Science.gov

Sample records for histocompatibility antigens class ii

  1. Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens.

    PubMed Central

    Wu, T C; Guarnieri, F G; Staveley-O'Carroll, K F; Viscidi, R P; Levitsky, H I; Hedrick, L; Cho, K R; August, J T; Pardoll, D M

    1995-01-01

    The presentation of antigenic peptides by major histocompatibility complex (MHC) class II molecules to CD4+ T cells is critical to the function of the immune system. In this study, we have utilized the sorting signal of the lysosomal-associated membrane protein LAMP-1 to target a model antigen, human papillomavirus 16 E7 (HPV-16 E7), into the endosomal and lysosomal compartments. The LAMP-1 sorting signal reroutes the antigen into the MHC class II processing pathway, resulting in enhanced presentation to CD4+ cells in vitro. In vivo immunization experiments in mice demonstrated that vaccinia containing the chimeric E7/LAMP-1 gene generated greater E7-specific lymphoproliferative activity, antibody titers, and cytotoxic T-lymphocyte activities than vaccinia containing the wild-type HPV-16 E7 gene. These results suggest that specific targeting of an antigen to the endosomal and lysosomal compartments enhances MHC class II presentation and vaccine potency. Images Fig. 2 Fig. 3 PMID:8524826

  2. Stress-induced alterations in interferon production and class II histocompatibility antigen expression

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Cunnick, J. E.; Armfield, A. V.; Wood, P. G.; Rabin, B. S.

    1992-01-01

    Mild electric foot-shock has been shown to be a stressor that can alter immune responses. Male Lewis rats were exposed to one session of 16 5.0-s 1.6-mA foot-shocks. Production of interferon-gamma by splenocytes in response to concanavalin-A was decreased in spleens from the shocked rats compared to control spleens. Spleen cells from rats treated with nadolol, a peripherally acting beta-adrenergic receptor antagonist, and then shocked, showed dose-dependent attenuation of the suppression of interferon-gamma production. This suggests that catecholamines mediate shock-induced suppression of interferon-gamma production. The percentage of splenic mononuclear cells expressing class II histocompatibility (Ia) antigens on their surfaces from spleens of shocked rats was determined by flow cytometry. Significantly decreased class II positive mononuclear cells were present in the spleens of shocked rats in comparison to the spleens of control rats. This may reflect an alteration of cell trafficking or decreased production of class II antigens.

  3. Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells

    PubMed Central

    1995-01-01

    Dendritic cells (DC) represent potent antigen-presenting cells for the induction of T cell-dependent immune responses. Previous work on antigen uptake and presentation by human DC is based largely on studies of blood DC that have been cultured for various periods of time before analysis. These cultured cells may therefore have undergone a maturation process from precursors that have different capacities for antigen capture and presentation. We have now used immunoelectron microscopy and antigen presentation assays to compare freshly isolated DC (f-DC) and cultured DC (c-DC). f-DC display a round appearance, whereas c-DC display characteristic long processes. c-DC express much more cell surface major histocompatibility complex (MHC) class II than f-DC. The uptake of colloidal gold-labeled bovine serum albumin (BSA), however, is greater in f-DC, as is the presentation of 65-kD heat shock protein to T cell clones. The most striking discovery is that the majority of MHC class II molecules in both f-DC and c-DC occur in intracellular vacuoles with a complex shape (multivesicular and multilaminar). These MHC class II enriched compartments (MIIC) represent the site to which BSA is transported within 30 min. Although MIIC appear as more dense structures with less MHC class II molecules in f-DC than c-DC, the marker characteristics are very similar. The MIIC in both types of DC are acidic, contain invariant chain, and express the recently described HLA-DM molecule that can contribute to antigen presentation. CD19+ peripheral blood B cells have fewer MIIC and surface MHC class II expression than DCs, while monocytes had low levels of MIIC and surface MHC class II. These results demonstrate in dendritic cells the elaborate development of MIIC expressing several of the components that are required for efficient antigen presentation. PMID:7790816

