizure severity in Hsp70 transgenic mice after a challenge dose suggests an interference of Hsp70 with the developmental component of kindling.

  20. MCM10 overexpression implicates adverse prognosis in urothelial carcinoma

    PubMed Central

    Li, Wei-Ming; Huang, Chun-Nung; Ke, Hung-Lung; Li, Ching-Chia; Wei, Yu-Ching; Yeh, Hsin-Chih; Chang, Lin-Li; Huang, Chun-Hsiung; Liang, Peir-In; Yeh, Bi-Wen; Chan, Ti-Chun; Li, Chien-Feng; Wu, Wen-Jeng

    2016-01-01

    Urothelial carcinoma (UC) occurs in the upper urinary tract (UTUC) and the urinary bladder (UBUC). The molecular pathogenesis of UC has not been fully elucidated. Through data mining of a published transcriptome of UBUC (GSE31684), we identified Minichromosome Maintenance Complex Component 2 (MCM2) and MCM10 as the two most significantly upregulated genes in UC progression among the MCM gene family, the key factors for the initiation of DNA replication. To validate the clinical significance of MCM2 and MCM10, immunohistochemistry, evaluated by H-score, was used in a pilot study of 50 UTUC and 50 UBUC samples. Only a high expression level of MCM10 predicted worse disease-specific survival (DSS) and inferior metastasis-free survival (MeFS) for both UTUC and UBUC. Correspondingly, evaluation of MCM10 mRNA expression in 36 UTUCs and 30 UBUCs showed significantly upregulated levels in high stage UC, suggesting its role in tumor progression. Evaluation of 340 UTUC and 296 UBUC tissue samples, respectively, demonstrated that high MCM10 immunoexpression was significantly associated with advanced primary tumors, nodal status, and the presence of vascular invasion in both groups of UCs. In multivariate Cox regression analyses, adjusted for standard clinicopathological features, MCM10 overexpression was independently associated with DSS (UTUC hazard ratio [HR]=2.401, P = 0.013; UBUC HR=4.323, P=0.001) and with MeFS (UTUC HR=3.294, P<0.001; UBUC HR=1.972, P=0.015). In vitro, knockdown of MCM10 gene significantly suppressed cell proliferation in both J82 and TCCSUP cells. In conclusion, MCM10 overexpression was associated with unfavorable clinicopathological characteristics and independent negative prognostic effects, justifying its potential theranostic value in UC. PMID:27780919

  1. Sarcolipin overexpression improves muscle energetics and reduces fatigue.

    PubMed

    Sopariwala, Danesh H; Pant, Meghna; Shaikh, Sana A; Goonasekera, Sanjeewa A; Molkentin, Jeffery D; Weisleder, Noah; Ma, Jianjie; Pan, Zui; Periasamy, Muthu

    2015-04-15

    Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (Sln(OE)) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that Sln(OE) mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that Sln(OE) EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and Sln(OE) EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in Sln(OE) EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from Sln(OE) mice fatigued significantly less than WT muscles. Interestingly, Sln(OE) muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in Sln(OE) EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of Sln(OE) compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics.

  2. Overexpression and potential roles of NRIP1 in psoriasis

    PubMed Central

    Luan, Chao; Chen, Xu; Hu, Yu; Hao, Zhimin; Osland, Jared M.; Chen, Xundi; Gerber, Skyler D.; Chen, Min; Gu, Heng; Yuan, Rong

    2016-01-01

    Nuclear receptor interacting protein 1 (NRIP1, also known as RIP140) is a co-regulator for various transcriptional factors and nuclear receptors, and has been shown to take part in many biological and pathological processes, such as regulating mammary gland development and inflammatory response. The aim of this study is to investigate the expression of NRIP1 and to explore its roles in the pathogenesis of psoriasis. Thirty active psoriasis patients and 16 healthy volunteers were enrolled for this study. qRT-PCR analyses found that both NRIP1 and RelA/p65 were elevated in psoriatic lesions compared to psoriatic non-lesions and normal controls, and also overexpressed in peripheral blood mononuclear cell (PBMCs) of psoriasis patients. Suppression of NRIP1 in HaCaT cells could significantly inhibit cell growth and induce apoptosis, and the suppression of NRIP1 in CD4+ T cells isolated from psoriasis patients could downregulate the expression of RelA/p65 and decrease the secretion of IL-17. Furthermore, in Nrip1 knockout mice, IMQ-induced inflammation of skin was delayed and the RelA/p65 expression in lesions was reduced. In conclusion, our data suggests that NRIP1 is overexpressed both in skin and PBMCs of psoriasis patients and may be involved in the abnormal proliferation and apoptosis of keratinocytes, as well as the immune reaction through the regulation of RelA/p65. Therefore, NRIP1 may be a potential therapeutic target for psoriasis. PMID:27708240

  3. Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb.

    PubMed

    García-González, Diego; Murcia-Belmonte, Verónica; Esteban, Pedro F; Ortega, Felipe; Díaz, David; Sánchez-Vera, Irene; Lebrón-Galán, Rafael; Escobar-Castañondo, Laura; Martínez-Millán, Luis; Weruaga, Eduardo; García-Verdugo, José Manuel; Berninger, Benedikt; de Castro, Fernando

    2016-01-01

    New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated with severe OB morphogenesis defects leading to anosmia and hypogonadotropic hypogonadism. Here, we show that A1 over-expression in adult mice strongly increases proliferation in the SVZ, mainly with symmetrical divisions, and produces substantial morphological changes in the normal SVZ architecture, where we also report the presence of FGFR1 in almost all SVZ cells. Interestingly, for the first time we show FGFR1 expression in the basal body of primary cilia in neural progenitor cells. Additionally, we have found that A1 over-expression also enhances neuroblast motility, mainly through FGFR1 activity. Together, these changes lead to a selective increase in several GABAergic interneuron populations in different OB layers. These specific alterations in the OB would be sufficient to disrupt the normal processing of sensory information and consequently alter olfactory memory. In summary, this work shows that FGFR1-mediated A1 activity plays a crucial role in the continuous remodelling of the adult OB.

  4. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    SciTech Connect

    Huang Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.

  5. Claudin-4 Overexpression in Epithelial Ovarian Cancer Is Associated with Hypomethylation and Is a Potential Target for Modulation of Tight Junction Barrier Function Using a C-Terminal Fragment of Clostridium perfringens Enterotoxin1

    PubMed Central

    Litkouhi, Babak; Kwong, Joseph; Lo, Chun-Min; Smedley, James G; McClane, Bruce A; Aponte, Margarita; Gao, Zhijian; Sarno, Jennifer L; Hinners, Jennifer; Welch, William R; Berkowitz, Ross S; Mok, Samuel C; Garner, Elizabeth I O

    2007-01-01

    Background Claudin-4, a tight junction (TJ) protein and receptor for the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE), is overexpressed in epithelial ovarian cancer (EOC). Previous research suggests DNA methylation is a mechanism for claudin-4 overexpression in cancer and that C-CPE acts as an absorption-enhancing agent in claudin-4-expressing cells. We sought to correlate claudin-4 overexpression in EOC with clinical outcomes and TJ barrier function, investigate DNA methylation as a mechanism for overexpression, and evaluate the effect of C-CPE on the TJ. Methods Claudin-4 expression in EOC was quantified and correlated with clinical outcomes. Claudin-4 methylation status was determined, and claudin-4-negative cell lines were treated with a demethylating agent. Electric cell-substrate impedance sensing was used to calculate junctional (paracellular) resistance (Rb) in EOC cells after claudin-4 silencing and after C-CPE treatment. Results Claudin-4 overexpression in EOC does not correlate with survival or other clinical endpoints and is associated with hypomethylation. Claudin-4 overexpression correlates with Rb and C-CPE treatment of EOC cells significantly decreased Rb in a dose- and claudin-4-dependent noncytotoxic manner. Conclusions C-CPE treatment of EOC cells leads to altered TJ function. Further research is needed to determine the potential clinical applications of C-CPE in EOC drug delivery strategies. PMID:17460774

  6. Overexpression of the ped/pea-15 gene causes diabetes by impairing glucose-stimulated insulin secretion in addition to insulin action.

    PubMed

    Vigliotta, Giovanni; Miele, Claudia; Santopietro, Stefania; Portella, Giuseppe; Perfetti, Anna; Maitan, Maria Alessandra; Cassese, Angela; Oriente, Francesco; Trencia, Alessandra; Fiory, Francesca; Romano, Chiara; Tiveron, Cecilia; Tatangelo, Laura; Troncone, Giancarlo; Formisano, Pietro; Beguinot, Francesco

    2004-06-01

    Overexpression of the ped/pea-15 gene is a common feature of type 2 diabetes. In the present work, we show that transgenic mice ubiquitously overexpressing ped/pea-15 exhibited mildly elevated random-fed blood glucose levels and decreased glucose tolerance. Treatment with a 60% fat diet led ped/pea-15 transgenic mice to develop diabetes. Consistent with insulin resistance in these mice, insulin administration reduced glucose levels by only 35% after 45 min, compared to 70% in control mice. In vivo, insulin-stimulated glucose uptake was decreased by almost 50% in fat and muscle tissues of the ped/pea-15 transgenic mice, accompanied by protein kinase Calpha activation and block of insulin induction of protein kinase Czeta. These changes persisted in isolated adipocytes from the transgenic mice and were rescued by the protein kinase C inhibitor bisindolylmaleimide. In addition to insulin resistance, ped/pea-15 transgenic mice showed a 70% reduction in insulin response to glucose loading. Stable overexpression of ped/pea-15 in the glucose-responsive MIN6 beta-cell line also caused protein kinase Calpha activation and a marked decline in glucose-stimulated insulin secretion. Antisense block of endogenous ped/pea-15 increased glucose sensitivity by 2.5-fold in these cells. Thus, in vivo, overexpression of ped/pea-15 may lead to diabetes by impairing insulin secretion in addition to insulin action.

  7. Transgenic tobacco simultaneously overexpressing glyphosate N-acetyltransferase and 5-enolpyruvylshikimate-3-phosphate synthase are more resistant to glyphosate than those containing one gene.

    PubMed

    Liu, Yunjun; Cao, Gaoyi; Chen, Rongrong; Zhang, Shengxue; Ren, Yuan; Lu, Wei; Wang, Jianhua; Wang, Guoying

    2015-08-01

    5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) and glyphosate N-acetyltransferase (GAT) can detoxify glyphosate by alleviating the suppression of shikimate pathway. In this study, we obtained transgenic tobacco plants overexpressing AM79 aroA, GAT, and both of them, respectively, to evaluate whether overexpression of both genes could confer transgenic plants with higher glyphosate resistance. The transgenic plants harboring GAT or AM79 aroA, respectively, showed good glyphosate resistance. As expected, the hybrid plants containing both GAT and AM79 aroA exhibited improved glyphosate resistance than the transgenic plants overexpressing only a single gene. When grown on media with high concentration of glyphosate, seedlings containing a single gene were severely inhibited, whereas plants expressing both genes were affected less. When transgenic plants grown in the greenhouse were sprayed with glyphosate, less damage was observed for the plants containing both genes. Metabolomics analysis showed that transgenic plants containing two genes could maintain the metabolism balance better than those containing one gene after glyphosate treatment. Glyphosate treatment did not lead to a huge increase of shikimate contents of tobacco leaves in transgenic plants overexpressing two genes, whereas significant increase of shikimate contents in transgenic plants containing only a single gene was observed. These results demonstrated that pyramiding both aroA and GAT in transgenic plants can enhance glyphosate resistance, and this strategy can be used for the development of transgenic glyphosate-resistant crops.

  8. Overexpression and Suppression of Artemisia annua 4-Hydroxy-3-Methylbut-2-enyl Diphosphate Reductase 1 Gene (AaHDR1) Differentially Regulate Artemisinin and Terpenoid Biosynthesis

    PubMed Central

    Ma, Dongming; Li, Gui; Zhu, Yue; Xie, De-Yu

    2017-01-01

    4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) catalyzes the last step of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway to synthesize isopentenyl pyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP). To date, little is known regarding effects of an increase or a decrease of a HDR expression on terpenoid and other metabolite profiles in plants. In our study, an Artemisia annua HDR cDNA (namely AaHDR1) was cloned from leaves. Expression profiling showed that it was highly expressed in leaves, roots, stems, and flowers with different levels. Green florescence protein fusion and confocal microscope analyses showed that AaHDR1 was localized in chloroplasts. The overexpression of AaHDR1 increased contents of artemisinin, arteannuin B and other sesquiterpenes, and multiple monoterpenes. By contrast, the suppression of AaHDR1 by anti-sense led to opposite results. In addition, an untargeted metabolic profiling showed that the overexpression and suppression altered non-polar metabolite profiles. In conclusion, the overexpression and suppression of AaHDR1 protein level in plastids differentially affect artemisinin and other terpenoid biosynthesis, and alter non-polar metabolite profiles of A. annua. Particularly, its overexpression leading to the increase of artemisinin production is informative to future metabolic engineering of this antimalarial medicine. PMID:28197158

  9. COPS5 amplification and overexpression confers tamoxifen-resistance in ERα-positive breast cancer by degradation of NCoR

    PubMed Central

    Lu, Renquan; Hu, Xiaobo; Zhou, Junmei; Sun, Jiajun; Zhu, Alan Z.; Xu, Xiaofeng; Zheng, Hui; Gao, Xiang; Wang, Xian; Jin, Hongchuan; Zhu, Ping; Guo, Lin

    2016-01-01

    Oestrogen receptor α (ERα) antagonists are used in endocrine therapies for ERα-positive (ERα+) breast cancer patients. Unfortunately the clinical benefit is limited due to intrinsic and acquired drug resistance. Here using integrated genomic and functional studies, we report that amplification and/or overexpression of COPS5 (CSN5/JAB1) confers resistance to tamoxifen. Amplification and overexpression of COPS5, a catalytic subunit of the COP9 complex, is present in about 9% of the ERα+ primary breast cancer and more frequently (86.7%, 26/30) in tamoxifen-refractory tumours. Overexpression of COPS5, through its isopeptidase activity, leads to ubiquitination and proteasome-mediated degradation of NCoR, a key corepressor for ERα and tamoxifen-mediated suppression of ERα target genes. Importantly, COPS5 overexpression causes tamoxifen-resistance in preclinical breast cancer models in vitro and in vivo. We also demonstrate that genetic inhibition of the isopeptidase activity of COPS5 is sufficient to re-sensitize the resistant breast cancer cells to tamoxifen-treatment, offering a potential therapeutic approach for endocrine-resistant breast cancer patients. PMID:27375289

  10. Identification of stringent response-related and potential serological proteins released from Bacillus anthracis overexpressing the RelA/SpoT homolog, Rsh Bant.

    PubMed

    Kim, Se Kye; Park, Moon Kyoo; Kim, Sang Hoon; Oh, Kwang Gun; Jung, Kyoung Hwa; Hong, Chong-Hae; Yoon, Jang W; Chai, Young Gyu

    2014-10-01

    RelA and SpoT synthesize ppGpp, a key effector molecule that facilitates the adaptation of bacteria to nutrient starvation and other stresses, known as the stringent response. To investigate the role of Rsh Bant , a putative RelA/SpoT homolog (encoded by BAS4302) in Bacillus anthracis, we examined the alteration of the secretome profiles after the overexpression of a functional His-Rsh Bant protein in the B. anthracis strain Sterne at the stationary growth phase. In the ppGpp-deficient E. coli mutant strain CF1693, overexpression of Rsh Bant restored a ppGpp-dependent growth defect on minimal glucose media. The secretome profiles obtained using a two-dimensional electrophoresis (2-DE) analysis were altered by overexpression of Rsh Bant in B. anthracis. Among the 66 protein spots differentially expressed >1.5-fold, the 29 proteins were abundant for further identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Functional categorization of those proteins implicated their involvement in various biological activities. Taken together, our results imply that overexpression of a functional His-Rsh Bant can lead to the increased levels of intracellular ppGpp in B. anthracis, resulting in the significant changes in its secretome profiling. The stringent response-controlled proteins identified are likely useful as potential targets for serodiagnostic applications.

  11. The PSE1 gene modulates lead tolerance in Arabidopsis

    PubMed Central

    Fan, Tingting; Yang, Libo; Wu, Xi; Ni, Jiaojiao; Jiang, Haikun; Zhang, Qi’an; Fang, Ling; Sheng, Yibao; Ren, Yongbing; Cao, Shuqing

    2016-01-01

    Lead (Pb) is a dangerous heavy metal contaminant with high toxicity to plants. However, the regulatory mechanism of plant Pb tolerance is poorly understood. Here, we showed that the PSE1 gene confers Pb tolerance in Arabidopsis. A novel Pb-sensitive mutant pse1-1 (Pb-sensitive1) was isolated by screening T-DNA insertion mutants. PSE1 encodes an unknown protein with an NC domain and was localized in the cytoplasm. PSE1 was induced by Pb stress, and the pse1-1 loss-of-function mutant showed enhanced Pb sensitivity; overexpression of PSE1 resulted in increased Pb tolerance. PSE1-overexpressing plants showed increased Pb accumulation, which was accompanied by the activation of phytochelatin (PC) synthesis and related gene expression. In contrast, the pse1-1 mutant showed reduced Pb accumulation, which was associated with decreased PC synthesis and related gene expression. In addition, the expression of PDR12 was also increased in PSE1-overexpressing plants subjected to Pb stress. Our results suggest that PSE1 regulates Pb tolerance mainly through glutathione-dependent PC synthesis by activating the expression of the genes involved in PC synthesis and at least partially through activating the expression of the ABC transporter PDR12/ABCG40. PMID:27335453

  12. Lead poisoning: The invisible disease

    USGS Publications Warehouse

    Friend, Milton

    1989-01-01

    Lead poisoning is an intoxication resulting from absorption of hazardous levels of lead into body tissues. Lead pellets from shot shells, when ingested, are the most common source of lead poisoning in migratory birds. Other far less common sources include lead fishing sinkers, mine wastes, paint pigments, bullets, and other lead objects that are swallowed.

  13. LEAD SEVERING CONTRIVANCE

    DOEpatents

    Widmaier, W.

    1958-04-01

    A means for breaking an electrical circuit within an electronic tube during the process of manufacture is described. Frequently such circuits must be employed for gettering or vapor coating purposes, however, since an external pair of corector pins having no use after manufacture, is undesirable, this invention permits the use of existing leads to form a temporary circuit during manufacture, and severing it thereafter. One portion of the temporary circuit, made from a springy material such as tungsten, is spot welded to a fusable member. To cut the circuit an external radiant heat source melts the fusable member, allowing the tensed tungsten spring to contract and break the circuit. This inexpensive arrangement is particularly useful when the tube has a great many external leads crowded into the tube base.

  14. Lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Lead/acid batteries are produced in sizes from less than 1 to 3000 Ah for a wide variety of portable, industrial and automotive applications. Designs include Planté, Fauré or pasted, and tubular electrodes. In addition to the traditional designs which are flooded with sulfuric acid, newer 'valve-regulated" designs have the acid immolibized in a silica gel or absorbed in a porous glass separator. Development is ongoing worldwide to increase the specific power, energy and deep discharge cycle life of this commercially successful system to meet the needs of new applications such as electric vehicles, load leveling, and solar energy storage. The operating principles, current status, technical challenges and commercial impact of the lead/acid battery are reviewed.

  15. Leading change: 2--planning.

    PubMed

    Kerridge, Joanna

    National initiatives have outlined the importance of involving frontline staff in service improvement, and the ability to influence and manage change has been identified as an essential skill for delivering new models of care. Nurses often have to take the lead in managing change in clinical practice. The second in a three-part series is designed to help nurses at all levels develop the knowledge and skills to function as change agents within their organisations. This article focuses on planning the change and dealing with resistance.

