Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS.
Longoni, Giulia; Rocca, Maria A; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo
2015-01-01
The hippocampus has a critical role in episodic memory and visuospatial learning and consolidation. We assessed the patterns of whole and regional hippocampal atrophy in a large group of multiple sclerosis (MS) patients, and their correlations with neuropsychological impairment. From 103 MS patients and 28 healthy controls (HC), brain dual-echo and high-resolution 3D T1-weighted images were acquired using a 3.0-Tesla scanner. All patients underwent a neuropsychological assessment of hippocampal-related cognitive functions, including Paired Associate Word Learning, Short Story, delayed recall of Rey-Osterrieth Complex Figure and Paced Auditory Serial Attention tests. The hippocampi were manually segmented and volumes derived. Regional atrophy distribution was assessed using a radial mapping analysis. Correlations between hippocampal atrophy and clinical, neuropsychological and MRI metrics were also evaluated. Hippocampal volume was reduced in MS patients vs HC (p < 0.001 for both right and hippocampus). In MS patients, radial atrophy affected CA1 subfield and subiculum of posterior hippocampus, bilaterally. The dentate hilus (DG:H) of the right hippocampal head was also affected. Regional hippocampal atrophy correlated with brain T2 and T1 lesion volumes, while no correlation was found with disability. Damage to the CA1 and subiculum was significantly correlated to the performances at hippocampal-targeted neuropsychological tests. These results show that hippocampal subregions have a different vulnerability to MS-related damage, with a relative sparing of the head of the left hippocampus. The assessment of regional hippocampal atrophy may help explain deficits of specific cognitive functions in MS patients, including memory and visuospatial abilities.
Duval, Elizabeth R; Garfinkel, Sarah N; Swain, James E; Evans, Gary W; Blackburn, Erika K; Angstadt, Mike; Sripada, Chandra S; Liberzon, Israel
2017-02-01
Childhood poverty is a risk factor for poorer cognitive performance during childhood and adulthood. While evidence linking childhood poverty and memory deficits in adulthood has been accumulating, underlying neural mechanisms are unknown. To investigate neurobiological links between childhood poverty and adult memory performance, we used functional magnetic resonance imaging (fMRI) during a visuospatial memory task in healthy young adults with varying income levels during childhood. Participants were assessed at age 9 and followed through young adulthood to assess income and related factors. During adulthood, participants completed a visuospatial memory task while undergoing MRI scanning. Patterns of neural activation, as well as memory recognition for items, were assessed to examine links between brain function and memory performance as it relates to childhood income. Our findings revealed associations between item recognition, childhood income level, and hippocampal activation. Specifically, the association between hippocampal activation and recognition accuracy varied as a function of childhood poverty, with positive associations at higher income levels, and negative associations at lower income levels. These prospective findings confirm previous retrospective results detailing deleterious effects of childhood poverty on adult memory performance. In addition, for the first time, we identify novel neurophysiological correlates of these deficits localized to hippocampus activation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
DISC1 gene and affective psychopathology: a combined structural and functional MRI study.
Opmeer, Esther M; van Tol, Marie-José; Kortekaas, Rudie; van der Wee, Nic J A; Woudstra, Saskia; van Buchem, Mark A; Penninx, Brenda W; Veltman, Dick J; Aleman, André
2015-02-01
The gene Disrupted-In-Schizophrenia-1 (DISC1) has been indicated as a determinant of psychopathology, including affective disorders, and shown to influence prefrontal cortex (PFC) and hippocampus functioning, regions of major interest for affective disorders. We aimed to investigate whether DISC1 differentially modulates brain function during executive and memory processing, and morphology in regions relevant for depression and anxiety disorders (affective disorders). 128 participants, with (n = 103) and without (controls; n = 25) affective disorders underwent genotyping for Ser704Cys (with Cys-allele considered as risk-allele) and structural and functional (f) Magnetic Resonance Imaging (MRI) during visuospatial planning and emotional episodic memory tasks. For both voxel-based morphometry and fMRI analyses, we investigated the effect of genotype in controls and explored genotypeXdiagnosis interactions. Results are reported at p < 0.05 FWE small volume corrected. In controls, Cys-carriers showed smaller bilateral (para)hippocampal volumes compared with Ser-homozygotes, and lower activation in the anterior cingulate cortex (ACC) and dorsolateral PFC during visuospatial planning. In anxiety patients, Cys-carriers showed larger (para)hippocampal volumes and more ACC activation during visuospatial planning. In depressive patients, no effect of genotype was observed and overall, no effect of genotype on episodic memory processing was detected. We demonstrated that Ser704Cys-genotype influences (para)hippocampal structure and functioning the dorsal PFC during executive planning, most prominently in unaffected controls. Results suggest that presence of psychopathology moderates Ser704Cys effects. Copyright © 2014 Elsevier Ltd. All rights reserved.
Villette, Vincent; Poindessous-Jazat, Frédérique; Simon, Axelle; Léna, Clément; Roullot, Elodie; Bellessort, Brice; Epelbaum, Jacques; Dutar, Patrick; Stéphan, Aline
2010-08-18
The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.
van Geest, Quinten; Hulst, Hanneke E; Meijer, Kim A; Hoyng, Lieke; Geurts, Jeroen J G; Douw, Linda
2018-05-01
Brain dynamics (i.e., variable strength of communication between areas), even at the scale of seconds, are thought to underlie complex human behavior, such as learning and memory. In multiple sclerosis (MS), memory problems occur often and have so far only been related to "stationary" brain measures (e.g., atrophy, lesions, activation and stationary (s) functional connectivity (FC) over an entire functional scanning session). However, dynamics in FC (dFC) between the hippocampus and the (neo)cortex may be another important neurobiological substrate of memory impairment in MS that has not yet been explored. Therefore, we investigated hippocampal dFC during a functional (f) magnetic resonance imaging (MRI) episodic memory task and its relationship with verbal and visuospatial memory performance outside the MR scanner. Thirty-eight MS patients and 29 healthy controls underwent neuropsychological tests to assess memory function. Imaging (1.5T) was obtained during performance of a memory task. We assessed hippocampal volume, functional activation, and sFC (i.e., FC of the hippocampus with the rest of the brain averaged over the entire scan, using an atlas-based approach). Dynamic FC of the hippocampus was calculated using a sliding window approach. No group differences were found in hippocampal activation, sFC, and dFC. However, stepwise forward regression analyses in patients revealed that lower dFC of the left hippocampus (standardized β = -0.30; p = .021) could explain an additional 7% of variance (53% in total) in verbal memory, in addition to female sex and larger left hippocampal volume. For visuospatial memory, lower dFC of the right hippocampus (standardized β = -0.38; p = .013) could explain an additional 13% of variance (24% in total) in addition to higher sFC of the right hippocampus. Low hippocampal dFC is an important indicator for maintained memory performance in MS, in addition to other hippocampal imaging measures. Hence, brain dynamics may offer new insights into the neurobiological mechanisms underlying memory (dys)function.
Peter, Jessica; Sandkamp, Richard; Minkova, Lora; Schumacher, Lena V; Kaller, Christoph P; Abdulkadir, Ahmed; Klöppel, Stefan
2018-01-31
Spatial disorientation is a frequent symptom in Alzheimer's disease and in mild cognitive impairment (MCI). In the clinical routine, spatial orientation is less often tested with real-world navigation but rather with 2D visuoconstructive tasks. However, reports about the association between the two types of tasks are sparse. Additionally, spatial disorientation has been linked to volume of the right hippocampus but it remains unclear whether right hippocampal subregions have differential involvement in real-world navigation. Yet, this would help uncover different functional roles of the subregions, which would have important implications for understanding the neuronal underpinnings of navigation skills. We compared patients with amnestic MCI (aMCI; n = 25) and healthy elderly controls (HC; n = 25) in a real-world navigation task that engaged different spatial processes. The association between real-world navigation and different visuoconstructive tasks was tested (i.e., figures from the Consortium to Establish a Registry for Alzheimer's Disease; CERAD, the Rey-Osterrieth Complex Figure task; and clock drawing). Furthermore, the relation between spatial navigation and volume of right hippocampal subregions was examined. Linear regression and relative weight analysis were applied for statistical analyses. Patients with aMCI were significantly less able to correctly navigate through a route compared to HC but had comparable map drawing and landmark recognition skills. The association between visuoconstructive tasks and real-world navigation was only significant when using the visuospatial memory component of the Rey figure. In aMCI, more volume of the right hippocampal tail was significantly associated with better navigation skills, while volume of the right CA2/3 region was a significant predictor in HC. Standard visuoconstructive tasks (e.g., the CERAD figures or clock drawing) are not sufficient to detect real-world spatial disabilities in aMCI. Consequently, more complex visuoconstructive tasks (i.e., the Rey figure) should be routinely included in the assessment of cognitive functions in the context of AD. Moreover, in those elderly individuals with impaired complex visuospatial memory, route finding behaviour should be evaluated in detail. Regarding the contribution of hippocampal subregions to spatial navigation, the right hippocampal tail seems to be particularly important for patients with aMCI, while the CA2/3 region appears to be more relevant in HC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Age-related changes to oscillatory dynamics in hippocampal and neocortical networks.
Rondina, Renante; Olsen, Rosanna K; McQuiggan, Douglas A; Fatima, Zainab; Li, Lingqian; Oziel, Esther; Meltzer, Jed A; Ryan, Jennifer D
2016-10-01
Recent models of hippocampal function have emphasized its role in relational binding - the ability to form lasting representations regarding the relations among distinct elements or items which can support memory performance, even over brief delays (e.g., several seconds). The present study examined the extent to which aging is associated with changes in the recruitment of oscillatory activity within hippocampal and neocortical regions to support relational binding performance on a short delay visuospatial memory task. Structural magnetic resonance imaging and MEG were used to characterize potential age-related changes in hippocampal volume, oscillatory activity, and subsequent memory performance, and the relationships among them. Participants were required to bind the relative visuospatial positions of objects that were presented singly across time. Subsequently, the objects were re-presented simultaneously, and participants were required to indicate whether the relative spatial positions among the objects had been maintained. Older and younger adults demonstrated similar task accuracy, and older adults had preserved hippocampal volumes relative to younger adults. Age-group differences were found in pre-stimulus theta (∼5Hz) and beta (∼20Hz) oscillations, and this pre-stimulus activity was related to hippocampal volumes in younger adults. Age-group differences were also found in the recruitment of oscillatory activity from the pre-stimulus period to the task. Only younger adults showed a task-related change in theta power that was predictive of memory performance. In contrast, older adults demonstrated task-related alpha (∼10Hz) oscillatory power changes that were not observed in younger adults. These findings provide novel evidence for the role of the hippocampus and functionally connected regions in relational binding that is disrupted in aging. The present findings are discussed in the context of current models regarding the cognitive neuroscience of aging. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Ketogenic diet does not impair spatial ability controlled by the hippocampus in male rats.
Fukushima, Atsushi; Ogura, Yuji; Furuta, Miyako; Kakehashi, Chiaki; Funabashi, Toshiya; Akema, Tatsuo
2015-10-05
A ketogenic diet was recently shown to reduce glutamate accumulation in synaptic vesicles, decreasing glutamate transmission. We questioned whether a ketogenic diet affects hippocampal function, as glutamate transmission is critically involved in visuospatial ability. In the present study, male Wistar rats were maintained on a ketogenic diet containing 10% protein and 90% fat with complements for 3 weeks to change their energy expenditure from glucose-dependent to fat-dependent. Control rats were fed a diet containing 10% protein, 10% fat, and 80% carbohydrates. The fat-dependent energy expenditure induced by the ketogenic diet led to decreased body weight and increased blood ketone production, though the rats in the two groups consumed the same number of calories. The ketogenic diet did not alter food preferences for the control or high-fat diet containing 10% protein, 45% fat, and 45% carbohydrates. Anxiety in the open field was not altered by ingestion the ketogenic diet. However, rats fed the ketogenic diet performed better in the Y-maze test than rats fed the control diet. No difference was observed between the two groups in the Morris water maze test. Finally, Western blot revealed that the hippocampal expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit 1 (GluR1) was significantly increased in mice fed a ketogenic diet. These results suggest that hippocampal function is not impaired by a ketogenic diet and we speculate that the fat-dependent energy expenditure does not impair visuospatial ability. Copyright © 2015 Elsevier B.V. All rights reserved.
Endogenous IL-1 in Cognitive Function and Anxiety: A Study in IL-1RI−/− Mice
Murray, Carol L.; Obiang, Pauline; Bannerman, David; Cunningham, Colm
2013-01-01
Interleukin-1 (IL-1) is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI). IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI−/− mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI−/− animals. Therefore, in the current study we compared wildtype (WT) mice to IL-1RI−/− mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI−/− mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI−/− mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI−/− mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI−/− mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI−/− mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in hippocampal and limbic system function. PMID:24205219
Hocking, Julia; Thomas, Hannah J; Dzafic, Ilvana; Williams, Rebecca J; Reutens, David C; Spooner, Donna M
2013-12-01
Neuropsychological tests requiring patients to find a path through a maze can be used to assess visuospatial memory performance in temporal lobe pathology, particularly in the hippocampus. Alternatively, they have been used as a task sensitive to executive function in patients with frontal lobe damage. We measured performance on the Austin Maze in patients with unilateral left and right temporal lobe epilepsy (TLE), with and without hippocampal sclerosis, compared to healthy controls. Performance was correlated with a number of other neuropsychological tests to identify the cognitive components that may be associated with poor Austin Maze performance. Patients with right TLE were significantly impaired on the Austin Maze task relative to patients with left TLE and controls, and error scores correlated with their performance on the Block Design task. The performance of patients with left TLE was also impaired relative to controls; however, errors correlated with performance on tests of executive function and delayed recall. The presence of hippocampal sclerosis did not have an impact on maze performance. A discriminant function analysis indicated that the Austin Maze alone correctly classified 73.5% of patients as having right TLE. In summary, impaired performance on the Austin Maze task is more suggestive of right than left TLE; however, impaired performance on this visuospatial task does not necessarily involve the hippocampus. The relationship of the Austin Maze task with other neuropsychological tests suggests that differential cognitive components may underlie performance decrements in right versus left TLE. © 2013.
The effect of childhood trauma on spatial cognition in adults: a possible role of sex.
Syal, Supriya; Ipser, Jonathan; Phillips, Nicole; Thomas, Kevin G F; van der Honk, Jack; Stein, Dan J
2014-06-01
Although animal evidence indicates that early life trauma results in pervasive hippocampal deficits underlying spatial and cognitive impairment, visuo-spatial data from adult humans with early childhood adversity are lacking. We administered 4 tests of visuo-spatial ability from the Cambridge Neuorpsychological Test Automated Battery (CANTAB) to adults with a history of childhood trauma (measured by the Childhood Trauma Questionnaire) and a matched sample of healthy controls (trauma/control = 27/28). We observed a significant effect of trauma history on spatial/pattern learning. These effects could not be accounted for by adverse adult experiences, and were sex-specific, with prior adversity improving performance in men but worsening performance in women, relative to controls. Limitations include the small sample size and reliance of our study design on a retrospective, self report measure. Our results suggest that early adversity can lead to specific and pervasive deficits in adult cognitive function.
Memory functions of children born with asymmetric intrauterine growth restriction.
Geva, Ronny; Eshel, Rina; Leitner, Yael; Fattal-Valevski, Aviva; Harel, Shaul
2006-10-30
Learning difficulties are frequently diagnosed in children born with intrauterine growth restriction (IUGR). Models of various animal species with IUGR were studied and demonstrated specific susceptibility and alterations of the hippocampal formation and its related neural structures. The main purpose was to study memory functions of children born with asymmetric IUGR in a large-scale cohort using a long-term prospective paradigm. One hundred and ten infants diagnosed with IUGR were followed-up from birth to 9 years of age. Their performance was compared with a group of 63 children with comparable gestational age and multiple socioeconomic factors. Memory functions (short-term, super- and long-term spans) for different stimuli types (verbal and visual) were evaluated using Visual Auditory Digit Span tasks (VADS), Rey Auditory Verbal Learning Test (Rey-AVLT), and Rey Osterrieth Complex Figure Test (ROCF). Children with IUGR had short-term memory difficulties that hindered both serial verbal processing system and simultaneous processing of high-load visuo-spatial stimuli. The difficulties were not related to prematurity, neonatal complications or growth catch-up, but were augmented by lower maternal education. Recognition skills and benefits from reiteration, typically affected by hippocampal dysfunction, were preserved in both groups. Memory profile of children born with IUGR is characterized primarily by a short-term memory deficit that does not necessarily comply with a typical hippocampal deficit, but rather may reflect an executive short-term memory deficit characteristic of anterior hippocampal-prefrontal network. Implications for cognitive intervention are discussed.
Dockery, Colleen A; Wesierska, Malgorzata J
2010-08-30
We present a paradigm for assessing visuospatial working memory and skill learning in a rodent model, based on the place avoidance test. In our allothetic place avoidance alternation task (APAAT) the paradigm is comprised of minimal training sessions, tests various aspects of learning and memory and provides a rich set of parameters. A single working memory session consists of four conditions: habituation (no shock), two place avoidance training intervals (shock activated) and a retrieval test (shock inactivated). The location of the shock sector is alternated for each training day which initially requires extinction of previous representations and further working memory to achieve effective place avoidance across sessions. Visuospatial skill memory was evaluated by the shock/entrance ratio by tracking locomotor activity which is essential to execute a place avoidance strategy. For each day rats learned to avoid a new place with shock, as shown by a decreased number of entrances, and an increased time to the first entrance and maximum avoidance time. Skill learning improved according to the decreased number of shocks per entrance across conditions. These results indicate that complex cognitive functions are captured by this behavioral method. This APAAT paradigm expands and complements existing tools for studying hippocampal-prefrontal dependent functions to support development of treatment interventions. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Mind-Wandering in People with Hippocampal Damage.
McCormick, Cornelia; Rosenthal, Clive R; Miller, Thomas D; Maguire, Eleanor A
2018-03-14
Subjective inner experiences, such as mind-wandering, represent the fundaments of human cognition. Although the precise function of mind-wandering is still debated, it is increasingly acknowledged to have influence across cognition on processes such as future planning, creative thinking, and problem-solving and even on depressive rumination and other mental health disorders. Recently, there has been important progress in characterizing mind-wandering and identifying the associated neural networks. Two prominent features of mind-wandering are mental time travel and visuospatial imagery, which are often linked with the hippocampus. People with selective bilateral hippocampal damage cannot vividly recall events from their past, envision their future, or imagine fictitious scenes. This raises the question of whether the hippocampus plays a causal role in mind-wandering and, if so, in what way. Leveraging a unique opportunity to shadow people (all males) with bilateral hippocampal damage for several days, we examined, for the first time, what they thought about spontaneously, without direct task demands. We found that they engaged in as much mind-wandering as control participants. However, whereas controls thought about the past, present, and future, imagining vivid visual scenes, hippocampal damage resulted in thoughts primarily about the present comprising verbally mediated semantic knowledge. These findings expose the hippocampus as a key pillar in the neural architecture of mind-wandering and also reveal its impact beyond episodic memory, placing it at the heart of our mental life. SIGNIFICANCE STATEMENT Humans tend to mind-wander ∼30-50% of their waking time. Two prominent features of this pervasive form of thought are mental time travel and visuospatial imagery, which are often associated with the hippocampus. To examine whether the hippocampus plays a causal role in mind-wandering, we examined the frequency and phenomenology of mind-wandering in patients with selective bilateral hippocampal damage. We found that they engaged in as much mind-wandering as controls. However, hippocampal damage changed the form and content of mind-wandering from flexible, episodic, and scene based to abstract, semanticized, and verbal. These findings expose the hippocampus as a key pillar in the neural architecture of mind-wandering and reveal its impact beyond episodic memory, placing it at the heart of our mental life. Copyright © 2018 McCormick et al.
Mind-Wandering in People with Hippocampal Damage
2018-01-01
Subjective inner experiences, such as mind-wandering, represent the fundaments of human cognition. Although the precise function of mind-wandering is still debated, it is increasingly acknowledged to have influence across cognition on processes such as future planning, creative thinking, and problem-solving and even on depressive rumination and other mental health disorders. Recently, there has been important progress in characterizing mind-wandering and identifying the associated neural networks. Two prominent features of mind-wandering are mental time travel and visuospatial imagery, which are often linked with the hippocampus. People with selective bilateral hippocampal damage cannot vividly recall events from their past, envision their future, or imagine fictitious scenes. This raises the question of whether the hippocampus plays a causal role in mind-wandering and, if so, in what way. Leveraging a unique opportunity to shadow people (all males) with bilateral hippocampal damage for several days, we examined, for the first time, what they thought about spontaneously, without direct task demands. We found that they engaged in as much mind-wandering as control participants. However, whereas controls thought about the past, present, and future, imagining vivid visual scenes, hippocampal damage resulted in thoughts primarily about the present comprising verbally mediated semantic knowledge. These findings expose the hippocampus as a key pillar in the neural architecture of mind-wandering and also reveal its impact beyond episodic memory, placing it at the heart of our mental life. SIGNIFICANCE STATEMENT Humans tend to mind-wander ∼30–50% of their waking time. Two prominent features of this pervasive form of thought are mental time travel and visuospatial imagery, which are often associated with the hippocampus. To examine whether the hippocampus plays a causal role in mind-wandering, we examined the frequency and phenomenology of mind-wandering in patients with selective bilateral hippocampal damage. We found that they engaged in as much mind-wandering as controls. However, hippocampal damage changed the form and content of mind-wandering from flexible, episodic, and scene based to abstract, semanticized, and verbal. These findings expose the hippocampus as a key pillar in the neural architecture of mind-wandering and reveal its impact beyond episodic memory, placing it at the heart of our mental life. PMID:29440532
von Allmen, David Yoh; Wurmitzer, Karoline; Klaver, Peter
2014-10-01
Developmental increases in visual short-term memory (VSTM) capacity have been associated with changes in attention processing limitations and changes in neural activity within neural networks including the posterior parietal cortex (PPC). A growing body of evidence suggests that the hippocampus plays a role in VSTM, but it is unknown whether the hippocampus contributes to the capacity increase across development. We investigated the functional development of the hippocampus and PPC in 57 children, adolescents and adults (age 8-27 years) who performed a visuo-spatial change detection task. A negative relationship between age and VSTM related activity was found in the right posterior hippocampus that was paralleled by a positive age-activity relationship in the right PPC. In the posterior hippocampus, VSTM related activity predicted individual capacity in children, whereas neural activity in the right anterior hippocampus predicted individual capacity in adults. The findings provide first evidence that VSTM development is supported by an integrated neural network that involves hippocampal and posterior parietal regions.
Verbal and non-verbal memory and hippocampal volumes in a memory clinic population.
Bonner-Jackson, Aaron; Mahmoud, Shamseldeen; Miller, Justin; Banks, Sarah J
2015-10-15
Better characterization of the relationship between episodic memory and hippocampal volumes is crucial in early detection of neurodegenerative disease. We examined these relationships in a memory clinic population. Participants (n = 226) underwent structural magnetic resonance imaging and tests of verbal (Hopkins Verbal Learning Test-Revised, HVLT-R) and non-verbal (Brief Visuospatial Memory Test-Revised, BVMT-R) memory. Correlational analyses were performed, and analyses on clinical subgroups (i.e., amnestic Mild Cognitive Impairment, non-amnestic Mild Cognitive Impairment, probable Alzheimer's disease, intact memory) were conducted. Positive associations were identified between bilateral hippocampal volumes and both memory measures, and BVMT-R learning slope was more strongly positively associated with hippocampal volumes than HVLT-R learning slope. Amnestic Mild Cognitive Impairment (aMCI) participants showed specific positive associations between BVMT-R performance and hippocampal volumes bilaterally. Additionally, analyses of the aMCI group showed trend-level evidence of material-specific lateralization, such that retention of verbal information was positively associated with left hippocampal volume, whereas learning curve and retention of non-verbal information was positively associated with right hippocampal volume. Findings support the link between episodic memory and hippocampal volumes in a memory clinic population. Non-verbal memory measures also may have higher diagnostic value, particularly in individuals at elevated risk for Alzheimer's disease.
Memory integration in amnesia: prior knowledge supports verbal short-term memory.
Race, Elizabeth; Palombo, Daniela J; Cadden, Margaret; Burke, Keely; Verfaellie, Mieke
2015-04-01
Short-term memory (STM) and long-term memory (LTM) have traditionally been considered cognitively distinct. However, it is known that STM can improve when to-be-remembered information appears in contexts that make contact with prior knowledge, suggesting a more interactive relationship between STM and LTM. The current study investigated whether the ability to leverage LTM in support of STM critically depends on the integrity of the hippocampus. Specifically, we investigated whether the hippocampus differentially supports between-domain versus within-domain STM-LTM integration given prior evidence that the representational domain of the elements being integrated in memory is a critical determinant of whether memory performance depends on the hippocampus. In Experiment 1, we investigated hippocampal contributions to within-domain STM-LTM integration by testing whether immediate verbal recall of words improves in MTL amnesic patients when words are presented in familiar verbal contexts (meaningful sentences) compared to unfamiliar verbal contexts (random word lists). Patients demonstrated a robust sentence superiority effect, whereby verbal STM performance improved in familiar compared to unfamiliar verbal contexts, and the magnitude of this effect did not differ from that in controls. In Experiment 2, we investigated hippocampal contributions to between-domain STM-LTM integration by testing whether immediate verbal recall of digits improves in MTL amnesic patients when digits are presented in a familiar visuospatial context (a typical keypad layout) compared to an unfamiliar visuospatial context (a random keypad layout). Immediate verbal recall improved in both patients and controls when digits were presented in the familiar compared to the unfamiliar keypad array, indicating a preserved ability to integrate activated verbal information with stored visuospatial knowledge. Together, these results demonstrate that immediate verbal recall in amnesia can benefit from two distinct types of semantic support, verbal and visuospatial, and that the hippocampus is not critical for leveraging stored semantic knowledge to improve memory performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Memory integration in amnesia: Prior knowledge supports verbal short-term memory
Race, Elizabeth; Palombo, Daniela J.; Cadden, Margaret; Burke, Keely; Verfaellie, Mieke
2015-01-01
Short-term memory (STM) and long-term memory (LTM) have traditionally been considered cognitively distinct. However, it is known that STM can improve when to-be-remembered information appears in contexts that make contact with prior knowledge, suggesting a more interactive relationship between STM and LTM. The current study investigated whether the ability to leverage LTM in support of STM critically depends on the integrity of the hippocampus. Specifically, we investigated whether the hippocampus differentially supports between-domain versus within-domain STM–LTM integration given prior evidence that the representational domain of the elements being integrated in memory is a critical determinant of whether memory performance depends on the hippocampus. In Experiment 1, we investigated hippocampal contributions to within-domain STM–LTM integration by testing whether immediate verbal recall of words improves in MTL amnesic patients when words are presented in familiar verbal contexts (meaningful sentences) compared to unfamiliar verbal contexts (random word lists). Patients demonstrated a robust sentence superiority effect, whereby verbal STM performance improved in familiar compared to unfamiliar verbal contexts, and the magnitude of this effect did not differ from that in controls. In Experiment 2, we investigated hippocampal contributions to between-domain STM–LTM integration by testing whether immediate verbal recall of digits improves in MTL amnesic patients when digits are presented in a familiar visuospatial context (a typical keypad layout) compared to an unfamiliar visuospatial context (a random keypad layout). Immediate verbal recall improved in both patients and controls when digits were presented in the familiar compared to the unfamiliar keypad array, indicating a preserved ability to integrate activated verbal information with stored visuospatial knowledge. Together, these results demonstrate that immediate verbal recall in amnesia can benefit from two distinct types of semantic support, verbal and visuospatial, and that the hippocampus is not critical for leveraging stored semantic knowledge to improve memory performance. PMID:25752585
Kanoski, Scott E; Grill, Harvey J
2017-05-01
Food intake is a complex behavior that can occur or cease to occur for a multitude of reasons. Decisions about where, when, what, and how much to eat are not merely reflexive responses to food-relevant stimuli or to changes in energy status. Rather, feeding behavior is modulated by various contextual factors and by previous experiences. The data reviewed here support the perspective that neurons in multiple hippocampal subregions constitute an important neural substrate linking the external context, the internal context, and mnemonic and cognitive information to control both appetitive and ingestive behavior. Feeding behavior is heavily influenced by hippocampal-dependent mnemonic functions, including episodic meal-related memories and conditional learned associations between food-related stimuli and postingestive consequences. These mnemonic processes are undoubtedly influenced by both external and internal factors relating to food availability, location, and physiological energy status. The afferent and efferent neuroanatomical connectivity of the subregions of the hippocampus is reviewed with regard to the integration of visuospatial and olfactory sensory information (the external context) with endocrine and gastrointestinal interoceptive stimuli (the internal context). Also discussed are recent findings demonstrating that peripherally derived endocrine signals act on receptors in hippocampal neurons to reduce (leptin, glucagon-like peptide-1) or increase (ghrelin) food intake and learned food reward-driven responding, thereby highlighting endocrine and neuropeptidergic signaling in hippocampal neurons as a novel substrate of importance in the higher-order regulation of feeding behavior. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Neurobiologic Correlates of Attention and Memory Deficits Following Critical Illness in Early Life.
Schiller, Raisa M; IJsselstijn, Hanneke; Madderom, Marlous J; Rietman, André B; Smits, Marion; van Heijst, Arno F J; Tibboel, Dick; White, Tonya; Muetzel, Ryan L
2017-10-01
Survivors of critical illness in early life are at risk of long-term-memory and attention impairments. However, their neurobiologic substrates remain largely unknown. A prospective follow-up study. Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands. Thirty-eight school-age (8-12 yr) survivors of neonatal extracorporeal membrane oxygenation and/or congenital diaphragmatic hernia with an intelligence quotient greater than or equal to 80 and a below average score (z score ≤ -1.5) on one or more memory tests. None. Intelligence, attention, memory, executive functioning, and visuospatial processing were assessed and compared with reference data. White matter microstructure and hippocampal volume were assessed using diffusion tensor imaging and structural MRI, respectively. Global fractional anisotropy was positively associated with selective attention (β = 0.53; p = 0.030) and sustained attention (β = 0.48; p = 0.018). Mean diffusivity in the left parahippocampal region of the cingulum was negatively associated with visuospatial memory, both immediate (β = -0.48; p = 0.030) and delayed recall (β = -0.47; p = 0.030). Mean diffusivity in the parahippocampal region of the cingulum was negatively associated with verbal memory delayed recall (left: β = -0.52, p = 0.021; right: β = -0.52, p = 0.021). Hippocampal volume was positively associated with verbal memory delayed recall (left: β = 0.44, p = 0.037; right: β = 0.67, p = 0.012). Extracorporeal membrane oxygenation treatment or extracorporeal membrane oxygenation type did not influence the structure-function relationships. Our findings indicate specific neurobiologic correlates of attention and memory deficits in school-age survivors of neonatal extracorporeal membrane oxygenation and congenital diaphragmatic hernia. A better understanding of the neurobiology following critical illness, both in early and in adult life, may lead to earlier identification of patients at risk for impaired neuropsychological outcome with the use of neurobiologic markers.
Soto-Moyano, Rubén; Burgos, Héctor; Flores, Francisco; Valladares, Luis; Sierralta, Walter; Fernández, Victor; Pérez, Hernán; Hernández, Paula; Hernández, Alejandro
2006-10-01
Melatonin has been shown to inhibit long-term potentiation (LTP) in hippocampal slices of rats. Since LTP may be one of the main mechanisms by which memory traces are encoded and stored in the central nervous system, it is possible that melatonin could modulate cognitive performance by interfering with the cellular and/or molecular mechanisms involved in LTP. We investigated in rats the effects of intraperitoneally-administered melatonin (0.1, 1 and 10 mg/kg), its saline-ethanol solvent, or saline alone, on the acquisition of visuo-spatial memory as well as on the ability of the cerebral cortex to develop LTP in vivo. Visuo-spatial performance was assessed daily in rats, for 10 days, in an 8-arm radial maze, 30 min after they received a single daily dose of melatonin. Visual cortex LTP was determined in sodium pentobarbital anesthetized rats (65 mg/kg i.p.), by potentiating transcallosal evoked responses with a tetanizing train (312 Hz, 500 ms duration) 30 min after administration of a single dose of melatonin. Results showed that melatonin impaired visuo-spatial performance in rats, as revealed by the greater number of errors committed and time spent to solve the task in the radial maze. Melatonin also prevented the induction of neocortical LTP. It is concluded that melatonin, at the doses utilized in this study, could alter some forms of neocortical plasticity involved in short- and long-term visuo-spatial memories in rats.
Fjalldal, S; Follin, C; Svärd, D; Rylander, L; Gabery, S; Petersén, Å; van Westen, D; Sundgren, P C; Björkman-Burtscher, I M; Lätt, J; Ekman, B; Johanson, A; Erfurth, E M
2018-06-01
Patients with craniopharyngioma (CP) and hypothalamic lesions (HL) have cognitive deficits. Which neural pathways are affected is unknown. To determine whether there is a relationship between microstructural white matter (WM) alterations detected with diffusion tensor imaging (DTI) and cognition in adults with childhood-onset CP. A cross-sectional study with a median follow-up time of 22 (6-49) years after operation. The South Medical Region of Sweden (2.5 million inhabitants). Included were 41 patients (24 women, ≥17 years) surgically treated for childhood-onset CP between 1958-2010 and 32 controls with similar age and gender distributions. HL was found in 23 patients. Subjects performed cognitive tests and magnetic resonance imaging, and images were analyzed using DTI of uncinate fasciculus, fornix, cingulum, hippocampus and hypothalamus as well as hippocampal volumetry. Right uncinate fasciculus was significantly altered ( P ≤ 0.01). Microstructural WM alterations in left ventral cingulum were significantly associated with worse performance in visual episodic memory, explaining approximately 50% of the variation. Alterations in dorsal cingulum were associated with worse performance in immediate, delayed recall and recognition, explaining 26-38% of the variation, and with visuospatial ability and executive function, explaining 19-29%. Patients who had smaller hippocampal volume had worse general knowledge ( P = 0.028), and microstructural WM alterations in hippocampus were associated with a decline in general knowledge and episodic visual memory. A structure to function relationship is suggested between microstructural WM alterations in cingulum and in hippocampus with cognitive deficits in CP. © 2018 The authors.
Esfahani-Bayerl, Nazli; Finke, Carsten; Braun, Mischa; Düzel, Emrah; Heekeren, Hauke R; Holtkamp, Martin; Hasper, Dietrich; Storm, Christian; Ploner, Christoph J
2016-01-29
The contributions of the hippocampal formation and adjacent regions of the medial temporal lobe (MTL) to memory are still a matter of debate. It is currently unclear, to what extent discrepancies between previous human lesion studies may have been caused by the choice of distinct patient models of MTL dysfunction, as disorders affecting this region differ in selectivity, laterality and mechanisms of post-lesional compensation. Here, we investigated the performance of three distinct patient groups with lesions to the MTL with a battery of visuo-spatial short-term memory tasks. Thirty-one subjects with either unilateral damage to the MTL (postsurgical lesions following resection of a benign brain tumor, 6 right-sided lesions, 5 left) or bilateral damage (10 post-encephalitic lesions, 10 post-anoxic lesions) performed a series of tasks requiring short-term memory of colors, locations or color-location associations. We have shown previously that performance in the association task critically depends on hippocampal integrity. Patients with postsurgical damage of the MTL showed deficient performance in the association task, but performed normally in color and location tasks. Patients with left-sided lesions were almost as impaired as patients with right-sided lesions. Patients with bilateral post-encephalitic lesions showed comparable damage to MTL sub-regions and performed similarly to patients with postsurgical lesions in the association task. However, post-encephalitic patients showed additional impairments in the non-associative color and location tasks. A strikingly similar pattern of deficits was observed in post-anoxic patients. These results suggest a distinct cerebral organization of associative and non-associative short-term memory that was differentially affected in the three patient groups. Thus, while all patient groups may provide appropriate models of medial temporal lobe dysfunction in associative visuo-spatial short-term memory, additional deficits in non-associative memory tasks likely reflect damage of regions outside the MTL. Importantly, the choice of a patient model in human lesion studies of the MTL significantly influences overall performance patterns in visuo-spatial memory tasks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cognitive Differences in Pictorial Reasoning between High-Functioning Autism and Asperger’s Syndrome
Sahyoun, Cherif P.; Soulières, Isabelle; Belliveau, John W.; Mottron, Laurent; Mody, Maria
2013-01-01
We investigated linguistic and visuospatial processing during pictorial reasoning in high-functioning autism (HFA), Asperger’s syndrome (ASP), and age and IQ-matched typically developing participants (CTRL), using three conditions designed to differentially engage linguistic mediation or visuospatial processing (Visuospatial, V; Semantic, S; Visuospatial+Semantic, V+S). The three groups did not differ in accuracy, but showed different response time profiles. ASP and CTRL participants were fastest on V+S, amenable to both linguistic and nonlinguistic mediation, whereas HFA participants were equally fast on V and V+S, where visuospatial strategies were available, and slowest on S. HFA participants appeared to favor visuospatial over linguistic mediation. The results support the use of linguistic vs. visuospatial tasks for characterizing subtypes on the autism spectrum. PMID:19267190
Groen, Margriet A; Whitehouse, Andrew J O; Badcock, Nicholas A; Bishop, Dorothy V M
2012-01-01
In the majority of people, language production is lateralized to the left cerebral hemisphere and visuospatial skills to the right. However, questions remain as to when, how, and why humans arrive at this division of labor. In this study, we assessed cerebral lateralization for language production and for visuospatial memory using functional transcranial Doppler ultrasound in a group of 60 typically developing children between the ages of six and 16 years. The typical pattern of left-lateralized activation for language production and right-lateralized activation for visuospatial memory was found in the majority of the children (58%). No age-related change in direction or strength of lateralization was found for language production. In contrast, the strength of lateralization (independent of direction) for visuospatial memory function continued to increase with age. In addition, boys showed a trend for stronger right-hemisphere lateralization for visuospatial memory than girls, but there was no gender effect on language laterality. We tested whether having language and visuospatial functions in the same hemisphere was associated with poor cognitive performance and found no evidence for this “functional crowding” hypothesis. We did, however, find that children with left-lateralized language production had higher vocabulary and nonword reading age-adjusted standard scores than other children, regardless of the laterality of visuospatial memory. Thus, a link between language function and left-hemisphere lateralization exists, and cannot be explained in terms of maturational change. PMID:22741100
Role of Self-Generated Odor Cues in Contextual Representation
Aikath, Devdeep; Weible, Aldis P; Rowland, David C; Kentros, Clifford G
2014-01-01
As first demonstrated in the patient H.M., the hippocampus is critically involved in forming episodic memories, the recall of “what” happened “where” and “when.” In rodents, the clearest functional correlate of hippocampal primary neurons is the place field: a cell fires predominantly when the animal is in a specific part of the environment, typically defined relative to the available visuospatial cues. However, rodents have relatively poor visual acuity. Furthermore, they are highly adept at navigating in total darkness. This raises the question of how other sensory modalities might contribute to a hippocampal representation of an environment. Rodents have a highly developed olfactory system, suggesting that cues such as odor trails may be important. To test this, we familiarized mice to a visually cued environment over a number of days while maintaining odor cues. During familiarization, self-generated odor cues unique to each animal were collected by re-using absorbent paperboard flooring from one session to the next. Visual and odor cues were then put in conflict by counter-rotating the recording arena and the flooring. Perhaps surprisingly, place fields seemed to follow the visual cue rotation exclusively, raising the question of whether olfactory cues have any influence at all on a hippocampal spatial representation. However, subsequent removal of the familiar, self-generated odor cues severely disrupted both long-term stability and rotation to visual cues in a novel environment. Our data suggest that odor cues, in the absence of additional rule learning, do not provide a discriminative spatial signal that anchors place fields. Such cues do, however, become integral to the context over time and exert a powerful influence on the stability of its hippocampal representation. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:24753119
ERIC Educational Resources Information Center
Groen, Margriet A.; Whitehouse, Andrew J. O.; Badcock, Nicholas A.; Bishop, Dorothy V. M.
2011-01-01
In the majority of people, functional differences are observed between the two cerebral hemispheres: language production is typically subserved by the left hemisphere and visuospatial skills by the right hemisphere. The development of this division of labour is not well understood and lateralisation of visuospatial function has received little…
Cognitive Differences in Pictorial Reasoning between High-Functioning Autism and Asperger's Syndrome
ERIC Educational Resources Information Center
Sahyoun, Cherif P.; Soulieres, Isabelle; Belliveau, John W.; Mottron, Laurent; Mody, Maria
2009-01-01
We investigated linguistic and visuospatial processing during pictorial reasoning in high-functioning autism (HFA), Asperger's syndrome (ASP), and age and IQ-matched typically developing participants (CTRL), using three conditions designed to differentially engage linguistic mediation or visuospatial processing (visuospatial, V; semantic, S;…
Structural correlates of impaired working memory in hippocampal sclerosis.
Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S
2013-07-01
Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Structural correlates of impaired working memory in hippocampal sclerosis
Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S
2013-01-01
Purpose: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. Methods: We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Key Findings: Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Significance: Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. PMID:23614459
Long-term consequences of a prolonged febrile seizure in a dual pathology model.
Gibbs, Steve; Chattopadhyaya, Bidisha; Desgent, Sébastien; Awad, Patricia N; Clerk-Lamalice, Olivier; Levesque, Maxime; Vianna, Rose-Mari; Rébillard, Rose-Marie; Delsemme, Andrée-Anne; Hébert, David; Tremblay, Luc; Lepage, Martin; Descarries, Laurent; Di Cristo, Graziella; Carmant, Lionel
2011-08-01
Clinical evidence suggests that febrile status epilepticus (SE) in children can lead to acute hippocampal injury and subsequent temporal lobe epilepsy. The contribution of febrile SE to the mechanisms underlying temporal lobe epilepsy are however poorly understood. A rat model of temporal lobe epilepsy following hyperthermic SE was previously established in our laboratory, wherein a focal cortical lesion induced at postnatal day 1 (P1), followed by a hyperthermic SE (more than 30 min) at P10, leads to hippocampal atrophy at P22 (dual pathology model) and spontaneous recurrent seizures (SRS) with mild visuospatial memory deficits in adult rats. The goal of this study was to identify the long term electrophysiological, anatomical and molecular changes in this model. Following hyperthermic SE, all cortically lesioned pups developed progressive SRS as adults, characterized by the onset of highly rhythmic activity in the hippocampus. A reduction of hippocampal volume on the side of the lesion preceded the SRS and was associated with a loss of hippocampal neurons, a marked decrease in pyramidal cell spine density, an increase in the hippocampal levels of NMDA receptor NR2A subunit, but no significant change in GABA receptors. These findings suggest that febrile SE in the abnormal brain leads to hippocampal injury that is followed by progressive network reorganization and molecular changes that contribute to the epileptogenesis as well as the observed memory deficits. Copyright © 2011 Elsevier Inc. All rights reserved.
Hippocampal declarative memory supports gesture production: Evidence from amnesia
Hilliard, Caitlin; Cook, Susan Wagner; Duff, Melissa C.
2016-01-01
Spontaneous co-speech hand gestures provide a visuospatial representation of what is being communicated in spoken language. Although it is clear that gestures emerge from representations in memory for what is being communicated (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 2001), the mechanism supporting the relationship between gesture and memory is unknown. Current theories of gesture production posit that action – supported by motor areas of the brain – is key in determining whether gestures are produced. We propose that when and how gestures are produced is determined in part by hippocampally-mediated declarative memory. We examined the speech and gesture of healthy older adults and of memory-impaired patients with hippocampal amnesia during four discourse tasks that required accessing episodes and information from the remote past. Consistent with previous reports of impoverished spoken language in patients with hippocampal amnesia, we predicted that these patients, who have difficulty generating multifaceted declarative memory representations, may in turn have impoverished gesture production. We found that patients gestured less overall relative to healthy comparison participants, and that this was particularly evident in tasks that may rely more heavily on declarative memory. Thus, gestures do not just emerge from the motor representation activated for speaking, but are also sensitive to the representation available in hippocampal declarative memory, suggesting a direct link between memory and gesture production. PMID:27810497
Damarla, Saudamini Roy; Keller, Timothy A; Kana, Rajesh K; Cherkassky, Vladimir L; Williams, Diane L; Minshew, Nancy J; Just, Marcel Adam
2010-10-01
Individuals with high-functioning autism sometimes exhibit intact or superior performance on visuospatial tasks, in contrast to impaired functioning in other domains such as language comprehension, executive tasks, and social functions. The goal of the current study was to investigate the neural bases of preserved visuospatial processing in high-functioning autism from the perspective of the cortical underconnectivity theory. We used a combination of behavioral, functional magnetic resonance imaging, functional connectivity, and corpus callosum morphometric methodological tools. Thirteen participants with high-functioning autism and 13 controls (age-, IQ-, and gender-matched) were scanned while performing an Embedded Figures Task. Despite the ability of the autism group to attain behavioral performance comparable to the control group, the brain imaging results revealed several group differences consistent with the cortical underconnectivity account of autism. First, relative to controls, the autism group showed less activation in the left dorsolateral prefrontal and inferior parietal areas and more activation in visuospatial (bilateral superior parietal extending to inferior parietal and right occipital) areas. Second, the autism group demonstrated lower functional connectivity between higher-order working memory/executive areas and visuospatial regions (between frontal and parietal-occipital). Third, the size of the corpus callosum (an index of anatomical connectivity) was positively correlated with frontal-posterior (parietal and occipital) functional connectivity in the autism group. Thus, even in the visuospatial domain, where preserved performance among people with autism is observed, the neuroimaging signatures of cortical underconnectivity persist.
Damarla, Saudamini Roy; Keller, Timothy A.; Kana, Rajesh K.; Cherkassky, Vladimir L.; Williams, Diane L.; Minshew, Nancy J.; Just, Marcel Adam
2010-01-01
Individuals with high-functioning autism sometimes exhibit intact or superior performance on visuospatial tasks, in contrast to impaired functioning in other domains such as language comprehension, executive tasks, and social functions. The goal of the current study was to investigate the neural bases of preserved visuospatial processing in high-functioning autism from the perspective of the cortical underconnectivity theory. We used a combination of behavioral, functional magnetic resonance imaging (fMRI), functional connectivity, and corpus callosum morphometric methodological tools. Thirteen participants with high-functioning autism and thirteen controls (age-, IQ-, and gender-matched) were scanned while performing an Embedded Figures Task (EFT). Despite the ability of the autism group to attain behavioral performance comparable to the control group, the brain imaging results revealed several group differences consistent with the cortical underconnectivity account of autism. First, relative to controls, the autism group showed less activation in left dorsolateral prefrontal and inferior parietal areas and more activation in visuospatial (bilateral superior parietal extending to inferior parietal and right occipital) areas. Second, the autism group demonstrated lower functional connectivity between higher-order working memory/executive areas and visuospatial regions (between frontal and parietal-occipital). Third, the size of the corpus callosum (an index of anatomical connectivity) was positively correlated with frontal-posterior (parietal and occipital) functional connectivity in the autism group. Thus, even in the visuospatial domain, where preserved performance among people with autism is observed, the neuroimaging signatures of cortical underconnectivity persist. PMID:20740492
Herting, Megan M; Nagel, Bonnie J
2012-08-01
In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence--a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. Published by Elsevier B.V.
Herting, Megan M.; Nagel, Bonnie J.
2012-01-01
In rodents, exercise increases hippocampal neurogenesis and allows for better learning and memory performance on water maze tasks. While exercise has also been shown to be beneficial for the brain and behavior in humans, no study has examined how exercise impacts spatial learning using a directly translational water maze task, or if these relationships exist during adolescence – a developmental period which the animal literature has shown to be especially vulnerable to exercise effects. In this study, we investigated the influence of aerobic fitness on hippocampal size and subsequent learning and memory, including visuospatial memory using a human analogue of the Morris Water Task, in 34 adolescents. Results showed that higher aerobic fitness predicted better learning on the virtual Morris Water Task and larger hippocampal volumes. No relationship between virtual Morris Water Task memory recall and aerobic fitness was detected. Aerobic fitness, however, did not relate to global brain volume, or verbal learning, which might suggest some specificity of the influence of aerobic fitness on the adolescent brain. This study provides a direct translational approach to the existing animal literature on exercise, as well as adds to the sparse research that exists on how aerobic exercise impacts the developing human brain and memory. PMID:22610054
Stretton, Jason; Sidhu, Meneka K.; Winston, Gavin P.; Bartlett, Philippa; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.; Thompson, Pamela J.
2014-01-01
Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50–80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a progressive increase of activation in the right superior parietal lobe at 3 and 12 months after surgery. There was greater deactivation of the right hippocampal remnant compared to controls between 3 and 12 months after right anterior temporal lobe resection that was associated with lesser improvement in task performance. Working memory improved after anterior temporal lobe resection, particularly following left-sided resections. Postoperative working memory was reliant on the functional capacity of the hippocampal remnant and, following left resections, the functional reserve of the right hippocampus. These data suggest that working memory following temporal lobe resection is dependent on the engagement of the posterior medial temporal lobes and eloquent cortex. PMID:24691395
Web-Based Assessment of Visual and Visuospatial Symptoms in Parkinson's Disease
Amick, Melissa M.; Miller, Ivy N.; Neargarder, Sandy; Cronin-Golomb, Alice
2012-01-01
Visual and visuospatial dysfunction is prevalent in Parkinson's disease (PD). To promote assessment of these often overlooked symptoms, we adapted the PD Vision Questionnaire for Internet administration. The questionnaire evaluates visual and visuospatial symptoms, impairments in activities of daily living (ADLs), and motor symptoms. PD participants of mild to moderate motor severity (n = 24) and healthy control participants (HC, n = 23) completed the questionnaire in paper and web-based formats. Reliability was assessed by comparing responses across formats. Construct validity was evaluated by reference to performance on measures of vision, visuospatial cognition, ADLs, and motor symptoms. The web-based format showed excellent reliability with respect to the paper format for both groups (all P′s < 0.001; HC completing the visual and visuospatial section only). Demonstrating the construct validity of the web-based questionnaire, self-rated ADL and visual and visuospatial functioning were significantly associated with performance on objective measures of these abilities (all P′s < 0.01). The findings indicate that web-based administration may be a reliable and valid method of assessing visual and visuospatial and ADL functioning in PD. PMID:22530162
Zink, Davor N; Miller, Justin B; Caldwell, Jessica Z K; Bird, Christopher; Banks, Sarah J
2018-06-01
Tests of visuospatial function are often administered in comprehensive neuropsychological evaluations. These tests are generally considered assays of parietal lobe function; however, the neural correlates of these tests, using modern imaging techniques, are not well understood. In the current study we investigated the relationship between three commonly used tests of visuospatial function and lobar cortical thickness in each hemisphere. Data from 374 patients who underwent a neuropsychological evaluation and MRI scans in an outpatient dementia clinic were included in the analysis. We examined the relationships between cortical thickness, as assessed with Freesurfer, and performance on three tests: Judgment of Line Orientation (JoLO), Block Design (BD) from the Fourth edition of the Wechsler Adult Intelligence Scale, and Brief Visuospatial Memory Test-Revised Copy Trial (BVMT-R-C) in patients who showed overall average performance on these tasks. Using a series of multiple regression models, we assessed which lobe's overall cortical thickness best predicted test performance. Among the individual lobes, JoLO performance was best predicted by cortical thickness in the right temporal lobe. BD performance was best predicted by cortical thickness in the right parietal lobe, and BVMT-R-C performance was best predicted by cortical thickness in the left parietal lobe. Performance on constructional tests of visuospatial function appears to correspond best with underlying cortical thickness of the parietal lobes, while performance on visuospatial judgment tests appears to correspond best to temporal lobe thickness. Future research using voxel-wise and connectivity techniques and including more diverse samples will help further understanding of the regions and networks involved in visuospatial tests.
Zahodne, Laura B; Manly, Jennifer J; Narkhede, Atul; Griffith, Erica Y; DeCarli, Charles; Schupf, Nicole S; Mayeux, Richard; Brickman, Adam M
2015-01-01
Structural magnetic resonance imaging (MRI) provides key biomarkers to predict onset and track progression of Alzheimer's disease (AD). However, most published reports of relationships between MRI variables and cognition in older adults include racially, ethnically, and socioeconomically homogenous samples. Racial/ethnic differences in MRI variables and cognitive performance, as well as health, socioeconomic status and psychological factors, raise the possibility that brain-behavior relationships may be stronger or weaker in different groups. The current study tested whether MRI predictors of cognition differ in African Americans and Hispanics, compared with non-Hispanic Whites. Participants were 638 non-demented older adults (29% non-Hispanic White, 36% African American, 35% Hispanic) in the Washington Heights-Inwood Columbia Aging Project. Composite scores of memory, language, speed/executive functioning, and visuospatial function were derived from a neuropsychological battery. Hippocampal volume, regional cortical thickness, infarcts, and white matter hyperintensity (WMH) volumes were quantified with FreeSurfer and in-house developed procedures. Multiple-group regression analysis, in which each cognitive composite score was regressed onto MRI variables, demographics, and cardiovascular health, tested which paths differed across groups. Larger WMH volume was associated with worse language and speed/executive functioning among African Americans, but not among non-Hispanic Whites. Larger hippocampal volume was more strongly associated with better memory among non-Hispanic Whites compared with Hispanics. Cortical thickness and infarcts were similarly associated with cognition across groups. The main finding of this study was that certain MRI predictors of cognition differed across racial/ethnic groups. These results highlight the critical need for more diverse samples in the study of cognitive aging, as the type and relation of neurobiological substrates of cognitive functioning may be different for different groups.
Pospisil, Petr; Kazda, Tomas; Hynkova, Ludmila; Bulik, Martin; Dobiaskova, Marie; Burkon, Petr; Laack, Nadia N; Slampa, Pavel; Jancalek, Radim
2017-03-01
The aim of this prospective study is to evaluate post-whole brain radiotherapy (WBRT) changes in hippocampal concentration of N-acetylaspartate (h-tNAA) as a marker of neuronal loss and to correlate those changes to neurocognitive function. Thirty-five patients with brain metastases underwent baseline single slice multi-voxel MR spectroscopy (MRS) examination for measurement of hippocampal h-tNAA together with baseline battery of neurocognitive tests focused on memory (Auditory Verbal Learning Test and Brief Visuospatial Memory Test - Revised) as well as quality of life questionnaires (EORTC QLQ-C30 a EORTC QLQ-BN20). Eighteen patients completed follow-up evaluation four months after standard WBRT (2 laterolateral fields, 10×3.0Gy, 6MV photons) and were included in this analysis. MRS and cognitive examinations were repeated and compared to baseline measurements. Statistically significant decreases in h-tNAA were observed in the right (8.52-7.42mM; -12.9%, 95%CI: -7.6 to -16.4%) as well as in the left hippocampus (8.64-7.60mM; -12%, 95%CI: -7.9 to -16.2%). Statistically significant decline was observed in all AVLT and BVMT-R subtests with exception of AVLT_Recognition. Quality of life declined after WBRT (mean Δ -14.1±20.3 points in transformed 0-100 point scale; p=0.018) with no correlation to changes in hippocampal metabolite concentrations. Moderate positive correlation was observed between left h-tNAA concentration decrease and AVLT_TR decline (r=+0.32; p=0.24) as well as with AVLT_DR (r=+0.33; p=0.22) decline. Changes in right h-tNAA/Cr negatively correlated with AVLT_DR (r=-0.48; p=0.061). No correlation between right hippocampus h-tNAA and memory decline (AVLT) was observed. Our results suggest hippocampal NAA concentrations decline after WBRT and MRS may be a useful biomarker for monitoring neuronal loss after radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Exceptional visuospatial imagery in schizophrenia; implications for madness and creativity
Benson, Taylor L.; Park, Sohee
2013-01-01
Biographical and historical accounts suggest a link between scientific creativity and schizophrenia. Longitudinal studies of gifted children indicate that visuospatial imagery plays a pivotal role in exceptional achievements in science and mathematics. We asked whether visuospatial imagery is enhanced in individuals with schizophrenia (SZ). We compared SZ and matched healthy controls (HC) on five visuospatial tasks tapping parietal and frontoparietal functions. Two aspects of visuospatial transformation, spatial location and mental imagery manipulation were examined with Paper Folding Test (PFT) and jigsaw puzzle task (JPT), respectively. Visuospatial intelligence was assessed with Ravens Progressive Matrices, which is associated with frontoparietal network activity. Hemispatial inattention implicating parietal function was assessed with line bisection (LB) task. Mediated by prefrontal cortex, spatial delayed response task (DRT) was used to index working memory maintenance, which was impaired in SZ compared to HC. In contrast, SZ showed intact visuospatial intelligence and transformation of location. Further, SZ performed significantly better than HC on JPT indicating enhanced mental imagery manipulation. Spatial working memory (SWM) maintenance and mental imagery manipulation were strongly associated in HC but dissociated in SZ. Thus, we observed enhanced mental imagery manipulation in SZ but the dissociation of mental imagery from working memory suggests a disrupted frontoparietal network. Finally, while HC showed the expected leftward pseudoneglect, SZ showed increased rightward LB bias implicating left hemispatial inattention and impaired right parietal control of spatial attention. The current results chart a unique profile of impaired, spared and enhanced parietal-mediated visuospatial functions implicating parietal abnormalities as a biobehavioral marker for SZ. We discuss these results in relation to creative cognition. PMID:24273503
Kemps, Eva; Newson, Rachel
2006-04-01
The study compared age-related decrements in verbal and visuo-spatial memory across a broad elderly adult age range. Twenty-four young (18-25 years), 24 young-old (65-74 years), 24 middle-old (75-84 years) and 24 old-old (85-93 years) adults completed parallel recall and recognition measures of verbal and visuo-spatial memory from the Doors and People Test (Baddeley, Emslie & Nimmo-Smith, 1994). These constituted 'pure' and validated indices of either verbal or visuo-spatial memory. Verbal and visuo-spatial memory declined similarly with age, with a steeper decline in recall than recognition. Unlike recognition memory, recall performance also showed a heightened decline after the age of 85. Age-associated memory loss in both modalities was largely due to working memory and executive function. Processing speed and sensory functioning (vision, hearing) made minor contributions to memory performance and age differences in it. Together, these findings demonstrate common, rather than differential, age-related effects on verbal and visuo-spatial memory. They also emphasize the importance of using 'pure', parallel and validated measures of verbal and visuo-spatial memory in memory ageing research.
ERIC Educational Resources Information Center
David, Nicole; Aumann, Carolin; Bewernick, Bettina H.; Santos, Natacha S.; Lehnhardt, Fritz-G.; Vogeley, Kai
2010-01-01
Mentalizing refers to making inferences about other people's mental states, whereas visuospatial perspective taking refers to inferring other people's viewpoints. Both abilities seem vital for social functioning; yet, their exact relationship is unclear. We directly compared mentalizing and visuospatial perspective taking in nineteen adults with…
Sanchez, Christopher A
2012-02-01
Although previous research has demonstrated that performance on visuospatial assessments can be enhanced through relevant experience, an unaddressed question is whether such experience also produces a similar increase in target domains (such as science learning) where visuospatial abilities are directly relevant for performance. In the present study, participants completed either spatial or nonspatial training via interaction with video games and were then asked to read and learn about the geologic topic of plate tectonics. Results replicate the benefit of playing appropriate video games in enhancing visuospatial performance and demonstrate that this facilitation also manifests itself in learning science topics that are visuospatial in nature. This novel result suggests that visuospatial training not only can impact performance on measures of spatial functioning, but also can affect performance in content areas in which these abilities are utilized.
Certified Normal: Alzheimer’s Disease Biomarkers and Normative Estimates of Cognitive Functioning
Hassenstab, Jason; Chasse, Rachel; Grabow, Perri; Benzinger, Tammie L.S.; Fagan, Anne M.; Xiong, Chengjie; Jasielec, Mateusz; Grant, Elizabeth; Morris, John C.
2016-01-01
Normative samples drawn from older populations may unintentionally include individuals with preclinical Alzheimer’s disease (AD) pathology, resulting in reduced means, increased variability, and overestimation of age-effects on cognitive performance. 264 cognitively normal (CDR=0) older adults were classified as biomarker-negative (“Robust Normal,” n=177) or biomarker-positive (“Preclinical Alzheimer’s Disease” (PCAD), n=87) based on amyloid imaging, cerebrospinal fluid biomarkers, and hippocampal volumes. PCAD participants performed worse than Robust Normals on nearly all cognitive measures. Removing PCAD participants from the normative sample yielded higher means and less variability on episodic memory, visuospatial ability, and executive functioning measures. These results were more pronounced in participants aged 75 and older. Notably, removing PCAD participants from the sample significantly reduced age effects across all cognitive domains. Applying norms from the Robust Normal sample to a separate cohort did not improve CDR classification when using standard deviation cutoff scores. Overall, removing individuals with biomarker evidence of preclinical AD improves normative sample quality and substantially reduces age-effects on cognitive performance, but provides no substantive benefit for diagnostic classifications. PMID:27255812
Heterogeneous patterns of brain atrophy in Alzheimer's disease.
Poulakis, Konstantinos; Pereira, Joana B; Mecocci, Patrizia; Vellas, Bruno; Tsolaki, Magda; Kłoszewska, Iwona; Soininen, Hilkka; Lovestone, Simon; Simmons, Andrew; Wahlund, Lars-Olof; Westman, Eric
2018-05-01
There is increasing evidence showing that brain atrophy varies between patients with Alzheimer's disease (AD), suggesting that different anatomical patterns might exist within the same disorder. We investigated AD heterogeneity based on cortical and subcortical atrophy patterns in 299 AD subjects from 2 multicenter cohorts. Clusters of patients and important discriminative features were determined using random forest pairwise similarity, multidimensional scaling, and distance-based hierarchical clustering. We discovered 2 typical (72.2%) and 3 atypical (28.8%) subtypes with significantly different demographic, clinical, and cognitive characteristics, and different rates of cognitive decline. In contrast to previous studies, our unsupervised random forest approach based on cortical and subcortical volume measures and their linear and nonlinear interactions revealed more typical AD subtypes with important anatomically discriminative features, while the prevalence of atypical cases was lower. The hippocampal-sparing and typical AD subtypes exhibited worse clinical progression in visuospatial, memory, and executive cognitive functions. Our findings suggest there is substantial heterogeneity in AD that has an impact on how patients function and progress over time. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Sahyoun, Cherif P.; Belliveau, John W.; Soulieres, Isabelle; Schwartz, Shira; Mody, Maria
2010-01-01
High-functioning individuals with autism have been found to favor visuospatial processing in the face of typically poor language abilities. We aimed to examine the neurobiological basis of this difference using functional magnetic resonance imaging and diffusion tensor imaging. We compared 12 children with high functioning autism (HFA) to 12 age-…
ERIC Educational Resources Information Center
Schroder, Marie D.; Snyder, Peter J.; Sielski, Ireneusz; Mayes, Linda
2004-01-01
The present study examines the potentially harmful effects of prenatal cocaine exposure on later visuospatial memory functions. A novel neuropsychological measure of immediate- and short-term memory for visuospatial information was administered to 40 children, who were identified as cocaine-exposed, and 11 age and socioeconomic status matched…
Cognitive Mechanisms, Specificity and Neural Underpinnings of Visuospatial Peaks in Autism
ERIC Educational Resources Information Center
Caron, M.-J.; Mottron, L.; Berthiaume, C.; Dawson, M.
2006-01-01
In order to explain the cognitive and cerebral mechanisms responsible for the visuospatial peak in autism, and to document its specificity to this condition, a group of eight high-functioning individuals with autism and a visuospatial peak (HFA-P) performed a modified block-design task (BDT; subtest from Wechsler scales) at various levels of…
Visual and cognitive predictors of driving safety in Parkinson's disease patients
Amick, M.M.; Grace, J.; Ott, B.R.
2012-01-01
This study assessed the clinical utility of contrast sensitivity (CS) relative to attention, executive function, and visuospatial abilities for predicting driving safety in participants with Parkinson's disease (PD). Twenty-five, non-demented PD patients completed measures of contrast sensitivity, visuospatial skills, executive functions, and attention. All PD participants also underwent a formal on-road driving evaluation. Of the 25 participants, 11 received a marginal or unsafe rating on the road test. Poorer driving performance was associated with worse performance on measures of CS, visuospatial constructions, set shifting, and attention. While impaired driving was associated with a range of cognitive and visual abilities, only a composite measure of executive functioning and visuospatial abilities, and not CS or attentional skills, predicted driving performance. These findings suggest that neuropsychological tests, which are multifactorial in nature and require visual perception and visual spatial judgments are the most useful screening measures for hazardous driving in PD patients. PMID:17851032
Visual and cognitive predictors of driving safety in Parkinson's disease patients.
Amick, M M; Grace, J; Ott, B R
2007-11-01
This study assessed the clinical utility of contrast sensitivity (CS) relative to attention, executive function, and visuospatial abilities for predicting driving safety in participants with Parkinson's disease (PD). Twenty-five, non-demented PD patients completed measures of contrast sensitivity, visuospatial skills, executive functions, and attention. All PD participants also underwent a formal on-road driving evaluation. Of the 25 participants, 11 received a marginal or unsafe rating on the road test. Poorer driving performance was associated with worse performance on measures of CS, visuospatial constructions, set shifting, and attention. While impaired driving was associated with a range of cognitive and visual abilities, only a composite measure of executive functioning and visuospatial abilities, and not CS or attentional skills, predicted driving performance. These findings suggest that neuropsychological tests, which are multifactorial in nature and require visual perception and visual spatial judgments are the most useful screening measures for hazardous driving in PD patients.
Relationship between visuospatial neglect and kinesthetic deficits after stroke.
Semrau, Jennifer A; Wang, Jeffery C; Herter, Troy M; Scott, Stephen H; Dukelow, Sean P
2015-05-01
After stroke, visuospatial and kinesthetic (sense of limb motion) deficits are common, occurring in approximately 30% and 60% of individuals, respectively. Although both types of deficits affect aspects of spatial processing necessary for daily function, few studies have investigated the relationship between these 2 deficits after stroke. We aimed to characterize the relationship between visuospatial and kinesthetic deficits after stroke using the Behavioral Inattention Test (BIT) and a robotic measure of kinesthetic function. Visuospatial attention (using the BIT) and kinesthesia (using robotics) were measured in 158 individuals an average of 18 days after stroke. In the kinesthetic matching task, the robot moved the participant's stroke-affected arm at a preset direction, speed, and magnitude. Participants mirror-matched the robotic movement with the less/unaffected arm as soon as they felt movement in their stroke affected arm. We found that participants with visuospatial inattention (neglect) had impaired kinesthesia 100% of the time, whereas only 59% of participants without neglect were impaired. For those without neglect, we observed that a higher percentage of participants with lower but passing BIT scores displayed impaired kinesthetic behavior (78%) compared with those participants who scored perfect or nearly perfect on the BIT (49%). The presence of visuospatial neglect after stroke is highly predictive of the presence of kinesthetic deficits. However, the presence of kinesthetic deficits does not necessarily always indicate the presence of visuospatial neglect. Our findings highlight the importance of assessment and treatment of kinesthetic deficits after stroke, especially in patients with visuospatial neglect. © The Author(s) 2014.
Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis
2008-01-01
Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.
Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis
2008-01-01
Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals. PMID:18604298
Trojano, Luigi; Siciliano, Mattia; Cristinzio, Chiara; Grossi, Dario
2018-01-01
The present study aimed at exploring relationships among the visuospatial tasks included in the Battery for Visuospatial Abilities (BVA), and at assessing the relative contribution of different facets of visuospatial processing on tests tapping constructional abilities and nonverbal abstract reasoning. One hundred forty-four healthy subjects with a normal score on Mini Mental State Examination completed the BVA plus Raven's Coloured Progressive Matrices and Constructional Apraxia test. We used Principal Axis Factoring and Parallel Analysis to investigate relationships among the BVA visuospatial tasks, and performed regression analyses to assess the visuospatial contribution to constructional abilities and nonverbal abstract reasoning. Principal Axis Factoring and Parallel Analysis revealed two eigenvalues exceeding 1, accounting for about 60% of the variance. A 2-factor model provided the best fit. Factor 1 included sub-tests exploring "complex" visuospatial skills, whereas Factor 2 included two subtests tapping "simple" visuospatial skills. Regression analyses revealed that both Factor 1 and Factor 2 significantly affected performance on Raven's Coloured Progressive Matrices, whereas only the Factor 1 affected performance on Constructional Apraxia test. Our results supported functional segregation proposed by De Renzi, suggesting clinical caution to utilize a single test to assess visuospatial domain, and qualified the visuospatial contribution in drawing and non-verbal intelligence test.