  4. Relationship between gingival hyperplasia and class II histocompatibility antigens in renal transplant recipients.

    PubMed

    Türkmen, A; Ak, G; Furuncuoglu, Y; Akar, U; Seyhun, Y; Türk, S; Carin, M; Sever, M S

    2000-01-01

    Gingival hyperplasia, a well-known side effect of ciclosporin A (CS-A), is much more prominent when CS-A is used in combination with calcium channel blockers, especially dihydropyridines. On the other hand, it is interesting to note that this complication is not observed in all patients using this drug combination. This study was conducted in order to investigate the relationship (if any) between major histocompatibility complex antigens and gingival hyperplasia. Seventy-six renal transplantation patients were evaluated by an experienced dentist for gingival hyperplasia. The patients were then divided into two groups according to the presence (group 1, n = 18) or absence (group 2, n = 58) of gingival hyperplasia. There was no significant difference between the two groups regarding age, sex, transplant age, donor type, antihypertensive and immunosuppressive therapy protocols, and CS-A levels. HLA-DR2 antigen was present in 63% of the patients with gingival hyperplasia and in 34% of the patients without gingival hyperplasia. However, the HLA-DR1 antigen frequencies were found to be 11 and 22% in group 1 and group 2, respectively. In patients receiving nifedipine as an antihypertensive therapy, gingival hyperplasia developed more often than in patients receiving verapamil or diltiazem. As a result, in renal allograft recipients with HLA-DR1 antigen, gingival hyperplasia was seen less frequently than in HLA-DR2-positive patients. It is believed that the presence of these antigens regulates the response of the patients to either CS-A and/or calcium channel blockers.

  5. Major histocompatibility complex class II antigens are required for both cytokine production and proliferation induced by mercuric chloride in vitro.

    PubMed

    Hu, H; Möller, G; Abedi-Valugerdi, M

    1997-10-01

    Autoimmune diseases induced by mercuric chloride are genetically determined, at least one gene being major histocompatibility complex (MHC)-linked. Previously, we showed that in vitro mercury stimulation induced a high proliferative response in lymphocytes from susceptible mice (high-responders) and that the proliferative response could be restored in lymphocytes from low-responders by pretreating the cells with mercury. We also found that the continuous presence of mercury induced IL-2 and IFN-gamma production, while pretreatment with mercury induced IL-4 production. In this study, we showed that anti-MHC class II monoclonal antibodies blocked both the mercury-induced proliferative responses in lymphocytes from high-responders and the restored proliferative responses in low-responders. In addition, anti-MHC class II antibodies also inhibited the mercury-induced IL-2, IFN-gamma and IL-4 cytokine production in vitro. The results demonstrate that MHC class II antigens directly participate in mercury-induced cytokine production and cell activation, and are required at the onset of the initiation.

  6. Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells.

    PubMed

    Moffat, Jessica M; Cheong, Wan-Shoo; Villadangos, José A; Mintern, Justine D; Netter, Hans J

    2013-04-26

    Virus-like particles (VLPs) represent high density displays of viral proteins that efficiently trigger immunity. VLPs composed of the small hepatitis B virus envelope protein (HBsAgS) are useful vaccine platforms that induce humoral and cellular immune responses. Notably, however, some studies suggest HBsAgS VLPs impair dendritic cell (DC) function. Here we investigated HBsAgS VLP interaction with DC subsets and antigen access to major histocompatibility complex (MHC) class I and II antigen presentation pathways in primary DCs. HBsAgS VLPs impaired plasmacytoid DC (pDC) interferon alpha (IFNα) production in response to CpG in vitro, but did not alter conventional DC (cDC) or pDC phenotype when administered in vivo. To assess cellular immune responses, HBsAgS VLPs were generated containing the ovalbumin (OVA) model epitopes OVA(257-264) and OVA(323-339) to access MHCI and MHCII antigen presentation pathways, respectively; both in vitro and following immunisation in vivo. HBsAgS VLP-OVA(257-264) elicited CTL responses in vivo that were not enhanced by inclusion of an additional MHCII helper epitope. HBsAgS VLP-OVA(257-264) administered in vivo was cross-presented by CD8(+) DCs, but not CD8(-) DCs. Therefore, HBsAgS VLPs can deliver antigen to both MHCI and MHCII antigen presentation pathways in primary DCs and promote cytotoxic and helper T cell priming despite their suppressive effect on pDCs.