  16. Over-expression of Multi-heme C-type Cytochromes

    SciTech Connect

    Shi, Liang; Lin, Chiann Tso; Markillie, Lye Meng; Squier, Thomas C.; Hooker, Brian S.

    2005-02-01

    ABSTRACT-Because they contain covalently attached hemes, c-type cytochromes, especially those with multi-heme, are difficult to over-express. The gram negative bacterium Shewanella oneidensis MR-1 has been successfully used for over-expression of multi-heme c-type cytochromes...

  17. Overexpressing Superoxide Dismutase 2 Induces a Supernormal Cardiac Function by Enhancing Redox-dependent Mitochondrial Function and Metabolic Dilation*

    PubMed Central

    Kang, Patrick T.; Chen, Chwen-Lih; Ohanyan, Vahagn; Luther, Daniel J.; Meszaros, J. Gary; Chilian, William M.; Chen, Yeong-Renn

    2015-01-01

    During heightened cardiac work, O2 consumption by the heart benefits energy production via mitochondria. However, some electrons leak from the respiratory chain and yield superoxide, which is rapidly metabolized into H2O2 by SOD2. To understand the systemic effects of the metabolic dilator, H2O2, we studied mice with cardiac-specific SOD2 overexpression (SOD2-tg), which increases the H2O2 produced by cardiac mitochondria. Contrast echocardiography was employed to evaluate cardiac function, indicating that SOD2-tg had a significantly greater ejection fraction and a lower mean arterial pressure (MAP) that was partially normalized by intravenous injection of catalase. Norepinephrine-mediated myocardial blood flow (MBF) was significantly enhanced in SOD2-tg mice. Coupling of MBF to the double product (Heart Rate × MAP) was increased in SOD2-tg mice, indicating that the metabolic dilator, “spilled” over, inducing systemic vasodilation. The hypothesis that SOD2 overexpression effectively enhances mitochondrial function was further evaluated. Mitochondria of SOD2-tg mice had a decreased state 3 oxygen consumption rate, but maintained the same ATP production flux under the basal and L-NAME treatment conditions, indicating a higher bioenergetic efficiency. SOD2-tg mitochondria produced less superoxide, and had lower redox activity in converting cyclic hydroxylamine to stable nitroxide, and a lower GSSG concentration. EPR analysis of the isolated mitochondria showed a significant decrease in semiquinones at the SOD2-tg Qi site. These results support a more reductive physiological setting in the SOD2-tg murine heart. Cardiac mitochondria exhibited no significant differences in the respiratory control index between WT and SOD2-tg. We conclude that SOD2 overexpression in myocytes enhances mitochondrial function and metabolic vasodilation, leading to a phenotype of supernormal cardiac function. PMID:26374996

  18. Field Evaluation of Transgenic Switchgrass Plants Overexpressing PvMYB4 for Reduced Biomass Recalcitrance

    SciTech Connect

    Baxter, Holly L.; Poovaiah, Charleson R.; Yee, Kelsey L.; Mazarei, Mitra; Rodriguez, Miguel; Thompson, Olivia A.; Shen, Hui; Turner, Geoffrey B.; Decker, Stephen R.; Sykes, Robert W.; Chen, Fang; Davis, Mark F.; Mielenz, Jonathan R.; Davison, Brian H.; Dixon, Richard A.; Stewart, C. Neal

    2015-01-07

    High biomass yields and minimal agronomic input requirements have made switchgrass, Panicum virgatum L., a leading candidate lignocellulosic bioenergy crop. Large-scale lignocellulosic biofuel production from such crops is limited by the difficulty to deconstruct cell walls into fermentable sugars: the recalcitrance problem. In this study, we assessed the field performance of switchgrass plants overexpressing the switchgrass MYB4 (PvMYB4) transcription factor gene. PvMYB4 transgenic switchgrass can have great lignin reduction, which commensurately increases sugar release and biofuel production. Our results over two growing seasons showed that one transgenic event (out of eight) had important gains in both biofuel (32% more) and biomass (63% more) at the end of the second growing season relative to non-transgenic controls. These gains represent a doubling of biofuel production per hectare, which is the highest gain reported from any field-grown modified feedstock. In contrast to this transgenic event, which had relatively low ectopic overexpression of the transgene, five of the eight transgenic events planted did not survive the first field winter. The dead plants were all high-overexpressing events that performed well in the earlier greenhouse studies. Disease susceptibility was not compromised in any transgenic events over the field experiments. These results demonstrate the power of modifying the expression of an endogenous transcription factor to improve biofuel and biomass simultaneously, and also highlight the importance of field studies for "sorting" transgenic events. In conclusion, further research is needed to develop strategies for fine-tuning temporal-spatial transgene expression in feedstocks to optimize desired phenotypes.

  19. Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats' nucleus accumbens.

    PubMed

    Adriani, W; Boyer, F; Gioiosa, L; Macrì, S; Dreyer, J-L; Laviola, G

    2009-03-03

    Multiple theories have been proposed for sensation seeking and vulnerability to impulse-control disorders [Zuckerman M, Kuhlman DM (2000) Personality and risk-taking: Common biosocial factors. J Pers 68:999-1029], and many of these rely on a dopamine system deficit. Available animal models reproduce only some behavioral symptoms and seem devoid of construct validity. We used lentivirus tools for over-expressing or silencing the dopamine transporter (DAT) and we evaluated the resulting behavioral profiles in terms of motivation and self-control. Wistar adult rats received stereotaxic inoculation of a lentivirus that allowed localized intra-accumbens delivery of a DAT gene enhancer/silencer, or the green fluorescent protein, GFP. These animals were studied for intolerance to delay, risk proneness and novelty seeking. As expected, controls shifted their demanding from a large reward toward a small one when the delivery of the former was increasingly delayed (or uncertain). Interestingly, in the absence of general locomotor effects, DAT over-expressing rats showed increased impulsivity (i.e. a more marked shift of demanding from the large/delayed toward the small/soon reward), and increased risk proneness (i.e. a less marked shift from the large/uncertain toward the small/sure reward), compared with controls. Rats with enhanced or silenced DAT expression did not show any significant preference for a novel environment. In summary, consistent with literature on comorbidity between attention-deficit/hyperactivity disorder and pathological gambling, we demonstrate that DAT over-expression in rats' nucleus accumbens leads to impulsive and risk prone phenotype. Thus, a reduced dopaminergic tone following altered accumbal DAT function may subserve a sensation-seeker phenotype and the vulnerability to impulse-control disorders.

  20. Nigrostriatal rAAV-mediated GDNF Overexpression Induces Robust Weight Loss in a Rat Model of Age-related Obesity

    PubMed Central

    Manfredsson, Fredric P; Tumer, Nihal; Erdos, Benedek; Landa, Tessa; Broxson, Christopher S; Sullivan, Layla F; Rising, Aaron C; Foust, Kevin D; Zhang, Yi; Muzyczka, Nicholas; Gorbatyuk, Oleg S; Scarpace, Philip J; Mandel, Ronald J

    2009-01-01

    Intraventricular administration of glial cell line–derived neurotrophic factor (GDNF) in primate and humans to study Parkinson's disease (PD) has revealed the potential for GDNF to induce weight loss. Our previous data indicate that bilateral continuous hypothalamic GDNF overexpression via recombinant adeno-associated virus (rAAV) results in significant failure to gain weight in young rats and weight loss in aged rats. Based on these previous results, we hypothesized that because the nigrostriatal tract passes through the lateral hypothalamus, motor hyperactivity mediated by nigrostriatal dopamine (DA) may have been responsible for the previously observed effect on body weight. In this study, we compared bilateral injections of rAAV2/5-GDNF in hypothalamus versus substantia nigra (SN) in aged Brown-Norway X Fisher 344 rats. Nigrostriatal GDNF overexpression resulted in significantly greater weight loss than rats treated in hypothalamus. The nigral or hypothalamic GDNF-induced weight loss was unrelated to motor activity levels of the rats, though some of the weight loss could be attributed to a transient reduction in food intake. Forebrain DA levels did not account for the observed effects on body weight, although GDNF-induced increases in nucleus accumbens DA may have partially contributed to this effect in the hypothalamic GDNF-treated group. However, only nigrostriatal GDNF overexpression induced activation of phosphorylated extracellular signal-regulated kinase (p-ERK) in a small population of corticotrophin-releasing factor [corticotrophin-releasing hormone (CRH)] neurons located specifically in the medial parvocellullar division (MPD) of the paraventricular nucleus of the hypothalamus. Activation of these hypothalamic CRH neurons likely accounted for the observed metabolic effects leading to weight loss in obese rats. PMID:19277011

  1. ZEB1 overexpression associated with E-cadherin and microRNA-200 downregulation is characteristic of undifferentiated endometrial carcinoma.

    PubMed

    Romero-Pérez, Laura; López-García, M Ángeles; Díaz-Martín, Juan; Biscuola, Michele; Castilla, M Ángeles; Tafe, Laura J; Garg, Karuna; Oliva, Esther; Matias-Guiu, Xavier; Soslow, Robert A; Palacios, José

    2013-11-01

    Undifferentiated endometrial carcinomas are very aggressive high-grade endometrial carcinomas that are frequently under-recognized. This study aimed to analyze the molecular alterations underlying the development of these endometrial carcinomas, focusing on those related to dedifferentiation. We assessed a series of 120 tumors: 57 grade 1 and 2 endometrioid endometrial carcinomas, 15 grade 3 endometrioid endometrial carcinomas, 27 endometrial serous carcinomas, and 21 undifferentiated endometrial carcinomas. We found a high frequency of DNA mismatch repair deficiency (38%) and moderate rate of p53 overexpression (∼33%) in undifferentiated carcinomas. In contrast to the characteristic endometrioid phenotype, there was a dramatic downregulation of E-cadherin expression in the undifferentiated subtype. Quantitative methylation studies dismissed CDH1 promoter hypermethylation as the mechanism responsible for this change in gene expression, while immunohistochemistry revealed that the E-cadherin repressor ZEB1 was frequently overexpressed (62%) in undifferentiated endometrial carcinomas. This finding was accompanied by a sharp downregulation in the expression of the miR-200 family of microRNAs, well-known targets of ZEB1. Furthermore, there was enhanced expression of epithelial-to-mesenchymal transition markers in undifferentiated endometrial carcinomas, such as N-cadherin, cytoplasmic p120, and osteonectin. In addition, HMGA2, a regulator of epithelial-to-mesenchymal transition that is expressed in aggressive endometrial tumors, such as endometrial serous carcinomas and carcinosarcomas, was expressed in >20% of undifferentiated carcinomas. These results suggest that ZEB1 overexpression, associated with E-cadherin and miR-200s downregulation, and the expression of mesenchymal markers might enhance the metastatic potential of undifferentiated endometrial carcinomas, leading to a poor prognosis. In addition, our observations suggest that the immnohistochemical analysis

  2. Overexpressing superoxide dismutase 2 induces a supernormal cardiac function by enhancing redox-dependent mitochondrial function and metabolic dilation.

    PubMed

    Kang, Patrick T; Chen, Chwen-Lih; Ohanyan, Vahagn; Luther, Daniel J; Meszaros, J Gary; Chilian, William M; Chen, Yeong-Renn

    2015-11-01

    During heightened cardiac work, O2 consumption by the heart benefits energy production via mitochondria. However, some electrons leak from the respiratory chain and yield superoxide, which is rapidly metabolized into H2O2 by SOD2. To understand the systemic effects of the metabolic dilator, H2O2, we studied mice with cardiac-specific SOD2 overexpression (SOD2-tg), which increases the H2O2 produced by cardiac mitochondria. Contrast echocardiography was employed to evaluate cardiac function, indicating that SOD2-tg had a significantly greater ejection fraction and a lower mean arterial pressure (MAP) that was partially normalized by intravenous injection of catalase. Norepinephrine-mediated myocardial blood flow (MBF) was significantly enhanced in SOD2-tg mice. Coupling of MBF to the double product (Heart Rate×MAP) was increased in SOD2-tg mice, indicating that the metabolic dilator, "spilled" over, inducing systemic vasodilation. The hypothesis that SOD2 overexpression effectively enhances mitochondrial function was further evaluated. Mitochondria of SOD2-tg mice had a decreased state 3 oxygen consumption rate, but maintained the same ATP production flux under the basal and L-NAME treatment conditions, indicating a higher bioenergetic efficiency. SOD2-tg mitochondria produced less superoxide, and had lower redox activity in converting cyclic hydroxylamine to stable nitroxide, and a lower GSSG concentration. EPR analysis of the isolated mitochondria showed a significant decrease in semiquinones at the SOD2-tg Qi site. These results support a more reductive physiological setting in the SOD2-tg murine heart. Cardiac mitochondria exhibited no significant differences in the respiratory control index between WT and SOD2-tg. We conclude that SOD2 overexpression in myocytes enhances mitochondrial function and metabolic vasodilation, leading to a phenotype of supernormal cardiac function.

  3. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation

    PubMed Central

    Kessler, Sonja M.; Laggai, Stephan; Van Wonterghem, Elien; Gemperlein, Katja; Müller, Rolf; Haybaeck, Johannes; Vandenbroucke, Roosmarijn E.; Ogris, Manfred; Libert, Claude; Kiemer, Alexandra K.

    2016-01-01

    Although insulin-like growth factor 2 (IGF2) has been reported to be overexpressed in steatosis and steatohepatitis, a causal role of IGF2 in steatosis development remains elusive. Aim of our study was to decipher the role of IGF2 in steatosis development. Hydrodynamic gene delivery of an Igf2 plasmid used for transient Igf2 overexpression employing codon-optimized plasmid DNA resulted in a strong induction of hepatic Igf2 expression. The exogenously delivered Igf2 had no influence on endogenous Igf2 expression. The downstream kinase AKT was activated in Igf2 animals. Decreased ALT levels mirrored the cytoprotective effect of IGF2. Serum cholesterol was increased and sulfo-phospho-vanillin colorimetric assay confirmed lipid accumulation in Igf2-livers while no signs of inflammation were observed. Interestingly, hepatic cholesterol and phospholipids, determined by thin layer chromatography, and free cholesterol by filipin staining, were specifically increased. Lipid droplet (LD) size was not changed, but their number was significantly elevated. Furthermore, free cholesterol, which can be stored in LDs and has been reported to be critical for steatosis progression, was elevated in Igf2 overexpressing mice. Accordingly, Hmgcr/HmgCoAR was upregulated. To have a closer look at de novo lipid synthesis we investigated expression of the lipogenic transcription factor SREBF1 and its target genes. SREBF1 was induced and also SREBF1 target genes were slightly upregulated. Interestingly, the expression of Cpt1a, which is responsible for mitochondrial fatty acid oxidation, was induced. Hepatic IGF2 expression induces a fatty liver, characterized by increased cholesterol and phospholipids leading to accumulation of LDs. We therefore suggest a causal role for IGF2 in hepatic lipid accumulation. PMID:27199763

  4. In vivo effects of APP are not exacerbated by BACE2 co-overexpression: behavioural characterization of a double transgenic mouse model.

    PubMed

    Azkona, Garikoitz; Levannon, Ditsa; Groner, Yoram; Dierssen, Mara

    2010-11-01

    Down syndrome, the most common genetic disorder leading to mental retardation, is caused by the presence of all or part of an extra copy of chromosome 21. At relatively early ages, Down syndrome patients develop progressive formation and extracellular aggregation of amyloid-β peptide, considered as one of the causal factors for the pathogenesis of Alzheimer's disease. This neuropathological hallmark has been attributed to the overexpression of APP but could also be contributed by other HSA21 genes. BACE2 maps to HSA21 and is homologous to BACE1, a β-secretase involved in the amyloidogenic pathway of APP proteolysis, and thus it has been hypothesized that the co-overexpression of both genes could contribute to Alzheimer's like neuropathology present in Down syndrome. The aim of the present study has been to analyse the impact of the co-overexpression of BACE2 and APP, using a double transgenic mouse model. Double transgenic mice did not present any neurological or sensorimotor alterations, nor genotype-dependent anxiety-like behaviour or age-associated cognitive dysfunction. Interestingly, TgBACE2-APP mice showed deregulation of BACE2 expression levels that were significantly increased with respect to single TgBACE2 mice. Co-overexpression of BACE2 and APP did not increase amyloid-β peptide concentration in brain. Our results suggest that the in vivo effects of APP are not exacerbated by BACE2 co-overexpression but may have some protective effects in specific behavioural and cognitive domains in transgenic mice.

  5. The effects of bufadienolides on HER2 overexpressing breast cancer cells.

    PubMed

    Wang, Tianjiao; Mu, Lin; Jin, Haifeng; Zhang, Peng; Wang, Yueyue; Ma, Xiaochi; Pan, Jinjin; Miao, Jian; Yuan, Yuhui

    2016-06-01

    HER2 is a proto-oncogene frequently amplified in human breast cancer, its overexpression is correlated with tamoxifen resistance and decreased recurrence-free survival. Arenobufagin and bufalin are homogeneous bufadienolides of cardiac glycosides agents. In this research, we studied the effects of arenobufagin and bufalin on cellular survival and proliferation of HER2 overexpressing breast cancer cells and the mechanism under the results including the direct effect on HER2 downstream pathways. Our results showed that arenobufagin and bufalin could significantly inhibit the proliferation and survival of HER2 overexpressing breast cancer cells, along with the declination of SRC-1, SRC-3, nuclear transcription factor E2F1, phosphorylated AKT, and ERK. And the combination of each bufadienolide in low dose with tamoxifen could significantly enhance the inhibitory effect of tamoxifen on HER2 overexpressing breast cancer cells. All above suggest that arenobufagin and bufalin may be potential therapy adjuvants for HER2 overexpressing breast cancer therapy.

  6. Over-Expression of Meteorin Drives Gliogenesis Following Striatal Injury

    PubMed Central

    Wright, Jordan L.; Ermine, Charlotte M.; Jørgensen, Jesper R.; Parish, Clare L.; Thompson, Lachlan H.

    2016-01-01

    A number of studies have shown that damage to brain structures adjacent to neurogenic regions can result in migration of new neurons from neurogenic zones into the damaged tissue. The number of differentiated neurons that survive is low, however, and this has led to the idea that the introduction of extrinsic signaling factors, particularly neurotrophic proteins, may augment the neurogenic response to a level that would be therapeutically relevant. Here we report on the impact of the relatively newly described neurotrophic factor, Meteorin, when over-expressed in the striatum following excitotoxic injury. Birth-dating studies using bromo-deoxy-uridine (BrdU) showed that Meteorin did not enhance injury-induced striatal neurogenesis but significantly increased the proportion of new cells with astroglial and oligodendroglial features. As a basis for comparison we found under the same conditions, glial derived neurotrophic factor significantly enhanced neurogenesis but did not effect gliogenesis. The results highlight the specificity of action of different neurotrophic factors in modulating the proliferative response to injury. Meteorin may be an interesting candidate in pathological settings involving damage to white matter, for example after stroke or neonatal brain injury. PMID:27458346

  7. [Overexpression of Aspergillus candidus lactase and analysis of enzymatic properties].