Migliaccio, Raffaella; Agosta, Federica; Toba, Monica N; Samri, Dalila; Corlier, Fabian; de Souza, Leonardo C; Chupin, Marie; Sharman, Michael; Gorno-Tempini, Maria L; Dubois, Bruno; Filippi, Massimo; Bartolomeo, Paolo
2012-01-01
Posterior cortical atrophy (PCA) is rare neurodegenerative dementia, clinically characterized by a progressive decline in higher-visual object and space processing. After a brief review of the literature on the neuroimaging in PCA, here we present a study of the brain structural connectivity in a patient with PCA and progressive isolated visual and visuo-motor signs. Clinical and cognitive data were acquired in a 58-years-old patient (woman, right-handed, disease duration 18 months). Brain structural and diffusion tensor (DT) magnetic resonance imaging (MRI) were obtained. A voxel-based morphometry (VBM) study was performed to explore the pattern of gray matter (GM) atrophy, and a fully automatic segmentation was assessed to obtain the hippocampal volumes. DT MRI-based tractography was used to assess the integrity of long-range white matter (WM) pathways in the patient and in six sex- and age-matched healthy subjects. This PCA patient had a clinical syndrome characterized by left visual neglect, optic ataxia, and left limb apraxia, as well as mild visuo-spatial episodic memory impairment. VBM study showed bilateral posterior GM atrophy with right predominance; DT MRI tractography demonstrated WM damage to the right hemisphere only, including the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus, as compared to age-matched controls. The homologous left-hemisphere tracts were spared. No difference was found between left and right hippocampal volumes. These data suggest that selective visuo-spatial deficits typical of PCA might not result from cortical damage alone, but by a right-lateralized network-level dysfunction including WM damage along the major visual pathways. Copyright © 2011 Elsevier Srl. All rights reserved.
Darling, Stephen; Parker, Mary-Jane; Goodall, Karen E; Havelka, Jelena; Allen, Richard J
2014-03-01
When participants carry out visually presented digit serial recall, their performance is better if they are given the opportunity to encode extra visuospatial information at encoding-a phenomenon that has been termed visuospatial bootstrapping. This bootstrapping is the result of integration of information from different modality-specific short-term memory systems and visuospatial knowledge in long term memory, and it can be understood in the context of recent models of working memory that address multimodal binding (e.g., models incorporating an episodic buffer). Here we report a cross-sectional developmental study that demonstrated visuospatial bootstrapping in adults (n=18) and 9-year-old children (n=15) but not in 6-year-old children (n=18). This is the first developmental study addressing visuospatial bootstrapping, and results demonstrate that the developmental trajectory of bootstrapping is different from that of basic verbal and visuospatial working memory. This pattern suggests that bootstrapping (and hence integrative functions such as those associated with the episodic buffer) emerge independent of the development of basic working memory slave systems during childhood. Copyright © 2013 Elsevier Inc. All rights reserved.
Attentional networks and visuospatial working memory capacity in social anxiety.
Moriya, Jun
2018-02-01
Social anxiety is associated with attentional bias and working memory for emotional stimuli; however, the ways in which social anxiety affects cognitive functions involving non-emotional stimuli remains unclear. The present study focused on the role of attentional networks (i.e. alerting, orienting, and executive control networks) and visuospatial working memory capacity (WMC) for non-emotional stimuli in the context of social anxiety. One hundred and seventeen undergraduates completed questionnaires on social anxiety. They then performed an attentional network test and a change detection task to measure visuospatial WMC. Orienting network and visuospatial WMC were positively correlated with social anxiety. A multiple regression analysis showed significant positive associations of alerting, orienting, and visuospatial WMC with social anxiety. Alerting, orienting networks, and high visuospatial WMC for non-emotional stimuli may predict degree of social anxiety.
Spreading activation in nonverbal memory networks.
Foster, Paul S; Wakefield, Candias; Pryjmak, Scott; Roosa, Katelyn M; Branch, Kaylei K; Drago, Valeria; Harrison, David W; Ruff, Ronald
2017-09-01
Theories of spreading activation primarily involve semantic memory networks. However, the existence of separate verbal and visuospatial memory networks suggests that spreading activation may also occur in visuospatial memory networks. The purpose of the present investigation was to explore this possibility. Specifically, this study sought to create and describe the design frequency corpus and to determine whether this measure of visuospatial spreading activation was related to right hemisphere functioning and spreading activation in verbal memory networks. We used word frequencies taken from the Controlled Oral Word Association Test and design frequencies taken from the Ruff Figural Fluency Test as measures of verbal and visuospatial spreading activation, respectively. Average word and design frequencies were then correlated with measures of left and right cerebral functioning. The results indicated that a significant relationship exists between performance on a test of right posterior functioning (Block Design) and design frequency. A significant negative relationship also exists between spreading activation in semantic memory networks and design frequency. Based on our findings, the hypotheses were supported. Further research will need to be conducted to examine whether spreading activation exists in visuospatial memory networks as well as the parameters that might modulate this spreading activation, such as the influence of neurotransmitters.
The human hippocampal formation mediates short-term memory of colour-location associations.
Finke, Carsten; Braun, Mischa; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Hoffmann, Karl-Titus; Kopp, Ute; Ploner, Christoph J
2008-01-31
The medial temporal lobe (MTL) has long been considered essential for declarative long-term memory, whereas the fronto-parietal cortex is generally seen as the anatomical substrate of short-term memory. This traditional dichotomy is questioned by recent studies suggesting a possible role of the MTL for short-term memory. In addition, there is no consensus on a possible specialization of MTL sub-regions for memory of associative information. Here, we investigated short-term memory for single features and feature associations in three humans with post-surgical lesions affecting the right hippocampal formation and in 10 healthy controls. We used three delayed-match-to-sample tasks with two delays (900/5000 ms) and three set sizes (2/4/6 items). Subjects were instructed to remember either colours, locations or colour-location associations. In colour-only and location-only conditions, performance of patients did not differ from controls. By contrast, a significant group difference was found in the association condition at 5000 ms delay. This difference was largely independent of set size, thus suggesting that it cannot be explained by the increased complexity of the association condition. These findings show that the hippocampal formation plays a significant role for short-term memory of simple visuo-spatial associations, and suggest a specialization of MTL sub-regions for associative memory.
[Initial deficits in Alzheimer's disease: 3 practical examples].
Jódar-Vicente, M
The aim of the first studies to determine the neuropsychological features of Alzheimer's disease (AD) were based on the concept of the disease as an homogeneous entity. However, clinical observations and the most recent research studies have demonstrated that Alzheimer's disease may present several other neuropsychological deficits on its clinical onset. in the initial process of cognitive function loss, memory deficits are seen as a consequence of hippocampal degeneration; however, a great interindividual variability is observed in the appearance of other cortical deficits. In addiction, new advances in epidemiology, neurochemistry and neuropathology support the idea that AD represents a neuropsychologically heterogeneous disorder. In AD three different subgroups have been established: patients with initial deficits in visuospatial abilities, patients with a major deterioration of linguistic abilities, and a third group with altered visuospatial and linguistic abilities. The most sensitive neuropsychological tests capable of distinguish among these differences were The Boston Naming Test (BNT) and the copy of a drawing. These results have been confirmed with single photon emission computed tomography (SPECT) images, and has been observed that patients with a pattern of a elevated right-hemispheric deterioration presented also a higher right-hipofunctionality. At the same time, patients with an elevated linguistic deficit showed a higher hipofunctionality image in the left hemisphere. In this work we present three patients from a prospective study in course, who have similar background, education, gender and disease evolution, but with an onset of the illness corresponding to each of the patterns previously described All three patients were explored with an extense neuropsychological battery of tests specially chosen for this study.
Krüger, Melanie; Hinder, Mark R; Puri, Rohan; Summers, Jeffery J
2017-01-01
Objectives: The aim of this study was to investigate how age-related performance differences in a visuospatial sequence learning task relate to age-related declines in cognitive functioning. Method: Cognitive functioning of 18 younger and 18 older participants was assessed using a standardized test battery. Participants then undertook a perceptual visuospatial sequence learning task. Various relationships between sequence learning and participants' cognitive functioning were examined through correlation and factor analysis. Results: Older participants exhibited significantly lower performance than their younger counterparts in the sequence learning task as well as in multiple cognitive functions. Factor analysis revealed two independent subsets of cognitive functions associated with performance in the sequence learning task, related to either the processing and storage of sequence information (first subset) or problem solving (second subset). Age-related declines were only found for the first subset of cognitive functions, which also explained a significant degree of the performance differences in the sequence learning task between age-groups. Discussion: The results suggest that age-related performance differences in perceptual visuospatial sequence learning can be explained by declines in the ability to process and store sequence information in older adults, while a set of cognitive functions related to problem solving mediates performance differences independent of age.
Samaras, Katherine; Lutgers, Helen L; Kochan, Nicole A; Crawford, John D; Campbell, Lesley V; Wen, Wei; Slavin, Melissa J; Baune, Bernard T; Lipnicki, Darren M; Brodaty, Henry; Trollor, Julian N; Sachdev, Perminder S
2014-04-01
Type 2 diabetes predicts accelerated cognitive decline and brain atrophy. We hypothesized that impaired fasting glucose (IFG) and incident glucose disorders have detrimental effects on global cognition and brain volume. We further hypothesized that metabolic and inflammatory derangements accompanying hyperglycaemia contribute to change in brain structure and function. This was a longitudinal study of a community-dwelling elderly cohort with neuropsychological testing (n = 880) and brain volumes by magnetic resonance imaging (n = 312) measured at baseline and 2 years. Primary outcomes were global cognition and total brain volume. Secondary outcomes were cognitive domains (processing speed, memory, language, visuospatial and executive function) and brain volumes (hippocampal, parahippocampal, precuneus and frontal lobe). Participants were categorised as normal, impaired fasting glucose at both assessments (stable IFG), baseline diabetes or incident glucose disorders (incident diabetes or IFG at 2 years). Measures included inflammatory cytokines and oxidative metabolites. Covariates were age, sex, education, non-English speaking background, smoking, blood pressure, lipid-lowering or antihypertensive medications, mood score, apolipoprotein E genotype and baseline cognition or brain volume. Participants with incident glucose disorders had greater decline in global cognition and visuospatial function compared to normal, similar to that observed in baseline diabetes. Homocysteine was independently associated with the observed effect of diabetes on executive function. Apolipoprotein E genotype did not influence the observed effects of diabetes on cognition. Incident glucose disorders and diabetes were also associated with greater 2-year decline in total brain volume, compared to normal (40.0 ± 4.2 vs. 46.7 ± 5.7 mm(3) vs. 18.1 ± 6.2, respectively, p < 0.005). Stable IFG did not show greater decline in global cognition or brain volumes compared to normal. Incident glucose disorders, like diabetes, are associated with accelerated decline in global cognition and brain volumes in non-demented elderly, whereas stable IFG is not. Preventing deterioration in glucose metabolism in the elderly may help preserve brain structure and function.
Mous, Sabine E; Schoemaker, Nikita K; Blanken, Laura M E; Thijssen, Sandra; van der Ende, Jan; Polderman, Tinca J C; Jaddoe, Vincent W V; Hofman, Albert; Verhulst, Frank C; Tiemeier, Henning; White, Tonya
2017-01-01
Although early childhood is a period of rapid neurocognitive development, few studies have assessed neuropsychological functioning in various cognitive domains in young typically developing children. Also, results regarding its association with gender and intelligence are mixed. In 853 typically developing children aged 6 to 10 years old, the association of gender, age, and intelligence with neuropsychological functioning in the domains of attention, executive functioning, language, memory, sensorimotor functioning, and visuospatial processing was explored. Clear positive associations with age were observed. In addition, gender differences were found and showed that girls generally outperformed boys, with the exception of visuospatial tasks. Furthermore, IQ was positively associated with neuropsychological functioning, which was strongest in visuospatial tasks. Performance in different neuropsychological domains was associated with age, gender, and intelligence in young typically developing children, and these factors should be taken into account when assessing neuropsychological functioning in clinical or research settings.
Rodriguez, Mabel; Spaniel, Filip; Konradova, Lucie; Sedlakova, Katerina; Dvorska, Karolina; Prajsova, Jitka; Kratochvilova, Zuzana; Levcik, David; Vlcek, Kamil; Fajnerova, Iveta
2015-01-01
Objectives: Deficit in visuospatial functions can influence both simple and complex daily life activities. Despite the fact that visuospatial deficit was reported in schizophrenia, research on visuospatial functions as an independent entity is limited. Our study aims to elucidate the impact of visuospatial deficit in comparison with verbal deficit on global functioning and quality of life in the first psychotic episode of schizophrenia spectrum disorder (FES). The significance of clinical symptoms and antipsychotic medication was also studied. Methods: Thirty-six FES patients and a matched group of healthy controls (HC group) were assessed with a neuropsychological battery focused on visuospatial (VIS) and verbal (VERB) functions. Using multiple regression analysis, we evaluated the cumulative effect of VERB and VIS functions, psychiatric symptoms (PANSS) and antipsychotic medication on global functioning (GAF) and quality of life (WHOQOL-BREF) in the FES group. Results: The FES group demonstrated significant impairment both in VIS and VERB cognitive abilities compared to the HC group. Antipsychotic medication did not significantly affect either VIS or VERB functioning. PANSS was not related to cognitive functioning, apart from the Trail Making Test B. In the FES group, the GAF score was significantly affected by the severity of positive symptoms and VERB functioning, explaining together 60% of GAF variability. The severity of negative and positive symptoms affected only the Physical health domain of WHOQOL-BREF. The degree of VERB deficit was associated with both Physical and Psychological health. Although we did not find any relation between VIS functioning, GAF, and WHOQOL-BREF, a paradoxical finding emerged in the Environment quality domain, where a worse quality of the environment was associated with better VIS functioning. Conclusions: Our results suggest that the deficit in VIS functions is an integral part of cognitive deficit in schizophrenia spectrum disorders, rather than a side effect of symptomatology or antipsychotic medication. Moreover, VERB functioning was a better predictor of GAF and WHOQOL-BREF than VIS functioning. Given the findings of negative or missing effect of VIS deficit on WHOQOL-BREF and GAF, the accuracy of these measures in evaluating the impact of global cognitive deficit on everyday life in schizophrenia could be questioned. PMID:26733828
Gallagher, P; Gray, J M; Kessels, R P C
2015-02-01
Previous studies of neurocognitive performance in bipolar disorder (BD) have demonstrated impairments in visuo-spatial memory. The aim of the present study was to use an object-location memory (OLM) paradigm to assess specific, dissociable processes in visuo-spatial memory and examine their relationship with broader neurocognitive performance. Fifty participants (25 patients with BD in a current depressive episode and 25 matched healthy controls) completed the OLM paradigm which assessed three different aspects of visuo-spatial memory: positional memory, object-location binding, and a combined process. Secondary neurocognitive measures of visuo-spatial memory, verbal memory, attention and executive function were also administered. BD patients were significantly impaired on all three OLM processes, with the largest effect in exact positional memory (d = 1.18, p < 0.0001). General deficits were also found across the secondary neurocognitive measures. Using hierarchical regression, verbal learning was found to explain significant variance on the OLM measures where object-identity was present (the object-location binding and combined processes) and accounted for the group difference. The group difference in precise positional memory remained intact. This study demonstrates that patients with bipolar depression manifest deficits in visuo-spatial memory, with substantial impairment in fine-grain, positional memory. The differential profile of processes underpinning the visuo-spatial memory impairment suggests a form of 'cognitive scaffolding', whereby performance on some measures can be supported by verbal memory. These results have important implications for our understanding of the functional cognitive architecture of mood disorder.
Comparison of fMRI paradigms assessing visuospatial processing: Robustness and reproducibility
Herholz, Peer; Zimmermann, Kristin M.; Westermann, Stefan; Frässle, Stefan; Jansen, Andreas
2017-01-01
The development of brain imaging techniques, in particular functional magnetic resonance imaging (fMRI), made it possible to non-invasively study the hemispheric lateralization of cognitive brain functions in large cohorts. Comprehensive models of hemispheric lateralization are, however, still missing and should not only account for the hemispheric specialization of individual brain functions, but also for the interactions among different lateralized cognitive processes (e.g., language and visuospatial processing). This calls for robust and reliable paradigms to study hemispheric lateralization for various cognitive functions. While numerous reliable imaging paradigms have been developed for language, which represents the most prominent left-lateralized brain function, the reliability of imaging paradigms investigating typically right-lateralized brain functions, such as visuospatial processing, has received comparatively less attention. In the present study, we aimed to establish an fMRI paradigm that robustly and reliably identifies right-hemispheric activation evoked by visuospatial processing in individual subjects. In a first study, we therefore compared three frequently used paradigms for assessing visuospatial processing and evaluated their utility to robustly detect right-lateralized brain activity on a single-subject level. In a second study, we then assessed the test-retest reliability of the so-called Landmark task–the paradigm that yielded the most robust results in study 1. At the single-voxel level, we found poor reliability of the brain activation underlying visuospatial attention. This suggests that poor signal-to-noise ratios can become a limiting factor for test-retest reliability. This represents a common detriment of fMRI paradigms investigating visuospatial attention in general and therefore highlights the need for careful considerations of both the possibilities and limitations of the respective fMRI paradigm–in particular, when being interested in effects at the single-voxel level. Notably, however, when focusing on the reliability of measures of hemispheric lateralization (which was the main goal of study 2), we show that hemispheric dominance (quantified by the lateralization index, LI, with |LI| >0.4) of the evoked activation could be robustly determined in more than 62% and, if considering only two categories (i.e., left, right), in more than 93% of our subjects. Furthermore, the reliability of the lateralization strength (LI) was “fair” to “good”. In conclusion, our results suggest that the degree of right-hemispheric dominance during visuospatial processing can be reliably determined using the Landmark task, both at the group and single-subject level, while at the same time stressing the need for future refinements of experimental paradigms and more sophisticated fMRI data acquisition techniques. PMID:29059201
Ebner, Kathina; Lidzba, Karen; Hauser, Till-Karsten; Wilke, Marko
2011-10-01
In order to increase the rate of successful functional MR studies in children it is helpful to shorten the time spent in the scanner. To this effect, assessing two cognitive functions with one task seems to be a promising approach. The hypothesis of this study was that the control condition of an established language task (vowel identification task, VIT) requires visuospatial processing and that the control condition (VIT(CC)) therefore may also be applicable to localize visuospatial functions. As a reference task, a visual search task (VST, previously established for use in children) was employed. To test this hypothesis, 43 children (19 f, 24 m; 12.0±2.6, range 7.9 to 17.8 years) were recruited and scanned using both tasks. Second-level random effects group analyses showed activation of left inferior-frontal cortex in the active condition of the VIT, as in previous studies. Additionally, analysis of the VIT(CC) demonstrated activation in right-dominant superior parietal and high-frontal brain regions, classically associated with visuospatial functions; activation seen in the VST was similar with a substantial overlap. However, lateralization in the parietal lobe was significantly more bilateral in the VST than in the VIT(CC). This suggests that the VIT can not only be applied to assess language functions (using the active>control contrast), but also that the control>active condition is useful for assessing visuospatial functions. Future task design may benefit from such a "dual use" approach to performing fMRI not only, but also particularly in children. Copyright © 2011 Elsevier Inc. All rights reserved.
Lack of degradation in visuospatial perception of line orientation after one night of sleep loss.
Killgore, William D S; Kendall, Athena P; Richards, Jessica M; McBride, Sharon A
2007-08-01
Sleep deprivation impairs a variety of cognitive abilities including vigilance, attention, and executive function. Although sleep loss has been shown to impair tasks requiring visual attention and spatial perception, it is not clear whether these deficits are exclusively a function of reduced attention and vigilance or if there are also alterations in visuospatial perception. Visuospatial perception and sustained vigilance performance were therefore examined in 54 healthy volunteers at rested baseline and again after one night of sleep deprivation using the Judgment of Line Orientation Test and a computerized test of psychomotor vigilance. Whereas psychomotor vigilance declined significantly from baseline to sleep-deprived testing, scores on the Judgment of Line Orientation did not change significantly. Results suggest that documented performance deficits associated with sleep loss are unlikely to be the result of dysfunction within systems of the brain responsible for simple visuospatial perception and processing of line angles.
Certified normal: Alzheimer's disease biomarkers and normative estimates of cognitive functioning.
Hassenstab, Jason; Chasse, Rachel; Grabow, Perri; Benzinger, Tammie L S; Fagan, Anne M; Xiong, Chengjie; Jasielec, Mateusz; Grant, Elizabeth; Morris, John C
2016-07-01
Normative samples drawn from older populations may unintentionally include individuals with preclinical Alzheimer's disease (AD) pathology, resulting in reduced means, increased variability, and overestimation of age effects on cognitive performance. A total of 264 cognitively normal (Clinical Dementia Rating = 0) older adults were classified as biomarker negative ("Robust Normal," n = 177) or biomarker positive ("Preclinical Alzheimer's Disease" [PCAD], n = 87) based on amyloid imaging, cerebrospinal fluid biomarkers, and hippocampal volumes. PCAD participants performed worse than robust normals on nearly all cognitive measures. Removing PCAD participants from the normative sample yielded higher means and less variability on episodic memory, visuospatial ability, and executive functioning measures. These results were more pronounced in participants aged 75 years and older. Notably, removing PCAD participants from the sample significantly reduced age effects across all cognitive domains. Applying norms from the robust normal sample to a separate cohort did not improve Clinical Dementia Rating classification when using standard deviation cutoff scores. Overall, removing individuals with biomarker evidence of preclinical AD improves normative sample quality and substantially reduces age effects on cognitive performance but provides no substantive benefit for diagnostic classifications. Copyright © 2016 Elsevier Inc. All rights reserved.
Wezenberg, E; Verkes, R J; Sabbe, B G C; Ruigt, G S F; Hulstijn, W
2005-09-01
The central cholinergic system is implicated in cognitive functioning. The dysfunction of this system is expressed in many diseases like Alzheimer's disease, dementia of Lewy body, Parkinson's disease and vascular dementia. In recent animal studies, it was found that selective cholinergic modulation affects visuospatial processes even more than memory function. In the current study, we tried to replicate those findings. In order to investigate the acute effects of cholinergic drugs on memory and visuospatial functions, a selective anticholinergic drug, biperiden, was compared to a selective acetylcholinesterase-inhibiting drug, rivastigmine, in healthy elderly subjects. A double-blind, placebo-controlled, randomised, cross-over study was performed in 16 healthy, elderly volunteers (eight men, eight women; mean age 66.1, SD 4.46 years). All subjects received biperiden (2 mg), rivastigmine (3 mg) and placebo with an interval of 7 days between them. Testing took place 1 h after drug intake (which was around Tmax for both drugs). Subjects were presented with tests for episodic memory (wordlist and picture memory), working memory tasks (N-back, symbol recall) and motor learning (maze task, pursuit rotor). Visuospatial abilities were assessed by tests with high visual scanning components (tangled lines and Symbol Digit Substitution Test). Episodic memory was impaired by biperiden. Rivastigmine impaired recognition parts of the episodic memory performance. Working memory was non-significantly impaired by biperiden and not affected by rivastigmine. Motor learning as well as visuospatial processes were impaired by biperiden and improved by rivastigmine. These results implicate acetylcholine as a modulator not only of memory but also of visuospatial abilities.
Aznárez-Sanado, Maite; Fernández-Seara, Maria A; Loayza, Francis R; Pastor, Maria A
2013-03-01
To elucidate differences in activity and connectivity during early learning due to the performing hand. Twenty right-handed subjects were recruited. The neural correlates of explicit visuospatial learning executed with the right, the left hand, and bimanually were investigated using functional magnetic resonance imaging. Connectivity analyses were carried out using the psychophysiological interactions model, considering right and left anterior putamen as index regions. A common neural network was found for the three tasks during learning. Main activity increases were located in posterior cingulate cortex, supplementary motor area, parietal cortex, anterior putamen, and cerebellum (IV-V), whereas activity decrements were observed in prefrontal regions. However, the left hand task showed a greater recruitment of left hippocampal areas when compared with the other tasks. In addition, enhanced connectivity between the right anterior putamen and motor cortical and cerebellar regions was found for the left hand when compared with the right hand task. An additional recruitment of brain regions and increased striato-cortical and striato-cerebellar functional connections is needed when early learning is performed with the nondominant hand. In addition, access to brain resources during learning may be directed by the dominant hand in the bimanual task. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chung, Soon Cheol; Kim, Ik Hyeon; Tack, Gye Rae; Sohn, Jin Hun
2004-04-01
This study investigated the effects of 30% oxygen administration on the visuospatial cognitive performance using fMRI. Eight college students (right-handed, average age 23.5) were selected as subjects for this study. Oxygen supply equipment which gives 21% and 30% oxygen at a constant rate of 8L/min was developed for this study. To measure the performance of visuospatial cognition, two questionnaires with similar difficulty containing 20 questions each were also developed. Experiment was designed as two runs: run for visuospatial cognition test with normal air (21% of oxygen) and run for visuospatial cognition test with highly concentrated air (30% of oxygen). Run consists of 4 blocks and each block has 8 control problems and 5 visuospatial problems. Functional brain images were taken from 3T MRI using single-shot EPI method. Activities of neural network due to performing visuospatial cognition test were identified using subtraction procedure, and activation areas while performing visuospatial cognition test were extracted using double subtraction procedure. Activities were observed at occipital lobe, parietal lobe, and frontal lobe when performing visuospatial cognition test following both 21% and 30% oxygen administration. But in case of only 30% oxygen administration there were more activities at left precuneus, left cuneus, right postcentral gyrus, bilateral middle frontal gyri, right inferior frontal gyrus, left superior frontal gyrus, bilateral uvula, bilateral pyramis, and nodule compared with 21% oxygen administration. From results of visuospatial cognition test, accuracy rate increased in case of 30% oxygen administration. Thus it could be concluded that highly concentrated oxygen administration has positive effects on the visuospatial cognitive performance.
Rönnberg, Jerker; Hygge, Staffan; Keidser, Gitte; Rudner, Mary
2014-01-01
The UK Biobank offers cross-sectional epidemiological data collected on >500,000 individuals in the UK between 40 and 70 years of age. Using the UK Biobank data, the aim of this study was to investigate the effects of functional hearing loss and hearing aid usage on visuospatial memory function. This selection of variables resulted in a sub-sample of 138,098 participants after discarding extreme values. A digit triplets functional hearing test was used to divide the participants into three groups: poor, insufficient and normal hearers. We found negative relationships between functional hearing loss and both visuospatial working memory (i.e., a card pair matching task) and visuospatial, episodic long-term memory (i.e., a prospective memory task), with the strongest association for episodic long-term memory. The use of hearing aids showed a small positive effect for working memory performance for the poor hearers, but did not have any influence on episodic long-term memory. Age also showed strong main effects for both memory tasks and interacted with gender and education for the long-term memory task. Broader theoretical implications based on a memory systems approach will be discussed and compared to theoretical alternatives.
Correlation between hypertension and cognitive function in elderly
NASA Astrophysics Data System (ADS)
Fitri, F. I.; Rambe, A. S.
2018-03-01
Hypertension and cognitive impairment are common disorders among elderly adults, and their prevalences tend to rise as the population ages. This study aimed to determine the correlation between hypertension and cognitive function in elderly. It was a cross-sectional study involving 62 elderly subjects. All subjects underwent physical and neurologic examination and Montreal Cognitive Assessment-Indonesian Version (MoCA-INA) to assess cognitive function. This study included 62 subjects consisted of 26 males (41.9%) and 36 females (58.1%). There were 24 subjects (38.2%) with hypertension and 38 (61.3%) normal elderly subjects. The mean age was 65.71±4.49 years old. There were no significant differences in demographic characteristics, total MoCA-INA scores, and scores based on cognitive domains between two groups, except for visuospatial and executive function (p=0.026). There was a significant correlation between hypertension and visuospatial and executive function (r=0.301, p=0.017). Hypertension is correlated with cognitive impairment mainly on visuospatial and executive function in elderly.
Brain and Cognition Abnormalities in Long-Term Anabolic-Androgenic Steroid Users
Kaufman, Marc J.; Janes, Amy C.; Hudson, James I.; Brennan, Brian P.; Kanayama, Gen; Kerrigan, Andrew R.; Jensen, J. Eric; Pope, Harrison G.
2015-01-01
Background Anabolic-androgenic steroid (AAS) use is associated with psychiatric symptoms including increased aggression as well as with cognitive dysfunction. The brain effects of long-term AAS use have not been assessed in humans. Methods This multimodal magnetic resonance imaging study of the brain compared 10 male weightlifters reporting long-term AAS use with 10 age-matched weightlifters reporting no AAS exposure. Participants were administered visuospatial memory tests and underwent neuroimaging. Brain volumetric analyses were performed; resting-state fMRI functional connectivity (rsFC) was evaluated using a region-of-interest analysis focused on the amygdala; and dorsal anterior cingulate cortex (dACC) metabolites were quantified by proton magnetic resonance spectroscopy (MRS). Results AAS users had larger right amygdala volumes than nonusers (P=0.002) and reduced rsFC between right amygdala and frontal, striatal, limbic, hippocampal, and visual cortical areas. Left amygdala volumes were slightly larger in AAS users (P=0.061) but few group differences were detected in left amygdala rsFC. AAS users also had lower dACC scyllo-inositol levels (P=0.004) and higher glutamine/glutamate ratios (P=0.028), possibly reflecting increased glutamate turnover. On a visuospatial cognitive task, AAS users performed more poorly than nonusers, with the difference approaching significance (P=0.053). Conclusions Long-term AAS use is associated with right amygdala enlargement and reduced right amygdala rsFC with brain areas involved in cognitive control and spatial memory, which could contribute to the psychiatric effects and cognitive dysfunction associated with AAS use. The MRS abnormalities we detected could reflect enhanced glutamate turnover and increased vulnerability to neurotoxic or neurodegenerative processes, which could contribute to AAS-associated cognitive dysfunction. PMID:25986964
Visuo-spatial processing and executive functions in children with specific language impairment
Marton, Klara
2007-01-01
Background Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims The purpose of the study was to examine executive functions and visuo-spatial processing and working memory in children with SLI and in their typically developing peers (TLD). Experiment 1 included 40 children with SLI (age=5;3–6;10) and 40 children with TLD (age=5;3–6;7); Experiment 2 included 25 children with SLI (age=8;2–11;2) and 25 children with TLD (age=8;3–11;0). It was examined whether the difficulties that children with SLI show in verbal working memory tasks are also present in visuo-spatial working memory. Methods & Procedures In Experiment 1, children's performance was measured with three visuo-spatial processing tasks: space visualization, position in space, and design copying. The stimuli in Experiment 2 were two widely used neuropsychological tests: the Wisconsin Card Sorting Test — 64 (WCST-64) and the Tower of London test (TOL). Outcomes & Results In Experiment 1, children with SLI performed more poorly than their age-matched peers in all visuo-spatial working memory tasks. There was a subgroup within the SLI group that included children whose parents and teachers reported a weakness in the child's attention control. These children showed particular difficulties in the tasks of Experiment 1. The results support Engle's attention control theory: individuals need good attention control to perform well in visuo-spatial working memory tasks. In Experiment 2, the children with SLI produced more perseverative errors and more rule violations than their peers. Conclusions Executive functions have a great impact on SLI children's working memory performance, regardless of domain. Tasks that require an increased amount of attention control and executive functions are more difficult for the children with SLI than for their peers. Most children with SLI scored either below average or in the low average range on the neuropsychological tests that measured executive functions. PMID:17852522
Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P; Crewther, Sheila G
2016-01-01
Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network.
Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P.; Crewther, Sheila G.
2016-01-01
Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network. PMID:27199694
Jim, Heather S.L.; Phillips, Kristin M.; Chait, Sari; Anne Faul, Leigh; Popa, Mihaela A.; Lee, Yun-Hsiang; Hussin, Mallory G.; Jacobsen, Paul B.; Small, Brent J.
2012-01-01
Purpose Evidence is mixed regarding long-term cognitive deficits in patients treated with chemotherapy. Previous meta-analyses have not focused specifically on the postchemotherapy period and have not incorporated several recent studies. The goal of the current study was to conduct a meta-analysis of cognitive functioning in breast cancer survivors who were treated with chemotherapy ≥ 6 months previously. Methods A search of PubMed, PsycInfo, Cumulative Index to Nursing and Allied Health Literature, and Cochrane Library yielded 2,751 abstracts, which were independently evaluated by pairs of raters. Meta-analysis was conducted on 17 studies of 807 patients previously treated with standard-dose chemotherapy for breast cancer. Neuropsychological tests were categorized according to eight cognitive domains: attention, executive functioning, information processing, motor speed, verbal ability, verbal memory, visual memory, and visuospatial ability. Results Deficits in cognitive functioning were observed in patients treated with chemotherapy relative to controls or prechemotherapy baseline in the domains of verbal ability (g = −0.19; P < .01) and visuospatial ability (g = −0.27; P < .01). Patients treated with chemotherapy performed worse than noncancer controls in verbal ability and worse than patients treated without chemotherapy in visuospatial ability (both P < .01). Age, education, time since treatment, and endocrine therapy did not moderate observed cognitive deficits in verbal ability or visuospatial ability (all P ≥ .51). Conclusion Results indicate that, on average, observed cognitive deficits in patients with breast cancer previously treated with chemotherapy are small in magnitude and limited to the domains of verbal ability and visuospatial ability. This information can be used to inform interventions to educate patients with breast cancer regarding the long-term impact of chemotherapy on cognitive functioning. PMID:22927526
Nelson, Brady D.; Shankman, Stewart A.
2015-01-01
The parietal cortex is critical for several different cognitive functions, including visuospatial processing and mathematical abilities. There is strong evidence indicating parietal dysfunction in depression. However, it is less clear whether anxiety is associated with parietal dysfunction, and whether comorbid depression and anxiety is associated with greater impairment. The present study compared participants with major depression (MDD), panic disorder (PD), comorbid MDD/PD, and controls on neuropsychological measures of visuospatial processing, Judgment of Line Orientation (JLO), and mathematical abilities, Wide Range Achievement Arithmetic (WRAT-Arithmetic). Only comorbid MDD/PD was associated with decreased performance on JLO, whereas all psychopathological groups exhibited comparably decreased performance on WRAT-Arithmetic. Furthermore, the results were not accounted for by other comorbid disorders, medication use, or psychopathology severity. The present study suggests comorbid depression and anxious arousal is associated with impairment in visuospatial processing and provides novel evidence indicating mathematical deficits across depression and/or anxiety. Implications for understanding parietal dysfunction in internalizing psychopathology are discussed. PMID:25707308
Solís-Ortiz, S; Corsi-Cabrera, M
2008-08-01
Studies examining the influence of the menstrual cycle on cognitive function have been highly contradictory. The maintenance of attention is key to successful information processing, however how it co-vary with other cognitive functions and mood in function of phases of the menstrual cycle is not well know. Therefore, neuropsychological performance of nine healthy women with regular menstrual cycles was assessed during ovulation (OVU), early luteal (EL), late luteal (LL) and menstrual (MEN) phases. Neuropsychological test scores of sustained attention, executive functions, manual coordination, visuo-spatial memory, verbal fluency, spatial ability, anxiety and depression were obtained and submitted to a principal components analysis (PCA). Five eigenvectors that accounted the 68.31% of the total variance were identified. Performance of the sustained attention was grouped in an independent eigenvector (component 1), and the scores on verbal fluency and visuo-spatial memory were grouped together in an eigenvector (component 5), which explained 17.69% and 12.03% of the total variance, respectively. The component 1 (p<0.034) and the component 5 (p<0.003) showed significant variations during the menstrual cycle. Sustained attention showed an increase in the EL phase, when the progesterone is high. Visuo-spatial memory was increased, while that verbal fluency was decreased during the OVU phase, when the estrogens levels are high. These results indicate that sustained attention is favored by early luteal phase progesterone and do not covaried with any other neuropsychological variables studied. The influence of the estrogens on visuo-spatial memory was corroborated, and covaried inversely with verbal fluency.
Ranzini, Mariagrazia; Carbè, Katia; Gevers, Wim
2017-05-01
Number interval bisection consists of estimating the mid-number within a pair (1-9=>5). Healthy adults and right-brain damage patients can show biased performance in this task, underestimating and overestimating the mid-number, respectively. The role of visuospatial attention during this task, and its interplay with other cognitive abilities (e.g., working memory) is still object of debate. In this study we explored the relation between visuospatial attention and individual differences in working memory and executive functions during number interval bisection. To manipulate the deployment of visuospatial attention, healthy participants tracked a dot moving to the left or moving to the right while bisecting numerical intervals. We also collected information concerning verbal and visuospatial short-term memory span, and concerning verbal and visuospatial fluency scores. Beside replicating what is typically observed in this task (e.g., underestimation bias), a correlation was observed between verbal short-term memory and bisection bias, and an interesting relation between performance in the number interval bisection, verbal short-term memory, and visuospatial attention. Specifically, performance of those participants with low verbal span was affected by the direction of the moving dot, underestimating at a larger extent when the dot moved leftward than rightward. Finally, it was also observed that participants' verbal fluency ability contributed in the generation of biases in the numerical task. The finding of the involvement of abilities belonging to the verbal domain contributes to unveil the multi-componential nature of number interval bisection. Considering the debate on the nature of number interval bisection and its use in the clinical assessment of deficits following brain damage, this finding may be interesting also from a clinical perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.
Movement Interferes with Visuospatial Working Memory during the Encoding: An ERP Study
Gunduz Can, Rumeysa; Schack, Thomas; Koester, Dirk
2017-01-01
The present study focuses on the functional interactions of cognition and manual action control. Particularly, we investigated the neurophysiological correlates of the dual-task costs of a manual-motor task (requiring grasping an object, holding it, and subsequently placing it on a target) for working memory (WM) domains (verbal and visuospatial) and processes (encoding and retrieval). Thirty participants were tested in a cognitive-motor dual-task paradigm, in which a single block (a verbal or visuospatial WM task) was compared with a dual block (concurrent performance of a WM task and a motor task). Event-related potentials (ERPs) were analyzed separately for the encoding and retrieval processes of verbal and visuospatial WM domains both in single and dual blocks. The behavioral analyses show that the motor task interfered with WM and decreased the memory performance. The performance decrease was larger for the visuospatial task compared with the verbal task, i.e., domain-specific memory costs were obtained. The ERP analyses show the domain-specific interference also at the neurophysiological level, which is further process-specific to encoding. That is, comparing the patterns of WM-related ERPs in the single block and dual block, we showed that visuospatial ERPs changed only for the encoding process when a motor task was performed at the same time. Generally, the present study provides evidence for domain- and process-specific interactions of a prepared manual-motor movement with WM (visuospatial domain during the encoding process). This study, therefore, provides an initial neurophysiological characterization of functional interactions of WM and manual actions in a cognitive-motor dual-task setting, and contributes to a better understanding of the neuro-cognitive mechanisms of motor action control. PMID:28611714
Peña, Javier; Segarra, Rafael; Ojeda, Natalia; García, Jon; Eguiluz, José I; Gutiérrez, Miguel
2012-06-01
The aim of this two-year longitudinal study was to identify the best baseline predictors of functional outcome in first-episode psychosis (FEP). We tested whether the same factors predict functional outcomes in two different subsamples of FEP patients: schizophrenia and non-schizophrenia syndrome groups. Ninety-five patients with FEP underwent a full clinical evaluation (i.e., PANSS, Mania, Depression and Insight). Functional outcome measurements included the WHO Disability Assessment Schedule (DAS-WHO), Global Assessment of Functioning (GAF) and Clinical Global Impression (CGI). Estimation of cognition was obtained by a neuropsychological battery which included attention, processing speed, language, memory and executive functioning. Greater severity of visuospatial functioning at baseline predicted poorer functional outcome as measured by the three functional scales (GAF, CGI and DAS-WHO) in the pooled FEP sample (explaining ut to the 12%, 9% and 10% of the variance, respectively). Negative symptoms also effectively contributed to predict GAF scores (8%). However, we obtained different predictive values after differentiating sample diagnoses. Processing speed significantly predicted most functional outcome measures in patients with schizophrenia, whereas visuospatial functioning was the only significant predictor of functional outcomes in the non-schizophrenia subgroup. Our results suggest that processing speed, visuospatial functioning and negative symptoms significantly (but differentially) predict outcomes in patients with FEP, depending on their clinical progression. For patients without a schizophrenia diagnosis, visuospatial functioning was the best predictor of functional outcome. The performance on processing speed seemed to be a key factor in more severe syndromes. However, only a small proportion of the variance could be explained by the model, so there must be many other factors that have to be considered. Copyright © 2012 Elsevier Ltd. All rights reserved.
Qiao, Jun; Jin, Guixing; Lei, Licun; Wang, Lan; Du, Yaqiang; Wang, Xueyi
2016-01-01
To explore the effect of right dorsolateral prefrontal cortex (DLPFC) repetitive transcranial magnetic stimulation (rTMS) on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy ( 1 H-MRS) in recently detoxified alcohol-dependent patients. In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions) and the control group (sham stimulation). Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) before and after treatment. 1 H-MRS was used to detect the levels of N -acetyl aspartic acid (NAA), choline (Cho), and creatine (Cr) in bilateral hippocampi before and after treatment. Thirty-eight patients (18 in the experimental group and 20 in the control group) were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1 H-MRS in recently detoxified alcohol-dependent patients.
Kuwajima, Mariko; Sawaguchi, Toshiyuki
2010-10-01
General fluid intelligence (gF) is a major component of intellect in both adults and children. Whereas its neural substrates have been studied relatively thoroughly in adults, those are poorly understood in children, particularly preschoolers. Here, we hypothesized that gF and visuospatial working memory share a common neural system within the lateral prefrontal cortex (LPFC) during the preschool years (4-6 years). At the behavioral level, we found that gF positively and significantly correlated with abilities (especially accuracy) in visuospatial working memory. Optical topography revealed that the LPFC of preschoolers was activated and deactivated during the visuospatial working memory task and the gF task. We found that the spatio-temporal features of neural activity in the LPFC were similar for both the visuospatial working memory task and the gF task. Further, 2 months of training for the visuospatial working memory task significantly increased gF in the preschoolers. These findings suggest that a common neural system in the LPFC is recruited to improve the visuospatial working memory and gF in preschoolers. Efficient recruitment of this neural system may be important for good performance in these functions in preschoolers, and behavioral training using this system would help to increase gF at these ages.
Set shifting and visuospatial organization deficits in body dysmorphic disorder.
Greenberg, Jennifer L; Weingarden, Hilary; Reuman, Lillian; Abrams, Dylan; Mothi, Suraj S; Wilhelm, Sabine
2017-11-24
Individuals with body dysmorphic disorder (BDD) over-attend to perceived defect(s) in their physical appearance, often becoming "stuck" obsessing about perceived flaws and engaging in rituals to hide flaws. These symptoms suggest that individuals with BDD may experience deficits in underlying neurocognitive functions, such as set-shifting and visuospatial organization. These deficits have been implicated as risk and maintenance factors in disorders with similarities to BDD but have been minimally investigated in BDD. The present study examined differences in neurocognitive functions among BDD participants (n = 20) compared to healthy controls (HCs; n = 20). Participants completed neuropsychological assessments measuring set-shifting (Cambridge Neuropsychological Test Automated Battery Intra-Extra Dimensional Set Shift [IED] task) and visuospatial organization and memory (Rey-Osterrieth Complex Figure Test [ROCF]). Results revealed a set-shifting deficit among BDD participants compared to HCs on the IED. On the ROCF, BDD participants exhibited deficits in visuospatial organization compared to HCs, but they did not differ in visuospatial memory compared to HCs. Results did not change when accounting for depression severity. Findings highlight neurocognitive deficits as potential endophenotype markers of clinical features (i.e., delusionality). Understanding neuropsychological deficits may clarify similarities and differences between BDD and related disorders and may guide targets for BDD treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Sex Differences in Cerebral Laterality of Language and Visuospatial Processing
ERIC Educational Resources Information Center
Clements, A. M.; Rimrodt, S. L.; Abel, J. R.; Blankner, J. G.; Mostofsky, S. H.; Pekar, J. J.; Denckla, M. B.; Cutting, L. E.
2006-01-01
Sex differences on language and visuospatial tasks are of great interest, with differences in hemispheric laterality hypothesized to exist between males and females. Some functional imaging studies examining sex differences have shown that males are more left lateralized on language tasks and females are more right lateralized on visuospatial…
Extrapyramidal Signs and Cognitive Subdomains in Alzheimer Disease.
Park, Jin Hong; Myung, Woojae; Choi, Junbae; Kim, Sangha; Chung, Jae Won; Kang, Hyo Shin; Na, Duk L; Kim, Seong Yoon; Lee, Jae-Hong; Han, Seol-Heui; Choi, Seong Hye; Kim, Sang Yun; Kim, Doh Kwan
2016-07-01
Extrapyramidal signs (EPS), commonly observed in Alzheimer disease (AD), predict cognitive impairment and functional decline. This study investigated the association between EPS and five cognitive subdomains in a large number of participants with AD. Cross-sectional analyses of the nationwide Clinical Research of Dementia of South Korea (CREDOS) study, 2005-2012. Multicenter clinical settings. 1,737 participants with AD drawn from the CREDOS study. The EPS group was defined by the presence of at least one EPS based on neurologic examination. We assessed five cognitive subdomains: attention, language, visuospatial function, memory, and frontal/executive function using the Seoul Neuropsychological Screening Battery-Dementia version. The associations of EPS with each cognitive subdomain were analyzed with a multiple linear regression model after controlling for confounding factors: sex, age, years of education, severity of dementia (Clinical Dementia Rating Sum of Boxes), and white matter hyperintensities. 164 AD participants (9.4%) had EPS. AD participants with EPS showed lower performance compared with those without EPS in two cognitive subdomains: attention and visuospatial function. The language, memory, and frontal/executive subdomains did not differ between the EPS-positive and the EPS-negative groups. In addition, we found a significant moderating relationship between EPS and deep white matter hyperintensities on visuospatial function score. EPS in AD are associated with severe cognitive impairment in attention and visuospatial function. Careful screening for EPS in patients with AD may assist in prediction of cognitive profile. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.
Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W
2017-10-01
The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Visuospatial perception in children born preterm with no major neurological disorders.
Butcher, Phillipa R; Bouma, Anke; Stremmelaar, Elisabeth F; Bos, Arend F; Smithson, Michael; Van Braeckel, Koenraad N J A
2012-11-01
Many investigations have found deficits in visuospatial perception in children born preterm, however, it is not clear whether the deficits are specific to visuospatial perception or the consequences of deficits in other functional areas, which often accompany preterm birth. This study investigated whether children born preterm show a specific deficit in visuospatial perception. Fifty-six 7- to 11-year-old preterm born children (gestational age <34 weeks) without cerebral palsy and 51 age-matched, full-term children completed four computerized tasks tapping different levels and types of visuospatial perception. Accuracy and speed of responses were recorded. Task formats were designed to reduce demands on attentional deployment. Measures of intelligence and parental education were included in the analysis. Children born preterm performed less accurately and/or less rapidly on all tasks. Their poorer performance did not reflect differences in speed-accuracy trade-off. Parental education and IQ, both significantly lower in the preterm children, contributed positively to performance on all tasks. IQ mediated the association between preterm birth and visuospatial performance on the most cognitively demanding task. Children born preterm performed more poorly than full-term controls on four visuospatial perceptual tasks. Although intelligence and parental education were also associated with performance, preterm birth contributed independently of these factors on three of four tasks. Many children born preterm are thus multiply disadvantaged on visuospatial tasks: the lower IQ scores and parental educational levels frequently found in this group increase the deficit associated with preterm birth. (c) 2012 APA, all rights reserved.
Chao, Linda L
2016-10-01
The aim of this study was to examine the relationship between the self-reported frequencies of hearing chemical alarms during deployment and visuospatial function in Gulf War (GW) veterans. The relationship between the self-reported frequency of hearing chemical alarms, neurobehavioral, and volumetric brain imaging data was examined with correlational, regression, and mediation analyses. The self-reported frequency of hearing chemical alarms was inversely associated with and significantly predicted performance on a visuospatial task (ie, Block Design) over and above potentially confounding variables, including concurrent, correlated GW-related exposures. This effect was partially mediated by the relationship between hearing chemical alarms and lateral occipital cortex volume. Exposure to substances that triggered chemical alarms during GW deployment likely had adverse effects on veterans' brain structure and function, warranting further investigation of whether these GW veterans are at an increased risk for dementia.
Lindner, Michael; Bell, Tiffany; Iqbal, Somya; Mullins, Paul Gerald
2017-01-01
Cortical acetylcholine is involved in key cognitive processes such as visuospatial attention. Dysfunction in the cholinergic system has been described in a number of neuropsychiatric disorders. Levels of brain acetylcholine can be pharmacologically manipulated, but it is not possible to directly measure it in vivo in humans. However, key parts of its biochemical cascade in neural tissue, such as choline, can be measured using magnetic resonance spectroscopy (MRS). There is evidence that levels of choline may be an indirect but proportional measure of acetylcholine availability in brain tissue. In this study, we measured relative choline levels in the parietal cortex using functional (event-related) MRS (fMRS) during performance of a visuospatial attention task, with a modelling approach verified using simulated data. We describe a task-driven interaction effect on choline concentration, specifically driven by contralateral attention shifts. Our results suggest that choline MRS has the potential to serve as a proxy of brain acetylcholine function in humans. PMID:28192451
Effects of marijuana on visuospatial working memory: an fMRI study in young adults.
Smith, Andra M; Longo, Carmelinda A; Fried, Peter A; Hogan, Matthew J; Cameron, Ian
2010-06-01
The effects of marijuana use on visuospatial working memory were investigated in 19-21-year-olds using functional magnetic resonance imaging (fMRI). Participants were members of the Ottawa Prenatal Prospective Study, a longitudinal study that collected a unique body of information on participants from infancy to young adulthood including: prenatal drug history, detailed cognitive/behavioral performance, and current and past drug usage. This information allowed for the measurement of an unprecedented number of potentially confounding drug exposure variables including: prenatal marijuana, nicotine, alcohol, and caffeine exposure and offspring alcohol, marijuana, and nicotine use. Ten marijuana users and 14 nonusing controls performed a visuospatial 2-back task while fMRI blood oxygen level-dependent response was examined. Despite similar task performance, marijuana users had significantly greater activation in the inferior and middle frontal gyri, regions of the brain normally associated with visuospatial working memory. Marijuana users also had greater activation in the right superior temporal gyrus, a region of the brain not typically associated with visuospatial working memory tasks. These results suggest that marijuana use leads to altered neural functioning during visuospatial working memory after controlling for other prenatal and current drug use. This alteration appears to be compensated for by the recruitment of blood flow in additional brain regions. It is possible that this compensation may not be sufficient in more real-life situations where this type of processing is required and thus deficits may be observed. Awareness of these neural physiological effects of marijuana in youth is critical.
Does visuo-spatial working memory generally contribute to immediate serial letter recall?
Fürstenberg, A; Rummer, R; Schweppe, J
2013-01-01
This work contributes to the understanding of the visual similarity effect in verbal working memory, a finding that suggests that the visuo-spatial sketch pad-the system in Baddeley's working memory model specialised in retaining nonverbal visual information-might be involved in the retention of visually presented verbal materials. Crucially this effect is implicitly interpreted by the most influential theory of multimedia learning as evidence for an obligatory involvement of the visuo-spatial sketch pad. We claim that it is only involved when the functioning of the working memory component normally used for processing verbal material is impaired. In this article we review the studies that give rise to the idea of obligatory involvement of the visuo-spatial sketch pad and suggest that some findings can be understood with reference to orthographic rather than visual similarity. We then test an alternative explanation of the finding that is most apt to serve as evidence for obligatory involvement of the visuo-spatial sketch pad. We conclude that, in healthy adults and under normal learning conditions, the visual similarity effect can be explained within the framework of verbal working memory proposed by Baddeley (e.g., 1986, 2000) without additional premises regarding the visuo-spatial sketch.
Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment☆
Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence
2013-01-01
Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9–10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. PMID:23890692
Vision, visuo-cognition and postural control in Parkinson's disease: An associative pilot study.
Hill, E; Stuart, S; Lord, S; Del Din, S; Rochester, L
2016-07-01
Impaired postural control (PC) is common in patients with Parkinson's disease (PD) and is a major contributor to falls, with significant consequences. Mechanisms underpinning PC are complex and include motor and non-motor features. Research has focused predominantly on motor and sensory inputs. Vision and visuo-cognitive function are also integral to PC but have largely been ignored to date. The aim of this observational cross-sectional pilot study was to explore the relationship of vision and visuo-cognition with PC in PD. Twelve people with PD and ten age-matched healthy controls (HC) underwent detailed assessments for vision, visuo-cognition and postural control. Vision assessments included visual acuity and contrast sensitivity. Visuo-cognition was measured by visuo-perception (object identification), visuo-construction (ability to copy a figure) and visuo-spatial ability (judge distances and location of object within environment). PC was measured by an accelerometer for a range of outcomes during a 2-min static stance. Spearman's correlations identified significant associations. Contrast sensitivity, visuo-spatial ability and postural control (ellipsis) were significantly impaired in PD (p=0.017; p=0.001; and p=0.017, respectively). For PD only, significant correlations were found for higher visuo-spatial function and larger ellipsis (r=0.64; p=0.024) and impaired attention and reduced visuo-spatial function (r=-0.62; p=0.028). Visuo-spatial ability is associated with PC deficit in PD, but in an unexpected direction. This suggests a non-linear pattern of response. Further research is required to examine this novel and important finding. Copyright © 2016 Elsevier B.V. All rights reserved.
White Matter Integrity and Pictorial Reasoning in High-Functioning Children with Autism
Sahyoun, Chérif P.; Belliveau, John W.; Mody, Maria
2010-01-01
The current study investigated the neurobiological role of white matter in visuospatial versus linguistic processing abilities in autism using diffusion tensor imaging. We examined differences in white matter integrity between high-functioning children with autism (HFA) and typically developing controls (CTRL), in relation to the groups’ response times (RT) on a pictorial reasoning task under three conditions: visuospatial, V, semantic, S, and V+S, a hybrid condition allowing language use to facilitate visuospatial transformations. Diffusion-weighted images were collected from HFA and CTRL participants, matched on age and IQ, and significance maps were computed for group differences in fractional anisotropy (FA) and in RT-FA association for each condition. Typically developing children showed increased FA within frontal white matter and the superior longitudinal fasciculus (SLF). HFA showed increased FA within peripheral white matter, including the ventral temporal lobe. Additionally, RT-FA relationships in the semantic condition (S) implicated white matter near the STG and in the SLF within the temporal and frontal lobes to a greater extent in CTRL. Performance in visuospatial reasoning (V, V+S), in comparison, was related to peripheral parietal and superior precentral white matter in HFA, but to the SLF, callosal, and frontal white matter in CTRL. Our results appear to support a preferential use of linguistically-mediated pathways in reasoning by typically-developing children, whereas autistic cognition may rely more on visuospatial processing networks. PMID:20542370
Aggleton, John P; Poirier, Guillaume L; Aggleton, Hugh S; Vann, Seralynne D; Pearce, John M
2009-06-01
The present study used 2 different discrimination tasks designed to isolate distinct components of visuospatial learning: structural learning and geometric learning. Structural learning refers to the ability to learn the precise combination of stimulus identity with stimulus location. Rats with anterior thalamic lesions and fornix lesions were unimpaired on a configural learning task in which the rats learned 3 concurrent mirror-image discriminations (structural learning). Indeed, both lesions led to facilitated learning. In contrast, anterior thalamic lesions impaired the geometric discrimination (e.g., swim to the corner with the short wall to the right of the long wall). Finally, both the fornix and anterior thalamic lesions severely impaired T-maze alternation, a task that taxes an array of spatial strategies including allocentric learning. This pattern of dissociations and double dissociations highlights how distinct classes of spatial learning rely on different systems, even though they may converge on the hippocampus. Consequently, the findings suggest that structural learning is heavily dependent on cortico-hippocampal interactions. In contrast, subcortical inputs (such as those from the anterior thalamus) contribute to geometric learning. Copyright (c) 2009 APA, all rights reserved.
Persistency and flexibility of complex brain networks underlie dual-task interference.
Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten
2015-09-01
Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley Periodicals, Inc.
The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.
Gould, E; Woolley, C S; McEwen, B S
1991-01-01
The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.
Bigelow, Robin T; Agrawal, Yuri
2015-01-01
A growing body of literature suggests the inner ear vestibular system has a substantial impact on cognitive function. The strongest evidence exists in connecting vestibular function to the cognitive domain of visuospatial ability, which includes spatial memory, navigation, mental rotation, and mental representation of three-dimensional space. Substantial evidence also exists suggesting the vestibular system has an impact on attention and cognitive processing ability. The cognitive domains of memory and executive function are also implicated in a number of studies. We will review the current literature, discuss possible causal links between vestibular dysfunction and cognitive performance, and suggest areas of future research.
Foti, Francesca; Sdoia, Stefano; Menghini, Deny; Mandolesi, Laura; Vicari, Stefano; Ferlazzo, Fabio; Petrosini, Laura
2015-01-01
Williams syndrome (WS) is associated with a distinct profile of relatively proficient skills within the verbal domain compared to the severe impairment of visuo-spatial processing. Abnormalities in executive functions and deficits in planning ability and spatial working memory have been described. However, to date little is known about the influence of executive function deficits on navigational abilities in WS. This study aimed at analyzing in WS individuals a specific executive function, the backward inhibition (BI) that allows individuals to flexibly adapt to continuously changing environments. A group of WS individuals and a mental age- and gender-matched group of typically developing children were subjected to three task-switching experiments requiring visuospatial or verbal material to be processed. Results showed that WS individuals exhibited clear BI deficits during visuospatial task-switching paradigms and normal BI effect during verbal task-switching paradigm. Overall, the present results suggest that the BI involvement in updating environment representations during navigation may influence WS navigational abilities. PMID:25852605
Hippocampal-targeted Theta-burst Stimulation Enhances Associative Memory Formation.
Tambini, Arielle; Nee, Derek Evan; D'Esposito, Mark
2018-06-19
The hippocampus plays a critical role in episodic memory, among other cognitive functions. However, few tools exist to causally manipulate hippocampal function in healthy human participants. Recent work has targeted hippocampal-cortical networks by performing TMS to a region interconnected with the hippocampus, posterior inferior parietal cortex (pIPC). Such hippocampal-targeted TMS enhances associative memory and influences hippocampal functional connectivity. However, it is currently unknown which stages of mnemonic processing (encoding or retrieval) are affected by hippocampal-targeted TMS. Here, we examined whether hippocampal-targeted TMS influences the initial encoding of associations (vs. items) into memory. To selectively influence encoding and not retrieval, we performed continuous theta-burst TMS before participants encoded object-location associations and assessed memory after the direct effect of stimulation dissipated. Relative to control TMS and baseline memory, pIPC TMS enhanced associative memory success and confidence. Item memory was unaffected, demonstrating a selective influence on associative versus item memory. The strength of hippocampal-pIPC functional connectivity predicted TMS-related memory benefits, which was mediated by parahippocampal and retrosplenial cortices. Our findings indicate that hippocampal-targeted TMS can specifically modulate the encoding of new associations into memory without directly influencing retrieval processes and suggest that the ability to influence associative memory may be related to the fidelity of hippocampal TMS targeting. Our results support the notion that pIPC TMS may serve as a potential tool for manipulating hippocampal function in healthy participants. Nonetheless, future work combining hippocampal-targeted continuous theta-burst TMS with neuroimaging is needed to better understand the neural basis of TMS-induced memory changes.
Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment.
Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence
2013-01-01
Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9-10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Whitelock, Claire F; Agyepong, Heather NAO; Patterson, Karalyn; Ersche, Karen D
2015-01-01
Almost one-third of the participants in a neuropsychological study signed the consent form below the given line. The relationship between a signature position on or below the line and participants’ cognitive function was investigated. Fifty drug-dependent individuals, 50 of their siblings, and 50 unrelated control participants completed a battery of neuropsychological tests using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Individuals signing below, rather than on, the line performed more poorly on tests of visuospatial memory, but no differently on other cognitive tests. Signature positioning may be a soft sign for impairment of the mechanisms involved in visuospatial memory. PMID:24313358
The Effect of 30% Oxygen on Visuospatial Performance and Brain Activation: An Fmri Study
ERIC Educational Resources Information Center
Chung, S.C.; Tack, G.R.; Lee, B.; Eom, G.M.; Lee, S.Y.; Sohn, J.H.
2004-01-01
This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. A visuospatial task was presented while brain images were scanned by a 3 T fMRI system. The results showed that there was an improvement in…
Oudman, Erik; Postma, Albert; Nijboer, Tanja C W; Wijnia, Jan W; Van der Stigchel, Stefan
2017-03-20
Korsakoff's syndrome (KS) is a neuropsychiatric disorder characterised by severe amnesia. Although the presence of impairments in memory has long been acknowledged, there is a lack of knowledge about the precise characteristics of declarative memory capacities in order to implement memory rehabilitation. In this study, we investigated the extent to which patients diagnosed with KS have preserved declarative memory capacities in working memory, long-term memory encoding or long-term memory recall operations, and whether these capacities are most preserved for verbal or visuospatial content. The results of this study demonstrate that patients with KS have compromised declarative memory functioning on all memory indices. Performance was lowest for the encoding operation compared to the working memory and delayed recall operation. With respect to the content, visuospatial memory was relatively better preserved than verbal memory. All memory operations functioned suboptimally, although the most pronounced disturbance was found in verbal memory encoding. Based on the preserved declarative memory capacities in patients, visuospatial memory can form a more promising target for compensatory memory rehabilitation than verbal memory. It is therefore relevant to increase the number of spatial cues in memory rehabilitation for KS patients.
Late-Onset Alzheimer's Disease Polygenic Risk Profile Score Predicts Hippocampal Function.
Xiao, Ena; Chen, Qiang; Goldman, Aaron L; Tan, Hao Yang; Healy, Kaitlin; Zoltick, Brad; Das, Saumitra; Kolachana, Bhaskar; Callicott, Joseph H; Dickinson, Dwight; Berman, Karen F; Weinberger, Daniel R; Mattay, Venkata S
2017-11-01
We explored the cumulative effect of several late-onset Alzheimer's disease (LOAD) risk loci using a polygenic risk profile score (RPS) approach on measures of hippocampal function, cognition, and brain morphometry. In a sample of 231 healthy control subjects (19-55 years of age), we used an RPS to study the effect of several LOAD risk loci reported in a recent meta-analysis on hippocampal function (determined by its engagement with blood oxygen level-dependent functional magnetic resonance imaging during episodic memory) and several cognitive metrics. We also studied effects on brain morphometry in an overlapping sample of 280 subjects. There was almost no significant association of LOAD-RPS with cognitive or morphometric measures. However, there was a significant negative relationship between LOAD-RPS and hippocampal function (familywise error [small volume correction-hippocampal region of interest] p < .05). There were also similar associations for risk score based on APOE haplotype, and for a combined LOAD-RPS + APOE haplotype risk profile score (p < .05 familywise error [small volume correction-hippocampal region of interest]). Of the 29 individual single nucleotide polymorphisms used in calculating LOAD-RPS, variants in CLU, PICALM, BCL3, PVRL2, and RELB showed strong effects (p < .05 familywise error [small volume correction-hippocampal region of interest]) on hippocampal function, though none survived further correction for the number of single nucleotide polymorphisms tested. There is a cumulative deleterious effect of LOAD risk genes on hippocampal function even in healthy volunteers. The effect of LOAD-RPS on hippocampal function in the relative absence of any effect on cognitive and morphometric measures is consistent with the reported temporal characteristics of LOAD biomarkers with the earlier manifestation of synaptic dysfunction before morphometric and cognitive changes. Copyright © 2017 Society of Biological Psychiatry. All rights reserved.
Memory in multiple sclerosis is linked to glutamate concentration in grey matter regions
Muhlert, Nils; Atzori, Matteo; De Vita, Enrico; Thomas, David L; Samson, Rebecca S; Wheeler-Kingshott, Claudia A M; Geurts, Jeroen J G; Miller, David H; Thompson, Alan J; Ciccarelli, Olga
2014-01-01
Objective Glutamate is the principal excitatory neurotransmitter and is involved in normal brain function. Cognitive impairment is common in multiple sclerosis (MS), and understanding its mechanisms is crucial for developing effective treatments. We used structural and metabolic brain imaging to test two hypotheses: (i) glutamate levels in grey matter regions are abnormal in MS, and (ii) patients show a relationship between glutamate concentration and memory performance. Methods Eighteen patients with relapsing-remitting MS and 17 healthy controls were cognitively assessed and underwent 1H-magnetic resonance spectroscopy at 3 T to assess glutamate levels in the hippocampus, thalamus, cingulate and parietal cortices. Regression models investigated the association between glutamate concentration and memory performance independently of magnetisation transfer ratio values and grey matter lesions withint he same regions, and whole-brain grey matter volume. Results Patients had worse visual and verbal memory than controls. A positive relationship between glutamate levels in the hippocampal, thalamic and cingulate regions and visuospatial memory was detected in patients, but not in healthy controls. Conclusions The relationship between memory and glutamate concentration, which is unique to MS patients, suggests the reliance of memory on glutamatergic systems in MS. PMID:24431465
Inducing amnesia through systemic suppression
Hulbert, Justin C.; Henson, Richard N.; Anderson, Michael C.
2016-01-01
Hippocampal damage profoundly disrupts the ability to store new memories of life events. Amnesic windows might also occur in healthy people due to disturbed hippocampal function arising during mental processes that systemically reduce hippocampal activity. Intentionally suppressing memory retrieval (retrieval stopping) reduces hippocampal activity via control mechanisms mediated by the lateral prefrontal cortex. Here we show that when people suppress retrieval given a reminder of an unwanted memory, they are considerably more likely to forget unrelated experiences from periods surrounding suppression. This amnesic shadow follows a dose-response function, becomes more pronounced after practice suppressing retrieval, exhibits characteristics indicating disturbed hippocampal function, and is predicted by reduced hippocampal activity. These findings indicate that stopping retrieval engages a suppression mechanism that broadly compromises hippocampal processes and that hippocampal stabilization processes can be interrupted strategically. Cognitively triggered amnesia constitutes an unrecognized forgetting process that may account for otherwise unexplained memory lapses following trauma. PMID:26977589
Cognitive Control Network Contributions to Memory-Guided Visual Attention
Rosen, Maya L.; Stern, Chantal E.; Michalka, Samantha W.; Devaney, Kathryn J.; Somers, David C.
2016-01-01
Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network (CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. PMID:25750253
Hippocampal Network Modularity Is Associated With Relational Memory Dysfunction in Schizophrenia.
Avery, Suzanne N; Rogers, Baxter P; Heckers, Stephan
2018-05-01
Functional dysconnectivity has been proposed as a major pathophysiological mechanism for cognitive dysfunction in schizophrenia. The hippocampus is a focal point of dysconnectivity in schizophrenia, with decreased hippocampal functional connectivity contributing to the marked memory deficits observed in patients. Normal memory function relies on the interaction of complex corticohippocampal networks. However, only recent technological advances have enabled the large-scale exploration of functional networks with accuracy and precision. We investigated the modularity of hippocampal resting-state functional networks in a sample of 45 patients with schizophrenia spectrum disorders and 38 healthy control subjects. Modularity was calculated for two distinct functional networks: a core hippocampal-medial temporal lobe cortex network and an extended hippocampal-cortical network. As hippocampal function differs along its longitudinal axis, follow-up analyses examined anterior and posterior networks separately. To explore effects of resting network function on behavior, we tested associations between modularity and relational memory ability. Age, sex, handedness, and parental education were similar between groups. Network modularity was lower in schizophrenia patients, especially in the posterior hippocampal network. Schizophrenia patients also showed markedly lower relational memory ability compared with control subjects. We found a distinct brain-behavior relationship in schizophrenia that differed from control subjects by network and anterior/posterior division-while relational memory in control subjects was associated with anterior hippocampal-cortical modularity, schizophrenia patients showed an association with posterior hippocampal-medial temporal lobe cortex network modularity. Our findings support a model of abnormal resting-state corticohippocampal network coherence in schizophrenia, which may contribute to relational memory deficits. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Tuscher, Jennifer J.; Szinte, Julia S.; Starrett, Joseph R.; Krentzel, Amanda A.; Fortress, Ashley M.; Remage-Healey, Luke; Frick, Karyn M.