  7. Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain

    PubMed Central

    1990-01-01

    Two prior studies with a small number of T cell lines have shown that the presentation of native protein antigens by epidermal Langerhans cells (LC) is regulated. When freshly isolated, LC are efficient antigen-presenting cells (APC), but after a period of culture LC are inefficient or even inactive. The deficit in culture seems to be a selective loss in antigen processing, since cultured LC are otherwise rich in major histocompatibility complex (MHC) class II products and are active APC for alloantigens and mitogens, which do not require processing. We have extended the analysis by studying presentation to bulk populations of primed lymph node and a T-T hybrid. Only freshly isolated LC can be pulsed with the protein antigens myoglobin and conalbumin, but once pulsed, antigen is retained in an immunogenic form for at least 2 d. The acquisition of antigen, presumably as MHC-peptide complexes, is inhibited if the fresh LC are exposed to foreign protein in the presence of chloroquine or cycloheximide. The latter, in contrast, improves the efficacy of antigen pulsing in anti-Ig- stimulated B blasts. In additional studies of mechanism, we noted that both fresh and cultured LC endocytose similar amounts of an antigen, rhodamineovalbumin, into perinuclear granules. However, freshly isolated LC synthesize high levels class II MHC molecules and express higher amounts of the class II-associated invariant chain. Fresh LC are at least 5-10 times more active than many other cells types in the level of biosynthesis of MHC class II products. These findings provide a physiologic model in which newly synthesized MHC class II molecules appear to be the principal vehicle for effective antigen processing by APC of the dendritic cell lineage. Another APC, the B lymphoblast, does not appear to require newly synthesized MHC class II molecules for presentation. PMID:2121888

  8. CD4 binding to major histocompatibility complex class II antigens induces LFA-1-dependent and -independent homotypic adhesion of B lymphocytes.

    PubMed

    Kansas, G S; Cambier, J C; Tedder, T F

    1992-01-01

    T helper cells recognize processed antigen (Ag) in the context of major histocompatibility complex (MHC) class II antigens present on the surface of B cells and other Ag-presenting cells. This interaction is mediated through the T cell receptor complex with associate recognition of class II molecules by the CD4 molecule. In this study, the binding of a soluble recombinant CD4/Ig heavy chain fusion protein (CD4-gamma 3) or monoclonal antibody (mAb) to class II antigens on human B cells was shown to induce rapid and specific homotypic adhesion of B cells and most B lymphoblastoid cell lines. mAb reactive with CD4 inhibited CD4-gamma 3-induced adhesion and a mutant B lymphoblastoid cell line deficient in class II antigens failed to respond. Induction of homotypic adhesion was dependent on energy metabolism and a functional cytoskeleton, and class II+ pre-B cells did not exhibit adhesion in response to these stimuli, suggesting that cross-linking of class II molecules generated a transmembrane signal and did not simply aggregate cells. In addition, MHC class II-induced adhesion was Fc receptor independent, as 15 mAb of different Ig isotypes reactive with HLA-D or HLA-DQ gene products induced adhesion. Anti-class II mAb and CD4-gamma 3 were able to induce adhesion at concentrations as low as 10 ng/ml and 100 ng/ml, respectively. Suboptimal stimulation of B cell lines through HLA-D antigens induced homotypic adhesion that was dependent on the activation of LFA-1 (CD11a/CD18), and which could be blocked by specific mAb. However, at greater signal strengths, adhesion was not blocked by mAb against the known adhesion receptors, suggesting the induction of a novel adhesion pathway. Consistent with this, homotypic adhesion induced by engagement of MHC class II antigens was observed with LFA-1-deficient B cell lines, and was independent of CD49d or CD18 expression. Thus, the direct engagement of B cell class II antigens by CD4 is likely to generate transmembrane signals which

  9. Murine aortic smooth muscle cells acquire, though fail to present exogenous protein antigens on major histocompatibility complex class II molecules.