    PubMed

    Zhang, Wei; Fan, Yun-liu; Yao, Bin

    2005-04-01

    The lactase gene lacb' from Aspergillus candidus was fused behind alpha-factor signal sequence in the Pichia pastoris expression vector pPIC9, then integrated into the genome of P. pastoris by recombination events. The P. pastoris recombinants for lactase overexpression were screened by enzyme activity analysis and SDS-PAGE. The lactase expressed in P. pastoris was glycosylated protein with an apparent molecular weight of 130 kD, while the deglycosylated lactase treated with Endo H had an apparent molecular weight of about 110 kD. The expression level of secreted lactase protein in recombinant P. pastoris was 6 mg/mL with enzymatic activity of 3600 U/mL in the 5 L fermenter, which was the highest among that of all kinds of recombinant strains reported now. The optimal pH and optimal temperature of the lactase are 5.2 and 60 degrees C. The Vmax, Km, and specific activity of the lactase are 3.3 micromol/min, 1.7 mmol/L and 706.5 +/- 2.6 U/mg, respectively. Compare to the lactase from Aspergillus oryzae ATCC 20423, the expressed lactase from A. candidus have better enzymatic properties including the high thermostability, high specific activity and wide pH range for enzyme reaction.

  8. Transgenic overexpression of ribonucleotide reductase improves cardiac performance

    PubMed Central

    Nowakowski, Sarah G.; Kolwicz, Stephen C.; Korte, Frederick Steven; Luo, Zhaoxiong; Robinson-Hamm, Jacqueline N.; Page, Jennifer L.; Brozovich, Frank; Weiss, Robert S.; Tian, Rong; Murry, Charles E.; Regnier, Michael

    2013-01-01

    We previously demonstrated that cardiac myosin can use 2-deoxy-ATP (dATP) as an energy substrate, that it enhances contraction and relaxation with minimal effect on calcium-handling properties in vitro, and that contractile enhancement occurs with only minor elevation of cellular [dATP]. Here, we report the effect of chronically enhanced dATP concentration on cardiac function using a transgenic mouse that overexpresses the enzyme ribonucleotide reductase (TgRR), which catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis. Hearts from TgRR mice had elevated left ventricular systolic function compared with wild-type (WT) mice, both in vivo and in vitro, without signs of hypertrophy or altered diastolic function. Isolated cardiomyocytes from TgRR mice had enhanced contraction and relaxation, with no change in Ca2+ transients, suggesting targeted improvement of myofilament function. TgRR hearts had normal ATP and only slightly decreased phosphocreatine levels by 31P NMR spectroscopy, and they maintained rate responsiveness to dobutamine challenge. These data demonstrate long-term (at least 5-mo) elevation of cardiac [dATP] results in sustained elevation of basal left ventricular performance, with maintained β-adrenergic responsiveness and energetic reserves. Combined with results from previous studies, we conclude that this occurs primarily via enhanced myofilament activation and contraction, with similar or faster ability to relax. The data are sufficiently compelling to consider elevated cardiac [dATP] as a therapeutic option to treat systolic dysfunction. PMID:23530224

  9. Overexpression and topology of bacterial oligosaccharyltransferase PglB

    SciTech Connect

    Li, Lei; Woodward, Robert; Ding, Yan; Liu, Xian-wei; Yi, Wen; Bhatt, Veer S.; Chen, Min; Zhang, Lian-wen; Wang, Peng George

    2010-04-16

    Campylobacter jejuni contains a post-translational N-glycosylation system in which a STT3 homologue, PglB, functions as the oligosaccharyltransferase. Herein, we established a method for obtaining relatively large quantities of homogenous PglB proteins. PglB was overexpressed in Escherichia coli C43(DE3) at a level of 1 mg/L cell cultures. The activity of purified PglB was verified using a chemically synthesized sugar donor: N-acetylgalactosamine-diphospho-undecaprenyl (GalNAc-PP-Und) and a synthesized peptide acceptor. The result confirms that PglB is solely responsible for the oligosaccharyltransferase activity and complements the finding that PglB exhibits relaxed sugar substrate specificity. In addition, we performed the topology mapping of PglB using the PhoA/LacZ fusion method. The topological model shows that PglB possesses 11 transmembrane segments and two relatively large periplasmic regions other than the C-terminal domain, which is consistent with the proposal of the common N{sub cyt}-C{sub peri} topology with 11 transmembrane segments for the STT3 family proteins.

  10. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  11. MMSET is overexpressed in cancers: Link with tumor aggressiveness

    SciTech Connect

    Kassambara, Alboukadel; Klein, Bernard Moreaux, Jerome

    2009-02-20

    MMSET is expressed ubiquitously in early development and its deletion is associated with the malformation syndrome called Wolf-Hirschhorn syndrome. It is involved in the t(4; 14) (p16; q32) chromosomal translocation, which is the second most common translocation in multiple myeloma (MM) and is associated with the worst prognosis. MMSET expression has been shown to promote cellular adhesion, clonogenic growth and tumorigenicity in multiple myeloma. MMSET expression has been recently shown to increase with ascending tumor proliferation activity in glioblastoma multiforme. These data demonstrate that MMSET could be implicated in tumor emergence and/or progression. Therefore, we compared the expression of MMSET in 40 human tumor types - brain, epithelial, lymphoid - to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database. We found significant overexpression of MMSET in 15 cancers compared to their normal counterparts. Furthermore MMSET is associated with tumor aggressiveness or prognosis in many types of these aforementioned cancers. Taken together, these data suggest that MMSET potentially acts as a pathogenic agent in many cancers. The identification of the targets of MMSET and their role in cell growth and survival will be key to understand how MMSET is associated with tumor development.

  12. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging

    PubMed Central

    Dai, Dao-Fu; Santana, Luis F.; Vermulst, Marc; Tomazela, Daniela M.; Emond, M.J.; MacCoss, Michael J.; Gollahon, Katherine; Martin, George M.; Loeb, Lawrence A.; Ladiges, Warren C.; Rabinovitch, Peter S.

    2010-01-01

    Background: Age is a major risk for cardiovascular diseases. Although mitochondrial reactive oxygen species (ROS) have been proposed as one of the causes of aging, their role in cardiac aging remains unclear. We have previously shown that overexpression of catalase targeted to mitochondria (mCAT) prolongs murine median lifespan by 17-21%. Methods and Results: We used echocardiography to study cardiac function in aging cohorts of wild type (WT) and mCAT mice. Changes found in WT mice recapitulate human aging: age-dependent increases in left ventricular mass index (LVMI) and left atrial dimension, worsening of the myocardial performance index (MPI), and a decline in diastolic function. Cardiac aging in mice is accompanied by accumulation of mitochondrial protein oxidation, increased mitochondrial DNA mutations and deletions and mitochondrial biogenesis, increased ventricular fibrosis, enlarged myocardial fiber size, decreased cardiac SERCA2 protein and activation of the calcineurin-NFAT pathway. All of these age-related changes were significantly attenuated in mCAT mice. Analysis of survival of 130 mice demonstrated that echocardiographic cardiac aging risk scores were significant predictors of mortality. The estimated attributable risk to mortality for these two parameters was 55%. Conclusion: This study shows that cardiac aging in the mouse closely recapitulates human aging and demonstrates the critical role of mitochondrial ROS in cardiac aging and the impact of cardiac aging on survival. These findings also support the potential application of mitochondrial antioxidants in ROS-related cardiovascular diseases. PMID:19451351

  13. Hematopoietic overexpression of the transcription factor Erg induces lymphoid and erythro-megakaryocytic leukemia

    PubMed Central

    Carmichael, Catherine L.; Metcalf, Donald; Henley, Katya J.; Kruse, Elizabeth A.; Di Rago, Ladina; Mifsud, Sandra; Alexander, Warren S.; Kile, Benjamin T.

    2012-01-01

    The transcription factor encoded by the E-twenty-six (ETS)-related gene, ERG, is an essential regulator of hematopoietic stem cell function and a potent human oncoprotein. Enforced expression of ERG in murine hematopoietic cells leads to the development of a well-characterized lymphoid leukemia and a less well-defined non lymphoid disease. To clarify the latter, we generated murine bone marrow chimeras with enforced Erg expression in engrafted hematopoietic progenitor cells. As expected, these mice developed lymphoid leukemia. However, the previously reported non lymphoid disease that developed was shown to be a uniform, transplantable leukemia with both erythroid and megakaryocytic characteristics. In vivo, this disease had the overall appearance of an erythroleukemia, with an accumulation of immature erythroblasts that infiltrated the bone marrow, spleen, liver, and lung. However, when stimulated in vitro, leukemic cell clones exhibited both erythroid and megakaryocytic differentiation, suggesting that transformation occurred in a bipotential progenitor. Thus, in mice, Erg overexpression induces the development of not only lymphoid leukemia but also erythro-megakaryocytic leukemia. PMID:22936051

  14. Apoptotic effect of tannic acid on fatty acid synthase over-expressed human breast cancer cells.

    PubMed

    Nie, Fangyuan; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-02-01

    Breast cancer is one of the most common cancers and is the second leading cause of cancer mortality in women worldwide. Novel therapies and chemo-therapeutic drugs are urgently needed to be developed for the treatment of breast cancer. Increasing evidence suggests that fatty acid synthase (FAS) plays an important role in breast cancer, for the expression of FAS is significantly higher in human breast cancer cells than in normal cells. Tannic acid (TA), a natural polyphenol, possesses significant biological functions, including bacteriostasis, hemostasis, and anti-oxidant. Our previous studies demonstrated that TA is a natural FAS inhibitor whose inhibitory activity is stronger than that of classical FAS inhibitors, such as C75 and cerulenin. This study further assessed the effect and therapeutic potential of TA on FAS over-expressed breast cancer cells, and as a result, TA had been proven to possess the functions of inhibiting intracellular FAS activity, down-regulating FAS expression in human breast cancer MDA-MB-231 and MCF-7 cells, and inducing cancer cell apoptosis. Since high-expressed FAS is recognized as a molecular marker for breast cancer and plays an important role in cancer prognosis, these findings suggest that TA is a potential drug candidate for treatment of breast cancer.

  15. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development.

    PubMed

    Ham, Byung-Kook; Li, Gang; Kang, Byung-Ho; Zeng, Fanchang; Lucas, William J

    2012-09-01

    In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems.

  16. Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants.

    PubMed

    Pattanayak, Gopal K; Biswal, Ajaya K; Reddy, Vanga S; Tripathy, Baishnab C

    2005-01-14

    Chlorophyllide a oxygenase (CAO) that converts chlorophyllide a to chlorophyllide b was overexpressed in tobacco to increase chlorophyll (Chl) b biosynthesis and alter the Chl a/b ratio. Transgenic plants along with their wild-type cultivars were grown in low and high light intensities. In low light there was 20% increase in chlorophyll b contents in transgenic plants, which resulted in 16% reduction in the Chl a/b ratio. In high light, total Chl contents were 31% higher in transgenic plants than those of wild type. The increase in Chl a was 19% and that of Chl b was 72% leading to 31% decline of Chl a/b ratio. The increase in Chl b contents was accompanied by enhanced CAO expression that was highly pronounced in low light. As compared to low light, in high light Lhcb1 and Chl a/b transcripts abundance was significantly increased in transgenic plants suggesting a close relationship between Chl b synthesis and cab gene expression. However, there was a small increase in expression of LHCII proteins, which did not correspond to 72% increase in Chl b content in transgenic line, implying that LHCPII has the ability to bind more Chl b molecules.

  17. Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy.

    PubMed

    Zuscik, M J; Sands, S; Ross, S A; Waugh, D J; Gaivin, R J; Morilak, D; Perez, D M

    2000-12-01

    Progress toward elucidating the function of alpha1B-adrenergic receptors (alpha1BARs) in the central nervous system has been constrained by a lack of agonists and antagonists with adequate alpha1B-specificity. We have obviated this constraint by generating transgenic mice engineered to overexpress either wild-type or constitutively active alpha1BARs in tissues that normally express the receptor, including the brain. All transgenic lines showed granulovacular neurodegeneration, beginning in alpha1B-expressing domains of the brain and progressing with age to encompass all areas. The degeneration was apoptotic and did not occur in non-transgenic mice. Correspondingly, transgenic mice showed an age-progressive hindlimb disorder that was parkinsonian-like, as demonstrated by rescue of the dysfunction by 3, 4-dihydroxyphenylalanine and considerable dopaminergic-neuronal degeneration in the substantia nigra. Transgenic mice also had a grand mal seizure disorder accompanied by a corresponding dysplasia and neurodegeneration of the cerebral cortex. Both behavioral phenotypes (locomotor impairment and seizure) could be partially rescued with the alpha1AR antagonist terazosin, indicating that alpha1AR signaling participated directly in the pathology. Our results indicate that overstimulation of alpha1BAR leads to apoptotic neurodegeneration with a corresponding multiple system atrophy indicative of Shy-Drager syndrome, a disease whose etiology is unknown.

  18. Molecular Mechanisms of Bladder Outlet Obstruction in Transgenic Male Mice Overexpressing Aromatase (Cyp19a1)

    PubMed Central

    Lin, Wei; Rahman, Nafis A.; Lin, Jian; Zhang, Hua; Gou, Kemian; Yu, Wanpeng; Zhu, Dahai; Li, Ning; Huhtaniemi, Ilpo; Li, Xiangdong

    2011-01-01

    We investigated the etiology and molecular mechanisms of bladder outlet obstruction (BOO). Transgenic (Tg) male mice overexpressing aromatase (Cyp19a1) under the ubiquitin C promoter in the estrogen-susceptible C57Bl/6J genetic background (AROM+/6J) developed inguinal hernia by 2 months and severe BOO by 9 to 10 months, with 100% penetrance. These mice gradually developed uremia, renal failure, renal retention, and finally died. The BOO bladders were threefold larger than in age-matched wild-type (WT) males and were filled with urine on necropsy. Hypotrophic smooth muscle cells formed the thin detrusor urinae muscle, and collagen III accumulation contributed to the reduced compliance of the bladder. p-AKT and ERα expression were up-regulated and Pten expression was down-regulated in the BOO bladder urothelium. Expression of only ERα in the intradetrusor fibroblasts suggests a specific role of this estrogen receptor form in urothelial proliferation. Inactivation of Pten, which in turn activated the p-AKT pathway, was strictly related to the activation of the ERα pathway in the BOO bladders. Human relevance for these findings was provided by increased expression of p-AKT, PCNA, and ERα and decreased expression of PTEN in severe human BOO samples, compared with subnormal to mild samples. These findings clarify the involvement of estrogen excess and/or imbalance of the androgen/estrogen ratio in the molecular pathogenetic mechanisms of BOO and provide a novel lead into potential treatment strategies for BOO. PMID:21356374

  19. MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes

    PubMed Central

    Suresh Babu, Sahana; Thandavarayan, Rajarajan A.; Joladarashi, Darukeshwara; Jeyabal, Prince; Krishnamurthy, Shashirekha; Bhimaraj, Arvind; Youker, Keith A.; Krishnamurthy, Prasanna

    2016-01-01

    Efferocytosis, a process of clearance of apoptotic cells by phagocytes, is essential for successful resolution of inflammation and maintenance of tissue homeostasis. Diabetes compromises the function of macrophages leading to adverse inflammatory response during wound healing, myocardial injury, atherosclerosis and autoimmune disorders. However, the effect of diabetes on macrophage-mediated efferocytosis of apoptotic cardiomyocytes (ACM) and the molecular mechanisms involved are not understood so far. In the present study we found that invitro efferocytosis of ACM was impaired in macrophages from db/db (diabetic) mice. Macrophages exposed to high glucose (HG) decreases microRNA-126 (miR-126) expression with a corresponding increase in ADAM9 expression. Dual-luciferase reporter assay confirms that ADAM9 3′UTR contains miR-126 target site. ADAM9 inhibition reduces HG-induced proteolytic cleavage of Mer tyrosine receptor kinase (MerTK, a proto-oncogene that plays a critical role in phagocytosis), resulting in shedding of soluble-Mer (sMER) and loss of MERTK function. Over-expression of miR-126 attenuates HG-induced impairment of efferocytosis. Furthermore, human diabetic hearts show lower miR-126 expression with a corresponding increase in ADAM9 expression vs. normal counterparts. These data suggests that diabetes impairs efferocytosis of ACM and that strategies to enhance efferocytosis might attenuate diabetes-induced impairment in inflammation resolution and cardiac repair after injury. PMID:27827458

  20. Who will lead?

    PubMed

    Gustafson, R P; Schlosser, J R

    1997-01-01

    A recent survey conducted by the UCLA Center for Health Services Management and the Physician Executive Practice of Heidrick & Struggles, an executive search firm, sheds light on the emerging physician executive's role. The goal of the research was to identify success factors as a means of evaluating and developing effective industry leaders. Respondents were asked to look at specific skills in relation to nine categories: Communication, leadership, interpersonal skills, self-motivation/management, organizational knowledge, organizational strategy, administrative skills, and thinking. Communication, leadership, and self-motivation/management emerged, in that order, as the three most important success factors for physician executives. An individual's general competencies, work styles, and ability to lead others through organizational restructuring defines his or her appropriateness for managerial positions in the health care industry.

  1. Cofilin takes the lead.

    PubMed

    DesMarais, Vera; Ghosh, Mousumi; Eddy, Robert; Condeelis, John

    2005-01-01

    Cofilin has emerged as a key regulator of actin dynamics at the leading edge of motile cells. Through its actin-severing activity, it creates new actin barbed ends for polymerization and also depolymerizes old actin filaments. Its function is tightly regulated in the cell. Spatially, its activity is restricted by other actin-binding proteins, such as tropomyosin, which compete for accessibility of actin filament populations in different regions of the cell. At the molecular level, it is regulated by phosphorylation, pH and phosphatidylinositol (4,5)-bisphosphate binding downstream of signaling cascades. In addition, it also appears to be regulated by interactions with 14-3-3zeta and cyclase-associated protein. In vivo, cofilin acts synergistically with the Arp2/3 complex to amplify local actin polymerization responses upon cell stimulation, which gives it a central role in setting the direction of motility in crawling cells.

  2. Blood Test: Lead (For Parents)

    MedlinePlus

    ... and when based on a child's risk for lead poisoning. Those who are considered at risk — such as ... How Do I Get My Child Tested for Lead Poisoning? Lead Poisoning Pica Getting a Blood Test (Video) ...

  3. Antiferroelectricity in lead zirconate

    NASA Astrophysics Data System (ADS)

    Tagantsev, Alexander K.