2016-01-01
The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in dorsal hippocampus observed 30 min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. PMID:27178577
Possin, Katherine L; Kim, Hosung; Geschwind, Michael D; Moskowitz, Tacie; Johnson, Erica T; Sha, Sharon J; Apple, Alexandra; Xu, Duan; Miller, Bruce L; Finkbeiner, Steven; Hess, Christopher P; Kramer, Joel H
2017-07-01
Our brains represent spatial information in egocentric (self-based) or allocentric (landmark-based) coordinates. Rodent studies have demonstrated a critical role for the caudate in egocentric navigation and the hippocampus in allocentric navigation. We administered tests of egocentric and allocentric working memory to individuals with premotor Huntington's disease (pmHD), which is associated with early caudate nucleus atrophy, and controls. Each test had 80 trials during which subjects were asked to remember 2 locations over 1-sec delays. The only difference between these otherwise identical tests was that locations could only be coded in self-based or landmark-based coordinates. We applied a multiatlas-based segmentation algorithm and computed point-wise Jacobian determinants to measure regional variations in caudate and hippocampal volumes from 3T MRI. As predicted, the pmHD patients were significantly more impaired on egocentric working memory. Only egocentric accuracy correlated with caudate volumes, specifically the dorsolateral caudate head, right more than left, a region that receives dense efferents from dorsolateral prefrontal cortex. In contrast, only allocentric accuracy correlated with hippocampal volumes, specifically intermediate and posterior regions that connect strongly with parahippocampal and posterior parietal cortices. These results indicate that the distinction between egocentric and allocentric navigation applies to working memory. The dorsolateral caudate is important for egocentric working memory, which can explain the disproportionate impairment in pmHD. Allocentric working memory, in contrast, relies on the hippocampus and is relatively spared in pmHD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fissler, Patrick; Küster, Olivia C; Loy, Laura S; Laptinskaya, Daria; Rosenfelder, Martin J; von Arnim, Christine A F; Kolassa, Iris-Tatjana
2017-09-06
Neurocognitive disorders are an important societal challenge and the need for early prevention is increasingly recognized. Meta-analyses show beneficial effects of cognitive activities on cognition. However, high financial costs, low intrinsic motivation, logistic challenges of group-based activities, or the need to operate digital devices prevent their widespread application in clinical practice. Solving jigsaw puzzles is a cognitive activity without these hindering characteristics, but cognitive effects have not been investigated yet. With this study, we aim to evaluate the effect of solving jigsaw puzzles on visuospatial cognition, daily functioning, and psychological outcomes. The pre-posttest, assessor-blinded study will include 100 cognitively healthy adults 50 years of age or older, who will be randomly assigned to a jigsaw puzzle group or a cognitive health counseling group. Within the 5-week intervention period, participants in the jigsaw puzzle group will engage in 30 days of solving jigsaw puzzles for at least 1 h per day and additionally receive cognitive health counseling. The cognitive health counseling group will receive the same counseling intervention but no jigsaw puzzles. The primary outcome, global visuospatial cognition, will depict the average of the z-standardized performance scores in visuospatial tests of perception, constructional praxis, mental rotation, processing speed, flexibility, working memory, reasoning, and episodic memory. As secondary outcomes, we will assess the eight cognitive abilities, objective and subjective visuospatial daily functioning, psychological well-being, general self-efficacy, and perceived stress. The primary data analysis will be based on mixed-effects models in an intention-to-treat approach. Solving jigsaw puzzles is a low-cost, intrinsically motivating, cognitive leisure activity, which can be executed alone or with others and without the need to operate a digital device. In the case of positive results, these characteristics allow an easy implementation of solving jigsaw puzzles in clinical practice as a way to improve visuospatial functioning. Whether cognitive impairment and loss of independence in everyday functioning might be prevented or delayed in the long run has to be examined in future studies. ClinicalTrials.gov, NCT02667314 . Registered on 27 January 2016.
Interference effects between memory systems in the acquisition of a skill.
Gagné, Marie-Hélène; Cohen, Henri
2016-10-01
There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.
Witmer, Joëlle S; Aeschlimann, Eva A; Metz, Andreas J; Troche, Stefan J; Rammsayer, Thomas H
2018-04-05
Functional near infrared spectroscopy (fNIRS) is increasingly used for investigating cognitive processes. To provide converging evidence for the validity of fNIRS recordings in cognitive neuroscience, we investigated functional activation in the frontal cortex in 43 participants during the processing of a visuospatial working memory (WM) task and a sensory duration discrimination (DD) task functionally unrelated to WM. To distinguish WM-related processes from a general effect of increased task demand, we applied an adaptive approach, which ensured that subjective task demand was virtually identical for all individuals and across both tasks. Our specified region of interest covered Brodmann Area 8 of the left hemisphere, known for its important role in the execution of WM processes. Functional activation, as indicated by an increase of oxygenated and a decrease of deoxygenated hemoglobin, was shown for the WM task, but not in the DD task. The overall pattern of results indicated that hemodynamic responses recorded by fNIRS are sensitive to specific visuospatial WM capacity-related processes and do not reflect a general effect of increased task demand. In addition, the finding that no such functional activation could be shown for participants with far above-average mental ability suggested different cognitive processes adopted by this latter group.
Witmer, Joëlle S.; Aeschlimann, Eva A.; Metz, Andreas J.; Rammsayer, Thomas H.
2018-01-01
Functional near infrared spectroscopy (fNIRS) is increasingly used for investigating cognitive processes. To provide converging evidence for the validity of fNIRS recordings in cognitive neuroscience, we investigated functional activation in the frontal cortex in 43 participants during the processing of a visuospatial working memory (WM) task and a sensory duration discrimination (DD) task functionally unrelated to WM. To distinguish WM-related processes from a general effect of increased task demand, we applied an adaptive approach, which ensured that subjective task demand was virtually identical for all individuals and across both tasks. Our specified region of interest covered Brodmann Area 8 of the left hemisphere, known for its important role in the execution of WM processes. Functional activation, as indicated by an increase of oxygenated and a decrease of deoxygenated hemoglobin, was shown for the WM task, but not in the DD task. The overall pattern of results indicated that hemodynamic responses recorded by fNIRS are sensitive to specific visuospatial WM capacity-related processes and do not reflect a general effect of increased task demand. In addition, the finding that no such functional activation could be shown for participants with far above-average mental ability suggested different cognitive processes adopted by this latter group. PMID:29621179
Papma, Janne M; Smits, Marion; de Groot, Marius; Mattace Raso, Francesco U; van der Lugt, Aad; Vrooman, Henri A; Niessen, Wiro J; Koudstaal, Peter J; van Swieten, John C; van der Veen, Frederik M; Prins, Niels D
2017-09-01
Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI.
Tuscher, Jennifer J; Szinte, Julia S; Starrett, Joseph R; Krentzel, Amanda A; Fortress, Ashley M; Remage-Healey, Luke; Frick, Karyn M
2016-07-01
The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. Copyright © 2016 Elsevier Inc. All rights reserved.
Hong, Jin Yong; Yun, Hyuk Jin; Sunwoo, Mun Kyung; Ham, Jee Hyun; Lee, Jong-Min; Sohn, Young H.; Lee, Phil Hyu
2015-01-01
Pure akinesia with gait freezing (PAGF) is considered a clinical phenotype of progressive supranuclear palsy. The brain atrophy and cognitive deficits in PAGF are expected to be less prominent than in classical Richardson's syndrome (RS), but this hypothesis has not been explored yet. We reviewed the medical records of 28 patients with probable RS, 19 with PAGF, and 29 healthy controls, and compared cortical thickness, subcortical gray matter volume, and neuropsychological performance among the three groups. Patients with PAGF had thinner cortices in frontal, inferior parietal, and temporal areas compared with controls; however, areas of cortical thinning in PAGF patients were less extensive than those in RS patients. In PAGF patients, hippocampal, and thalamic volumes were also smaller than controls, whereas subcortical gray matter volumes in PAGF and RS patients were comparable. In a comparison of neuropsychological tests, PAGF patients had better cognitive performance in executive function, visual memory, and visuospatial function than RS patients had. These results demonstrate that cognitive impairment, cortical thinning, and subcortical gray matter atrophy in PAGF patients resemble to those in RS patients, though the severity of cortical thinning and cognitive dysfunction is milder. Our results suggest that, PAGF and RS may share same pathology but that it appears to affect a smaller proportion of the cortex in PAGF. PMID:26483680
Ginsberg, Stephen D; Malek-Ahmadi, Michael H; Alldred, Melissa J; Che, Shaoli; Elarova, Irina; Chen, Yinghua; Jeanneteau, Freddy; Kranz, Thorsten M; Chao, Moses V; Counts, Scott E; Mufson, Elliott J
2017-09-09
Hippocampal CA1 pyramidal neurons, a major component of the medial temporal lobe memory circuit, are selectively vulnerable during the progression of Alzheimer's disease (AD). The cellular mechanism(s) underlying degeneration of these neurons and the relationship to cognitive performance remains largely undefined. Here, we profiled neurotrophin and neurotrophin receptor gene expression within microdissected CA1 neurons along with regional hippocampal dissections from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD using laser capture microdissection (LCM), custom-designed microarray analysis, and qPCR of CA1 subregional dissections. Gene expression levels were correlated with cognitive test scores and AD neuropathology criteria. We found a significant downregulation of several neurotrophin genes (e.g., Gdnf, Ngfb, and Ntf4) in CA1 pyramidal neurons in MCI compared to NCI and AD subjects. In addition, the neurotrophin receptor transcripts TrkB and TrkC were decreased in MCI and AD compared to NCI. Regional hippocampal dissections also revealed select neurotrophic gene dysfunction providing evidence for vulnerability within the hippocampus proper during the progression of dementia. Downregulation of several neurotrophins of the NGF family and cognate neurotrophin receptor (TrkA, TrkB, and TrkC) genes correlated with antemortem cognitive measures including the Mini-Mental State Exam (MMSE), a composite global cognitive score (GCS), and Episodic, Semantic, and Working Memory, Perceptual Speed, and Visuospatial domains. Significant correlations were found between select neurotrophic expression downregulation and neuritic plaques (NPs) and neurofibrillary tangles (NFTs), but not diffuse plaques (DPs). These data suggest that dysfunction of neurotrophin signaling complexes have profound negative sequelae within vulnerable hippocampal cell types, which play a role in mnemonic and executive dysfunction during the progression of AD. © 2017 Wiley Periodicals, Inc.
Mirror therapy for patients with severe arm paresis after stroke--a randomized controlled trial.
Thieme, Holm; Bayn, Maria; Wurg, Marco; Zange, Christian; Pohl, Marcus; Behrens, Johann
2013-04-01
To evaluate the effects of individual or group mirror therapy on sensorimotor function, activities of daily living, quality of life and visuospatial neglect in patients with a severe arm paresis after stroke. Randomized controlled trial. Inpatient rehabilitation centre. Sixty patients with a severe paresis of the arm within three months after stroke. Three groups: (1) individual mirror therapy, (2) group mirror therapy and (3) control intervention with restricted view on the affected arm. Motor function on impairment (Fugl-Meyer Test) and activity level (Action Research Arm Test), independence in activities of daily living (Barthel Index), quality of life (Stroke Impact Scale) and visuospatial neglect (Star Cancellation Test). After five weeks, no significant group differences for motor function were found (P > 0.05). Pre-post differences for the Action Research Arm Test and Fugl-Meyer Test: individual mirror therapy: 3.4 (7.1) and 3.2 (3.8), group mirror therapy: 1.1 (3.1) and 5.1 (10.0) and control therapy: 2.8 (6.7) and 5.2 (8.7). However, a significant effect on visuospatial neglect for patients in the individual mirror therapy compared to control group could be shown (P < 0.01). Furthermore, it was possible to integrate a mirror therapy group intervention for severely affected patients after stroke. This study showed no effect on sensorimotor function of the arm, activities of daily living and quality of life of mirror therapy compared to a control intervention after stroke. However, a positive effect on visuospatial neglect was indicated.
Karim, A.K.M. Rezaul; Proulx, Michael J.; Likova, Lora T.
2016-01-01
Reviewing the relevant literature in visual psychophysics and visual neuroscience we propose a three-stage model of directionality bias in visuospatial functioning. We call this model the ‘Perception-Action-Laterality’ (PAL) hypothesis. We analyzed the research findings for a wide range of visuospatial tasks, showing that there are two major directionality trends: clockwise versus anticlockwise. It appears these preferences are combinatorial, such that a majority of people fall in the first category demonstrating a preference for stimuli/objects arranged from left-to-right rather than from right-to-left, while people in the second category show an opposite trend. These perceptual biases can guide sensorimotor integration and action, creating two corresponding turner groups in the population. In support of PAL, we propose another model explaining the origins of the biases– how the neurogenetic factors and the cultural factors interact in a biased competition framework to determine the direction and extent of biases. This dynamic model can explain not only the two major categories of biases, but also the unbiased, unreliably biased or mildly biased cases in visuosptial functioning. PMID:27350096
Treble-Barna, Amery; Juranek, Jenifer; Stuebing, Karla K.; Cirino, Paul T.; Dennis, Maureen; Fletcher, Jack M.
2014-01-01
The present study examined prospective and episodic memory in relation to age, functional independence, and hippocampal volume in younger to middle-aged adults with spina bifida myelomeningocele (SBM) and typically developing (TD) adults. Prospective and episodic memory, as well as hippocampal volume, were reduced in adults with SBM relative to TD adults. Neither memory performance nor hippocampal volume showed greater decrements in older adults. Lower hippocampal volume was associated with reduced prospective memory in adults with SBM, and this relation was specific to the hippocampus and not to a contrast structure, the amygdala. Prospective memory mediated the relation between hippocampal volume and functional independence in adults with SBM. The results add to emerging evidence for reduced memory function in adults with SBM, and provide quantitative evidence for compromised hippocampal macrostructure as a neural correlate of reduced memory in this population. PMID:25068670
Acute Hippocampal Slice Preparation and Hippocampal Slice Cultures
Lein, Pamela J.; Barnhart, Christopher D.; Pessah, Isaac N.
2012-01-01
A major advantage of hippocampal slice preparations is that the cytoarchitecture and synaptic circuits of the hippocampus are largely retained. In neurotoxicology research, organotypic hippocampal slices have mostly been used as acute ex vivo preparations for investigating the effects of neurotoxic chemicals on synaptic function. More recently, hippocampal slice cultures, which can be maintained for several weeks to several months in vitro, have been employed to study how neurotoxic chemicals influence the structural and functional plasticity in hippocampal neurons. This chapter provides protocols for preparing hippocampal slices to be used acutely for electrophysiological measurements using glass microelectrodes or microelectrode arrays or to be cultured for morphometric assessments of individual neurons labeled using biolistics. PMID:21815062
Effects of prenatal marijuana on visuospatial working memory: an fMRI study in young adults.
Smith, Andra M; Fried, Peter A; Hogan, Matthew J; Cameron, Ian
2006-01-01
The long lasting neurophysiological effects of prenatal marijuana exposure on visuospatial working memory were investigated in 18-22 year olds using functional magnetic resonance imaging (fMRI). The participants are members of the Ottawa Prenatal Prospective Study (OPPS), a longitudinal study that provides a unique body of information collected from each participant over 20 years, including prenatal drug history, detailed cognitive/behavioral performance from infancy to young adulthood, and current and past drug usage. This information allowed for the control of potentially confounding drug exposure variables in the statistical analyses. Thirty-one offspring from the OPPS (16 prenatally exposed and 15 nonexposed) performed a visuospatial 2-back task while neural activity was imaged with fMRI. Cognitive performance data were also collected. No significant performance differences were observed when comparing controls versus exposed participants. Multiple regression analyses (including controls with no exposure) revealed that as the amount of prenatal marijuana exposure increased, there was significantly more neural activity in the left inferior and middle frontal gyri, left parahippocampal gyrus, left middle occipital gyrus and left cerebellum. There was also significantly less activity in right inferior and middle frontal gyri. These results suggest that prenatal marijuana exposure alters neural functioning during visuospatial working memory processing in young adulthood.
Sex differences in visuospatial abilities persist during induced hypogonadism
Guerrieri, Gioia M.; Wakim, Paul G.; Keenan, P.A.; Schenkel, Linda A; Berlin, Kate; Gibson, Carolyn J.; Rubinow, David R.; Schmidt, Peter J.
2016-01-01
Background Despite well-established sex differences in the performance on tests of several cognitive domains (e.g., visuospatial ability), few studies in humans have evaluated if these sex differences are evident both in the presence of circulating sex hormones and during sex steroid hormonal suppression. Sex differences identified in the relative absence of circulating levels of estradiol and testosterone suggest that differences in brain structure or function exist independent of current hormonal environment and are more likely a reflection of differing developmental exposures and/or genetic substrates. Objective To evaluate cognitive performance in healthy eugonadal men and women before and again during GnRH agonist-induced hypogonadism. Methods Men (n = 16) and women (n = 15) without medical or psychiatric illness were matched for IQ. Cognitive tests were performed at baseline (when eugonadal) and after 68 weeks of GnRH agonist-induced gonadal suppression. The test batteries included measures of verbal and spatial memory, spatial ability, verbal fluency, motor speed/dexterity, and attention/concentration. Data were analyzed using repeated-measures models. Results During both eugonadism and hypogonadism, men performed significantly better than women on several measures of visuospatial performance including mental rotation, line orientation, Money Road Map, Porteus maze, and complex figure drawing. Although some test performances showed an effect of hormone treatment, the majority of these differences reflected an improved performance during hypogonadism compared with baseline (and probably reflected practice effects). Conclusion The well-documented male advantage in visuospatial performance, which we observed during eugonadal conditions, was maintained in the context of short-term suppression of gonadal function in both men and women. These findings suggest that, in humans, sex differences in visuospatial performance are not merely dependent on differences in the current circulating sex steroid environment. Thus sex differences in visuospatial performance in adulthood could reflect early developmental effects of sex steroid exposure or other environmental exposures differing across the sexes as our data confirm that these differences are independent of circulating estradiol or testosterone levels in men and women. PMID:26719236
Sex differences in visuospatial abilities persist during induced hypogonadism.
Guerrieri, Gioia M; Wakim, Paul G; Keenan, P A; Schenkel, Linda A; Berlin, Kate; Gibson, Carolyn J; Rubinow, David R; Schmidt, Peter J
2016-01-29
Despite well-established sex differences in the performance on tests of several cognitive domains (e.g., visuospatial ability), few studies in humans have evaluated if these sex differences are evident both in the presence of circulating sex hormones and during sex steroid hormonal suppression. Sex differences identified in the relative absence of circulating levels of estradiol and testosterone suggest that differences in brain structure or function exist independent of current hormonal environment and are more likely a reflection of differing developmental exposures and/or genetic substrates. To evaluate cognitive performance in healthy eugonadal men and women before and again during GnRH agonist-induced hypogonadism. Men (n=16) and women (n=15) without medical or psychiatric illness were matched for IQ. Cognitive tests were performed at baseline (when eugonadal) and after 6-8 weeks of GnRH agonist-induced gonadal suppression. The test batteries included measures of verbal and spatial memory, spatial ability, verbal fluency, motor speed/dexterity, and attention/concentration. Data were analyzed using repeated-measures models. During both eugonadism and hypogonadism, men performed significantly better than women on several measures of visuospatial performance including mental rotation, line orientation, Money Road Map, Porteus maze, and complex figure drawing. Although some test performances showed an effect of hormone treatment, the majority of these differences reflected an improved performance during hypogonadism compared with baseline (and probably reflected practice effects). The well-documented male advantage in visuospatial performance, which we observed during eugonadal conditions, was maintained in the context of short-term suppression of gonadal function in both men and women. These findings suggest that, in humans, sex differences in visuospatial performance are not merely dependent on differences in the current circulating sex steroid environment. Thus sex differences in visuospatial performance in adulthood could reflect early developmental effects of sex steroid exposure or other environmental exposures differing across the sexes as our data confirm that these differences are independent of circulating estradiol or testosterone levels in men and women. Published by Elsevier Ltd.
Functional brain microstate predicts the outcome in a visuospatial working memory task.
Muthukrishnan, Suriya-Prakash; Ahuja, Navdeep; Mehta, Nalin; Sharma, Ratna
2016-11-01
Humans have limited capacity of processing just up to 4 integrated items of information in the working memory. Thus, it is inevitable to commit more errors when challenged with high memory loads. However, the neural mechanisms that determine the accuracy of response at high memory loads still remain unclear. High temporal resolution of Electroencephalography (EEG) technique makes it the best tool to resolve the temporal dynamics of brain networks. EEG-defined microstate is the quasi-stable scalp electrical potential topography that represents the momentary functional state of brain. Thus, it has been possible to assess the information processing currently performed by the brain using EEG microstate analysis. We hypothesize that the EEG microstate preceding the trial could determine its outcome in a visuospatial working memory (VSWM) task. Twenty-four healthy participants performed a high memory load VSWM task, while their brain activity was recorded using EEG. Four microstate maps were found to represent the functional brain state prior to the trials in the VSWM task. One pre-trial microstate map was found to determine the accuracy of subsequent behavioural response. The intracranial generators of the pre-trial microstate map that determined the response accuracy were localized to the visuospatial processing areas at bilateral occipital, right temporal and limbic cortices. Our results imply that the behavioural outcome in a VSWM task could be determined by the intensity of activation of memory representations in the visuospatial processing brain regions prior to the trial. Copyright © 2016 Elsevier B.V. All rights reserved.
Liao, Jin-Lan; Xiong, Zu-Ying; Yang, Zhi-Kai; Hao, Li; Liu, Gui-Ling; Ren, Ye-Ping; Wang, Qin; Duan, Li-Ping; Zheng, Zhao-Xia; Dong, Jie
2017-01-01
Diabetes and retinopathy have been considered as risk factors of cognitive impairment (CI) in previous studies. We investigated both of these two factors and their relationship with global and specific cognitive functions in end stage renal disease patients under peritoneal dialysis (PD). In this multicenter cross-sectional study, 424 clinically stable patients were enrolled from 5 PD units, who performed PD for at least three months and completed fundoscopy examination if they had diabetes. Global cognitive function was measured using the Modified Mini-Mental State Examination (3MS), Trail-Making Test forms A and B for executive function, and subtests of the Battery for the Assessment of Neuropsychological Status for immediate and delayed memory, visuospatial skills, and language ability. PD Patients with DM and Retinopathy had significantly higher prevalence of CI, executive dysfunction, impaired immediate memory and visuospatial skill, compared with patients in non-DM group. By multivariate logistic regression analyses, DM and retinopathy rather than DM only were significantly associated with increased risk for CI, executive dysfunction, impaired immediate memory and visuospatial skill, odds ratios(ORs) and 95% confidence intervals were 2.09[1.11,3.92], 2.89[1.55,5.37], 2.16 [1.15,4.06] and 2.37[1.32,4.22], respectively (all P < 0.05). Diabetic PD patients with retinopathy were at two times risk for overall cognitive impairment, executive dysfunction, impaired immediate memory and visuospatial skill as compared to non-diabetic PD patients.
Shih, Y C; Tseng, C E; Lin, F-H; Liou, H H; Tseng, W Y I
2017-03-01
Unilateral mesial temporal lobe epilepsy and hippocampal sclerosis have structural and functional abnormalities in the mesial temporal regions. To gain insight into the pathophysiology of the epileptic network in mesial temporal lobe epilepsy with hippocampal sclerosis, we aimed to clarify the relationships between hippocampal atrophy and the altered connection between the hippocampus and the posterior cingulate cortex in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Fifteen patients with left mesial temporal lobe epilepsy with hippocampal sclerosis and 15 healthy controls were included in the study. Multicontrast MR imaging, including high-resolution T1WI, diffusion spectrum imaging, and resting-state fMRI, was performed to measure the hippocampal volume, structural connectivity of the inferior cingulum bundle, and intrinsic functional connectivity between the hippocampus and the posterior cingulate cortex, respectively. Compared with controls, patients had decreased left hippocampal volume (volume ratio of the hippocampus and controls, 0.366% ± 0.029%; patients, 0.277% ± 0.063%, corrected P = .002), structural connectivity of the bilateral inferior cingulum bundle (generalized fractional anisotropy, left: controls, 0.234 ± 0.020; patients, 0.193 ± 0.022, corrected P = .0001, right: controls, 0.226 ± 0.022; patients, 0.208 ± 0.017, corrected P = .047), and intrinsic functional connectivity between the left hippocampus and the left posterior cingulate cortex (averaged z-value: controls, 0.314 ± 0.152; patients, 0.166 ± 0.062). The left hippocampal volume correlated with structural connectivity positively (standardized β = 0.864, P = .001), but it had little correlation with intrinsic functional connectivity (standardized β = -0.329, P = .113). On the contralesional side, the hippocampal volume did not show any significant correlation with structural connectivity or intrinsic functional connectivity ( F 2,12 = 0.284, P = .757, R 2 = 0.045). In left mesial temporal lobe epilepsy with hippocampal sclerosis, the left inferior cingulum bundle undergoes degeneration in tandem with the left hippocampal volume, whereas intrinsic functional connectivity seems to react by compensating the loss of connectivity. Such insight might be helpful in understanding the development of the epileptic network in left mesial temporal lobe epilepsy with hippocampal sclerosis. © 2017 by American Journal of Neuroradiology.
Neural bases of a specific strategy for visuospatial processing in rugby players.
Sekiguchi, Atsushi; Yokoyama, Satoru; Kasahara, Satoshi; Yomogida, Yukihito; Takeuchi, Hikaru; Ogawa, Takeshi; Taki, Yasuyuki; Niwa, Shin-Ichi; Kawashima, Ryuta
2011-10-01
Rugby is one of the most tactically complex sports. Rugby coaching theory suggests that rugby players need to possess various cognitive abilities. A previous study claimed that rugby players have high visuospatial awareness, which is induced by a strategy described as taking a "bird's eye view." To examine if there were differential cortical networks related to visuospatial processing tasks among top-level rugby players and control novices, we compared brain activities during a visuospatial processing task between 20 male top-level rugby players (Top) and 20 control novice males (Novice) using functional magnetic resonance imaging (fMRI). To avoid the effect of differential behavioral performances on brain activation, we recruited novices whose visuospatial ability was expected to match that of the rugby players. We adopted a 3-D mental rotation task during fMRI scanning as a visuospatial processing task. Significantly greater activations from baseline were observed for the Top group than for the Novice group in the right superior parietal lobe and lateral occipital cortex. Significantly greater deactivations from baseline were observed for the Top group than for the Novice group in the right medial prefrontal cortex. The discrepancy between psychobehavioral outputs and the fMRI results suggested the existence of a cognitive strategy among top-level rugby players that differs from that among control novices. The greater activation of the right superior parietal lobe and lateral occipital cortex in top-level rugby players suggested a strategy involving visuospatial cognitive processing with respect to the bird's eye view. In addition, the right medial prefrontal cortex is known to be a part of the default mode networks, suggesting an additional cognitive load for the Top group when using the bird's-eye-view strategy. This further supported the existence of a specific cognitive strategy among top-level rugby players.
Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.
Bast, Tobias; Pezze, Marie; McGarrity, Stephanie
2017-10-01
We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition contributes to clinically relevant cognitive deficits, and we consider pharmacological strategies for ameliorating cognitive deficits by rebalancing disinhibition-induced aberrant neural activity. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc. © 2017 The British Pharmacological Society.
Drag, Lauren L; Light, Sharee N; Langenecker, Scott A; Hazlett, Kathleen E; Wilde, Elisabeth A; Welsh, Robert; Steinberg, Brett A; Bieliauskas, Linas A
2016-09-01
Visuospatial abilities are sensitive to age-related decline, although the neural basis for this decline (and its everyday behavioral correlates) is as yet poorly understood. fMRI was employed to examine age-related differences in patterns of functional activation that underlie changes in visuospatial processing. All participants completed a brief neuropsychological battery and also a figure ground task (FGT) assessing visuospatial processing while fMRI was recorded. Participants included 16 healthy older adults (OA; aged 69-82 years) and 16 healthy younger adults (YA; aged 20-35 years). We examined age-related differences in behavioral performance on the FGT in relation to patterns of fMRI activation. OA demonstrated reduced performance on the FGT task and showed increased activation of supramarginal parietal cortex as well as increased activation of frontal and temporal regions compared to their younger counterparts. Performance on the FGT related to increased supramarginal gyrus activity and increased medial prefrontal activity in OAs, but not YAs. Our results are consistent with an anterior-posterior compensation model. Successful FGT performance requires the perception and integration of multiple stimuli and thus it is plausible that healthy aging may be accompanied by changes in visuospatial processing that mimic a subtle form of dorsal simultanagnosia. Overall, decreased visuospatial processing in OA relates to an altered frontoparietal neurobiological signature that may contribute to the general phenomenon of increasingly fragmented execution of behavior associated with normal aging.
Hellendoorn, Annika; Wijnroks, Lex; van Daalen, Emma; Dietz, Claudine; Buitelaar, Jan K; Leseman, Paul
2015-04-01
In order to understand typical and atypical developmental trajectories it is important to assess how strengths or weaknesses in one domain may be affecting performance in other domains. This study examined longitudinal relations between early fine motor functioning, visuospatial cognition, exploration, and language development in preschool children with ASD and children with other developmental delays/disorders. The ASD group included 63 children at T1 (Mage = 27.10 months, SD = 8.71) and 46 children at T2 (Mage = 45.85 months, SD = 7.16). The DD group consisted of 269 children at T1 (Mage = 17.99 months, SD = 5.59), and 121 children at T2 (Mag e= 43.51 months, SD = 3.81). A subgroup nested within the total sample was randomly selected and studied in-depth on exploratory behavior. This group consisted of 50 children, 21 children with ASD (Mage = 27.57, SD = 7.09) and 29 children with DD (Mage = 24.03 months, SD = 6.42). Fine motor functioning predicted language in both groups. Fine motor functioning was related to visuospatial cognition in both groups and related to object exploration, spatial exploration, and social orientation during exploration only in the ASD group. Visuospatial cognition and all exploration measures were related to both receptive and expressive language in both groups. The findings are in line with the embodied cognition theory, which suggests that cognition emerges from and is grounded in the bodily interactions of an agent with the environment. This study emphasizes the need for researchers and clinicians to consider cognition as emergent from multiple interacting systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bédard, Anne-Claude V; Newcorn, Jeffrey H; Clerkin, Suzanne M; Krone, Beth; Fan, Jin; Halperin, Jeffrey M; Schulz, Kurt P
2014-09-01
Visuospatial working memory impairments have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, most ADHD research has focused on the neural correlates of nonspatial mnemonic processes. This study examined brain activation and functional connectivity for visuospatial working memory in youth with and without ADHD. Twenty-four youth with ADHD and 21 age- and sex-matched healthy controls were scanned with functional magnetic resonance imaging while performing an N-back test of working memory for spatial position. Block-design analyses contrasted activation and functional connectivity separately for high (2-back) and low (1-back) working memory load conditions versus the control condition (0-back). The effect of working memory load was modeled with linear contrasts. The 2 groups performed comparably on the task and demonstrated similar patterns of frontoparietal activation, with no differences in linear gains in activation as working memory load increased. However, youth with ADHD showed greater activation in the left dorsolateral prefrontal cortex (DLPFC) and left posterior cingulate cortex (PCC), greater functional connectivity between the left DLPFC and left intraparietal sulcus, and reduced left DLPFC connectivity with left midcingulate cortex and PCC for the high load contrast compared to controls (p < .01; k > 100 voxels). Reanalysis using a more conservative statistical approach (p < .001; k > 100 voxels) yielded group differences in PCC activation and DLPFC-midcingulate connectivity. Youth with ADHD show decreased efficiency of DLPFC for high-load visuospatial working memory and greater reliance on posterior spatial attention circuits to store and update spatial position than healthy control youth. Findings should be replicated in larger samples. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Demir, Özlem Ece; Prado, Jérôme; Booth, James R.
2015-01-01
We examined the relation of parental socioeconomic status (SES) to the neural bases of subtraction in school-age children (9- to 12-year-olds). We independently localized brain regions subserving verbal versus visuo-spatial representations to determine whether the parental SES-related differences in children’s reliance on these neural representations vary as a function of math skill. At higher SES levels, higher skill was associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. At lower SES levels, higher skill was associated with greater recruitment of right parietal cortex, identified by the visuo-spatial localizer. This suggests that depending on parental SES, children engage different neural systems to solve subtraction problems. Furthermore, SES was related to the activation in the left temporal and frontal cortex during the independent verbal localizer task, but it was not related to activation during the independent visuo-spatial localizer task. Differences in activation during the verbal localizer task in turn were related to differences in activation during the subtraction task in right parietal cortex. The relation was stronger at lower SES levels. This result suggests that SES-related differences in the visuo-spatial regions during subtraction might be based in SES-related verbal differences. PMID:25664675
Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F
2014-01-01
Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients.
Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators
Hueston, C M; Cryan, J F; Nolan, Y M
2017-01-01
Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system at this time affect structure, function and behavioural outputs is important to better understand any long-lasting effects. Hippocampal neurogenesis occurs during development and continues throughout life. In adulthood, integration of these new cells into the hippocampus is important for emotional behaviour, cognitive function and neural plasticity. During the adolescent period, maturation of the hippocampus and heightened levels of hippocampal neurogenesis are observed, making alterations to neurogenesis at this time particularly consequential. As stress negatively affects hippocampal neurogenesis, and adolescence is a particularly stressful time of life, it is important to investigate the impact of stressor exposure at this time on hippocampal neurogenesis and cognitive function. Adolescence may represent not only a time for which stress can have long-lasting effects, but is also a critical period during which interventions, such as exercise and diet, could ameliorate stress-induced changes to hippocampal function. In addition, intervention at this time may also promote life-long behavioural changes that would aid in fostering increased hippocampal neurogenesis and cognitive function. This review addresses both the acute and long-term stress-induced alterations to hippocampal neurogenesis and cognition during the adolescent period, as well as changes to the stress response and pubertal hormones at this time which may result in differential effects than are observed in adulthood. We hypothesise that adolescence may represent an optimal time for healthy lifestyle changes to have a positive and long-lasting impact on hippocampal neurogenesis, and to protect against stress-induced deficits. We conclude that future research into the mechanisms underlying the susceptibility of the adolescent hippocampus to stress, exercise and diet and the consequent effect on cognition may provide insight into why adolescence may be a vital period for correct conditioning of future hippocampal function. PMID:28375209
Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators.
Hueston, C M; Cryan, J F; Nolan, Y M
2017-04-04
Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system at this time affect structure, function and behavioural outputs is important to better understand any long-lasting effects. Hippocampal neurogenesis occurs during development and continues throughout life. In adulthood, integration of these new cells into the hippocampus is important for emotional behaviour, cognitive function and neural plasticity. During the adolescent period, maturation of the hippocampus and heightened levels of hippocampal neurogenesis are observed, making alterations to neurogenesis at this time particularly consequential. As stress negatively affects hippocampal neurogenesis, and adolescence is a particularly stressful time of life, it is important to investigate the impact of stressor exposure at this time on hippocampal neurogenesis and cognitive function. Adolescence may represent not only a time for which stress can have long-lasting effects, but is also a critical period during which interventions, such as exercise and diet, could ameliorate stress-induced changes to hippocampal function. In addition, intervention at this time may also promote life-long behavioural changes that would aid in fostering increased hippocampal neurogenesis and cognitive function. This review addresses both the acute and long-term stress-induced alterations to hippocampal neurogenesis and cognition during the adolescent period, as well as changes to the stress response and pubertal hormones at this time which may result in differential effects than are observed in adulthood. We hypothesise that adolescence may represent an optimal time for healthy lifestyle changes to have a positive and long-lasting impact on hippocampal neurogenesis, and to protect against stress-induced deficits. We conclude that future research into the mechanisms underlying the susceptibility of the adolescent hippocampus to stress, exercise and diet and the consequent effect on cognition may provide insight into why adolescence may be a vital period for correct conditioning of future hippocampal function.
Exploring the relations among physical fitness, executive functioning, and low academic achievement.
de Bruijn, A G M; Hartman, E; Kostons, D; Visscher, C; Bosker, R J
2018-03-01
Physical fitness seems to be related to academic performance, at least when taking the role of executive functioning into account. This assumption is highly relevant for the vulnerable population of low academic achievers because their academic performance might benefit from enhanced physical fitness. The current study examined whether physical fitness and executive functioning are independent predictors of low mathematics and spelling achievement or whether the relation between physical fitness and low achievement is mediated by specific executive functions. In total, 477 students from second- and third-grade classes of 12 primary schools were classified as either low or average-to-high achievers in mathematics and spelling based on their scores on standardized achievement tests. Multilevel structural equation models were built with direct paths between physical fitness and academic achievement and added indirect paths via components of executive functioning: inhibition, verbal working memory, visuospatial working memory, and shifting. Physical fitness was only indirectly related to low achievement via specific executive functions, depending on the academic domain involved. Verbal working memory was a mediator between physical fitness and low achievement in both domains, whereas visuospatial working memory had a mediating role only in mathematics. Physical fitness interventions aiming to improve low academic achievement, thus, could potentially be successful. The mediating effect of executive functioning suggests that these improvements in academic achievement will be preceded by enhanced executive functions, either verbal working memory (in spelling) or both verbal and visuospatial working memory (in mathematics). Copyright © 2017 Elsevier Inc. All rights reserved.
Shima, Takeru; Matsui, Takashi; Jesmin, Subrina; Okamoto, Masahiro; Soya, Mariko; Inoue, Koshiro; Liu, Yu-Fan; Torres-Aleman, Ignacio; McEwen, Bruce S; Soya, Hideaki
2017-03-01
Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.
Gender Differences in Verbal and Visuospatial Working Memory Performance and Networks.
Zilles, David; Lewandowski, Mirjana; Vieker, Henning; Henseler, Ilona; Diekhof, Esther; Melcher, Tobias; Keil, Maria; Gruber, Oliver
2016-01-01
Working memory (WM) has been a matter of intensive basic and clinical research for some decades now. The investigation of WM function and dysfunction may facilitate the understanding of both physiological and pathological processes in the human brain. Though WM paradigms are widely used in neuroscientific and psychiatric research, conclusive knowledge about potential moderating variables such as gender is still missing. We used functional magnetic resonance imaging to investigate the effects of gender on verbal and visuospatial WM maintenance tasks in a large and homogeneous sample of young healthy subjects. We found significant gender effects on both the behavioral and neurofunctional level. Females exhibited disadvantages with a small effect size in both WM domains accompanied by stronger activations in a set of brain regions (including bilateral substantia nigra/ventral tegmental area and right Broca's area) independent of WM modality. As load and task difficulty effects have been shown for some of these regions, the stronger activations may reflect a slightly lower capacity of both WM domains in females. Males showed stronger bilateral intraparietal activations next to the precuneus which were specific for the visuospatial WM task. Activity in this specific region may be associated with visuospatial short-term memory capacity. These findings provide evidence for a slightly lower capacity in both WM modalities in females. © 2016 S. Karger AG, Basel.
Karim, A K M Rezaul; Proulx, Michael J; Likova, Lora T
2016-09-01
Orientation bias and directionality bias are two fundamental functional characteristics of the visual system. Reviewing the relevant literature in visual psychophysics and visual neuroscience we propose here a three-stage model of directionality bias in visuospatial functioning. We call this model the 'Perception-Action-Laterality' (PAL) hypothesis. We analyzed the research findings for a wide range of visuospatial tasks, showing that there are two major directionality trends in perceptual preference: clockwise versus anticlockwise. It appears these preferences are combinatorial, such that a majority of people fall in the first category demonstrating a preference for stimuli/objects arranged from left-to-right rather than from right-to-left, while people in the second category show an opposite trend. These perceptual biases can guide sensorimotor integration and action, creating two corresponding turner groups in the population. In support of PAL, we propose another model explaining the origins of the biases - how the neurogenetic factors and the cultural factors interact in a biased competition framework to determine the direction and extent of biases. This dynamic model can explain not only the two major categories of biases in terms of direction and strength, but also the unbiased, unreliably biased or mildly biased cases in visuosptial functioning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cortical morphology of visual creativity.
Gansler, David A; Moore, Dana W; Susmaras, Teresa M; Jerram, Matthew W; Sousa, Janelle; Heilman, Kenneth M
2011-07-01
The volume of cortical tissue devoted to a function often influences the quality of a person's ability to perform that function. Up to now only white matter correlates of creativity have been reported, and we wanted to learn if the creative visuospatial performance on the figural Torrance Test of Creative Thinking (TTCT) is associated with measurements of cerebral gray matter volume in the regions of the brain that are thought to be important in divergent reasoning and visuospatial processing. Eighteen healthy college educated men (mean age=40.78; 15 right-handers) were recruited (via advertisement) as participants. High-resolution MRI scans were acquired on a 1.5T MRI scanner. Voxel-based morphometry regression analyses of TTCT to cortical volume were restrained within the anatomic regions identified. One significant positive focus of association with TTCT emerged within the right parietal lobe gray matter (MNI coordinates: 44, -24, 63; 276 voxels). Based on theories of parietal lobe function and the requirements of the TTCT, the area observed may be related due to its dominant role in global aspects of attention and visuospatial processing including the capacity for manipulating spatial representations. Copyright © 2011 Elsevier Ltd. All rights reserved.
Acute visual neglect and extinction: distinct functional state of the visuospatial attention system.
Umarova, Roza M; Saur, Dorothee; Kaller, Christoph P; Vry, Magnus-Sebastian; Glauche, Volkmar; Mader, Irina; Hennig, Jürgen; Weiller, Cornelius
2011-11-01
The neural mechanisms underlying spatial neglect are still disputed. Abnormal left parietal hyperactivation is proposed to lead to the rightward attentional bias, a clinical hallmark of neglect. Extinction, another deficit of visuospatial attention, is regarded as either a 'mild' form of neglect or a distinct syndrome. Although both neglect and extinction are typical syndromes of acute right hemispheric stroke, all imaging studies investigating these syndromes were conducted at least several weeks after stroke onset, in a phase when brain reorganization has already progressed. The present study aimed at comparing the activation patterns in acute stroke patients with neglect and extinction during visuospatial processing. Using functional magnetic resonance imaging, we examined the functional state of the attention system in 33 patients with a first ever stroke (53 ± 5 h after stroke onset) and age-matched healthy subjects (n = 15). All patients had embolic infarcts within the territory of the right middle cerebral artery. Patients were divided into three groups: (i) normal visuospatial processing (control patients, n = 11); (ii) patients with visual extinction but with no signs of neglect (n = 9); and (iii) patients with visual neglect (n = 13). While undergoing functional magnetic resonance imaging, patients performed a Posner-like task for visuospatial attention with detection of the targets in the left and right visual hemifields. Patients with neglect showed the expected imbalance in the left versus right parietal activation, which however, was present also in control and extinction patients, thus representing an epiphenomenon of the acute structural lesion in the right hemisphere. Compared with control patients, neglect was characterized by reduced activation in the right parietal and lateral occipital cortex, as well as in the left frontal eye field. In contrast, the activation pattern in patients with extinction differed from all other groups by an increased activation of the left prefrontal cortex. In both patients with neglect and extinction, detection of targets in the left hemifield correlated with an activation in the left prefrontal and parietal cortex. Thus at least in acute stroke, a relative hyperactivation of the left parietal cortex is not a particular characteristic of neglect. The specific signature of neglect is represented by the dysfunction of the right parietal and lateral occipital cortex. The function of the left attentional centres might provide a compensatory role after critical right hemisphere lesions and be relevant for the contralesional spatial processing.
Visuo-spatial performance in autism: a meta-analysis.
Muth, Anne; Hönekopp, Johannes; Falter, Christine M
2014-12-01
Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large heterogeneity that is unaccounted for. No clear differences were found for Mental Rotation. ASD samples showed a stronger local processing preference for Navon tasks (d = 0.35); less clear evidence for performance differences of a similar magnitude emerged. We discuss the meta-analysis results together with other findings relating to visuo-spatial processing and three cognitive theories of ASD: Weak Central Coherence, Enhanced Perceptual Functioning and Extreme Male Brain theory.
Factor structure of the Hooper Visual Organization Test: a cross-cultural replication and extension.
Merten, Thomas
2005-01-01
To investigate construct validity of the Hooper Visual Organization Test (VOT), a principal-axis analysis was performed on the neuropsychological test results of 200 German-speaking neurological patients who received a comprehensive battery, encompassing tests of visuospatial functions, memory, attention, executive functions, naming ability, and vocabulary. A four-factor solution was obtained with substantial loadings of the VOT only on the first factor, interpreted as a global dimension of non-verbal cognitive functions. This factor loaded significantly on numerous measures of visuospatial processing and attention (with particularly high loadings on WAIS-R Block Design, Trails A and B, and Raven's Standard Progressive Matrices). The remaining three factors were interpreted as memory, verbal abilities (vocabulary), and a separate factor of naming abilities.
More than Memory Impairment in Voltage-Gated Potassium Channel Complex Encephalopathy
Bettcher, Brianne M.; Gelfand, Jeffrey M.; Irani, Sarosh R.; Neuhaus, John; Forner, Sven; Hess, Christopher P.; Geschwind, Michael D.
2014-01-01
Objective Autoimmune encephalopathies (AE) are a heterogeneous group of neurological disorders that affect cognition. Although memory difficulties are commonly endorsed, few reports of AE inclusively assess all cognitive domains in detail. Our aim was to perform an unbiased cognitive evaluation of AE patients with voltage-gated potassium channel complex antibodies (VGKCC-Abs) in order to delineate cognitive strengths and weaknesses. Methods We assessed serial VGKCC-Abs AE subjects (n=12) with a comprehensive evaluation of memory, executive functions, visuospatial skills, and language. Clinical MRI (n=10/12) was evaluated. Five subjects had serial cognitive testing available, permitting descriptive analysis of change. Results Subjects demonstrated mild to moderate impairment in memory (mean Z=−1.9) and executive functions (mean Z=−1.5), with variable impairments in language and sparing of visuospatial skills. MRI findings showed T2 hyperintensities in medial temporal lobe (10/10) and basal ganglia (2/10). Serial cognitive examination revealed heterogeneity in cognitive function; whereas most patients improved in one or more domains, residual impairments were observed in some patients. Conclusions This study augments prior neuropsychological analyses in VGKCC-Ab AE by identifying not only memory and executive function deficits, but also language impairments, with preservation of visuospatial functioning. This study further highlights the importance of domain-specific testing to parse out the complex cognitive phenotypes of VGKCC-Ab AE. PMID:24981998
Individual differences in proactive interference in verbal and visuospatial working memory.
Lilienthal, Lindsey
2017-09-01
Proactive interference (PI) has been shown to affect working memory (WM) span as well as the predictive utility of WM span measures. However, most of the research on PI has been conducted using verbal memory items, and much less is known about the role of PI in the visuospatial domain. In order to further explore this issue, the present study used a within-subjects manipulation of PI that alternated clusters of trials with verbal and visuospatial to-be-remembered items. Although PI was shown to build and release across trials similarly in the two domains, important differences also were observed. The ability of verbal WM to predict performance on a measure of fluid intelligence was significantly affected by the amount of PI present, consistent with past research, but this proved not to be the case for visuospatial WM. Further, individuals' susceptibility to PI in one domain was relatively independent of their susceptibility in the other domain, suggesting that, contrary to some theories of executive function, individual differences in PI susceptibility may not be domain-general.
Giannouli, Eleftheria; Bock, Otmar; Zijlstra, Wiebren
2018-03-01
Increasing evidence indicates that mobility depends on cognitive resources, but the exact relationships between various cognitive functions and different mobility parameters still need to be investigated. This study examines the hypothesis that cognitive functioning is more closely related to real-life mobility performance than to mobility capacity as measured with standardized laboratory tests. The final sample used for analysis consisted of 66 older adults (72.3 ± 5.6 years). Cognition was assessed by measures of planning (HOTAP test), spatial working memory (Grid-Span test) and visuospatial attention (Attention Window test). Mobility capacity was assessed by an instrumented version of the Timed Up-and-Go test (iTUG). Mobility performance was assessed with smartphones which collected accelerometer and GPS data over one week to determine the spatial extent and temporal duration of real-life activities. Data analyses involved an exploratory factor analysis and correlation analyses. Mobility measures were reduced to four orthogonal factors: the factor 'real-life mobility' correlated significantly with most cognitive measures (between r = .229 and r = .396); factors representing 'sit-to-stand transition' and 'turn' correlated with fewer cognitive measures (between r = .271 and r = .315 and between r = .210 and r = .316, respectively), and the factor representing straight gait correlated with only one cognitive measure ( r = .237). Among the cognitive functions tested, visuospatial attention was associated with most mobility measures, executive functions with fewer and spatial working memory with only one mobility measure. Capacity and real-life performance represent different aspects of mobility. Real-life mobility is more closely associated with cognition than mobility capacity, and in our data this association is most pronounced for visuospatial attention. The close link between real-life mobility and visuospatial attention should be considered by interventions targeting mobility in old age.
McFadden, Lisa M; Vieira-Brock, Paula L; Hanson, Glen R; Fleckenstein, Annette E
2014-08-01
Preclinical studies suggest that prior treatment with escalating doses of methamphetamine (METH) attenuates the persistent deficits in hippocampal serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) function resulting from a subsequent 'binge' METH exposure. Previous work also demonstrates that brain-derived neurotrophic factor (BDNF) exposure increases SERT function. The current study investigated changes in hippocampal BDNF protein and SERT function in rats exposed to saline or METH self-administration prior to a binge exposure to METH or saline. Results revealed that METH self-administration increased hippocampal mature BDNF (mBDNF) immunoreactivity compared to saline-treated rats as assessed 24 h after the start of the last session. Further, mBDNF immunoreactivity was increased and SERT function was not altered in rats that self-administered METH prior to the binge METH exposure as assessed 24 h after the binge exposure. These results suggest that prior exposure to contingent METH increases hippocampal mBDNF, and this may contribute to attenuated deficits in SERT function.
Frodl, Thomas; O'Keane, Veronica
2013-04-01
There is evidence that excessive stress exposure of the brain, mediated through the neurotoxic effects of cortisol and possibly neuroinflammation, causes damage to brain structure and function: the glucocorticoid cascade hypothesis. Functional changes of hypothalamic-pituitary-adrenal (HPA) axis as well as alterations in brain structures like the hippocampus have been consistently reported in major depression. However, there has not been a lot of emphasis on bringing findings from studies on early childhood stress, HPA axis functioning and hippocampal imaging together. This is the subject for this systematic review of the literature on how developmental stress, specifically childhood maltreatment, may impact on HPA axis function and hippocampal structure. We will also review the literature on the relationship between HPA axis function and hippocampal volume in healthy, depressed and other disease states. There is evidence that prenatal stress and childhood maltreatment is associated with an abnormally developing HPA system, as well as hippocampal volume reduction. Smaller hippocampal volumes are associated with increased cortisol secretion during the day. We conclude that a model integrating childhood maltreatment, cortisol abnormalities and hippocampal volume may need to take other factors into account, such as temperament, genetics or the presence of depression; to provide a cohesive explanation of all the findings. Finally, we have to conclude that the cascade hypothesis, mainly based on preclinical studies, has not been translated enough into humans. While there is evidence that early life maltreatment results in structural hippocampal changes and these are in turn more prominent in subjects with higher continuous cortisol secretion it is less clear which role early life maltreatment plays in HPA axis alteration. Copyright © 2012 Elsevier Inc. All rights reserved.
Hippocampal functional connectivity and episodic memory in early childhood
Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L.; Redcay, Elizabeth
2016-01-01
Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4-and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. PMID:26900967
Hippocampal Functioning and Verbal Associative Memory in Adolescents with Congenital Hypothyroidism
Wheeler, Sarah M.; McLelland, Victoria C.; Sheard, Erin; McAndrews, Mary Pat; Rovet, Joanne F.
2015-01-01
Thyroid hormone (TH) is essential for normal development of the hippocampus, which is critical for memory and particularly for learning and recalling associations between visual and verbal stimuli. Adolescents with congenital hypothyroidism (CH), who lack TH in late gestation and early life, demonstrate weak verbal recall abilities, reduced hippocampal volumes, and abnormal hippocampal functioning for visually associated material. However, it is not known if their hippocampus functions abnormally when remembering verbal associations. Our objective was to assess hippocampal functioning in CH using functional magnetic resonance imaging (fMRI). Fourteen adolescents with CH and 14 typically developing controls (TDC) were studied. Participants studied pairs of words and then, during fMRI acquisition, made two types of recognition decisions: in one they judged whether the pairs were the same as when seen originally and in the other, whether individual words were seen before regardless of pairing. Hippocampal activation was greater for pairs than items in both groups, but this difference was only significant in TDC. When we directly compared the groups, the right anterior hippocampus was the primary region in which the TDC and CH groups differed for this pair memory effect. Results signify that adolescents with CH show abnormal hippocampal functioning during verbal memory processing. PMID:26539162
Hippocampal functional connectivity and episodic memory in early childhood.
Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L; Redcay, Elizabeth
2016-06-01
Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lobier, Muriel; Palva, J Matias; Palva, Satu
2018-01-15
Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.
Two distinct forms of functional lateralization in the human brain
Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex
2013-01-01
The hemispheric lateralization of certain faculties in the human brain has long been held to be beneficial for functioning. However, quantitative relationships between the degree of lateralization in particular brain regions and the level of functioning have yet to be established. Here we demonstrate that two distinct forms of functional lateralization are present in the left vs. the right cerebral hemisphere, with the left hemisphere showing a preference to interact more exclusively with itself, particularly for cortical regions involved in language and fine motor coordination. In contrast, right-hemisphere cortical regions involved in visuospatial and attentional processing interact in a more integrative fashion with both hemispheres. The degree of lateralization present in these distinct systems selectively predicted behavioral measures of verbal and visuospatial ability, providing direct evidence that lateralization is associated with enhanced cognitive ability. PMID:23959883
Jin, Seung-Hyun; Chung, Chun Kee
2015-10-01
Little is known about the functional substrate for memory function differences in patients with left or right mesial temporal lobe epilepsy (mTLE) associated with hippocampal sclerosis (HS) from an electrophysiological perspective. To characterize these differences, we hypothesized that hippocampal theta connectivity in the resting-state might be different between patients with left and right mTLE with HS and be correlated with memory performance. Resting-state hippocampal theta connectivity, identified via whole-brain magnetoencephalography, was evaluated. Connectivity and memory function in 41 patients with mTLE with HS (left mTLE=22; right mTLE=19) were compared with those in 46 age-matched healthy controls and 28 patients with focal cortical dysplasia (FCD) but without HS. Connectivity between the right hippocampus and the left middle frontal gyrus was significantly stronger in patients with right mTLE than in patients with left mTLE. Moreover, this connectivity was positively correlated with delayed verbal recall and recognition scores in patients with mTLE. Patients with left mTLE had greater delayed recall impairment than patients with right mTLE and FCD. Similarly, delayed recognition performance was worse in patients with left mTLE than in patients with right mTLE and FCD. No significant differences in memory function between patients with right mTLE and FCD were detected. Patients with right mTLE showed significantly stronger hippocampal theta connectivity between the right hippocampus and left middle frontal gyrus than patients with FCD and left mTLE. Our results suggest that right hippocampal-left middle frontal theta connectivity could be a functional substrate that can account for differences in memory function between patients with left and right mTLE. This functional substrate might be related to different compensatory mechanisms against the structural hippocampal lesions in left and right mTLE groups. Given the positive correlation between connectivity and delayed verbal memory function, hemispheric-specific hippocampal-frontal theta connectivity assessment could be useful as an electrophysiological indicator of delayed verbal memory function in patients with mTLE with HS. Copyright © 2015 Elsevier Inc. All rights reserved.
Renfroe, Jenna B; Turner, Travis H; Hinson, Vanessa K
2017-02-01
Judgment of Line Orientation (JOLO) test is widely used in assessing visuospatial deficits in Parkinson's disease (PD). The neuropsychological assessment battery (NAB) offers the Visual Discrimination test, with age and education correction, parallel forms, and co-normed standardization sample for comparisons within and between domains. However, NAB Visual Discrimination has not been validated in PD, and may not measure the same construct as JOLO. A heterogeneous sample of 47 PD patients completed the JOLO and NAB Visual Discrimination within a broader neuropsychological evaluation. Pearson correlations assessed relationships between JOLO and NAB Visual Discrimination performances. Raw and demographically corrected scores from JOLO and Visual Discrimination were only weakly correlated. NAB Visual Discrimination subtest was moderately correlated with overall cognitive functioning, whereas the JOLO was not. Despite apparent virtues, results do not support NAB Visual Discrimination as an alternative to JOLO in assessing visuospatial functioning in PD. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cognitive Control Network Contributions to Memory-Guided Visual Attention.
Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C
2016-05-01
Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network(CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Guida, Alessandro; van Dijck, Jean-Philippe; Abrahamse, Elger
2017-05-01
In a recent study, Kreitz et al. (Psychological Research 79:1034-1041, 2015) reported on a relationship between verbal working memory capacity and visuo-spatial attentional breadth. The authors hinted at attentional control to be the major link underlying this relationship. We put forward an alternative explanation by framing it within the context of a recent theory on serial order in memory: verbal item sequences entering in working memory are coded by adding a spatial context that can be derived from reading/writing habits. The observation by Kreitz et al. (Psychological Research 79:1034-1041, 2015) enriches this framework by suggesting that a larger visuo-spatial attentional breadth allows for internal coding of the verbal items in a more (spatially) distinct manner-thereby increasing working memory performance. As such, Kreitz et al. (Psychological Research 79:1034-1041, 2015) is the first study revealing a functional link between visuo-spatial attentional breadth and verbal working memory size, which strengthens spatial accounts of serial order coding in working memory.
The Visuospatial Dimension of Writing
ERIC Educational Resources Information Center
Olive, Thierry; Passerault, Jean-Michel
2012-01-01
The authors suggest that writing should be conceived of not only as a verbal activity but also as a visuospatial activity, in which writers process and construct visuospatial mental representations. After briefly describing research on visuospatial cognition, they look at how cognitive researchers have investigated the visuospatial dimension of…
Effortful Retrieval Reduces Hippocampal Activity and Impairs Incidental Encoding
Reas, Emilie T.; Brewer, James B.
2014-01-01
Functional imaging studies frequently report that the hippocampus is engaged by successful episodic memory retrieval. However, considering that concurrent encoding of the background environment occurs during retrieval and influences medial temporal lobe activity, it is plausible that hippocampal encoding functions are reduced with increased attentional engagement during effortful retrieval. Expanding upon evidence that retrieval efforts suppress activity in hippocampal regions implicated in encoding, this study examines the influence of retrieval effort on encoding performance and the interactive effects of encoding and retrieval on hippocampal and neocortical activity. Functional magnetic resonance imaging was conducted while subjects performed a word recognition task with incidental picture encoding. Both lower memory strength and increased search duration were associated with encoding failure and reduced hippocampal and default network activity. Activity in the anterior hippocampus tracked encoding, which was more strongly deactivated when incidental encoding was unsuccessful. These findings highlight potential contributions from background encoding processes to hippocampal activations during neuroimaging studies of episodic memory retrieval. PMID:23378272
Hippocampal-neocortical functional reorganization underlies children's cognitive development.
Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod
2014-09-01
The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.
Bilateral Hippocampal Dysfunction in Schizophrenia
Hanlon, Faith M.; Houck, Jon M.; Pyeatt, Clinton J.; Lundy, S. Laura; Euler, Matthew J.; Weisend, Michael P.; Thoma, Robert J.; Bustillo, Juan R.; Miller, Gregory A.; Tesche, Claudia D.
2014-01-01
The hippocampus has long been known to be important for memory, with the right hippocampus particularly implicated in nonverbal/visuo-spatial memory and left in verbal/narrative or episodic memory. Despite this hypothesized lateralized functional difference, there has not been a single task that has been shown to activate both the right and left hippocampus differentially, dissociating the two, using neuroimaging. The transverse patterning (TP) task is a strong candidate for this purpose, as it has been shown in human and nonhuman animal studies to theoretically and empirically depend on the hippocampus. In TP, participants choose between stimuli presented in pairs, with the correct choice being a function of the specific pairing. In this project, TP was used to assess lateralized hippocampal function by varying its dependence on verbal material, with the goal of dissociating the two hippocampi. Magnetoencephalographic (MEG) data were collected while controls performed verbal and nonverbal versions of TP in order to verify and validate lateralized activation within the hippocampi. Schizophrenia patients were evaluated to determine whether they exhibited a lateralized hippocampal deficit. As hypothesized, patients’ mean level of behavioral performance was poorer than controls’ on both verbal and nonverbal TP. In contrast, patients had no decrement in performance on a verbal and nonverbal non-hippocampal-dependent matched control task. Also, controls but not patients showed more right hippocampal activation during nonverbal TP and more left hippocampal activation during verbal TP. These data demonstrate the capacity to assess lateralized hippocampal function and suggest a bilateral hippocampal behavioral and activation deficit in schizophrenia. PMID:21763438
Human hippocampus associates information in memory
Henke, Katharina; Weber, Bruno; Kneifel, Stefan; Wieser, Heinz Gregor; Buck, Alfred
1999-01-01
The hippocampal formation, one of the most complex and vulnerable brain structures, is recognized as a crucial brain area subserving human long-term memory. Yet, its specific functions in memory are controversial. Recent experimental results suggest that the hippocampal contribution to human memory is limited to episodic memory, novelty detection, semantic (deep) processing of information, and spatial memory. We measured the regional cerebral blood flow by positron-emission tomography while healthy volunteers learned pairs of words with different learning strategies. These led to different forms of learning, allowing us to test the degree to which they challenge hippocampal function. Neither novelty detection nor depth of processing activated the hippocampal formation as much as semantically associating the primarily unrelated words in memory. This is compelling evidence for another function of the human hippocampal formation in memory: establishing semantic associations. PMID:10318979
Chao, Linda L.; Rothlind, Johannes C.; Cardenas, Valerie A.; Meyerhoff, Dieter J.; Weiner, Michael W.
2010-01-01
Background Potentially more than 100,000 US troops may have been exposed to the organophosphate chemical warfare agents sarin (GB) and cyclosarin (GF) when a munitions dump at Khamisiyah, Iraq was destroyed during the Gulf War (GW) in 1991. Although little is known about the long-term neurobehavioral or neurophysiological effects of low-dose exposure to GB/GF in humans, recent studies of GW veterans from the Devens Cohort suggest decrements in certain cognitive domains and atrophy in brain white matter occur individuals with higher estimated levels of presumed GB/GF exposure. The goal of the current study is to determine the generalizability of these findings in another cohort of GW veterans with suspected GB/GF exposure. Methods Neurobehavioral and imaging data collected in a study on Gulf War Illness between 2002–2007 were used in this study. We focused on the data of 40 GW-deployed veterans categorized as having been exposed to GB/GF at Khamisiyah, Iraq and 40 matched controls. Magnetic resonance images (MRI) of the brain were analyzed using automated and semi-automated image processing techniques that produced volumetric measurements of gray matter (GM), white matter (WM), cerebrospinal fluid (CSF) and hippocampus. Results GW veterans with suspected GB/GF exposure had reduced total GM and hippocampal volumes compared to their unexposed peers (p≤0.01). Although there were no group differences in measures of cognitive function or total WM volume, there were significant, positive correlations between total WM volume and measures of executive function and visuospatial abilities in veterans with suspected GB/GF exposure. Conclusions These findings suggest that low-level exposure to GB/GF can have deleterious effects on brain structure and brain function more than decade later. PMID:20580739
Tam, Shu K.E.; Hasan, Sibah; Brown, Laurence A.; Jagannath, Aarti; Hankins, Mark W.; Foster, Russell G.; Vyazovskiy, Vladyslav V.
2017-01-01
Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod). PMID:28264977
Associative reinstatement memory measures hippocampal function in Parkinson's Disease.
Cohn, Melanie; Giannoylis, Irene; De Belder, Maya; Saint-Cyr, Jean A; McAndrews, Mary Pat
2016-09-01
In Parkinson's Disease (PD), hippocampal atrophy is associated with rapid cognitive decline. Hippocampal function is typically assessed using memory tests but current clinical tools (e.g., free recall) also rely on executive functions or use material that is not optimally engaging hippocampal memory networks. Because of the ubiquity of executive dysfunction in PD, our ability to detect true memory deficits is suboptimal. Our previous behavioural and neuroimaging work in other populations suggests that an experimental memory task - Associative Reinstatement Memory (ARM) - may prove useful in investigating hippocampal function in PD. In this study, we investigated whether ARM is compromised in PD and we assessed its convergent and divergent validity by comparing it to standardized measures of memory and of attention and executive functioning in PD, respectively. Using fMRI, we also investigated whether performance in PD relates to degree of hippocampal engagement. Fifteen participants with PD and 13 age-matched healthy controls completed neuropsychological testing as well as an ARM fMRI recognition paradigm in which they were instructed to identify word pairs comprised of two studied words (intact or rearranged pairs) and those containing at least one new word (new or half new pairs). ARM is measured by the differences in hit rates between intact and rearranged pairs. Behaviourally, ARM was poorer in PD relative to controls and was correlated with verbal memory measures, but not with attention or executive functioning in the PD group. Hippocampal activation associated with ARM was reduced in PD relative to controls and covaried with ARM scores in both groups. To conclude, ARM is a sensitive measure of hippocampal memory function that is unaffected by attention or executive dysfunction in PD. Our study highlights the benefit of integrating cognitive neuroscience frameworks and novel experimental tasks to improve the practice of clinical neuropsychology in PD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Memory and Space: Towards an Understanding of the Cognitive Map.
Schiller, Daniela; Eichenbaum, Howard; Buffalo, Elizabeth A; Davachi, Lila; Foster, David J; Leutgeb, Stefan; Ranganath, Charan
2015-10-14
More than 50 years of research have led to the general agreement that the hippocampus contributes to memory, but there has been a major schism among theories of hippocampal function over this time. Some researchers argue that the hippocampus plays a broad role in episodic and declarative memory, whereas others argue for a specific role in the creation of spatial cognitive maps and navigation. Although both views have merit, neither provides a complete account of hippocampal function. Guided by recent reviews that attempt to bridge between these views, here we suggest that reconciliation can be accomplished by exploring hippocampal function from the perspective of Tolman's (1948) original conception of a cognitive map as organizing experience and guiding behavior across all domains of cognition. We emphasize recent studies in animals and humans showing that hippocampal networks support a broad range of domains of cognitive maps, that these networks organize specific experiences within the contextually relevant map, and that network activity patterns reflect behavior guided through cognitive maps. These results are consistent with a framework that bridges theories of hippocampal function by conceptualizing the hippocampus as organizing incoming information within the context of a multidimensional cognitive map of spatial, temporal, and associational context. Research of hippocampal function is dominated by two major views. The spatial view argues that the hippocampus tracks routes through space, whereas the memory view suggests a broad role in declarative memory. Both views rely on considerable evidence, but neither provides a complete account of hippocampal function. Here we review evidence that, in addition to spatial context, the hippocampus encodes a wide variety of information about temporal and situational context, about the systematic organization of events in abstract space, and about routes through maps of cognition and space. We argue that these findings cross the boundaries of the memory and spatial views and offer new insights into hippocampal function as a system supporting a broad range of cognitive maps. Copyright © 2015 the authors 0270-6474/15/3513904-08$15.00/0.
Valcarcel-Ares, Marta Noa; Tucsek, Zsuzsanna; Kiss, Tamas; Giles, Cory B; Tarantini, Stefano; Yabluchanskiy, Andriy; Balasubramanian, Priya; Gautam, Tripti; Galvan, Veronica; Ballabh, Praveen; Richardson, Arlan; Freeman, Willard M; Wren, Jonathan D; Deak, Ferenc; Ungvari, Zoltan; Csiszar, Anna
2018-06-08
There is strong evidence that obesity has deleterious effects on cognitive function of older adults. Previous preclinical studies demonstrate that obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood brain barrier disruption, promoting neuroinflammation and oxidative stress. To test the hypothesis that synergistic effects of obesity and aging on inflammatory processes exert deleterious effects on hippocampal function, young and aged C57BL/6 mice were rendered obese by chronic feeding of a high fat diet followed by assessment of learning and memory function, measurement of hippocampal long-term potentiation (LTP), assessment of changes in hippocampal expression of genes relevant for synaptic function and determination of synaptic density. Because there is increasing evidence that altered production of lipid mediators modulate LTP, neuroinflammation and neurovascular coupling responses, the effects of obesity on hippocampal levels of relevant eicosanoid mediators were also assessed. We found that aging exacerbates obesity-induced microglia activation, which is associated with deficits in hippocampal-dependent learning and memory tests, impaired LTP, decreased synaptic density and dysregulation of genes involved in regulation of synaptic plasticity. Obesity in aging also resulted in an altered hippocampal eicosanoid profile, including decreases in vasodilator and pro-LTP epoxy-eicosatrienoic acids (EETs). Collectively, our results taken together with previous findings suggest that obesity in aging promotes hippocampal inflammation, which in turn may contribute to synaptic dysfunction and cognitive impairment.
Baumann, Oliver; Mattingley, Jason B
2016-02-24
The human parahippocampal cortex has been ascribed central roles in both visuospatial and mnemonic processes. More specifically, evidence suggests that the parahippocampal cortex subserves both the perceptual analysis of scene layouts as well as the retrieval of associative contextual memories. It remains unclear, however, whether these two functional roles can be dissociated within the parahippocampal cortex anatomically. Here, we provide evidence for a dissociation between neural activation patterns associated with visuospatial analysis of scenes and contextual mnemonic processing along the parahippocampal longitudinal axis. We used fMRI to measure parahippocampal responses while participants engaged in a task that required them to judge the contextual relatedness of scene and object pairs, which were presented either as words or pictures. Results from combined factorial and conjunction analyses indicated that the posterior section of parahippocampal cortex is driven predominantly by judgments associated with pictorial scene analysis, whereas its anterior section is more active during contextual judgments regardless of stimulus category (scenes vs objects) or modality (word vs picture). Activation maxima associated with visuospatial and mnemonic processes were spatially segregated, providing support for the existence of functionally distinct subregions along the parahippocampal longitudinal axis and suggesting that, in humans, the parahippocampal cortex serves as a functional interface between perception and memory systems. Copyright © 2016 the authors 0270-6474/16/362536-07$15.00/0.