    PubMed

    Maddaluno, Marcella; MacRitchie, Neil; Grassia, Gianluca; Ialenti, Armando; Butcher, John P; Garside, Paul; Brewer, James M; Maffia, Pasquale

    2014-01-01

    In the present study aortic murine smooth muscle cell (SMC) antigen presentation capacity was evaluated using the Eα-GFP/Y-Ae system to visualize antigen uptake through a GFP tag and tracking of Eα peptide/MHCII presentation using the Y-Ae Ab. Stimulation with IFN-γ (100 ng/mL) for 72 h caused a significant (P < 0.01) increase in the percentage of MHC class II positive SMCs, compared with unstimulated cells. Treatment with Eα-GFP (100 μg/mL) for 48 h induced a significant (P < 0.05) increase in the percentage of GFP positive SMCs while it did not affect the percentage of Y-Ae positive cells, being indicative of antigen uptake without its presentation in the context of MHC class II. After IFN-γ-stimulation, ovalbumin- (OVA, 1 mg/mL) or OVA323-339 peptide-(0.5 μg/mL) treated SMCs failed to induce OT-II CD4(+) T cell activation/proliferation; this was also accompanied by a lack of expression of key costimulatory molecules (OX40L, CD40, CD70, and CD86) on SMCs. Finally, OVA-treated SMCs failed to induce DO11.10-GFP hybridoma activation, a process independent of costimulation. Our results demonstrate that while murine primary aortic SMCs express MHC class II and can acquire exogenous antigens, they fail to activate T cells through a failure in antigen presentation and a lack of costimulatory molecule expression.

  10. Major histocompatibility complex class II dextramers: New tools for the detection of antigen-specific, CD4 T cells in basic and clinical research

    PubMed Central

    Massilamany, Chandirasegaran; Krishnan, Bharathi; Reddy, Jay

    2015-01-01

    The advent of major histocompatibility complex (MHC) tetramer technology has been a major contribution to T cell immunology, because tetramer reagents permit detection of antigen-specific T cells at the single-cell level in heterogeneous populations by flow cytometry. However, unlike MHC class I tetramers, the utility of MHC class II tetramers has been less frequently reported. MHC class II tetramers can be used successfully to enumerate the frequencies of antigen-specific CD4 T cells in cells activated in vitro, but their use for ex vivo analyses continues to be a problem, due in part to their activation dependency for binding with T cells. To circumvent this problem, we recently reported the creation of a new generation of reagents called MHC class II dextramers, which were found to be superior to their counterparts. In this review, we discuss the utility of class II dextramers vis-a-vis tetramers, with respect to their specificity and sensitivity, including potential applications and limitations. PMID:26207337

  11. Parasite Manipulation of the Invariant Chain and the Peptide Editor H2-DM Affects Major Histocompatibility Complex Class II Antigen Presentation during Toxoplasma gondii Infection.

    PubMed

    Leroux, Louis-Philippe; Nishi, Manami; El-Hage, Sandy; Fox, Barbara A; Bzik, David J; Dzierszinski, Florence S

    2015-10-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4(+) T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-II in vitro. CD74 mRNA and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74 accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication. Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid organs in mice, as well as activation of CD4(+) T cells and interferon gamma (IFN-γ) levels during acute infection. Cyst burdens and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway. PMID:26195549

  12. Evidence for a conformational change in a class II major histocompatibility complex molecule occurring in the same pH range where antigen binding is enhanced

    PubMed Central

    1996-01-01

    Many class II histocompatibility complex molecules bind antigenic peptides optimally at low pH, consistent with their exposure to antigen in acidic endosomal compartments. While it has been suggested that a partially unfolded state serves as an intermediate involved in peptide binding, very little evidence for such a state has been obtained. In this report, we show that the murine class II molecule IE becomes increasingly less stable to sodium dodecyl sulfate-induced dissociation since the pH is decreased in the same range that enhances antigenic peptide binding. Furthermore, at mildly acidic pH levels, IEk binds the fluorescent dye 1-anilino-naphthalene-8-sulfonic acid (ANS), a probe for exposed nonpolar sites in proteins, suggesting that protonation produces a molten globule-like state. The association of IEk with a single high-affinity peptide had only a small effect in these two assays, indicating that the changes that occur are distal to the peptide-binding groove. Circular dichroism analysis shows that a pH shift from neutral to mildly acidic pH causes subtle changes in the environment of aromatic residues but does not grossly disrupt the secondary structure of IEk. We propose a model in which perturbations in interdomain contacts outside the peptide-binding domain of IEk occur at acidic pH, producing a partially unfolded state that facilitates optimal antigen binding. PMID:8551214

  13. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors.