    2014-03-01

    Antiferroelectrics are essential ingredients for widely applied piezoelectric and ferroelectric materials. Despite their technological importance, the reason why materials become antiferroelectric has remained allusive since their first discovery. Experimentally, antiferroelectrics can be recognized as materials that exhibit a structural phase transition between two non-polar phases with a strong dielectric anomaly at the high temperature side of the transition. Despite a widely spread opinion that these materials can be viewed as direct analogues of antiferromagnetics, the so-called anti-polar ionic displacements at the transition do not guaranty the antiferroelectric behavior of the material while the interpretation of such behavior does not require the incorporation of the anti-polar ionic displacements in the scenario. To get insight in the true origin of antiferroelectricity, we studied the lattice dynamics of the antiferroelectric lead zirconate using inelastic and diffuse X-ray scattering techniques and the Brillouin light scattering. Based on our experimental data, we showed that the driving force for antiferroelectricity is a ferroelectric instability. Through flexoelectric coupling, it drives the system to a state, which is virtually unstable against incommensurate modulations. However, the Umklapp interaction allows the system to go directly to the commensurate lock-in phase, leaving the incommensurate phase as a ``missed'' opportunity. By this mechanism the ferroelectric softening is transformed into an antiferroelectric transition. The remaining key parts of the whole scenario are repulsive and attractive biquadratic couplings that suppress the appearance of the spontaneous polarization and induce the anti-phase octahedral rotations in the low-temperature phase. The analysis of the results reveals that the antiferroelectric state is a ``missed'' incommensurate phase, and that the paraelectric to antiferroelectric phase transition is driven by the

  4. Leading from the boardroom.

    PubMed

    Lorsch, Jay W; Clark, Robert C

    2008-04-01

    These days, boards are working overtime to comply with Sarbanes-Oxley and other governance requirements meant to protect shareholders from executive wrongdoing. But as directors have become more hands-on with compliance, they've become more hands-off with long-range planning. That exposes corporations and their shareholders to another--perhaps even greater--risk, say professors Lorsch, of Harvard Business School, and Clark, of Harvard Law School. Boards are giving the long term short shrift for a number of reasons. Despite much heavier workloads, directors haven't rethought their patterns of operating - their meetings, committees, and other interactions. Compliance has changed their relationship with executives, however, turning directors into micromanagers who closely probe executives' actions instead of providing high-level guidance. Meanwhile, the pressure to meet quarterly expectations intensifies. Directors need to do a better job of balancing compliance with forward thinking. Boardroom effectiveness hinges most on the quality of directors and their interactions, the authors' research shows. Directors must apply their wisdom broadly, handling compliance work more efficiently and staying out of the weeds on strategic issues. Using their power with management to evangelize for long-term planning, they must take the lead on discussions about financial infrastructure, talent development, and strategy. Reserving sacrosanct time for such discussions, as Philips Electronics' board does at annual retreats, is an effective practice: After one recent retreat, Philips decided to exit the semiconductor business, where it was losing ground. Individual directors also must not shy away from asking tough questions and acting as catalysts on critical issues, such as grooming a successor to the CEO. In short, directors must learn to lead from the boardroom.

  5. v-myb transformation of Xeroderma pigmentosum human fibroblasts: Overexpression of the c-Ha-ras oncogene in the transformed cells

    SciTech Connect

    Michelin, S.; Varlet, I.; Sarasin, A.; Suarez, H.G. ); Martinerie, C.; Perbal, B. )

    1991-10-01

    Human Xeroderma pigmentosum normal' fibroblasts AS16 (XP4 VI) were transformed after transfection with a recombinant v-myb clone. In this clone (pKXA 3457) derived from avian myeloblastosis virus (AMV), the expression of the oncogene sequences is driven by the AMV U-5 LTR promoter. The transformed cells (ASKXA), which have integrated a rearranged v-myb oncogene, grow in agar, are not tumorigenic in nude mice, and express a 45-kDa v-myb protein. The HMW DNA of these cells transform chicken embryo fibroblasts. The c-Ha-ras oncogene is overexpressed in the ASKXA cells but not in the parental normal' AS16 cells and a revertant clone (ASKXA Cl 1.1 G). The results lead to the conclusion that the XP fibroblasts are phenotypically transformed by the presence of the transfected v-myb oncogene, which is able to induce an overexpression of the c-Ha-ras gene.

  6. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells.

    PubMed

    Sasaki, Yoshiteru; Calado, Dinis P; Derudder, Emmanuel; Zhang, Baochun; Shimizu, Yuri; Mackay, Fabienne; Nishikawa, Shin-ichi; Rajewsky, Klaus; Schmidt-Supprian, Marc

    2008-08-05

    BAFF-R-dependent activation of the alternative NF-kappaB pathway plays an essential role in mature B cell survival. Mutations leading to overexpression of NIK and deletion of the TRAF3 gene are implicated in human multiple myeloma. We show that overexpression of NIK in mouse B lymphocytes amplifies alternative NF-kappaB activation and peripheral B cell numbers in a BAFF-R-dependent manner, whereas uncoupling NIK from TRAF3-mediated control causes maximal p100 processing and dramatic hyperplasia of BAFF-R-independent B cells. NIK controls alternative NF-kappaB signaling by increasing the protein levels of its negative regulator TRAF3 in a dose-dependent fashion. This mechanism keeps NIK protein levels below detection even when they cause B cell hyperplasia, so that contributions of NIK to B cell pathologies can easily be overlooked.

  7. Neonatal motoneurons overexpressing the bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death.

    PubMed Central

    Dubois-Dauphin, M; Frankowski, H; Tsujimoto, Y; Huarte, J; Martinou, J C

    1994-01-01

    In vitro, the overexpression of the bcl-2 protooncogene in cultured neurons has been shown to prevent apoptosis induced by neurotrophic factor deprivation. We have generated transgenic mice overexpressing the Bcl-2 protein in neurons, including motoneurons of the facial nucleus. We have tested whether Bcl-2 could protect these motoneurons from experimentally induced cell death in new born mice. To address this question, we performed unilateral lesion of the facial nerve of wild-type and transgenic 2-day-old mice. In wild-type mice, the lesioned nerve and the corresponding motoneuron cell bodies in the facial nucleus underwent rapid degeneration. In contrast, in transgenic mice, facial motoneurons survived axotomy. Not only their cell bodies but also their axons were protected up to the lesion site. These results demonstrate that in vivo Bcl-2 protects neonatal motoneurons from degeneration after axonal injury. A better understanding of the mechanisms by which Bcl-2 prevents neuronal cell death in vivo could lead to the development of strategies for the treatment of motoneuron degenerative diseases. Images PMID:8159744

  8. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants.

    PubMed

    Almasia, Natalia I; Bazzini, Ariel A; Hopp, H Esteban; Vazquez-Rovere, Cecilia

    2008-05-01

    Snakin-1 (SN1), a cysteine-rich peptide with broad-spectrum antimicrobial activity in vitro, was evaluated for its ability to confer resistance to pathogens in transgenic potatoes. Genetic variants of this gene were cloned from wild and cultivated Solanum species. Nucleotide sequences revealed highly evolutionary conservation with 91-98% identity values. Potato plants (S. tuberosum subsp. tuberosum cv. Kennebec) were transformed via Agrobacterium tumefaciens with a construct encoding the S. chacoense SN1 gene under the regulation of the ubiquitous CaMV 35S promoter. Transgenic lines were molecularly characterized and challenged with either Rhizoctonia solani or Erwinia carotovora to analyse whether constitutive in vivo overexpression of the SN1 gene may lead to disease resistance. Only transgenic lines that accumulated high levels of SN1 mRNA exhibited significant symptom reductions of R. solani infection such as stem cankers and damping-off. Furthermore, these overexpressing lines showed significantly higher survival rates throughout the fungal resistance bioassays. In addition, the same lines showed significant protection against E. carotovora measured as: a reduction of lesion areas (from 46.5 to 88.1% with respect to the wild-type), number of fallen leaves and thickened or necrotic stems. Enhanced resistance to these two important potato pathogens suggests in vivo antifungal and antibacterial activity of SN1 and thus its possible biotechnological application.

  9. The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth.

    PubMed

    Mouhu, Katriina; Kurokura, Takeshi; Koskela, Elli A; Albert, Victor A; Elomaa, Paula; Hytönen, Timo

    2013-09-01

    In the annual long-day plant Arabidopsis thaliana, suppressor of overexpression of constans1 (SOC1) integrates endogenous and environmental signals to promote flowering. We analyzed the function and regulation of the SOC1 homolog (Fragaria vesca [Fv] SOC1) in the perennial short-day plant woodland strawberry (Fragaria vesca). We found that Fv SOC1 overexpression represses flower initiation under inductive short days, whereas its silencing causes continuous flowering in both short days and noninductive long days, similar to mutants in the floral repressor Fv terminal flower1 (Fv TFL1). Molecular analysis of these transgenic lines revealed that Fv SOC1 activates Fv TFL1 in the shoot apex, leading to the repression of flowering in strawberry. In parallel, Fv SOC1 regulates the differentiation of axillary buds to runners or axillary leaf rosettes, probably through the activation of gibberellin biosynthetic genes. We also demonstrated that Fv SOC1 is regulated by photoperiod and Fv flowering locus T1, suggesting that it plays a central role in the photoperiodic control of both generative and vegetative growth in strawberry. In conclusion, we propose that Fv SOC1 is a signaling hub that regulates yearly cycles of vegetative and generative development through separate genetic pathways.

  10. cis-Regulatory Circuits Regulating NEK6 Kinase Overexpression in Transformed B Cells Are Super-Enhancer Independent.

    PubMed

    Huang, Yue; Koues, Olivia I; Zhao, Jiang-Yang; Liu, Regina; Pyfrom, Sarah C; Payton, Jacqueline E; Oltz, Eugene M

    2017-03-21

    Alterations in distal regulatory elements that control gene expression underlie many diseases, including cancer. Epigenomic analyses of normal and diseased cells have produced correlative predictions for connections between dysregulated enhancers and target genes involved in pathogenesis. However, with few exceptions, these predicted cis-regulatory circuits remain untested. Here, we dissect cis-regulatory circuits that lead to overexpression of NEK6, a mitosis-associated kinase, in human B cell lymphoma. We find that only a minor subset of predicted enhancers is required for NEK6 expression. Indeed, an annotated super-enhancer is dispensable for NEK6 overexpression and for maintaining the architecture of a B cell-specific regulatory hub. A CTCF cluster serves as a chromatin and architectural boundary to block communication of the NEK6 regulatory hub with neighboring genes. Our findings emphasize that validation of predicted cis-regulatory circuits and super-enhancers is needed to prioritize transcriptional control elements as therapeutic targets.

  11. Human patched (PTCH) mRNA is overexpressed consistently in tumor cells of both familial and sporadic basal cell carcinoma.

    PubMed

    Undén, A B; Zaphiropoulos, P G; Bruce, K; Toftgård, R; Ståhle-Bäckdahl, M

    1997-06-15

    Recently, a human homologue of the Drosophila patched gene, PTCH, was identified as a putative tumor suppressor mutated in both hereditary and sporadic basal cell carcinomas. Because PTCH controls its own transcription, inactivating mutations in PTCH may lead to overexpression of mutant PTCH mRNA due to loss of autoregulation. The present study is aimed at evaluating whether deregulation of PTCH mRNA expression is a general feature of BCCs of varying histological growth pattern and malignant potential. Irrespective of histological subtype, PTCH mRNA was overexpressed consistently as determined by in situ hybridization in all of the sporadic (n = 16) and hereditary (n = 20) tumors examined. PTCH expression was found in all of the tumor cells but appeared stronger in the peripheral palisading cells. PTCH mRNA was not detected in adjacent nontumor epidermal cells or in other parts of the epidermis. In the majority of tumors (20 of 36), nuclear immunostaining for p53 was found in scattered cells, whereas seven tumors completely lacked p53 immunoreactivity. Our finding of an up-regulation of PTCH mRNA levels in all of the BCCs analyzed indicates that deregulation of the PTCH signaling pathway constitutes an early rate-limiting event in BCC development.

  12. PGC-1α over-expression suppresses the skeletal muscle atrophy and myofiber-type composition during hindlimb unloading.

    PubMed

    Wang, Jing; Wang, Fei; Zhang, Peng; Liu, Hongju; He, Jian; Zhang, Chenyu; Fan, Ming; Chen, Xiaoping

    2017-03-01

    Disuse leads to severe muscle atrophy and a slow-to-fast myofiber-type transition. PGC-1α (Peroxisome proliferator-activated receptor γ coactivator 1α) is documented to play an important role in muscle atrophy and slow-twitch myofiber determination. Transcription of atrophy-related Atrogin-1 by FoxO3 can be reduced by PGC-1α. While Smad3 augments FoxO3-induced Atrogin-1 and MuRF1 promoter activity. So PGC-1α, as a transcription co-activator, may regulate hindlimb unloading (HU)-induced myofiber-type transition and muscle atrophy through Smad3. Our results showed that transgenic PGC-1α mice resisted HU-induced muscle loss, atrophy-related genes expression, and slow-to-fast myofiber-type transition. Furthermore, over-expression of PGC-1α resisted the increase in pSmad3 during muscle atrophy in vivo and in vitro. And, PGC-1α over-expression inhibited the expression of atrogenes via suppressing the phosphorylation of Smad3 in vitro. Thus, PGC-1α is effective in regulating myofiber-type transition during HU, and it alleviates skeletal muscle atrophy partially through suppressing the activation of Smad3.

  13. Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes

    PubMed Central

    Calcagno, A M; Fostel, J M; To, K K W; Salcido, C D; Martin, S E; Chewning, K J; Wu, C-P; Varticovski, L; Bates, S E; Caplen, N J; Ambudkar, S V

    2008-01-01

    Understanding the mechanisms of multidrug resistance (MDR) could improve clinical drug efficacy. Multidrug resistance is associated with ATP binding cassette (ABC) transporters, but the factors that regulate their expression at clinically relevant drug concentrations are poorly understood. We report that a single-step selection with low doses of anti-cancer agents, similar to concentrations reported in vivo, induces MDR that is mediated exclusively by ABCG2. We selected breast, ovarian and colon cancer cells (MCF-7, IGROV-1 and S-1) after exposure to 14 or 21 nM doxorubicin for only 10 days. We found that these cells overexpress ABCG2 at the mRNA and protein levels. RNA interference analysis confirmed that ABCG2 confers drug resistance. Furthermore, ABCG2 upregulation was facilitated by histone hyperacetylation due to weaker histone deacetylase 1-promoter association, indicating that these epigenetic changes elicit changes in ABCG2 gene expression. These studies indicate that the MDR phenotype arises following low-dose, single-step exposure to doxorubicin, and further suggest that ABCG2 may mediate early stages of MDR development. This is the first report to our knowledge of single-step, low-dose selection leading to overexpression of ABCG2 by epigenetic changes in multiple cancer cell lines. PMID:18382425

  14. The Fragaria vesca Homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 Represses Flowering and Promotes Vegetative Growth[W

    PubMed Central

    Mouhu, Katriina; Kurokura, Takeshi; Koskela, Elli A.; Albert, Victor A.; Elomaa, Paula; Hytönen, Timo

    2013-01-01

    In the annual long-day plant Arabidopsis thaliana, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) integrates endogenous and environmental signals to promote flowering. We analyzed the function and regulation of the SOC1 homolog (Fragaria vesca [Fv] SOC1) in the perennial short-day plant woodland strawberry (Fragaria vesca). We found that Fv SOC1 overexpression represses flower initiation under inductive short days, whereas its silencing causes continuous flowering in both short days and noninductive long days, similar to mutants in the floral repressor Fv TERMINAL FLOWER1 (Fv TFL1). Molecular analysis of these transgenic lines revealed that Fv SOC1 activates Fv TFL1 in the shoot apex, leading to the repression of flowering in strawberry. In parallel, Fv SOC1 regulates the differentiation of axillary buds to runners or axillary leaf rosettes, probably through the activation of gibberellin biosynthetic genes. We also demonstrated that Fv SOC1 is regulated by photoperiod and Fv FLOWERING LOCUS T1, suggesting that it plays a central role in the photoperiodic control of both generative and vegetative growth in strawberry. In conclusion, we propose that Fv SOC1 is a signaling hub that regulates yearly cycles of vegetative and generative development through separate genetic pathways. PMID:24038650

  15. Overexpression of methionine sulfoxide reductases A and B2 protects MOLT-4 cells against zinc-induced oxidative stress.

    PubMed

    Cabreiro, Filipe; Picot, Cĕdric R; Perichon, Martine; Friguet, Bertrand; Petropoulos, Isabelle

    2009-02-01

    Among the amino acids, methionine is the most susceptible to oxidation, and methionine sulfoxide can be catalytically reduced within proteins by methionine sulfoxide reductase A (MsrA) and B (MsrB). As one of the very few repair systems for oxidized proteins, MsrA and MsrB enzymes play a major role in protein homeostasis during aging and have also been involved in cellular defenses against oxidative stress, by scavenging reactive oxygen species. To elucidate the role of zinc on the Msr system, the effects of zinc treatment on control and stably overexpressing MsrA and MsrB2 MOLT-4 leukemia cells have been analyzed. Here we show that zinc treatment has a pro-antioxidant effect in MOLT-4 cells by inducing the transcription of metallothioneins and positively modulating the activity of the Msr enzymes. In contrast, due to its pro-oxidant effect, zinc also led to increased cell death, reactive oxygen species production, and protein damage. Our results indicate that overexpression of the Msr enzymes, due to their antioxidant properties, counteracts the pro-oxidant effects of zinc treatment, which lead to a cellular protection against protein oxidative damage and cell death, by reducing the production of reactive oxygen species.

  16. Efflux Pump Overexpression Contributes to Tigecycline Heteroresistance in Salmonella enterica serovar Typhimurium

    PubMed Central

    Chen, Yi; Hu, Daxing; Zhang, Qijing; Liao, Xiao-Ping; Liu, Ya-Hong; Sun, Jian

    2017-01-01

    Bacterial heteroresistance has been identified in several combinations of bacteria and antibiotics, and it complicated the therapeutic strategies. Tigecycline is being used as one of the optimal options for the treatment of infections caused by multidrug-resistant Salmonella. This study investigated whether heterorresistance to tigecycline exists in a Salmonella enterica serovar Typhimurium strain harboring the oqxAB-bearing IncHI2 plasmid pHXY0908. MIC and population analyses were performed to evaluate population-wide susceptibility to tigecycline. The effects of efflux pumps on MIC levels were assessed using the efflux pump inhibitor Phe-Arg-β-naphthylamide, measuring intracellular tigecycline accumulation as well as mRNA levels of regulatory and efflux pump genes. DNA sequencing of regulatory regions were performed and plasmid curing from a resistant strain provided an appropriate control. Results showed that MICs of a parental strain with and without pHXY0908 as well as a plasmid-cured strain 14028/Δp52 were 0.5, 1, and 1 μg/mL, respectively. Population analysis profiling (PAP) illustrated that only the pHXY0908-containg strain was heteroresistant to tigecycline. A fraction of colonies exhibited stable profiles with 4- to 8-fold increases in MIC. The frequencies of emergence of these isolates were higher in the plasmid-containing strain pHXY0908 than either the parental or the 14028/Δp52 strain. Phe-Arg-β-naphthylamide addition restored tigecycline susceptibility of these isolates and intracellular tigecycline accumulation was reduced. Heteroresistant isolates of the strain containing pHXY0908 also had elevated expression of acrB, ramA, and oqxB. DNA sequencing identified numerous mutations in RamR that have been shown to lead to ramA overexpression. In conclusions, heteroresistance to tigecycline in Salmonella enterica serovar Typhimurium was manifested in a plasmid-bearing strain. Our results suggest that this phenotype was associated with overexpression

  17. Efflux Pump Overexpression Contributes to Tigecycline Heteroresistance in Salmonella enterica serovar Typhimurium.

    PubMed

    Chen, Yi; Hu, Daxing; Zhang, Qijing; Liao, Xiao-Ping; Liu, Ya-Hong; Sun, Jian

    2017-01-01

    Bacterial heteroresistance has been identified in several combinations of bacteria and antibiotics, and it complicated the therapeutic strategies. Tigecycline is being used as one of the optimal options for the treatment of infections caused by multidrug-resistant Salmonella. This study investigated whether heterorresistance to tigecycline exists in a Salmonella enterica serovar Typhimurium strain harboring the oqxAB-bearing IncHI2 plasmid pHXY0908. MIC and population analyses were performed to evaluate population-wide susceptibility to tigecycline. The effects of efflux pumps on MIC levels were assessed using the efflux pump inhibitor Phe-Arg-β-naphthylamide, measuring intracellular tigecycline accumulation as well as mRNA levels of regulatory and efflux pump genes. DNA sequencing of regulatory regions were performed and plasmid curing from a resistant strain provided an appropriate control. Results showed that MICs of a parental strain with and without pHXY0908 as well as a plasmid-cured strain 14028/Δp52 were 0.5, 1, and 1 μg/mL, respectively. Population analysis profiling (PAP) illustrated that only the pHXY0908-containg strain was heteroresistant to tigecycline. A fraction of colonies exhibited stable profiles with 4- to 8-fold increases in MIC. The frequencies of emergence of these isolates were higher in the plasmid-containing strain pHXY0908 than either the parental or the 14028/Δp52 strain. Phe-Arg-β-naphthylamide addition restored tigecycline susceptibility of these isolates and intracellular tigecycline accumulation was reduced. Heteroresistant isolates of the strain containing pHXY0908 also had elevated expression of acrB, ramA, and oqxB. DNA sequencing identified numerous mutations in RamR that have been shown to lead to ramA overexpression. In conclusions, heteroresistance to tigecycline in Salmonella enterica serovar Typhimurium was manifested in a plasmid-bearing strain. Our results suggest that this phenotype was associated with overexpression

  18. Purification and characterization of human dehydrodolychil diphosphate synthase (DHDDS) overexpressed in E. coli.

    PubMed

    Giladi, Moshe; Edri, Ilan; Goldenberg, Michal; Newman, Hadas; Strulovich, Roi; Khananshvili, Daniel; Haitin, Yoni; Loewenstein, Anat

    2017-04-01

    Protein asparagine (N)-linked glycosylation is a post-translational modification that occurs in the endoplasmic reticulum; it plays an important role in protein folding, oligomerization, quality control, sorting, and transport. Accordingly, disorders of glycosylation may affect practically every organ system. Dehydrodolichyl diphosphate synthase (DHDDS) is an eukaryotic cis prenyltransferase (cis-PT) that catalyzes chain elongation of farnesyl diphosphate via multiple condensations with isopentenyl diphosphate to form dehydrodolichyl diphosphate, a precursor for the glycosyl carrier dolichylpyrophophate involved in N-linked glycosylation. Mutations in DHDDS were shown to result in retinitis pigmentosa, ultimately leading to blindness, but the exact molecular mechanism by which the mutations affect DHDDS function remains elusive. In addition, bacterial cis-PT homologs are involved in bacterial wall synthesis and are therefore potential targets for new antibacterial agents. However, as eukaryotic cis-PT were not thoroughly characterized structurally and functionally, rational design of prokaryotic cis-PT specific drugs is currently impossible. Here, we present a simple protocol for purification of functionally active human DHDDS under non-denaturating conditions using a codon-optimized construct. The purified protein forms a stable homodimer, similar to its bacterial homologs, and shows time- and substrate-dependent activity. Purification of this protein requires the presence of a detergent for protein solubility. The protocol described here may be utilized for the overexpression of other eukaryotic cis-PT. Future structural and functional studies of the recombinant DHDDS may shed light on the mechanisms underlying DHDDS-related retinitis pigmentosa and lead to novel therapeutic approaches.