Bernard, Florian; Lemée, Jean-Michel; Ter Minassian, Aram; Menei, Philippe
2018-05-12
The nondominant hemisphere (usually the right) is responsible for primary cognitive functions such as visuospatial and social cognition. Awake surgery using direct electric stimulation for right cerebral tumor removal remains challenging because of the complexity of the functional anatomy and difficulties in adapting standard bedside tasks to awake surgery conditions. An understanding of semiology and anatomic bases, along with an analysis of the available cognitive tasks for visuospatial and social cognition per operative mapping allow neurosurgeons to better appreciate the functional anatomy of the right hemisphere and its relevance to tumor surgery. In this article, the first of a 2-part review, we discuss the anatomic and functional basis of right hemisphere function. Whereas part II of the review focuses primarily on semiology and surgical management of right-sided tumors under awake conditions, this article provides a comprehensive review of knowledge underpinning awake surgery on the right hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.
Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms.
Mahmoud, Rand; Wainwright, Steven R; Galea, Liisa A M
2016-04-01
Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
[Cognitive and functional decline in the stage previous to the diagnosis of Alzheimers disease].
García-Sánchez, C; Estévez-González, A; Boltes, A; Otermín, P; López-Góngora, M; Gironell, A; Kulisevsky, J
2003-12-01
The decline in the phase prior to diagnosis of Alzheimers disease (AD) is not well known, although this knowledge is necessary to evaluate the efficiency of new drugs that can influence in disease course prior to diagnosis. To contribute to better knowledge of the decline prior to diagnosis, we have investigated the cognitive and functional deterioration for 2-3 years before the probable AD diagnosis was established. We compared results obtained by 17 control subjects and 27 patients at the time of diagnosis of a probable AD with results obtained 2-3 years before (interval of 27.7 4 months). We compared memory functions (logical, recognition, learning and autobiographical memory), naming, visual and visuospatial gnosis, visuoconstructive praxis, verbal fluency and the Mini-Mental State Examination (MMSE), Informant Questionnaire and Blessed's Scale scores. Performance of control subjects did not change. AD patients showed a significant decline in scores, except for verbal fluency. In order of importance, cognitive decline was more marked in scores of learning memory, visuospatial gnosis, autobiographical memory and visuoconstructive praxis. Decline prior to diagnosis of AD is characterized by an important learning memory impairment. Deterioration of visuospatial gnosis and visuoconstructive praxis is greater than deterioration of MMSE and Informant Questionnaire scores.
de Jong, Christien G W; Van De Voorde, Séverine; Roeyers, Herbert; Raymaekers, Ruth; Allen, Albert J; Knijff, Simone; Verhelst, Helene; Temmink, Alfons H; Smit, Leo M E; Rodriques-Pereira, Rob; Vandenberghe, Dirk; van Welsen, Inge; ter Schuren, Liesbeth; Al-Hakim, Mazim; Amin, Azad; Vlasveld, Laurens; Oosterlaan, Jaap; Sergeant, Joseph A
2009-12-01
The effects of a promising pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD), atomoxetine, were studied on executive functions in both ADHD and reading disorder (RD) because earlier research demonstrated an overlap in executive functioning deficits in both disorders. In addition, the effects of atomoxetine were explored on lexical decision. Sixteen children with ADHD, 20 children with ADHD + RD, 21 children with RD, and 26 normal controls were enrolled in a randomized placebo-controlled crossover study. Children were measured on visuospatial working memory, inhibition, and lexical decision on the day of randomization and following two 28-day medication periods. Children with ADHD + RD showed improved visuospatial working memory performance and, to a lesser extent, improved inhibition following atomoxetine treatment compared to placebo. No differential effects of atomoxetine were found for lexical decision in comparison to placebo. In addition, no effects of atomoxetine were demonstrated in the ADHD and RD groups. Atomoxetine improved visuospatial working memory and to a lesser degree inhibition in children with ADHD + RD, which suggests differential developmental pathways for co-morbid ADHD + RD as compared to ADHD and RD alone. B4Z-MC-LYCK, NCT00191906; http://clinicaltrials.gov/ct2/show/NCT00191906.
Reas, Emilie T; Brewer, James B
2013-11-01
Functional neuroimaging studies have increasingly noted hippocampal activation associated with a variety of cognitive functions--such as decision making, attention, perception, incidental learning, prediction, and working memory--that have little apparent relation to declarative memory. Such findings might be difficult to reconcile with classical hippocampal lesion studies that show remarkable sparing of cognitive functions outside the realm of declarative memory. Even the oft-reported hippocampal activations during confident episodic retrieval are not entirely congruent with evidence that hippocampal lesions reliably impair encoding but inconsistently affect retrieval. Here we explore the conditions under which the hippocampus responds during episodic recall and recognition. Our findings suggest that anterior hippocampal activity may be related to the imbalance of incidental encoding across tasks and conditions rather than due to retrieval per se. Incidental encoding and hippocampal activity may be reduced during conditions where retrieval requires greater attentional engagement. During retrieval, anterior hippocampal activity decreases with increasing search duration and retrieval effort, and this deactivation corresponds with a coincident impaired encoding of the external environment (Israel, Seibert, Black, & Brewer, 2010; Reas & Brewer, 2013; Reas, Gimbel, Hales, & Brewer, 2011). In light of this emerging evidence, we discuss the proposal that some hippocampal activity observed during memory retrieval, or other non-memory conditions, may in fact be attributable to concomitant encoding activity that is regulated by the attentional demands of the principal task. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory.
Parihar, V K; Hattiangady, B; Kuruba, R; Shuai, B; Shetty, A K
2011-02-01
Maintenance of neurogenesis in adult hippocampus is important for functions such as mood and memory. As exposure to unpredictable chronic stress (UCS) results in decreased hippocampal neurogenesis, enhanced depressive- and anxiety-like behaviors, and memory dysfunction, it is believed that declined hippocampal neurogenesis mainly underlies the behavioral and cognitive abnormalities after UCS. However, the effects of predictable chronic mild stress (PCMS) such as the routine stress experienced in day-to-day life on functions such as mood, memory and hippocampal neurogenesis are unknown. Using FST and EPM tests on a prototype of adult rats, we demonstrate that PCMS (comprising 5 min of daily restraint stress for 28 days) decreases depressive- and anxiety-like behaviors for prolonged periods. Moreover, we illustrate that decreased depression and anxiety scores after PCMS are associated with ~1.8-fold increase in the production and growth of new neurons in the hippocampus. Additionally, we found that PCMS leads to enhanced memory function in WMT as well as NORT. Collectively, these findings reveal that PCMS is beneficial to adult brain function, which is exemplified by increased hippocampal neurogenesis and improved mood and cognitive function.
On the Value of Reptilian Brains to Map the Evolution of the Hippocampal Formation.
Reiter, Sam; Liaw, Hua-Peng; Yamawaki, Tracy M; Naumann, Robert K; Laurent, Gilles
2017-01-01
Our ability to navigate through the world depends on the function of the hippocampus. This old cortical structure plays a critical role in spatial navigation in mammals and in a variety of processes, including declarative and episodic memory and social behavior. Intense research has revealed much about hippocampal anatomy, physiology, and computation; yet, even intensely studied phenomena such as the shaping of place cell activity or the function of hippocampal firing patterns during sleep remain incompletely understood. Interestingly, while the hippocampus may be a 'higher order' area linked to a complex cortical hierarchy in mammals, it is an old cortical structure in evolutionary terms. The reptilian cortex, structurally much simpler than the mammalian cortex and hippocampus, therefore presents a good alternative model for exploring hippocampal function. Here, we trace common patterns in the evolution of the hippocampus of reptiles and mammals and ask which parts can be profitably compared to understand functional principles. In addition, we describe a selection of the highly diverse repertoire of reptilian behaviors to illustrate the value of a comparative approach towards understanding hippocampal function. © 2017 S. Karger AG, Basel.
McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Leemans, Alexander; Gallagher, Louise
2013-01-01
Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD) but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were (1) to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM) in ASD and (2) to examine the relationships between aberrant neural connectivity and behavior in ASD. Twenty-two individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution (CSD) based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19) and five paired regions: left caudate head, left caudate body, left uncus, left thalamus, and left cuneus. Measures of WM microstructural organization were extracted from these tracts. Fractional anisotropy (FA) reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant WM microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute (1) to abnormal functional connectivity and (2) to atypical visuospatial processing in ASD. PMID:24133425
Giglhuber, Katrin; Maurer, Stefanie; Zimmer, Claus; Meyer, Bernhard; Krieg, Sandro M
2017-02-01
In clinical practice, repetitive navigated transcranial magnetic stimulation (rTMS) is of particular interest for non-invasive mapping of cortical language areas. Yet, rTMS studies try to detect further cortical functions. Damage to the underlying network of visuospatial attention function can result in visual neglect-a severe neurological deficit and influencing factor for a significantly reduced functional outcome. This investigation aims to evaluate the use of rTMS for evoking visual neglect in healthy volunteers and the potential of specifically locating cortical areas that can be assigned for the function of visuospatial attention. Ten healthy, right-handed subjects underwent rTMS visual neglect mapping. Repetitive trains of 5 Hz and 10 pulses were applied to 52 pre-defined cortical spots on each hemisphere; each cortical spot was stimulated 10 times. Visuospatial attention was tested time-locked to rTMS pulses by a landmark task. Task pictures were displayed tachistoscopically for 50 ms. The subjects' performance was analyzed by video, and errors were referenced to cortical spots. We observed visual neglect-like deficits during the stimulation of both hemispheres. Errors were categorized into leftward, rightward, and no response errors. Rightward errors occurred significantly more often during stimulation of the right hemisphere than during stimulation of the left hemisphere (mean rightward error rate (ER) 1.6 ± 1.3 % vs. 1.0 ± 1.0 %, p = 0.0141). Within the left hemisphere, we observed predominantly leftward errors rather than rightward errors (mean leftward ER 2.0 ± 1.3 % vs. rightward ER 1.0 ± 1.0 %; p = 0.0005). Visual neglect can be elicited non-invasively by rTMS, and cortical areas eloquent for visuospatial attention can be detected. Yet, the correlation of this approach with clinical findings has to be shown in upcoming steps.
Visuo-spatial ability in colonoscopy simulator training.
Luursema, Jan-Maarten; Buzink, Sonja N; Verwey, Willem B; Jakimowicz, J J
2010-12-01
Visuo-spatial ability is associated with a quality of performance in a variety of surgical and medical skills. However, visuo-spatial ability is typically assessed using Visualization tests only, which led to an incomplete understanding of the involvement of visuo-spatial ability in these skills. To remedy this situation, the current study investigated the role of a broad range of visuo-spatial factors in colonoscopy simulator training. Fifteen medical trainees (no clinical experience in colonoscopy) participated in two psycho-metric test sessions to assess four visuo-spatial ability factors. Next, participants trained flexible endoscope manipulation, and navigation to the cecum on the GI Mentor II simulator, for four sessions within 1 week. Visualization, and to a lesser degree Spatial relations were the only visuo-spatial ability factors to correlate with colonoscopy simulator performance. Visualization additionally covaried with learning rate for time on task on both simulator tasks. High Visualization ability indicated faster exercise completion. Similar to other endoscopic procedures, performance in colonoscopy is positively associated with Visualization, a visuo-spatial ability factor characterized by the ability to mentally manipulate complex visuo-spatial stimuli. The complexity of the visuo-spatial mental transformations required to successfully perform colonoscopy is likely responsible for the challenging nature of this technique, and should inform training- and assessment design. Long term training studies, as well as studies investigating the nature of visuo-spatial complexity in this domain are needed to better understand the role of visuo-spatial ability in colonoscopy, and other endoscopic techniques.
Wang, Yinan; Song, Yiying; Li, Xueting; Zhang, Lin; Liu, Jia
2017-01-01
Parental care results in increased hippocampal volumes through adaptive stress responses in developing animals. However, human studies have not yet provided consistent findings analogous to the animal literature, possibly because parental care in humans is likely intermingled with parental overprotection, as suggested by the optimal parenting theory. Here, we tested the hypothesis that the effect of parental care on offspring hippocampal volume varies as a function of parental overprotection with a large cohort of young adult participants (N = 257). Consistent with some previous human studies, we found that parental care in childhood alone had little association with the hippocampal volume in adulthood. However, when parental overprotection was low, parental care was positively correlated with offspring hippocampal volume, whereas there was no association between parental care and offspring hippocampal volume when parental overprotection was high. Thus, an interaction exists between parental care and overprotection in human’s hippocampal development, which contributes to the elucidation of the complex relationship between brain structure and environmental factors. PMID:28401913
Wang, Yinan; Song, Yiying; Li, Xueting; Zhang, Lin; Liu, Jia
2017-04-12
Parental care results in increased hippocampal volumes through adaptive stress responses in developing animals. However, human studies have not yet provided consistent findings analogous to the animal literature, possibly because parental care in humans is likely intermingled with parental overprotection, as suggested by the optimal parenting theory. Here, we tested the hypothesis that the effect of parental care on offspring hippocampal volume varies as a function of parental overprotection with a large cohort of young adult participants (N = 257). Consistent with some previous human studies, we found that parental care in childhood alone had little association with the hippocampal volume in adulthood. However, when parental overprotection was low, parental care was positively correlated with offspring hippocampal volume, whereas there was no association between parental care and offspring hippocampal volume when parental overprotection was high. Thus, an interaction exists between parental care and overprotection in human's hippocampal development, which contributes to the elucidation of the complex relationship between brain structure and environmental factors.
McDonald, Alexander J; Mott, David D
2017-03-01
The amygdalar nuclear complex and hippocampal/parahippocampal region are key components of the limbic system that play a critical role in emotional learning and memory. This Review discusses what is currently known about the neuroanatomy and neurotransmitters involved in amygdalo-hippocampal interconnections, their functional roles in learning and memory, and their involvement in mnemonic dysfunctions associated with neuropsychiatric and neurological diseases. Tract tracing studies have shown that the interconnections between discrete amygdalar nuclei and distinct layers of individual hippocampal/parahippocampal regions are robust and complex. Although it is well established that glutamatergic pyramidal cells in the amygdala and hippocampal region are the major players mediating interconnections between these regions, recent studies suggest that long-range GABAergic projection neurons are also involved. Whereas neuroanatomical studies indicate that the amygdala only has direct interconnections with the ventral hippocampal region, electrophysiological studies and behavioral studies investigating fear conditioning and extinction, as well as amygdalar modulation of hippocampal-dependent mnemonic functions, suggest that the amygdala interacts with dorsal hippocampal regions via relays in the parahippocampal cortices. Possible pathways for these indirect interconnections, based on evidence from previous tract tracing studies, are discussed in this Review. Finally, memory disorders associated with dysfunction or damage to the amygdala, hippocampal region, and/or their interconnections are discussed in relation to Alzheimer's disease, posttraumatic stress disorder (PTSD), and temporal lobe epilepsy. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Scharre, Douglas W; Chang, Shu-Ing; Nagaraja, Haikady N; Park, Ariane; Adeli, Anahita; Agrawal, Punit; Kloos, Anne; Kegelmeyer, Deb; Linder, Shannon; Fritz, Nora; Kostyk, Sandra K; Kataki, Maria
2016-10-04
Limited data compares clinical profiles of Lewy Body Dementia (LBD) with Alzheimer's disease (AD) and Parkinson's disease (PD). Twenty-one mildly demented ambulatory LBD subjects were individually matched by MMSE score with 21 AD subjects and by UPDRS motor score with 21 PD subjects. Matched by age, gender, education, and race, pairs were compared using cognitive, functional, behavioral, and motor measures. LBD group performed worse than PD on axial motor, gait, and balance measures. AD had more amnesia and orientation impairments, but less executive and visuospatial deficits than LBD subjects. LBD group had more sleepiness, cognitive/behavioral fluctuations, hallucinations, and sleep apnea than AD or PD. Axial motor, gait, and balance disturbances correlated with executive, visuospatial, and global cognition deficits. LBD is differentiated from AD and PD by retrieval memory, visuospatial, and executive deficits; axial motor, gait and balance impairments; sleepiness, cognitive/behavioral fluctuations, hallucinations, and sleep apnea.
Yoshino, Yuta; Mori, Takaaki; Yoshida, Taku; Toyota, Yasutaka; Shimizu, Hideaki; Iga, Jun-ichi; Nishitani, Shusaku; Ueno, Shu-ichi
2017-01-01
Objective Donepezil is used to improve cognitive impairment of dementia with Lewy bodies (DLB). Visuo-spatial dysfunction is a well-known symptom of DLB. Non-verbal Raven’s Colored Progressive Matrices (RCPM) were used to assess both visual perception and reasoning ability in DLB subjects treated with donepezil. Methods Twenty-one DLB patients (mean age, 78.7±4.5 years) were enrolled. RCPM assessment was performed at the time of starting donepezil and within one year after starting donepezil. Results There were significant improvements of RCPM in the total scores between one year donepezil treatment (p=0.013), in both Set A score (p=0.002) and Set AB score (p=0.015), but trend in the Set B score (p=0.083). Conclusion Donepezil is useful for improving visuo-spatial impairment in DLB, but not for problem-solving impairment. PMID:28783933
Kremmyda, Olympia; Hüfner, Katharina; Flanagin, Virginia L.; Hamilton, Derek A.; Linn, Jennifer; Strupp, Michael; Jahn, Klaus; Brandt, Thomas
2016-01-01
Bilateral vestibulopathy (BVP) is defined as the impairment or loss of function of either the labyrinths or the eighth nerves. Patients with total BVP due to bilateral vestibular nerve section exhibit difficulties in spatial memory and navigation and show a loss of hippocampal volume. In clinical practice, most patients do not have a complete loss of function but rather an asymmetrical residual functioning of the vestibular system. The purpose of the current study was to investigate navigational ability and hippocampal atrophy in BVP patients with residual vestibular function. Fifteen patients with BVP and a group of age- and gender- matched healthy controls were examined. Self-reported questionnaires on spatial anxiety and wayfinding were used to assess the applied strategy of wayfinding and quality of life. Spatial memory and navigation were tested directly using a virtual Morris Water Maze Task. The hippocampal volume of these two groups was evaluated by voxel-based morphometry. In the patients, the questionnaire showed a higher spatial anxiety and the Morris Water Maze Task a delayed spatial learning performance. MRI revealed a significant decrease in the gray matter mid-hippocampal volume (Left: p = 0.006, Z = 4.58, Right: p < 0.001, Z = 3.63) and posterior parahippocampal volume (Right: p = 0.005, Z = 4.65, Left: p < 0.001, Z = 3.87) compared to those of healthy controls. In addition, a decrease in hippocampal formation volume correlated with a more dominant route-finding strategy. Our current findings demonstrate that even partial bilateral vestibular loss leads to anatomical and functional changes in the hippocampal formation and objective and subjective behavioral deficits. PMID:27065838
Adams, C E; Yonchek, J C; Schulz, K M; Graw, S L; Stitzel, J; Teschke, P U; Stevens, K E
2012-04-05
The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter GABA and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous (Het) deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism, and epilepsy. Each of these diseases are characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing, and increased hippocampal CA3 pyramidal neuron activity in C3H mice Het for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABA(A) receptors, the GABA synthetic enzyme l-glutamic acid decarboxylase-65 (GAD-65), and the vesicular GABA transporter 1 (GAT-1) in wild-type (Chrna7 +/+) and Het (Chrna7 +/-) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female Het C3H α7 mice, whereas GABA(A) receptors were significantly reduced only in male Het C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism, and/or epilepsy. Published by Elsevier Ltd.
Adams, Catherine E.; Yonchek, Joan C.; Schulz, Kalynn M.; Graw, Sharon L.; Stitzel, Jerry; Teschke, Patricia U.; Stevens, Karen E.
2012-01-01
The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism and epilepsy. Each of these diseases is characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing and increased hippocampal CA3 pyramidal neuron activity in C3H mice heterozygous for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABAA receptors, the GABA synthetic enzyme glutamate decarboxylase-65 (GAD-65) and the vesicular GABA transporter GAT-1 in wild type (Chrna7 +/+) and heterozygous (Chrna7 +/−) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female heterozygous C3H α7 mice while GABAA receptors were significantly reduced only in male heterozygous C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism and/or epilepsy. PMID:22314319
Development of hippocampal subfield volumes from 4 to 22 years.
Krogsrud, Stine K; Tamnes, Christian K; Fjell, Anders M; Amlien, Inge; Grydeland, Håkon; Sulutvedt, Unni; Due-Tønnessen, Paulina; Bjørnerud, Atle; Sølsnes, Anne E; Håberg, Asta K; Skrane, Jon; Walhovd, Kristine B
2014-11-01
The hippocampus supports several important cognitive functions known to undergo substantial development during childhood and adolescence, for example, encoding and consolidation of vivid personal memories. However, diverging developmental effects on hippocampal volume have been observed across studies. It is possible that the inconsistent findings may attribute to varying developmental processes and functions related to different hippocampal subregions. Most studies to date have measured global hippocampal volume. We aimed to explore early hippocampal development both globally and regionally within subfields. Using cross-sectional 1.5 T magnetic resonance imaging data from 244 healthy participants aged 4-22 years, we performed automated hippocampal segmentation of seven subfield volumes; cornu ammonis (CA) 1, CA2/3, CA4/dentate gyrus (DG), presubiculum, subiculum, fimbria, and hippocampal fissure. For validation purposes, seven subjects were scanned at both 1.5 and 3 T, and all subfields except fimbria showed strong correlations across field strengths. Effects of age, left and right hemisphere, sex and their interactions were explored. Nonparametric local smoothing models (smoothing spline) were used to depict age-trajectories. Results suggested nonlinear age functions for most subfields where volume increases until 13-15 years, followed by little age-related changes during adolescence. Further, the results showed greater right than left hippocampal volumes that seemed to be augmenting in older age. Sex differences were also found for subfields; CA2/3, CA4/DG, presubiculum, subiculum, and CA1, mainly driven by participants under 13 years. These results provide a detailed characterization of hippocampal subfield development from early childhood. Copyright © 2014 Wiley Periodicals, Inc.
Chareyron, Loïc J; Banta Lavenex, Pamela; Amaral, David G; Lavenex, Pierre
2017-12-01
Hippocampal damage in adult humans impairs episodic and semantic memory, whereas hippocampal damage early in life impairs episodic memory but leaves semantic learning relatively preserved. We have previously shown a similar behavioral dissociation in nonhuman primates. Hippocampal lesion in adult monkeys prevents allocentric spatial relational learning, whereas spatial learning persists following neonatal lesion. Here, we quantified the number of cells expressing the immediate-early gene c-fos, a marker of neuronal activity, to characterize the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion. Ninety minutes before brain collection, three control and four adult monkeys with bilateral neonatal hippocampal lesions explored a novel environment to activate brain structures involved in spatial learning. Three other adult monkeys with neonatal hippocampal lesions remained in their housing quarters. In unlesioned monkeys, we found high levels of c-fos expression in the intermediate and caudal regions of the entorhinal cortex, and in the perirhinal, parahippocampal, and retrosplenial cortices. In lesioned monkeys, spatial exploration induced an increase in c-fos expression in the intermediate field of the entorhinal cortex, the perirhinal, parahippocampal, and retrosplenial cortices, but not in the caudal entorhinal cortex. These findings suggest that different regions of the medial temporal lobe memory system may require different types of interaction with the hippocampus in support of memory. The caudal perirhinal cortex, the parahippocampal cortex, and the retrosplenial cortex may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.
CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus
Soltesz, Ivan; Losonczy, Attila
2018-01-01
Hippocampal network operations supporting spatial navigation and declarative memory are traditionally interpreted in a framework where each hippocampal area, such as the dentate gyrus, CA3, and CA1, consists of homogeneous populations of functionally equivalent principal neurons. However, heterogeneity within hippocampal principal cell populations, in particular within pyramidal cells at the main CA1 output node, is increasingly recognized and includes developmental, molecular, anatomical, and functional differences. Here we review recent progress in the delineation of hippocampal principal cell subpopulations by focusing on radially defined subpopulations of CA1 pyramidal cells, and we consider how functional segregation of information streams, in parallel channels with nonuniform properties, could represent a general organizational principle of the hippocampus supporting diverse behaviors. PMID:29593317
Tsai, Ping-Fang; Yang, Chi-Cheng; Chuang, Chi-Cheng; Huang, Ting-Yi; Wu, Yi-Ming; Pai, Ping-Ching; Tseng, Chen-Kan; Wu, Tung-Ho; Shen, Yi-Liang; Lin, Shinn-Yn
2015-12-10
Whole brain radiotherapy (WBRT) has been the treatment of choice for patients with brain metastases. However, change/decline of neurocognitive functions (NCFs) resulting from impaired hippocampal neurogenesis might occur after WBRT. It is reported that conformal hippocampal sparing would provide the preservation of NCFs. Our study aims to investigate the hippocampal dosimetry and to demonstrate the correlation between hippocampal dosimetry and neurocognitive outcomes in patients receiving hippocampal sparing during WBRT (HS-WBRT). Forty prospectively recruited cancer patients underwent HS-WBRT for therapeutic or prophylactic purposes. Before receiving HS-WBRT, all participants received a battery of baseline neurocognitive assessment, including memory, executive functions and psychomotor speed. The follow-up neurocognitive assessment at 4 months after HS-WBRT was also performed. For the delivery of HS-WBRT, Volumetric Modulated Arc Therapy (VMAT) with two full arcs and two non-coplanar partial arcs was employed. For each treatment planning, dose volume histograms were generated for left hippocampus, right hippocampus, and the composite hippocampal structure respectively. Biologically equivalent doses in 2-Gy fractions (EQD2) assuming an alpha/beta ratio of 2 Gy were computed. To perform analyses addressing the correlation between hippocampal dosimetry and the change in scores of NCFs, pre- and post-HS-WBRT neurocognitive assessments were available in 24 patients in this study. Scores of NCFs were quite stable before and after HS-WBRT in terms of hippocampus-dependent memory. Regarding verbal memory, the corresponding EQD2 values of 0, 10, 50, 80 % irradiating the composite hippocampal structure with <12.60 Gy, <8.81, <7.45 Gy and <5.83 Gy respectively were significantly associated with neurocognitive preservation indicated by the immediate recall of Word List Test of Wechsler Memory Scale-III. According to logistic regression analyses, it was noted that dosimetric parameters specific to left sided hippocampus exerted an influence on immediate recall of verbal memory (adjusted odds ratio, 4.08; p-value, 0.042, predicting patients' neurocognitive decline after receiving HS-WBRT). Functional preservation by hippocampal sparing during WBRT is indeed achieved in our study. Providing that modern VMAT techniques can reduce the dose irradiating bilateral hippocampi below dosimetric threshold, patients should be recruited in prospective trials of hippocampal sparing during cranial irradiation to accomplish neurocognitive preservation while maintaining intracranial control. Current Controlled Trials NCT02504788.
Brown, Louise A; Brockmole, James R; Gow, Alan J; Deary, Ian J
2012-01-01
BACKGROUND/STUDY CONTEXT: Visual working memory (VWM) has been shown to be particularly age sensitive. Determining which measures share variance with this cognitive ability in older adults may help to elucidate the key factors underlying the effects of aging. Predictors of VWM (measured by a modified Visual Patterns Test) were investigated in a subsample (N = 44, mean age = 73) of older adults from the Lothian Birth Cohort 1936 (LBC1936; Deary et al., 2007 , BMC Geriatrics, 7, 28). Childhood intelligence (Moray House Test) and contemporaneous measures of processing speed (four-choice reaction time), executive function (verbal fluency; block design), and spatial working memory (backward spatial span), were assessed as potential predictors. All contemporaneous measures except verbal fluency were significantly associated with VWM, and processing speed had the largest effect size (r = -.53, p < .001). In linear regression analysis, even after adjusting for childhood intelligence, processing speed and the executive measure associated with visuospatial organization accounted for 35% of the variance in VWM. Processing speed may affect VWM performance in older adults via speed of encoding and/or rate of rehearsal, while executive resources specifically associated with visuospatial material are also important.
Degortes, Daniela; Tenconi, Elena; Santonastaso, Paolo; Favaro, Angela
2016-03-01
The aim of the present study was to investigate executive functioning and visuospatial abilities in patients with bulimia nervosa (BN), with a particular interest in exploring the impact of a previous diagnosis of anorexia nervosa (AN). Several neuropsychological tasks were administered to 89 BN patients (52 with a previous history of AN and 37 without previous AN) and 160 healthy women. A poorer performance on set-shifting measures (Wisconsin Card Sorting Test) was found only in BN patients with a previous history of AN. Decision-making abilities (Iowa Gambling Task) were significantly impaired in the whole sample of BN patients, but difficulties were more pronounced in the subgroup with previous AN. Finally, we did not find any differences in response inhibition and visuospatial abilities between the two samples of BN patients and healthy women. Our findings support the idea that cognitive abilities in patients with BN are more impaired in the presence of a prior history of AN. The clinical and treatment implications of our findings should be explored in future studies. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.
ERIC Educational Resources Information Center
Daumas, Stephanie; Halley, Helene; Frances, Bernard; Lassalle, Jean-Michel
2005-01-01
Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting…
Visuospatial Working Memory Capacity Predicts Physiological Arousal in a Narrative Task.
Smithson, Lisa; Nicoladis, Elena
2016-06-01
Physiological arousal that occurs during narrative production is thought to reflect emotional processing and cognitive effort (Bar-Haim et al. in Dev Psychobiol 44:238-249, 2004). The purpose of this study was to determine whether individual differences in visuospatial working memory and/or verbal working memory capacity predict physiological arousal in a narrative task. Visuospatial working memory was a significant predictor of skin conductance level (SCL); verbal working memory was not. When visuospatial working memory interference was imposed, visuospatial working memory was no longer a significant predictor of SCL. Visuospatial interference also resulted in a significant reduction in SCL. Furthermore, listener ratings of narrative quality were contingent upon the visuospatial working memory resources of the narrator. Potential implications for educators and clinical practitioners are discussed.
Spatial working memory in neurofibromatosis 1: Altered neural activity and functional connectivity.
Ibrahim, Amira F A; Montojo, Caroline A; Haut, Kristen M; Karlsgodt, Katherine H; Hansen, Laura; Congdon, Eliza; Rosser, Tena; Bilder, Robert M; Silva, Alcino J; Bearden, Carrie E
2017-01-01
Neurofibromatosis Type 1 (NF1) is a genetic disorder that disrupts central nervous system development and neuronal function. Cognitively, NF1 is characterized by difficulties with executive control and visuospatial abilities. Little is known about the neural substrates underlying these deficits. The current study utilized Blood-Oxygen-Level-Dependent (BOLD) functional MRI (fMRI) to explore the neural correlates of spatial working memory (WM) deficits in patients with NF1. BOLD images were acquired from 23 adults with NF1 (age M = 32.69; 61% male) and 25 matched healthy controls (age M = 33.08; 64% male) during an in-scanner visuo-spatial WM task. Whole brain functional and psycho-physiological interaction analyses were utilized to investigate neural activity and functional connectivity, respectively, during visuo-spatial WM performance. Participants also completed behavioral measures of spatial reasoning and verbal WM. Relative to healthy controls, participants with NF1 showed reduced recruitment of key components of WM circuitry, the left dorsolateral prefrontal cortex and right parietal cortex. In addition, healthy controls exhibited greater simultaneous deactivation between the posterior cingulate cortex (PCC) and temporal regions than NF1 patients. In contrast, NF1 patients showed greater PCC and bilateral parietal connectivity with visual cortices as well as between the PCC and the cerebellum. In NF1 participants, increased functional coupling of the PCC with frontal and parietal regions was associated with better spatial reasoning and WM performance, respectively; these relationships were not observed in controls. Dysfunctional engagement of WM circuitry, and aberrant functional connectivity of 'task-negative' regions in NF1 patients may underlie spatial WM difficulties characteristic of the disorder.
ERIC Educational Resources Information Center
Alloway, T. P.
2010-01-01
Background: The aim of the present study was to investigate the following issues: (1) Do students with borderline intellectual functioning have a pervasive pattern of impaired working memory skills across both verbal and visuo-spatial domains? (2) Is there evidence for impairment in executive function skills, and which tasks indicate greater…
Eyre, Harris A; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M; Cyr, Natalie St; Narr, Katherine; Baune, Bernhard T; Khalsa, Dharma S; Lavretsky, Helen
2016-01-01
No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active "gold-standard" control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies.
Motor and executive function at 6 years of age after extremely preterm birth.
Marlow, Neil; Hennessy, Enid M; Bracewell, Melanie A; Wolke, Dieter
2007-10-01
Studies of very preterm infants have demonstrated impairments in multiple neurocognitive domains. We hypothesized that neuromotor and executive-function deficits may independently contribute to school failure. We studied children who were born at < or = 25 completed weeks' gestation in the United Kingdom and Ireland in 1995 at early school age. Children underwent standardized cognitive and neuromotor assessments, including the Kaufman Assessment Battery for Children and NEPSY, and a teacher-based assessment of academic achievement. Of 308 surviving children, 241 (78%) were assessed at a median age of 6 years 4 months. Compared with 160 term classmates, 180 extremely preterm children without cerebral palsy and attending mainstream school performed less well on 3 simple motor tasks: posting coins, heel walking, and 1-leg standing. They more frequently had non-right-hand preferences (28% vs 10%) and more associated/overflow movements during motor tasks. Standardized scores for visuospatial and sensorimotor function performance differed from classmates by 1.6 and 1.1 SDs of the classmates' scores, respectively. These differences attenuated but remained significant after controlling for overall cognitive scores. Cognitive, visuospatial scores, and motor scores explained 54% of the variance in teachers' ratings of performance in the whole set; in the extremely preterm group, additional variance was explained by attention-executive tasks and gender. Impairment of motor, visuospatial, and sensorimotor function, including planning, self-regulation, inhibition, and motor persistence, contributes excess morbidity over cognitive impairment in extremely preterm children and contributes independently to poor classroom performance at 6 years of age.
Nguyen, Tuong-Vi; Lew, Jimin; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Fonov, Vladimir S; Collins, D Louis; Ducharme, Simon; McCracken, James T
2017-02-01
Testosterone is thought to play a crucial role in mediating sexual differentiation of brain structures. Examinations of the cognitive effects of testosterone have also shown beneficial and potentially sex-specific effects on executive function and mnemonic processes. Yet these findings remain limited by an incomplete understanding of the critical timing and brain regions most affected by testosterone, the lack of documented links between testosterone-related structural brain changes and cognition, and the difficulty in distinguishing the effects of testosterone from those of related sex steroids such as of estradiol and dehydroepiandrosterone (DHEA). Here we examined associations between testosterone, cortico-hippocampal structural covariance, executive function (Behavior Rating Inventory of Executive Function) and verbal memory (California Verbal Learning Test-Children's Version), in a longitudinal sample of typically developing children and adolescents 6-22 yo, controlling for the effects of estradiol, DHEA, pubertal stage, collection time, age, handedness, and total brain volume. We found prefrontal-hippocampal covariance to vary as a function of testosterone levels, but only in boys. Boys also showed a specific association between positive prefrontal-hippocampal covariance (as seen at higher testosterone levels) and lower performance on specific components of executive function (monitoring the action process and flexibly shifting between actions). We also found the association between testosterone and a specific aspect of executive function (monitoring) to be significantly mediated by prefrontal-hippocampal structural covariance. There were no significant associations between testosterone-related cortico-hippocampal covariance and verbal memory. Taken together, these findings highlight the developmental importance of testosterone in supporting sexual differentiation of the brain and sex-specific executive function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moustafa, Ahmed A.; Keri, Szabolcs; Herzallah, Mohammad M.; Myers, Catherine E.; Gluck, Mark A.
2010-01-01
Building on our previous neurocomputational models of basal ganglia and hippocampal-region function (and their modulation by dopamine and acetylcholine, respectively), we show here how an integration of these models can inform our understanding of the interaction between the basal ganglia and hippocampal region in associative learning and transfer generalization across various patient populations. As a common test bed for exploring interactions between these brain regions and neuromodulators, we focus on the acquired equivalence task, an associative learning paradigm in which stimuli that have been associated with the same outcome acquire a functional similarity such that subsequent generalization between these stimuli increases. This task has been used to test cognitive dysfunction in various patient populations with damages to the hippocampal region and basal ganglia, including studies of patients with Parkinson’s disease (PD), schizophrenia, basal forebrain amnesia, and hippocampal atrophy. Simulation results show that damage to the hippocampal region—as in patients with hippocampal atrophy (HA), hypoxia, mild Alzheimer’s (AD), or schizophrenia—leads to intact associative learning but impaired transfer generalization performance. Moreover, the model demonstrates how PD and anterior communicating artery (ACoA) aneurysm—two very different brain disorders that affect different neural mechanisms—can have similar effects on acquired equivalence performance. In particular, the model shows that simulating a loss of dopamine function in the basal ganglia module (as in PD) leads to slow acquisition learning but intact transfer generalization. Similarly, the model shows that simulating the loss of acetylcholine in the hippocampal region (as in ACoA aneurysm) also results in slower acquisition learning. We argue from this that changes in associative learning of stimulus-action pathways (in the basal ganglia) or changes in the learning of stimulus representations (in the hippocampal region) can have similar functional effects. PMID:20728258
2017-03-01
breathing capacity (Aim 1) and forelimb function (Aim 2), without systemic hypertension or hippocampal pathology (Aim 3). SPECIFIC AIMS Aim 1 (Florida...benefits. On the other hand, there was no evidence for pathology ( hypertension or hippocampal pathology). We were not able to perform time-series... hypertension or hippocampal (CA1) pathology. However, we did see striking (and surprising) preliminary evidence that prolonged rAIH: 1) reduced volume of the
Visuo-spatial Ability in Individuals with Down Syndrome: Is it Really a Strength?
Yang, Yingying; Conners, Frances A.; Merrill, Edward C.
2014-01-01
Down syndrome (DS) is associated with extreme difficulty in verbal skills and relatively better visuo-spatial skills. Indeed, visuo-spatial ability is often considered a strength in DS. However, it is not clear whether this strength is only relative to the poor verbal skills, or, more impressively, relative to cognitive ability in general. To answer this question, we conducted an extensive literature review of studies on visuo-spatial abilities in people with Down syndrome from January 1987 to May 2013. Based on a general taxonomy of spatial abilities patterned after Lohman, Pellegrino, Alderton, and Regian (1987) and Carroll (1993) and existing studies of DS, we included five different domains of spatial abilities – visuo-spatial memory, visuo-spatial construction, mental rotation, closure, and wayfinding. We evaluated a total of 49 studies including 127 different comparisons. Most comparisons involved a group with DS vs. a group with typical development matched on mental age and compared on a task measuring one of the five visuo-spatial abilities. Although further research is needed for firm conclusions on some visuo-spatial abilities, there was no evidence that visuo-spatial ability is a strength in DS relative to general cognitive ability. Rather, the review suggests an uneven profile of visuo-spatial abilities in DS in which some abilities are commensurate with general cognitive ability level, and others are below. PMID:24755229
NASA Astrophysics Data System (ADS)
Likova, Lora T.
2015-03-01
This study is based on the recent discovery of massive and well-structured cross-modal memory activation generated in the primary visual cortex (V1) of totally blind people as a result of novel training in drawing without any vision (Likova, 2012). This unexpected functional reorganization of primary visual cortex was obtained after undergoing only a week of training by the novel Cognitive-Kinesthetic Method, and was consistent across pilot groups of different categories of visual deprivation: congenitally blind, late-onset blind and blindfolded (Likova, 2014). These findings led us to implicate V1 as the implementation of the theoretical visuo-spatial 'sketchpad' for working memory in the human brain. Since neither the source nor the subsequent 'recipient' of this non-visual memory information in V1 is known, these results raise a number of important questions about the underlying functional organization of the respective encoding and retrieval networks in the brain. To address these questions, an individual totally blind from birth was given a week of Cognitive-Kinesthetic training, accompanied by functional magnetic resonance imaging (fMRI) both before and just after training, and again after a two-month consolidation period. The results revealed a remarkable temporal sequence of training-based response reorganization in both the hippocampal complex and the temporal-lobe object processing hierarchy over the prolonged consolidation period. In particular, a pattern of profound learning-based transformations in the hippocampus was strongly reflected in V1, with the retrieval function showing massive growth as result of the Cognitive-Kinesthetic memory training and consolidation, while the initially strong hippocampal response during tactile exploration and encoding became non-existent. Furthermore, after training, an alternating patch structure in the form of a cascade of discrete ventral regions underwent radical transformations to reach complete functional specialization in terms of either encoding or retrieval as a function of the stage of learning. Moreover, several distinct patterns of learning-evolution within the patches as a function of their anatomical location, implying a complex reorganization of the object processing sub-networks through the learning period. These first findings of complex patterns of training-based encoding/retrieval reorganization thus have broad implications for a newly emerging view of the perception/memory interactions and their reorganization through the learning process. Note that the temporal evolution of these forms of extended functional reorganization could not be uncovered with conventional assessment paradigms used in the traditional approaches to functional mapping, which may therefore have to be revisited. Moreover, as the present results are obtained in learning under life-long blindness, they imply modality-independent operations, transcending the usual tight association with visual processing. The present approach of memory drawing training in blindness, has the dual-advantage of being both non-visual and causal intervention, which makes it a promising 'scalpel' to disentangle interactions among diverse cognitive functions.
Bredemann, Teruko M.; McMahon, Lori L.
2014-01-01
Summary Memory impairment is the most commonly reported cognitive symptom associated with major depressive disorder. Decreased hippocampal volume and neurogenesis in depression link hippocampal dysfunction with deficits in memory. Stress decreases hippocampal dendritic spine density and long-term potentiation (LTP) at glutamate synapses, a cellular correlate of learning and memory. However, elevated plasma levels of 17β estradiol (E2) during proestrus increase hippocampal structure and function, directly opposing the negative consequences of stress. In women, significant fluctuations in ovarian hormones likely increase vulnerability of hippocampal circuits to stress, potentially contributing to the greater incidence of depression compared to men. Using the learned helplessness model of depression and ovariectomized female rats, we investigated whether acquisition of helplessness and hippocampal synaptic dysfunction is differentially impacted by the presence or absence of plasma E2. We find that inescapable shock induces a greater incidence of helplessness in vehicle- versus E2-treated OVX rats. In the vehicle-treated group, LTP was absent at CA3-CA1 synapses in slices only from helpless rats, and CA1 spine density was decreased compared to resilient rats. In contrast, significant LTP was observed in slices from E2-treated helpless rats; importantly, spine density was not different between E2-treated helpless and resilient rats, dissociating spine density from the LTP magnitude. We also find that E2 replacement can reverse previously established helpless behavior. Thus, our results show that E2 replacement in OVX rats increases resilience and improves hippocampal plasticity, suggesting that E2 therapy may increase resilience to stress and preserve hippocampal function in women experiencing large fluctuations in plasma estrogen levels. PMID:24636504
Falconer, D W; Cleland, J; Fielding, S; Reid, I C
2010-06-01
The cognitive impact of electroconvulsive therapy (ECT) is rarely measured systematically in everyday clinical practice even though patient and clinician acceptance is limited by its adverse affect on memory. If patients are tested it is often with simple paper and pencil tests of visual or verbal memory. There are no reported studies of computerized neuropsychological testing to assess the cognitive impact of ECT on visuospatial memory. Twenty-four patients with severe depression were treated with a course of bilateral ECT and assessed with a battery of visual memory tests within the Cambridge Neuropsychological Test Automated Battery (CANTAB). These included spatial and pattern recognition memory, pattern-location associative learning and a delayed matching to sample test. Testing was carried out before ECT, during ECT, within the week after ECT and 1 month after ECT. Patients showed significant impairments in visual and visuospatial memory both during and within the week after ECT. Most impairments resolved 1 month following ECT; however, significant impairment in spatial recognition memory remained. This is one of only a few studies that have detected anterograde memory deficits more than 2 weeks after treatment. Patients receiving ECT displayed a range of visual and visuospatial deficits over the course of their treatment. These deficits were most prominent for tasks dependent on the use of the right medial temporal lobe; frontal lobe function may also be implicated. The CANTAB appears to be a useful instrument for measuring the adverse cognitive effects of ECT on aspects of visual and visuospatial memory.
Lupo, Michela; Ferlazzo, Fabio; Aloise, Fabio; Di Nocera, Francesco; Tedesco, Anna Maria; Cardillo, Chiara; Leggio, Maria
2018-04-27
Several studies have demonstrated that the processing of visuospatial memory for locations in reaching space and in navigational space is supported by independent systems, and that the coding of visuospatial information depends on the modality of the presentation (i.e., sequential or simultaneous). However, these lines of evidence and the most common neuropsychological tests used by clinicians to investigate visuospatial memory have several limitations (e.g., they are unable to analyze all the subcomponents of this function and are not directly comparable). Therefore, we developed a new battery of tests that is able to investigate these subcomponents. We recruited 71 healthy subjects who underwent sequential and simultaneous navigational tests by using an innovative sensorized platform, as well as comparable paper tests to evaluate the same components in reaching space (Exp. 1). Consistent with the literature, the principal-component method of analysis used in this study demonstrated the presence of distinct memory for sequences in different portions of space, but no distinction was found for simultaneous presentation, suggesting that different modalities of eye gaze exploration are used when subjects have to perform different types of tasks. For this purpose, an infrared Tobii Eye-Tracking X50 system was used in both spatial conditions (Exp. 2), showing that a clear effect of the presentation modality was due to the specific strategy used by subjects to explore the stimuli in space. Given these findings, the neuropsychological battery established in the present study allows us to show basic differences in the normal coding of stimuli, which can explain the specific visuospatial deficits found in various neurological conditions.
Monge, Zachary A.; Greenwood, Pamela M.; Parasuraman, Raja; Strenziok, Maren
2016-01-01
Objective Although reasoning and attention are two cognitive processes necessary for ensuring the efficiency of many everyday activities in older adults, the role of white matter integrity in these processes has been little studied. This is an important question due to the role of white matter integrity as a neural substrate of cognitive aging. Here, we sought to examine the white matter tracts subserving reasoning and visuospatial attention in healthy older adults. Method Sixty-one adults aged 60 and older completed a battery of cognitive tests to assess reasoning and visuospatial attention. In addition, diffusion tensor images were collected to assess Fractional Anisotropy (FA) – a measure of white matter integrity. A principle component analysis of the test scores yielded two components: reasoning and visuospatial attention. Whole-brain correlations between FA and the cognitive components were submitted to probabilistic tractography analyses for visualization of cortical targets of tracts. Results For reasoning, bilateral thalamo-anterior prefrontal, anterior corpus callosum, and corpus callosum body tracts interconnecting the superior frontal cortices and right cingulum bundle were found. For visuospatial attention, a right inferior fronto-parietal tract, and bilateral parietal and temporal connections were found. Conclusions We conclude that in older adults, prefrontal cortex white matter tracts and interhemispheric communication are important in higher order cognitive functioning. On the other hand, right-sided fronto-parietal tracts appear to be critical for supporting control of cognitive processes, such as redirecting attention. Researchers may use our results to develop neuroscience-based interventions for older adults targeting brain mechanisms involved in cognitive plasticity. PMID:26986750
Aerobic fitness, hippocampal viscoelasticity, and relational memory performance
Schwarb, Hillary; Johnson, Curtis L.; Daugherty, Ana M.; Hillman, Charles H.; Kramer, Arthur F.; Cohen, Neal J.; Barbey, Aron K.
2017-01-01
The positive relationship between hippocampal structure, aerobic fitness, and memory performance is often observed among children and older adults; but evidence of this relationship among young adults, for whom the hippocampus is neither developing nor atrophying, is less consistent. Studies have typically relied on hippocampal volumetry (a gross proxy of tissue composition) to assess individual differences in hippocampal structure. While volume is not specific to microstructural tissue characteristics, microstructural differences in hippocampal integrity may exist even among healthy young adults when volumetric differences are not diagnostic of tissue health or cognitive function. Magnetic resonance elastography (MRE) is an emerging noninvasive imaging technique for measuring viscoelastic tissue properties and provides quantitative measures of tissue integrity. We have previously demonstrated that individual differences in hippocampal viscoelasticity are related to performance on a relational memory task; however, little is known about health correlates to this novel measure. In the current study, we investigated the relationship between hippocampal viscoelasticity and cardiovascular health, and their mutual effect on relational memory in a group of healthy young adults (N=51). We replicated our previous finding that hippocampal viscoelasticity correlates with relational memory performance. We extend this work by demonstrating that better aerobic fitness, as measured by VO2max, was associated with hippocampal viscoelasticity that mediated the benefits of fitness on memory function. Hippocampal volume, however, did not account for individual differences in memory. Therefore, these data suggest that hippocampal viscoelasticity may provide a more sensitive measure to microstructural tissue organization and its consequences to cognition among healthy young adults. PMID:28366763
The Cerebral Balance of Power: Confrontation or Cooperation?
ERIC Educational Resources Information Center
Sergent, Justine
1982-01-01
Two visual search experiments suggest that: cerebral lateralization of cognitive functions results from differences in sensorimotor resolution capacities of the hemispheres; both hemispheres can process verbal and visuospatial information analytically and holistically; and respective hemispheric competence is a function of the level of…
Soto-Moyano, Rubén; Valladares, Luis; Sierralta, Walter; Pérez, Hernán; Mondaca, Mauricio; Fernández, Victor; Burgos, Héctor; Hernández, Alejandro
2005-06-01
Mild reduction in the protein content of the mother's diet from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but leads to significant enhancements in the concentration and release of cortical noradrenaline during early postnatal life. Since central noradrenaline and some of its receptors are critically involved in long-term potentiation (LTP) and memory formation, this study evaluated the effect of mild prenatal protein malnutrition on the alpha2C-adrenoceptor density in the frontal and occipital cortices, induction of LTP in the same cortical regions and the visuo-spatial memory. Pups born from rats fed a 25% casein diet throughout pregnancy served as controls. At day 8 of postnatal age, prenatally malnourished rats showed a threefold increase in neocortical alpha2C-adrenoceptor density. At 60 days-of-age, alpha2C-adrenoceptor density was still elevated in the neocortex, and the animals were unable to maintain neocortical LTP and presented lower visuo-spatial memory performance. Results suggest that overexpression of neocortical alpha2C-adrenoceptors during postnatal life, subsequent to mild prenatal protein malnutrition, could functionally affect the synaptic networks subserving neocortical LTP and visuo-spatial memory formation.
Chen, Zhencai; De Beuckelaer, Alain; Wang, Xu; Liu, Jia
2017-11-24
Recent studies revealed spontaneous neural activity to be associated with fluid intelligence (gF) which is commonly assessed by Raven's Advanced Progressive Matrices, and embeds two types of reasoning: visuospatial and verbal-analytic reasoning. With resting-state fMRI data, using global brain connectivity (GBC) analysis which averages functional connectivity of a voxel in relation to all other voxels in the brain, distinct neural correlates of these two reasoning types were found. For visuospatial reasoning, negative correlations were observed in both the primary visual cortex (PVC) and the precuneus, and positive correlations were observed in the temporal lobe. For verbal-analytic reasoning, negative correlations were observed in the right inferior frontal gyrus (rIFG), dorsal anterior cingulate cortex and temporoparietal junction, and positive correlations were observed in the angular gyrus. Furthermore, an interaction between GBC value and type of reasoning was found in the PVC, rIFG and the temporal lobe. These findings suggest that visuospatial reasoning benefits more from elaborate perception to stimulus features, whereas verbal-analytic reasoning benefits more from feature integration and hypothesis testing. In sum, the present study offers, for different types of reasoning in gF, first empirical evidence of separate neural substrates in the resting brain.
Klaus, Jana; Mädebach, Andreas; Oppermann, Frank; Jescheniak, Jörg D
2017-04-01
This study investigated to what extent advance planning during sentence production is affected by a concurrent cognitive load. In two picture-word interference experiments in which participants produced subject-verb-object sentences while ignoring auditory distractor words, we assessed advance planning at a phonological (lexeme) and at an abstract-lexical (lemma) level under visuospatial or verbal working memory (WM) load. At the phonological level, subject and object nouns were found to be activated before speech onset with concurrent visuospatial WM load, but only subject nouns were found to be activated with concurrent verbal WM load, indicating a reduced planning scope as a function of type of WM load (Experiment 1). By contrast, at the abstract-lexical level, subject and object nouns were found to be activated regardless of type of concurrent load (Experiment 2). In both experiments, sentence planning had a more detrimental effect on concurrent verbal WM task performance than on concurrent visuospatial WM task performance. Overall, our results suggest that advance planning at the phonological level is more affected by a concurrently performed verbal WM task than advance planning at the abstract-lexical level. Also, they indicate an overlap of resources allocated to phonological planning in speech production and verbal WM.
Rose, Mark; Frampton, Ian J; Lask, Bryan
2014-01-01
The vast majority of studies in anorexia nervosa that have investigated the domains of central coherence, organizational strategy, and visuospatial memory have focused on adult samples. In addition, studies investigating visuospatial memory have focused on free recall. No study to date has reported the association between recognition memory and central coherence or organizational strategy in younger people with this disorder, yet the capacity to recognize previously seen visual stimuli may contribute to overall visuospatial ability. Therefore, we investigate these domains in children and adolescents with anorexia nervosa compared to age- and gender-matched healthy controls. There were no significant group differences in immediate, delayed, or recognition memory, central coherence, or organization strategy. When compared with controls, patients with anorexia nervosa scored significantly higher on accuracy and took significantly longer when copying the Rey Complex Figure Task. Caution must be taken when interpreting these findings due to lower-than-expected scores in memory performance in the control group and because of a potential lack of sensitivity in the measures used when assessing this younger population. For neuropsychological functions where no normative data exist, we need a deeper, more thorough knowledge of the developmental trajectory and its assessment in young people in the general population before drawing conclusions in anorexia nervosa.
Hippocampal-neocortical functional reorganization underlies children's cognitive development
Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C.; Menon, Vinod
2014-01-01
The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development – the transition from procedure-based to memory-based problem solving strategies – are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal fMRI in children, ages 7 to 9, revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Critically, longitudinal improvements in retrieval strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval strategy use continued to improve through adolescence into adulthood, and was associated with decreased activation but more stable inter-problem representations in the hippocampus. Our findings provide novel insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving, and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development. PMID:25129076
DEVELOPMENTAL LEAD (PB) CHANGES AND IN HIPPOCAMPAL FUNCTION.
Childhood lead (Pb) exposure has long been associated with reduced IQ, impaired cognitive function, and more recently increases in violence and aggression. We have studied the disruptive effects of developmental Pb exposure on an electrophysiological model of memory, hippocampal...
Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L; Alberini, Cristina M; Huntley, George W; Salton, Stephen R J
2008-09-24
VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, in which it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knock-out mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nm), and tPA STOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75(NTR) function-blocking antiserum, or previous tetanic stimulation. Although LTP was normal in slices from VGF knock-out mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior.
Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L.; Alberini, Cristina M.; Huntley, George W.; Salton, Stephen R. J.
2009-01-01
VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, where it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knockout mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nM), and by tPASTOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75NTR function-blocking antiserum, nor by prior tetanic stimulation. Although LTP was normal in slices from VGF knockout mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism, and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior. PMID:18815270
Kiyota, Tomomi; Morrison, Christine M; Tu, Guihua; Dyavarshetty, Bhagyalaxmi; Weir, Robert A; Zhang, Gang; Xiong, Huangui; Gendelman, Howard E
2015-01-01
Aberrations in hippocampal neurogenesis are associated with learning and memory, synaptic plasticity and neurodegeneration in Alzheimer’s disease (AD). However, the linkage between them, β-amyloidosis and neuroinflammation is not well understood. To this end, we generated a mouse overexpressing familial AD (FAD) mutant human presenilin-1 (PS1) crossed with a knockout (KO) of the CC-chemokine ligand 2 (CCL2) gene. The PS1/CCL2KO mice developed robust age-dependent deficits in hippocampal neurogenesis associated with impairments in learning and memory, synaptic plasticity and long-term potentiation. Neurogliogenesis gene profiling supported β-amyloid independent pathways for FAD-associated deficits in hippocampal neurogenesis. We conclude that these PS1/CCL2KO mice are suitable for studies linking host genetics, immunity and hippocampal function. PMID:26112421
Hasselmo, Michael E
2005-01-01
The extensive physiological data on hippocampal theta rhythm provide an opportunity to evaluate hypotheses about the role of theta rhythm for hippocampal network function. Computational models based on these hypotheses help to link behavioral data with physiological measurements of different variables during theta rhythm. This paper reviews work on network models in which theta rhythm contributes to the following functions: (1) separating the dynamics of encoding and retrieval, (2) enhancing the context-dependent retrieval of sequences, (3) buffering of novel information in entorhinal cortex (EC) for episodic encoding, and (4) timing interactions between prefrontal cortex and hippocampus for memory-guided action selection. Modeling shows how these functional mechanisms are related to physiological data from the hippocampal formation, including (1) the phase relationships of synaptic currents during theta rhythm measured by current source density analysis of electroencephalographic data from region CA1 and dentate gyrus, (2) the timing of action potentials, including the theta phase precession of single place cells during running on a linear track, the context-dependent changes in theta phase precession across trials on each day, and the context-dependent firing properties of hippocampal neurons in spatial alternation (e.g., "splitter cells"), (3) the cholinergic regulation of sustained activity in entorhinal cortical neurons, and (4) the phasic timing of prefrontal cortical neurons relative to hippocampal theta rhythm. Copyright 2005 Wiley-Liss, Inc.
Malherbe, C; Umarova, R M; Zavaglia, M; Kaller, C P; Beume, L; Thomalla, G; Weiller, C; Hilgetag, C C
2017-10-12
Stroke patients frequently display spatial neglect, an inability to report, or respond to, relevant stimuli in the contralesional space. Although this syndrome is widely considered to result from the dysfunction of a large-scale attention network, the individual contributions of damaged grey and white matter regions to neglect are still being disputed. Moreover, while the neuroanatomy of neglect in right hemispheric lesions is well studied, the contributions of left hemispheric brain regions to visuospatial processing are less well understood. To address this question, 128 left hemisphere acute stroke patients were investigated with respect to left- and rightward spatial biases measured as severity of deviation in the line bisection test and as Center of Cancellation (CoC) in the Bells Test. Causal functional contributions and interactions of nine predefined grey and white matter regions of interest in visuospatial processing were assessed using Multi-perturbation Shapley value Analysis (MSA). MSA, an inference approach based on game theory, constitutes a robust and exact multivariate mathematical method for inferring functional contributions from multi-lesion patterns. According to the analysis of performance in the Bells test, leftward attentional bias (contralesional deficit) was associated with contributions of the left superior temporal gyrus and rightward attentional bias with contributions of the left inferior parietal lobe, whereas the arcuate fascicle was contributed to both contra- and ipsilesional bias. Leftward and rightward deviations in the line bisection test were related to contributions of the superior longitudinal fascicle and the inferior parietal lobe, correspondingly. Thus, Bells test and line bisection tests, as well as ipsi- and contralesional attentional biases in these tests, have distinct neural correlates. Our findings demonstrate the contribution of different grey and white matter structures to contra- and ipsilesional spatial biases as revealed by left hemisphere stroke. The results provide new insights into the role of the left hemisphere in visuospatial processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Min Chul; Rakwal, Randeep; Shibato, Junko; Inoue, Koshiro; Chang, Hyukki; Soya, Hideaki
2014-01-01
Abstract In two separate experiments, voluntary resistance wheel running with 30% of body weight (RWR), rather than wheel running (WR), led to greater enhancements, including adult hippocampal neurogenesis and cognitive functions, in conjunction with hippocampal brain‐derived neurotrophic factor (BDNF) signaling (Lee et al., J Appl Physiol, 2012; Neurosci Lett., 2013). Here we aimed to unravel novel molecular factors and gain insight into underlying molecular mechanisms for RWR‐enhanced hippocampal functions; a high‐throughput whole‐genome DNA microarray approach was applied to rats performing voluntary running for 4 weeks. RWR rats showed a significant decrease in average running distances although average work levels increased immensely, by about 11‐fold compared to WR, resulting in muscular adaptation for the fast‐twitch plantaris muscle. Global transcriptome profiling analysis identified 128 (sedentary × WR) and 169 (sedentary × RWR) up‐regulated (>1.5‐fold change), and 97 (sedentary × WR) and 468 (sedentary × RWR) down‐regulated (<0.75‐fold change) genes. Functional categorization using both pathway‐ or specific‐disease‐state‐focused gene classifications and Ingenuity Pathway Analysis (IPA) revealed expression pattern changes in the major categories of disease and disorders, molecular functions, and physiological system development and function. Genes specifically regulated with RWR include the newly identified factors of NFATc1, AVPR1A, and FGFR4, as well as previously known factors, BDNF and CREB mRNA. Interestingly, RWR down‐regulated multiple inflammatory cytokines (IL1B, IL2RA, and TNF) and chemokines (CXCL1, CXCL10, CCL2, and CCR4) with the SYCP3, PRL genes, which are potentially involved in regulating hippocampal neuroplastic changes. These results provide understanding of the voluntary‐RWR‐related hippocampal transcriptome, which will open a window to the underlying mechanisms of the positive effects of exercise, with therapeutic value for enhancing hippocampal functions. PMID:25413326
Crane, Paul K; Trittschuh, Emily; Mukherjee, Shubhabrata; Saykin, Andrew J; Sanders, R Elizabeth; Larson, Eric B; McCurry, Susan M; McCormick, Wayne; Bowen, James D; Grabowski, Thomas; Moore, Mackenzie; Bauman, Julianna; Gross, Alden L; Keene, C Dirk; Bird, Thomas D; Gibbons, Laura E; Mez, Jesse
2017-12-01
There may be biologically relevant heterogeneity within typical late-onset Alzheimer's dementia. We analyzed cognitive data from people with incident late-onset Alzheimer's dementia from a prospective cohort study. We determined individual averages across memory, visuospatial functioning, language, and executive functioning. We identified domains with substantial impairments relative to that average. We compared demographic, neuropathology, and genetic findings across groups defined by relative impairments. During 32,286 person-years of follow-up, 869 people developed Alzheimer's dementia. There were 393 (48%) with no domain with substantial relative impairments. Some participants had isolated relative impairments in memory (148, 18%), visuospatial functioning (117, 14%), language (71, 9%), and executive functioning (66, 8%). The group with isolated relative memory impairments had higher proportions with ≥ APOE ε4 allele, more extensive Alzheimer's-related neuropathology, and higher proportions with other Alzheimer's dementia genetic risk variants. A cognitive subgrouping strategy may identify biologically distinct subsets of people with Alzheimer's dementia. Copyright © 2017 the Alzheimer's Association. All rights reserved.
Memory and executive functions in patients with obsessive-compulsive disorder.
Vandborg, Sanne Kjær; Hartmann, Tue Borst; Bennedsen, Birgit Egedal; Pedersen, Anders Degn; Thomsen, Per Hove
2014-03-01
We investigated whether patients with obsessive-compulsive disorder have poorer memory and executive functions than healthy controls. The relatively inconsistent previous findings on this question reflect a lack of well-matched control groups, the inclusion of patients with comorbidity, and the use of noncomparable neuropsychological tests to assess memory and executive functions. We used well-accepted neuropsychological tests of memory and executive functions to assess 42 patients who had obsessive-compulsive disorder without comorbidity, and 42 healthy controls. We matched the patients and controls pairwise by sex, age, and years of education. The patients performed significantly worse than the controls on the Rey Complex Figure Test, which assesses visuospatial memory and organizational skills. This group difference remained after we controlled for age, education, intelligence, and severity of depressive symptoms. The findings indicate that patients with obsessive-compulsive disorder may have impaired visuospatial memory and organizational skills, and these impairments should be considered in treatment. ClinicalTrials.gov NCT00792038.
Hemispheric Division of Function Is the Result of Independent Probabilistic Biases
ERIC Educational Resources Information Center
Whitehouse, Andrew J. O.; Bishop, Dorothy V. M.
2009-01-01
Verbal and visuospatial abilities are typically subserved by different cerebral hemispheres: the left hemisphere for the former and the right hemisphere for the latter. However little is known of the origin of this division of function. Causal theories propose that functional asymmetry is an obligatory pattern of organisation, while statistical…
Nathan, Pradeep J; Lim, Yen Ying; Abbott, Rosemary; Galluzzi, Samantha; Marizzoni, Moira; Babiloni, Claudio; Albani, Diego; Bartres-Faz, David; Didic, Mira; Farotti, Lucia; Parnetti, Lucilla; Salvadori, Nicola; Müller, Bernhard W; Forloni, Gianluigi; Girtler, Nicola; Hensch, Tilman; Jovicich, Jorge; Leeuwis, Annebet; Marra, Camillo; Molinuevo, José Luis; Nobili, Flavio; Pariente, Jeremie; Payoux, Pierre; Ranjeva, Jean-Philippe; Rolandi, Elena; Rossini, Paolo Maria; Schönknecht, Peter; Soricelli, Andrea; Tsolaki, Magda; Visser, Pieter Jelle; Wiltfang, Jens; Richardson, Jill C; Bordet, Régis; Blin, Olivier; Frisoni, Giovanni B
2017-05-01
Few studies have examined the relationship between CSF and structural biomarkers, and cognitive function in MCI. We examined the relationship between cognitive function, hippocampal volume and cerebrospinal fluid (CSF) Aβ 42 and tau in 145 patients with MCI. Patients were assessed on cognitive tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB), the Geriatric Depression Scale and the Functional Activities Questionnaire. Hippocampal volume was measured using magnetic resonance imaging (MRI), and CSF markers of Aβ 42 , tau and p-tau 181 were also measured. Worse performance on a wide range of memory and sustained attention tasks were associated with reduced hippocampal volume, higher CSF tau and p-tau 181 and increased tau/Aβ 42 ratio. Memory tasks were also associated with lower ability to conduct functional activities of daily living, providing a link between AD biomarkers, memory performance and functional outcome. These results suggest that biomarkers of Aβ and tau are strongly related to cognitive performance as assessed by the CANTAB, and have implications for the early detection and characterization of incipient AD. Copyright © 2017 Elsevier Inc. All rights reserved.
Cultural and biological factors modulate spatial biases over development.
Girelli, Luisa; Marinelli, Chiara Valeria; Grossi, Giuseppe; Arduino, Lisa S
2017-11-01
Increasing evidence supports the contribution of both biological and cultural factors to visuospatial processing. The present study adds to the literature by exploring the interplay of perceptual and linguistic mechanisms in determining visuospatial asymmetries in adults (Experiment 1) and children (Experiment 2). In particular, pre-schoolers (3 and 5 year-olds), school-aged children (8 year-old), and adult participants were required to bisect different types of stimuli, that is, lines, words, and figure strings. In accordance with the literature, results yielded a leftward bias for lines and words and a rightward bias for figure strings, in adult participants. More critically, different biases were found for lines, words, and figure strings in children as a function of age, reflecting the impact of both cultural and biological factors on the processing of different visuospatial materials. Specifically, an adult-like pattern of results emerged only in the older group of children (8 year-old), but not in pre-schoolers. Results are discussed in terms of literacy, reading habits exposure, and biological maturation.
Lamm, Claus; Fischmeister, Florian Ph S; Bauer, Herbert
2005-12-01
Using slow-cortical potentials (SCPs), Vitouch et al. demonstrated that subjects with low ability to solve a complex visuo-spatial imagery task show higher activity in occipital, parietal and frontal cortex during task processing than subjects with high ability. This finding has been interpreted in the sense of the so-called "neural efficiency" hypothesis, which assumes that the central nervous system of individuals with higher intellectual abilities is functioning in a more efficient way than the one of individuals with lower abilities. Using a higher spatial resolution of SCP recordings, and by employing the source localization method of LORETA (low-resolution electromagnetic tomography), we investigated this hypothesis by performing an extended replication of Vitouch et al.'s study. SCPs during processing of a visuo-spatial imagery task were recorded in pre-selected subjects with either high or low abilities in solving the imagery task. Topographic and LORETA analyses of SCPs revealed that a distributed network of extrastriate occipital, superior parietal, temporal, medial frontal and prefrontal areas was active during task solving. This network is well in line with former studies of the functional neuroanatomy of visuo-spatial imagery. Contrary to our expectations, however, the results of Vitouch et al. as well as of other studies supporting the neural efficiency hypothesis could not be confirmed since no difference in brain activity between groups was observed. This inconsistency between studies might be due to differing task processing strategies. While subjects with high abilities in the Vitouch et al. study seemed to use a visuo-perceptual task solving approach, all other subjects relied upon a visuo-motor task processing strategy.
Septohippocampal Acetylcholine: Involved in but not Necessary for Learning and Memory?
Parent, Marise B.; Baxter, Mark G.