    PubMed

    Silberman, Daniel; Krovi, Sai Harsha; Tuttle, Kathryn D; Crooks, James; Reisdorph, Richard; White, Janice; Gross, James; Matsuda, Jennifer L; Gapin, Laurent; Marrack, Philippa; Kappler, John W

    2016-09-20

    The interaction of αβ T-cell antigen receptors (TCRs) with peptides bound to MHC molecules lies at the center of adaptive immunity. Whether TCRs have evolved to react with MHC or, instead, processes in the thymus involving coreceptors and other molecules select MHC-specific TCRs de novo from a random repertoire is a longstanding immunological question. Here, using nuclease-targeted mutagenesis, we address this question in vivo by generating three independent lines of knockin mice with single-amino acid mutations of conserved class II MHC amino acids that often are involved in interactions with the germ-line-encoded portions of TCRs. Although the TCR repertoire generated in these mutants is similar in size and diversity to that in WT mice, the evolutionary bias of TCRs for MHC is suggested by a shift and preferential use of some TCR subfamilies over others in mice expressing the mutant class II MHCs. Furthermore, T cells educated on these mutant MHC molecules are alloreactive to each other and to WT cells, and vice versa, suggesting strong functional differences among these repertoires. Taken together, these results highlight both the flexibility of thymic selection and the evolutionary bias of TCRs for MHC. PMID:27588903

  14. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors

    PubMed Central

    Silberman, Daniel; Krovi, Sai Harsha; Tuttle, Kathryn D.; Crooks, James; Reisdorph, Richard; White, Janice; Gross, James; Matsuda, Jennifer L.; Gapin, Laurent; Marrack, Philippa; Kappler, John W.

    2016-01-01

    The interaction of αβ T-cell antigen receptors (TCRs) with peptides bound to MHC molecules lies at the center of adaptive immunity. Whether TCRs have evolved to react with MHC or, instead, processes in the thymus involving coreceptors and other molecules select MHC-specific TCRs de novo from a random repertoire is a longstanding immunological question. Here, using nuclease-targeted mutagenesis, we address this question in vivo by generating three independent lines of knockin mice with single-amino acid mutations of conserved class II MHC amino acids that often are involved in interactions with the germ-line–encoded portions of TCRs. Although the TCR repertoire generated in these mutants is similar in size and diversity to that in WT mice, the evolutionary bias of TCRs for MHC is suggested by a shift and preferential use of some TCR subfamilies over others in mice expressing the mutant class II MHCs. Furthermore, T cells educated on these mutant MHC molecules are alloreactive to each other and to WT cells, and vice versa, suggesting strong functional differences among these repertoires. Taken together, these results highlight both the flexibility of thymic selection and the evolutionary bias of TCRs for MHC. PMID:27588903

  15. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors.

    PubMed

    Silberman, Daniel; Krovi, Sai Harsha; Tuttle, Kathryn D; Crooks, James; Reisdorph, Richard; White, Janice; Gross, James; Matsuda, Jennifer L; Gapin, Laurent; Marrack, Philippa; Kappler, John W

    2016-09-20

    The interaction of αβ T-cell antigen receptors (TCRs) with peptides bound to MHC molecules lies at the center of adaptive immunity. Whether TCRs have evolved to react with MHC or, instead, processes in the thymus involving coreceptors and other molecules select MHC-specific TCRs de novo from a random repertoire is a longstanding immunological question. Here, using nuclease-targeted mutagenesis, we address this question in vivo by generating three independent lines of knockin mice with single-amino acid mutations of conserved class II MHC amino acids that often are involved in interactions with the germ-line-encoded portions of TCRs. Although the TCR repertoire generated in these mutants is similar in size and diversity to that in WT mice, the evolutionary bias of TCRs for MHC is suggested by a shift and preferential use of some TCR subfamilies over others in mice expressing the mutant class II MHCs. Furthermore, T cells educated on these mutant MHC molecules are alloreactive to each other and to WT cells, and vice versa, suggesting strong functional differences among these repertoires. Taken together, these results highlight both the flexibility of thymic selection and the evolutionary bias of TCRs for MHC.