  19. Lead absorption in cows: biological indicators of ambient lead exposure

    SciTech Connect

    Karacic, V.; Prpic-Majic, D.; Skender, L.

    1984-03-01

    In order to determine actual lead exposure from residual amounts of lead in the environmental soil following the introduction of effective engineering emission controls in a lead smeltery, the absorption of lead in cows grazing in the vicinity was investigated. Four groups of cows were examined: two groups of cows exposed to different ambient lead concentration, compared with two normal groups of cows. In each cow aminolevulinic acid dehydratase (ALAD), erythrocyte protoporphyrin (EP) and blood lead (Pb-B) were determined, two years prior to and four years after the technical sanitation of the lead emission source. The results demonstrated normalization of ALAD, EP and Pb-B after the technical sanitation. In spite of normalization, biological indicators ALAD and Pb-B determined four years after the technical sanitation showed increased lead absorption in comparison with the results of the control group. This indirectly indicates lead contamination of the environment from residual amounts of lead in the soil.

  20. Sirtuin1 Over-Expression Does Not Impact Retinal Vascular and Neuronal Degeneration in a Mouse Model of Oxygen-Induced Retinopathy

    PubMed Central

    Michan, Shaday; Juan, Aimee M.; Hurst, Christian G.; Cui, Zhenghao; Evans, Lucy P.; Hatton, Colman J.; Pei, Dorothy T.; Ju, Meihua; Sinclair, David A.; Smith, Lois E. H.; Chen, Jing

    2014-01-01

    Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy. PMID:24416337

  1. Overexpression of the Tomato Pollen Receptor Kinase LePRK1 Rewires Pollen Tube Growth to a Blebbing Mode[W][OPEN

    PubMed Central

    Gui, Cai-Ping; Dong, Xin; Liu, Hai-Kuan; Huang, Wei-Jie; Zhang, Dong; Wang, Shu-Jie; Barberini, María Laura; Gao, Xiao-Yan; Muschietti, Jorge; McCormick, Sheila

    2014-01-01

    The tubular growth of a pollen tube cell is crucial for the sexual reproduction of flowering plants. LePRK1 is a pollen-specific and plasma membrane–localized receptor-like kinase from tomato (Solanum lycopersicum). LePRK1 interacts with another receptor, LePRK2, and with KINASE PARTNER PROTEIN (KPP), a Rop guanine nucleotide exchange factor. Here, we show that pollen tubes overexpressing LePRK1 or a truncated LePRK1 lacking its extracellular domain (LePRK1ΔECD) have enlarged tips but also extend their leading edges by producing “blebs.” Coexpression of LePRK1 and tomato PLIM2a, an actin bundling protein that interacts with KPP in a Ca2+-responsive manner, suppressed these LePRK1 overexpression phenotypes, whereas pollen tubes coexpressing KPP, LePRK1, and PLIM2a resumed the blebbing growth mode. We conclude that overexpression of LePRK1 or LePRK1ΔECD rewires pollen tube growth to a blebbing mode, through KPP- and PLIM2a-mediated bundling of actin filaments from tip plasma membranes. Arabidopsis thaliana pollen tubes expressing LePRK1ΔECD also grew by blebbing. Our results exposed a hidden capability of the pollen tube cell: upon overexpression of a single membrane-localized molecule, LePRK1 or LePRK1ΔECD, it can switch to an alternative mechanism for extension of the leading edge that is analogous to the blebbing growth mode reported for Dictyostelium and for Drosophila melanogaster stem cells. PMID:25194029

  2. HBV polymerase overexpression due to large core gene deletion enhances hepatoma cell growth by binding inhibition of microRNA-100

    PubMed Central

    Huang, Ya-Hui; Tseng, Ying-Hsin; Lin, Wey-Ran; Hung, George; Chen, Tse-Ching; Wang, Tong-Hong; Lee, Wei-Chen; Yeh, Chau-Ting

    2016-01-01

    Different types of hepatitis B virus (HBV) core gene deletion mutants were identified in chronic hepatitis B patients. However, their clinical roles in different stages of natural chronic HBV infection remained unclear. To address this issue, HBV core genes were sequenced in three gender- and age-matched patient groups diagnosed as chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC), respectively. Functional analysis of the identified mutants was performed. A novel type of large-fragment core gene deletion (LFCD) was identified exclusively in HCC patients and significantly associated with unfavorable postoperative survival. The presence of LFCDs resulted in generation of precore-polymerase fusion protein or brought the polymerase reading frame under direct control of HBV precore/core promoter, leading to its over-expression. Enhanced cell proliferation and increased tumorigenicity in nude mice were found in hepatoma cells expressing LFCDs. Because of the epsilon-binding ability of HBV polymerase, we hypothesized that the over-expressed polymerase carrying aberrant amino-terminal sequence could bind to cellular microRNAs. Screening of a panel of microRNAs revealed physical association of a precore-polymerase fusion protein with microRNA-100. A binding inhibition effect on microRNA-100 by the precore-polymerase fusion protein with up-regulation of its target, polo-like kinase 1 (PLK1), was discovered. The binding inhibition and growth promoting effects could be reversed by overexpressing microRNA-100. Together, HCC patients carrying hepatitis B large-fragment core gene deletion mutants had an unfavorable postoperative prognosis. The growth promoting effect was partly due to polymerase overexpression, leading to binding inhibition of microRNA-100 and up-regulation of PLK1. PMID:26824500

  3. Selective osteoblast overexpression of IGF-I in mice prevents low protein-induced deterioration of bone strength and material level properties.

    PubMed

    Brennan-Speranza, Tara C; Rizzoli, René; Kream, Barbara E; Rosen, Clifford; Ammann, Patrick

    2011-11-01

    Protein deficiency is frequently observed in elderly osteoporotic patients. Undernutrition leads to decreased levels of IGF-I, an important factor in regulating bone homeostasis throughout life. IGF-I is produced in the liver and locally in the skeleton. We hypothesized that increasing IGF-I expression in the osteoblasts, the bone forming cells, would protect the skeleton from the negative effects of a low-protein diet. To test our hypothesis, we employed a mouse model in which IGF-I was overexpressed exclusively in osteoblasts and fed either a 15% (normal) or a 2.5% (low) protein isocaloric diet to the transgenic (TG) mice and their wild-type (WT) littermates for 8 weeks. Blood was collected for biochemical determinations and weight was monitored weekly. Bones were excised for microstructural analysis (μCT), as well as biomechanical and material level properties. Histomorphometric analysis was performed for bone formation parameters. A low protein diet decreased body weight, circulating IGF-I and osteocalcin levels regardless of genotype. Overexpression of IGF-I in the osteoblasts was, however, able to protect the negative effects of low protein diet on microstructure including tibia cortical thickness and volumetric density, and on bone strength. Overexpression of IGF-I in osteoblasts in these mice protected the vertebrae from the substantial negative effects of low protein on the material level properties as measured my nanoindentation. TG mice also had larger overall geometric properties than WT mice regardless of diet. This study provides evidence that while a low protein diet leads to decreased circulating IGF-I, altered microstructure and decreased bone strength, these negative effects can be prevented with IGF-I overexpression exclusively in bone cells.

  4. Yersinia pestis YopM: thrombin binding and overexpression.

    PubMed Central

    Reisner, B S; Straley, S C

    1992-01-01

    In previous studies, Yersinia pestis YopM has been shown through mutational analysis to be necessary for virulence in mice and found to have homology with the thrombin-binding domain of the platelet receptor GPIb alpha. In this study, YopM was purified and shown by dot blot and chemical cross-linking tests to bind to human alpha-thrombin. No cross-linked product could be detected when human prothrombin was incubated with YopM. As a functional test of thrombin binding, it was shown that native but not boiled YopM inhibits thrombin-induced aggregation of human platelets. Control tests showed that YopM did not inactivate the platelets themselves, nor was its effect a nonspecific consequence of its very acidic isoelectric point. Microsequencing of YopM revealed an intact N terminus, indicating that functional YopM is not processed at the N terminus or secreted by a mechanism involving a cleavable signal sequence. Further characterization was made of an interesting effect on yopM expression that had been noticed in a previous study. A 1.5-kb HaeIII subclone overexpressed YopM in both Y. pestis and Escherichia coli compared with a larger clone containing the 5.3-kb HindIII-F fragment. To search for a possible regulator of YopM expression, the HindIII-F fragment was sequenced, revealing several open reading frames and three large repeated sequences. Deletional analysis showed that these were not involved in regulation of yopM. The data implicated a DNA structure 5' to yopM in moderating yopM expression. Images PMID:1452357

  5. Sphingosine kinase 1 is overexpressed and promotes adrenocortical carcinoma progression

    PubMed Central

    Huang, Jiwei; Kong, Wen; Xue, Wei; Zhu, Yu; Zhang, Jin; Huang, Yiran

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare endocrine tumor with a very poor prognosis. Sphingosine kinase 1 (SphK1), an oncogenic kinase, has previously been found to be upregulated in various cancers. However, the role of the SphK1 in ACC has not been investigated. In this study, SphK1 mRNA and protein expression levels as well as clinicopathological significance were evaluated in ACC samples. In vitro siRNA knockdown of SphK1 in two ACC cell lines (H295R and SW13) was used to determine its effect on cellular proliferation and invasion. In addition, we further evaluated the effect of SphK1 antagonist fingolimod (FTY720) in ACC in vitro and in vivo, as a single agent or in combination with mitotane, and attempted to explore its anticarcinogenic mechanisms. Our results show a significant over-expression of SphK1 mRNA and protein expression in the carcinomas compared with adenomas (P < 0.01 for all comparisons). Functionally, konckdown of SphK1 gene expression in ACC cell lines significantly decreased cell proliferation and invasion. FTY720 could result in a decreased cell proliferation and induction of apoptosis, and the combination of mitotane and FTY720 resulted in a greater anti-proliferative effect over single agent treatment in SW13 cells. Furthermore, FTY720 could markedly inhibit tumor growth in ACC xenografts. SphK1 expression is functionally associated to cellular proliferation, apoptosis, invasion and mitotane sensitivity of ACC. Our data suggest that SphK1 might be a potential therapeutic target for the treatment of ACC. PMID:26673009

  6. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling.

    PubMed

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-03-14

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro.

  7. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  8. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling

    PubMed Central

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-01-01

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro. PMID:28290552

  9. Overexpression of methionine-R-sulfoxide reductases has no influence on fruit fly aging

    PubMed Central

    Shchedrina, Valentina A.; Vorbrüggen, Gerd; Cheon Lee, Byung; Kim, Hwa-Young; Kabil, Hadise; Harshman, Lawrence G.; Gladyshev, Vadim N.

    2009-01-01

    Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA in the nervous system of Drosophila was found to extend lifespan by 70%. Overexpression of MsrA in yeast also extended lifespan, whereas MsrB overexpression did so only under calorie restriction conditions. The effect of MsrB overexpression on lifespan has not yet been characterized in any animal model systems. Here, the GAL4-UAS binary system was used to drive overexpression of cytosolic Drosophila MsrB and mitochondrial mouse MsrB2 in whole body, fatbody, and the nervous system of flies. In contrast to MsrA, MsrB overexpression had no consistent effect on the lifespan of fruit flies on both corn meal and sugar yeast diets. Physical activity, fecundity, and stress resistance were also similar in MsrB-overexpressing and control flies. Thus, MsrA and MsrB, the two proteins with identical function in antioxidant protein repair, have different effects on aging in fruit flies. PMID:19409408

  10. Genes overexpressed in different human solid cancers exhibit different tissue-specific expression profiles

    PubMed Central

    Bock Axelsen, Jacob; Lotem, Joseph; Sachs, Leo; Domany, Eytan

    2007-01-01

    We have analyzed gene expression in different normal human tissues and different types of solid cancers derived from these tissues. The cancers analyzed include brain (astrocytoma and glioblastoma), breast, colon, endometrium, kidney, liver, lung, ovary, prostate, skin, and thyroid cancers. Comparing gene expression in each normal tissue to 12 other normal tissues, we identified 4,917 tissue-selective genes that were selectively expressed in different normal tissues. We also identified 2,929 genes that are overexpressed at least 4-fold in the cancers compared with the normal tissue from which these cancers were derived. The overlap between these two gene groups identified 1,340 tissue-selective genes that are overexpressed in cancers. Different types of cancers, including different brain cancers arising from the same lineage, showed differences in the tissue-selective genes they overexpressed. Melanomas overexpressed the highest number of brain-selective genes and this may contribute to melanoma metastasis to the brain. Of all of the genes with tissue-selective expression, those selectively expressed in testis showed the highest frequency of genes that are overexpressed in at least two types of cancer. However, colon and prostate cancers did not overexpress any testis-selective gene. Nearly all of the genes with tissue-selective expression that are overexpressed in cancers showed selective expression in tissues different from the cancers' tissue of origin. Cancers aberrantly expressing such genes may acquire phenotypic alterations that contribute to cancer cell viability, growth, and metastasis. PMID:17664417

  11. Calpain Activation in Alzheimer's Model Mice Is an Artifact of APP and Presenilin Overexpression

    PubMed Central

    Saito, Takashi; Matsuba, Yukio; Yamazaki, Naomi; Hashimoto, Shoko

    2016-01-01

    Intraneuronal calcium stimulates the calpain-dependent conversion of p35 to p25, a CDK5 activator. It is widely believed that amyloid β peptide (Aβ) induces this conversion that, in turn, has an essential role in Alzheimer's disease pathogenesis. However, in vivo studies on p25 generation used transgenic mice overexpressing mutant amyloid precursor protein (APP) and presenilin (PS). Here, using single App knock-in mice, we show that p25 generation is an artifact caused by membrane protein overexpression. We show that massive Aβ42 accumulation without overexpression of APP or presenilin does not produce p25, whereas p25 generation occurred with APP/PS overexpression and in postmortem mouse brain. We further support this finding using mice deficient for calpastatin, the sole calpain-specific inhibitor protein. Thus, the intracerebral environment of the APP/PS mouse brain and postmortem brain is an unphysiological state. SIGNIFICANCE STATEMENT We recently estimated using single App knock-in mice that accumulate amyloid β peptide without transgene overexpression that 60% of the phenotypes observed in Alzheimer's model mice overexpressing mutant amyloid precursor protein (APP) or APP and presenilin are artifacts (Saito et al., 2014). The current study further supports this estimate by invalidating key results from papers that were published in Cell. These findings suggest that more than 3000 publications based on APP and APP/PS overexpression must be reevaluated. PMID:27656030

  12. Lead-acid battery

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1983-01-01

    A light weight lead-acid battery (30) having a positive terminal (36) and a negative terminal (34) and including one or more cells or grid stacks having a plurality of vertically stacked conductive monoplates (10, 20) with positive active material and negative active material deposited on alternating plates in the cell or grid stack. Electrolyte layers (26, 28) positioned between each monoplate are included to provide a battery cell having four sides which is capable of being electrically charged and discharged. Two vertical positive bus bars (42, 43) are provided on opposite sides of the battery cell for connecting the monoplates (10) with positive active material together in parallel current conducting relation. In addition, two negative bus bars (38, 39) on opposite sides of the battery cell each being adjacent the positive bus bars are provided for connecting the monoplates (20) with negative active material together in parallel current conducting relation. The positive (42, 43) and negative (38, 39) bus bars not only provide a low resistance method for connecting the plurality of conductive monoplates of their respective battery terminals (36, 34) but also provides support and structural strength to the battery cell structure. In addition, horizontal orientation of monoplates (10, 20) is provided in a vertical stacking arrangement to reduce electrolyte stratification and short circuiting due to flaking of positive and negative active materials from the monoplates.

  13. Europa's Leading Hemisphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Europa's leading hemisphere was obtained by the solid state imaging (CCD) system on board NASA's Galileo spacecraft during its seventh orbit of Jupiter. In the upper left part of the image is Tyre, a multi-ringed structure that may have formed as a result of an ancient impact. Also visible are numerous lineaments that extend for over 1000 kilometers. The limb, or edge, of Europa in this image can be used by scientists to constrain the radius and shape of the satellite. North is to the top of the picture and the sun illuminates the surface from the right. The image, centered at -40 latitude and 180 longitude, covers an area approximately 2000 by 1300 kilometers. The finest details that can be discerned in this picture are about 6.6 kilometers across. The images were taken on April 3, 1997 at 17 hours, 42 minutes, 19 seconds Universal Time when the spacecraft was at a range of 31,8628 kilometers.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  14. DETERMINANTS OF RESIDENTIAL LEAD EXPOSURE

    EPA Science Inventory

    The phase-out of leaded gasoline, and the accompanying decrease in lead emissions, resulted in a dramatic decline in mean blood lead levels from the late 1970s through the early 1990s. Nonetheless, lead exposures remain a public health concern. Long-term exposures to even low...