2006-01-01
The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective ablation of cholinergic septohippocampal projections is largely without effect on hippocampal-dependent learning and memory processes. We consider the evidence underlying each of these statements, and the contradictions they pose for understanding the functional role of hippocampal ACh in memory. We suggest that although hippocampal ACh is involved in memory in the intact brain, it is not necessary for many aspects of hippocampal memory function. PMID:14747512
ERIC Educational Resources Information Center
Fastame, Maria Chiara; Cherchi, Rossella; Penna, Maria Pietronilla
2015-01-01
The current research was aimed mainly at exploring the reliability of a short-screening tool developed to self-evaluate visuospatial abilities in children. We presented 290 Italian third, fourth, and fifth graders with the 16-item Shortened Visuospatial questionnaire and several objective measures of intellectual efficiency, such as Raven's…
Dynamic frontotemporal systems process space and time in working memory
Adams, Jenna N.; Solbakk, Anne-Kristin; Endestad, Tor; Larsson, Pål G.; Ivanovic, Jugoslav; Meling, Torstein R.; Lin, Jack J.; Knight, Robert T.
2018-01-01
How do we rapidly process incoming streams of information in working memory, a cognitive mechanism central to human behavior? Dominant views of working memory focus on the prefrontal cortex (PFC), but human hippocampal recordings provide a neurophysiological signature distinct from the PFC. Are these regions independent, or do they interact in the service of working memory? We addressed this core issue in behavior by recording directly from frontotemporal sites in humans performing a visuospatial working memory task that operationalizes the types of identity and spatiotemporal information we encounter every day. Theta band oscillations drove bidirectional interactions between the PFC and medial temporal lobe (MTL; including the hippocampus). MTL theta oscillations directed the PFC preferentially during the processing of spatiotemporal information, while PFC theta oscillations directed the MTL for all types of information being processed in working memory. These findings reveal an MTL theta mechanism for processing space and time and a domain-general PFC theta mechanism, providing evidence that rapid, dynamic MTL–PFC interactions underlie working memory for everyday experiences. PMID:29601574
The Impact of Sleep Loss on Hippocampal Function
ERIC Educational Resources Information Center
Prince, Toni-Moi; Abel, Ted
2013-01-01
Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep…
Age-Dependent Glutamate Induction of Synaptic Plasticity in Cultured Hippocampal Neurons
ERIC Educational Resources Information Center
Ivenshitz, Miriam; Segal, Menahem; Sapoznik, Stav
2006-01-01
A common denominator for the induction of morphological and functional plasticity in cultured hippocampal neurons involves the activation of excitatory synapses. We now demonstrate massive morphological plasticity in mature cultured hippocampal neurons caused by a brief exposure to glutamate. This plasticity involves a slow, 70%-80% increase in…
Molet, Jenny; Maras, Pamela M; Kinney-Lang, Eli; Harris, Neil G; Rashid, Faisal; Ivy, Autumn S; Solodkin, Ana; Obenaus, Andre; Baram, Tallie Z
2016-12-01
Memory and related cognitive functions are progressively impaired in a subgroup of individuals experiencing childhood adversity and stress. However, it is not possible to identify vulnerable individuals early, a crucial step for intervention. In this study, high-resolution magnetic resonance imaging (MRI) and intra-hippocampal diffusion tensor imaging (DTI) were employed to examine for structural signatures of cognitive adolescent vulnerabilities in a rodent model of early-life adversity. These methods were complemented by neuroanatomical and functional assessments of hippocampal network integrity during adolescence, adulthood and middle-age. The high-resolution MRI identified selective loss of dorsal hippocampal volume, and intra-hippocampal DTI uncovered disruption of dendritic structure, consistent with disrupted local connectivity, already during late adolescence in adversity-experiencing rats. Memory deteriorated over time, and stunting of hippocampal dendritic trees was apparent on neuroanatomical analyses. Thus, disrupted hippocampal neuronal structure and connectivity, associated with cognitive impairments, are detectable via non-invasive imaging modalities in rats experiencing early-life adversity. These high-resolution imaging approaches may constitute promising tools for prediction and assessment of at-risk individuals in the clinic. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Constructing, Perceiving, and Maintaining Scenes: Hippocampal Activity and Connectivity
Zeidman, Peter; Mullally, Sinéad L.; Maguire, Eleanor A.
2015-01-01
In recent years, evidence has accumulated to suggest the hippocampus plays a role beyond memory. A strong hippocampal response to scenes has been noted, and patients with bilateral hippocampal damage cannot vividly recall scenes from their past or construct scenes in their imagination. There is debate about whether the hippocampus is involved in the online processing of scenes independent of memory. Here, we investigated the hippocampal response to visually perceiving scenes, constructing scenes in the imagination, and maintaining scenes in working memory. We found extensive hippocampal activation for perceiving scenes, and a circumscribed area of anterior medial hippocampus common to perception and construction. There was significantly less hippocampal activity for maintaining scenes in working memory. We also explored the functional connectivity of the anterior medial hippocampus and found significantly stronger connectivity with a distributed set of brain areas during scene construction compared with scene perception. These results increase our knowledge of the hippocampus by identifying a subregion commonly engaged by scenes, whether perceived or constructed, by separating scene construction from working memory, and by revealing the functional network underlying scene construction, offering new insights into why patients with hippocampal lesions cannot construct scenes. PMID:25405941
Identification and characterization of PPARα ligands in the hippocampus
Roy, Avik; Kundu, Madhuchhanda; Jana, Malabendu; Mishra, Rama K.; Yung, Yeni; Luan, Chi-Hao; Gonzalez, Frank J.; Pahan, Kalipada
2016-01-01
Peroxisome proliferator-activated receptor alpha (PPARα) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently, we have found that PPARα is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here, three endogenous ligands of PPARα, 3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide were discovered in mouse brain hippocampus. Mass spectrometric detection of these compounds in mouse hippocampal nuclear extracts, in silico interaction studies, time-resolved FRET analyses, and thermal shift assay clearly indicated that these three compounds served as ligands of PPARα. Site-directed mutagenesis studies further revealed that PPARα Tyr 464 and Tyr 314 were involved in binding these hippocampal ligands. Moreover, these ligands activated PPARα and upregulated synaptic function of hippocampal neurons. These results highlight the discovery of hippocampal ligands of PPARα capable of modulating synaptic functions. PMID:27748752
Identification and characterization of PPARα ligands in the hippocampus.
Roy, Avik; Kundu, Madhuchhanda; Jana, Malabendu; Mishra, Rama K; Yung, Yeni; Luan, Chi-Hao; Gonzalez, Frank J; Pahan, Kalipada
2016-12-01
Peroxisome proliferator-activated receptor-α (PPARα) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently we found that PPARα is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here we report the discovery of three endogenous PPARα ligands-3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide-in mouse brain hippocampus. Mass spectrometric detection of these compounds in mouse hippocampal nuclear extracts, in silico interaction studies, time-resolved FRET analyses, and thermal shift assay results clearly indicated that these three compounds served as ligands of PPARα. Site-directed mutagenesis studies further revealed that PPARα Y464 and Y314 are involved in binding these hippocampal ligands. Moreover, these ligands activated PPARα and upregulated the synaptic function of hippocampal neurons. These results highlight the discovery of hippocampal ligands of PPARα capable of modulating synaptic functions.
Memory-related hippocampal activation in the sleeping toddler.
Prabhakar, Janani; Johnson, Elliott G; Nordahl, Christine Wu; Ghetti, Simona
2018-06-19
Nonhuman research has implicated developmental processes within the hippocampus in the emergence and early development of episodic memory, but methodological challenges have hindered assessments of this possibility in humans. Here, we delivered a previously learned song and a novel song to 2-year-old toddlers during natural nocturnal sleep and, using functional magnetic resonance imaging, found that hippocampal activation was stronger for the learned song compared with the novel song. This was true regardless of whether the song was presented intact or backwards. Toddlers who remembered where and in the presence of which toy character they heard the song exhibited stronger hippocampal activation for the song. The results establish that hippocampal activation in toddlers reflects past experiences, persists despite some alteration of the stimulus, and is associated with behavior. This research sheds light on early hippocampal and memory functioning and offers an approach to interrogate the neural substrates of early memory.
Lin, Shih-Chieh; Nicolelis, Miguel A. L.
2011-01-01
The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these “pro-arousal” neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation. PMID:21865435
Aparicio-López, Celeste; García-Molina, Alberto; García-Fernández, Juan; Lopez-Blazquez, Raquel; Enseñat-Cantallops, Antonia; Sánchez-Carrión, Rocío; Muriel, Vega; Tormos, Jose María; Roig-Rovira, Teresa
2015-01-01
To assess whether, following a right-hemisphere stroke, the combined administration of computer-based cognitive rehabilitation and right hemifield eye-patching in patients with visuo-spatial neglect is more effective than computer-based cognitive rehabilitation alone. Twelve patients were randomized into two treatment groups: a single treatment group (n = 7) and a combination treatment group (n = 5). In both cases, the treatment consisted of a mean number of 15 sessions, each lasting 1 hour. Visuo-spatial neglect was assessed using a specific exploration protocol (Bell Cancellation Test, Figure Copying of Odgen, Line Bisection, Baking Tray Task and Reading Task). The functional effects of the treatment were assessed using the Catherine Bergego Scale. Significant between-group differences were observed when comparing the pre- and post-treatment scores for the Reading Task. No differences were observed in either group in the Catherine Bergego Scale administered at baseline and at the final intervention. The results obtained do not allow one to conclude that the combination treatment with cognitive rehabilitation and right hemifield eye-patching is more effective than cognitive rehabilitation alone. Although partial improvement in the performance of neuropsychological tests was observed, this improvement is not present at functional level.
Abdul Rahman, Nor Zaihana; Greenwood, Sam M; Brett, Ros R; Tossell, Kyoko; Ungless, Mark A; Plevin, Robin; Bushell, Trevor J
2016-02-24
Mitogen-activated protein kinases (MAPKs) regulate brain function and their dysfunction is implicated in a number of brain disorders, including Alzheimer's disease. Thus, there is great interest in understanding the signaling systems that control MAPK function. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in development, the immune system, and cancer. However, a significant gap in our knowledge remains in relation to their role in brain functioning. Here, using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out (MKP-2(-/-) mice), we show that long-term potentiation is impaired in MKP-2(-/-) mice compared with MKP-2(+/+) controls whereas neuronal excitability, evoked synaptic transmission, and paired-pulse facilitation remain unaltered. Furthermore, spontaneous EPSC (sEPSC) frequency was increased in acute slices and primary hippocampal cultures prepared from MKP-2(-/-) mice with no effect on EPSC amplitude observed. An increase in synapse number was evident in primary hippocampal cultures, which may account for the increase in sEPSC frequency. In addition, no change in ERK activity was detected in both brain tissue and primary hippocampal cultures, suggesting that the effects of MKP-2 deletion were MAPK independent. Consistent with these alterations in hippocampal function, MKP-2(-/-) mice show deficits in spatial reference and working memory when investigated using the Morris water maze. These data show that MKP-2 plays a role in regulating hippocampal function and that this effect may be independent of MAPK signaling. Copyright © 2016 Abdul Rahman et al.
Eyre, Harris A.; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M.; Cyr, Natalie St.; Narr, Katherine; Baune, Bernhard T.; Khalsa, Dharma S.; Lavretsky, Helen
2016-01-01
Background: No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. Objectives: This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Methods: Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active “gold-standard” control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Results: Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Conclusion:Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies. PMID:27060939
Visuospatial ability correlates with performance in simulated gynecological laparoscopy.
Ahlborg, Liv; Hedman, Leif; Murkes, Daniel; Westman, Bo; Kjellin, Ann; Felländer-Tsai, Li; Enochsson, Lars
2011-07-01
To analyze the relationship between visuospatial ability and simulated laparoscopy performed by consultants in obstetrics and gynecology (OBGYN). This was a prospective cohort study carried out at two community hospitals in Sweden. Thirteen consultants in obstetrics and gynecology were included. They had previously independently performed 10-100 advanced laparoscopies. Participants were tested for visuospatial ability by the Mental Rotations Test version A (MRT-A). After a familiarization session and standardized instruction, all participants subsequently conducted three consecutive virtual tubal occlusions followed by three virtual salpingectomies. Performance in the simulator was measured by Total Time, Score and Ovarian Diathermy Damage. Linear regression was used to analyze the relationship between visuospatial ability and simulated laparoscopic performance. The learning curves in the simulator were assessed in order to interpret the relationship with the visuospatial ability. Visuospatial ability correlated with Total Time (r=-0.62; p=0.03) and Score (r=0.57; p=0.05) in the medium level of the virtual tubal occlusion. In the technically more advanced virtual salpingectomy the visuospatial ability correlated with Total Time (r=-0.64; p=0.02), Ovarian Diathermy Damage (r=-0.65; p=0.02) and with overall Score (r=0.64; p=0.02). Visuospatial ability appears to be related to the performance of gynecological laparoscopic procedures in a simulator. Testing visuospatial ability might be helpful when designing individual training programs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Visuo-spatial abilities are key for young children's verbal number skills.
Cornu, Véronique; Schiltz, Christine; Martin, Romain; Hornung, Caroline
2018-02-01
Children's development of verbal number skills (i.e., counting abilities and knowledge of the number names) presents a milestone in mathematical development. Different factors such as visuo-spatial and verbal abilities have been discussed as contributing to the development of these foundational skills. To understand the cognitive nature of verbal number skills in young children, the current study assessed the relation of preschoolers' verbal and visuo-spatial abilities to their verbal number skills. In total, 141 children aged 5 or 6 years participated in the current study. Verbal number skills were regressed on vocabulary, phonological awareness and visuo-spatial abilities, and verbal and visuo-spatial working memory in a structural equation model. Only visuo-spatial abilities emerged as a significant predictor of verbal number skills in the estimated model. Our results suggest that visuo-spatial abilities contribute to a larger extent to children's verbal number skills than verbal abilities. From a theoretical point of view, these results suggest a visuo-spatial, rather than a verbal, grounding of verbal number skills. These results are potentially informative for the conception of early mathematics assessments and interventions. Copyright © 2017 Elsevier Inc. All rights reserved.
Tsai, Sheng-Feng; Ku, Nai-Wen; Wang, Tzu-Feng; Yang, Yan-Hsiang; Shih, Yao-Hsiang; Wu, Shih-Ying; Lee, Chu-Wan; Yu, Megan; Yang, Ting-Ting; Kuo, Yu-Min
2018-05-07
Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, exercise training is known to improve hippocampal neuronal function. However, whether exercise is capable of restoring memory function in old animals is less clear. Here, we investigated the effects of exercise on the hippocampal neuroplasticity and memory functions during aging. Young (3 months), middle-aged (9-12 months), and old (18 months) mice underwent moderate-intensity treadmill running training for 6 weeks, and their hippocampus-related learning and memory, and the plasticity of their CA1 neurons was evaluated. The memory performance (Morris water maze and novel object recognition tests), and dendritic complexity (branch and length) and spine density of their hippocampal CA1 neurons decreased as their age increased. The induction and maintenance of high-frequency stimulation-induced long-term potentiation in the CA1 area and the expressions of neuroplasticity-related proteins were not affected by age. Treadmill running increased CA1 neuron long-term potentiation and dendritic complexity in all three age groups, and it restored the learning and memory ability in middle-aged and old mice. Furthermore, treadmill running upregulated the hippocampal expressions of brain-derived neurotrophic factor and monocarboxylate transporter-4 in middle-aged mice, glutamine synthetase in old mice, and full-length TrkB in middle-aged and old mice. The hippocampus-related memory function declines from middle age, but long-term moderate-intensity running effectively increased hippocampal neuroplasticity and memory in mice of different ages, even when the memory impairment had progressed to an advanced stage. Thus, long-term, moderate intensity exercise training might be a way of delaying and treating aging-related memory decline. © 2018 S. Karger AG, Basel.
Spatial and numerical processing in children with high and low visuospatial abilities.
Crollen, Virginie; Noël, Marie-Pascale
2015-04-01
In the literature on numerical cognition, a strong association between numbers and space has been repeatedly demonstrated. However, only a few recent studies have been devoted to examine the consequences of low visuospatial abilities on calculation processing. In this study, we wanted to investigate whether visuospatial weakness may affect pure spatial processing as well as basic numerical reasoning. To do so, the performances of children with high and low visuospatial abilities were directly compared on different spatial tasks (the line bisection and Simon tasks) and numerical tasks (the number bisection, number-to-position, and numerical comparison tasks). Children from the low visuospatial group presented the classic Simon and SNARC (spatial numerical association of response codes) effects but showed larger deviation errors as compared with the high visuospatial group. Our results, therefore, demonstrated that low visuospatial abilities did not change the nature of the mental number line but rather led to a decrease in its accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.
Visu-Petra, Laura; Stanciu, Oana; Benga, Oana; Miclea, Mircea; Cheie, Lavinia
2014-01-01
It has been conjectured that basic individual differences in attentional control influence higher-level executive functioning and subsequent academic performance in children. The current study sets out to complement the limited body of research on early precursors of executive functions (EFs). It provides both a cross-sectional, as well as a longitudinal exploration of the relationship between EF and more basic attentional control mechanisms, assessed via children's performance on memory storage tasks, and influenced by individual differences in anxiety. Multiple measures of verbal and visuospatial short-term memory (STM) were administered to children between 3 and 6 years old, alongside a non-verbal measure of intelligence, and a parental report of anxiety symptoms. After 9 months, children were re-tested on the same STM measures, at which time we also administered multiple measures of executive functioning: verbal and visuospatial working memory (WM), inhibition, and shifting. A cross-sectional view of STM development indicated that between 3 and 6 years the trajectory of visuospatial STM and EF underwent a gradual linear improvement. However, between 5 and 6 years progress in verbal STM performance stagnated. Hierarchical regression models revealed that trait anxiety was negatively associated with WM and shifting, while non-verbal intelligence was positively related to WM span. When age, gender, non-verbal intelligence, and anxiety were controlled for, STM (measured at the first assessment) was a very good predictor of overall executive performance. The models were most successful in predicting WM, followed by shifting, yet poorly predicted inhibition measures. Further longitudinal research is needed to directly address the contribution of attentional control mechanisms to emerging executive functioning and to the development of problematic behavior during early development. PMID:24904462
Santos-Filho, Carlos; de Lima, Camila M; Fôro, César A R; de Oliveira, Marcus A; Magalhães, Nara G M; Guerreiro-Diniz, Cristovam; Diniz, Daniel G; Vasconcelos, Pedro F da C; Diniz, Cristovam W P
2014-11-01
We investigated whether the morphology of microglia in the molecular layer of the dentate gyrus (DG-Mol) or in the lacunosum molecular layer of CA1 (CA1-LMol) was correlated with spatial learning and memory in the capuchin monkey (Cebus apella). Learning and memory was tested in 4 monkeys with visuo-spatial, paired associated learning (PAL) tasks from the Cambridge battery of neuropsychological tests. After testing, monkeys were sacrificed, and hippocampi were sectioned. We specifically immunolabeled microglia with an antibody against the adapter binding, ionized calcium protein. Microglia were selected from the middle and outer thirds of the DG-Mol (n=268) and the CA1-LMol (n=185) for three-dimensional reconstructions created with Neurolucida and Neuroexplorer software. Cluster and discriminant analyses, based on microglial morphometric parameters, identified two major morphological microglia phenotypes (types I and II) found in both the CA1-LMol and DG-Mol of all individuals. Compared to type II, type I microglia were significantly smaller, thinner, more tortuous and ramified, and less complex (lower fractal dimensions). PAL performance was both linearly and non-linearly correlated with type I microglial morphological features from the rostral and caudal DG-Mol, but not with microglia from the CA1-LMol. These differences in microglial morphology and correlations with PAL performance were consistent with previous proposals of hippocampal regional contributions for spatial learning and memory. Our results suggested that at least two morphological microglial phenotypes provided distinct physiological roles to learning-associated activity in the rostral and caudal DG-Mol of the monkey brain. Copyright © 2014 Elsevier B.V. All rights reserved.
Stimulus Configuration, Classical Conditioning, and Hippocampal Function.
ERIC Educational Resources Information Center
Schmajuk, Nestor A.; DiCarlo, James J.
1991-01-01
The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)
Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis
ERIC Educational Resources Information Center
Monje, Michelle
2008-01-01
Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…
Monge, Zachary A; Greenwood, Pamela M; Parasuraman, Raja; Strenziok, Maren
2016-07-01
Although reasoning and attention are 2 cognitive processes necessary for ensuring the efficiency of many everyday activities in older adults, the role of white matter integrity in these processes has been little studied. This is an important question due to the role of white matter integrity as a neural substrate of cognitive aging. Here, we sought to examine the white matter tracts subserving reasoning and visuospatial attention in healthy older adults. Sixty-one adults ages 60 and older completed a battery of cognitive tests to assess reasoning and visuospatial attention. In addition, diffusion tensor images were collected to assess fractional anisotropy (FA), a measure of white matter integrity. A principle components analysis of the test scores yielded 2 components: reasoning and visuospatial attention. Whole-brain correlations between FA and the cognitive components were submitted to probabilistic tractography analyses for visualization of cortical targets of tracts. For reasoning, bilateral thalamo-anterior prefrontal, anterior corpus callosum, and corpus callosum body tracts interconnecting the superior frontal cortices and right cingulum bundle were found. For visuospatial attention, a right inferior fronto-parietal tract and bilateral parietal and temporal connections were found. We conclude that in older adults, prefrontal cortex white matter tracts and interhemispheric communication are important in higher order cognitive functioning. On the other hand, right-sided fronto-parietal tracts appear to be critical for supporting control of cognitive processes, such as redirecting attention. Researchers may use our results to develop neuroscience-based interventions for older adults targeting brain mechanisms involved in cognitive plasticity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis.
Valero, Jorge; Paris, Iñaki; Sierra, Amanda
2016-04-20
Lifestyle modulates brain function. Diet, stress levels, and physical exercise among other factors influence the "brain cognitive reserve", that is, the capacity of the brain to maintain a normal function when confronting neurodegenerative diseases, injury, and/or aging. This cognitive reserve relays on several cellular and molecular elements that contribute to brain plasticity allowing adaptive responses to cognitive demands, and one of its key components is the hippocampal neurogenic reserve. Hippocampal neural stem cells give rise to new neurons that integrate into the local circuitry and contribute to hippocampal functions such as memory and learning. Importantly, adult hippocampal neurogenesis is well-known to be modulated by the demands of the environment and lifestyle factors. Diet, stress, and physical exercise directly act on neural stem cells and/or their progeny, but, in addition, they may also indirectly affect neurogenesis by acting on microglia. Microglia, the guardians of the brain, rapidly sense changes in the brain milieu, and it has been recently shown that their function is affected by lifestyle factors. However, few studies have analyzed the modulatory effect of microglia on adult neurogenesis in these conditions. Here, we review the current knowledge about the dialogue maintained between microglia and the hippocampal neurogenic cascade. Understanding how the communication between microglia and hippocampal neurogenesis is affected by lifestyle choices is crucial to maintain the brain cognitive reserve and prevent the maladaptive responses that emerge during disease or injury through adulthood and aging.
Progressive Functional Impairments of Hippocampal Neurons in a Tauopathy Mouse Model
Ciupek, Sarah M.; Cheng, Jingheng; Ali, Yousuf O.; Lu, Hui-Chen
2015-01-01
The age-dependent progression of tau pathology is a major characteristic of tauopathies, including Alzheimer's disease (AD), and plays an important role in the behavioral phenotypes of AD, including memory deficits. Despite extensive molecular and cellular studies on tau pathology, it remains to be determined how it alters the neural circuit functions underlying learning and memory in vivo. In rTg4510 mice, a Tau-P301L tauopathy model, hippocampal place fields that support spatial memories are abnormal at old age (7–9 months) when tau tangles and neurodegeneration are extensive. However, it is unclear how the abnormality in the hippocampal circuit function arises and progresses with the age-dependent progression of tau pathology. Here we show that in young (2–4 months of age) rTg4510 mice, place fields of hippocampal CA1 cells are largely normal, with only subtle differences from those of age-matched wild-type control mice. Second, high-frequency ripple oscillations of local field potentials in the hippocampal CA1 area are significantly reduced in young rTg4510 mice, and even further deteriorated in old rTg4510 mice. The ripple reduction is associated with less bursty firing and altered synchrony of CA1 cells. Together, the data indicate that deficits in ripples and neuronal synchronization occur before overt deficits in place fields in these mice. The results reveal a tau-pathology-induced progression of hippocampal functional changes in vivo. PMID:26019329
Age, sex, and performance influence the visuospatial working memory network in childhood.
Spencer-Smith, Megan; Ritter, Barbara Catherine; Mürner-Lavanchy, Ines; El-Koussy, Marwan; Steinlin, Maja; Everts, Regula
2013-01-01
This study describes the influence of age, sex, and working memory (WM) performance on the visuospatial WM network. Thirty-nine healthy children (7-12 years) completed a dot location functional magnetic resonance imaging (fMRI) task. Percent signal change measured the intensity and laterality indices measured the asymmetry of activation in frontal and parietal brain regions. Old children showed greater intensity of activation in parietal regions than young children but no differences in lateralization were observed. Intensity of activation was similar across sex and WM performance groups. Girls and high WM performers showed more right-sided lateralization of parietal regions than boys and low WM performers.
Raaphorst, Joost; de Visser, Marianne; van Tol, Marie-José; Linssen, Wim H J P; van der Kooi, Anneke J; de Haan, Rob J; van den Berg, Leonard H; Schmand, Ben
2011-02-01
In contrast with findings in amyotrophic lateral sclerosis (ALS), cognitive impairments have as yet not been shown in the lower motor neuron variant of motor neuron disease, progressive spinal muscular atrophy (PMA). The objective of this study was to investigate cognitive function in PMA and to compare the cognitive profile with that of ALS. In addition, visuospatial functions were assessed comprehensively; these tests are underrepresented in earlier neuropsychological investigations in ALS. 23 PMA and 30 ALS patients (vital capacity >70% of predicted value) underwent a neuropsychological assessment adapted to motor impairments: global cognitive and executive functioning, psychomotor speed, memory, language, attention and visuospatial skills. The results were compared with age, education and sex matched controls and with normative data. Compared with controls, PMA patients performed worse on attention/working memory (digit span backward), category fluency and the Mini-Mental State Examination. Compared with normative data, PMA patients most frequently showed impairment on three measures: letter-number sequencing, and immediate and delayed story recall. 17% of PMA patients showed cognitive impairment, defined as performance below 2 SDs from the mean of normative data on at least three neuropsychological tests. In ALS, similar but more extensive cognitive deficits were found. Visuospatial dysfunction was not found in PMA and ALS. 17% of PMA patients have executive and memory impairments. PMA with cognitive impairment adds a formerly unknown phenotype to the existing classification of motor neuron diseases.
Visuo-Spatial Processing and Executive Functions in Children with Specific Language Impairment
ERIC Educational Resources Information Center
Marton, Klara
2008-01-01
Background: Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims: The purpose of the study was to examine executive…
Executive Function in Williams and Down Syndromes
ERIC Educational Resources Information Center
Carney, Daniel P. J.; Brown, Janice H.; Henry, Lucy A.
2013-01-01
Williams (WS) and Down (DS) syndromes are characterised by roughly opposing ability profiles. Relative verbal strengths and visuospatial difficulties have been reported in those with WS, while expressive language difficulties have been observed in individuals with DS. Few investigations into the executive function (EF) skills of these groups have…
Pre-University Tuition in Science and Technology Can Influence Executive Functions
ERIC Educational Resources Information Center
Méndez, Marta; Arias, Natalia; Menéndez, José R.; Villar, José R.; Neira, Ángel; Romano, Pedro V.; Núñez, José Carlos; Arias, Jorge L.
2014-01-01
Introduction: Scientific and technological areas include tuition based on highly visuo-spatial specialization and problem solving. Spatial skills and problem solving are embedded in a curriculum that promotes understanding of Science and technical subjects. These abilities are related to the development of executive functions (EFs). We aim to…
White Matter Integrity and Pictorial Reasoning in High-Functioning Children with Autism
ERIC Educational Resources Information Center
Sahyoun, Cherif P.; Belliveau, John W.; Mody, Maria
2010-01-01
The current study investigated the neurobiological role of white matter in visuospatial versus linguistic processing abilities in autism using diffusion tensor imaging. We examined differences in white matter integrity between high-functioning children with autism (HFA) and typically developing controls (CTRL), in relation to the groups' response…
Smith, Bryon M; Yao, Xinyue; Chen, Kelly S; Kirby, Elizabeth D
2018-01-01
The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function.
Smith, Bryon M.; Yao, Xinyue; Chen, Kelly S.; Kirby, Elizabeth D.
2018-01-01
The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function. PMID:29904345
Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E
2015-11-01
Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. © The Author 2015. Published by Oxford University Press.
Ortiz-Matamoros, Abril; Salcedo-Tello, Pamela; Avila-Muñoz, Evangelina; Zepeda, Angélica; Arias, Clorinda
2013-01-01
It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity. PMID:24403870
Ortiz-Matamoros, Abril; Salcedo-Tello, Pamela; Avila-Muñoz, Evangelina; Zepeda, Angélica; Arias, Clorinda
2013-09-01
It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity.
Pyke, Aryn A; Fincham, Jon M; Anderson, John R
2017-06-01
How does processing differ during purely symbolic problem solving versus when mathematical operations can be mentally associated with meaningful (here, visuospatial) referents? Learners were trained on novel math operations (↓, ↑), that were defined strictly symbolically or in terms of a visuospatial interpretation (operands mapped to dimensions of shaded areas, answer = total area). During testing (scanner session), no visuospatial representations were displayed. However, we expected visuospatially-trained learners to form mental visuospatial representations for problems, and exhibit distinct activations. Since some solution intervals were long (~10s) and visuospatial representations might only be instantiated in some stages during solving, group differences were difficult to detect when treating the solving interval as a whole. However, an HSMM-MVPA process (Anderson and Fincham, 2014a) to parse fMRI data identified four distinct problem-solving stages in each group, dubbed: 1) encode; 2) plan; 3) compute; and 4) respond. We assessed stage-specific differences across groups. During encoding, several regions implicated in general semantic processing and/or mental imagery were more active in visuospatially-trained learners, including: bilateral supramarginal, precuneus, cuneus, parahippocampus, and left middle temporal regions. Four of these regions again emerged in the computation stage: precuneus, right supramarginal/angular, left supramarginal/inferior parietal, and left parahippocampal gyrus. Thus, mental visuospatial representations may not just inform initial problem interpretation (followed by symbolic computation), but may scaffold on-going computation. In the second stage, higher activations were found among symbolically-trained solvers in frontal regions (R. medial and inferior and L. superior) and the right angular and middle temporal gyrus. Activations in contrasting regions may shed light on solvers' degree of use of symbolic versus mental visuospatial strategies, even in absence of behavioral differences. Copyright © 2017 Elsevier Inc. All rights reserved.
Sex differences in effects of testing medium and response format on a visuospatial task.
Cherney, Isabelle D; Rendell, Jariel A
2010-06-01
Sex differences on visuospatial tests are among the most reliably replicated. It is unclear to what extent these performance differences reflect underlying differences in skills or testing factors. To assess whether testing medium and response format affect visuospatial sex differences, performances of introductory psychology students (100 men, 104 women) were examined on a visuospatial task presented in paper-and-pencil and tablet computer forms. Both sexes performed better when tested on paper, although men outperformed women. The introduction of an open-ended component to the visuospatial task eliminated sex differences when prior spatial experiences were controlled, but men outperformed women when prior spatial experiences were not considered. In general, the open-ended version and computerized format of the test diminished performance, suggesting that response format and medium are testing factors that influence visuospatial abilities.
Winkle, Cortney C.; Olsen, Reid H. J.; Kim, Hyojin; Moy, Sheryl S.
2016-01-01
During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo. Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9−/− adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9−/− mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. SIGNIFICANCE STATEMENT Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo. Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo. These cellular defects were associated with severe deficits in spatial learning and memory. PMID:27147649
Winkle, Cortney C; Olsen, Reid H J; Kim, Hyojin; Moy, Sheryl S; Song, Juan; Gupton, Stephanie L
2016-05-04
During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9(-/-) adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9(-/-) mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo These cellular defects were associated with severe deficits in spatial learning and memory. Copyright © 2016 the authors 0270-6474/16/364940-19$15.00/0.
Vandborg, Sanne Kjær; Hartmann, Tue Borst; Bennedsen, Birgit Egedal; Pedersen, Anders Degn; Thomsen, Per Hove
2015-01-01
Patients with obsessive-compulsive disorder (OCD) have impaired memory and executive functions, but it is unclear whether these functions improve after cognitive behavioural therapy (CBT) of OCD symptoms. The primary aim of this study was to investigate whether memory and executive functions change after CBT in patients with OCD. We assessed 39 patients with OCD before and after CBT with neuropsychological tests of memory and executive functions. To correct for practice effects, 39 healthy controls (HCs) were assessed at two parallel time intervals with the neuropsychological tests. There were no changes in memory and executive functions after CBT in patients with OCD when results were corrected for practice effects. Patients performed worse on a test of visuospatial memory and organisational skills (Rey complex figure test [RCFT]) compared to HCs both before and after CBT (ps = .002-.036). The finding of persistent poor RCFT performances indicates that patients with OCD have impaired visuospatial memory and organisational skills that may be trait-related rather than state-dependent. These impairments may need to be considered in treatment. Our findings underline the importance of correcting for practice effects when investigating changes in cognitive functions.
Guo, Wei; Wang, Biye; Lu, Yue; Zhu, Qin; Shi, Zhihao; Ren, Jie
2016-01-01
The purpose of the study was to investigate the relationship between different exercise modes and visuospatial working memory in healthy older adults. A cross-sectional design was adopted. A total of 111 healthy older adults were enrolled in the study. They were classified by the exercise-related questionnaire to be in an open-skill group, closed-skill group or sedentary group. In experiment 1, the participants performed a visuospatial working memory task. The results indicated that both closed-skill (p < 0.05) and open-skill (p < 0.01) groups reached a higher accuracy than the sedentary group. Experiment 2 examined whether the exercise-induced benefit of working memory was manifested in passive maintenance or active manipulation of working memory which was assessed by visuospatial short-term memory task and visuospatial mental rotation task, respectively. The results showed that the open-skill (p < 0.01) group was more accurate than the sedentary group in the visuospatial short-term memory task, whereas the group difference in the visuospatial mental rotation task was not significant. These findings combined to suggest that physical exercise was associated with better visuospatial working memory in older adults. Furthermore, open-skill exercises that demand higher cognitive processing showed selective benefit for passive maintenance of working memory.
Linking empathy to visuospatial perspective-taking in gambling addiction.
Tomei, Alexander; Besson, Jacques; Grivel, Jeremy
2017-04-01
It has been demonstrated that people suffering from substance-related addictions are less empathic than their non-addicted counterparts. Our first aim was to verify if this is also true for behavioral addictions. We hypothesized that problem gamblers are less empathic than healthy controls. Our second aim was to identify a cognitive marker of empathy that could be targeted in cognitive rehabilitation strategies. We propose that a potential cognitive marker of empathy could be visuospatial perspective-taking. Specifically, we hypothesized that visuospatial perspective-taking performances are lower in problem gamblers compared to healthy controls and that these visuospatial performances predict empathy. Thirty-one non-gamblers, 24 healthy gamblers, and 21 problem gamblers performed a visuospatial perspective-taking task before completing the Interpersonal Reactivity Index (IRI; Davis, 1980; Davis, 1983). Problem gamblers had decreased empathy and lower performance at the visuospatial perspective-taking task than non-gamblers and healthy gamblers. Furthermore, we confirmed that visuospatial perspective-taking abilities predict empathy on the IRI dimensions of interpersonal perspective-taking and personal distress. The present study provides new evidence that reduced empathy is not limited to subjects with substance-related addictions; rather, it extends to behavioral addictions. Visuospatial perspective-taking may be a viable cognitive marker for use as a rehabilitation target of empathy. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Fenoglio, Kristina A.; Brunson, Kristen L.; Avishai-Eliner, Sarit; Stone, Blake A.; Kapadia, Bhumika J.; Baram, Tallie Z.
2011-01-01
Early-life experience, including maternal care, influences hippocampus-dependent learning and memory throughout life. Handling of pups during postnatal d 2–9 (P2–9) stimulates maternal care and leads to improved memory function and stress-coping. The underlying molecular mechanisms may involve early (by P9) and enduring reduction of hypothalamic corticotropin-releasing factor (CRF) expression and subsequent (by P45) increase in hippocampal glucocorticoid receptor (GR) expression. However, whether hypothalamic CRF levels influence changes in hippocampal GR expression (and memory function), via reduced CRF receptor activation and consequent lower plasma glucocorticoid levels, is unclear. In this study we administered selective antagonist for the type 1 CRF receptor, NBI 30775, to nonhandled rats post hoc from P10–17 and examined hippocampus-dependent learning and memory later (on P50–70), using two independent paradigms, compared with naive and vehicle-treated nonhandled, and naive and antagonist-treated handled rats. Hippocampal GR and hypothalamic CRF mRNA levels and stress-induced plasma corticosterone levels were also examined. Transient, partial selective blockade of CRF1 in nonhandled rats improved memory functions on both the Morris watermaze and object recognition tests to levels significantly better than in naive and vehicle-treated controls and were indistinguishable from those in handled (naive, vehicle-treated, and antagonist-treated) rats. GR mRNA expression was increased in hippocampal CA1 and the dentate gyrus of CRF1-antagonist treated nonhandled rats to levels commensurate with those in handled cohorts. Thus, the extent of CRF1 activation, probably involving changes in hypothalamic CRF levels and release, contributes to the changes in hippocampal GR expression and learning and memory functions. PMID:15932935
Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang
2017-08-01
Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.
ERIC Educational Resources Information Center
Nokia, Miriam S.; Waselius, Tomi; Mikkonen, Jarno E.; Wikgren, Jan; Penttonen, Markku
2015-01-01
Hippocampal ? (3-12 Hz) oscillations are implicated in learning and memory, but their functional role remains unclear. We studied the effect of the phase of local ? oscillation on hippocampal responses to a neutral conditioned stimulus (CS) and subsequent learning of classical trace eyeblink conditioning in adult rabbits. High-amplitude, regular…
ERIC Educational Resources Information Center
Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.
2011-01-01
The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…
Chen, Li; Luo, Tianyou; Lv, Fajin; Shi, Dandan; Qiu, Jiang; Li, Qi; Fang, Weidong; Peng, Juan; Li, Yongmei; Zhang, Zhiwei; Li, Yang
2016-09-01
Clinical studies have shown that thalamus infarction (TI) affects memory function. The thalamic nucleus is directly or indirectly connected to the hippocampal system in animal models. However, this connection has not been investigated using structural magnetic resonance imaging (MRI) in humans. From the pathological perspective, TI patients may serve as valid models for revealing the interaction between the thalamus and hippocampus in memory function. In this study, we aim to assess different hippocampal subfield volumes in TI patients and control subjects using MRI and test their associations with memory function. A total of 37 TI patients (TI group), 38 matched healthy control subjects (HC group), and 22 control patients with other stroke location (SC group) underwent 3.0-T MRI scans and clinical memory examinations. Hippocampal subfield volumes were measured and compared by using FreeSurfer software. We examined the correlation between hippocampal subfield volumes and memory scores. Smaller ipsilesional presubiculum and subiculum volumes were observed, and former was related to graphics recall in both left and right TI patients. The left subiculum volume was correlated with short-delayed recall in left TI patients. The right presubiculum volume was correlated with short- and long-delayed recall in right TI patients. TI was found to result in hippocampal abnormality and memory deficits, and its neural mechanisms might be related with and interaction between the thalamus and hippocampus.
Bhagya, Venkanna Rao; Srikumar, Bettadapura N; Veena, Jayagopalan; Shankaranarayana Rao, Byrathnahalli S
2017-08-01
Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long-term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety-like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short-term EE for 10 days can overcome restraint stress-induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short-term EE on chronic stress-induced impaired LTP, working memory, and anxiety-like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1-LTP, increased anxiety-like symptoms in elevated plus maze, and impaired working memory in T-maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Zhou, Tianen; Liang, Lian; Liang, Yanran; Yu, Tao; Zeng, Chaotao; Jiang, Longyuan
2017-09-15
Mild hypothermia has been proven to be useful to treat brain ischemia/reperfusion injury. However, the underlying mechanisms have not yet been fully elucidated. The present study was undertaken to determine whether mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion(OGD/R)-induced injury via improving lysosomal function and autophagic flux. The results showed that OGD/R induced the occurrence of autophagy, while the acidic environment inside the lysosomes was altered. The autophagic flux assay with RFP-GFP tf-LC3 was impeded in hippocampal neurons after OGD/R. Mild hypothermia recovered the lysosomal acidic fluorescence and the lysosomal marker protein expression of LAMP2, which decreased after OGD/R.Furthermore, we found that mild hypothermia up-regulated autophagic flux and promoted the fusion of autophagosomes and lysosomes in hippocampal neurons following OGD/R injury, but could be reversed by treatment with chloroquine, which acts as a lysosome inhibitor. We also found that mild hypothermia improved mitochondrial autophagy in hippocampal neurons following OGD/R injury. Finally,we found that chloroquine blocked the protective effects of mild hypothermia against OGD/R-induced cell death and injury. Taken together, the present study indicates that mild hypothermia protects hippocampal neurons against OGD/R-induced injury by improving lysosomal function and autophagic flux. Copyright © 2017. Published by Elsevier Inc.
Lee, Min Chul; Okamoto, Masahiro; Liu, Yu Fan; Inoue, Koshiro; Matsui, Takashi; Nogami, Haruo; Soya, Hideaki
2012-10-15
Although voluntary running has beneficial effects on hippocampal cognitive functions if done abundantly, it is still uncertain whether resistance running would be the same. For this purpose, voluntary resistance wheel running (RWR) with a load is a suitable model, since it allows increased work levels and resultant muscular adaptation in fast-twitch muscle. Here, we examined whether RWR would have potential effects on hippocampal cognitive functions with enhanced hippocampal brain-derived neurotrophic factor (BDNF), as does wheel running without a load (WR). Ten-week-old male Wistar rats were assigned randomly to sedentary (Sed), WR, and RWR (to a maximum load of 30% of body weight) groups for 4 wk. We found that in RWR, work levels increased with load, but running distance decreased by about half, which elicited muscular adaptation for fast-twitch plantaris muscle without causing any negative stress effects. Both RWR and WR led to improved spatial learning and memory as well as gene expressions of hippocampal BDNF signaling-related molecules. RWR increased hippocampal BDNF, tyrosine-related kinase B (TrkB), and cAMP response element-binding (CREB) protein levels, whereas WR increased only BDNF. With both exercise groups, there were correlations between spatial memory and BDNF protein (r = 0.41), p-CREB protein (r = 0.44), and work levels (r = 0.77). These results suggest that RWR plays a beneficial role in hippocampus-related cognitive functions associated with hippocampal BDNF signaling, even with short distances, and that work levels rather than running distance are more determinant of exercise-induced beneficial effects in wheel running with and without a load.
Mataró, Maria; Matarín, Mar; Poca, Maria Antonia; Pueyo, Roser; Sahuquillo, Juan; Barrios, Maite; Junqué, Carme
2007-01-01
Background Normal pressure hydrocephalus (NPH) is associated with corpus callosum abnormalities. Objectives To study the clinical and neuropsychological effect of callosal thinning in 18 patients with idiopathic NPH and to investigate the postsurgical callosal changes in 14 patients. Methods Global corpus callosum size and seven callosal subdivisions were measured. Neuropsychological assessment included an extensive battery assessing memory, psychomotor speed, visuospatial and frontal lobe functioning. Results After surgery, patients showed improvements in memory, visuospatial and frontal lobe functions, and psychomotor speed. Two frontal corpus callosum areas, the genu and the rostral body, were the regions most related to the clinical and neuropsychological dysfunction. After surgery, total corpus callosum and four of the seven subdivisions presented a significant increase in size, which was related to poorer neuropsychological and clinical outcome. Conclusion The postsurgical corpus callosum increase might be the result of decompression, re‐expansion and increase of interstitial fluid, although it may also be caused by differences in shape due to cerebral reorganisation. PMID:17056634
Wallace, Deanna L.
2017-01-01
The neuromodulator acetylcholine modulates spatial integration in visual cortex by altering the balance of inputs that generate neuronal receptive fields. These cholinergic effects may provide a neurobiological mechanism underlying the modulation of visual representations by visual spatial attention. However, the consequences of cholinergic enhancement on visuospatial perception in humans are unknown. We conducted two experiments to test whether enhancing cholinergic signaling selectively alters perceptual measures of visuospatial interactions in human subjects. In Experiment 1, a double-blind placebo-controlled pharmacology study, we measured how flanking distractors influenced detection of a small contrast decrement of a peripheral target, as a function of target-flanker distance. We found that cholinergic enhancement with the cholinesterase inhibitor donepezil improved target detection, and modeling suggested that this was mainly due to a narrowing of the extent of facilitatory perceptual spatial interactions. In Experiment 2, we tested whether these effects were selective to the cholinergic system or would also be observed following enhancements of related neuromodulators dopamine or norepinephrine. Unlike cholinergic enhancement, dopamine (bromocriptine) and norepinephrine (guanfacine) manipulations did not improve performance or systematically alter the spatial profile of perceptual interactions between targets and distractors. These findings reveal mechanisms by which cholinergic signaling influences visual spatial interactions in perception and improves processing of a visual target among distractors, effects that are notably similar to those of spatial selective attention. SIGNIFICANCE STATEMENT Acetylcholine influences how visual cortical neurons integrate signals across space, perhaps providing a neurobiological mechanism for the effects of visual selective attention. However, the influence of cholinergic enhancement on visuospatial perception remains unknown. Here we demonstrate that cholinergic enhancement improves detection of a target flanked by distractors, consistent with sharpened visuospatial perceptual representations. Furthermore, whereas most pharmacological studies focus on a single neurotransmitter, many neuromodulators can have related effects on cognition and perception. Thus, we also demonstrate that enhancing noradrenergic and dopaminergic systems does not systematically improve visuospatial perception or alter its tuning. Our results link visuospatial tuning effects of acetylcholine at the neuronal and perceptual levels and provide insights into the connection between cholinergic signaling and visual attention. PMID:28336568
Pavlopoulos, Elias; Trifilieff, Pierre; Chevaleyre, Vivien; Fioriti, Luana; Zairis, Sakellarios; Pagano, Andrew; Malleret, Gaël; Kandel, Eric R
2011-12-09
The cytoplasmic polyadenylation element-binding protein 3 (CPEB3), a regulator of local protein synthesis, is the mouse homolog of ApCPEB, a functional prion protein in Aplysia. Here, we provide evidence that CPEB3 is activated by Neuralized1, an E3 ubiquitin ligase. In hippocampal cultures, CPEB3 activated by Neuralized1-mediated ubiquitination leads both to the growth of new dendritic spines and to an increase of the GluA1 and GluA2 subunits of AMPA receptors, two CPEB3 targets essential for synaptic plasticity. Conditional overexpression of Neuralized1 similarly increases GluA1 and GluA2 and the number of spines and functional synapses in the hippocampus and is reflected in enhanced hippocampal-dependent memory and synaptic plasticity. By contrast, inhibition of Neuralized1 reduces GluA1 and GluA2 levels and impairs hippocampal-dependent memory and synaptic plasticity. These results suggest a model whereby Neuralized1-dependent ubiquitination facilitates hippocampal plasticity and hippocampal-dependent memory storage by modulating the activity of CPEB3 and CPEB3-dependent protein synthesis and synapse formation. Copyright © 2011 Elsevier Inc. All rights reserved.
Role of medial cortical, hippocampal and striatal interactions during cognitive set-shifting.
Graham, Steven; Phua, Elaine; Soon, Chun Siong; Oh, Tomasina; Au, Chris; Shuter, Borys; Wang, Shih-Chang; Yeh, Ing Berne
2009-05-01
To date, few studies have examined the functional connectivity of brain regions involved in complex executive function tasks, such as cognitive set-shifting. In this study, eighteen healthy volunteers performed a cognitive set-shifting task modified from the Wisconsin card sort test while undergoing functional magnetic resonance imaging. These modifications allowed better disambiguation between cognitive processes and revealed several novel findings: 1) peak activation in the caudate nuclei in the first instance of negative feedback signaling a shift in rule, 2) lowest caudate activation once the rule had been identified, 3) peak hippocampal activation once the identity of the rule had been established, and 4) decreased hippocampal activation during the generation of new rule candidates. This pattern of activation across cognitive set-shifting events suggests that the caudate nuclei play a role in response generation when the identity of the new rule is unknown. In contrast, the reciprocal pattern of hippocampal activation suggests that the hippocampi help consolidate knowledge about the correct stimulus-stimulus associations, associations that become inappropriate once the rule has changed. Functional connectivity analysis using Granger Causality Mapping revealed that caudate and hippocampal regions interacted indirectly via a circuit involving the medial orbitofrontal and posterior cingulate regions, which are known to bias attention towards stimuli based on expectations built up from task-related feedback. Taken together, the evidence suggests that these medial regions may mediate striato-hippocampal interactions and hence affect goal-directed attentional transitions from a response strategy based on stimulus-reward heuristics (caudate-dependent) to one based on stimulus-stimulus associations (hippocampus-dependent).
Early classification of Alzheimer's disease using hippocampal texture from structural MRI
NASA Astrophysics Data System (ADS)
Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong
2017-03-01
Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.
Chao, Linda L; Rothlind, Johannes C; Cardenas, Valerie A; Meyerhoff, Dieter J; Weiner, Michael W
2010-09-01
Potentially more than 100,000 US troops may have been exposed to the organophosphate chemical warfare agents sarin (GB) and cyclosarin (GF) when a munitions dump at Khamisiyah, Iraq was destroyed during the Gulf War (GW) in 1991. Although little is known about the long-term neurobehavioral or neurophysiological effects of low-dose exposure to GB/GF in humans, recent studies of GW veterans from the Devens Cohort suggest decrements in certain cognitive domains and atrophy in brain white matter occur individuals with higher estimated levels of presumed GB/GF exposure. The goal of the current study is to determine the generalizability of these findings in another cohort of GW veterans with suspected GB/GF exposure. Neurobehavioral and imaging data collected in a study on Gulf War Illness between 2002 and 2007 were used in this study. We focused on the data of 40 GW-deployed veterans categorized as having been exposed to GB/GF at Khamisiyah, Iraq and 40 matched controls. Magnetic resonance images (MRI) of the brain were analyzed using automated and semi-automated image processing techniques that produced volumetric measurements of gray matter (GM), white matter (WM), cerebrospinal fluid (CSF) and hippocampus. GW veterans with suspected GB/GF exposure had reduced total GM and hippocampal volumes compared to their unexposed peers (p< or =0.01). Although there were no group differences in measures of cognitive function or total WM volume, there were significant, positive correlations between total WM volume and measures of executive function and visuospatial abilities in veterans with suspected GB/GF exposure. These findings suggest that low-level exposure to GB/GF can have deleterious effects on brain structure and brain function more than decade later. Copyright © 2010 Elsevier Inc. All rights reserved.
Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review.
Pu, Yi; Cheyne, Douglas O; Cornwell, Brian R; Johnson, Blake W
2018-01-01
Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG "deep source imaging" of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations.
Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review
Pu, Yi; Cheyne, Douglas O.; Cornwell, Brian R.; Johnson, Blake W.
2018-01-01
Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG “deep source imaging” of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations. PMID:29755314
Zhang, Kuo; Pan, Xing; Wang, Fang; Ma, Jie; Su, Guangyue; Dong, Yingxu; Yang, Jingyu; Wu, Chunfu
2016-01-01
Antidepressants increase hippocampal neurogenesis by activating the glucocorticoid receptor (GR), but excessive GR activation impairs hippocampal neurogenesis, suggesting that normal GR function is crucial for hippocampal neurogenesis. Baicalin was reported to regulate the expression of GR and facilitate hippocampal neurogenesis, but the underlying molecular mechanisms are still unknown. In this study, we used the chronic corticosterone (CORT)-induced mouse model of anxiety/depression to assess antidepressant-like effects of baicalin and illuminate possible molecular mechanisms by which baicalin affects GR-mediated hippocampal neurogenesis. We found that oral administration of baicalin (40, 80 or 160 mg/kg) for 4 weeks alleviated several chronic CORT-induced anxiety/depression-like behaviors. Baicalin also increased Ki-67- and DCX-positive cells to restore chronic CORT-induced suppression of hippocampal neurogenesis. Moreover, baicalin normalized the chronic CORT-induced decrease in GR protein levels, the increase in GR nuclear translocation and the increase in GR phosphorylation at Ser203 and Ser211. Finally, chronic CORT exposure increased the level of FK506-binding protein 51 (FKBP5) and of phosphorylated serum- and glucocorticoid-inducible kinase 1 (SGK1) at Ser422 and Thr256, whereas baicalin normalized these changes. Together, our findings suggest that baicalin improves anxiety/depression-like behaviors and promotes hippocampal neurogenesis. We propose that baicalin may normalize GR function through SGK1- and FKBP5-mediated GR phosphorylation. PMID:27502757
Nakajima, Sanae; Ohsawa, Ikuroh; Ohta, Shigeo; Ohno, Makoto; Mikami, Toshio
2010-08-25
Chronic stress impairs cognitive function and hippocampal neurogenesis. This impairment is attributed to increases in oxidative stress, which result in the accumulation of lipid peroxide. On the other hand, voluntary exercise enhances cognitive function, hippocampal neurogenesis, and antioxidant capacity in normal animals. However, the effects of voluntary exercise on cognitive function, neurogenesis, and antioxidants in stressed mice are unclear. This study was designed to investigate whether voluntary exercise cures stress-induced impairment of cognitive function accompanied by improvement of hippocampal neurogenesis and increases in antioxidant capacity. Stressed mice were exposed to chronic restraint stress (CRS), which consisted of 12h immobilization daily and feeding in a small cage, for 8 weeks. Exercised mice were allowed free access to a running wheel during their exposure to CRS. At the 6th week, cognitive function was examined using the Morris water maze (MWM) test. Daily voluntary exercise restored stress-induced impairment of cognitive function and the hippocampal cell proliferation of newborn cells but not cell survival. Voluntary exercise increased insulin-like growth factor 1 (IGF-1) protein and mRNA expression in the cerebral cortex and liver, respectively. In addition, CRS resulted in a significant increase in the number of 4-hydrosynonenal (4-HNE)-positive cells in the hippocampal dentate gyrus; whereas, voluntary exercise inhibited it and enhanced glutathione s-transferases (GST) activity in the brain. These findings suggest that voluntary exercise attenuated the stress-induced impairment of cognitive function accompanied by improvement of cell proliferation in the dentate gyrus. This exercise-induced improvement was attributed to exercise-induced enhancement of IGF-1 protein and GST activity in the brain. Copyright 2010 Elsevier B.V. All rights reserved.
Kuo, Hsu-Ko; Jones, Richard N.; Milberg, William P.; Tennstedt, Sharon; Talbot, Laura; Morris, John N.; Lipsitz, Lewis A.
2010-01-01
OBJECTIVES To assess how elevated body mass index (BMI) affects cognitive function in elderly people. DESIGN Cross-sectional study. SETTING Data for this cross-sectional study were taken from a multicenter randomized controlled trial, the Advanced Cognitive Training for Independent and Vital Elderly trial. PARTICIPANTS The analytic sample included 2,684 normal-weight, overweight, or obese subjects aged 65 to 94. MEASUREMENTS Evaluation of cognitive abilities was performed in several domains: global cognition, memory, reasoning, and speed of processing. Cross-sectional association between body weight status and cognitive functions was analyzed using multiple linear regression. RESULTS Overweight subjects had better performance on a reasoning task (β = 0.23, standard error (SE) = 0.11, P = .04) and the Useful Field of View (UFOV) measure (β = −39.46, SE = 12.95, P = .002), a test of visuospatial speed of processing, after controlling for age, sex, race, years of education, intervention group, study site, and cardiovascular risk factors. Subjects with class I (BMI 30.0–34.9 kg/m2) and class II (BMI>35.0 kg/m2) obesity had better UFOV measure scores (β = −38.98, SE = 14.77, P = .008; β = −35.75, SE = 17.65, and P = .04, respectively) in the multivariate model than normal-weight subjects. The relationships between BMI and individual cognitive domains were nonlinear. CONCLUSION Overweight participants had better cognitive performance in terms of reasoning and visuospatial speed of processing than normal-weight participants. Obesity was associated with better performance in visuospatial speed of processing than normal weight. The relationship between BMI and cognitive function should be studied prospectively. PMID:16420204
The nature of social cognitive deficits in children and adults with Klinefelter syndrome (47,XXY).
van Rijn, S; de Sonneville, L; Swaab, H
2018-02-06
About 1 in 650 boys are born with an extra X chromosome (47,XXY or Klinefelter syndrome). 47,XXY is associated with vulnerabilities in socio-emotional development. This study was designed to assess types of cognitive deficits in individuals with 47,XXY that may contribute to social-emotional dysfunction, and to evaluate the nature of such deficits at various levels: ranging from basic visuospatial processing deficits, impairments in face recognition (FR), to emotion expression impairments. A total of 70 boys and men with 47,XXY, aged 8 to 60 years old, participated in the study. The subtests feature identification, FR and identification of facial emotions of the Amsterdam Neuropsychological Tasks were used. Level of intellectual functioning was assessed with the child and adult versions of the Wechsler Intelligence Scales. Reaction time data showed that in the 47,XXY group, 17% had difficulties in visuospatial processing (no social load), 26% had difficulties with FR (medium social load) and an even higher number of 33% had difficulties with facial expressions of emotions (high-social load). Information processing impairments increased as a function of "social load" of the stimuli, independent of intellectual functioning. Taken together, our data suggest that on average individuals with XXY may have more difficulties in information processing when "social load" increases, suggesting a specific difficulty in the higher-order labeling and interpretation of social cues, which cannot be explained by more basic visuospatial perceptual skills. Considering the increased risk for social cognitive impairments, routine assessment of social cognitive functioning as part of neuropsychological screening is warranted. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Executive Functioning in Highly Talented Soccer Players
Verburgh, Lot; Scherder, Erik J. A.; van Lange, Paul A.M.; Oosterlaan, Jaap
2014-01-01
Executive functions might be important for successful performance in sports, particularly in team sports requiring quick anticipation and adaptation to continuously changing situations in the field. The executive functions motor inhibition, attention and visuospatial working memory were examined in highly talented soccer players. Eighty-four highly talented youth soccer players (mean age 11.9), and forty-two age-matched amateur soccer players (mean age 11.8) in the age range 8 to 16 years performed a Stop Signal task (motor inhibition), the Attention Network Test (alerting, orienting, and executive attention) and a visuospatial working memory task. The highly talented soccer players followed the talent development program of the youth academy of a professional soccer club and played at the highest national soccer competition for their age. The amateur soccer players played at a regular soccer club in the same geographical region as the highly talented soccer players and play in a regular regional soccer competition. Group differences were tested using analyses of variance. The highly talented group showed superior motor inhibition as measured by stop signal reaction time (SSRT) on the Stop Signal task and a larger alerting effect on the Attention Network Test, indicating an enhanced ability to attain and maintain an alert state. No group differences were found for orienting and executive attention and visuospatial working memory. A logistic regression model with group (highly talented or amateur) as dependent variable and executive function measures that significantly distinguished between groups as predictors showed that these measures differentiated highly talented soccer players from amateur soccer players with 89% accuracy. Highly talented youth soccer players outperform youth amateur players on suppressing ongoing motor responses and on the ability to attain and maintain an alert state; both may be essential for success in soccer. PMID:24632735
Relationship between Spatial Abilities, Mental Rotation and Functional Anatomy Learning
ERIC Educational Resources Information Center
Guillot, Aymeric; Champely, Stephane; Batier, Christophe; Thiriet, Patrice; Collet, Christian
2007-01-01
This study investigated the relationship between visuo-spatial representation, mental rotation (MR) and functional anatomy examination results. A total of 184 students completed the Group Embedded Figures Test (GEFT), Mental Rotation Test (MRT) and Gordon Test of Visual Imagery Control. The time spent on personal assignment was also considered.…
Clock Drawing Performance and Brain Morphology in Mild Cognitive Impairment and Alzheimer's Disease
ERIC Educational Resources Information Center
Thomann, Philipp A.; Toro, Pablo; Santos, Vasco Dos; Essig, Marco; Schroder, Johannes
2008-01-01
The Clock Drawing Test (CDT) is a widely used instrument in the neuropsychological assessment of Alzheimer's disease (AD). As CDT performance necessitates several cognitive functions (e.g., visuospatial and constructional abilities, executive functioning), an interaction of multiple brain regions is likely. Fifty-one subjects with mild cognitive…
Zhu, Xun; Kelly, Thomas H; Curry, Thomas E; Lal, Chitra; Joseph, Jane E
2015-09-30
Mental rotation is a visuospatial task associated with pronounced sex differences. Performance is also affected by gonadal hormones such as testosterone and estradiol. To better understand hormonal modulation of the neural substrates of mental rotation, the present study examined the influence of estradiol using functional MRI. Ten premenopausal women were tested on a 3D mental rotation task during the early follicular and late follicular phases of the menstrual cycle. Change in estradiol between the two phases was confirmed by hormone assays. Brain activation patterns were similar across the two phases, but the change in estradiol had different associations with the two hemispheres. Better performance in the late follicular than the early follicular phase was associated with a pattern of reduced recruitment of the right hemisphere and increased recruitment of the left hemisphere. The increased recruitment of the left hemisphere was directly associated with greater changes in estradiol. Given that the right hemisphere is the dominant hemisphere in visuospatial processing, our results suggest that estradiol is associated with reduced functional asymmetry, consistent with recent accounts of hormonal modulation of neurocognitive function.
Alterations in cognitive and psychological functioning after organic solvent exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.
1990-05-01
Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workersmore » indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.« less
NASA Astrophysics Data System (ADS)
Agus, M.; Mascia, M. L.; Fastame, M. C.; Napoleone, V.; Porru, A. M.; Siddu, F.; Lucangeli, D.; Penna, M. P.
2016-11-01
The aim of this study was to verify the efficacy of two pencil-and-paper trainings empowering numerical and visuo-spatial abilities in Italian five-year-old kindergarteners. Specifically, the trainings were respectively carried out by the curricular teacher or by an external trainer. The former received a specific training in order to use the psychoeducational programmes with her pupils, whereas the latter received a specific education about the role of numerical and visuo-spatial abilities for school achievement and she was also trained to use psychoeducational trainings in kindergarten schools. At pre-test and post-test nonverbal functions and numeracy knowledge were assessed through a battery of standardized tests. The results show that both the numerical psychoeducational programme and the visuo-spatial one are useful tools to enhance mathematical achievements in kindergarteners. However, when the trainings were proposed by the external trainer, the efficacy of the psychoeducational programmes was more significant. These outcomes seem to be related both to the expertise and the novelty effect of the external trainer on the classroom.
Kleibeuker, Sietske W; De Dreu, Carsten K W; Crone, Eveline A
2013-01-01
We examined developmental trajectories of creative cognition across adolescence. Participants (N = 98), divided into four age groups (12/13 yrs, 15/16 yrs, 18/19 yrs, and 25-30 yrs), were subjected to a battery of tasks gauging creative insight (visual; verbal) and divergent thinking (verbal; visuo-spatial). The two older age groups outperformed the two younger age groups on insight tasks. The 25-30-year-olds outperformed the two youngest age groups on the originality measure of verbal divergent thinking. No age-group differences were observed for verbal divergent thinking fluency and flexibility. On divergent thinking in the visuo-spatial domain, however, only 15/16-year-olds outperformed 12/13-year-olds; a model with peak performance for 15/16-years-old showed the best fit. The results for the different creativity processes are discussed in relation to cognitive and related neurobiological models. We conclude that mid-adolescence is a period of not only immaturities but also of creative potentials in the visuo-spatial domain, possibly related to developing control functions and explorative behavior. © 2012 Blackwell Publishing Ltd.
ERIC Educational Resources Information Center
Middei, Silvia; Roberto, Anna; Berretta, Nicola; Panico, Maria Beatrice; Lista, Simone; Bernardi, Giorgio; Mercuri, Nicola B.; Ammassari-Teule, Martine; Nistico, Robert
2010-01-01
B6-Tg/Thy1APP23Sdz (APP23) mutant mice exhibit neurohistological hallmarks of Alzheimer's disease but show intact basal hippocampal neurotransmission and synaptic plasticity. Here, we examine whether spatial learning differently modifies the structural and electrophysiological properties of hippocampal synapses in APP23 and wild-type mice. While…
Repeated mild closed head injury impairs short-term visuospatial memory and complex learning.
Hylin, Michael J; Orsi, Sara A; Rozas, Natalia S; Hill, Julia L; Zhao, Jing; Redell, John B; Moore, Anthony N; Dash, Pramod K
2013-05-01
Concussive force can cause neurocognitive and neurobehavioral dysfunction by inducing functional, electrophysiological, and/or ultrastructural changes within the brain. Although concussion-triggered symptoms typically subside within days to weeks in most people, in 15%-20% of the cases, symptomology can continue beyond this time point. Problems with memory, attention, processing speed, and cognitive flexibility (e.g., problem solving, conflict resolution) are some of the prominent post-concussive cognitive symptoms. Repeated concussions (with loss or altered consciousness), which are common to many contact sports, can exacerbate these symptoms. The pathophysiology of repeated concussions is not well understood, nor is an effective treatment available. In order to facilitate drug discovery to treat post-concussive symptoms (PCSs), there is a need to determine if animal models of repeated mild closed head injury (mCHI) can mimic the neurocognitive and histopathological consequences of repeated concussions. To this end, we employed a controlled cortical impact (CCI) device to deliver a mCHI directly to the skull of mice daily for 4 days, and examined the ensuing neurological and neurocognitive functions using beam balance, foot-fault, an abbreviated Morris water maze test, context discrimination, and active place avoidance tasks. Repeated mCHI exacerbated vestibulomotor, motor, short-term memory and conflict learning impairments as compared to a single mCHI. Learning and memory impairments were still observed in repeated mCHI mice when tested 3 months post-injury. Repeated mCHI also reduced cerebral perfusion, prolonged the inflammatory response, and in some animals, caused hippocampal neuronal loss. Our results show that repeated mCHI can reproduce some of the deficits seen after repeated concussions in humans and may be suitable for drug discovery studies and translational research.
Tavano, Alessandro; Gagliardi, Chiara; Martelli, Sara; Borgatti, Renato
2010-09-01
The neurocognitive profile of Williams-Beuren syndrome (WBS) is characterized by visuospatial deficits, apparently fluent language, motor soft signs, and hypersociability. We investigated the association between neuromotor soft signs and visuospatial, executive-attentive, mnestic and linguistic functions in a group of 26 children and young adults with WBS. We hypothesized that neurological soft signs could be an index of subtle neurofunctional deficits and thus provide a behavioural window into the processes underlying neurocognition in Williams-Beuren syndrome. Dysmetria and dystonic movements were selected as grouping neurological variables, indexing cerebellar and basal ganglia dysfunction, respectively. No detrimental effects on visuospatial/visuoconstructive skills were evident following the presence of either neurological variable. As for language skills, participants with dysmetria showed markedly reduced expressive syntactic and lexico-semantic skills as compared to non-affected individuals, while no difference in chronological age was evident. Participants with dystonic movements showed reduced receptive syntax and increased lexical comprehension skills as compared to non-affected individuals, the age factor being significant. In both instances, the effect size was greater for syntactic measures. We take these novel findings as suggestive of a double dissociation between expressive and receptive skills at sentence level within the WBS linguistic phenotype. The investigation of neuromotor soft signs and neuropsychological functions may provide a key to new non-cortico-centric genotype/phenotype relationships. Copyright 2010 Elsevier Ltd. All rights reserved.
Li, Jieying; Wu, Liyong; Tang, Yi; Zhou, Aihong; Wang, Fen; Xing, Yi; Jia, Jianping
2018-05-10
Posterior cortical atrophy (PCA) is a group of clinical syndromes characterized by visuospatial and visuoperceptual impairment, with memory relatively preserved. Although PCA is pathologically almost identical to Alzheimer's disease (AD), they have different cognitive features. Those differences have only rarely been reported in any Chinese population. The purpose of the study is to establish neuropsychological tests that distinguish the clinical features of PCA from early onset AD (EOAD). Twenty-one PCA patients, 20 EOAD patients, and 20 healthy controls participated in this study. Patients had disease duration of ≤4 years. All participants completed a series of neuropsychological tests to evaluate their visuospatial, visuoperceptual, visuo-constructive, language, executive function, memory, calculation, writing, and reading abilities. The cognitive features of PCA and EOAD were compared. All the neuropsychological test scores showed that both the PCA and EOAD patients were significantly more impaired than people in the control group. However, PCA patients were significantly more impaired than EOAD patients in visuospatial, visuoperceptual, and visuo-constructive function, as well as in handwriting, and reading Chinese characters. The profile of neuropsychological test results highlights cognitive features that differ between PCA and EOAD. One surprising result is that the two syndromes could be distinguished by patients' ability to read and write Chinese characters. Tests based on these characteristics could therefore form a brief PCA neuropsychological examination that would improve the diagnosis of PCA.