  16. Brucella abortus Inhibits Major Histocompatibility Complex Class II Expression and Antigen Processing through Interleukin-6 Secretion via Toll-Like Receptor 2▿

    PubMed Central

    Barrionuevo, Paula; Cassataro, Juliana; Delpino, M. Victoria; Zwerdling, Astrid; Pasquevich, Karina A.; Samartino, Clara García; Wallach, Jorge C.; Fossati, Carlos A.; Giambartolomei, Guillermo H.

    2008-01-01

    The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-γ)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-γ production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection. PMID:17984211

  17. Disruption of hydrogen bonds between major histocompatibility complex class II and the peptide N-terminus is not sufficient to form a human leukocyte antigen-DM receptive state of major histocompatibility complex class II.

    PubMed

    Schulze, Monika-Sarah E D; Anders, Anne-Kathrin; Sethi, Dhruv K; Call, Melissa J

    2013-01-01

    Peptide presentation by MHC class II is of critical importance to the function of CD4+ T cells. HLA-DM resides in the endosomal pathway and edits the peptide repertoire of newly synthesized MHC class II molecules before they are exported to the cell surface. HLA-DM ensures MHC class II molecules bind high affinity peptides by targeting unstable MHC class II:peptide complexes for peptide exchange. Research over the past decade has implicated the peptide N-terminus in modulating the ability of HLA-DM to target a given MHC class II:peptide combination. In particular, attention has been focused on both the hydrogen bonds between MHC class II and peptide, and the occupancy of the P1 anchor pocket. We sought to solve the crystal structure of a HLA-DR1 molecule containing a truncated hemagglutinin peptide missing three N-terminal residues compared to the full-length sequence (residues 306-318) to determine the nature of the MHC class II:peptide species that binds HLA-DM. Here we present structural evidence that HLA-DR1 that is loaded with a peptide truncated to the P1 anchor residue such that it cannot make select hydrogen bonds with the peptide N-terminus, adopts the same conformation as molecules loaded with full-length peptide. HLA-DR1:peptide combinations that were unable to engage up to four key hydrogen bonds were also unable to bind HLA-DM, while those truncated to the P2 residue bound well. These results indicate that the conformational changes in MHC class II molecules that are recognized by HLA-DM occur after disengagement of the P1 anchor residue.

  18. Regulation of major histocompatibility complex class II genes

    PubMed Central

    Choi, Nancy M.; Majumder, Parimal; Boss, Jeremy M.

    2010-01-01

    Summary The major histocompatibility complex class II (MHC-II) genes are regulated at the level of transcription. Recent studies have shown that chromatin modification is critical for efficient transcription of these genes, and a number of chromatin modifying complexes recruited to MHC-II genes have been described. The MHC-II genes are segregated from each other by a series of chromatin elements, termed MHC-II insulators. Interactions between MHC-insulators and the promoters of MHC-II genes are mediated by the insulator factor CCCTC-binding protein and are critical for efficient expression. This regulatory mechanism provides a novel view of how the entire MHC-II locus is assembled architecturally and can be coordinately controlled. PMID:20970972

  19. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    PubMed Central

    2012-01-01

    Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405

  20. Cytokines Regulate Proteolysis in Major Histocompatibility Complex Class II–Dependent Antigen Presentation by Dendritic Cells

    PubMed Central

    Fiebiger, Edda; Meraner, Paul; Weber, Ekkehard; Fang, I-Fei; Stingl, Georg; Ploegh, Hidde; Maurer, Dieter