  15. Lead contamination of urban snow.

    PubMed

    Grandstaff, D E; Myer, G H

    1979-01-01

    Lead content of newly fallen snow in an urban area ranges from 34 to 56 ppb. After falling, snow may incorporate major additional amounts of lead by dry deposition of lead aerosols from local sources. The highest concentration found was 2,700 ppb. Ingestion of lead-contaminated snow might pose a health hazard to inner city children.

  16. Leading Your Leaders

    NASA Technical Reports Server (NTRS)

    Hale, Wayne N.

    2008-01-01

    life is good. More often when an unbelievably difficult test fails, we are left with a very long discussion of why and what was wrong in the design or execution of the test. Make sure that the test is well defined. Even then, it is important to explain to your leaders what inherent accuracy (or error) the test conditions or equipment have and what the assumptions or initial conditions were for the test. Test results without a good understanding of the test's accuracy or the pedigree of the test assumptions are worth very little. Finally, there is flight test data. Always limited, never at the edge of the envelope, it still shows how the real hardware works in a combined environment. Flight experience is dangerous because it typically doesn't show how close to the edge of the cliff the equipment is operating, but it does demonstrate how the hardware really works. A flight test is the ultimate test, again taken with the knowledge that it is probably not the extreme but something more like the middle of the environmental and systems performance. Good understanding of a problem and its solution always relies on a combination of all these methods. Be sure to lead your leaders by using all the tools you have at your disposal. At the end of the day, decisions in space flight always come down to a risk trade. Our business is not remotely safe, not in the sense that the public, the media, or our legislators use the term. Everything we do has a risk, cost, schedule, or performance trade-off. For your leaders to make an appropriate decision, you need to educate them, lead them, talk with them, and engage them in the discussion until full understanding takes place. It's your job. *

  17. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    PubMed Central

    2011-01-01

    Background Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. Results The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in anaerobic fermentation of glucose in mineral medium in S. cerevisiae. Isobutanol yield was further improved by twofold by the additional overexpression of BAT2, encoding the cytoplasmic branched-chain amino-acid aminotransferase. Overexpression of ILV6, encoding the regulatory subunit of Ilv2, in the ILV2 ILV3 ILV5 overexpression strain decreased isobutanol production yield by threefold. In aerobic cultivations in shake flasks in mineral medium, the isobutanol yield of the ILV2 ILV3 ILV5 overexpression strain and the reference strain were 3.86 and 0.28 mg per g glucose, respectively. They increased to 4.12 and 2.4 mg per g glucose in yeast extract/peptone/dextrose (YPD) complex medium under aerobic conditions, respectively. Conclusions Overexpression of genes ILV2, ILV3, ILV5, and BAT2 in valine metabolism led to an increase in isobutanol production in S. cerevisiae. Additional overexpression of ILV6 in the ILV2 ILV3 ILV5 overexpression strain had a negative effect, presumably by increasing the sensitivity of Ilv2 to valine inhibition, thus weakening the positive impact of overexpression of ILV2, ILV3, and ILV5 on isobutanol production. Aerobic cultivations of the ILV2 ILV3 ILV5 overexpression strain and the reference strain showed that supplying amino acids in cultivation media gave a substantial

  18. Leading clever people.

    PubMed

    Goffee, Rob; Jones, Gareth

    2007-03-01

    In an economy driven by ideas and intellectual know-how, top executives recognize the importance of employing smart, highly creative people. But if clever people have one defining characteristic, it's that they do not want to be led. So what is a leader to do? The authors conducted more than 100 interviews with leaders and their clever people at major organizations such as PricewaterhouseCoopers, Cisco Systems, Novartis, the BBC, and Roche. What they learned is that the psychological relationships effective leaders have with their clever people are very different from the ones they have with traditional followers. Those relationships can be shaped by seven characteristics that clever people share: They know their worth--and they know you have to employ them if you want their tacit skills. They are organizationally savvy and will seek the company context in which their interests are most generously funded. They ignore corporate hierarchy; although intellectual status is important to them, you can't lure them with promotions. They expect instant access to top management, and if they don't get it, they may think the organization doesn't take their work seriously. They are plugged into highly developed knowledge networks, which both increases their value and makes them more of a flight risk. They have a low boredom threshold, so you have to keep them challenged and committed. They won't thank you--even when you're leading them well. The trick is to act like a benevolent guardian: to grant them the respect and recognition they demand, protect them from organizational rules and politics, and give them room to pursue private efforts and even to fail. The payoff will be a flourishing crop of creative minds that will enrich your whole organization.

  19. Materials science. Electronics without lead.

    PubMed

    Li, Yi; Moon, Kyoung-sik; Wong, C P

    2005-06-03

    In conventional consumer electronics such as cell phones, lead-containing interconnects provide the conductive path between different circuit elements. Environmental concerns have led to a search for lead-free alternatives. In their Perspective, Li et al. review these efforts, which have focused on lead-free alloys and electrically conductive adhesives. Both of these approaches are showing promise, but no one lead-free interconnect material can serve as a substitute for the conventional tin-lead solder in all devices.

  20. Overexpression of the human homologue of Drosophila patched (PTCH) in skin tumours: specificity for basal cell carcinoma.

    PubMed

    Nagano, T; Bito, T; Kallassy, M; Nakazawa, H; Ichihashi, M; Ueda, M

    1999-02-01

    The human homologue of the Drosophila segment polarity gene patched (PTCH) has been identified as the gene for the naevoid basal cell carcinoma (BCC) syndrome and has also been shown to be mutated in sporadic BCC. In order to elucidate the specificity of the PTCH abnormality in BCC, we examined normal skin and 12 BCC and 24 other types of tumour from Japanese patients for expression of the PTCH transcript by competitive reverse transcription-polymerase chain reaction, as mutational inactivation of PTCH leads to overexpression of the mutant transcript owing to failure of a negative feedback mechanism. We found a high level of PTCH expression in all 12 BCCs, while 23 of the other tumours and four specimens of normal skin showed no or weak expression of the gene, with the exception of one specimen from a patient with Bowen's disease which had high expression. These results indicate that the PTCH abnormality plays a critical role in the pathogenesis of BCC.

  1. Overexpression of Peanut Diacylglycerol Acyltransferase 2 in Escherichia coli

    PubMed Central

    Yang, Lianqun; Zhang, Bin; Chen, Gao; Bi, Yuping

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar ‘Luhua 14’ using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli Rosetta (DE3). Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b) were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a–GST, or AhDGAT2b–GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a–GST and AhDGAT2b–GST proteins increased the sizes of the host cells by 2.4–2.5 times that of the controls (post-IPTG induction). The total fatty acid (FA) levels of the AhDGAT2a–GST and AhDGAT2a–GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for

  2. The lead industry and lead water pipes "A Modest Campaign".

    PubMed

    Rabin, Richard

    2008-09-01

    Lead pipes for carrying drinking water were well recognized as a cause of lead poisoning by the late 1800s in the United States. By the 1920s, many cities and towns were prohibiting or restricting their use. To combat this trend, the lead industry carried out a prolonged and effective campaign to promote the use of lead pipes. Led by the Lead Industries Association (LIA), representatives were sent to speak with plumbers' organizations, local water authorities, architects, and federal officials. The LIA also published numerous articles and books that extolled the advantages of lead over other materials and gave practical advice on the installation and repair of lead pipes. The LIA's activities over several decades therefore contributed to the present-day public health and economic cost of lead water pipes.

  3. Effects of Mineralocorticoid Receptor Overexpression on Anxiety and Memory after Early Life Stress in Female Mice

    PubMed Central

    Kanatsou, Sofia; Ter Horst, Judith P.; Harris, Anjanette P.; Seckl, Jonathan R.; Krugers, Harmen J.; Joëls, Marian

    2016-01-01

    Early-life stress (ELS) is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR), that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of ELS on anxiety and memory in adulthood. We found that ELS increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of ELS on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus, MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice. PMID:26858618

  4. Overexpression of DHX32 contributes to the growth and metastasis of colorectal cancer

    PubMed Central

    Lin, Huayue; Liu, Wenjuan; Fang, Zanxi; Liang, Xianming; Li, Juan; Bai, Yongying; Lin, Lingqing; You, Hanyu; Pei, Yihua; Wang, Fen; Zhang, Zhong-Ying

    2015-01-01

    Our previous work demonstrates that DHX32 is upregulated in colorectal cancer (CRC) compared to its adjacent normal tissues. However, how overexpressed DHX32 contributes to CRC remains largely unknown. In this study, we reported that DHX32 was overexpressed in human colon cancer cells. Overexpressed DHX32 promoted SW480 cancer cells proliferation, migration, and invasion, as well as decreased the susceptibility to chemotherapy agent 5-Fluorouracil. Furthermore, PCR array analyses revealed that depleting DHX32 in SW480 colon cancer cells suppressed expression of WISP1, MMP7 and VEGFA in the Wnt pathway, and anti-apoptotic gene BCL2 and CA9, however, elevated expression of pro-apoptotic gene ACSL5. The findings suggested that overexpressed DHX32 played an important role in CRC progression and metastasis and that DHX32 has the potential to serve as a biomarker and a novel therapeutic target for CRC. PMID:25782664

  5. Behavioral Characterization of a Mouse Model Overexpressing DSCR1/ RCAN1

    PubMed Central

    Dierssen, Mara; Arqué, Gloria; McDonald, Jerome; Andreu, Nuria; Martínez-Cué, Carmen; Flórez, Jesús; Fillat, Cristina

    2011-01-01

    DSCR1/ RCAN1 is a chromosome 21 gene found to be overexpressed in the brains of Down syndrome (DS) and postulated as a good candidate to contribute to mental disability. However, even though Rcan1 knockout mice have pronounced spatial learning and memory deficits, the possible deleterious effects of its overexpression in DS are not well understood. We have generated a transgenic mouse model overexpressing DSCR1/RCAN1 in the brain and analyzed the effect of RCAN1 overexpression on cognitive function. TgRCAN1 mice present a marked disruption of the learning process in a visuo-spatial learning task. However, no significant differences were observed in the performance of the memory phase of the test (removal session) nor in a step-down passive avoidance task, thus suggesting that once learning has been established, the animals are able to consolidate the information in the longer term. PMID:21364922

  6. Geldanamycin Prevents Hemorrhage-Induced ATP Loss by Overexpressing Inducible HSP70 and Activating Pyruvate Dehydrogenase

    DTIC Science & Technology

    2006-03-24

    levels were determined using the ATP Bioluminescence Assay Kit HS II (Roche; Mannheim, Germany). Luminescence was measured with a TD-20/20...Geldanamycin prevents hemorrhage-induced ATP loss by overexpressing inducible HSP70 and activating pyruvate dehydrogenase Juliann G. Kiang,1,2,3...Geldanamycin prevents hemorrhage-induced ATP loss by overexpressing inducible HSP70 and activating pyruvate dehy- drogenase. Am J Physiol Gastrointest

  7. Establishment and initial characterization of SOX2-overexpressing NT2/D1 cell clones.

    PubMed

    Drakulic, D; Krstic, A; Stevanovic, M

    2012-05-15

    SOX2, a universal marker of pluripotent stem cells, is a transcription factor that helps control embryonic development in vertebrates; its expression persists in neural stem/progenitor cells into adulthood. Considering the critical role of the SOX2 transcription factor in the regulation of genes required for self-renewal and pluripotency of stem cells, we developed and characterized SOX2-overexpressing NT2/D1 cell clones. Using Southern blot and semi-quantitative RT-PCR, we confirmed integration and expression of exogenous SOX2 in three NT2/D1 cell clones. Overexpression of the SOX2 gene was detected in two of these clones. SOX2 overexpression in NT2/D1 cell clones resulted in altered expression of key pluripotency genes OCT4 and NANOG. Furthermore, SOX2-overexpressing NT2/D1 cell clones entered into retinoic acid-dependent neural differentiation, even when there was elevated SOX2 expression. After 21 days of induction by retinoic acid, expression of neural markers (neuroD1 and synaptophysin) was higher in induced cell clones than in induced parental cells. The cell clone with SOX2 overexpression had an approximately 1.3-fold higher growth rate compared to parental cells. SOX2 overexpression did not increase the population of cells undergoing apoptosis. Taken together, we developed two SOX2-overexpressing cell clones, with constitutive SOX2 expression after three weeks of retinoic acid treatment. SOX2 overexpression resulted in altered expression of pluripotency-related genes, increased proliferation, and altered expression of neural markers after three weeks of retinoic acid treatment.

  8. Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression

    PubMed Central

    Bengsch, F; Buck, A; Günther, SC; Seiz, JR; Tacke, M; Pfeifer, D; von Elverfeldt, D; Sevenich, L; Hillebrand, LE; Kern, U; Sameni, M; Peters, C; Sloane, BF; Reinheckel, T

    2014-01-01

    The cysteine protease cathepsin B (CTSB) is frequently overexpressed in human breast cancer and correlated with a poor prognosis. Genetic deficiency or pharmacological inhibition of CTSB attenuates tumor growth, invasion and metastasis in mouse models of human cancers. CTSB is expressed in both cancer cells and cells of the tumor stroma, in particular in tumor-associated macrophages (TAM). In order to evaluate the impact of tumor- or stromal cell-derived CTSB on Polyoma Middle T (PyMT)-induced breast cancer progression, we used in vivo and in vitro approaches to induce human CTSB overexpression in PyMT cancer cells or stromal cells alone or in combination. Orthotopic transplantation experiments revealed that CTSB overexpression in cancer cells rather than in the stroma affects PyMT tumor progression. In 3D cultures, primary PyMT tumor cells showed higher extracellular matrix proteolysis and enhanced collective cell invasion when CTSB was overexpressed and proteolytically active. Coculture of PyMT cells with bone marrow-derived macrophages induced a TAM-like macrophage phenotype in vitro, and the presence of such M2-polarized macrophages in 3D cultures enhanced sprouting of tumor spheroids. We employed a doxycycline (DOX)-inducible CTSB expression system to selectively overexpress human CTSB either in cancer cells or in macrophages in 3D cocultures. Tumor spheroid invasiveness was only enhanced when CTSB was overexpressed in cancer cells, whereas CTSB expression in macrophages alone did not further promote invasiveness of tumor spheroids. We conclude that CTSB overexpression in the PyMT mouse model promotes tumor progression not by a stromal effect, but by a direct, cancer cell-inherent mode of action: CTSB overexpression renders the PyMT cancers more invasive by increasing proteolytic extracellular matrix protein degradation fostering collective cell invasion into adjacent tissue. PMID:24077280

  9. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  10. Cardiac specific ATP-sensitive K+ channel (KATP) overexpression results in embryonic lethality.

    PubMed

    Toib, Amir; Zhang, Hai Xia; Broekelmann, Thomas J; Hyrc, Krzysztof L; Guo, Qiusha; Chen, Feng; Remedi, Maria S; Nichols, Colin G

    2012-09-01

    Transgenic mice overexpressing SUR1 and gain of function Kir6.2[∆N30, K185Q] K(ATP) channel subunits, under cardiac α-myosin heavy chain (αMHC) promoter control, demonstrate arrhythmia susceptibility and premature death. Pregnant mice, crossed to carry double transgenic progeny, which harbor high levels of both overexpressed subunits, exhibit the most extreme phenotype and do not deliver any double transgenic pups. To explore the fetal lethality and embryonic phenotype that result from K(ATP) overexpression, wild type (WT) and K(ATP) overexpressing embryonic cardiomyocytes were isolated, cultured and voltage-clamped using whole cell and excised patch clamp techniques. Whole mount embryonic imaging, Hematoxylin and Eosin (H&E) and α smooth muscle actin (αSMA) immunostaining were used to assess anatomy, histology and cardiac development in K(ATP) overexpressing and WT embryos. Double transgenic embryos developed in utero heart failure and 100% embryonic lethality by 11.5 days post conception (dpc). K(ATP) currents were detectable in both WT and K(ATP)-overexpressing embryonic cardiomyocytes, starting at early stages of cardiac development (9.5 dpc). In contrast to adult cardiomyocytes, WT and K(ATP)-overexpressing embryonic cardiomyocytes exhibit basal and spontaneous K(ATP) current, implying that these channels may be open and active under physiological conditions. At 9.5 dpc, live double transgenic embryos demonstrated normal looping pattern, although all cardiac structures were collapsed, probably representing failed, non-contractile chambers. In conclusion, K(ATP) channels are present and active in embryonic myocytes, and overexpression causes in utero heart failure and results in embryonic lethality. These results suggest that the K(ATP) channel may have an important physiological role during early cardiac development.

  11. Ephrin-A5 overexpression degrades topographic specificity in the mouse gluteus maximus muscle.

    PubMed

    Lampa, S J; Potluri, S; Norton, A S; Fusco, W; Laskowski, M B

    2004-11-25

    Motor neurons project onto specific muscles with a distinct positional bias. We have previously shown using electrophysiological techniques that overexpression of ephrin-A5 degrades this topographic map. Here, we show that positional differences in axon terminal areas, an entirely different parameter of neuromuscular topography, are also eliminated with ephrin-A5 overexpression. Therefore, we now have both morphological and electrophysiological approaches to explore the mechanisms of neuromuscular topography.

  12. [Investigation of mutations in transcription factors of efflux pump genes in fluconazole-resistant Candida albicans strains overexpressing the efflux pumps].

    PubMed

    Kalkandelen, Kemal Turan; Doluca Dereli, Mine

    2015-10-01

    In recent years, a significant rise in the number of immunocompromised patients have been observed due to cancer chemotherapy, organ transplantation and HIV infection. As a result of this, the frequency of Candida albicans infections in the clinics have been increased. Fluconazole, as being a well tolerated, easy to use drug with minor side effects, is often the first choice antifungal agent for this patient group, both for therapy and prophylaxis. Especially the long-term use of this drug, causes the selection of resistant strains and leads to the development of fluconazole resistance. The most frequently observed resistance mechanism against fluconazole in C.albicans strains is the transportation of the drug out of the cell via efflux pumps. The efflux pumps mainly involved are Cdr1, Cdr2 ve Mdr1 encoded by CDR1, CDR2 and MDR1 genes. It has been shown that, the overexpression of these efflux pump genes was caused by functional mutations in TAC1 and MRR1 genes which encode the transcription factors Tac1p and Mrr1p. This study was aimed to analyze TAC1 and MRR1 genes of 15 C.albicans strains which consist of six fluconazole-susceptible, four susceptible with trailing effect and five fluconazole-resistant isolates plus one resistant strain (DSY292), known to overexpress Mdr1 efflux pump due to P683H mutation in MRR1 gene and one fluconazole-sensitive ATCC 14053 C.albicans strain in terms of mutations with polymerase chain reaction and sequence analysis. Two of the fluconazole-resistant isolates which had overexpression of Cdr1 and Cdr2 pumps known to have overexpression of TAC1 gene, revealed R673Q and A736V mutations. A P683H point mutation, that overexpressed the Mdr1 pump was detected in a fluconazole-resistant strain, which was known to cause MRR1 overexpression. In conclusion, mutations in the transcription factors of the efflux pump genes may play an important role in the resistance against fluconazole among our selected C.albicans strains.

  13. Metabolomics revealed an association of metabolite changes and defective growth in Methylobacterium extorquens AM1 overexpressing ecm during growth on methanol

    SciTech Connect

    Cui, Jinyu; Good, Nathan M.; Hu, Bo; Yang, Jing; Wang, Qianwen; Sadilek, Martin; Yang, Song; Berg, Ivan A.

    2016-04-26

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targeted metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm overexpressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. Lastly, this research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.