Kim, Min Seung; Yoon, Jung Han; Hong, Ji Man
2018-05-29
Our study aimed to investigate whether heart rate variability (HRV) could be a useful diagnostic screening tool at MCI (mild cognitive impairment) stage of Dementia with Lewy bodies (DLB) from Alzheimer's disease (AD). This retrospective study used a selected sample from Ajou neurological registry. We identified MCI patients who underwent HRV testing at baseline, and who developed probable DLB (MCI-DLB: n = 23) or AD (MCI-AD: n = 32). The MCI-DLB group exhibited significantly lower levels of almost all HRV parameters compared with the MCI-AD group. Fronto-executive function and visuospatial abilities were poorer in the MCI-DLB group, whereas the extent of verbal memory impairment was greater in the MCI-AD. Verbal memory score was negatively correlated with overall HRV parameters, and visuospatial function was positively correlated with the frequency domain of HRV. Receiver operating curve area under the curve (AUC) analysis revealed that the low frequency component was the best potential diagnostic marker (AUC = 0.88). MCI-DLB patients exhibited greater cardiac autonomic dysfunction (as measured by HRV) and greater fronto-executive and visuospatial deficit compared with MCI-AD patients. HRV may be useful method to differentiate DLB from AD in patients with MCI; this would facilitate early disease-specific intervention. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Hammer, Rubi; Tennekoon, Michael; Cooke, Gillian E; Gayda, Jessica; Stein, Mark A; Booth, James R
2015-08-01
We tested the interactive effect of feedback and reward on visuospatial working memory in children with ADHD. Seventeen boys with ADHD and 17 Normal Control (NC) boys underwent functional magnetic resonance imaging (fMRI) while performing four visuospatial 2-back tasks that required monitoring the spatial location of letters presented on a display. Tasks varied in reward size (large; small) and feedback availability (no-feedback; feedback). While the performance of NC boys was high in all conditions, boys with ADHD exhibited higher performance (similar to those of NC boys) only when they received feedback associated with large-reward. Performance pattern in both groups was mirrored by neural activity in an executive function neural network comprised of few distinct frontal brain regions. Specifically, neural activity in the left and right middle frontal gyri of boys with ADHD became normal-like only when feedback was available, mainly when feedback was associated with large-reward. When feedback was associated with small-reward, or when large-reward was expected but feedback was not available, boys with ADHD exhibited altered neural activity in the medial orbitofrontal cortex and anterior insula. This suggests that contextual support normalizes activity in executive brain regions in children with ADHD, which results in improved working memory. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Intrusion errors in visuospatial working memory performance.
Cornoldi, Cesare; Mammarella, Nicola
2006-02-01
This study tested the hypothesis that failure in active visuospatial working memory tasks involves a difficulty in avoiding intrusions due to information that is already activated. Two experiments are described, in which participants were required to process several series of locations on a 4 x 4 matrix and then to produce only the final location of each series. Results revealed a higher number of errors due to already activated locations (intrusions) compared with errors due to new locations (inventions). Moreover, when participants were required to pay extra attention to some irrelevant (non-final) locations by tapping on the table, intrusion errors increased. Results are discussed in terms of current models of working memory functioning.
Papagno, C; Vallar, G
2001-05-01
The ability of subject F.F., diagnosed with Down syndrome, to appreciate nonliteral (interpreting metaphors and idioms) and literal (vocabulary knowledge, including highly specific and unusual items) aspects of language was investigated. F.F. was impaired in understanding both metaphors and idioms, while her phonological, syntactic and lexical-semantic skills were largely preserved. By contrast, some aspects of F.F.'s executive functions and many visuospatial abilities were defective. The suggestion is made that the interpretation of metaphors and idioms is largely independent of that of literal language, preserved in F.F., and that some executive aspects of working memory and visuospatial and imagery processes may play a role.
Reddy, P Hemachandra; Yin, XiangLin; Manczak, Maria; Kumar, Subodh; Jangampalli Adi, Pradeepkiran; Vijayan, Murali; Reddy, Arubala P
2018-04-25
The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Aβ) in human mutant APP (mAPP) cDNA transfected with primary mouse hippocampal neurons (HT22). Hippocampal tissues are the best source of studying learning and memory functions in patients with Alzheimer's disease (AD) and healthy controls. However, investigating immortalized hippocampal neurons that express AD proteins provide an excellent opportunity for drug testing. Using quantitative RT-PCR, immunoblotting & immunofluorescence, and transmission electron microscopy, we assessed mRNA and protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2, and assessed mitochondrial number and length in mAPP-HT22 cells that express Swedish/Indiana mutations. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Increased levels of mRNA and protein levels of mitochondrial fission genes, Drp1 and Fis1 and decreased levels fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 & TFAM), autophagy (ATG5 & LC3BI, LC3BII), mitophagy (PINK1 & TERT, BCL2 & BNIPBL), synaptic (synaptophysin & PSD95) and dendritic (MAP2) genes were found in mAPP-HT22 cells relative to WT-HT22 cells. Cell survival was significantly reduced mAPP-HT22 cells. GTPase-Dp1 enzymatic activity was increased in mAPP-HT22 cells. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in mAPP-HT22 cells. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins & reduced dendritic spines and mitochondrial structural and functional changes in mutant APP hippocampal cells. These observations strongly suggest that accumulation of mAPP and Aβ causes mitochondrial, synaptic and autophagy/mitophagy abnormalities in hippocampal neurons, leading to neuronal dysfunction.
Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J
2016-05-01
We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model. © 2015 Society for the Study of Addiction.
Diamond, David M.
2004-01-01
Dehydroepiandrosterone sulfate (DHEAS) is a steroid hornone that is synthesized, de novo, in the brain. Endogenous DHEAS levels correlate with the quality of mental and physical health, where the highest levels of DHEAS occur in healthy young adults and reduced levels of DHEAS are found with advanced age, disease, or extreme stress. DHEAS supplementation, therefore, may serve as a therapeutic agent against a broad range of maladies. This paper summarizes laboratory findings on dose-response relationships between DHEAS and cognitive and electrophysiological measures of hippocampal functioning. It was found that a low, but not a high, dose of DHEAS enhanced hippocampal primed burst potentiation (a physiological model of memory) as well as spatial (hippocampal-dependent) memory in rats. This complex dose-response function of DHEAS effects on the brain and memory may contribute toward the inconsistent findings that have been obtained by other investigators in studies on DHEAS administration in people. PMID:19330152
Stewart, Christopher C; Griffith, H Randall; Okonkwo, Ozioma C; Martin, Roy C; Knowlton, Robert K; Richardson, Elizabeth J; Hermann, Bruce P; Seidenberg, Michael
2009-02-01
Recent theories have posited that the hippocampus and thalamus serve distinct, yet related, roles in episodic memory. Whereas the hippocampus has been implicated in long-term memory encoding and storage, the thalamus, as a whole, has been implicated in the selection of items for subsequent encoding and the use of retrieval strategies. However, dissociating the memory impairment that occurs following thalamic injury as distinguished from that following hippocampal injury has proven difficult. This study examined relationships between MRI volumetric measures of the hippocampus and thalamus and their contributions to prose and rote verbal memory functioning in 18 patients with intractable temporal lobe epilepsy (TLE). Results revealed that bilateral hippocampal and thalamic volume independently predicted delayed prose verbal memory functioning. However, bilateral hippocampal, but not thalamic, volume predicted delayed rote verbal memory functioning. Follow-up analyses indicated that bilateral thalamic volume independently predicted immediate prose, but not immediate rote, verbal recall, whereas bilateral hippocampal volume was not associated with any of these immediate memory measures. These findings underscore the cognitive significance of thalamic atrophy in chronic TLE, demonstrating that hippocampal and thalamic volume make quantitatively, and perhaps qualitatively, distinct contributions to episodic memory functioning in TLE patients. They are also consistent with theories proposing that the hippocampus supports long-term memory encoding and storage, whereas the thalamus is implicated in the executive aspects of episodic memory.
Pillai, Anup G; Arp, Marit; Velzing, Els; Lesuis, Sylvie L; Schmidt, Mathias V; Holsboer, Florian; Joëls, Marian; Krugers, Harm J
2018-05-01
Exposure to early-life adversity may program brain function to prepare individuals for adaptation to matching environmental contexts. In this study we tested this hypothesis in more detail by examining the effects of early-life stress - induced by raising offspring with limited nesting and bedding material from postnatal days 2-9 - in various behavioral tasks and on synaptic function in adult mice. Early-life stress impaired adult performance in the hippocampal dependent low-arousing object-in-context recognition memory task. This effect was absent when animals were exposed to a single stressor before training. Early-life stress did not alter high-arousing context and auditory fear conditioning. Early-life stress-induced behavioral modifications were not associated with alterations in the dendritic architecture of hippocampal CA1 pyramidal neurons or principal neurons of the basolateral amygdala. However, early-life stress reduced the ratio of NMDA to AMPA receptor-mediated excitatory postsynaptic currents and glutamate release probability specifically in hippocampal CA1 neurons, but not in the basolateral amygdala. These ex vivo effects in the hippocampus were abolished by acute glucocorticoid treatment. Our findings support that early-life stress can hamper object-in-context learning via pre- and postsynaptic mechanisms that affect hippocampal function but these effects are counteracted by acute stress or elevated glucocorticoid levels. Copyright © 2018. Published by Elsevier Ltd.
McCormick, Cornelia; Ciaramelli, Elisa; De Luca, Flavia; Maguire, Eleanor A
2018-03-15
The hippocampus and ventromedial prefrontal cortex (vmPFC) are closely connected brain regions whose functions are still debated. In order to offer a fresh perspective on understanding the contributions of these two brain regions to cognition, in this review we considered cognitive tasks that usually elicit deficits in hippocampal-damaged patients (e.g., autobiographical memory retrieval), and examined the performance of vmPFC-lesioned patients on these tasks. We then took cognitive tasks where performance is typically compromised following vmPFC damage (e.g., decision making), and looked at how these are affected by hippocampal lesions. Three salient motifs emerged. First, there are surprising gaps in our knowledge about how hippocampal and vmPFC patients perform on tasks typically associated with the other group. Second, while hippocampal or vmPFC damage seems to adversely affect performance on so-called hippocampal tasks, the performance of hippocampal and vmPFC patients clearly diverges on classic vmPFC tasks. Third, although performance appears analogous on hippocampal tasks, on closer inspection, there are significant disparities between hippocampal and vmPFC patients. Based on these findings, we suggest a tentative hierarchical model to explain the functions of the hippocampus and vmPFC. We propose that the vmPFC initiates the construction of mental scenes by coordinating the curation of relevant elements from neocortical areas, which are then funneled into the hippocampus to build a scene. The vmPFC then engages in iterative re-initiation via feedback loops with neocortex and hippocampus to facilitate the flow and integration of the multiple scenes that comprise the coherent unfolding of an extended mental event. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Jiang, Lijuan; CHENG, Yan; LI, Qingwei; TANG, Yingying; SHEN, Yuan; LI, Ting; FENG, Wei; CAO, Xinyi; WU, Wenyuan; WANG, Jijun; LI, Chunbo
2014-01-01
Background Cognitive impairment and dementia among elderly adults is a pressing public health issue in China but research on biomarkers of cognitive decline has been limited. Aim Explore the relationship between multiple domains of cognitive functioning and the volume of the left and right hippocampus in healthy elderly adults. Methods Structural MRI scanning was performed on 65 community-dwelling healthy participants 65 to 75 years of age using the Siemens 3.0 T Trio Tim with the MPRAGE sequence. The volumes of the left and right hippocampus were determined using Freesurfer software. Cognitive functioning was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Both unadjusted and adjusted associations between the hippocampal volumes and cognitive functioning were estimated. Results Within this relatively narrow age range, age was significantly associated with most of the cognitive measures assessed in women but was not significantly associated with any of the cognitive measures in men. In both men and women right hippocampal volume was positively associated with delayed memory and left hippocampal volume was positively associated with both immediate memory and delayed memory (though the relationship with delayed memory in women was only at a trend level). After adjustment for age, gender, and years of formal education (the variable that was most strongly associated with all of the cognitive measures), both left hippocampal volume and right hippocampal volume were positively associated with delayed memory, but not with immediate memory. Interestingly, the difference in the volumes of the left and right hippocampi was negatively associated with the score of the RBANS attention subscale, a relationship that was stronger in women than in men. Conclusions This study confirms previous work about the relationship of hippocampal volume and memory, identifies a possible relationship between attention and the difference in size of the two hippocampi, and suggests that there may be some differences in these relationships by gender. PMID:25477721
Age-Related Cognitive Effects of Videogame Playing Across the Adult Life span.
Wang, Ping; Zhu, Xing-Ting; Liu, Han-Hui; Zhang, Yi-Wen; Hu, Yang; Li, Hui-Jie; Zuo, Xi-Nian
2017-08-01
Previous studies found positive influences of videogame playing on cognition. However, the age-related and task-related effects of videogame experience across the adult life span are still unknown. The current study aimed to systematically investigate this question. The current study used the cross-sectional approach. A total of 166 participants (84 videogame players [VGPs], 82 nonvideogame players [NVGPs]) at the age of 18-80 in the present study were recruited, including 62 young adults aged from 18 to 34 (35 VGPs, 27 NVGPs), 55 middle-aged adults aged between 35 and 59 (24 VGPs, 31 NVGPs), and 49 older adults aged between 60 and 80 (25 VGPs, 24 NVGPs). 1,2 A series of neuropsychological tests from different cognitive domains, including processing speed, visuospatial, attention, memory, and executive function, were conducted on participants. The age-related effects demonstrated that young and older adults benefited more from videogame experience than middle-aged adults. The task-related effects showed that VGPs benefited more from videogame experience in processing speed and visuospatial processing; next was executive function and attention, while no benefits in memory. The effect sizes suggested that the difference in extent between VGPs and NVGPs in processing speed and visuospatial processing is moderate, in attention and executive function is small, and in memory is negligible. The current findings support the beneficial effects and transfer effects of videogame experience; however, the effects presented age-specific and task-specific characteristics. The results provide useful insights for future videogame intervention studies for healthy adults of different ages.
Suzuki, Ayuko; Shinozaki, Jun; Yazawa, Shogo; Ueki, Yoshino; Matsukawa, Noriyuki; Shimohama, Shun; Nagamine, Takashi
2018-01-01
The mental rotation task is well-known for the assessment of visuospatial function; however, it has not been used for screening of dementia patients. The aim of this study was to create a simple screening test for patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) by focusing on non-amnestic symptoms. Age-matched healthy controls (age 75.3±6.8), patients with MCI (76.5±5.5), and AD (78.2±5.0) participated in this study. They carried out mental rotation tasks targeting geometric graphics or alphabetical characters with three rotating angles (0°, 90°, and 180°) and indicated the correct answer. Response accuracy and reaction time were recorded along with their eye movements using an eye tracker. To quantify their visual processing strategy, the run count ratio (RC ratio) was calculated by dividing the mean number of fixations in incorrect answers by that in correct answers. AD patients showed lower accuracy and longer reaction time than controls. They also showed a significantly greater number of fixation and smaller saccade amplitude than controls, while fixation duration did not differ significantly. The RC ratio was higher for AD, followed by MCI and control groups. By setting the cut-off value to 0.47 in the 180° rotating angle task, we could differentiate MCI patients from controls with a probability of 80.0%. We established a new screening system for dementia patients by evaluating visuospatial function. The RC ratio during a mental rotation task is useful for discriminating MCI patients from controls.
Visuospatial Processing in Children with Neurofibromatosis Type 1
ERIC Educational Resources Information Center
Clements-Stephens, Amy M.; Rimrodt, Sheryl L.; Gaur, Pooja; Cutting, Laurie E.
2008-01-01
Neuroimaging studies investigating the neural network of visuospatial processing have revealed a right hemisphere network of activation including inferior parietal lobe, dorsolateral prefrontal cortex, and extrastriate regions. Impaired visuospatial processing, indicated by the Judgment of Line Orientation (JLO), is commonly seen in individuals…
Ryan, Lee; Lin, Chun-Yu; Ketcham, Katie; Nadel, Lynn
2010-01-01
This study examined the involvement of medial temporal lobe, especially the hippocampus, in processing spatial and nonspatial relations using episodic and semantic versions of a relational judgment task. Participants studied object arrays and were tested on different types of relations between pairs of objects. Three prevalent views of hippocampal function were considered. Cognitive map theory (O'Keefe and Nadel (1978) The Hippocampus as a Cognitive Map. USA: Oxford University Press) emphasizes hippocampal involvement in spatial relational tasks. Multiple trace theory (Nadel and Moscovitch (1997) Memory consolidation, retrograde amnesia and the hippocampal complex Curr Opin Neurobiol 7:217-227) emphasizes hippocampal involvement in episodic tasks. Eichenbaum and Cohen's ((2001) From Conditioning to Conscious Recollection: Memory Systems of the Brain. USA: Oxford University Press) relational theory predicts equivalent hippocampal involvement in all relational tasks within both semantic and episodic memory. The fMRI results provided partial support for all three theories, though none of them fit the data perfectly. We observed hippocampal activation during all relational tasks, with increased activation for spatial compared to nonspatial relations, and for episodic compared to semantic relations. The placement of activation along the anterior-posterior axis of the hippocampus also differentiated the conditions. We suggest a view of hippocampal function in memory that incorporates aspects of all three theories. Copyright 2009 Wiley-Liss, Inc.
Contribution of the Cholinergic System to Verbal Memory Performance in Mild Cognitive Impairment.
Peter, Jessica; Lahr, Jacob; Minkova, Lora; Lauer, Eliza; Grothe, Michel J; Teipel, Stefan; Köstering, Lena; Kaller, Christoph P; Heimbach, Bernhard; Hüll, Michael; Normann, Claus; Nissen, Christoph; Reis, Janine; Klöppel, Stefan
2016-06-18
Acetylcholine is critically involved in modulating learning and memory function, which both decline in neurodegeneration. It remains unclear to what extent structural and functional changes in the cholinergic system contribute to episodic memory dysfunction in mild cognitive impairment (MCI), in addition to hippocampal degeneration. A better understanding is critical, given that the cholinergic system is the main target of current symptomatic treatment in mild to moderate Alzheimer's disease. We simultaneously assessed the structural and functional integrity of the cholinergic system in 20 patients with MCI and 20 matched healthy controls and examined their effect on verbal episodic memory via multivariate regression analyses. Mediating effects of either cholinergic function or hippocampal volume on the relationship between cholinergic structure and episodic memory were computed. In MCI, a less intact structure and function of the cholinergic system was found. A smaller cholinergic structure was significantly correlated with a functionally more active cholinergic system in patients, but not in controls. This association was not modulated by age or disease severity, arguing against compensational processes. Further analyses indicated that neither functional nor structural changes in the cholinergic system influence verbal episodic memory at the MCI stage. In fact, those associations were fully mediated by hippocampal volume. Although the cholinergic system is structurally and functionally altered in MCI, episodic memory dysfunction results primarily from hippocampal neurodegeneration, which may explain the inefficiency of cholinergic treatment at this disease stage.
Sulforaphane is anticonvulsant and improves mitochondrial function.
Carrasco-Pozo, Catalina; Tan, Kah Ni; Borges, Karin
2015-12-01
The nuclear factor erythroid 2-related factor 2 pathway (Nrf2) has been previously identified to protect the brain against various impacts. Here, we investigated the effect of the Nrf2 activator sulforaphane in various seizure models and hippocampal mitochondrial bioenergetics. We found that daily injections of sulforaphane for 5 days elevated the seizure thresholds to 6 Hz stimulation and fluorothyl-, but not pentylenetetrazole-induced tonic seizures and protected mice against pilocarpine-induced status epilepticus (SE). Also, sulforaphane increased the antioxidant defences within hippocampal formations and blood plasma. In addition, sulforaphane treatment reduced the extent of hippocampal lipid peroxidation 24 h post-SE and protected hippocampal mitochondria against SE-induced reduction in state 2 and uncoupler-stimulated state 3 respiration. SE-mediated partial loss of rotenone-sensitive and complex II-driven respiration was reduced, consistent with the enhanced activities of complexes I and II in sulforaphane-treated SE mice. In mitochondria isolated from both no SE and SE mice, sulforaphane increased state 3 respiration and respiration linked to ATP synthesis, which may contribute to its anticonvulsant and antioxidant effects by providing more ATP for cellular vital and protective functions. However, sulforaphane did not prevent SE-induced hippocampal cell death. In conclusion, sulforaphane and/or Nrf2 activation are viable anticonvulsant strategies, which are antioxidant and enhance mitochondrial function, especially the ability to produce ATP. Sulforaphane was anticonvulsant in two acute mouse models of epilepsy and protected mice against pilocarpine-induced status epilepticus (SE). We also found antioxidant effects of sulforaphane in mouse plasma and hippocampal formations, exhibited by increased catalase and superoxide dismutase (SOD) activity, as well as increased abilities of hippocampal mitochondria to produce ATP. These effects likely underlie sulforaphane's anticonvulsant mechanisms of action. © 2015 International Society for Neurochemistry.
Visuospatial processing in children with neurofibromatosis type 1
Clements-Stephens, Amy M.; Rimrodt, Sheryl L.; Gaur, Pooja; Cutting, Laurie E.
2008-01-01
Neuroimaging studies investigating the neural network of visuospatial processing have revealed a right hemisphere network of activation including inferior parietal lobe, dorsolateral prefrontal cortex, and extrastriate regions. Impaired visuospatial processing, indicated by the Judgment of Line Orientation (JLO), is commonly seen in individuals with Neurofibromatosis type 1 (NF-1). Nevertheless, few studies have examined the neural activity associated with visuospatial processing in NF-1, in particular, during a JLO task. This study used functional neuroimaging to explore differences in volume of activation in predefined regions of interest between 13 individuals with NF-1 and 13 controls while performing an analogue JLO task. We hypothesized that participants with NF-1 would show anomalous right hemisphere activation and therefore would recruit regions within the left hemisphere to complete the task. Multivariate analyses of variance were used to test for differences between groups in frontal, temporal, parietal, and occipital regions. Results indicate that, as predicted, controls utilized various right hemisphere regions to complete the task, while the NF-1 group tended to recruit left hemisphere regions. These results suggest that the NF-1 group has an inefficient right hemisphere network. An additional unexpected finding was that the NF-1 group showed decreased volume of activation in primary visual cortex (BA 17). Future studies are needed to examine whether the decrease in primary visual cortex is related to a deficit in basic visual processing; findings could ultimately lead to a greater understanding of the nature of deficits in NF-1 and have implications for remediation. PMID:17988695
Duration-dependent effects of the bite-raised condition on hippocampal function in SAMP8 mice.
Arakawa, Yoko; Ichihashi, Yukiko; Iinuma, Mitsuo; Tamura, Yasuo; Iwaku, Fumihiko; Kubo, Kin-Ya
2007-11-01
We evaluated the effect of the duration of occlusal disharmony induced chronic stress on hippocampal function by examining spatial memory in the Morris water maze and on the number of hippocampal neurons in aged senescence-accelerated prone (SAMP8) mice. The bite of SAMP8 mice was raised 0.1 mm using dental adhesive. Groups of mice were tested in the Morris water maze 8, 11, or 22 d after raising the bite. The results indicated that the longer the duration of the bite-raised condition, the greater the impairment in spatial learning ability and the greater the decrease in the number of neurons in the hippocampal CA3 subfield. Thus, behavioral and morphologic deficits induced by the bite-raised condition in aged SAMP8 mice are influenced by the duration of the occlusal disharmony.
Remembering preservation in hippocampal amnesia
Clark, Ian A.; Maguire, Eleanor A.
2017-01-01
The lesion-deficit model dominates neuropsychology. This is unsurprising given powerful demonstrations that focal brain lesions can affect specific aspects of cognition. Nowhere is this more evident than in patients with bilateral hippocampal damage. In the last sixty years the amnesia and other impairments exhibited by these patients have helped to delineate the functions of the hippocampus and shape the field of memory. We do not question the value of this approach. However, less prominent are the cognitive processes that remain intact following hippocampal lesions. Here, we collate the piecemeal reports of preservation of function following focal bilateral hippocampal damage, highlighting a wealth of information often veiled by the field’s focus on deficits. We consider how a systematic understanding of what is preserved as well as what is lost could add an important layer of precision to models of memory and the hippocampus. PMID:26361051
Cholinergic modulation of hippocampal network function
Teles-Grilo Ruivo, Leonor M.; Mellor, Jack R.
2013-01-01
Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus. PMID:23908628
ERIC Educational Resources Information Center
Huang, Freesia L.; Huang, Kuo-Ping; Boucheron, Catherine
2007-01-01
Neurogranin (Ng), a PKC substrate, is abundantly expressed in brain regions important for cognitive functions. Deletion of Ng caused severe deficits in spatial learning and LTP in the hippocampal CA1 region of mice. These Ng-/- mice also exhibit deficits in the amplification of their hippocampal signaling pathways critical for learning and memory.…
Yin, Shufei; Zhu, Xinyi; Huang, Xin; Li, Juan
2015-01-01
Visuospatial deficits have long been recognized as a potential predictor of dementia, with visuospatial ability decline having been found to accelerate in later stages of dementia. We, therefore, believe that the visuospatial performance of patients with mild cognitive impairment (MCI) and dementia (Dem) might change with varying visuospatial task difficulties. This study administered the Wechsler Adult Intelligence Scale-Revised (WAIS-R) Block Design Test (BDT) to determine whether visuospatial ability can help discriminate between MCI patients from Dem patients and normal controls (NC). Results showed that the BDT could contribute to the discrimination between MCI and Dem. Specifically, simple BDT task scores could best distinguish MCI from Dem patients, while difficult BDT task scores could contribute to discriminating between MCI and NC. Given the potential clinical value of the BDT in the diagnosis of Dem and MCI, normative data stratified by age and education for the Chinese elderly population are presented for use in research and clinical settings.
Sports training enhances visuo-spatial cognition regardless of open-closed typology
Hsieh, Shu-Shih; Chen, Kuan-Fu; Chang, Yu-Kai
2017-01-01
The aim of this study was to investigate the effects of open and closed sport participation on visuo-spatial attention and memory performance among young adults. Forty-eight young adults—16 open-skill athletes, 16 closed-skill athletes, and 16 non-athletes controls—were recruited for the study. Both behavioral performance and event-related potential (ERP) measurement were assessed when participants performed non-delayed and delayed match-to-sample task that tested visuo-spatial attention and memory processing. Results demonstrated that regardless of training typology, the athlete groups exhibited shorter reaction times in both the visuo-spatial attention and memory conditions than the control group with no existence of speed-accuracy trade-off. Similarly, a larger P3 amplitudes were observed in both athlete groups than in the control group for the visuo-spatial memory condition. These findings suggest that sports training, regardless of typology, are associated with superior visuo-spatial attention and memory performance, and more efficient neural resource allocation in memory processing. PMID:28560098
Zang, Guoyao; Fang, Lizheng; Chen, Liying; Wang, Chenyao
2018-05-01
Alzheimer's disease is one of the most common age‑associated diseases that frequently leads to memory disorders, cognitive decline and dementia. Evidence suggests that nicergoline serves an important role in the apoptosis of hippocampal cells, memory recovery, cognitive function and neuronal survival. However, the signaling pathway affected by nicergoline treatment remains to be elucidated. The purpose of the present study was to investigate the role of nicergoline in the cognitive competence of a mouse model of Alzheimer's disease. The apoptosis rates of hippocampal cells were studied in mice with Alzheimer's disease treated with nicergoline compared with the negative control. Apoptosis‑associated gene expression levels in hippocampal cells, and hippocampus area, were analyzed in the experimental mice. Visual attention and inhibitory control were assessed and neural counting was performed in brain regions of interest. The phosphatidylinositol 3‑kinase (PI3K)/RAC‑α serine/threonine‑protein kinase (AKT) signaling pathway was additionally analyzed in hippocampal cells following treatment with nicergoline. The results of the present study demonstrated that nicergoline ameliorated apoptosis in hippocampal cells and hippocampus tissue in 3xTg‑AD mice with Alzheimer's disease. The data indicated that apoptosis‑associated genes, including caspase‑3, BCL2 associated X, BH3 interacting domain death agonist and caspase‑9, were downregulated in hippocampal cells isolated from nicergoline-treated experimental mice. In addition, the expression levels of inflammatory factors, in addition to oxidative stress, were decreased in hippocampal cells treated with nicergoline. Additionally, amyloid precursor protein accumulation was cleared in the hippocampal area in nicergoline‑treated mice. Nicergoline inhibited neuronal loss and prevented cognitive impairment through the restoration of learning/memory ability. It was additionally demonstrated in the present study that nicergoline improved motor attention impairment and cognitive competence in hippocampal cells by acting on the PI3K/AKT signaling pathway. Therefore, memory recovery, cognitive function and neuronal survival were repaired by nicergoline via inhibition of the PI3K/AKT signaling pathway, suggesting that nicergoline may be an efficient drug for the clinical treatment of patients with Alzheimer's disease.
Hippocampus Is Required for Paired Associate Memory with Neither Delay Nor Trial Uniqueness
ERIC Educational Resources Information Center
Yoon, Jinah; Seo, Yeran; Kim, Jangjin; Lee, Inah
2012-01-01
Cued retrieval of memory is typically examined with delay when testing hippocampal functions, as in delayed matching-to-sample tasks. Equally emphasized in the literature, on the other hand, is the hippocampal involvement in making arbitrary associations. Paired associate memory tasks are widely used for examining this function. However, the two…
Cengel, Hanife Yilmaz; Bozkurt, Muge; Evren, Cuneyt; Umut, Gokhan; Keskinkilic, Cahit; Agachanli, Ruken
2018-04-01
The use of synthetic cannabinoid has been increasing throughout the world and has become a major public health problem. The present study aims to investigate the attention, memory, visuospatial and executive functions in individuals with synthetic cannabinoid use disorder and compare the results with findings obtained from individuals with cannabis use disorder and healthy volunteers with no substance use. Fifty-two patients with synthetic cannabinoid use disorder, 45 patients with cannabis use disorder and 48 healthy control group males were included in the study. The neuropsychological test battery was designed to involve ten studies evaluating a large series of cognitive functions. Impairments in attention, memory, executive and visuospatial functions were identified in individuals with synthetic cannabinoid use disorder and these impairments were found to be significantly greater than in individuals with cannabis use disorder and healthy controls. In line with the data obtained from this study; the evaluation of each cognitive function with more comprehensive test batteries and supporting these evaluations with sensitive brain imaging studies are important topics for future research. Copyright © 2018 Elsevier B.V. All rights reserved.
Conti, Fabrizio; Alessandri, Cristiano; Perricone, Carlo; Scrivo, Rossana; Rezai, Soheila; Ceccarelli, Fulvia; Spinelli, Francesca Romana; Ortona, Elena; Marianetti, Massimo; Mina, Concetta; Valesini, Guido
2012-01-01
Introduction Systemic lupus erythematosus (SLE) is characterized by frequent neuropsychiatric involvement, which includes cognitive impairment (CI). We aimed at assessing CI in a cohort of Italian SLE patients by using a wide range of neurocognitive tests specifically designed to evaluate the fronto-subcortical dysfunction. Furthermore, we aimed at testing whether CI in SLE is associated with serum autoantibodies, disease activity and chronic damage. Methods Fifty-eight consecutive patients were enrolled. Study protocol included data collection, evaluation of serum levels of ANA, anti-dsDNA, anti-cardiolipin, anti-β2-glycoprotein I, anti-P ribosomal, anti-endothelial cell, and anti-Nedd5 antibodies. SLEDAI-2000 and SLICC were used to assess disease activity and chronic damage. Patients were administered a test battery specifically designed to detect fronto-subcortical dysfunction across five domains: memory, attention, abstract reasoning, executive function and visuospatial function. For each patient, the raw scores from each test were compared with published norms, then transformed into Z scores (deviation from normal mean), and finally summed in the Global Cognitive Dysfunction score (GCDs). Results Nineteen percent of patients had mild GCDs impairment (GCDs 2–3), 7% moderate (GCDs 4–5) and 5% severe (GCDs≥6). The visuospatial domain was the most compromised (MDZs = −0.89±1.23). Anti-cardiolipin IgM levels were associated with visuospatial domain impairment (r = 0.331, P = 0.005). SLEDAI correlated with GCDs, and attentional and executive domains; SLICC correlated with GCDs, and with visuospatial and attentional domains impairment. Conclusions Anti-phospholipids, disease activity, and chronic damage are associated with cognitive dysfunction in SLE. The use of a wide spectrum of tests allowed for a better selection of the relevant factors involved in SLE cognitive dysfunction, and standardized neuropsychological testing methods should be used for routine assessment of SLE patients. PMID:22461897
Luby, Joan L; Belden, Andy; Harms, Michael P; Tillman, Rebecca; Barch, Deanna M
2016-05-17
Building on well-established animal data demonstrating the effects of early maternal support on hippocampal development and adaptive coping, a few longitudinal studies suggest that early caregiver support also impacts human hippocampal development. How caregiving contributes to human hippocampal developmental trajectories, whether there are sensitive periods for these effects, as well as whether related variation in hippocampal development predicts later childhood emotion functioning are of major public health importance. The current study investigated these questions in a longitudinal study of preschoolers assessed annually for behavioral and emotional development, including observed caregiver support. One hundred and twenty-seven children participated in three waves of magnetic resonance brain imaging through school age and early adolescence. Multilevel modeling of the effects of preschool and school-age maternal support on hippocampal volumes across the three waves was conducted. Hippocampal volume increased faster for those with higher levels of preschool maternal support. Subjects with support 1 SD above the mean had a 2.06 times greater increase in total hippocampus volume across the three scans than those with 1 SD below the mean (2.70% vs. 1.31%). No effect of school-age support was found. Individual slopes of hippocampus volume were significantly associated with emotion regulation at scan 3. The findings demonstrate a significant effect of early childhood maternal support on hippocampal volume growth across school age and early adolescence and suggest an early childhood sensitive period for these effects. They also show that this growth trajectory is associated with later emotion functioning.
Fetterhoff, Dustin; Kraft, Robert A.; Sandler, Roman A.; Opris, Ioan; Sexton, Cheryl A.; Marmarelis, Vasilis Z.; Hampson, Robert E.; Deadwyler, Sam A.
2015-01-01
Fractality, represented as self-similar repeating patterns, is ubiquitous in nature and the brain. Dynamic patterns of hippocampal spike trains are known to exhibit multifractal properties during working memory processing; however, it is unclear whether the multifractal properties inherent to hippocampal spike trains reflect active cognitive processing. To examine this possibility, hippocampal neuronal ensembles were recorded from rats before, during and after a spatial working memory task following administration of tetrahydrocannabinol (THC), a memory-impairing component of cannabis. Multifractal detrended fluctuation analysis was performed on hippocampal interspike interval sequences to determine characteristics of monofractal long-range temporal correlations (LRTCs), quantified by the Hurst exponent, and the degree/magnitude of multifractal complexity, quantified by the width of the singularity spectrum. Our results demonstrate that multifractal firing patterns of hippocampal spike trains are a marker of functional memory processing, as they are more complex during the working memory task and significantly reduced following administration of memory impairing THC doses. Conversely, LRTCs are largest during resting state recordings, therefore reflecting different information compared to multifractality. In order to deepen conceptual understanding of multifractal complexity and LRTCs, these measures were compared to classical methods using hippocampal frequency content and firing variability measures. These results showed that LRTCs, multifractality, and theta rhythm represent independent processes, while delta rhythm correlated with multifractality. Taken together, these results provide a novel perspective on memory function by demonstrating that the multifractal nature of spike trains reflects hippocampal microcircuit activity that can be used to detect and quantify cognitive, physiological, and pathological states. PMID:26441562
Age-specific effects of voluntary exercise on memory and the older brain.
Siette, Joyce; Westbrook, R Frederick; Cotman, Carl; Sidhu, Kuldip; Zhu, Wanlin; Sachdev, Perminder; Valenzuela, Michael J
2013-03-01
Physical exercise in early adulthood and mid-life improves cognitive function and enhances brain plasticity, but the effects of commencing exercise in late adulthood are not well-understood. We investigated the effects of voluntary exercise in the restoration of place recognition memory in aged rats and examined hippocampal changes of synaptic density and neurogenesis. We found a highly selective age-related deficit in place recognition memory that is stable across retest sessions and correlates strongly with loss of hippocampal synapses. Additionally, 12 weeks of voluntary running at 20 months of age removed the deficit in the hippocampally dependent place recognition memory. Voluntary running restored presynaptic density in the dentate gyrus and CA3 hippocampal subregions in aged rats to levels beyond those observed in younger animals, in which exercise had no functional or synaptic effects. By contrast, hippocampal neurogenesis, a possible memory-related mechanism, increased in both young and aged rats after physical exercise but was not linked with performance in the place recognition task. We used graph-based network analysis based on synaptic covariance patterns to characterize efficient intrahippocampal connectivity. This analysis revealed that voluntary running completely reverses the profound degradation of hippocampal network efficiency that accompanies sedentary aging. Furthermore, at an individual animal level, both overall hippocampal presynaptic density and subregional connectivity independently contribute to prediction of successful place recognition memory performance. Our findings emphasize the unique synaptic effects of exercise on the aged brain and their specific relevance to a hippocampally based memory system for place recognition. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Low-intensity daily walking activity is associated with hippocampal volume in older adults.
Varma, Vijay R; Chuang, Yi-Fang; Harris, Gregory C; Tan, Erwin J; Carlson, Michelle C
2015-05-01
Hippocampal atrophy is associated with memory impairment and dementia and serves as a key biomarker in the preclinical stages of Alzheimer's disease. Physical activity, one of the most promising behavioral interventions to prevent or delay cognitive decline, has been shown to be associated with hippocampal volume; specifically increased aerobic activity and fitness may have a positive effect on the size of the hippocampus. The majority of older adults, however, are sedentary and have difficulty initiating and maintaining exercise programs. A modestly more active lifestyle may nonetheless be beneficial. This study explored whether greater objectively measured daily walking activity was associated with larger hippocampal volume. We additionally explored whether greater low-intensity walking activity, which may be related to leisure-time physical, functional, and social activities, was associated with larger hippocampal volume independent of exercise and higher-intensity walking activity. Segmentation of hippocampal volumes was performed using Functional Magnetic Resonance Imaging of the Brain's Software Library (FSL), and daily walking activity was assessed using a step activity monitor on 92, nondemented, older adult participants. After controlling for age, education, body mass index, cardiovascular disease risk factors, and the Mini Mental State Exam, we found that a greater amount, duration, and frequency of total daily walking activity were each associated with larger hippocampal volume among older women, but not among men. These relationships were specific to hippocampal volume, compared with the thalamus, used as a control brain region, and remained significant for low-intensity walking activity, independent of moderate- to vigorous-intensity activity and self-reported exercise. This is the first study, to our knowledge, to explore the relationship between objectively measured daily walking activity and hippocampal volume in an older adult population. Findings suggest the importance of examining whether increasing nonexercise, lifestyle physical activities may produce measurable cognitive benefits and affect hippocampal volume through molecular pathways unique to those related to moderate-intensity exercise. © 2014 Wiley Periodicals, Inc.
Visuospatial Superiority in Developmental Dyslexia: Myth or Reality?
ERIC Educational Resources Information Center
Brunswick, Nicola; Martin, G. Neil; Marzano, Lisa
2010-01-01
Anecdotal evidence indicates that dyslexia is positively associated with superior visuospatial ability but empirical evidence is inconsistent. We explicitly tested the hypothesis that dyslexia is associated with visuospatial advantage in 20 dyslexic and 21 unimpaired adult readers using paper-and-pencil measures and tests of "everyday"…
Executive Function Training in Children with SLI: A Pilot Study
ERIC Educational Resources Information Center
Vugs, Brigitte; Knoors, Harry; Cuperus, Juliane; Hendriks, Marc; Verhoeven, Ludo
2017-01-01
The aim of this study was to evaluate the effectiveness of a computer-based executive function (EF) training in children with specific language impairment (SLI). Ten children with SLI, ages 8 to 12 years, completed a 25-session training of visuospatial working memory, inhibition and cognitive flexibility over a 6-week period. Treatment outcome was…
Thompson, Deanne K.; Adamson, Christopher; Roberts, Gehan; Faggian, Nathan; Wood, Stephen J.; Warfield, Simon K.; Doyle, Lex W.; Anderson, Peter J.; Egan, Gary F.; Inder, Terrie E.
2013-01-01
The hippocampus undergoes rapid growth and development in the perinatal months. Infants born very preterm (VPT) are vulnerable to hippocampal alterations, and can provide a model of disturbed early hippocampal development. Hippocampal shape alterations have previously been associated with memory impairment, but have never been investigated in infants. The aims of this study were to determine hippocampal shape differences between 184 VPT infants (<30 weeks’ gestation or <1250 g at birth) and 32 full-term infants, effects of perinatal factors, and associations between infant hippocampal shape and volume, and 7 year verbal and visual memory (California Verbal Learning Test- Children’s Version and Dot Locations). Infants underwent 1.5T magnetic resonance imaging at term equivalent age. Hippocampi were segmented, and spherical harmonics-point distribution model shape analysis was undertaken. VPT infants’ hippocampi were less infolded than full-term infants, being less curved toward the midline and less arched superior-inferiorly. Straighter hippocampi were associated with white matter injury and postnatal corticosteroid exposure. There were no significant associations between infant hippocampal shape and 7 year memory measures. However, larger infant hippocampal volumes were associated with better verbal memory scores. Altered hippocampal shape in VPT infants at term equivalent age may reflect delayed or disrupted development. This study provides further insight into early hippocampal development and the nature of hippocampal abnormalities in prematurity. PMID:23296179
Sassoon, Stephanie A; Rosenbloom, Margaret J; Fama, Rosemary; Sullivan, Edith V; Pfefferbaum, Adolf
2012-09-30
Alcoholism, HIV, and depressive symptoms frequently co-occur and are associated with impairment in cognition and life function. We administered the Beck Depression Inventory-II (BDI-II), measures of life function, and neurocognitive tests to 67 alcoholics, 56 HIV+ patients, 63 HIV+ alcoholics, and 64 controls to examine whether current depressive symptom level (significant, BDI-II>14 vs. minimal, BDI-II<14) was associated with poorer cognitive or psychosocial function in alcoholism-HIV comorbidity. Participants with significant depressive symptoms demonstrated slower manual motor speed and poorer visuospatial memory than those with minimal depressive symptoms. HIV patients with depressive symptoms showed impaired manual motor speed. Alcoholics with depressive symptoms showed impaired visuospatial memory. HIV+ alcoholics with depressive symptoms reported the poorest quality of life; alcoholics with depressive symptoms, irrespective of HIV status, had poorest life functioning. Thus, significant depressive symptoms were associated with poorer selective cognitive and life functioning in alcoholism and in HIV infection, even though depressive symptoms had neither synergistic nor additive effects on cognition in alcoholism-HIV comorbidity. The results suggest the relevance of assessing and treating current depressive symptoms to reduce cognitive compromise and functional disability in HIV infection, alcoholism, and their comorbidity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The effect of adult-acquired hippocampal damage on memory retrieval: an fMRI study.
Maguire, Eleanor A; Frith, Christopher D; Rudge, Peter; Cipolotti, Lisa
2005-08-01
Bilateral hippocampal pathology typically results in significant memory problems. Despite apparently similar structural damage, patients with such lesions can differ in the pattern of impairment and preservation of memory functions. Previously, an fMRI study of a developmental amnesic patient whose anoxic hippocampal damage was incurred perinatally revealed his residual hippocampal tissue to be active during memory retrieval. This hippocampal activity was apparent during the retrieval of personal and general facts relative to a control task. In this study, we used a similar fMRI paradigm to investigate whether residual hippocampal activation was present also in patient VC with adult-acquired anoxic hippocampal pathology. VC's performance and reaction times on the experimental personal and general fact tasks were comparable to age-matched control subjects. However, in contrast to the elderly control sample and the previous developmental amnesic patient, his residual hippocampal tissue did not show activation changes during the experimental tasks. This finding indicates that patient VC's successful retrieval of personal and general facts was achieved without a significant hippocampal contribution. It further suggests that the hippocampal activation observed in the elderly controls and previous developmental amnesic patient was not necessary for successful task performance. The reason for this difference in hippocampal responsivity between VC and the developmental amnesic patient remains to be determined. We speculate that it may relate to the age at which hippocampal damage occurred reflecting plasticity within the developing brain, or to cognitive differences between VC, the developmental amnesic patient, and the control subjects.
Phonological and Visuospatial Working Memory in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Macizo, P.; Soriano, M. F.; Paredes, N.
2016-01-01
We evaluated phonological and visuospatial working memory (WM) in autism spectrum disorders. Autistic children and typically developing children were compared. We used WM tasks that measured phonological and visuospatial WM up to the capacity limit of each children. Overall measures of WM did not show differences between autistic children and…
The Structure of Visuospatial Memory in Adulthood
ERIC Educational Resources Information Center
Mammarella, Irene C.; Borella, Erika; Pastore, Massimiliano; Pazzaglia, Francesca
2013-01-01
The present study aimed to investigate the structure of visuospatial memory in adulthood. Adults 40-89 years of age (n = 160) performed simple storage and complex visuospatial span tasks. Simple storage tasks were distinguished into three presentation formats: (i) visual, which involved maintaining shapes and textures; (ii) spatial-sequential,…
Selective interference reveals dissociation between memory for location and colour.
Vuontela, V; Rämä, P; Raninen, A; Aronen, H J; Carlson, S
1999-08-02
The aim was to study whether there is indication of a dissociation in processing of visuospatial and colour information in working memory in humans. Experimental subjects performed visuospatial and colour n-back tasks with and without visuospatial and colour distractive stimuli presented in the middle of the delay period to specifically affect mnemonic processing of task-related information. In the high memory-load condition, the visuospatial, but not the colour, task was selectively disrupted by visuospatial but not colour distractors. When subvocal rehearsal of the memoranda in the colour task was prevented by articulatory suppression; colour task performance was also selectively disrupted by distractors qualitatively similar to the memoranda. The results support the suggestion that visual working memory for location is processed separate from that for colour.
Co-speech iconic gestures and visuo-spatial working memory.
Wu, Ying Choon; Coulson, Seana
2014-11-01
Three experiments tested the role of verbal versus visuo-spatial working memory in the comprehension of co-speech iconic gestures. In Experiment 1, participants viewed congruent discourse primes in which the speaker's gestures matched the information conveyed by his speech, and incongruent ones in which the semantic content of the speaker's gestures diverged from that in his speech. Discourse primes were followed by picture probes that participants judged as being either related or unrelated to the preceding clip. Performance on this picture probe classification task was faster and more accurate after congruent than incongruent discourse primes. The effect of discourse congruency on response times was linearly related to measures of visuo-spatial, but not verbal, working memory capacity, as participants with greater visuo-spatial WM capacity benefited more from congruent gestures. In Experiments 2 and 3, participants performed the same picture probe classification task under conditions of high and low loads on concurrent visuo-spatial (Experiment 2) and verbal (Experiment 3) memory tasks. Effects of discourse congruency and verbal WM load were additive, while effects of discourse congruency and visuo-spatial WM load were interactive. Results suggest that congruent co-speech gestures facilitate multi-modal language comprehension, and indicate an important role for visuo-spatial WM in these speech-gesture integration processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Aggleton, John P
2012-08-01
A review of medial temporal lobe connections reveals three distinct groupings of hippocampal efferents. These efferent systems and their putative memory functions are: (1) The 'extended-hippocampal system' for episodic memory, which involves the anterior thalamic nuclei, mammillary bodies and retrosplenial cortex, originates in the subicular cortices, and has a largely laminar organisation; (2) The 'rostral hippocampal system' for affective and social learning, which involves prefrontal cortex, amygdala and nucleus accumbens, has a columnar organisation, and originates from rostral CA1 and subiculum; (3) The 'reciprocal hippocampal-parahippocampal system' for sensory processing and integration, which originates from the length of CA1 and the subiculum, and is characterised by columnar, connections with reciprocal topographies. A fourth system, the 'parahippocampal-prefrontal system' that supports familiarity signalling and retrieval processing, has more widespread prefrontal connections than those of the hippocampus, along with different thalamic inputs. Despite many interactions between these four systems, they may retain different roles in memory which when combined explain the importance of the medial temporal lobe for the formation of declarative memories. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shibasaki, Koji; Suzuki, Makoto; Mizuno, Atsuko; Tominaga, Makoto
2007-02-14
Physiological body temperature is an important determinant for neural functions, and it is well established that changes in temperature have dynamic influences on hippocampal neural activities. However, the detailed molecular mechanisms have never been clarified. Here, we show that hippocampal neurons express functional transient receptor potential vanilloid 4 (TRPV4), one of the thermosensitive TRP (transient receptor potential) channels, and that TRPV4 is constitutively active at physiological temperature. Activation of TRPV4 at 37 degrees C depolarized the resting membrane potential in hippocampal neurons by allowing cation influx, which was observed in wild-type (WT) neurons, but not in TRPV4-deficient (TRPV4KO) cells, although dendritic morphology, synaptic marker clustering, and synaptic currents were indistinguishable between the two genotypes. Furthermore, current injection studies revealed that TRPV4KO neurons required larger depolarization to evoke firing, equivalent to WT neurons, indicating that TRPV4 is a key regulator for hippocampal neural excitabilities. We conclude that TRPV4 is activated by physiological temperature in hippocampal neurons and thereby controls their excitability.
The role of adult hippocampal neurogenesis in brain health and disease.
Toda, Tomohisa; Parylak, Sarah L; Linker, Sara B; Gage, Fred H
2018-04-20
Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by a number of environmental and cell-intrinsic factors to adapt to environmental changes. Accumulating evidence suggests that adult-born neurons may play distinct physiological roles in hippocampus-dependent functions, such as memory encoding and mood regulation. In addition, several brain diseases, such as neurological diseases and mood disorders, have deleterious effects on adult hippocampal neurogenesis, and some symptoms of those diseases can be partially explained by the dysregulation of adult hippocampal neurogenesis. Here we review a possible link between the physiological functions of adult-born neurons and their roles in pathological conditions.
Wilkins, Leanne K; Girard, Todd A; Herdman, Katherine A; Christensen, Bruce K; King, Jelena; Kiang, Michael; Bohbot, Veronique D
2017-10-30
Different strategies may be spontaneously adopted to solve most navigation tasks. These strategies are associated with dissociable brain systems. Here, we use brain-imaging and cognitive tasks to test the hypothesis that individuals living with Schizophrenia Spectrum Disorders (SSD) have selective impairment using a hippocampal-dependent spatial navigation strategy. Brain activation and memory performance were examined using functional magnetic resonance imaging (fMRI) during the 4-on-8 virtual maze (4/8VM) task, a human analog of the rodent radial-arm maze that is amenable to both response-based (egocentric or landmark-based) and spatial (allocentric, cognitive mapping) strategies to remember and navigate to target objects. SSD (schizophrenia and schizoaffective disorder) participants who adopted a spatial strategy performed more poorly on the 4/8VM task and had less hippocampal activation than healthy comparison participants using either strategy as well as SSD participants using a response strategy. This study highlights the importance of strategy use in relation to spatial cognitive functioning in SSD. Consistent with a selective-hippocampal dependent deficit in SSD, these results support the further development of protocols to train impaired hippocampal-dependent abilities or harness non-hippocampal dependent intact abilities. Copyright © 2017 Elsevier B.V. All rights reserved.
Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity
Piroli, Gerardo G.; Lawrence, Robert C.; Wrighten, Shayna A.; Green, Adrienne J.; Wilson, Steven P.; Sakai, Randall R.; Kelly, Sandra J.; Wilson, Marlene A.; Mott, David D.; Reagan, Lawrence P.
2015-01-01
Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS–treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS–treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control. PMID:26216852
Makhathini, Khayelihle B; Abboussi, Oualid; Stein, Dan J; Mabandla, Musa V; Daniels, William M U
2017-08-01
Exposure to repetitive stress has a negative influence on cognitive-affective functioning, with growing evidence that these effects may be mediated by a dysregulated hypothalamic-pituitary-adrenal (HPA) axis, abnormal neurotrophic factor levels and its subsequent impact on hippocampal function. However, there are few data about the effect of repetitive stressors on epigenetic changes in the hippocampus. In the present study, we examine how repetitive restrain stress (RRS) affects cognitive-affective functioning, HPA axis regulation, brain-derived neurotrophic factor (BDNF) levels, and global hippocampal DNA methylation. RRS was induced in rats by restraining the animals for 6h per day for 28 days. The novel object recognition test (NORT) was used to assess cognitive functioning and the open field test (OFT) was performed to assess anxiety-like behavior during the last week of stress. Hippocampal BDNF levels, glucocorticoid (GR) and mineralocorticoid (MR) receptor mRNA were assessed using real-time PCR and confirmed with Western blot, while ELISAs were used to determine plasma corticosterone levels and the global methylation status of the hippocampus. Animals exposed to repetitive stress demonstrated significant alterations in the NORT and OFT, had significantly increased plasma corticosterone and significantly decreased hippocampal BDNF concentrations. The expression levels of GR and MR mRNA and protein levels of these genes were significantly decreased in the stressed group compared to control animals. The global DNA methylation of the hippocampal genome of stressed animals was also significantly decreased compared to controls. The data here are consistent with previous work emphasizing the role of the HPA axis and neurotrophic factors in mediating cognitive-affective changes after exposure to repetitive stressors. Our findings, however, extend the literature by indicating that epigenetic alterations in the hippocampal genome may also play an important role in the development of hippocampus-associated behavioral abnormalities. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.
Schachtschneider, Kyle M; Liu, Yingkai; Rund, Laurie A; Madsen, Ole; Johnson, Rodney W; Groenen, Martien A M; Schook, Lawrence B
2016-11-03
Iron deficiency is a common childhood micronutrient deficiency that results in altered hippocampal function and cognitive disorders. However, little is known about the mechanisms through which neonatal iron deficiency results in long lasting alterations in hippocampal gene expression and function. DNA methylation is an epigenetic mark involved in gene regulation and altered by environmental factors. In this study, hippocampal DNA methylation and gene expression were assessed via reduced representation bisulfite sequencing and RNA-seq on samples from a previous study reporting reduced hippocampal-based learning and memory in a porcine biomedical model of neonatal iron deficiency. In total 192 differentially expressed genes (DEGs) were identified between the iron deficient and control groups. GO term and pathway enrichment analysis identified DEGs associated with hypoxia, angiogenesis, increased blood brain barrier (BBB) permeability, and altered neurodevelopment and function. Of particular interest are genes previously implicated in cognitive deficits and behavioral disorders in humans and mice, including HTR2A, HTR2C, PAK3, PRSS12, and NETO1. Altered genome-wide DNA methylation was observed across 0.5 million CpG and 2.4 million non-CpG sites. In total 853 differentially methylated (DM) CpG and 99 DM non-CpG sites were identified between groups. Samples clustered by group when comparing DM non-CpG sites, suggesting high conservation of non-CpG methylation in response to neonatal environment. In total 12 DM sites were associated with 9 DEGs, including genes involved in angiogenesis, neurodevelopment, and neuronal function. Neonatal iron deficiency leads to altered hippocampal DNA methylation and gene regulation involved in hypoxia, angiogenesis, increased BBB permeability, and altered neurodevelopment and function. Together, these results provide new insights into the mechanisms through which neonatal iron deficiency results in long lasting reductions in cognitive development in humans.
Worker, Amanda; Dima, Danai; Combes, Anna; Crum, William R; Streffer, Johannes; Einstein, Steven; Mehta, Mitul A; Barker, Gareth J; C R Williams, Steve; O'daly, Owen
2018-04-01
The hippocampal formation is a complex brain structure that is important in cognitive processes such as memory, mood, reward processing and other executive functions. Histological and neuroimaging studies have implicated the hippocampal region in neuropsychiatric disorders as well as in neurodegenerative diseases. This highly plastic limbic region is made up of several subregions that are believed to have different functional roles. Therefore, there is a growing interest in imaging the subregions of the hippocampal formation rather than modelling the hippocampus as a homogenous structure, driving the development of new automated analysis tools. Consequently, there is a pressing need to understand the stability of the measures derived from these new techniques. In this study, an automated hippocampal subregion segmentation pipeline, released as a developmental version of Freesurfer (v6.0), was applied to T1-weighted magnetic resonance imaging (MRI) scans of 22 healthy older participants, scanned on 3 separate occasions and a separate longitudinal dataset of 40 Alzheimer's disease (AD) patients. Test-retest reliability of hippocampal subregion volumes was assessed using the intra-class correlation coefficient (ICC), percentage volume difference and percentage volume overlap (Dice). Sensitivity of the regional estimates to longitudinal change was estimated using linear mixed effects (LME) modelling. The results show that out of the 24 hippocampal subregions, 20 had ICC scores of 0.9 or higher in both samples; these regions include the molecular layer, granule cell layer of the dentate gyrus, CA1, CA3 and the subiculum (ICC > 0.9), whilst the hippocampal fissure and fimbria had lower ICC scores (0.73-0.88). Furthermore, LME analysis of the independent AD dataset demonstrated sensitivity to group and individual differences in the rate of volume change over time in several hippocampal subregions (CA1, molecular layer, CA3, hippocampal tail, fissure and presubiculum). These results indicate that this automated segmentation method provides a robust method with which to measure hippocampal subregions, and may be useful in tracking disease progression and measuring the effects of pharmacological intervention. © 2018 Wiley Periodicals, Inc.
Lathe, R
2001-05-01
Hippocampal lesions produce memory deficits, but the exact function of the hippocampus remains obscure. Evidence is presented that its role in memory may be ancillary to physiological regulation. Molecular studies demonstrate that the hippocampus is a primary target for ligands that reflect body physiology, including ion balance and blood pressure, immunity, pain, reproductive status, satiety and stress. Hippocampal receptors are functional, probably accessible to their ligands, and mediate physiological and cognitive changes. This argues that an early role of the hippocampus may have been in sensing soluble molecules (termed here 'enteroception') in blood and cerebrospinal fluid, perhaps reflecting a common evolutionary origin with the olfactory system ('exteroception'). Functionally, hippocampal enteroception may reflect feedback control; evidence is reviewed that the hippocampus modulates body physiology, including the activity of the hypothalamus-pituitary-adrenal axis, blood pressure, immunity, and reproductive function. It is suggested that the hippocampus operates, in parallel with the amygdala, to modulate body physiology in response to cognitive stimuli. Hippocampal outputs are predominantly inhibitory on downstream neuroendocrine activity; increased synaptic efficacy in the hippocampus (e.g. long-term potentiation) could facilitate throughput inhibition. This may have implications for the role of the hippocampus and long-term potentiation in memory.
Liu, Yong; Yang, Ying; Dong, Hui; Cutler, Roy G; Strong, Randy; Mattson, Mark P
2016-01-01
A high calorie diet (HCD) can impair hippocampal synaptic plasticity and cognitive function in animal models. Mitochondrial thioredoxin 2 (TRX-2) is critical for maintaining intracellular redox status, but whether it can protect against HCD-induced impairment of synaptic plasticity is unknown. We found that levels of TRX-2 are reduced in the hippocampus of wild type mice maintained for 8 months on a HCD, and that the mice on the HCD exhibit impaired hippocampal synaptic plasticity (long-term potentiation at CA1 synapses) and cognitive function (novel object recognition). Transgenic mice overexpressing human TRX-2 (hTRX-2) exhibit increased resistance to diquat-induced oxidative stress in peripheral tissues. However, neither the HCD nor hTRX-2 overexpression affected levels of lipid peroxidation products (F2 isoprostanes) in the hippocampus, and hTRX-2 transgenic mice were not protected against the adverse effects of the HCD on hippocampal synaptic plasticity and cognitive function. Our findings indicate that TRX-2 overexpression does not mitigate adverse effects of a HCD on synaptic plasticity, and also suggest that oxidative stress may not be a pivotal factor in the impairment of synaptic plasticity and cognitive function caused by HCDs. Published by Elsevier Inc.
Wang, Zhaolu; van Veluw, Susanne J; Wong, Adrian; Liu, Wenyan; Shi, Lin; Yang, Jie; Xiong, Yunyun; Lau, Alexander; Biessels, Geert Jan; Mok, Vincent C T
2016-10-01
It was recently demonstrated that cerebral microinfarcts (CMIs) can be detected in vivo using 3.0 tesla (T) magnetic resonance imaging. We investigated the prevalence, risk factors, and the longitudinal cognitive consequence of cortical CMIs on 3.0T magnetic resonance imaging, in patients with ischemic stroke or transient ischemic attack. A total of 231 patients undergoing 3.0T magnetic resonance imaging were included. Montreal Cognitive Assessment was used to evaluate global cognitive functions and cognitive domains (memory, language, and attention visuospatial and executive functions). Cognitive changes were represented by the difference in Montreal Cognitive Assessment score between baseline and 28-month after stroke/transient ischemic attack. The cross-sectional and longitudinal associations between cortical CMIs and cognitive functions were explored using ANCOVA and regression models. Cortical CMIs were observed in 34 patients (14.7%), including 13 patients with acute (hyperintense on diffusion-weighted imaging) and 21 with chronic CMIs (isointense on diffusion-weighted imaging). Atrial fibrillation was a risk factor for all cortical CMIs (odds ratio, 4.8; 95% confidence interval, 1.5-14.9; P=0.007). Confluent white matter hyperintensities was associated with chronic CMIs (odds ratio, 2.8; 95% confidence interval, 1.0-7.8; P=0.047). The presence of cortical CMIs at baseline was associated with worse visuospatial functions at baseline and decline over 28-month follow-up (β=0.5; 95% confidence interval, 0.1-1.0; P=0.008, adjusting for brain atrophy, white matter hyperintensities, lacunes, and microbleeds). Cortical CMIs are a common finding in patients with stroke/transient ischemic attack. Associations between CMI with atrial fibrillation and white matter hyperintensities suggest that these lesions have a heterogeneous cause, involving microembolism and cerebral small vessel disease. CMI seemed to preferentially impact visuospatial functions as assessed by a cognitive screening test. © 2016 American Heart Association, Inc.
Borralleras, Cristina; Mato, Susana; Amédée, Thierry; Matute, Carlos; Mulle, Christophe; Pérez-Jurado, Luis A; Campuzano, Victoria
2016-08-02
Mice heterozygous for a complete deletion (CD) equivalent to the most common deletion found in individuals with Williams-Beuren syndrome (WBS) recapitulate relevant features of the neurocognitive phenotype, such as hypersociability, along with some neuroanatomical alterations in specific brain areas. However, the pathophysiological mechanisms underlying these phenotypes still remain largely unknown. We have studied the synaptic function and cognition in CD mice using hippocampal slices and a behavioral test sensitive to hippocampal function. We have found that long-term potentiation (LTP) elicited by theta burst stimulation (TBS) was significantly impaired in hippocampal field CA1 of CD animals. This deficit might be associated with the observed alterations in spatial working memory. However, we did not detect changes in presynaptic function, LTP induction mechanisms or AMPA and NMDA receptor function. Reduced levels of Brain-derived neurotrophic factor (BDNF) were present in the CA1-CA3 hippocampal region of CD mice, which could account for LTP deficits in these mice. Taken together, these results suggest a defect of CA1 synapses in CD mice to sustain synaptic strength after stimulation. These data represent the first description of synaptic functional deficits in CD mice and further highlights the utility of the CD model to study the mechanisms underlying the WBS neurocognitive profile.
Wang, Yonggang; Neumann, Melanie; Hansen, Katharina; Hong, Shuwhey M.; Kim, Sharon; Noble-Haeusslein, Linda J.
2011-01-01
Abstract The selective serotonin reuptake inhibitor fluoxetine induces hippocampal neurogenesis, stimulates maturation and synaptic plasticity of adult hippocampal neurons, and reduces motor/sensory and memory impairments in several CNS disorders. In the setting of traumatic brain injury (TBI), its effects on neuroplasticity and function have yet to be thoroughly investigated. Here we examined the efficacy of fluoxetine after a moderate to severe TBI, produced by a controlled cortical impact. Three days after TBI or sham surgery, mice were treated with fluoxetine (10 mg/kg/d) or vehicle for 4 weeks. To evaluate the effects of fluoxetine on neuroplasticity, hippocampal neurogenesis and epigenetic modification were studied. Stereologic analysis of the dentate gyrus revealed a significant increase in doublecortin-positive cells in brain-injured animals treated with fluoxetine relative to controls, a finding consistent with enhanced hippocampal neurogenesis. Epigenetic modifications, including an increase in histone 3 acetylation and induction of methyl-CpG-binding protein, a transcription factor involved in DNA methylation, were likewise seen by immunohistochemistry and quantitative Western immunoblots, respectively, in brain-injured animals treated with fluoxetine. To determine if fluoxetine improves neurological outcomes after TBI, gait function and spatial learning and memory were assessed by the CatWalk-assisted gait test and Barnes maze test, respectively. No differences in these parameters were seen between fluoxetine- and vehicle-treated animals. Thus while fluoxetine enhanced neuroplasticity in the hippocampus after TBI, its chronic administration did not restore locomotor function or ameliorate memory deficits. PMID:21175261
Chao, Linda L; Raymond, Morgan R; Leo, Cynthia K; Abadjian, Linda R
2017-10-01
To replicate and expand our previous findings of smaller hippocampal volumes in Gulf War (GW) veterans with predicted exposure to the Khamisiyah plume. Total hippocampal and hippocampal subfield volumes were quantified from 3 Tesla magnetic resonance images in 113 GW veterans, 62 of whom had predicted exposure as per the Department of Defense exposure models. Veterans with predicted exposure had smaller total hippocampal and CA3/dentate gyrus volumes compared with unexposed veterans, even after accounting for potentially confounding genetic and clinical variables. Among veterans with predicted exposure, memory performance was positively correlated with hippocampal volume and negatively correlated with estimated exposure levels and self-reported memory difficulties. These results replicate and extend our previous finding that low-level exposure to chemical nerve agents from the Khamisiyah pit demolition has detrimental, lasting effects on brain structure and function.
Direct brain recordings reveal hippocampal rhythm underpinnings of language processing.
Piai, Vitória; Anderson, Kristopher L; Lin, Jack J; Dewar, Callum; Parvizi, Josef; Dronkers, Nina F; Knight, Robert T
2016-10-04
Language is classically thought to be supported by perisylvian cortical regions. Here we provide intracranial evidence linking the hippocampal complex to linguistic processing. We used direct recordings from the hippocampal structures to investigate whether theta oscillations, pivotal in memory function, track the amount of contextual linguistic information provided in sentences. Twelve participants heard sentences that were either constrained ("She locked the door with the") or unconstrained ("She walked in here with the") before presentation of the final word ("key"), shown as a picture that participants had to name. Hippocampal theta power increased for constrained relative to unconstrained contexts during sentence processing, preceding picture presentation. Our study implicates hippocampal theta oscillations in a language task using natural language associations that do not require memorization. These findings reveal that the hippocampal complex contributes to language in an active fashion, relating incoming words to stored semantic knowledge, a necessary process in the generation of sentence meaning.
Fleming Beattie, Julia; Martin, Roy C; Kana, Rajesh K; Deshpande, Hrishikesh; Lee, Seongtaek; Curé, Joel; Ver Hoef, Lawrence
2017-07-01
While the hippocampus has long been identified as a structure integral to memory, the relationship between morphology and function has yet to be fully explained. We present an analysis of hippocampal dentation, a morphological feature previously unexplored in regard to its relationship with episodic memory. "Hippocampal dentation" in this case refers to surface convolutions, primarily present in the CA1/subiculum on the inferior aspect of the hippocampus. Hippocampal dentation was visualized using ultra-high resolution structural MRI and evaluated using a novel visual rating scale. The degree of hippocampal dentation was found to vary considerably across individuals, and was positively associated with verbal memory recall and visual memory recognition in a sample of 22 healthy adults. This study is the first to characterize the variation in hippocampal dentation in a healthy cohort and to demonstrate its association with aspects of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Clinical Neuropsychology of Dementia with Lewy Bodies].
Nagahama, Yasuhiro
2016-02-01
Dementia with Lewy bodies (DLB) shows lesser memory impairment and more severe visuospatial disability than Alzheimer disease (AD). Although deficits in both consolidation and retrieval underlie the memory impairment, retrieval deficit is predominant in DLB. Visuospatial dysfunctions in DLB are related to the impairments in both ventral and dorsal streams of higher visual information processing, and lower visual processing in V1/V2 may also be impaired. Attention and executive functions are more widely disturbed in DLB than in AD. Imitation of finger gestures is impaired more frequently in DLB than in other mild dementia, and provides additional information for diagnosis of mild dementia, especially for DLB. Pareidolia, which lies between hallucination and visual misperception, is found frequently in DLB, but its mechanism is still under investigation.
Scene construction in developmental amnesia: An fMRI study☆
Mullally, Sinéad L.; Vargha-Khadem, Faraneh; Maguire, Eleanor A.