    2001-01-01

    Endo/lysosomal proteases control two key events in antigen (Ag) presentation: the degradation of protein Ag and the generation of peptide-receptive major histocompatibility complex (MHC) class II molecules. Here we show that the proinflammatory cytokines tumor necrosis factor α and interleukin (IL)-1β rapidly increase the activity of cathepsin (cat) S and catB in human dendritic cells (DCs). As a consequence, a wave of MHC class II sodium dodecyl sulfate stable dimer formation ensues in a catS-dependent fashion. In contrast, the antiinflammatory cytokine IL-10 renders DCs incapable of upregulating catS and catB activity and in fact, attenuates the level of both enzymes. Suppressed catS and catB activity delays MHC class II sodium dodecyl sulfate stable dimer formation and impairs Ag degradation. In DCs exposed to tetanus toxoid, IL-10 accordingly reduces the number of MHC class II–peptide complexes accessible to tetanus toxoid–specific T cell receptors, as analyzed by measuring T cell receptor downregulation in Ag-specific T cell clones. Thus, the control of protease activity by pro- and antiinflammatory cytokines is an essential feature of the Ag presentation properties of DCs. PMID:11304549

  1. Dectin-1-triggered Recruitment of Light Chain 3 Protein to Phagosomes Facilitates Major Histocompatibility Complex Class II Presentation of Fungal-derived Antigens*

    PubMed Central

    Ma, Jun; Becker, Courtney; Lowell, Clifford A.; Underhill, David M.

    2012-01-01

    Dectin-1 is a pattern recognition receptor that is important for innate immune responses against fungi in humans and mice. Dectin-1 binds to β-glucans in fungal cell walls and triggers phagocytosis, production of reactive oxygen by the NADPH oxidase, and inflammatory cytokine production which all contribute to host immune responses against fungi. Although the autophagy pathway was originally characterized for its role in the formation of double-membrane compartments engulfing cytosolic organelles and debris, recent studies have suggested that components of the autophagy pathway may also participate in traditional phagocytosis. In this study, we show that Dectin-1 signaling in macrophages and bone marrow-derived dendritic cells triggers formation of LC3II, a major component of the autophagy machinery. Further, Dectin-1 directs the recruitment of LC3II to phagosomes, and this requires Syk, activation of reactive oxygen production by the NADPH oxidase, and ATG5. Using LC3-deficient dendritic cells we show that whereas LC3 recruitment to phagosomes is not important for triggering phagocytosis, killing or Dectin-1-mediated inflammatory cytokine production, it facilitates recruitment of MHC class II molecules to phagosomes and promotes presentation of fungal-derived antigens to CD4 T cells. PMID:22902620

  2. A mouse aminopeptidase N is a marker for antigen-presenting cells and appears to be co-expressed with major histocompatibility complex class II molecules.

    PubMed

    Hansen, A S; Norén, O; Sjöström, H; Werdelin, O

    1993-09-01

    To analyze the expression of mouse aminopeptidase N (APN) on the cells of the immune system a panel of rat monoclonal antibodies against mouse intestinal APN was generated. These antibodies were used to affinity purify functional mouse APN from both intestine and kidney, and by flow cytometry to examine the APN expression of the cells of the mouse immune system. An APN closely related, perhaps identical, to the intestinal APN was expressed on a subpopulation of spleen cells and stimulated peritoneal exudate cells, primarily representing antigen-presenting cells, such as B cells, macrophages, dendritic cells, and veiled cells. In contrast this APN expression could not be detected on thymocytes or spleen T cells. As a corollary, APN was expressed on monocyte, macrophage, and B lymphoma cell lines, but not on T hybridoma or thymoma cell lines. The expression of APN showed a striking correlation with the MHC class II expression in all the cell populations studied. This apparent co-expression suggests a role for APN in antigen processing.