  14. Home refinishing, lead paint, and infant blood lead levels.

    PubMed Central

    Rabinowitz, M; Leviton, A; Bellinger, D

    1985-01-01

    We measured the blood lead levels of 249 infants semi-annually from birth to two years of age; we sampled the home paint and recorded any recent home refinishing activity. Mean blood lead from birth to age 2 years did not vary systematically with age but did correlate significantly with the amount of lead in the indoor paint (p less than .01). Refinishing activity in homes with high lead paint was associated with elevations of blood lead averaging 69 per cent. PMID:3976969

  15. Mechanism of action and therapeutic efficacy of Aurora kinase B inhibition in MYC overexpressing medulloblastoma.

    PubMed

    Diaz, Roberto Jose; Golbourn, Brian; Faria, Claudia; Picard, Daniel; Shih, David; Raynaud, Denis; Leadly, Michael; MacKenzie, Danielle; Bryant, Melissa; Bebenek, Matthew; Smith, Christian A; Taylor, Michael D; Huang, Annie; Rutka, James T

    2015-02-20

    Medulloblastoma comprises four molecular subgroups of which Group 3 medulloblastoma is characterized by MYC amplification and MYC overexpression. Lymphoma cells expressing high levels of MYC are susceptible to apoptosis following treatment with inhibitors of mitosis. One of the key regulatory kinases involved in multiple stages of mitosis is Aurora kinase B. We hypothesized that medulloblastoma cells that overexpress MYC would be uniquely sensitized to the apoptotic effects of Aurora B inhibition. The specific inhibition of Aurora kinase B was achieved in MYC- overexpressing medulloblastoma cells with AZD1152-HQPA. MYC overexpression sensitized medulloblastoma cells to cell death upon Aurora B inhibition. This process was found to be independent of endoreplication. Using both flank and intracranial cerebellar xenografts we demonstrate that tumors formed from MYC-overexpressing medulloblastoma cells show a response to Aurora B inhibition including growth impairment and apoptosis induction. Lastly, we show the distribution of AZD1152-HQPA within the mouse brain and the ability to inhibit intracranial tumor growth and prolong survival in mice bearing tumors formed from MYC-overexpressing medulloblastoma cells. Our results suggest the potential for therapeutic application of Aurora kinase B inhibitors in the treatment of Group 3 medulloblastoma.

  16. The story of stolen chaperones: how overexpression of Q/N proteins cures yeast prions.

    PubMed

    Derkatch, Irina L; Liebman, Susan W

    2013-01-01

    Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller "seeds." Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI(+)] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI(+)] aggregates to enlarge. This is incompatible with a previously proposed "capping" model where the overexpressed Q/N-rich protein poisons, or "caps," the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI(+)] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI(+)] aggregates in a way that blocks their shearing.

  17. Enhancement of geraniol resistance of Escherichia coli by MarA overexpression.

    PubMed

    Shah, Asad Ali; Wang, Chonglong; Chung, Young-Ryun; Kim, Jae-Yean; Choi, Eui-Sung; Kim, Seon-Won

    2013-03-01

    Improvement of a microorganism's tolerance against organic solvents is required for a microbial factory producing terpenoid based biofuels. The bacterial genes, marA, imp, cls and cti have been found to increase organic solvent tolerance. Thus, the tolerance against the following terpenoids (isopentenol, geraniol, myrcene, and farnesol) was studied with overexpression of marA, imp, cls and cti genes in Escherichia coli. The marA overexpression significantly enhanced the tolerance of E. coli against geraniol, whereas there was no tolerance improvement against the terpenoids by overexpression of cls and cti genes. The imp overexpression even yielded sensitive phenotype to the tested solvents. The colony forming efficiency of the marA overexpressing E. coli was increased by 10(4)-fold in plate overlay of geraniol compared to that of wild type E. coli and a two-fold decrease of intracellular geraniol accumulation was also observed in liquid culture of geraniol. Single knock-out mutations of marA, or one of the following genes (acrA, acrB and tolC) encoding AcrAB-TolC efflux pump made E. coli hypersensitive to geraniol. The geraniol tolerance conferred by marA overexpression was attributed to the AcrAB-TolC efflux pump that is activated by MarA.

  18. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development.

    PubMed

    Wu, Shu; Platteau, Astrid; Chen, Shaoyi; McNamara, George; Whitsett, Jeffrey; Bancalari, Eduardo

    2010-05-01

    Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.

  19. Overexpression of YWHAZ as an independent prognostic factor in adenocarcinoma of the esophago-gastric junction

    PubMed Central

    Watanabe, Nobuyuki; Komatsu, Shuhei; Ichikawa, Daisuke; Miyamae, Mahito; Ohashi, Takuma; Okajima, Wataru; Kosuga, Toshiyuki; Konishi, Hirotaka; Shiozaki, Atsushi; Fujiwara, Hitoshi; Okamoto, Kazuma; Tsuda, Hitoshi; Otsuji, Eigo

    2016-01-01

    Several studies have demonstrated that YWHAZ (14-3-3ζ), included in the 14-3-3 family of proteins, is implicated in the initiation and progression of cancers. To detect a novel treatment target for adenocarcinoma of the esophagogastric junction (AEG), we tested whether YWHAZ acted as a cancer-promoting gene through its overexpression in AEG. We analyzed YWHAZ protein expression in 92 consecutive primary AEG tumors, which had been curatively resected in our institution between 2000 and 2010. Overexpression of the YWHAZ protein was frequently detected in primary AEG tumor samples (46% (42/92)). Overexpression of YWHAZ was significantly correlated with Siewert type III tumor, larger tumor size (≥40 mm) and higher rates of lymph node metastasis and recurrence. Patients with YWHAZ-overexpressing tumors had a worse overall rate of survival than those with non-expressing tumors (P = 0.011, log-rank test) in an intensity expression-dependent manner. Patients with YWHAZ-overexpression tumors had worse overall survival rates than those with lower-expression tumors. YWHAZ positivity was independently associated with a worse outcome in the multivariate analysis (P = 0.0015, hazard ratio 4.49 [1.736-13.06]). In conclusion, YWHAZ plays a crucial role in poor outcomes of patients with AEG through its overexpression, which highlights its usefulness as a prognosticator and potential therapeutic target and indicator in AEG. PMID:27904785

  20. Overexpression of Bmi1 in Lymphocytes Stimulates Skeletogenesis by Improving the Osteogenic Microenvironment

    PubMed Central

    Zhou, Xichao; Dai, Xiuliang; Wu, Xuan; Ji, Ji; Karaplis, Andrew; Goltzman, David; Yang, Xiangjiao; Miao, Dengshun

    2016-01-01

    To investigate whether overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by improving the osteogenic microenvironment, we examined the skeletal phenotype of EμBmi1 transgenic mice with overexpression of Bmi1 in lymphocytes. The size of the skeleton, trabecular bone volume and osteoblast number, indices of proliferation and differentiation of bone marrow mesenchymal stem cells (BM-MSCs) were increased significantly, ROS levels were reduced and antioxidative capacity was enhanced in EμBmi1 mice compared to WT mice. In PTHrP1–84 knockin (PthrpKI/KI) mice, the expression levels of Bmi1 are reduced and potentially can mediate the premature osteoporosis observed. We therefore generated a PthrpKI/KI mice overexpressing Bmi1 in lymphocytes and compared them with PthrpKI/KI and WT littermates. Overexpression of Bmi1 in PthrpKI/KI mice resulted in a longer lifespan, increased body weight and improvement in skeletal growth and parameters of osteoblastic bone formation with reduced ROS levels and DNA damage response parameters. Our results demonstrate that overexpression of Bmi1 in lymphocytes can stimulate osteogenesis in vivo and partially rescue defects in skeletal growth and osteogenesis in PthrpKI/KI mice. These studies therefore indicate that overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by inhibiting oxidative stress and improving the osteogenic microenvironment. PMID:27373231

  1. Mechanism of action and therapeutic efficacy of Aurora kinase B inhibition in MYC overexpressing medulloblastoma

    PubMed Central

    Faria, Claudia; Picard, Daniel; Shih, David; Raynaud, Denis; Leadly, Michael; MacKenzie, Danielle; Bryant, Melissa; Bebenek, Matthew; Smith, Christian A.; Taylor, Michael D.; Huang, Annie; Rutka, James T.

    2015-01-01

    Medulloblastoma comprises four molecular subgroups of which Group 3 medulloblastoma is characterized by MYC amplification and MYC overexpression. Lymphoma cells expressing high levels of MYC are susceptible to apoptosis following treatment with inhibitors of mitosis. One of the key regulatory kinases involved in multiple stages of mitosis is Aurora kinase B. We hypothesized that medulloblastoma cells that overexpress MYC would be uniquely sensitized to the apoptotic effects of Aurora B inhibition. The specific inhibition of Aurora kinase B was achieved in MYC-overexpressing medulloblastoma cells with AZD1152-HQPA. MYC overexpression sensitized medulloblastoma cells to cell death upon Aurora B inhibition. This process was found to be independent of endoreplication. Using both flank and intracranial cerebellar xenografts we demonstrate that tumors formed from MYC-overexpressing medulloblastoma cells show a response to Aurora B inhibition including growth impairment and apoptosis induction. Lastly, we show the distribution of AZD1152-HQPA within the mouse brain and the ability to inhibit intracranial tumor growth and prolong survival in mice bearing tumors formed from MYC-overexpressing medulloblastoma cells. Our results suggest the potential for therapeutic application of Aurora kinase B inhibitors in the treatment of Group 3 medulloblastoma. PMID:25739120

  2. Protective effects of catalase overexpression on UVB-induced apoptosis in normal human keratinocytes.

    PubMed

    Rezvani, Hamid Reza; Mazurier, Frédéric; Cario-André, Muriel; Pain, Catherine; Ged, Cécile; Taïeb, Alain; de Verneuil, Hubert

    2006-06-30

    UV-induced apoptosis in keratinocytes is a highly complex process in which various molecular pathways are involved. These include the extrinsic pathway via triggering of death receptors and the intrinsic pathway via DNA damage and reactive oxygen species (ROS) formation. In this study we investigated the effect of catalase and CuZn-superoxide dismutase (SOD) overexpression on apoptosis induced by UVB exposure at room temperature or 4 degrees C on normal human keratinocytes. Irradiation at low temperature reduced UV-induced apoptosis by 40% in normal keratinocytes independently of any change in p53 and with a decrease in caspase-8 activation. Catalase overexpression decreased apoptosis by 40% with a reduction of caspase-9 activation accompanied by a decrease in p53. Keeping cells at low temperature and catalase overexpression had additive effects. CuZn-SOD overexpression had no significant effect on UVB-induced apoptosis. UVB induced an increase in ROS levels at two distinct stages: immediately following irradiation and around 3 h after irradiation. Catalase overexpression inhibited only the late increase in ROS levels. We conclude that catalase overexpression has a protective role against UVB irradiation by preventing DNA damage mediated by the late ROS increase.

  3. Secreted frizzled-related protein 1 overexpression in gastric cancer: Relationship with radiological findings of dual-energy spectral CT and PET-CT

    PubMed Central

    Lin, Huimin; Yang, Guoyuan; Ding, Bei; Zhang, Miao; Zhang, Mingjun; Yan, Fuhua; Qu, Ying; Zhang, Huan

    2017-01-01

    We explored the role of secreted frizzled-related protein 1 (sFRP1) overexpression in gastric cancer and its relationship with radiological findings from dual-energy spectral CT(DEsCT) and positron emission tomography/computed tomography (PET/CT). We established mouse metastatic models using the SGC-7901/sFRP1 gastric cancer cell line. A control group was established using the SGC-7901/vector cell line. The models were then scanned with dual-energy spectral CT and PET-CT. Subsequent analysis, including immunohistochemistry and Transferase-mediated deoxyuridine triphosphate-biotin nick end labelling (TUNEL), was performed to confirm the role of sFRP1. Transwell chamber and angiogenesis assays were conducted to verify the effect of sFRP1 in vitro. We found that the control group showed negative radiological performance with successful implantation. Concurrently, the treated group showed visible lesions, a higher FDG uptake and increasing enhancement. The immunological and histological analysis confirmed the positive radiological performance with larger size, increasing proliferation, more microvessels and less apoptosis. The angiogenic up-regulation of sFRP1 overexpression were further verified with in vitro cell models. This preliminary study demonstrates that sFRP1 overexpression in gastric cancer cells leads to increased cell proliferation and angiogenesis, which may, in turn, contribute to positive PET/CT and CT performances. PMID:28169332

  4. Neuronal-specific overexpression of a mutant valosin-containing protein associated with IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and cognitive dysfunction in transgenic mice.

    PubMed

    Rodriguez-Ortiz, Carlos J; Hoshino, Hitomi; Cheng, David; Liu-Yescevitz, Liqun; Blurton-Jones, Mathew; Wolozin, Benjamin; LaFerla, Frank M; Kitazawa, Masashi

    2013-08-01

    Mutations in valosin-containing protein (VCP) cause a rare, autosomal dominant disease called inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). One-third of patients with IBMPFD develop frontotemporal dementia, characterized by an extensive neurodegeneration in the frontal and temporal lobes. Neuropathologic hallmarks include nuclear and cytosolic inclusions positive to ubiquitin and transactive response DNA-binding protein 43 (TDP-43) in neurons and glial activation in affected regions. However, the pathogenic mechanisms by which mutant VCP triggers neurodegeneration remain unknown. Herein, we generated a mouse model selectively overexpressing a human mutant VCP in neurons to study pathogenic mechanisms of mutant VCP-mediated neurodegeneration and cognitive impairment. The overexpression of VCPA232E mutation in forebrain regions produced significant progressive impairments of cognitive function, including deficits in spatial memory, object recognition, and fear conditioning. Although overexpressed or endogenous VCP did not seem to focally aggregate inside neurons, TDP-43 and ubiquitin accumulated with age in transgenic mouse brains. TDP-43 was also found to co-localize with stress granules in the cytosolic compartment. Together with the appearance of high-molecular-weight TDP-43 in cytosolic fractions, these findings demonstrate the mislocalization and accumulation of abnormal TDP-43 in the cytosol of transgenic mice, which likely lead to an increase in cellular stress and cognitive impairment. Taken together, these results highlight an important pathologic link between VCP and cognition.

  5. Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions.

    PubMed

    Lee, Young Pyo; Baek, Kwang-Hyun; Lee, Haeng-Soon; Kwak, Sang-Soo; Bang, Jae-Woog; Kwon, Suk-Yoon

    2010-05-01

    Reactive oxygen species (ROS) are produced during seed desiccation, germination, and ageing, leading to cellular damage and seed deterioration and, therefore, decreased seed longevity. The effects of simultaneous over-expression of two antioxidant enzymes on seed longevity and seed germination under stressful conditions were investigated. Transgenic tobacco simultaneously over-expressing the Cu/Zn-superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) genes in plastids showed normal growth and seed development. Furthermore, the transgenic seeds displayed increased CuZnSOD and APX enzymatic activities during seed development and maintained antioxidant enzymatic activity after two years of dried storage at room temperature. The two-year stored non-transgenic seeds (aged NT seeds) had higher levels of ion leakage than the two-year stored transgenic seeds (aged CA seeds), indicating membrane damage caused by ROS was more severe in the aged NT seeds than the aged CA seeds. The aged CA seeds decreased germination rates as compared to newly harvested transgenic and non-transgenic seeds. The aged CA seeds, however, significantly increased germination rates under various abiotic stress conditions as compared to aged NT seeds. These data strongly suggest that simultaneous over-expression of the CuZnSOD and APX genes in plastids improves seed longevity and germination under various environmental stress conditions by attenuating the effects of oxidative stress produced by elongated storage conditions and harsh environmental stresses.

  6. Repression of Antibiotic Production and Sporulation in Streptomyces coelicolor by Overexpression of a TetR Family Transcriptional Regulator ▿ †

    PubMed Central

    Xu, Delin; Seghezzi, Nicolas; Esnault, Catherine; Virolle, Marie-Joelle

    2010-01-01

    The overexpression of a regulatory gene of the TetR family (SCO3201) originating either from Streptomyces lividans or from Streptomyces coelicolor was shown to strongly repress antibiotic production (calcium-dependent antibiotic [CDA], undecylprodigiosin [RED], and actinorhodin [ACT]) of S. coelicolor and of the ppk mutant strain of S. lividans. Curiously, the overexpression of this gene also had a strong inhibitory effect on the sporulation process of S. coelicolor but not on that of S. lividans. SCO3201 was shown to negatively regulate its own transcription, and its DNA binding motif was found to overlap its −35 promoter sequence. The interruption of this gene in S. lividans or S. coelicolor did not lead to any obvious phenotypes, indicating that when overexpressed SCO3201 likely controls the expression of target genes of other TetR regulators involved in the regulation of the metabolic and morphological differentiation process in S. coelicolor. The direct and functional interaction of SCO3201 with the promoter region of scbA, a gene under the positive control of the TetR-like regulator, ScbR, was indeed demonstrated by in vitro as well as in vivo approaches. PMID:20935121

  7. Overexpression of FGFR2 contributes to inherent resistance to MET inhibitors in MET-amplified patient-derived gastric cancer xenografts.

    PubMed

    Liu, Kai; Song, Xilin; Zhu, Meirong; Ma, Heng

    2015-10-01

    Gastric cancer is one of the most malignant diseases and one of the leading causes of cancer-associated mortality worldwide. Although advances have been made in surgical techniques, perioperative management and the combined use of surgery with chemotherapy and/or radiotherapy, patients with advanced stage gastric cancer continue to face poor outcomes. Furthermore, it was reported that MET gene amplification and overexpression predicted the sensitivity to MET inhibitors in gastric cancer. However, the identification of drug-resistant tumors has encouraged the pre-emptive elucidation of the possible mechanisms of clinical resistance. The current study assessed a number of patient-derived gastric cancer models with MET amplification and overexpression, including CNGAS028. The tumor tissues were subjected to microarray analysis (using single nucleotide polymorphism 6.0 and human genome U133 arrays) followed by western blotting. The results demonstrated that CNGAS028 xenograft tumors did not respond to treatment with a selective MET inhibitor. Additional analysis indicated that FGFR2 overexpression contributed to the resistance to MET inhibitors. Furthermore, treatment with a combination of fibroblast growth factor receptor 2 and MET inhibitors inhibited the growth of CNGAS028 xenograft tumors in vivo. In conclusion, the current results aid in understanding the mechanism of inherent resistance to selective MET inhibitors as well as provide important information for patient selection and clinical treatment strategies.

  8. Lead leaching from pressure cookers.

    PubMed

    Raghunath, R; Nambi, K S

    1998-12-11

    Leachability of lead by tap water and tamarind solution from Indian pressure cookers while cooking with and without a safety valve is studied. Lead contamination of food by cookers is not very high when compared to the daily intake of lead from various food items consumed by the Indian community. However, looking at the very wide range of lead levels leached from various brands of pressure cookers, it certainly seems possible to keep the lead contamination to the minimum by proper choice of the materials used in the manufacture of these pressure cookers. The rubber gasket, which is a very important component of any pressure cooker, contains the maximum lead concentration; the safety valve is another important source leading to lead contamination of cooked food.

  9. Safety and Health Topics: Lead

    MedlinePlus

    ... A Spanish version is also available. Lead Battery Manufacturing eTool . OSHA. Management Guidelines for Blood Lead Levels ... exposure occurs in most industry sectors including construction, manufacturing, wholesale trade, transportation, remediation and even recreation. Construction ...

  10. Lead (Environmental Health Student Portal)

    MedlinePlus

    ... Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Videos Games Experiments For Teachers Home ... Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Lead The Basics Lead is a ...