2014-01-01
Amnesic patients with bilateral hippocampal damage sustained in adulthood are generally unable to construct scenes in their imagination. By contrast, patients with developmental amnesia (DA), where hippocampal damage was acquired early in life, have preserved performance on this task, although the reason for this sparing is unclear. One possibility is that residual function in remnant hippocampal tissue is sufficient to support basic scene construction in DA. Such a situation was found in the one amnesic patient with adult-acquired hippocampal damage (P01) who could also construct scenes. Alternatively, DA patients’ scene construction might not depend on the hippocampus, perhaps being instead reliant on non-hippocampal regions and mediated by semantic knowledge. To adjudicate between these two possibilities, we examined scene construction during functional MRI (fMRI) in Jon, a well-characterised patient with DA who has previously been shown to have preserved scene construction. We found that when Jon constructed scenes he activated many of the regions known to be associated with imagining scenes in control participants including ventromedial prefrontal cortex, posterior cingulate, retrosplenial and posterior parietal cortices. Critically, however, activity was not increased in Jon's remnant hippocampal tissue. Direct comparisons with a group of control participants and patient P01, confirmed that they activated their right hippocampus more than Jon. Our results show that a type of non-hippocampal dependent scene construction is possible and occurs in DA, perhaps mediated by semantic memory, which does not appear to involve the vivid visualisation of imagined scenes. PMID:24231038
Exercise Prevents Amyloid-β-Induced Hippocampal Network Disruption by Inhibiting GSK3β Activation.
Isla, Arturo G; Vázquez-Cuevas, Francisco Gabriel; Peña-Ortega, Fernando
2016-03-16
Exercise is becoming a promising therapeutic approach to prevent alterations both in Alzheimer's disease (AD) patients and in transgenic models of AD. This neuroprotection has been associated with changes in hippocampal structure and function, as well as with the reduction of amyloid-β (Aβ) production and accumulation. However, whether exercise produces lasting changes in hippocampal population activity and renders it resistant to Aβ-induced network dysfunction is still unknown. Thus, we tested whether voluntary exercise changes hippocampal population activity and prevents its alteration in the presence of Aβ, which has been associated to glycogen synthase kinase-3β (GSK3β) activation. We found that the hippocampal population activity recorded in slices obtained from mice that exercised voluntarily (with free access to a running wheel for 21 days) exhibits higher power and faster frequency composition than slices obtained from sedentary animals. Moreover, the hippocampal network of mice that exercised becomes insensitive to Aβ-induced inhibition of spontaneous population activity. This protective effect correlates with the inability of Aβ to activate GSK3β, is mimicked by GSK3β inhibition with SB126763 (in slices obtained from sedentary mice), and is abolished by the inhibition of PI3K with LY294002 (in slices obtained from mice that exercised). We conclude that voluntary exercise produces a lasting protective state in the hippocampus, maintained in hippocampal slices by a PI3K-dependent mechanism that precludes its functional disruption in the presence of Aβ by avoiding GSK3β activation.
Scene construction in developmental amnesia: an fMRI study.
Mullally, Sinéad L; Vargha-Khadem, Faraneh; Maguire, Eleanor A
2014-01-01
Amnesic patients with bilateral hippocampal damage sustained in adulthood are generally unable to construct scenes in their imagination. By contrast, patients with developmental amnesia (DA), where hippocampal damage was acquired early in life, have preserved performance on this task, although the reason for this sparing is unclear. One possibility is that residual function in remnant hippocampal tissue is sufficient to support basic scene construction in DA. Such a situation was found in the one amnesic patient with adult-acquired hippocampal damage (P01) who could also construct scenes. Alternatively, DA patients' scene construction might not depend on the hippocampus, perhaps being instead reliant on non-hippocampal regions and mediated by semantic knowledge. To adjudicate between these two possibilities, we examined scene construction during functional MRI (fMRI) in Jon, a well-characterised patient with DA who has previously been shown to have preserved scene construction. We found that when Jon constructed scenes he activated many of the regions known to be associated with imagining scenes in control participants including ventromedial prefrontal cortex, posterior cingulate, retrosplenial and posterior parietal cortices. Critically, however, activity was not increased in Jon's remnant hippocampal tissue. Direct comparisons with a group of control participants and patient P01, confirmed that they activated their right hippocampus more than Jon. Our results show that a type of non-hippocampal dependent scene construction is possible and occurs in DA, perhaps mediated by semantic memory, which does not appear to involve the vivid visualisation of imagined scenes. © 2013 Published by Elsevier Ltd.
A virtual reality test identifies the visuospatial strengths of adolescents with dyslexia.
Attree, Elizabeth A; Turner, Mark J; Cowell, Naina
2009-04-01
Research suggests that the deficits characterizing dyslexia may also be associated with superior visuospatial abilities. Other research suggests that superior visuospatial abilities of people with dyslexia may not have been so far identified because of the lack of appropriate tests of real-life spatial ability. A recent small-scale study found that visuospatial superiority was evident in men with dyslexia. This study assessed the visuospatial ability of adolescents with dyslexia in order to determine whether these adolescents performed better on a pseudo real-life visuospatial test than did their nondyslexic peers. Forty-two adolescents took part in the study. There was an equal numerical split between the experimental and control groups. The experimental group all had a diagnosis of dyslexia by an educational psychologist or specialist teacher. Visuospatial ability was assessed using the Recall of Designs and the Pattern Construction subtests from the British Ability Scales (2nd edition; BAS-11) together with a computer-generated virtual environment test. The assessments were administered in a counterbalanced order. Adolescents with dyslexia tended to perform less well than their nondyslexic peers on the BAS-11 tests; however, this difference was not statistically significant. For the computer-generated virtual environment test (pseudo real-life measure), statistically significant higher scores were achieved by the dyslexic group. These findings suggest that adolescents with dyslexia may exhibit superior visuospatial strengths on certain pseudo real-life tests of spatial ability. The usefulness of these findings is discussed in relation to possible implications for assessment and educational intervention programs for adolescents with dyslexia.
Development of Visuospatial Attention in Typically Developing Children
Ickx, Gaétan; Bleyenheuft, Yannick; Hatem, Samar M.
2017-01-01
The aim of the present study is to investigate the development of visuospatial attention in typically developing children and to propose reference values for children for the following six visuospatial attention tests: star cancellation, Ogden figure, reading test, line bisection, proprioceptive pointing and visuo-proprioceptive pointing. Data of 159 children attending primary or secondary school in the Fédération Wallonie Bruxelles (Belgium) were analyzed. Results showed that the children's performance on star cancellation, Ogden figure and reading test improved until the age of 13 years, whereas their performance on proprioceptive pointing, visuo-proprioceptive pointing and line bisection was stable with increasing age. These results suggest that the execution of different types of visuospatial attention tasks are not following the same developmental trajectories. This dissociation is strengthened by the lack of correlation observed between tests assessing egocentric and allocentric visuospatial attention, except for the star cancellation test (egocentric) and the Ogden figure copy (ego- and allocentric). Reference values are proposed that may be useful to examine children with clinical disorders of visuospatial attention. PMID:29270138
Traveling Theta Waves in the Human Hippocampus
Zhang, Honghui
2015-01-01
The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscillations in humans have different properties compared with rodents, we examined these signals directly using multielectrode recordings from neurosurgical patients. Our findings confirm that human hippocampal theta oscillations are traveling waves, but also show that these oscillations appear at a broader range of frequencies compared with rodents. Human traveling waves showed a distinctive pattern of spatial propagation such that there is a consistent phase spread across the hippocampus regardless of the oscillations' frequency. This suggests that traveling theta oscillations are important functionally in humans because they coordinate phase coding throughout the hippocampus in a consistent manner. SIGNIFICANCE STATEMENT We show for the first time in humans that hippocampal theta oscillations are traveling waves, moving along the length of the hippocampus in a posterior–anterior direction. The existence of these traveling theta waves is important for understanding hippocampal neural coding because they cause neurons at separate positions in the hippocampus to experience different theta phases simultaneously. The theta phase that a neuron measures is a key factor in how that cell represents behavioral information. Therefore, the existence of traveling theta waves indicates that, to fully understand how a hippocampal neuron represents information, it is vital to also account for that cell's location in addition to conventional measures of neural activity. PMID:26354915
Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain
Naylor, Andrew S.; Bull, Cecilia; Nilsson, Marie K. L.; Zhu, Changlian; Björk-Eriksson, Thomas; Eriksson, Peter S.; Blomgren, Klas; Kuhn, H. Georg
2008-01-01
Cranial radiation therapy is commonly used in the treatment of childhood cancers. It is associated with cognitive impairments tentatively linked to the hippocampus, a neurogenic region of the brain important in memory function and learning. Hippocampal neurogenesis is positively regulated by voluntary exercise, which is also known to improve hippocampal-dependent cognitive functions. In this work, we irradiated the brains of C57/BL6 mice on postnatal day 9 and evaluated both the acute effects of irradiation and the effects of voluntary running on hippocampal neurogenesis and behavior 3 months after irradiation. Voluntary running significantly restored precursor cell and neurogenesis levels after a clinically relevant, moderate dose of irradiation. We also found that irradiation perturbed the structural integration of immature neurons in the hippocampus and that this was reversed by voluntary exercise. Furthermore, irradiation-induced behavior alterations observed in the open-field test were ameliorated. Together, these results clearly demonstrate the usefulness of physical exercise for functional and structural recovery from radiation-induced injury to the juvenile brain, and they suggest that exercise should be evaluated in rehabilitation therapy of childhood cancer survivors. PMID:18765809
Bragdon, Laura B; Gibb, Brandon E; Coles, Meredith E
2018-06-19
Investigations of neuropsychological functioning in obsessive-compulsive disorder (OCD) have produced mixed results for deficits in executive functioning (EF), attention, and memory. One potential explanation for varied findings may relate to the heterogeneity of symptom presentations, and different clinical or neurobiological characteristics may underlie these different symptoms. We investigated differences in neuropsychological functioning between two symptoms groups, obsessing/checking (O/C) and symmetry/ordering (S/O), based on data suggesting an association with different motivations: harm avoidance and incompleteness, respectively. Ten studies (with 628 patients) were included and each investigation assessed at least one of 14 neuropsychological domains. The S/O domain demonstrated small, negative correlations with overall neuropsychological functioning, performance in EF, memory, visuospatial ability, cognitive flexibility, and verbal working memory. O/C symptoms demonstrated small, negative correlations with memory and verbal memory performance. A comparison of functioning between symptom groups identified large effect sizes showing that the S/O dimension was more strongly related to poorer neuropsychological performance overall, and in the domains of attention, visuospatial ability, and the subdomain of verbal working memory. Findings support existing evidence suggesting that different OCD symptoms, and their associated core motivations, relate to unique patterns of neuropsychological functioning, and, potentially dysfunction in different neural circuits. © 2018 Wiley Periodicals, Inc.
Koksal, Ayhan; Keskinkılıc, Cahit; Sozmen, Mehmet Vedat; Dirican, Ayten Ceyhan; Aysal, Fikret; Altunkaynak, Yavuz; Baybas, Sevim
2014-01-01
In this study, cognitive functions of 9 patients developing parkinsonism due to chronic manganese intoxication by intravenous methcathinone solution were investigated using detailed neuropsychometric tests. Attention deficit, verbal and nonverbal memory, visuospatial function, constructive ability, language, and executive (frontal) functions of 9 patients who were admitted to our clinic with manifestations of chronic manganese intoxication and 9 control subjects were assessed using neuropsychometric tests. Two years later, detailed repeat neuropsychometric tests were performed in the patient group. The results were evaluated using the χ(2) test, Fisher's exact probability test, Student's t test and the Mann-Whitney U test. While there was no statistically significant difference between the two groups in language functions, visuospatial functions and constructive ability, a statistically significant difference was noted between both groups regarding attention (p = 0.032), calculation (p = 0.004), recall and recognition domains of verbal memory, nonverbal memory (p = 0.021) and some domains of frontal functions (Stroop-5 and spontaneous recovery) (p = 0.022 and 0.012). Repeat neuropsychometric test results of the patients were not statistically significant 2 years later. It has been observed that cognitive dysfunction seen in parkinsonism secondary to chronic manganese intoxication may be long-lasting and may not recover as observed in motor dysfunction. © 2014 S. Karger AG, Basel.
Demily, Caroline; Rigard, Caroline; Peyroux, Elodie; Chesnoy-Servanin, Gabrielle; Morel, Aurore; Franck, Nicolas
2016-01-01
Attentional, visuospatial, and social cognition deficits have a negative impact on children’s adaptative and social competences and, as a result, on their ability to achieve a normal functioning and behavior. Until now and despite the frequency of those deficits, there is a lack of children’s specific cognitive remediation tools specifically dedicated to attentional and visuospatial areas. The «Cognitus & Moi» program involves a variety of exercises in a paper and/or pencil (n = 30) or a computerized format (n = 29) and a strategy coaching approach. Each module of «Cognitus & Moi» targets a single impaired cognitive area, within the limits of cognitive domains’ overlapping. The little cartoon character named Cognitus, who illustrates the program, is supposed to be very friendly and kind toward children. Cognitus will accompany them throughout the program for an effective and positive reinforcement. The main goal of «Cognitus & Moi» is to adjust to children’s difficulties in daily life. Moreover, since the cognitive remediation benefit is complex to apply in daily life, the program is based on a metacognitive strategy. After a complete neuropsychological assessment and a psychoeducational session (with the child and the parents), 16 1-h-sessions of cognitive remediation with the therapist are proposed. Each session is composed of three parts: (1) computerized tasks focusing on specific attentional or visuospatial components (20 min). The attentional module targets hearing, visual, and divided attention. A double attention task is also proposed. The visuospatial module targets eye tracking and gaze direction, spatial orientation, visuospatial memory and construction, and mental imagery; (2) pen and paper tasks focusing on the same processes (20 min) and a facial emotion recognition task; (3) a proposal of a home-based task (during 20 min). Weekly, specific attentional and visuospatial home tasks are proposed to the child and analyzed with the parents and the therapist. Indeed, home exercises are useful to promote the transfer of strategies to daily life and their subsequent automation. The heterogeneity of cognitive deficits in intellectual deficiency necessitates an individualized cognitive remediation therapy. In this regard, «Cognitus & Moi» seems to be a promising tool. PMID:26869942
Reduced hippocampal functional connectivity in Alzheimer disease.
Allen, Greg; Barnard, Holly; McColl, Roderick; Hester, Andrea L; Fields, Julie A; Weiner, Myron F; Ringe, Wendy K; Lipton, Anne M; Brooker, Matthew; McDonald, Elizabeth; Rubin, Craig D; Cullum, C Munro
2007-10-01
To determine if functional connectivity of the hippocampus is reduced in patients with Alzheimer disease. Functional connectivity magnetic resonance imaging was used to investigate coherence in the magnetic resonance signal between the hippocampus and all other regions of the brain. Eight patients with probable Alzheimer disease and 8 healthy volunteers. Control subjects showed hippocampal functional connectivity with diffuse cortical, subcortical, and cerebellar sites, while patients demonstrated markedly reduced functional connectivity, including an absence of connectivity with the frontal lobes. These findings suggest a functional disconnection between the hippocampus and other brain regions in patients with Alzheimer disease.
Patros, Connor H G; Alderson, R Matt; Lea, Sarah E; Tarle, Stephanie J; Kasper, Lisa J; Hudec, Kristen L
2015-03-01
The present study examined the directional relationship between choice-impulsivity and separate indices of phonological and visuospatial working memory performance in boys (aged 8-12 years) with (n=16) and without ADHD (n=19). Results indicated that high ratings of overall ADHD, inattention, and hyperactivity were significantly associated with increased impulsivity and poorer phonological and visuospatial working memory performance. Further, results from bias-corrected bootstrapped mediation analyses revealed a significant indirect effect of visuospatial working memory performance, through choice-impulsivity, on overall ADHD, inattention, and hyperactivity/impulsivity. Collectively, the findings suggest that deficits of visuospatial working memory underlie choice-impulsivity, which in turn contributes to the ADHD phenotype. Moreover, these findings are consistent with a growing body of literature that identifies working memory as a central neurocognitive deficit of ADHD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pellicano, Elizabeth; Gibson, Lisa; Maybery, Murray; Durkin, Kevin; Badcock, David R
2005-01-01
Frith and Happe (Frith, U., & Happe, F. (1994). Autism: Beyond theory of mind. Cognition, 50, 115-132) argue that individuals with autism exhibit 'weak central coherence': an inability to integrate elements of information into coherent wholes. Some authors have speculated that a high-level impairment might be present in the dorsal visual pathway in autism, and furthermore, that this might account for weak central coherence, at least at the visuospatial level. We assessed the integrity of the dorsal visual pathway in children diagnosed with an autism spectrum disorder (ASD), and in typically developing children, using two visual tasks, one examining functioning at higher levels of the dorsal cortical stream (Global Dot Motion (GDM)), and the other assessing lower-level dorsal stream functioning (Flicker Contrast Sensitivity (FCS)). Central coherence was tested using the Children's Embedded Figures Test (CEFT). Relative to the typically developing children, the children with ASD had shorter CEFT latencies and higher GDM thresholds but equivalent FCS thresholds. Additionally, CEFT latencies were inversely related to GDM thresholds in the ASD group. These outcomes indicate that the elevated global motion thresholds in autism are the result of high-level impairments in dorsal cortical regions. Weak visuospatial coherence in autism may be in the form of abnormal cooperative mechanisms in extra-striate cortical areas, which might contribute to differential performance when processing stimuli as Gestalts, including both dynamic (i.e., global motion perception) and static (i.e., disembedding performance) stimuli.
Geva, R; Eshel, R; Leitner, Y; Fattal-Valevski, A; Harel, S
2008-12-01
Recent reports showed that children born with intrauterine growth restriction (IUGR) are at greater risk of experiencing verbal short-term memory span (STM) deficits that may impede their learning capacities at school. It is still unknown whether these deficits are modality dependent. This long-term, prospective design study examined modality-dependent verbal STM functions in children who were diagnosed at birth with IUGR (n = 138) and a control group (n = 64). Their STM skills were evaluated individually at 9 years of age with four conditions of the Visual-Aural Digit Span Test (VADS; Koppitz, 1981): auditory-oral, auditory-written, visuospatial-oral and visuospatial-written. Cognitive competence was evaluated with the short form of the Wechsler Intelligence Scales for Children--revised (WISC-R95; Wechsler, 1998). We found IUGR-related specific auditory-oral STM deficits (p < .036) in conjunction with two double dissociations: an auditory-visuospatial (p < .014) and an input-output processing distinction (p < .014). Cognitive competence had a significant effect on all four conditions; however, the effect of IUGR on the auditory-oral condition was not overridden by the effect of intelligence quotient (IQ). Intrauterine growth restriction affects global competence and inter-modality processing, as well as distinct auditory input processing related to verbal STM functions. The findings support a long-term relationship between prenatal aberrant head growth and auditory verbal STM deficits by the end of the first decade of life. Empirical, clinical and educational implications are presented.
Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.
2011-01-01
Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883
Panizzon, Matthew S; Hauger, Richard L; Xian, Hong; Jacobson, Kristen; Lyons, Michael J; Franz, Carol E; Kremen, William S
2018-05-01
Animal and human research suggests that testosterone is associated with hippocampal structure and function. Studies examining the association between testosterone and either hippocampal structure or hippocampal-mediated cognitive processes have overwhelmingly focused on the effects of testosterone alone, without considering the interaction of other neuroendocrine factors. The aim of the present study was to examine the interactive effects of testosterone and cortisol in relation to hippocampal volume and episodic memory in a sample of late-middle aged men from the Vietnam Era Twin Study of Aging. The average age of participants was 56.3 years (range 51-60). Salivary hormone samples were collected at multiple time-points on two non-consecutive at-home days, and an in-lab assessment. Area under the curve with respect to ground measures for cortisol and testosterone were utilized. Significant testosterone-by-cortisol interactions were observed for hippocampal volume, and episodic memory. When cortisol levels were elevated (1 SD above the mean), testosterone levels were positively associated with hippocampal volume and memory performance. However, when cortisol levels were low (1 SD below the mean), testosterone levels were inversely related to hippocampal volume and memory performance. These findings suggest that in context of high cortisol levels, testosterone may be neuroprotective. In contrast, low testosterone may also be neuroprotective in the context of low cortisol levels. To our knowledge this is the first demonstration of such an interaction in a structural brain measure and an associated cognitive ability. These results argue in favor of broadening neuroendocrine research to consider the simultaneous and interactive effects of multiple hormones on brain structure and function. Copyright © 2018 Elsevier Ltd. All rights reserved.
Moustafa, Ahmed A.; Wufong, Ella; Servatius, Richard J.; Pang, Kevin C. H.; Gluck, Mark A.; Myers, Catherine E.
2013-01-01
A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, while trace conditioning (in which the CS terminates before US onset) depends on the hippocampus. However, recent studies show that, under some circumstances, delay conditioning can be hippocampal-dependent and trace conditioning can be spared following hippocampal lesion. Here, we present an extension of our prior trial-level models of hippocampal function and stimulus representation that can explain these findings within a unified framework. Specifically, the current model includes adaptive recurrent collateral connections that aid in the representation of intra-trial temporal information. With this model, as in our prior models, we argue that the hippocampus is not specialized for conditioned response timing, but rather is a general-purpose system that learns to predict the next state of all stimuli given the current state of variables encoded by activity in recurrent collaterals. As such, the model correctly predicts that hippocampal involvement in classical conditioning should be critical not only when there is an intervening trace interval, but also when there is a long delay between CS onset and US onset. Our model simulates empirical data from many variants of classical conditioning, including delay and trace paradigms in which the length of the CS, the inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations, future directions, and several novel empirical predictions of this temporal processing model of hippocampal function and learning. PMID:23178699
Ehret, Fanny; Vogler, Steffen; Pojar, Sherin; Elliott, David A; Bradke, Frank; Steiner, Barbara; Kempermann, Gerd
2015-03-01
Could impaired adult hippocampal neurogenesis be a relevant mechanism underlying CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)? Memory symptoms in CADASIL, the most common hereditary form of vascular dementia, are usually thought to be primarily due to vascular degeneration and white matter lacunes. Since adult hippocampal neurogenesis, a process essential for the integration of new spatial memory occurs in a highly vascularized niche, we considered dysregulation of adult neurogenesis as a potential mechanism for the manifestation of dementia in CADASIL. Analysis in aged mice overexpressing Notch3 with a CADASIL mutation, revealed vascular deficits in arteries of the hippocampal fissure but not in the niche of the dentate gyrus. At 12 months of age, cell proliferation and survival of newborn neurons were reduced not only in CADASIL mice but also in transgenic controls overexpressing wild type Notch3. At 6 months, hippocampal neurogenesis was altered in CADASIL mice independent of overt vascular abnormalities in the fissure. Further, we identified Notch3 expression in hippocampal precursor cells and maturing neurons in vivo as well as in cultured hippocampal precursor cells. Overexpression and knockdown experiments showed that Notch3 signaling negatively regulated precursor cell proliferation. Notch3 overexpression also led to deficits in KCl-induced precursor cell activation. This suggests a cell-autonomous effect of Notch3 signaling in the regulation of precursor proliferation and activation and a loss-of-function effect in CADASIL. Consequently, besides vascular damage, aberrant precursor cell proliferation and differentiation due to Notch3 dysfunction might be an additional independent mechanism for the development of hippocampal dysfunction in CADASIL. Copyright © 2014. Published by Elsevier Inc.
Choline-mediated modulation of hippocampal sharp wave-ripple complexes in vitro.
Fischer, Viktoria; Both, Martin; Draguhn, Andreas; Egorov, Alexei V
2014-06-01
The cholinergic system is critically involved in the modulation of cognitive functions, including learning and memory. Acetylcholine acts through muscarinic (mAChRs) and nicotinic receptors (nAChRs), which are both abundantly expressed in the hippocampus. Previous evidence indicates that choline, the precursor and degradation product of Acetylcholine, can itself activate nAChRs and thereby affects intrinsic and synaptic neuronal functions. Here, we asked whether the cellular actions of choline directly affect hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R) and can induce gamma oscillations. In addition, choline reduces synaptic transmission between hippocampal subfields CA3 and CA1. Surprisingly, these effects are mediated by activation of both mAChRs and α7-containing nAChRs. Most nicotinic effects became only apparent after local, fast application of choline, indicating rapid desensitization kinetics of nAChRs. Effects were still present following block of choline uptake and are, therefore, likely because of direct actions of choline at the respective receptors. Together, choline turns out to be a potent regulator of patterned network activity within the hippocampus. These actions may be of importance for understanding state transitions in normal and pathologically altered neuronal networks. In this study we asked whether choline, the precursor and degradation product of acetylcholine, directly affects hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R). In addition, choline reduces synaptic transmission between hippocampal subfields. These effects are mediated by direct activation of muscarinic as well as nicotinic cholinergic pathways. Together, choline turns out to be a potent regulator of patterned activity within hippocampal networks. © 2014 International Society for Neurochemistry.
Burke, Sarah M.; Kreukels, Baudewijntje P.C.; Cohen-Kettenis, Peggy T.; Veltman, Dick J.; Klink, Daniel T.; Bakker, Julie
2016-01-01
Background Sex differences in performance and regional brain activity during mental rotation have been reported repeatedly and reflect organizational and activational effects of sex hormones. We investigated whether adolescent girls with gender dysphoria (GD), before and after 10 months of testosterone treatment, showed male-typical brain activity during a mental rotation task (MRT). Methods Girls with GD underwent fMRI while performing the MRT twice: when receiving medication to suppress their endogenous sex hormones before onset of testosterone treatment, and 10 months later during testosterone treatment. Two age-matched control groups participated twice as well. Results We included 21 girls with GD, 20 male controls and 21 female controls in our study. In the absence of any group differences in performance, control girls showed significantly increased activation in frontal brain areas compared with control boys (pFWE = 0.012). Girls with GD before testosterone treatment differed significantly in frontal brain activation from the control girls (pFWE = 0.034), suggesting a masculinization of brain structures associated with visuospatial cognitive functions. After 10 months of testosterone treatment, girls with GD, similar to the control boys, showed increases in brain activation in areas implicated in mental rotation. Limitations Since all girls with GD identified as gynephilic, their resemblance in spatial cognition with the control boys, who were also gynephilic, may have been related to their shared sexual orientation rather than their shared gender identity. We did not account for menstrual cycle phase or contraceptive use in our analyses. Conclusion Our findings suggest atypical sexual differentiation of the brain in natal girls with GD and provide new evidence for organizational and activational effects of testosterone on visuospatial cognitive functioning. PMID:27070350
Burke, Sarah M; Kreukels, Baudewijntje P C; Cohen-Kettenis, Peggy T; Veltman, Dick J; Klink, Daniel T; Bakker, Julie
2016-10-01
Sex differences in performance and regional brain activity during mental rotation have been reported repeatedly and reflect organizational and activational effects of sex hormones. We investigated whether adolescent girls with gender dysphoria (GD), before and after 10 months of testosterone treatment, showed male-typical brain activity during a mental rotation task (MRT). Girls with GD underwent fMRI while performing the MRT twice: when receiving medication to suppress their endogenous sex hormones before onset of testosterone treatment, and 10 months later during testosterone treatment. Two age-matched control groups participated twice as well. We included 21 girls with GD, 20 male controls and 21 female controls in our study. In the absence of any group differences in performance, control girls showed significantly increased activation in frontal brain areas compared with control boys ( p FWE = 0.012). Girls with GD before testosterone treatment differed significantly in frontal brain activation from the control girls ( p FWE = 0.034), suggesting a masculinization of brain structures associated with visuospatial cognitive functions. After 10 months of testosterone treatment, girls with GD, similar to the control boys, showed increases in brain activation in areas implicated in mental rotation. Since all girls with GD identified as gynephilic, their resemblance in spatial cognition with the control boys, who were also gynephilic, may have been related to their shared sexual orientation rather than their shared gender identity. We did not account for menstrual cycle phase or contraceptive use in our analyses. Our findings suggest atypical sexual differentiation of the brain in natal girls with GD and provide new evidence for organizational and activational effects of testosterone on visuospatial cognitive functioning.
ERIC Educational Resources Information Center
Harasawa, Masamitsu; Shioiri, Satoshi
2011-01-01
The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a…
Additive gene-environment effects on hippocampal structure in healthy humans.
Rabl, Ulrich; Meyer, Bernhard M; Diers, Kersten; Bartova, Lucie; Berger, Andreas; Mandorfer, Dominik; Popovic, Ana; Scharinger, Christian; Huemer, Julia; Kalcher, Klaudius; Pail, Gerald; Haslacher, Helmuth; Perkmann, Thomas; Windischberger, Christian; Brocke, Burkhard; Sitte, Harald H; Pollak, Daniela D; Dreher, Jean-Claude; Kasper, Siegfried; Praschak-Rieder, Nicole; Moser, Ewald; Esterbauer, Harald; Pezawas, Lukas
2014-07-23
Hippocampal volume loss has been related to chronic stress as well as genetic factors. Although genetic and environmental variables affecting hippocampal volume have extensively been studied and related to mental illness, limited evidence is available with respect to G × E interactions on hippocampal volume. The present MRI study investigated interaction effects on hippocampal volume between three well-studied functional genetic variants (COMT Val158Met, BDNF Val66Met, 5-HTTLPR) associated with hippocampal volume and a measure of environmental adversity (life events questionnaire) in a large sample of healthy humans (n = 153). All three variants showed significant interactions with environmental adversity with respect to hippocampal volume. Observed effects were additive by nature and driven by both recent as well as early life events. A consecutive analysis of hippocampal subfields revealed a spatially distinct profile for each genetic variant suggesting a specific role of 5-HTTLPR for the subiculum, BDNF Val66Met for CA4/dentate gyrus, and COMT Val158Met for CA2/3 volume changes. The present study underscores the importance of G × E interactions as determinants of hippocampal volume, which is crucial for the neurobiological understanding of stress-related conditions, such as mood disorders or post-traumatic stress disorder (PTSD). Copyright © 2014 the authors 0270-6474/14/349917-10$15.00/0.
Video Game Training Enhances Visuospatial Working Memory and Episodic Memory in Older Adults
Toril, Pilar; Reales, José M.; Mayas, Julia; Ballesteros, Soledad
2016-01-01
In this longitudinal intervention study with experimental and control groups, we investigated the effects of video game training on the visuospatial working memory (WM) and episodic memory of healthy older adults. Participants were 19 volunteer older adults, who received 15 1-h video game training sessions with a series of video games selected from a commercial package (Lumosity), and a control group of 20 healthy older adults. The results showed that the performance of the trainees improved significantly in all the practiced video games. Most importantly, we found significant enhancements after training in the trained group and no change in the control group in two computerized tasks designed to assess visuospatial WM, namely the Corsi blocks task and the Jigsaw puzzle task. The episodic memory and short-term memory of the trainees also improved. Gains in some WM and episodic memory tasks were maintained during a 3-month follow-up period. These results suggest that the aging brain still retains some degree of plasticity, and that video game training might be an effective intervention tool to improve WM and other cognitive functions in older adults. PMID:27199723
Tamayo, F; Casals-Coll, M; Sánchez-Benavides, G; Quintana, M; Manero, R M; Rognoni, T; Calvo, L; Palomo, R; Aranciva, F; Peña-Casanova, J
2012-01-01
Verbal and visuospatial span, Letter-Number Sequencing, Trail Making Test, and Symbol Digit Modalities Test are frequently used in clinical practice to assess attention, executive functions and memory. In the present study, as part of the Spanish normative studies of NEURONORMA young adults Project, normative data adjusted by age and education are provided for digits, Corsi Block-Tapping Task, Letter-Number Sequencing, Trail Making Test, and Symbol Digit Modalities Test. The sample consisted of 179 participants from 18 to 49 years old, who were cognitively normal. Tables to convert raw scores to scaled scores are provided. Age and education adjusted scores are provided by applying linear regressions. Education affected scores in most of the attention tests; age was found to be related to the visuospatial span and to speed of visuomotor tracking, and there was no relationship as regards sex. The data obtained will be useful in the clinical evaluation of young Spanish adults. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Working Memory, Language Skills, and Autism Symptomatology
Schuh, Jillian M.; Eigsti, Inge-Marie
2012-01-01
While many studies have reported working memory (WM) impairments in autism spectrum disorders, others do not. Sample characteristics, WM domain, and task complexity likely contribute to these discrepancies. Although deficits in visuospatial WM have been more consistently documented, there is much controversy regarding verbal WM in autism. The goal of the current study was to explore visuospatial and verbal WM in a well-controlled sample of children with high-functioning autism (HFA) and typical development. Individuals ages 9–17 with HFA (n = 18) and typical development (n = 18), were carefully matched on gender, age, IQ, and language, and were administered a series of standardized visuospatial and verbal WM tasks. The HFA group displayed significant impairment across WM domains. No differences in performance were noted across WM tasks for either the HFA or typically developing groups. Over and above nonverbal cognition, WM abilities accounted for significant variance in language skills and symptom severity. The current study suggests broad WM limitations in HFA. We further suggest that deficits in verbal WM are observed in more complex tasks, as well as in simpler tasks, such as phonological WM. Increased task complexity and linguistic demands may influence WM abilities. PMID:25379222
Dreaming is not controlled by hippocampal mechanisms.
Solms, Mark
2013-12-01
Links with the Humanities are to be welcomed, but they cannot be exempted from normal scientific criteria. Any hypothesis regarding the function of dreams that is premised on rapid eye movement (REM)/dream isomorphism is unsupportable on empirical grounds. Llewellyn's hypothesis has the further problem of counter-evidence in respect of its claim that dreaming relies upon hippocampal functions. The hypothesis also lacks face validity.
De Leonibus, Elvira; Managò, Francesca; Giordani, Francesco; Petrosino, Francesco; Lopez, Sebastien; Oliverio, Alberto; Amalric, Marianne; Mele, Andrea
2009-02-01
Visuo-spatial deficits are the most consistently reported cognitive abnormalities in Parkinson's disease (PD), and they are frequently associated to motor symptoms in the early stages of the disease when dopamine loss is moderate and still restricted to the caudate-putamen. The metabotropic glutamate receptor 5 (mGluR5) antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), has beneficial effects on motor symptoms in animal models of PD. However, the effects of MPEP on the cognitive deficits of the disease have never been investigated. Thus, the purpose of this study was to explore its therapeutic potentials by investigating its effects on the visuo-spatial deficits induced by 6-hydroxydopamine (6-OHDA) lesions of dorsal striatum in CD1 mice. The results demonstrated that systemic injections of MPEP (6, 12, and 24 mg/kg, i.p.) impair visuo-spatial discrimination in intact mice at high concentrations, whereas lower doses (1.5 and 3 mg/kg, i.p.) were void of effects. Nevertheless, when an ineffective dose (MPEP 3 mg/kg) was injected, either acutely or subchronically (8 days), it antagonized the visuo-spatial discrimination deficit induced by bilateral dopamine lesion of the striatum. Furthermore, the same treatment increased contralateral turning induced by L-DOPA in mice bearing unilateral 6-OHDA lesion. These results confirm the therapeutic potential of mGluR5 blockade on motor symptoms induced by reduced striatal dopamine function. Further, they demonstrate that mGluR5 blockade may also have beneficial effects on cognitive deficits induced by dopamine depletion.
Extent of hippocampal atrophy predicts degree of deficit in recall
Patai, Eva Zita; Gadian, David G.; Cooper, Janine M.; Dzieciol, Anna M.; Mishkin, Mortimer; Vargha-Khadem, Faraneh
2015-01-01
Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition. PMID:26417089
Extent of hippocampal atrophy predicts degree of deficit in recall.
Patai, Eva Zita; Gadian, David G; Cooper, Janine M; Dzieciol, Anna M; Mishkin, Mortimer; Vargha-Khadem, Faraneh
2015-10-13
Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition.
Episodic autobiographical memory is associated with variation in the size of hippocampal subregions.
Palombo, Daniela J; Bacopulos, Agnes; Amaral, Robert S C; Olsen, Rosanna K; Todd, Rebecca M; Anderson, Adam K; Levine, Brian
2018-02-01
Striking individual differences exist in the human capacity to recollect past events, yet, little is known about the neural correlates of such individual differences. Studies investigating hippocampal volume in relation to individual differences in laboratory measures of episodic memory in young adults suggest that whole hippocampal volume is unrelated (or even negatively associated) with episodic memory. However, anatomical and functional specialization across hippocampal subregions suggests that individual differences in episodic memory may be linked to particular hippocampal subregions, as opposed to whole hippocampal volume. Given that the DG/CA 2/3 circuitry is thought to be especially critical for supporting episodic memory in humans, we predicted that the volume of this region would be associated with individual variability in episodic memory. This prediction was supported using high-resolution MRI of the hippocampal subfields and measures of real-world (autobiographical) episodic memory. In addition to the association with DG/CA 2/3 , we further observed a relationship between episodic autobiographical memory and subiculum volume, whereas no association was observed with CA 1 or with whole hippocampal volume. These findings provide insight into the possible neural substrates that mediate individual differences in real-world episodic remembering in humans. © 2017 Wiley Periodicals, Inc.
Joo, Eun Yeon; Kim, Hosung; Suh, Sooyeon; Hong, Seung Bong
2014-07-01
Despite compelling evidence from animal studies indicating hippocampal subfield-specific vulnerability to poor sleep quality and related cognitive impairment, there have been no human magnetic resonance imaging (MRI) studies investigating the relationship between hippocampal subfield volume and sleep disturbance. Our aim was to investigate the pattern of volume changes across hippocampal subfields in patients with primary insomnia relative to controls. Pointwise morphometry allowed for volume measurements of hippocampal regions on T1-weighted MRI. University hospital. Twenty-seven unmedicated patients (age: 51.2 ± 9.6 y) and 30 good sleepers as controls (50.4 ± 7.1 y). N/A. We compared hippocampal subfield volumes between patients and controls and correlated volume with clinical and neuropsychological features in patients. Patients exhibited bilateral atrophy across all hippocampal subfields (P < 0.05 corrected). Cornu ammonis (CA) 1 subfield atrophy was associated with worse sleep quality (higher Pittsburgh Sleep Quality Index and higher arousal index of polysomnography) (r < -0.45, P < 0.005). The volume of the combined region, including the dentate gyrus (DG) and CA3-4, negatively correlated with verbal memory, verbal information processing, and verbal fluency in patients (|r| > 0.45, P < 0.05). Hemispheric volume asymmetry of this region (left smaller than right) was associated with impaired verbal domain functions (r = 0.50, P < 0.005). Hippocampal subfield atrophy in chronic insomnia suggests reduced neurogenesis in the dentate gyrus (DG) and neuronal loss in the cornu ammonis (CA) subfields in conditions of sleep fragmentation and related chronic stress condition. Atrophy in the CA3-4-DG region was associated with impaired cognitive functions in patients. These observations may provide insight into pathophysiological mechanisms that make patients with chronic sleep disturbance vulnerable to cognitive impairment. Joo EY, Kim H, Suh S, Hong SB. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry.
The Role of Visuo-Spatial Abilities in Recall of Spatial Descriptions: A Mediation Model
ERIC Educational Resources Information Center
Meneghetti, Chiara; De Beni, Rossana; Pazzaglia, Francesca; Gyselinck, Valerie
2011-01-01
This research investigates how visuo-spatial abilities (such as mental rotation--MR--and visuo-spatial working memory--VSWM--) work together to influence the recall of environmental descriptions. We tested a mediation model in which VSWM was assumed to mediate the relationship between MR and spatial text recall. First, 120 participants were…
Cornwell, Brian R; Salvadore, Giacomo; Colon-Rosario, Veronica; Latov, David R; Holroyd, Tom; Carver, Frederick W; Coppola, Richard; Manji, Husseini K; Zarate, Carlos A; Grillon, Christian
2010-07-01
Dysfunction of the hippocampus has long been suspected to be a key component of the pathophysiology of major depressive disorder. Despite evidence of hippocampal structural abnormalities in depressed patients, abnormal hippocampal functioning has not been demonstrated. The authors aimed to link spatial navigation deficits previously documented in depressed patients to abnormal hippocampal functioning using a virtual reality navigation task. Whole-head magnetoencephalography (MEG) recordings were collected while participants (19 patients diagnosed with major depressive disorder and 19 healthy subjects matched by gender and age) navigated a virtual Morris water maze to find a hidden platform; navigation to a visible platform served as a control condition. Behavioral measures were obtained to assess navigation performance. Theta oscillatory activity (4-8 Hz) was mapped across the brain on a voxel-wise basis using a spatial-filtering MEG source analysis technique. Depressed patients performed worse than healthy subjects in navigating to the hidden platform. Robust group differences in theta activity were observed in right medial temporal cortices during navigation, with patients exhibiting less engagement of the anterior hippocampus and parahippocampal cortices relative to comparison subjects. Left posterior hippocampal theta activity was positively correlated with individual performance within each group. Consistent with previous findings, depressed patients showed impaired spatial navigation. Dysfunction of right anterior hippocampus and parahippocampal cortices may underlie this deficit and stem from structural abnormalities commonly found in depressed patients.
DEVELOPMENTAL HYPOTHYROIDISM IMPAIRS HIPPOCAMPAL LEARNING AND SYNAPTIC TRANSMISSION IN VIVO.
A number of environmental chemicals have been reported to alter thyroid hormone (TH) function. It is well established that severe hypothyroidism during critical periods of brain development leads to alterations in hippocampal structure and learning deficits, yet evaluation of ...
Flore, Gemma; Di Ruberto, Giuseppina; Parisot, Joséphine; Sannino, Sara; Russo, Fabio; Illingworth, Elizabeth A; Studer, Michèle; De Leonibus, Elvira
2017-02-01
The hippocampus (HP), a medial cortical structure, is subdivided into a distinct dorsal (septal) and ventral (temporal) portion, which is separated by an intermediate region lying on a longitudinal curvature. While the dorsal portion is more dedicated to spatial navigation and memory, the most ventral part processes emotional information. Genetic factors expressed in gradient during development seem to control the size and correct positioning of the HP along its longitudinal axis; however, their roles in regulating differential growth and in supporting its anatomical and functional dissociation remain unexplored. Here, we challenge the in vivo function of the nuclear receptor COUP-TFI (chicken ovalbumin upstream promoter transcription factor 1) in controlling the hippocampal, anatomical, and functional properties along its longitudinal axis. Loss of cortical COUP-TFI function results in a dysmorphic HP with altered shape, volume, and connectivity, particularly in its dorsal and intermediate regions. Notably, topographic inputs from the entorhinal cortex are strongly impaired in the dorsal portion of COUP-TFI mutants. These severe morphological changes are associated with selective spatial learning and memory impairment. These findings identify a novel transcriptional regulator required in the functional organization along the hippocampal septo-temporal axis supporting a genetic basis of the hippocampal volumetric growth with its final shape, circuit, and type of memory function. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gallassi, Roberto; Sambati, Luisa; Poda, Roberto; Stanzani Maserati, Michelangelo; Oppi, Federico; Giulioni, Marco; Tinuper, Paolo
2011-12-01
Accelerated long term forgetting (ALF) is a characteristic cognitive aspect in patients affected by temporal lobe epilepsy that is probably due to an impairment of memory consolidation and retrieval caused by epileptic activity in hippocampal and parahippocampal regions. We describe a case of a patient with TLE who showed improvement in ALF and in remote memory impairment after an anterior left temporal pole lobectomy including the uncus and amygdala. Our findings confirm that impairment of hippocampal functioning leads to pathological ALF, whereas restoration of hippocampal functioning brings ALF to a level comparable to that of controls. Copyright © 2011 Elsevier Inc. All rights reserved.
Ji, Qingchun; Wang, Yingying; Guo, Wei; Zhou, Chenglin
2017-01-01
Working memory is critical for various cognitive processes and can be separated into two stages: short-term memory storage and manipulation processing. Although previous studies have demonstrated that increased physical activity (PA) improves working memory and that males outperform females on visuospatial working memory tasks, few studies have determined the contribution of the two underlying stages to the visuospatial working memory improvement associated with PA. Thus, the aims of the present study were to verify the relationship between physical activity and visuospatial working memory, determine whether one or both stages were affected by PA, and investigate any sex differences. A total of 56 undergraduate students were recruited for this study. Their scores on the International Physical Activity Questionnaire (IPAQ) were used to separate them into either a lower PA ( n = 26; IPAQ score ≤3,000 metabolic equivalent [MET]-min/week) or higher PA ( n = 30; IPAQ score >3,000 MET-min/week) group. Participants were required to complete three tasks: a visuospatial working memory task, a task that examines the short-term memory storage stage, and a mental rotation task that examines the active manipulation stage. Participants in the higher PA group maintained similar accuracy but displayed significantly faster reaction times (RT) than those in the lower PA group on the visuospatial working memory and manipulation tasks. By contrast, no difference was observed between groups on the short-term memory storage task. In addition, no effects of sex were detected. Our results confirm that PA was positively to visuospatial working memory and that this positive relationship was associated with more rapid cognitive processing during the manipulation stage, with little or no relationship between PA and the memory storage stage of visuospatial working memory.
Muramatsu, Yukako; Tokita, Yoshihito; Mizuno, Seiji; Nakamura, Miho
2017-02-01
Williams syndrome (WS) is known for its uneven cognitive abilities, especially the difficulty in visuo-spatial cognition, though there are some inter-individual phenotypic differences. It has been proposed that the difficulty in visuo-spatial cognition of WS patients can be attributed to a haploinsufficiency of some genes located on the deleted region in 7q11.23, based on an examination of atypical deletions identified in WS patients with atypical cognitive deficits. According to this hypothesis, the inter-individual differences in visuo-spatial cognitive ability arise from variations in deletion. We investigated whether there were inter-individual differences in the visuo-spatial constructive abilities of five unrelated WS patients with the typical deletion on chromosome 7q11.23 that includes the candidate genes contributing visuo-spatial difficulty in WS patients. We used tests with three-dimensional factors such as Benton's three-dimensional block construction test, which are considered to be more sensitive than those with only two-dimensional factors. There were diverse inter-individual differences in the visuo-spatial constructive abilities among the present participants who shared the same typical genomic deletion of WS. One of the participants showed almost equivalent performances to typically developing adults in those tests. In the present study, we found a wide range of cognitive abilities in visuo-spatial construction even among the patients with a common deletion pattern of WS. The findings suggest that attributing differences in the phenotypes entirely to genetic factors such as an atypical deletion may not be always correct. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Handwriting Fluency and Visuospatial Generativity at Primary School
ERIC Educational Resources Information Center
Stievano, Paolo; Michetti, Silvia; McClintock, Shawn M.; Levi, Gabriel; Scalisi, Teresa Gloria
2016-01-01
Handwriting is a complex activity that involves continuous interaction between lowerlevel perceptual-motor and higher-level cognitive processes. All handwriting models describe involvement of executive functions (EF) in handwriting development. Particular EF domains associated with handwriting include maintenance of information in working memory,…
Bilingualism Enriches the Poor: Enhanced Cognitive Control in Low-Income Minority Children
Engel de Abreu, Pascale M. J.; Cruz-Santos, Anabela; Tourinho, Carlos J.; Martin, Romain; Bialystok, Ellen
2014-01-01
This study explores whether the cognitive advantage associated with bilingualism in executive functioning extends to young immigrant children challenged by poverty and, if it does, which specific processes are most affected. In the study reported here, 40 Portuguese-Luxembourgish bilingual children from low-income immigrant families in Luxembourg and 40 matched monolingual children from Portugal completed visuospatial tests of working memory, abstract reasoning, selective attention, and interference suppression. Two broad cognitive factors of executive functioning—representation (abstract reasoning and working memory) and control (selective attention and interference suppression)—emerged from principal component analysis. Whereas there were no group differences in representation, the bilinguals performed significantly better than did the monolinguals in control. These results demonstrate, first, that the bilingual advantage is neither confounded with nor limited by socioeconomic and cultural factors and, second, that separable aspects of executive functioning are differentially affected by bilingualism. The bilingual advantage lies in control but not in visuospatial representational processes. PMID:23044796
Neuro-ophthalmic manifestations of cerebrovascular accidents.
Ghannam, Alaa S Bou; Subramanian, Prem S
2017-11-01
Ocular functions can be affected in almost any type of cerebrovascular accident (CVA) creating a burden on the patient and family and limiting functionality. The present review summarizes the different ocular outcomes after stroke, divided into three categories: vision, ocular motility, and visual perception. We also discuss interventions that have been proposed to help restore vision and perception after CVA. Interventions that might help expand or compensate for visual field loss and visuospatial neglect include explorative saccade training, prisms, visual restoration therapy (VRT), and transcranial direct current stimulation (tDCS). VRT makes use of neuroplasticity, which has shown efficacy in animal models but remains controversial in human studies. CVAs can lead to decreased visual acuity, visual field loss, ocular motility abnormalities, and visuospatial perception deficits. Although ocular motility problems can be corrected with surgery, vision, and perception deficits are more difficult to overcome. Interventions to restore or compensate for visual field deficits are controversial despite theoretical underpinnings, animal model evidence, and case reports of their efficacies.
Default Mode Network Engagement Beyond Self-Referential Internal Mentation.
Vatansever, Deniz; Manktelow, Anne; Sahakian, Barbara J; Menon, David K; Stamatakis, Emmanuel A
2018-05-01
The default mode network (DMN) is typically associated with off-task internal mentation, or with goal-oriented tasks that require self-referential processing such as autobiographical planning. However, recent reports suggest a broader involvement of the DMN in higher cognition. In line with this view, we report global connectivity changes that are centered on the main DMN hubs of precuneus and posterior cingulate cortex during a functional magnetic resonance imaging-based visuospatial version of the Tower of London planning task. Importantly, functional connectivity of these regions with the left caudate shows a significant relationship with faster reaction time to correct responses only during the high-demand planning condition, thus offering further evidence for the DMN's engagement during visuospatial planning. The results of this study not only provide robust evidence against the widely held notion of DMN disengagement during goal-oriented, attention-demanding, externally directed tasks but also support its involvement in a broader cognitive context with a memory-related role that extends beyond self-referential, internally directed mentation.
Sex differences in episodic memory: the impact of verbal and visuospatial ability.
Herlitz, A; Airaksinen, E; Nordström, E
1999-10-01
The impact of verbal and visuospatial ability on sex differences in episodic memory was investigated. One hundred men and 100 women, 2040 years old, participated in a series of verbal and visuospatial tasks. Episodic memory was assessed in tasks that, to a greater or lesser extent, were verbal or visuospatial in nature. Results showed that women excelled in verbal production tasks and that men performed at a superior level on a mental rotation task. In addition, women tended to perform at a higher level than men on most episodic memory tasks. Taken together, the results demonstrated that (a) women perform at a higher level than men on most verbal episodic memory tasks and on some episodic memory tasks with a visuospatial component, and (b) women's higher performance on episodic memory tasks cannot fully be explained by their superior performance on verbal production tasks.
Visuospatial and verbal memory in mental arithmetic.
Clearman, Jack; Klinger, Vojtěch; Szűcs, Dénes
2017-09-01
Working memory allows complex information to be remembered and manipulated over short periods of time. Correlations between working memory and mathematics achievement have been shown across the lifespan. However, only a few studies have examined the potentially distinct contributions of domain-specific visuospatial and verbal working memory resources in mental arithmetic computation. Here we aimed to fill this gap in a series of six experiments pairing addition and subtraction tasks with verbal and visuospatial working memory and interference tasks. In general, we found higher levels of interference between mental arithmetic and visuospatial working memory tasks than between mental arithmetic and verbal working memory tasks. Additionally, we found that interference that matched the working memory domain of the task (e.g., verbal task with verbal interference) lowered working memory performance more than mismatched interference (verbal task with visuospatial interference). Findings suggest that mental arithmetic relies on domain-specific working memory resources.
Verbal and visuospatial working memory as predictors of children's reading ability.
Pham, Andy V; Hasson, Ramzi M
2014-08-01
Children with reading difficulties often demonstrate weaknesses in working memory (WM). This research study explored the relation between two WM systems (verbal and visuospatial WM) and reading ability in a sample of school-aged children with a wide range of reading skills. Children (N = 157), ages 9-12, were administered measures of short-term memory, verbal WM, visuospatial WM, and reading measures (e.g., reading fluency and comprehension). Although results indicated that verbal WM was a stronger predictor in reading fluency and comprehension, visuospatial WM also significantly predicted reading skills, but provided more unique variance in reading comprehension than reading fluency. These findings suggest that visuospatial WM may play a significant role in higher level reading processes, particularly in reading comprehension, than previously thought. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Prüss, Harald; Grosse, Gisela; Brunk, Irene; Veh, Rüdiger W; Ahnert-Hilger, Gudrun
2010-03-01
The development of the hippocampal network requires neuronal activity, which is shaped by the differential expression and sorting of a variety of potassium channels. Parallel to their maturation, hippocampal neurons undergo a distinct development of their ion channel profile. The age-dependent dimension of ion channel occurrence is of utmost importance as it is interdependently linked to network formation. However, data regarding the exact temporal expression of potassium channels during postnatal hippocampal development are scarce. We therefore studied the expression of several voltage-gated potassium channel proteins during hippocampal development in vivo and in primary cultures, focusing on channels that were sorted to the axonal compartment. The Kv1.1, Kv1.2, Kv1.4, and Kv3.4 proteins showed a considerable temporal variation of axonal localization among neuronal subpopulations. It is possible, therefore, that hippocampal neurons possess cell type-specific mechanisms for channel compartmentalization. Thus, age-dependent axonal sorting of the potassium channel proteins offers a new approach to functionally distinguish classes of hippocampal neurons and may extend our understanding of hippocampal circuitry and memory processing.
Schlichting, Margaret L; Guarino, Katharine F; Schapiro, Anna C; Turk-Browne, Nicholas B; Preston, Alison R
2017-01-01
Despite the importance of learning and remembering across the lifespan, little is known about how the episodic memory system develops to support the extraction of associative structure from the environment. Here, we relate individual differences in volumes along the hippocampal long axis to performance on statistical learning and associative inference tasks-both of which require encoding associations that span multiple episodes-in a developmental sample ranging from ages 6 to 30 years. Relating age to volume, we found dissociable patterns across the hippocampal long axis, with opposite nonlinear volume changes in the head and body. These structural differences were paralleled by performance gains across the age range on both tasks, suggesting improvements in the cross-episode binding ability from childhood to adulthood. Controlling for age, we also found that smaller hippocampal heads were associated with superior behavioral performance on both tasks, consistent with this region's hypothesized role in forming generalized codes spanning events. Collectively, these results highlight the importance of examining hippocampal development as a function of position along the hippocampal axis and suggest that the hippocampal head is particularly important in encoding associative structure across development.
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2013-01-01
Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488
Leptin regulation of hippocampal synaptic function in health and disease
Irving, Andrew J.; Harvey, Jenni
2014-01-01
The endocrine hormone leptin plays a key role in regulating food intake and body weight via its actions in the hypothalamus. However, leptin receptors are highly expressed in many extra-hypothalamic brain regions and evidence is growing that leptin influences many central processes including cognition. Indeed, recent studies indicate that leptin is a potential cognitive enhancer as it markedly facilitates the cellular events underlying hippocampal-dependent learning and memory, including effects on glutamate receptor trafficking, neuronal morphology and activity-dependent synaptic plasticity. However, the ability of leptin to regulate hippocampal synaptic function markedly declines with age and aberrant leptin function has been linked to neurodegenerative disorders such as Alzheimer's disease (AD). Here, we review the evidence supporting a cognitive enhancing role for the hormone leptin and discuss the therapeutic potential of using leptin-based agents to treat AD. PMID:24298156
Tran, Tammy T; Speck, Caroline L; Pisupati, Aparna; Gallagher, Michela; Bakker, Arnold
2017-01-01
Increased fMRI activation in the hippocampus is recognized as a signature characteristic of the amnestic mild cognitive impairment (aMCI) stage of Alzheimer's disease (AD). Previous work has localized this increased activation to the dentate gyrus/CA3 subregion of the hippocampus and showed a correlation with memory impairments in those patients. Increased hippocampal activation has also been reported in carriers of the ApoE-4 allelic variation independently of mild cognitive impairment although these findings were not localized to a hippocampal subregion. To assess the ApoE-4 contribution to increased hippocampal fMRI activation, patients with aMCI genotyped for ApoE-4 status and healthy age-matched control participants completed a high-resolution fMRI scan while performing a memory task designed to tax hippocampal subregion specific functions. Consistent with previous reports, patients with aMCI showed increased hippocampal activation in the left dentate gyrus/CA3 region of the hippocampus as well as memory task errors attributable to this subregion. However, this increased fMRI activation in the hippocampus did not differ between ApoE-4 carriers and ApoE-4 non-carriers and the proportion of memory errors attributable to dentate gyrus/CA3 function did not differ between ApoE-4 carriers and ApoE-4 non-carriers. These results indicate that increased fMRI activation of the hippocampus observed in patients with aMCI is independent of ApoE-4 status and that ApoE-4 does not contribute to the dysfunctional hippocampal activation or the memory errors attributable to this subregion in these patients.
Jacobson, Tara K.; Howe, Matthew D.; Schmidt, Brandy; Hinman, James R.; Escabí, Monty A.
2013-01-01
Hippocampal theta and gamma oscillations coordinate the timing of multiple inputs to hippocampal neurons and have been linked to information processing and the dynamics of encoding and retrieval. One major influence on hippocampal rhythmicity is from cholinergic afferents. In both humans and rodents, aging is linked to impairments in hippocampus-dependent function along with degradation of cholinergic function. Cholinomimetics can reverse some age-related memory impairments and modulate oscillations in the hippocampus. Therefore, one would expect corresponding changes in these oscillations and possible rescue with the cholinomimetic physostigmine. Hippocampal activity was recorded while animals explored a familiar or a novel maze configuration. Reexposure to a familiar situation resulted in minimal aging effects or changes in theta or gamma oscillations. In contrast, exploration of a novel maze configuration increased theta power; this was greater in adult than old animals, although the deficit was reversed with physostigmine. In contrast to the theta results, the effects of novelty, age, and/or physostigmine on gamma were relatively weak. Unrelated to the behavioral situation were an age-related decrease in the degree of theta-gamma coupling and the fact that physostigmine lowered the frequency of theta in both adult and old animals. The results indicate that age-related changes in gamma and theta modulation of gamma, while reflecting aging changes in hippocampal circuitry, seem less related to aging changes in information processing. In contrast, the data support a role for theta and the cholinergic system in encoding and that hippocampal aging is related to impaired encoding of new information. PMID:23303862
Mak, Elijah; Su, Li; Williams, Guy B; Watson, Rosie; Firbank, Michael; Blamire, Andrew; O'Brien, John
2016-02-01
Dementia with Lewy bodies (DLB) is characterized by relative preservation of the medial temporal lobe compared with Alzheimer disease (AD). The differential involvement of the hippocampal subfields in both diseases has not been clearly established, however. We aim to investigate hippocampal subfield differences in vivo in a clinical cohort of DLB and AD subjects. 104 participants (35 DLBs, 36 ADs, and 35 healthy comparison [HC] subjects) underwent clinical assessment and 3T T1-weighted imaging. A Bayesian model implemented in Freesurfer was used to automatically segment the hippocampus and its subfields. We also examined associations between hippocampal subfields and tests of memory function. Both the AD and DLB groups demonstrated significant atrophy of the total hippocampus relative to HC but the DLB group was characterized by preservation of the cornu ammonis 1 (CA1), fimbria, and fissure. In contrast, all the hippocampal subfields except the fissure were significantly atrophied in AD compared with both DLB and HC groups. Among DLB subjects, CA1 was correlated with the Recent Memory score of the CAMCOG and Delayed Recall subscores of the HVLT. DLB is characterized by milder hippocampal atrophy that was accompanied by preservation of the CA1. The CA1 was also associated with memory function in DLB. Our findings highlight the promising role of hippocampal subfield volumetry, particularly that of the CA1, as a biomarker for the distinction between AD and DLB. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
van Rooij, Sanne J H; Stevens, Jennifer S; Ely, Timothy D; Fani, Negar; Smith, Alicia K; Kerley, Kimberly A; Lori, Adriana; Ressler, Kerry J; Jovanovic, Tanja
2016-01-01
Both childhood trauma and a functional catechol-O-methyltransferase (COMT) genetic polymorphism have been associated with posttraumatic stress disorder (PTSD) and depression; however, it is still unclear whether the two interact and how this interaction relates to long-term risk or resilience. Imaging and genotype data were collected on 73 highly traumatized women. DNA extracted from saliva was used to determine COMT genotype (Val/Val, n = 38, Met carriers, n = 35). Functional MRI data were collected during a Go/NoGo task to investigate the neurocircuitry underlying response inhibition. Self-report measures of adult and childhood trauma exposure, PTSD and depression symptom severity, and resilience were collected. Childhood trauma was found to interact with COMT genotype to impact inhibition-related hippocampal activation. In Met carriers, more childhood trauma was associated with decreased hippocampal activation, whereas in the Val/Val group childhood trauma was related to increased hippocampal activation. Second, hippocampal activation correlated negatively with PTSD and depression symptoms and positively with trait resilience. Moreover, hippocampal activation mediated the relationship between childhood trauma and psychiatric risk or resilience in the Val/Val, but not in the Met carrier group. These data reveal a potential mechanism by which childhood trauma and COMT genotype interact to increase risk for trauma-related psychopathology or resilience. Hippocampal recruitment during inhibition may improve the ability to use contextual information to guide behavior, thereby enhancing resilience in trauma-exposed individuals. This finding may contribute to early identification of individuals at risk and suggests a mechanism that can be targeted in future studies aiming to prevent or limit negative outcomes.
Thalamic and hippocampal volume associated with memory functions in multiple sclerosis.
Tremblay, Alexandra; Jobin, Céline; Demers, Mélanie; Dagenais, Emmanuelle; Narayanan, Sridar; Araújo, David; Douglas, Arnold L; Roger, Elaine; Chamelian, Laury; Duquette, Pierre; Rouleau, Isabelle
2018-06-08
Although multiple sclerosis (MS) has long been considered to primarily affect white matter, it is now recognized that cognitive deficits in MS are also related to neocortical, thalamic and hippocampal damage. However, the association between damage to these structures and memory deficits in MS is unclear. This study examines whether MS patients with cognitive impairment have a reduction of hippocampal and/or thalamic volumes compared to cognitively intact patients, and whether these volume reductions correlate with various aspects of memory function. Volumetric MRI measures of thalamus and hippocampus of forty-one patients with MS were performed. The patients were divided in two groups depending on the presence or absence of cognitive impairment, based on their neuropsychological tests scores. Right hippocampal volume was found to be associated with learning, and the left thalamic volume was found to predict performance in verbal memory. Cognitively impaired patients had a tendency to have a reduced left thalamic volume compared to cognitively intact patients. This study does not support a direct relationship between hippocampal atrophy and verbal memory. These results add to the growing evidence of the involvement of thalamus in cognitive impairment in MS and its association with verbal memory deficits. Copyright © 2018. Published by Elsevier Inc.
Neogenin, a regulator of adult hippocampal neurogenesis, prevents depressive-like behavior.
Sun, Dong; Sun, Xiang-Dong; Zhao, Lu; Lee, Dae-Hoon; Hu, Jin-Xia; Tang, Fu-Lei; Pan, Jin-Xiu; Mei, Lin; Zhu, Xiao-Juan; Xiong, Wen-Cheng
2018-01-08
Adult neurogenesis in hippocampal dentate gyrus (DG) is a complex, but precisely controlled process. Dysregulation of this event contributes to multiple neurological disorders, including major depression. Thus, it is of considerable interest to investigate how adult hippocampal neurogenesis is regulated. Here, we present evidence for neogenin, a multifunctional transmembrane receptor, to regulate adult mouse hippocampal neurogenesis. Loss of neogenin in adult neural stem cells (NSCs) or neural progenitor cells (NPCs) impaired NSCs/NPCs proliferation and neurogenesis, whereas increased their astrocytic differentiation. Mechanistic studies revealed a role for neogenin to positively regulate Gli1, a crucial downstream transcriptional factor of sonic hedgehog, and expression of Gli1 into neogenin depleted NSCs/NPCs restores their proliferation. Further morphological and functional studies showed additional abnormities, including reduced dendritic branches and spines, and impaired glutamatergic neuro-transmission, in neogenin-depleted new-born DG neurons; and mice with depletion of neogenin in NSCs/NPCs exhibited depressive-like behavior. These results thus demonstrate unrecognized functions of neogenin in adult hippocampal NSCs/NPCs-promoting NSCs/NPCs proliferation and neurogenesis and preventing astrogliogenesis and depressive-like behavior, and suggest neogenin regulation of Gli1 signaling as a possible underlying mechanism.
van Oostrom, Iris; van Eijndhoven, Philip; Butterbrod, Elke; van Beek, Maria H; Janzing, Joost; Donders, Rogier; Schene, Aart; Tendolkar, Indira
2018-06-01
Electroconvulsive therapy (ECT) is still the most effective treatment of severe and therapy-refractory major depressive disorder. Cognitive side effects are the major disadvantage of ECT. Cognitive deficits are generally temporary in nature and may be mediated by the hippocampus. Recent studies have shown a temporary increase in hippocampal volume and a temporary decrease in cognitive functioning post-ECT compared with pre-ECT. This study investigates whether these volumetric changes are related to changes in cognitive functioning after ECT. Nineteen medication-free patients with treatment-resistant major depressive disorder underwent a whole-brain magnetic resonance imaging scan and a neuropsychological examination (including the Rey auditory verbal learning task, Wechsler Memory Scale Visual Reproduction, fluency, Trail Making Task) within 1 week before and within 1 week after the course of ECT. Electroconvulsive therapy was administered twice a week bitemporally with a brief pulse. A matched healthy control group (n = 18) received the same neuropsychological examination and at a similar interval to that of the patients. Hippocampal volumes increased significantly from pretreatment to posttreatment in patients. Mean performance on cognitive tasks declined, or remained stable, whereas performance in controls generally improved because of retesting effects. The increase in hippocampal volume was related to changes in cognitive performance, indicating that this increase co-occurred with a decrease in cognitive functioning. Our findings tentatively suggest that the temporal increase in hippocampal volume after treatment, which may result from neurotrophic processes and is thought to be crucial for the antidepressive effect, is also related to the temporary cognitive side effects of ECT.
ERIC Educational Resources Information Center
Alescio-Lautier, B.; Michel, B. F.; Herrera, C.; Elahmadi, A.; Chambon, C.; Touzet, C.; Paban, V.
2007-01-01
It has been proposed that visual recognition memory and certain attentional mechanisms are impaired early in Alzheimer disease (AD). Little is known about visuospatial recognition memory in AD. The crucial role of the hippocampus on spatial memory and its damage in AD suggest that visuospatial recognition memory may also be impaired early. The aim…
ERIC Educational Resources Information Center
Squires, Katie Ellen
2013-01-01
This study investigated the differential contribution of auditory-verbal and visuospatial working memory (WM) on decoding skills in second- and fifth-grade children identified with poor decoding. Thirty-two second-grade students and 22 fifth-grade students completed measures that assessed simple and complex auditory-verbal and visuospatial memory,…
ERIC Educational Resources Information Center
Mammarella, Irene C.; Cornoldi, Cesare; Pazzaglia, Francesca; Toso, Cristina; Grimoldi, Mario; Vio, Claudio
2006-01-01
The paper describes the performance of three children with specific visuospatial working memory (VSWM) impairments (Study 1) and three children with visuospatial (nonverbal) learning disabilities (Study 2) assessed with a battery of working memory (WM) tests and with a number of school achievement tasks. Overall, performance on WM tests provides…
Soriano-Raya, Juan José; Miralbell, Júlia; López-Cancio, Elena; Bargalló, Núria; Arenillas, Juan Francisco; Barrios, Maite; Cáceres, Cynthia; Toran, Pere; Alzamora, Maite; Dávalos, Antoni; Mataró, Maria
2012-09-01
The association of cerebral white matter lesions (WMLs) with cognitive status is not well understood in middle-aged individuals. Our aim was to determine the specific contribution of periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs) to cognitive function in a community sample of asymptomatic participants aged 50 to 65 years. One hundred stroke- and dementia-free adults completed a comprehensive neuropsychological battery and brain MRI protocol. Participants were classified according to PVH and DWMH scores (Fazekas scale). We dichotomized our sample into low grade WMLs (participants without or with mild lesions) and high grade WMLs (participants with moderate or severe lesions). Analyses were performed separately in PVH and DWMH groups. High grade DWMHs were associated with significantly lower scores in executive functioning (-0.45 standard deviations [SD]), attention (-0.42 SD), verbal fluency (-0.68 SD), visual memory (-0.52 SD), visuospatial skills (-0.79 SD), and psychomotor speed (-0.46 SD). Further analyses revealed that high grade DWMHs were also associated with a three- to fourfold increased risk of impaired scores (i.e.,<1.5 SD) in executive functioning, verbal fluency, visuospatial skills, and psychomotor speed. Our findings suggest that only DWMHs, not PVHs, are related to diminished cognitive function in middle-aged individuals. (JINS, 2012, 18, 1-12).