  11. Lead testing wipes contain measurable background levels of lead.

    PubMed

    Keenan, James J; Le, Matthew H; Paustenbach, Dennis J; Gaffney, Shannon H

    2010-03-01

    Lead is registered under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65) as both a carcinogen and a reproductive hazard. As part of the process to determine if consumer products satisfy Proposition 65 with respect to lead, various wipe sampling strategies have been utilized. Four commonly used wipe materials (cotton gauze, cotton balls, ashless filter paper, and Ghost Wipes) were tested for background lead levels. Ghost Wipe material was found to have 0.43 +/- 0.11 microg lead/sample (0.14 microg/wipe). Wipe testing for lead using Ghost Wipes may therefore result in measurable concentrations of lead, regardless of whether or not the consumer product actually contains leachable lead.

  12. Downregulation of homeodomain-interacting protein kinase-2 contributes to bladder cancer metastasis by regulating Wnt signaling.

    PubMed

    Tan, Mingyue; Gong, Hua; Zeng, Yigang; Tao, Le; Wang, Jun; Jiang, Juntao; Xu, Dongliang; Bao, Erdun; Qiu, Jianxin; Liu, Zhihong

    2014-10-01

    Homeodomain-interacting protein kinase-2 (Hipk2) has been shown to have important regulatory roles in cancer biology, such as cancer cell proliferation, cell cycle, and cell invasion. However, the contributions of Hipk2 to bladder cancer metastasis remain largely unknown. In the current study, we assayed the expression level of Hipk2 in bladder cancer tissues by real-time PCR, and defined its biological functions. We found that Hipk2 levels were downregulated in most bladder cancer tissues compared with adjacent normal tissues, and Hipk2 levels were remarkably decreased in metastasized tumor tissues when compared with primary tumors. SiRNA-mediated Hipk2 silencing increased bladder cancer cell invasion. Hipk2 knockdown resulted in decrease of E-cadherin expression and increase of N-cadherin and fibronectin expression, indicated that epithelial-mesenchymal transition (EMT) was induced. We further demonstrated that Hipk2 knockdown induced Wnt signaling activation and β-catenin nuclear localization. Finally, we confirmed that Hipk2 inhibition promoted EMT and subsequent cell invasion, at least in part by activating Wnt signaling. These data suggest an important role of Hipk2 in regulating metastasis of bladder cancer and implicate the potential application of Hipk2 in bladder cancer therapy.

  13. Lead in teeth from lead-dosed goats: Microdistribution and relationship to the cumulative lead dose

    SciTech Connect

    Bellis, David J.; Hetter, Katherine M.; Jones, Joseph; Amarasiriwardena, Dula; Parsons, Patrick J.

    2008-01-15

    Teeth are commonly used as a biomarker of long-term lead exposure. There appear to be few data, however, on the content or distribution of lead in teeth where data on specific lead intake (dose) are also available. This study describes the analysis of a convenience sample of teeth from animals that were dosed with lead for other purposes, i.e., a proficiency testing program for blood lead. Lead concentration of whole teeth obtained from 23 animals, as determined by atomic absorption spectrometry, varied from 0.6 to 80 {mu}g g{sup -1}. Linear regression of whole tooth lead ({mu}g g{sup -1}) on the cumulative lead dose received by the animal (g) yielded a slope of 1.2, with r{sup 2}=0.647 (p<0.0001). Laser ablation inductively coupled plasma mass spectrometry was employed to determine lead content at micrometer scale spatial resolution in the teeth of seven goats representing the dosing range. Highly localized concentrations of lead, ranging from about 10 to 2000 {mu}g g{sup -1}, were found in circumpulpal dentine. Linear regression of circumpulpal lead ({mu}g g{sup -1}) on cumulative lead dose (g) yielded a slope of 23 with r{sup 2}=0.961 (p=0.0001). The data indicated that whole tooth lead, and especially circumpulpal lead, of dosed goats increased linearly with cumulative lead exposure. These data suggest that circumpulpal dentine is a better biomarker of cumulative lead exposure than is whole tooth lead, at least for lead-dosed goats.

  14. The overexpression of MDM4: an effective and novel predictor of gastric adenocarcinoma lymph node metastasis

    PubMed Central

    Qu, Guofan; Xue, Yingwei

    2016-01-01

    Background MDM4 is the important negative regulator of the tumor suppressor protein p53, which is overexpressed in various human cancers. This study evaluates the MDM4 expression in patients with gastric adenocarcinoma (GTAC) at the mRNA and protein levels and examines relationships among MDM4 expression, clinicopathological features, and prognosis. Results The qRT-PCR and the Western blot analysis showed that the MDM4 expression level was high in GTACN+ but not in GTACN−. The high expression level of MDM4 was significantly associated with age (P = 0.047), lymph node metastasis (LNM) (P < 0.001), pathological stage (P < 0.001), differentiation status (P = 0.001), and preoperative serum CA19-9 level (P < 0.001). Moreover, the survival analysis showed that Borrmann type, depth of invasion, LNM, and preoperative serum CA19-9 level were independent prognostic factors. The univariate analysis revealed that MDM4 expression influenced GTAC prognosis. Furthermore, the influence of overall prognosis relies on whether or not the high MDM4 expression level could lead to LNM. Materials and Methods We investigated MDM4 expression in primary GTAC and paired normal gastric tissues (30 pairs) through qRT-PCR and Western blot analyses. We also performed immunohistochemistry analysis on 336 paraffin-embedded GTAC specimens and 33 matched normal specimens. Conclusions MDM4 expression may result in LMN of GTAC. High MDM4 expression levels are associated with LMN of GTAC and influence the prognosis of patients with GTAC. PMID:27626496

  15. GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion.

    PubMed

    Shashidhar, Sumana; Lorente, Gustavo; Nagavarapu, Usha; Nelson, April; Kuo, Jane; Cummins, Jeramiah; Nikolich, Karoly; Urfer, Roman; Foehr, Erik D

    2005-03-03

    GPR56 (also known as TM7XN1) is a newly discovered orphan G-protein-coupled receptor (GPCR) of the secretin family that has a role in the development of neural progenitor cells and has been linked to developmental malformations of the human brain. GPR56 diverges from other secretin-like family members in that it has an extremely large N-terminal extracellular region (381 amino acids) and contains a novel feature among this new subclass, consisting of four cysteine residues that define a GPCR proteolytic site (GPS motif) located just before the first transmembrane spanning domain. The rest of the amino-terminal domain contains a large number of possible N- and O-linked glycosylation sites similar to mucin-like proteins. These features suggest a role in cell-cell, or cell-matrix interactions. Here, we demonstrate upregulation of GPR56 in glioblastoma multiforme tumors using functional genomics. Immunohistochemistry studies confirmed the expression of GPR56 protein in a majority of glioblastoma/astrocytoma tumor samples with undetectable levels of expression in normal adult brain tissue. Immunofluorescence analysis of human glioma cells using anti-GPR56 antibodies demonstrate that GPR56 is expressed on the leading edge of membrane filopodia and colocalizes with alpha-actinin. Purified recombinant GPR56 extracellular domain protein inhibits glioma cell adhesion and causes abnormal cytoskeletal morphology and cell rounding. These results indicate that the extracellular domain may compete for unidentified ligand(s), and block the normal function of GPR56 in cell attachment. In reporter assays, overexpression of GPR56 activates the NF-kappaB, PAI-1 and TCF transcriptional response elements. These pathways have been implicated in cytoskeletal signaling, adhesion and tumor biology. The above results indicate that GPR56 serves as an adhesion GPCR and is involved in adhesion signaling.

  16. Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats.

    PubMed

    Larson, Erin B; Graham, Danielle L; Arzaga, Rose R; Buzin, Nicole; Webb, Joseph; Green, Thomas A; Bass, Caroline E; Neve, Rachael L; Terwilliger, Ernest F; Nestler, Eric J; Self, David W

    2011-11-09

    Chronic exposure to addictive drugs enhances cAMP response element binding protein (CREB)-regulated gene expression in nucleus accumbens (NAc), and these effects are thought to reduce the positive hedonic effects of passive cocaine administration. Here, we used viral-mediated gene transfer to produce short- and long-term regulation of CREB activity in NAc shell of rats engaging in volitional cocaine self-administration. Increasing CREB expression in NAc shell markedly enhanced cocaine reinforcement of self-administration behavior, as indicated by leftward (long-term) and upward (short-term) shifts in fixed ratio dose-response curves. CREB also increased the effort exerted by rats to obtain cocaine on more demanding progressive ratio schedules, an effect highly correlated with viral-induced modulation of BDNF protein in the NAc shell. CREB enhanced cocaine reinforcement when expressed either throughout acquisition of self-administration or when expression was limited to postacquisition tests, indicating a direct effect of CREB independent of reinforcement-related learning. Downregulating endogenous CREB in NAc shell by expressing a short hairpin RNA reduced cocaine reinforcement in similar tests, while overexpression of a dominant-negative CREB(S133A) mutant had no significant effect on cocaine self-administration. Finally, increasing CREB expression after withdrawal from self-administration enhanced cocaine-primed relapse, while reducing CREB levels facilitated extinction of cocaine seeking, but neither altered relapse induced by cocaine cues or footshock stress. Together, these findings indicate that CREB activity in NAc shell increases the motivation for cocaine during active self-administration or after withdrawal from cocaine. Our results also highlight that volitional and passive drug administration can lead to substantially different behavioral outcomes.

  17. Overexpression of 14-3-3σ counteracts tumorigenicity by positively regulating p73 in vivo

    PubMed Central

    GENG, CUIZHI; SANG, MEIXIANG; YANG, RUILING; GAO, WEI; ZHOU, TAO; WANG, SHIJIE

    2011-01-01

    14-3-3σ, one of the 14-3-3 family members, was initially identified as a human mammary epithelium-specific marker 1. The expression of 14-3-3σ is directly regulated by p53. It has been demonstrated that 14-3-3σ stabilizes p53 and enhances its transcriptional activity through the interaction with p53, suggesting that 14-3-3σ has a positive feedback effect on p53. Our previous study showed that 14-3-3σ is a direct transcriptional target of p73 and enhances the p73-mediated transcriptional as well as pro-apoptotic activity in vitro. In the present study, we explored the tumor-suppressive effect of 14-3-3σ by establishing a breast cancer xenograft nude mouse model with an inducible expression of 14-3-3σ or with an inducible expression of p53/p73 plus 14-3-3σ with ADR treatment. Tumor formation was then assayed. Moreover, 66 primary breast cancer specimens and paired tumor-free breast specimens obtained from the female patients were examined. Results showed that the expression of p73 and 14-3-3σ in breast cancer specimens was significantly lower than the tumor-free breast specimens and that 14-3-3σ expression was positively correlated with the expression of p73. Furthermore, overexpression of 14-3-3σ counteracts tumorigenicity by positively regulating p73 in p53-mutated or -deficient cancers in vivo. Therefore, our results may lead to the use of 14-3-3σ in the therapeutic application for the p53-mutated and p73-expressed breast cancer patients. PMID:22848285

  18. Overexpression of MYC and EZH2 cooperates to epigenetically silence MST1 expression

    PubMed Central

    Kuser-Abali, Gamze; Alptekin, Ahmet; Cinar, Bekir

    2014-01-01

    Hippo-like MST1 protein kinase regulates cell growth, organ size, and carcinogenesis. Reduction or loss of MST1 expression is implicated in poor cancer prognosis. However, the mechanism leading to MST1 silencing remains elusive. Here, we report that both MYC and EZH2 function as potent suppressors of MST1 expression in human prostate cancer cells. We demonstrated that concurrent overexpression of MYC and EZH2 correlated with the reduction or loss of MST1 expression, as shown by RT-qPCR and immunoblotting. Methylation sensitive PCR and bisulfite genomic DNA sequencing showed that DNA methylation caused MST1 silencing. Pharmacologic and RNAi experiments revealed that MYC and EZH2 silenced MST1 expression by inhibiting its promoter activity, and that EZH2 was a mediator of the MYC-induced silencing of MST1. In addition, MYC contributed to MST1 silencing by partly inhibiting the expression of microRNA-26a/b, a negative regulator of EZH2. As shown by ChIP assays, EZH2-induced DNA methylation and H3K27me3 modification, which was accompanied by a reduced H3K4me3 mark and RNA polymerase II occupancy on the MST1 promoter CpG region, were the underlying cause of MST1 silencing. Moreover, potent pharmacologic inhibitors of MYC or EZH2 suppressed prostate cancer cell growth in vitro, and the knockdown of MST1 caused cells’ resistance to MYC and EZH2 inhibitor-induced growth retardation. These findings indicate that MYC, in concert with EZH2, epigenetically attenuates MST1 expression and suggest that the loss of MST1/Hippo functions is critical for the MYC or EZH2 mediation of cancer cell survival. PMID:24499724

  19. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis

    PubMed Central

    Lu, Hua; Zhang, Chong; Albrecht, Ute; Shimizu, Rena; Wang, Guanfeng; Bowman, Kim D.

    2013-01-01

    Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production. PMID:23761797

  20. Characterization of PTZ-Induced Seizure Susceptibility in a Down Syndrome Mouse Model That Overexpresses CSTB

    PubMed Central

    Brault, Véronique; Martin, Benoît; Costet, Nathalie; Bizot, Jean-Charles; Hérault, Yann

    2011-01-01

    Down syndrome (DS) is a complex genetic syndrome characterized by intellectual disability, dysmorphism and variable additional physiological traits. Current research progress has begun to decipher the neural mechanisms underlying cognitive impairment, leading to new therapeutic perspectives. Pentylenetetrazol (PTZ) has recently been found to have positive effects on learning and memory capacities of a DS mouse model and is foreseen to treat DS patients. But PTZ is also known to be a convulsant drug at higher dose and DS persons are more prone to epileptic seizures than the general population. This raises concerns over what long-term effects of treatment might be in the DS population. The cause of increased propensity for epilepsy in the DS population and which Hsa21 gene(s) are implicated remain unknown. Among Hsa21 candidate genes in epilepsy, CSTB, coding for the cystein protease inhibitor cystatin B, is involved in progressive myoclonus epilepsy and ataxia in both mice and human. Thus we aim to evaluate the effect of an increase in Cstb gene dosage on spontaneous epileptic activity and susceptibility to PTZ-induced seizure. To this end we generated a new mouse model trisomic for Cstb by homologous recombination. We verified that increasing copy number of Cstb from Trisomy (Ts) to Tetrasomy (Tt) was driving overexpression of the gene in the brain, we checked transgenic animals for presence of locomotor activity and electroencephalogram (EEG) abnormalities characteristic of myoclonic epilepsy and we tested if those animals were prone to PTZ-induced seizure. Overall, the results of the analysis shows that an increase in Cstb does not induce any spontaneous epileptic activity and neither increase or decrease the propensity of Ts and Tt mice to myoclonic seizures suggesting that Ctsb dosage should not interfere with PTZ-treatment. PMID:22140471

  1. Cyclooxygenase-2 over-expression inhibits liver apoptosis induced by hyperglycemia.

    PubMed

    Francés, Daniel E A; Ingaramo, Paola I; Mayoral, Rafael; Través, Paqui; Casado, Marta; Valverde, Ángela M; Martín-Sanz, Paloma; Carnovale, Cristina E

    2013-03-01

    Increased expression of COX-2 has been linked to inflammation and carcinogenesis. Constitutive expression of COX-2 protects hepatocytes from several pro-apoptotic stimuli. Increased hepatic apoptosis has been observed in experimental models of diabetes. Our present aim was to analyze the role of COX-2 as a regulator of apoptosis in diabetic mouse liver. Mice of C57BL/6 strain wild type (Wt) and transgenic in COX-2 (hCOX-2 Tg) were separated into Control (vehicle) and SID (streptozotocin induced diabetes, 200 mg/kg body weight, i.p.). Seven days post-injection, Wt diabetic animals showed a decrease in PI3K activity and P-Akt levels, an increase of P-JNK, P-p38, pro-apoptotic Bad and Bax, release of cytochrome c and activities of caspases-3 and -9, leading to an increased apoptotic index. This situation was improved in diabetic COX-2 Tg. In addition, SID COX-2 Tg showed increased expression of anti-apoptotic Mcl-1 and XIAP. Pro-apoptotic state in the liver of diabetic animals was improved by over-expression of COX-2. We also analyzed the roles of high glucose-induced apoptosis and hCOX-2 in vitro. Non-transfected and hCOX-2-transfected cells were cultured at 5 and 25 mM of glucose by 72 h. At 25 mM there was an increase in apoptosis in non-transfected cells versus those exposed to 5 mM. This increase was partly prevented in transfected cells at 25 mM. Moreover, the protective effect observed in hCOX-2-transfected cells was suppressed by addition of DFU (COX-2 selective inhibitor), and mimicked by addition of PGE(2) in non-transfected cells. Taken together, these results demonstrate that hyperglycemia-induced hepatic apoptosis is protected by hCOX-2 expression.

  2. Lead in School Drinking Water.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    Lead levels in school drinking water merit special concern because children are more at risk than adults from exposure to lead. This manual provides ways in which school officials can minimize this risk. It assists administrators by providing: (1) general information on the significance of lead in school drinking water and its effects on children;…

  3. Blood Test: Lead (For Parents)

    MedlinePlus

    ... Your 1- to 2-Year-Old Blood Test: Lead KidsHealth > For Parents > Blood Test: Lead A A A What's in this article? What ... Análisis de sangre: plomo What It Is A lead test is used to determine the amount of ...

  4. Breakthrough: Lead-free Solder

    SciTech Connect

    Anderson, Iver

    2012-01-01

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  5. Breakthrough: Lead-free Solder

    ScienceCinema

    Anderson, Iver

    2016-07-12

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  6. Overexpression of the scaffold WD40 protein WRAP53β enhances the repair of and cell survival from DNA double-strand breaks

    PubMed Central

    Rassoolzadeh, H; Böhm, S; Hedström, E; Gad, H; Helleday, T; Henriksson, S; Farnebo, M

    2016-01-01

    Altered expression of the multifunctional protein WRAP53β (WD40 encoding RNA Antisense to p53), which targets repair factors to DNA double-strand breaks and factors involved in telomere elongation to Cajal bodies, is linked to carcinogenesis. While loss of WRAP53β function has been shown to disrupt processes regulated by this protein, the consequences of its overexpression remain unclear. Here we demonstrate that overexpression of WRAP53β disrupts the formation of and impairs the localization of coilin to Cajal bodies. At the same time, the function of this protein in the repair of DNA double-strand breaks is enhanced. Following irradiation, cells overexpressing WRAP53β exhibit more rapid clearance of phospho-histone H2AX (γH2AX), and more efficient homologous recombination and non-homologous end-joining, in association with fewer DNA breaks. Moreover, in these cells the ubiquitylation of damaged chromatin, which is known to facilitate the recruitment of repair factors and subsequent repair, is elevated. Knockdown of the ubiquitin ligase involved, ring-finger protein 8 (RNF8), which is recruited to DNA breaks by WRAP53β, attenuated this effect, suggesting that overexpression of WRAP53β leads to more rapid repair, as well as improved cell survival, by enhancing RNF8-mediated ubiquitylation at DNA breaks. Our present findings indicate that WRAP53β and RNF8 are rate-limiting factors in the repair of DNA double-strand breaks and raise the possibility that upregulation of WRAP53β may contribute to genomic stability in and survival of cancer cells. PMID:27310875

  7. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants*

    PubMed Central

    He, Cuiwen H.; Xie, Letian X.; Allan, Christopher M.; Tran, UyenPhuong C.; Clarke, Catherine F.

    2014-01-01

    Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. PMID:24406904