Cardillo, Ramona; Menazza, Cristina; Mammarella, Irene C
2018-06-07
Visuospatial processing in autism spectrum disorder (ASD) without intellectual disability remains only partly understood. The aim of the present study was to investigate global versus local visuospatial processing in individuals with ASD, comparing them with typically developing (TD) controls in visuoconstructive and visuospatial memory tasks. There were 21 participants with ASD without intellectual disability, and 21 TD controls matched for chronological age (M = 161.37 months, SD = 38.19), gender, and perceptual reasoning index who were tested. Participants were administered tasks assessing the visuoconstructive domain and involving fine motor skills, and visuospatial memory tasks in which visuospatial information had to be manipulated mentally. Using a mixed-effects model approach, our results showed different effects of local bias in the ASD group, depending on the domain considered: the use of a local approach only emerged for the visuoconstructive domain-in which fine motor skills were involved. These results seem to suggest that the local bias typical of the cognitive profile of ASD without intellectual disability could be a property of specific cognitive domains rather than a central mechanism. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Kitamura, Akihiko; Hojo, Yasushi; Ikeda, Muneki; Karakawa, Sachise; Kuwahara, Tomomi; Kim, Jonghyuk; Soma, Mika; Kawato, Suguru; Tsurugizawa, Tomokazu
2018-05-30
d-Aspartate (d-Asp), the stereoisomer of l-aspartate, has a role in memory function in rodents. However, the mechanism of the effect of d-Asp has not been fully understood. In this study, we hypothesized that ingested d-Asp directly reaches the hippocampal tissues via the blood circulation and modifies the functional connectivity between hippocampus and other regions through spinogenesis in hippocampal CA1 neurons. The spinogenesis induced by the application of d-Asp was investigated using rat acute hippocampal slices. The density of CA1 spines was increased following 21 and 100 μM d-Asp application. The nongenomic spine increase pathway involved LIM kinase. In parallel to the acute slice study, brain activation was investigated in awake rats using functional MRI following the intragastric administration of 5 mM d-Asp. Furthermore, the concentration of d-Asp in the blood serum and hippocampus was significantly increased 15 min after intragastric administration of d-Asp. A functional connectivity by awake rat fMRI demonstrated increased slow-frequency synchronization in the hippocampus and other regions, including the somatosensory cortex, striatum, and the nucleus accumbens, 10-20 min after the start of d-Asp administration. These results suggest that ingested d-Asp reaches the brain through the blood circulation and modulates hippocampal neural networks through the modulation of spines.
Furley, Philip; Memmert, Daniel
2010-06-01
Individual differences in visuospatial abilities were investigated in experienced basketball players compared with nonathletes. Most research shows that experts and novices do not differ on basic cognitive ability tests. Nevertheless, there are some equivocal findings indicating there are differences in basic cognitive abilities such as attention. The goal of the present research was to investigate team-ball athletes in regard to their visuospatial abilities. 112 male college students (54 basketball players, 58 nonathlete college students) were tested in their spatial capacity with the Corsi Block-tapping Task. No differences in spatial capacity were evident between basketball players and nonathlete college students. The results are discussed in the context of the expert performance approach and individual difference research.
Cerebral asymmetry for mental rotation: effects of response hand, handedness and gender.
Johnson, Blake W; McKenzie, Kirsten J; Hamm, Jeff P
2002-10-28
We assessed lateralization of brain function during mental rotation, measuring the scalp distribution of a 400-600 ms latency event-related potential (ERP) with 128 recording electrodes. Twenty-four subjects, consisting of equal numbers of dextral and sinistral males and females, performed a mental rotation task under two response conditions (dominant non-dominant hand). For males, ERPs showed a right parietal bias regardless of response hand. For females, the parietal ERPs were slightly left-lateralized when making dominant hand responses, but strongly right-lateralized when making non-dominant hand responses. These results support the notion that visuo-spatial processing is more bilaterally organized in females. However, left hemisphere resources may be allocated to response preparation when using the non-dominant hand, forcing visuo-spatial processing to the right hemisphere.
Visual distraction and visuo-spatial memory: a sandwich effect.
Tremblay, Sébastien; Nicholls, Alastair P; Parmentier, Fabrice B R; Jones, Dylan M
2005-01-01
The functional characteristics of visuo-spatial serial memory and its sensitivity to irrelevant visual information are examined in the present study, through the investigation of the sandwich effect (e.g., Hitch, 1975). The memory task was one of serial recall for the position of a sequence of seven spatially and temporally separated dots. The presence of irrelevant dots interpolated with to-be-remembered dots affected performance over most serial positions (Experiment 1) but that effect was significantly reduced when the interpolated dots were distinct from the to-be-remembered dots by colour and shape (Experiment 2). Parallels are made between verbal and spatial serial memory, and the reduction of the sandwich effect is discussed in terms of the contribution of perceptual organisation and attentional factors in short-term memory.
Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W. E. M.; Merckelbach, Harald
2013-01-01
Background Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area. PMID:23671762
Corey-Bloom, Jody; Gluhm, Shea; Herndon, Andrew; Haque, Ameera S; Park, Sungmee; Gilbert, Paul E
2016-01-01
Visuospatial deficits have been described in Huntington's disease (HD); however, the extent of these deficits remains unclear. The Benton Judgment of Line Orientation (JoLO) Test, commonly used to assess visuospatial ability, requires minimal motor involvement. It has demonstrated sensitivity to visuospatial deficits in Parkinson's disease; however, few studies have examined performance on this test in HD. The objective of the current study was to assess visuospatial ability in premanifest and manifest HD using the JoLO. A global cognitive measure, the Mattis Dementia Rating Scale (DRS), was used to stratify manifest HD patients as mild (DRS ≥129) vs. moderate-severe (DRS ≤128). Fifty mild, 42 moderate-severe, and 30 premanifest HD subjects, as well as 35 matched controls, were administered the JoLO. HD Burden of Pathology (BOP) scores were used as a measure of disease severity. Results revealed that the total manifest HD sample (p < 0.001), in addition to the mild (p = 0.028), and moderate-severe (p < 0.001), but not premanifest, HD subjects scored significantly lower on the JoLO compared to normal controls. Our results suggest that the JoLO is useful for detecting visuospatial deficits across various stages of manifest HD. However, any visuospatial impairment that might be present during the premanifest stage of HD was not detected using the JoLO in the present sample.
Working Memory and Down Syndrome
ERIC Educational Resources Information Center
Baddeley, A.; Jarrold, C.
2007-01-01
A brief account is given of the evolution of the concept of working memory from a unitary store into a multicomponent system. Four components are distinguished, the phonological loop which is responsible for maintaining speech-based information, the visuospatial sketchpad performing a similar function for visual information, the central executive…
Dzieciol, Anna M.; Gadian, David G.; Jentschke, Sebastian; Doeller, Christian F.; Burgess, Neil; Mishkin, Mortimer
2015-01-01
The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with “moderate” hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. SIGNIFICANCE STATEMENT In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated spatial recall using a virtual environment in two groups of patients with hippocampal damage (moderate/severe) and a normal control group. The results showed that patients with severe hippocampal damage are impaired in learning and recalling allocentric spatial information. Furthermore, hippocampal volume reduction impaired allocentric navigation beyond what can be predicted by memory quotient as a widely used measure of general memory function. PMID:26490854
Guderian, Sebastian; Dzieciol, Anna M; Gadian, David G; Jentschke, Sebastian; Doeller, Christian F; Burgess, Neil; Mishkin, Mortimer; Vargha-Khadem, Faraneh
2015-10-21
The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with "moderate" hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated spatial recall using a virtual environment in two groups of patients with hippocampal damage (moderate/severe) and a normal control group. The results showed that patients with severe hippocampal damage are impaired in learning and recalling allocentric spatial information. Furthermore, hippocampal volume reduction impaired allocentric navigation beyond what can be predicted by memory quotient as a widely used measure of general memory function. Copyright © 2015 Guderian et al.
Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline
Leal, Stephanie L.; Landau, Susan M.; Bell, Rachel K.; ...
2017-02-08
The amyloid hypothesis suggests that beta-amyloid (Aβ) deposition leads to alterations in neural function and ultimately to cognitive decline in Alzheimer’s disease. However, factors that underlie Aβ deposition are incompletely understood. One proposed model suggests that synaptic activity leads to increased Aβ deposition. More specifically, hyperactivity in the hippocampus may be detrimental and could be one factor that drives Aβ deposition. To test this model, we examined the relationship between hippocampal activity during a memory task using fMRI and subsequent longitudinal change in Aβ using PIB-PET imaging in cognitively normal older adults. We found that greater hippocampal activation at baselinemore » was associated with increased Aβ accumulation. Furthermore, increasing Aβ accumulation mediated the influence of hippocampal activation on declining memory performance, demonstrating a crucial role of Aβ in linking hippocampal activation and memory. These findings support a model linking increased hippocampal activation to subsequent Aβ deposition and cognitive decline.« less
Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, Stephanie L.; Landau, Susan M.; Bell, Rachel K.
The amyloid hypothesis suggests that beta-amyloid (Aβ) deposition leads to alterations in neural function and ultimately to cognitive decline in Alzheimer’s disease. However, factors that underlie Aβ deposition are incompletely understood. One proposed model suggests that synaptic activity leads to increased Aβ deposition. More specifically, hyperactivity in the hippocampus may be detrimental and could be one factor that drives Aβ deposition. To test this model, we examined the relationship between hippocampal activity during a memory task using fMRI and subsequent longitudinal change in Aβ using PIB-PET imaging in cognitively normal older adults. We found that greater hippocampal activation at baselinemore » was associated with increased Aβ accumulation. Furthermore, increasing Aβ accumulation mediated the influence of hippocampal activation on declining memory performance, demonstrating a crucial role of Aβ in linking hippocampal activation and memory. These findings support a model linking increased hippocampal activation to subsequent Aβ deposition and cognitive decline.« less
Wong-Goodrich, Sarah J. E.; Mellott, Tiffany J.; Glenn, Melissa J.; Blusztajn, Jan K.; Williams, Christina L.
2008-01-01
Prenatal choline supplementation (SUP) protects adult rats against spatial memory deficits observed after excitotoxin-induced status epilepticus (SE). To examine the mechanism underlying this neuroprotection, we determined the effects of SUP on a variety of hippocampal markers known to change in response to SE and thought to underlie ensuing cognitive deficits. Adult offspring from rat dams that received either a Control or SUP diet on embryonic days 12–17 were administered saline or kainic acid (i.p.) to induce SE and were euthanized 16 days later. SUP markedly attenuated seizure-induced hippocampal neurodegeneration, dentate cell proliferation, hippocampal GFAP mRNA expression levels, prevented the loss of hippocampal GAD65 protein and mRNA expression, and altered growth factor expression patterns. SUP also enhanced pre-seizure hippocampal levels of BDNF, NGF, and IGF-1, which may confer a neuroprotective hippocampal microenvironment that dampens the neuropathological response to and/or helps facilitate recovery from SE to protect cognitive function. PMID:18353663
Gruden, Marina A; Ratmirov, Alexander M; Storozheva, Zinaida I; Solovieva, Olga A; Sherstnev, Vladimir V; Sewell, Robert D E
2018-05-22
NR2B-containing NMDA (NR2B/NMDA) receptors are important in controlling neurogenesis and are involved in generating spatial memory. Ro25-6981 is a selective antagonist at these receptors and actuates neurogenesis and spatial memory. Inter-structural neuroanatomical profiles of gene expression regulating adult neurogenesis and neuroapoptosis require examination in the context of memory retrieval and reversal learning. The aim was to investigate spatial memory retrieval and reversal learning in relation to gene expression-linked neurogenetic processes following blockade of NR2B/NMDA receptors by Ro25-6981. Rats were trained in Morris water maze (MWM) platform location for 5 days. Ro25-6981 was administered (protocol days 6-7) followed by retraining (days 15-18 or 29-32). Platform location was tested (on days 19 or 33) then post-mortem brain tissue sampling (on days 20 or 34). The expression of three genes known to regulate cell proliferation (S100a6), differentiation (Ascl1), and apoptosis (Casp-3) were concomitantly evaluated in the hippocampus, prefrontal cortex, and cerebellum in relation to the MWM performance protocol. Following initial training, Ro25-6981 enhanced visuospatial memory retrieval performance during further retraining (protocol days 29-32) but did not influence visuospatial reversal learning (day 33). Hippocampal Ascl1 and Casp-3 expressions were correspondingly increased and decreased while cerebellar S100a6 and Casp-3 activities were decreased and increased respectively 27 days after Ro25-6981 treatment. Chronological analysis indicated a possible involvement of new mature neurons in the reconfiguration of memory processes. This was attended by behavioral/gene correlations which revealed direct links between spatial memory retrieval enhancement and modified gene activity induced by NR2B/NMDA receptor blockade and upregulation.
Memory-related hippocampal functioning in ecstasy and amphetamine users: a prospective fMRI study.
Becker, Benjamin; Wagner, Daniel; Koester, Philip; Bender, Katja; Kabbasch, Christoph; Gouzoulis-Mayfrank, Euphrosyne; Daumann, Jörg
2013-02-01
Recreational use of ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) has been associated with memory impairments. Functional neuroimaging studies with cross-sectional designs reported altered memory-related hippocampal functioning in ecstasy-polydrug users. However, differences might be pre-existing or related to the concomitant use of amphetamine. To prospectively investigate the specific effects of ecstasy on memory-related hippocampal functioning. We used an associative memory task and functional magnetic resonance imaging (fMRI) in 40 ecstasy and/or amphetamine users at baseline (t1) and after 12 months (t2). At t1, all subjects had very limited amphetamine and/or ecstasy experience (less than 5 units lifetime dose). Based on the reported drug use at t2, subjects with continued ecstasy and/or amphetamine use (n = 17) were compared to subjects who stopped use after t1 (n = 12). Analysis of repeated measures revealed that encoding-related activity in the left parahippocampal gyrus changed differentially between the groups. Activity in this region increased in abstinent subjects from t1 to t2, however, decreased in subjects with continued use. Decreases within the left parahippocampal gyrus were associated with the use of ecstasy, but not amphetamine, during the follow-up period. However, there were no significant differences in memory performance. The current findings suggest specific effects of ecstasy use on memory-related hippocampal functioning. However, alternative explanations such as (sub-)acute cannabis effects are conceivable.
Herold, Christina Josefa; Lässer, Marc Montgomery; Schmid, Lena Anna; Seidl, Ulrich; Kong, Li; Fellhauer, Iven; Thomann, Philipp Arthur; Essig, Marco; Schröder, Johannes
2015-01-01
Despite a wide range of studies on neuropsychology in schizophrenia, autobiographical memory (AM) has been scarcely investigated in these patients. Hence, less is known about AM in older patients and hippocampal contribution to autobiographical memories of varying remoteness. Therefore, we investigated hippocampal volume and AM along with important neuropsychological domains in patients with chronic schizophrenia and the respective relationships between these parameters. We compared 25 older patients with chronic schizophrenia to 23 younger patients and an older healthy control group (N = 21) with respect to AM, additional neuropsychological parameters, and hippocampal volume. Personal episodic and semantic memory was investigated using a semi-structured interview. Additional neuropsychological parameters were assessed by using a battery of standard neuropsychological tests. Structural magnetic resonance imaging data were analyzed with an automated region-of-interest procedure. While hippocampal volume reduction and neuropsychological impairment were more pronounced in the older than in the younger patients, both groups showed equivalent reduced AM performance for recent personal episodes. In the patient group, significant correlations between left hippocampal volume and recent autobiographical episodes as well as personal semantic memories arose. Verbal memory and working memory were significantly correlated with right hippocampal volume; executive functions, however, were associated with bilateral hippocampal volumes. These findings underline the complexity of AM and its impairments in the course of schizophrenia in comparison to rather progressive neuropsychological deficits and address the importance of hippocampal contribution.
Waselius, Tomi; Mikkonen, Jarno E.; Wikgren, Jan; Penttonen, Markku
2015-01-01
Hippocampal θ (3–12 Hz) oscillations are implicated in learning and memory, but their functional role remains unclear. We studied the effect of the phase of local θ oscillation on hippocampal responses to a neutral conditioned stimulus (CS) and subsequent learning of classical trace eyeblink conditioning in adult rabbits. High-amplitude, regular hippocampal θ-band responses (that predict good learning) were elicited by the CS when it was timed to commence at the fissure θ trough (Trough group). Regardless, learning in this group was not enhanced compared with a yoked control group, possibly due to a ceiling effect. However, when the CS was consistently presented to the peak of θ (Peak group), hippocampal θ-band responding was less organized and learning was retarded. In well-trained animals, the hippocampal θ phase at CS onset no longer affected performance of the learned response, suggesting a time-limited role for hippocampal processing in learning. To our knowledge, this is the first study to demonstrate that timing a peripheral stimulus to a specific phase of the hippocampal θ cycle produces robust effects on the synchronization of neural responses and affects learning at the behavioral level. Our results support the notion that the phase of spontaneous hippocampal θ oscillation is a means of regulating the processing of information in the brain to a behaviorally relevant degree. PMID:25979993
Can Molecular Hippocampal Alterations Explain Behavioral Differences in Prenatally Stressed Rats?
Studies in both humans and animals have shown that prenatal stress can alter cognitive function and other neurological behaviors in adult offspring. One possible underlying mechanism for this may lie with alterations in hippocampal gene expression. The present study examined geno...
Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons
Ripamonti, Silvia; Ambrozkiewicz, Mateusz C; Guzzi, Francesca; Gravati, Marta; Biella, Gerardo; Bormuth, Ingo; Hammer, Matthieu; Tuffy, Liam P; Sigler, Albrecht; Kawabe, Hiroshi; Nishimori, Katsuhiko; Toselli, Mauro; Brose, Nils; Parenti, Marco; Rhee, JeongSeop
2017-01-01
Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances. DOI: http://dx.doi.org/10.7554/eLife.22466.001 PMID:28231043
Prince, Toni-Moi; Wimmer, Mathieu; Choi, Jennifer; Havekes, Robbert; Aton, Sara; Abel, Ted
2014-01-01
Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on long-term memory consolidation and synaptic plasticity, long-term memory was assessed when mice were sleep deprived following training in the hippocampus-dependent object place recognition task. We found that 3 hours of sleep deprivation significantly impaired memory when deprivation began 1 hour after training. In contrast, 3 hours of deprivation beginning immediately post-training did not impair spatial memory. Furthermore, a 3-hour sleep deprivation beginning 1 hour after training impaired hippocampal long-term potentiation (LTP), whereas sleep deprivation immediately after training did not affect LTP. Together, our findings define a specific 3-hour critical period, extending from 1 to 4 hours after training, during which sleep deprivation impairs hippocampal function. PMID:24380868
ERIC Educational Resources Information Center
Cortis Mack, Cathleen; Dent, Kevin; Ward, Geoff
2018-01-01
Three experiments examined the immediate free recall (IFR) of auditory-verbal and visuospatial materials from single-modality and dual-modality lists. In Experiment 1, we presented participants with between 1 and 16 spoken words, with between 1 and 16 visuospatial dot locations, or with between 1 and 16 words "and" dots with synchronized…
Benefits of Training Visuospatial Working Memory in Young-Old and Old-Old
ERIC Educational Resources Information Center
Borella, Erika; Carretti, Barbara; Cantarella, Alessandra; Riboldi, Francesco; Zavagnin, Michela; De Beni, Rossana
2014-01-01
The purpose of the present study was to test the efficacy of a visuospatial working memory (WM) training in terms of its transfer effects and maintenance effects, in the young-old and old-old. Forty young-old and 40 old-old adults took part in the study. Twenty participants in each age group received training with a visuospatial WM task, whereas…
Meyerand, M.E.; Sutula, T.
2015-01-01
Neural activity promotes circuit formation in developing systems and during critical periods permanently modifies circuit organization and functional properties. These observations suggest that excessive neural activity, as occurs during seizures, might influence developing neural circuitry with long-term outcomes that depend on age at the time of seizures. We systematically examined long-term structural and functional consequences of seizures induced in rats by kainic acid, pentylenetetrazol, and hyperthermia across postnatal ages from birth through postnatal day 90 in adulthood (P90). Magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and electrophysiological methods at ≥P95 following seizures induced from P1 to P90 demonstrated consistent patterns of gross atrophy, microstructural abnormalities in the corpus callosum and hippocampus, and functional alterations in hippocampal circuitry at ≥P95 that were independent of the method of seizure induction and varied systematically as a function of age at the time of seizures. Three distinct epochs were observed in which seizures resulted in distinct long-term structural and functional outcomes at ≥P95. Seizures prior to P20 resulted in DTI abnormalities in corpus callosum and hippocampus in the absence of gross cerebral atrophy, and increased paired pulse inhibition (PPI) in the dentate gyrus at ≥P95. Seizures after P30 induced a different pattern of DTI abnormalities in the fimbria and hippocampus accompanied by gross cerebral atrophy with increases in lateral ventricular volume, as well as increased PPI in the dentate gyrus at ≥P95. In contrast, seizures between P20-P30 did not result in cerebral atrophy or significant imaging abnormalities in the hippocampus or white matter, but irreversibly decreased PPI in the dentate gyrus compared to normal adult controls. These age-specific long-term structural and functional outcomes identify P20-P30 as a potential critical period in hippocampal development defined by distinctive long-term structural and functional properties in adult hippocampal circuitry, including loss of capacity for seizure-induced plasticity in adulthood that could influence epileptogenesis and other hippocampal – dependent behaviors and functional properties. PMID:25555928
Dysfunctional hippocampal inhibition in the Ts65Dn mouse model of Down syndrome
Best, Tyler K.; Cramer, Nathan P.; Chakrabarti, Lina; Haydar, Tarik F.; Galdzicki, Zygmunt
2013-01-01
GABAergic dysfunction is implicated in hippocampal deficits of the Ts65Dn mouse model of Down syndrome (DS). Since Ts65Dn mice overexpress G-protein coupled inward-rectifying potassium (GIRK2) containing channels, we sought to evaluate whether increased GABAergic function disrupts the functioning of hippocampal circuitry. After confirming that GABAB/GIRK current density is significantly elevated in Ts65Dn CA1 pyramidal neurons, we compared monosynaptic inhibitory inputs in CA1 pyramidal neurons in response to proximal (stratum radiatum; SR) and distal (stratum lacunosum moleculare; SLM) stimulation of diploid and Ts65Dn acute hippocampal slices. Synaptic GABAB and GABAA mediated currents evoked by SR stimulation were generally unaffected in Ts65Dn CA1 neurons. However, the GABAB/GABAA ratios evoked by stimulation within the SLM of Ts65Dn hippocampus were significantly larger in magnitude, consistent with increased GABAB/GIRK currents after SLM stimulation. These results indicate that GIRK overexpression in Ts65Dn has functional consequences which affect the balance between GABAB and GABAA inhibition of CA1 pyramidal neurons, most likely in a pathway specific manner, and may contribute to cognitive deficits reported in these mice. PMID:22178330
Treatment effects in multiple cognitive domains in Alzheimer’s disease: a two-year cohort study
2014-01-01
Introduction Despite widespread use of second-generation cholinesterase inhibitors for the symptomatic treatment of Alzheimer’s disease (AD), little is known about the long term effects of cholinergic treatment on global cognitive function and potential specific effects in different cognitive domains. The objectives of this study were to determine the association between cholinergic treatment and global cognitive function over one and two years in a cohort of patients with mild or moderate AD and identify potential differences in domain-specific cognitive outcomes within this cohort. Methods A cohort of patients meeting the revised National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) criteria for mild or moderate AD, including patients both on treatment with a cholinesterase inhibitor and untreated controls (treated = 65, untreated = 65), were recruited from the Cognitive Neurology Clinic at Sunnybrook Health Sciences Centre, as part of the Sunnybrook Dementia Study. Patients were followed for one to two years and underwent standardized neuropsychological assessments to evaluate global and domain-specific cognitive function. Associations between cholinesterase inhibitor use and global and domain-specific cognitive outcome measures at one and two years of follow-up were estimated using mixed model linear regression, adjusting for age, education, and baseline mini mental state examination (MMSE). Results At one year, treated patients showed significantly less decline in global cognitive function, and treatment and time effects across tests of executive and visuospatial function. At two years, there was a significant trend towards less decline in global cognition for treated patients. Moreover, treated patients showed significant treatment and time effects across tests of executive functioning, memory, and visuospatial function. Conclusions The present study offers two important contributions to knowledge of the effectiveness of cholinesterase inhibitor treatment in patients with mild-moderate AD: 1) that second-generation cholinesterase inhibitors demonstrate long-term effectiveness for reducing global cognitive decline over one to two years of follow-up, and 2) that decline in function for cognitive domains, including executive function, memory, and visuospatial skill that are primarily mediated by frontal networks and by the cholinergic system, rather than memory, may be slowed by treatment targeting the cholinergic system. PMID:25484926
Keuker, Jeanine I H; Keijser, Jan N; Nyakas, Csaba; Luiten, Paul G M; Fuchs, Eberhard
2005-12-01
The hippocampal formation is a crucial structure for learning and memory, and serotonin together with other neurotransmitters is essential in these processes. Although the effects of aging on various neurotransmitter systems in the hippocampus have been extensively investigated, it is not entirely clear whether or how the hippocampal serotonergic innervation changes during aging. Rat studies, which have mostly focused on aging-related changes in the dentate gyrus, have implied a loss of hippocampal serotonergic fibers. We used the tree shrew (Tupaia belangeri), an intermediate between insectivores and primates, as a model of aging. We applied immunocytochemistry with an antibody against serotonin to assess serotonergic fiber densities in the various hippocampal subfields of adult (0.9-1.3 years) and old (5-7 years) tree shrews. Our results have revealed a reduction of serotonergic fiber densities in the stratum radiatum of CA1 and CA3, and in the stratum oriens of CA3. A partial depletion of serotonin in the hippocampal formation, as can be expected from our current observations, will probably have an impact on the functioning of hippocampal principal neurons. Our findings also indicate that the rat and the tree shrew hippocampal serotonergic innervation show some variations that seem to be differentially affected during aging.
Lindauer, Ramón J L; Olff, Miranda; van Meijel, Els P M; Carlier, Ingrid V E; Gersons, Berthold P R
2006-01-15
A proposed explanation for memory impairments in posttraumatic stress disorder (PTSD) is stress-induced hippocampal damage due to elevated cortisol levels. We have previously reported smaller hippocampi in police officers with PTSD. In this study, we examined changes in and associations between cortisol, learning, memory, attention, and hippocampal volume in PTSD. In a case-matched control study, 12 police officers with PTSD and 12 traumatized police officers without lifetime PTSD were examined with magnetic resonance imaging (for hippocampal volume), salivary cortisol tests, and neurocognitive assessments. Significantly smaller hippocampi and higher early morning salivary cortisol levels were found in PTSD. Subjects with PTSD performed worse on a delayed visual memory recall task at trend level, and made more perseverations and intrusions on a verbal memory task. Negative correlations were found between PTSD symptom severity and immediate recall function, and between re-experiencing symptoms and left hippocampal volume. A positive correlation was found between salivary cortisol level in early morning and right hippocampal volume; however, hippocampal volume did not correlate with memory. Smaller hippocampi, higher cortisol levels, and memory impairments were associated with PTSD but were not directly correlated to one another. Memory impairments in PTSD do not seem to be a direct consequence of hippocampal size.
Yau, Suk-yu; Christie, Brian R.; So, Kwok-fai
2014-01-01
Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review the recent approaches for measuring changes in neurogenesis in the live human brain. PMID:24818140
Gender-related differences in lateralization of hippocampal activation and cognitive strategy.
Frings, Lars; Wagner, Kathrin; Unterrainer, Josef; Spreer, Joachim; Halsband, Ulrike; Schulze-Bonhage, Andreas
2006-03-20
Gender-related differences in brain activation patterns and their lateralization associated with cognitive functions have been reported in the field of language, emotion, and working memory. Differences have been hypothesized to be due to different cognitive strategies. The aim of the present study was to test whether lateralization of brain activation in the hippocampi during memory processing differs between the sexes. We acquired functional magnetic resonance imaging data from healthy female and male study participants performing a spatial memory task and quantitatively assessed the lateralization of hippocampal activation in each participant. Hippocampal activation was significantly more left lateralized in women, and more right lateralized in men. Correspondingly, women rated their strategy as being more verbal than men did.
The development of visuo-spatial working memory.
Pickering, S J
2001-01-01
Children's performance on tests of visuo-spatial working memory improves with age, although relatively little is known about why this happens. One explanation concerns the development of the ability to recode visually presented information into phonological form. This process appears to be used from around 8 years of age and is a major contributor to tasks in which stimuli can be verbally labelled. However, evidence suggests that phonological recoding cannot account for all of the age-related change in performance on visuo-spatial working memory tasks. In this review, four other mechanisms (knowledge, processing strategies, processing speed, and attentional capacity) are considered in terms of their contribution to children's visuo-spatial working memory development.
Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway
Gao, Jun; Joseph, Nadine; Xie, Zhigang; Zhou, Ying; Durak, Omer; Zhang, Lei; Zhu, J. Julius; Clauser, Karl R.; Carr, Steven A.; Tsai, Li-Huei
2011-01-01
Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation. PMID:21984943
Shetty, Mahesh Shivarama; Sharma, Mahima; Sajikumar, Sreedharan
2017-02-01
Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long-term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging-related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long-term potentiation (LTP), in age-related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82- to 84-week-old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani-induced and dopaminergic agonist-induced late-LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell-permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell-permeable chelating agents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Transcriptional dysregulation causes altered modulation of inhibition by haloperidol.
Brady, Lillian J; Bartley, Aundrea F; Li, Qin; McMeekin, Laura J; Hablitz, John J; Cowell, Rita M; Dobrunz, Lynn E
2016-12-01
Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue. Our lab has previously shown that PGC-1α -/- mice have enhanced GABAergic inhibition onto CA1 pyramidal cells, which increases the inhibition/excitation (I/E) ratio, alters hippocampal circuit function, and impairs hippocampal dependent behavior. The typical antipsychotic haloperidol, a dopamine receptor antagonist with selectivity for D2-like receptors, has previously been shown to increase excitation in the CA1 region of hippocampus. We therefore tested whether haloperidol could normalize the I/E balance in CA1 of PGC-1α -/- mice, potentially improving circuit function and behavior. Surprisingly, we discovered instead that interneuron transcriptional dysregulation caused by loss of PGC-1α alters the effects of haloperidol on hippocampal synaptic transmission and circuit function. Acute administration of haloperidol causes disinhibition in CA1 and decreases the I/E ratio onto CA1 pyramidal cells in slices from PGC-1α +/+ mice, but not PGC-1α -/- mice. The spread of activity in CA1, assessed by voltage sensitive dye imaging, is increased by haloperidol in slices from PGC-1α +/+ mice; however haloperidol decreases the spread of activity in slices from PGC-1α -/- mice. Haloperidol increased the power of hippocampal gamma oscillation in slices from PGC-1α +/+ mice but reduced the power of gamma oscillations in slices from PGC-1α -/- mice. Nest construction, an innate hippocampal-dependent behavior, is inhibited by haloperidol in PGC-1α +/+ mice, but not in PGC-1α -/- mice, which already have impaired nest building. The effects of haloperidol are mimicked and occluded by a D2 receptor antagonist in slices from PGC-1α +/+ mice, and the effects of blocking D2 receptors are lost in slices from PGC-1α -/- mice, although there is no change in D2 receptor transcript levels. Together, our results show that hippocampal inhibitory synaptic transmission, CA1 circuit function, and hippocampal dependent behavior are modulated by the antipsychotic haloperidol, and that these effects of haloperidol are lost in PGC-1α -/- mice. These results have implications for the treatment of individuals with conditions involving PGC-1α deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transcriptional dysregulation causes altered modulation of inhibition by haloperidol
Brady, Lillian J.; Bartley, Aundrea F.; Li, Qin; McMeekin, Laura J.; Hablitz, John J.; Cowell, Rita M.; Dobrunz, Lynn E.
2016-01-01
Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue. Our lab has previously shown that PGC-1α−/− mice have enhanced GABAergic inhibition onto CA1 pyramidal cells, which increases the inhibition/excitation (I/E) ratio, alters hippocampal circuit function, and impairs hippocampal dependent behavior. The typical antipsychotic haloperidol, a dopamine receptor antagonist with selectivity for D2-like receptors, has previously been shown to increase excitation in the CA1 region of hippocampus. We therefore tested whether haloperidol could normalize the I/E balance in CA1 of PGC-1α−/− mice, potentially improving circuit function and behavior. Surprisingly, we discovered instead that interneuron transcriptional dysregulation caused by loss of PGC-1α alters the effects of haloperidol on hippocampal synaptic transmission and circuit function. Acute administration of haloperidol causes disinhibition in CA1 and decreases the I/E ratio onto CA1 pyramidal cells in slices from PGC-1α+/+ mice, but not PGC-1α−/− mice. The spread of activity in CA1, assessed by voltage sensitive dye imaging, is increased by haloperidol in slices from PGC-1α+/+ mice; however haloperidol decreases the spread of activity in slices from PGC-1α−/− mice. Haloperidol increased the power of hippocampal gamma oscillation in slices from PGC-1α+/+ mice but reduced the power of gamma oscillations in slices from PGC-1α−/− mice. Nest construction, an innate hippocampal-dependent behavior, is inhibited by haloperidol in PGC-1α+/+ mice, but not in PGC-1α−/− mice, which already have impaired nest building. The effects of haloperidol are mimicked and occluded by a D2 receptor antagonist in slices from PGC-1α+/+ mice, and the effects of blocking D2 receptors are lost in slices from PGC-1α−/− mice, although there is no change in D2 receptor transcript levels. Together, our results show that hippocampal inhibitory synaptic transmission, CA1 circuit function, and hippocampal dependent behavior are modulated by the antipsychotic haloperidol, and that these effects of haloperidol are lost in PGC-1α−/− mice. These results have implications for the treatment of individuals with conditions involving PGC-1α deficiency. PMID:27480797
Neuroanatomical and Behavioral Asymmetry in an Adult Compensated Dyslexic
ERIC Educational Resources Information Center
Chiarello, Christine; Lombardino, Linda J.; Kacinik, Natalie A.; Otto, Ronald; Leonard, Christiana M.
2006-01-01
Individual differences in cortical anatomy are readily observable, but their functional significance for behaviors such as reading is not well understood. Here, we report a case of an apparent compensated dyslexic who had attained high achievement in visuospatial mathematics. Data from a detailed background interview, psychometric testing, divided…
Modality Specificity and Integration in Working Memory: Insights from Visuospatial Bootstrapping
ERIC Educational Resources Information Center
Allen, Richard J.; Havelka, Jelena; Falcon, Thomas; Evans, Sally; Darling, Stephen
2015-01-01
The question of how meaningful associations between verbal and spatial information might be utilized to facilitate working memory performance is potentially highly instructive for models of memory function. The present study explored how separable processing capacities within specialized domains might each contribute to this, by examining the…
Memory and Learning in Pediatric Bipolar Disorder.
ERIC Educational Resources Information Center
McClure, Erin B.; Treland, Julia E.; Snow, Joseph; Dickstein, Daniel P.; Towbin, Kenneth E.; Charney, Dennis S.; Pine, Daniel S.; Leibenluft, Ellen
2005-01-01
Objective: To test the hypothesis that patients with pediatric bipolar disorder (PBPD) would demonstrate impairment relative to diagnosis-free controls of comparable age, gender, and IQ on measures of memory functioning. Method: The authors administered a battery of verbal and visuospatial memory tests to 35 outpatients with PBPD and 20 healthy…
The Interplay between Executive Control and Motor Functioning in Williams Syndrome
ERIC Educational Resources Information Center
Hocking, Darren R.; Thomas, Daniel; Menant, Jasmine C.; Porter, Melanie A.; Smith, Stuart; Lord, Stephen R.; Cornish, Kim M.
2013-01-01
Previous studies suggest that individuals with Williams syndrome (WS), a rare genetically based neurodevelopmental disorder, show specific weaknesses in visual attention and response inhibition within the visuospatial domain. Here we examine the extent to which impairments in attentional control extend to the visuomotor domain using a…
Tanner, Jared J; Levy, Shellie-Anne; Schwab, Nadine A; Hizel, Loren P; Nguyen, Peter T; Okun, Michael S; Price, Catherine C
2017-04-01
A 71-year-old (MN) with an 11-year history of left onset tremor diagnosed as Parkinson's disease (PD) completed longitudinal brain magnetic resonance imaging (MRI) and neuropsychological testing. MRI scans showed an asymmetric caudate nucleus (right < left volume). We describe this asymmetry at baseline and the progression over time relative to other subcortical gray, frontal white matter, and cortical gray matter regions of interest. Isolated structural changes are compared to MN's cognitive profiles. MN completed yearly MRIs and neuropsychological assessments. For comparison, left onset PD (n = 15) and non-PD (n = 43) peers completed the same baseline protocol. All MRI scans were processed with FreeSurfer and the FMRIB Software Library to analyze gray matter structures and frontal fractional anisotropy (FA) metrics. Processing speed, working memory, language, verbal memory, abstract reasoning, visuospatial, and motor functions were examined using reliable change methods. At baseline, MN had striatal volume and frontal lobe thickness asymmetry relative to peers with mild prefrontal white matter FA asymmetry. Over time only MN's right caudate nucleus showed accelerated atrophy. Cognitively, MN had slowed psychomotor speed and visuospatial-linked deficits with mild visuospatial working memory declines longitudinally. This is a unique report using normative neuroimaging and neuropsychology to describe an individual diagnosed with PD who had striking striatal asymmetry followed secondarily by cortical thickness asymmetry and possible frontal white matter asymmetry. His decline and variability in visual working memory could be linked to ongoing atrophy of his right caudate nucleus.
Tanner, Jared J.; Levy, Shellie-Anne; Schwab, Nadine A.; Hizel, Loren P.; Nguyen, Peter T.; Okun, Michael S.; Price, Catherine C.
2016-01-01
Objective A 71-year old (MN) with an 11-year history of left onset tremor diagnosed as Parkinson’s disease (PD) completed longitudinal brain magnetic resonance imaging (MRI) and neuropsychological testing. MRI scans showed an asymmetric caudate nucleus (right< left volume). We describe this asymmetry at baseline and the progression over time relative to other subcortical gray, frontal white matter, and cortical gray matter regions of interest. Isolated structural changes are compared to MN’s cognitive profiles. Method MN completed yearly MRIs and neuropsychological assessments. For comparison, left onset PD (n=15) and non-PD (n=43) peers completed the same baseline protocol. All MRI scans were processed with FreeSurfer and the FMRIB Software Library (FSL) to analyze gray matter structures and frontal fractional anisotropy (FA) metrics. Processing speed, working memory, language, verbal memory, abstract reasoning, visuospatial, and motor functions were examined using reliable change methods. Results At baseline MN had striatal volume and frontal lobe thickness asymmetry relative to peers with mild prefrontal white matter FA asymmetry. Over time only MN’s right caudate nucleus showed accelerated atrophy. Cognitively, MN had slowed psychomotor speed and visuospatial-linked deficits with mild visuospatial working memory declines longitudinally. Conclusions This is a unique report using normative neuroimaging and neuropsychology to describe an individual diagnosed with PD who had striking striatal asymmetry followed secondarily by cortical thickness asymmetry and possible frontal white matter asymmetry. His decline and variability in visual working memory could be linked to ongoing atrophy of his right caudate nucleus. PMID:27813459
Spatial versus verbal memory impairments in patients with fibromyalgia.
Kim, Seong-Ho; Kim, Sang-Hyon; Kim, Seong-Kyu; Nam, Eun Jung; Han, Seung Woo; Lee, Seung Jae
2012-05-01
Mounting evidence suggests that individuals with fibromyalgia (FM) have impairments in general cognitive functions. However, few studies have explored the possibility of dissociation between verbal and visuospatial memory impairments in FM. Therefore, the purpose of this study was to investigate the asymmetrical impairment of cognitive functions between verbal and visuospatial memory and between short-term and long-term memory. Neuropsychological assessments were carried out on 23 female patients with FM and 24 healthy female controls. Verbal memory abilities were assessed using the Korean version of the Rey auditory verbal learning test (KAVLT) and digit span task, and visuospatial memory abilities were assessed using the Korean version of the Rey complex figure test (KCFT) and spatial span task. The analysis of covariance was used to assess group differences in performance on cognitive tests after controlling for depression. The two groups did not significantly differ in terms of age, years of education, or in their estimated verbal and performance IQ, but FM patients reported more severe depressive symptoms than did controls on the Beck depression inventory. Significant group differences were found in immediate and delayed recall on the KCFT (F (1,44) = 6.49, p = 0.014 and F (1,44) = 6.96, p = 0.011, respectively), whereas no difference was found in immediate and delayed recall on the KAVLT. In terms of short-term memory, neither the digit span task nor spatial span task showed any difference between groups, regardless of whether repetition was forward or backward. These findings suggest that spatial memory abilities may be more impaired than verbal memory abilities in patients with FM.
Pakhomov, Serguei VS; Eberly, Lynn; Knopman, David
2016-01-01
A computational approach for estimating several indices of performance on the animal category verbal fluency task was validated, and examined in a large longitudinal study of aging. The performance indices included the traditional verbal fluency score, size of semantic clusters, density of repeated words, as well as measures of semantic and lexical diversity. Change over time in these measures was modeled using mixed effects regression in several groups of participants, including those that remained cognitively normal throughout the study (CN) and those that were diagnosed with mild cognitive impairment (MCI) or Alzheimer’s disease (AD) dementia at some point subsequent to the baseline visit. The results of the study show that, with the exception of mean cluster size, the indices showed significantly greater declines in the MCI and AD dementia groups as compared to CN participants. Examination of associations between the indices and cognitive domains of memory, attention and visuospatial functioning showed that the traditional verbal fluency scores were associated with declines in all three domains, whereas semantic and lexical diversity measures were associated with declines only in the visuospatial domain. Baseline repetition density was associated with declines in memory and visuospatial domains. Examination of lexical and semantic diversity measures in subgroups with high vs. low attention scores (but normal functioning in other domains) showed that the performance of individuals with low attention was influenced more by word frequency rather than strength of semantic relatedness between words. These findings suggest that various automatically semantic indices may be used to examine various aspects of cognitive performance affected by dementia. PMID:27245645
Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana
2016-01-01
This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both “seen” and “not seen” trials. There was no statistical difference in the ERP peak latencies between the “seen” and “not seen” trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between “seen” and “not seen” trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks underpinning the single visual features would constitute a sort of multi-dimensional palette of colors, shapes, regions of the visual field, movements, emotional face expressions, and words. The synchronization of one or more of these cortical neural networks, each with its peculiar timing, would produce the primary consciousness of one or more of the visual features of the scene. PMID:27445750
A pilot study on the benefit of cognitive rehabilitation in Parkinson’s disease
Adamski, Natalia; Adler, Matthias; Opwis, Klaus; Penner, Iris-Katharina
2016-01-01
Purpose: Patients with Parkinson’s disease (PD) show inefficiencies in cognitive performance including working memory functions. Since these problems impact on quality of life and overall well-being, the current study was aimed at improving patients’ situations by evaluating the computerized cognitive training tool, BrainStim. Method: A total of 19 healthy controls (HCs) and six patients with PD were included in the study. While all PD patients received cognitive training, the HC sample was subdivided into 12 subjects with training (HC-T) and 10 subjects without (HC-NT). Participants underwent a double baseline assessment, a post-training assessment, and a 3-month follow up on neuropsychological tests and self-report measures on fatigue and depression. Training was administered between the second baseline and postassessment. It comprised 16 supervised sessions according to a standardized training protocol over 4 weeks. Results: Significant improvements in verbal and visuospatial short-term and long-term memory were found in both training groups. In addition, the HC-T improved on mental speed, and verbal and visuospatial working memory. Both training groups showed stable results for all short-term visuospatial measures after 3 months. Further, the HC-T showed stable results for working memory, verbal, and visuospatial short-term and long-term memory. Conclusions: The efficacy of the applied computerized cognitive training tool BrainStim could be verified in patients with PD and healthy age-matched controls. The preliminary findings highlighted the suitability of a specific cognitive intervention to improve cognitive inefficiencies in patients with PD as well as in healthy older people. Further research on cognitive training in combination with PD drug therapy is needed to better understand the mutual interaction and to offer optimal therapeutic approaches to patients. PMID:27134671
Lambert, Katharina; Spinath, Birgit
The aim of the present study was to investigate the associations between elementary school children's mathematical achievement and their conservation abilities, visuospatial skills, and numerosity processing speed. We also assessed differences in these abilities between children with different types of learning problems. In Study 1 ( N = 229), we investigated second to fourth graders and in Study 2 ( N = 120), third and fourth graders. Analyses revealed significant contributions of numerosity processing speed and visuospatial skills to math achievement beyond IQ. Conservation abilities were predictive in Study 1 only. Children with math difficulties showed lower visuospatial skills and conservation abilities than children with typical achievement levels and children with reading and/or spelling difficulties, whereas children with combined difficulties explicitly showed low conservation abilities. These findings provide further evidence for the relations between children's math skills and their visuospatial skills, conservation abilities, and processing speed and contribute to the understanding of deficits that are specific to mathematical difficulties.
Stamenova, Vess; Nicola, Raneen; Aharon-Peretz, Judith; Goldsher, Dorith; Kapeliovich, Michael; Gilboa, Asaf
2018-05-01
To examine the effects of brief hypoxia (<7 min) due to cardiac arrest on the integrity of the brain and performance on memory and executive functions tasks. Patients after out-of-hospital cardiac arrest (CA) (n = 9), who were deemed neurologically intact on discharge, were compared to matched patients with myocardial infarction (MI) (n = 9). A battery of clinical and experimental memory and executive functions neuropsychological tests were administered and MRI scans for all patients were collected. Measures of subcortical and cortical volumes and cortical thickness were obtained using FreeSurfer. Manual segmentations of the hippocampus were also performed. APACHE-II scores were calculated based on metrics collected at admission to ICCU for all patients. Significant differences between the two groups were observed on several verbal memory tests. Both hippocampi were significantly reduced (p < 0.05) in the CA patients, relative to MI patients. Hippocampal subfields segmentation showed significantly reduced presubiculum volumes bilaterally. CA patients had on average 10% reduction in volumes bilaterally across hippocampal subfields. No cortical thickness differences survived correction. Significant correlations were observed in the CA group only between the hippocampal volumes and performance on verbal memory tasks, including recollection. Hippocampal volumes and several memory measures (but not other cognitive domains) were strongly correlated with APACHE-II scores on admission in the CA group, but not in the MI group CONCLUSIONS: Chronic patients with cardiac arrest who were discharged from hospital in "good neurological condition" showed an average of 10% reduction in hippocampal volume bilaterally and significant verbal memory deficits relative to matched controls with myocardial infarction, suggesting even brief hypoxic periods suffice to lead to specific hippocampal damage. Copyright © 2018 Elsevier B.V. All rights reserved.
Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy
Sidhu, M.K.; Stretton, J.; Winston, G.P.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S.
2015-01-01
Summary Aims In temporal lobe epilepsy (TLE) due to hippocampal sclerosis reorganisation in the memory encoding network has been consistently described. Distinct areas of reorganisation have been shown to be efficient when associated with successful subsequent memory formation or inefficient when not associated with successful subsequent memory. We investigated the effect of clinical parameters that modulate memory functions: age at onset of epilepsy, epilepsy duration and seizure frequency in a large cohort of patients. Methods We studied 53 patients with unilateral TLE and hippocampal sclerosis (29 left). All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words. A continuous regression analysis was used to investigate the effects of age at onset of epilepsy, epilepsy duration and seizure frequency on the activation patterns in the memory encoding network. Results Earlier age at onset of epilepsy was associated with left posterior hippocampus activations that were involved in successful subsequent memory formation in left hippocampal sclerosis patients. No association of age at onset of epilepsy was seen with face encoding in right hippocampal sclerosis patients. In both left hippocampal sclerosis patients during word encoding and right hippocampal sclerosis patients during face encoding, shorter duration of epilepsy and lower seizure frequency were associated with medial temporal lobe activations that were involved in successful memory formation. Longer epilepsy duration and higher seizure frequency were associated with contralateral extra-temporal activations that were not associated with successful memory formation. Conclusion Age at onset of epilepsy influenced verbal memory encoding in patients with TLE due to hippocampal sclerosis in the speech-dominant hemisphere. Shorter duration of epilepsy and lower seizure frequency were associated with less disruption of the efficient memory encoding network whilst longer duration and higher seizure frequency were associated with greater, inefficient, extra-temporal reorganisation. PMID:25616449
Experimental But Not Sex Differences of a Mental Rotation Training Program on Adolescents
Rodán, Antonio; Contreras, María José; Elosúa, M. Rosa; Gimeno, Patricia
2016-01-01
Given the importance of visuospatial processing in areas related to the STEM (Science, Technology, Engineering, and Mathematics) disciplines, where there is still a considerable gap in the area of sex differences, the interest in the effects of visuospatial skills training continues to grow. Therefore, we have evaluated the visuospatial improvement of adolescents after performing a computerized mental rotation training program, as well as the relationship of this visuospatial ability with other cognitive, emotional factors and those factors based on the experience with videogames. The study, which was performed on students aged 14 and 15 years old, showed a significant improvement in this visuospatial skill for a training group (n = 21) compared to a control group (n = 24). Furthermore, no significant sex differences were obtained for spatial ability or for any of the other tasks evaluated, either before or after training. Regarding the relationship between skills, a significant correlation between experience with video games and spatial ability was found, as well as between mathematical reasoning and intelligence and with spatial ability in the initial phase for the total sample. These findings are discussed from a cognitive point of view and within the current sociocultural context, where the equal use of new technologies could help reduce the visuospatial gap between sexes. PMID:27462290
Working memory dependence of spatial contextual cueing for visual search.
Pollmann, Stefan
2018-05-10
When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Agus, M.; Mascia, M. L.; Fastame, M. C.; Melis, V.; Pilloni, M. C.; Penna, M. P.
2015-02-01
A body of literature shows the significant role of visual-spatial skills played in the improvement of mathematical skills in the primary school. The main goal of the current study was to investigate the impact of a combined visuo-spatial and mathematical training on the improvement of mathematical skills in 146 second graders of several schools located in Italy. Participants were presented single pencil-and-paper visuo-spatial or mathematical trainings, computerised version of the above mentioned treatments, as well as a combined version of computer-assisted and pencil-and-paper visuo-spatial and mathematical trainings, respectively. Experimental groups were presented with training for 3 months, once a week. All children were treated collectively both in computer-assisted or pencil-and-paper modalities. At pre and post-test all our participants were presented with a battery of objective tests assessing numerical and visuo-spatial abilities. Our results suggest the positive effect of different types of training for the empowerment of visuo-spatial and numerical abilities. Specifically, the combination of computerised and pencil-and-paper versions of visuo-spatial and mathematical trainings are more effective than the single execution of the software or of the pencil-and-paper treatment.
Developmental gains in visuospatial memory predict gains in mathematics achievement.
Li, Yaoran; Geary, David C
2013-01-01
Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.
Uematsu, Hironobu; Sumitani, Masahiko; Yozu, Arito; Otake, Yuko; Shibata, Masahiko; Mashimo, Takashi; Miyauchi, Satoru
2009-11-01
Complex regional pain syndrome (CRPS) patients show impaired visuospatial perception in the dark, as compared to normal patients with acute nociceptive pain. The purpose of this study is 2-fold: (i) to ascertain whether this distorted visuospatial perception is related to the chronicity of pain, and (ii) to analyse visuospatial perception of CRPS in comparison with another neuropathic pain condition. We evaluated visual subjective body-midline (vSM) representation in 27 patients with post-herpetic neuralgia (PHN) and 22 with CRPS under light and dark conditions. A red laser dot was projected onto a screen and moved horizontally towards the sagittal plane of the objective body-midline (OM). Each participant was asked to direct the dot to a position where it crossed their vSM. The distance between the vSM and OM was analysed to determine how and in which direction the vSM deviated. Under light condition, all vSM judgments approximately matched the OM. However, in the dark, CRPS patients, but not PHN patients, showed a shifted vSM towards the affected side. We demonstrated that chronic pain does not always impair visuospatial perception. The aetiology of PHN is limited to the peripheral nervous system, whereas the distorted visuospatial perception suggests a supraspinal aetiology of CRPS.
Experimental But Not Sex Differences of a Mental Rotation Training Program on Adolescents.
Rodán, Antonio; Contreras, María José; Elosúa, M Rosa; Gimeno, Patricia
2016-01-01
Given the importance of visuospatial processing in areas related to the STEM (Science, Technology, Engineering, and Mathematics) disciplines, where there is still a considerable gap in the area of sex differences, the interest in the effects of visuospatial skills training continues to grow. Therefore, we have evaluated the visuospatial improvement of adolescents after performing a computerized mental rotation training program, as well as the relationship of this visuospatial ability with other cognitive, emotional factors and those factors based on the experience with videogames. The study, which was performed on students aged 14 and 15 years old, showed a significant improvement in this visuospatial skill for a training group (n = 21) compared to a control group (n = 24). Furthermore, no significant sex differences were obtained for spatial ability or for any of the other tasks evaluated, either before or after training. Regarding the relationship between skills, a significant correlation between experience with video games and spatial ability was found, as well as between mathematical reasoning and intelligence and with spatial ability in the initial phase for the total sample. These findings are discussed from a cognitive point of view and within the current sociocultural context, where the equal use of new technologies could help reduce the visuospatial gap between sexes.
Botly, Leigh C P; De Rosa, Eve
2012-10-01
The visual search task established the feature integration theory of attention in humans and measures visuospatial attentional contributions to feature binding. We recently demonstrated that the neuromodulator acetylcholine (ACh), from the nucleus basalis magnocellularis (NBM), supports the attentional processes required for feature binding using a rat digging-based task. Additional research has demonstrated cholinergic contributions from the NBM to visuospatial attention in rats. Here, we combined these lines of evidence and employed visual search in rats to examine whether cortical cholinergic input supports visuospatial attention specifically for feature binding. We trained 18 male Long-Evans rats to perform visual search using touch screen-equipped operant chambers. Sessions comprised Feature Search (no feature binding required) and Conjunctive Search (feature binding required) trials using multiple stimulus set sizes. Following acquisition of visual search, 8 rats received bilateral NBM lesions using 192 IgG-saporin to selectively reduce cholinergic afferentation of the neocortex, which we hypothesized would selectively disrupt the visuospatial attentional processes needed for efficient conjunctive visual search. As expected, relative to sham-lesioned rats, ACh-NBM-lesioned rats took significantly longer to locate the target stimulus on Conjunctive Search, but not Feature Search trials, thus demonstrating that cholinergic contributions to visuospatial attention are important for feature binding in rats.
Eglinton, Elizabeth; Annett, Marian
2008-06-01
Poor spellers in normal schools, who were not poor readers, were studied for handedness, visuospatial and other cognitive abilities in order to explore contrasts between poor spellers with and without good phonology. It was predicted by the right shift (RS) theory of handedness and cerebral dominance that those with good phonology would have strong bias to dextrality and relative weakness of the right hemisphere, while those without good phonology would have reduced bias to dextrality and relative weakness of the left hemisphere. Poor spellers with good phonetic equivalent spelling errors (GFEs) included fewer left-handers (2.4%) than poor spellers without GFEs (24.4%). Differences for hand skill were as predicted. Tests of visuospatial processing found no differences between the groups in levels of ability, but there was a marked difference in pattern of correlations between visuospatial test scores and homophonic word discrimination. Whereas good spellers (GS) and poor spellers without GFEs showed positive correlations between word discrimination and visuospatial ability, there were no significant correlations for poor spellers with GFEs. The differences for handedness and possibly for the utilisation of visuospatial skills suggest that surface dyslexics differ from phonological dyslexics in cerebral specialisation and perhaps in the quality of inter-hemispheric relations.
Correlation of Visuospatial Ability and EEG Slowing in Patients with Parkinson's Disease
Meyer, Antonia; Chaturvedi, Menorca; Hatz, Florian; Gschwandtner, Ute
2017-01-01
Background. Visuospatial dysfunction is among the first cognitive symptoms in Parkinson's disease (PD) and is often predictive for PD-dementia. Furthermore, cognitive status in PD-patients correlates with quantitative EEG. This cross-sectional study aimed to investigate the correlation between EEG slowing and visuospatial ability in nondemented PD-patients. Methods. Fifty-seven nondemented PD-patients (17 females/40 males) were evaluated with a comprehensive neuropsychological test battery and a high-resolution 256-channel EEG was recorded. A median split was performed for each cognitive test dividing the patients sample into either a normal or lower performance group. The electrodes were split into five areas: frontal, central, temporal, parietal, and occipital. A linear mixed effects model (LME) was used for correlational analyses and to control for confounding factors. Results. Subsequently, for the lower performance, LME analysis showed a significant positive correlation between ROCF score and parietal alpha/theta ratio (b = .59, p = .012) and occipital alpha/theta ratio (b = 0.50, p = .030). No correlations were found in the group of patients with normal visuospatial abilities. Conclusion. We conclude that a reduction of the parietal alpha/theta ratio is related to visuospatial impairments in PD-patients. These findings indicate that visuospatial impairment in PD-patients could be influenced by parietal dysfunction. PMID:28348918
Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement
Li, Yaoran; Geary, David C.
2013-01-01
Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning. PMID:23936154
Roland, Jessica J.; Savage, Lisa M.
2009-01-01
Wernicke-Korsakoff syndrome (WKS), a form of diencephalic amnesia caused by thiamine deficiency, results in severe anterograde memory loss. Pyrithiamine-induced thiamine deficiency (PTD), an animal model of WKS, produces cholinergic abnormalities including decreased functional hippocampal acetylcholine (ACh) release and poor spatial memory. Increasing hippocampal ACh levels has increased performance in PTD animals. Intraseptal bicuculline (GABAA antagonist) augments hippocampal ACh release in normal animals and we found it (0.50μg/μl & 0.75μg/μl) also increased in-vivo hippocampal ACh release in PTD animals. However, the 0.75 μg/μl dose produced a greater change in hippocampal ACh release in control animals. The 0.50μg/μl dose of bicuculline was then selected to determine if it could enhance spontaneous alternation performance in PTD animals. This dose of bicuculline significantly increased hippocampal ACh levels above baseline in both PTD and control rats and resulted in complete behavioral recovery in PTD animals, without altering performance in control rats. This suggests that balancing ACh-GABA interactions in the septohippocampal circuit may be an effective therapeutic approach in certain amnestic syndromes. PMID:19463263
Lithium rescues synaptic plasticity and memory in Down syndrome mice
Contestabile, Andrea; Greco, Barbara; Ghezzi, Diego; Tucci, Valter; Benfenati, Fabio; Gasparini, Laura
2012-01-01
Down syndrome (DS) patients exhibit abnormalities of hippocampal-dependent explicit memory, a feature that is replicated in relevant mouse models of the disease. Adult hippocampal neurogenesis, which is impaired in DS and other neuropsychiatric diseases, plays a key role in hippocampal circuit plasticity and has been implicated in learning and memory. However, it remains unknown whether increasing adult neurogenesis improves hippocampal plasticity and behavioral performance in the multifactorial context of DS. We report that, in the Ts65Dn mouse model of DS, chronic administration of lithium, a clinically used mood stabilizer, promoted the proliferation of neuronal precursor cells through the pharmacological activation of the Wnt/β-catenin pathway and restored adult neurogenesis in the hippocampal dentate gyrus (DG) to physiological levels. The restoration of adult neurogenesis completely rescued the synaptic plasticity of newborn neurons in the DG and led to the full recovery of behavioral performance in fear conditioning, object location, and novel object recognition tests. These findings indicate that reestablishing a functional population of hippocampal newborn neurons in adult DS mice rescues hippocampal plasticity and memory and implicate adult neurogenesis as a promising therapeutic target to alleviate cognitive deficits in DS patients. PMID:23202733
Daugherty, Ana M; Flinn, Robert; Ofen, Noa
2017-06-01
Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution images in a sample of healthy participants (age 8-25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus. Copyright © 2017 Elsevier Inc. All rights reserved.
Daugherty, Ana M.; Flinn, Robert; Ofen, Noa
2017-01-01
Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution proton density-weighted images in a sample of healthy participants (age 8–25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus. PMID:28342999
Schlichting, Margaret L.; Guarino, Katharine F.; Schapiro, Anna C.; Turk-Browne, Nicholas B.; Preston, Alison R.
2016-01-01
Despite the importance of learning and remembering across the lifespan, little is known about how the episodic memory system develops to support the extraction of associative structure from the environment. Here, we relate individual differences in volumes along the hippocampal long axis to performance on statistical learning and associative inference tasks—both of which require encoding associations that span multiple episodes—in a developmental sample ranging from ages 6–30 years. Relating age to volume, we found dissociable patterns across the hippocampal long axis, with opposite nonlinear volume changes in the head and body. These structural differences were paralleled by performance gains across the age range on both tasks, suggesting improvements in the cross-episode binding ability from childhood to adulthood. Controlling for age, we also found that smaller hippocampal heads were associated with superior behavioral performance on both tasks, consistent with this region’s hypothesized role in forming generalized codes spanning events. Collectively, these results highlight the importance of examining hippocampal development as a function of position along the hippocampal axis and suggest that the hippocampal head is particularly important in encoding associative structure across development. PMID:27575916
Maggi, Laura; Scianni, Maria; Branchi, Igor; D’Andrea, Ivana; Lauro, Clotilde; Limatola, Cristina
2011-01-01
In recent years several evidence demonstrated that some features of hippocampal biology, like neurogenesis, synaptic transmission, learning, and memory performances are deeply modulated by social, motor, and sensorial experiences. Fractalkine/CX3CL1 is a transmembrane chemokine abundantly expressed in the brain by neurons, where it modulates glutamatergic transmission and long-term plasticity processes regulating the intercellular communication between glia and neurons, being its specific receptor CX3CR1 expressed by microglia. In this paper we investigated the role of CX3CL1/CX3CR1 signaling on experience-dependent hippocampal plasticity processes. At this aim wt and CX3CR1GFP/GFP mice were exposed to long-lasting-enriched environment (EE) and the effects on hippocampal functions were studied by electrophysiological recordings of long-term potentiation of synaptic activity, behavioral tests of learning and memory in the Morris water maze paradigm and analysis of neurogenesis in the subgranular zone of the dentate gyrus (DG). We found that CX3CR1 deficiency increases hippocampal plasticity and spatial memory, blunting the potentiating effects of EE. In contrast, exposure to EE increased the number and migration of neural progenitors in the DG of both wt and CX3CR1GFP/GFP mice. These data indicate that CX3CL1/CX3CR1-mediated signaling is crucial for a normal experience-dependent modulation of hippocampal functions. PMID:22025910
Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity.
Grillo, Claudia A; Piroli, Gerardo G; Lawrence, Robert C; Wrighten, Shayna A; Green, Adrienne J; Wilson, Steven P; Sakai, Randall R; Kelly, Sandra J; Wilson, Marlene A; Mott, David D; Reagan, Lawrence P
2015-11-01
Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS-treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS-treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Dunleavy, Mark; Schindler, Clara K; Shinoda, Sachiko; Crilly, Shane; Henshall, David C
2014-01-01
Status epilepticus in the adult brain invariably causes an increase in hippocampal neurogenesis and the appearance of ectopic cells and this has been implicated as a causal factor in epileptogenesis. The effect of status epilepticus on neurogenesis in the developing brain is less well characterized and models of early-life seizures typically do not reproduce the hippocampal damage common to human mesial temporal sclerosis. We recently reported that evoking status epilepticus by intra-amygdala microinjection of kainic acid in post-natal (P) day 10 rats caused substantial acute neuronal death within the ipsilateral hippocampus and rats later developed unilateral hippocampal sclerosis and spontaneous recurrent seizures. Here, we examined the expression of a selection of genes associated with neurogenesis and assessed neurogenic function in this model. Protein levels of several markers of neurogenesis including polysialic acid neural cell adhesion molecule, neuroD and doublecortin were reduced in the hippocampus three days after status epilepticus in P10 rats. In contrast, protein levels of neurogenesis markers were similar to control in rats at P55. Pulse-chase experiments using thymidine analogues suggested there was a reduction in new neurons at 72 h after status epilepticus in P10 rats, whereas numbers of new neurons labelled in epileptic rats at P55 with hippocampal sclerosis were similar to controls. The present study suggests that status epilepticus in the immature brain suppresses neurogenesis but the neurogenic potential is retained in animals that later develop hippocampal sclerosis. PMID:25755841
Bardgett, Mark E; Boeckman, Ryan; Krochmal, Daniel; Fernando, Hiran; Ahrens, Rebecca; Csernansky, John G
2003-04-15
The interpretation of learning and memory deficits in transgenic mice has largely involved theories of NMDA receptor and/or hippocampal function. However, there is little empirical data that describes what NMDA receptors or the hippocampus do in mice. This research assessed the effects of different doses of the NMDA receptor antagonist, MK-801, or different-sized hippocampal lesions on several behavioral parameters in adult male C57Bl/6 mice. In the first set of experiments, different doses of MK-801 (0.05-0.3mg/kg, s.c.) were assayed in fear conditioning, shock sensitivity, locomotion, anxiety, and position habit reversal tests. Contextual and cued fear conditioning, and position habit reversal were impaired in a dose-dependent manner. Locomotor activity was increased immediately after injection of the highest dose of MK-801. A second set of experiments determined the behavioral effects of a moderate and large excitotoxic hippocampal lesion. Both lesions impaired contextual conditioning, while the larger lesion interfered with cued conditioning. Reversal learning was significantly diminished by the large lesion, while the moderate lesion had a detrimental effect at a trend level (P<0.10). These results provide important reference data for studies involving genetic manipulations of NMDA receptor or hippocampal function in mice. Furthermore, they serve as a basis for a non-transgenic mouse model of the NMDA receptor or hippocampal dysfunction hypothesized to occur in human cognitive disorders.
Kochanek, Ashley R.; Kline, Anthony E.; Gao, Wei-Min; Chadha, Mandeep; Lai, Yichen; Clark, Robert S.B.; Dixon, C. Edward; Jenkins, Larry W.
2009-01-01
Traumatic brain injury (TBI) to postnatal day 17 rats has been shown to produce acute changes in hippocampal global protein levels and spatial learning and memory deficits. The purpose of the present study was to analyze global hippocampal protein changes 2 weeks after a moderate ipsilateral controlled cortical impact in postnatal day 17 rats using 2-dimensional difference gel electrophoresis and mass spectrometry. Paired sham and ipsilateral injured hippocampal lysates were independently labeled with different fluorescent cyanine dyes and coseparated within the same immobilized pH gradient strips and slab gel based on isoelectric point and molecular mass. Significant changes in key proteins involved in glial and neuronal stress, oxidative metabolism, calcium uptake and neurotransmitter function were found 2 weeks after injury, and their potential roles in hippocampal plasticity and cognitive dysfunction were discussed. PMID:16943664
The role of the hippocampus in navigation is memory
2017-01-01
There is considerable research on the neurobiological mechanisms within the hippocampal system that support spatial navigation. In this article I review the literature on navigational strategies in humans and animals, observations on hippocampal function in navigation, and studies of hippocampal neural activity in animals and humans performing different navigational tasks and tests of memory. Whereas the hippocampus is essential to spatial navigation via a cognitive map, its role derives from the relational organization and flexibility of cognitive maps and not from a selective role in the spatial domain. Correspondingly, hippocampal networks map multiple navigational strategies, as well as other spatial and nonspatial memories and knowledge domains that share an emphasis on relational organization. These observations suggest that the hippocampal system is not dedicated to spatial cognition and navigation, but organizes experiences in memory, for which spatial mapping and navigation are both a metaphor for and a prominent application of relational memory organization. PMID:28148640
Lu, Zhiyan; Wu, Jinwei; Cheng, Guangyuan; Tian, Jianying; Lu, Zeqing; Bi, Yongyi
2014-01-01
Previous studies have found that methylmercury can damage hippocampal neurons and accordingly cause cognitive dysfunction. However, a non-invasive, safe and accurate detection method for detecting hippocampal injury has yet to be developed. This study aimed to detect methylmercury-induced damage on hippocampal tissue using proton magnetic resonance spectroscopy. Rats were given a subcutaneous injection of 4 and 2 mg/kg methylmercury into the neck for 50 consecutive days. Water maze and pathology tests confirmed that cognitive function had been impaired and that the ultrastructure of hippocampal tissue was altered after injection. The results of proton magnetic resonance spectroscopy revealed that the nitrogen-acetyl aspartate/creatine, choline complex/creatine and myoinositol/creatine ratio in rat hippocampal tissue were unchanged. Therefore, proton magnetic resonance spectroscopy can not be used to determine structural damage in the adult rat hippocampus caused by methylmercury chloride. PMID:25368649
Variability in memory performance in aged healthy individuals: an fMRI study.
Grön, Georg; Bittner, Daniel; Schmitz, Bernd; Wunderlich, Arthur P; Tomczak, Reinhard; Riepe, Matthias W
2003-01-01
Episodic memory performance varies in older subjects but underlying biological correlates remain as yet ambiguous. We investigated episodic memory in healthy older individuals (n=24; mean age: 64.4+/-6.7 years) without subjective memory complaints or objective cognitive impairment. Episodic memory was assessed with repetitive learning and recall of abstract geometric patterns during fMRI. Group analysis of brain activity during initial learning and maximum recall revealed hippocampal activation. Correlation analysis of brain activation and task performance demonstrated significant hippocampal activity during initial learning and maximum recall in a success-dependent manner. Neither age nor gray matter densities correlated with hippocampal activation. Functional imaging of episodic memory thus permits to detect objectively variability in hippocampal recruitment in healthy aged individuals without subjective memory complaints. Correlation analysis of brain activation and performance during an episodic memory task may be used to determine and follow-up hippocampal malfunction in a very sensitive manner.