  3. Expression of major histocompatibility complex class II and costimulatory molecules in oral carcinomas in vitro.

    PubMed

    Villarroel-Dorrego, Mariana; Speight, Paul M; Barrett, A William

    2005-01-01

    Recognition in the 1980 s that keratinocytes can express class II molecules of the Major Histocompatibility Complex (MHC) first raised the possibility that these cells might have an immunological function, and may even act as antigen presenting cells (APC). For effective T lymphocyte activation, APC require, in addition to MHC II, appropriate costimulatory signals. The aim of this study was to determine the expression of MHC class II and the co-stimulatory molecules CD40, CD80 and CD86 in keratinocytes derived from healthy oral mucosa and oral carcinomas. Using flow cytometry, it was confirmed that oral keratinocytes, switch on, expression of MHC class II molecules after stimulation with IFNgamma in vitro. All keratinocyte lines expressed CD40 constitutively; by contrast, CD80 and CD86 were universally absent. Loss of CD80 and CD86 may be one means whereby tumours escape immunological surveillance.

  4. Trypanosoma cruzi Infection Modulates In Vivo Expression of Major Histocompatibility Complex Class II Molecules on Antigen-Presenting Cells and T-Cell Stimulatory Activity of Dendritic Cells in a Strain-Dependent Manner

    PubMed Central

    Alba Soto, Catalina D.; Mirkin, Gerardo A.; Solana, Maria E.; González Cappa, Stella M.

    2003-01-01

    A striking feature of Chagas' disease is the diversity of clinical presentations. Such variability may be due to the heterogeneity among Trypanosoma cruzi isolates or to the host immune response. Employing two strains which differ in their virulence, we investigated the effect of in vivo infection on professional antigen-presenting cells (APC). Acute infection with the virulent RA strain downregulated the expression of major histocompatibility complex (MHC) class II on splenic dendritic cells (DC) and inhibited its induction on peritoneal macrophages and splenic B cells. It also impaired the ability of DC to prime allogeneic T cells and to form homotypic clusters, suggesting a low maturation state of these cells. In contrast, the low-virulence K98 strain maintained the expression of MHC class II on DC or stimulated it on peritoneal macrophages and B cells and preserved DC's T-cell priming capacity and homotypic clustering. DC from RA-infected mice elicited a lower activation of T. cruzi-specific T-cell proliferation than those from K98-infected mice. APC from RA-infected mice that reached the chronic phase of infection restored MHC class II levels to those found in K98-infected mice and upregulated costimulatory molecules expression, suggesting that the immunosuppression caused by this strain is only transient. Taken together, the results indicate that in vivo infection with T. cruzi modulates APC functionality and that this is accomplished in a strain-dependent manner. PMID:12595432

  5. A synthetic random basic copolymer with promiscuous binding to class II major histocompatibility complex molecules inhibits T-cell proliferative responses to major and minor histocompatibility antigens in vitro and confers the capacity to prevent murine graft-versus-host disease in vivo.

    PubMed Central

    Schlegel, P G; Aharoni, R; Chen, Y; Chen, J; Teitelbaum, D; Arnon, R; Sela, M; Chao, N J

    1996-01-01

    Graft-versus-host disease (GVHD) is a T-cell-mediated disease of transplanted donor T cells recognizing host alloantigens. Data presented in this report show, to our knowledge, for the first time that a synthetic copolymer of the amino acids L-Glu, L-Lys, L-Ala, and L-Tyr (molecular ratio, 1.9:6.0:4.7:1.0; Mr, 6000-8500) [corrected], termed GLAT, with promiscuous binding to multiple major histocompatibility complex class II alleles is capable of preventing lethal GVHD in the B10.D2 --> BALB/c model (both H-2d) across minor histocompatibility barriers. Administration of GLAT over a limited time after transplant significantly reduced the incidence, onset, and severity of disease. GLAT also improved long-term survival from lethal GVHD: 14/25 (56%) of experimental mice survived > 140 days after transplant compared to 2/26 of saline-treated or to 1/10 of hen egg lysozyme-treated control mice (P < 0.01). Long-term survivors were documented to be fully chimeric by PCR analysis of a polymorphic microsatellite region in the interleukin 1beta gene. In vitro, GLAT inhibited the mixed lymphocyte culture in a dose-dependent fashion across a variety of major barriers tested. Furthermore, GLAT inhibited the response of nylon wool-enriched T cells to syngeneic antigen-presenting cells presenting minor histocompatibility antigens. Prepulsing of the antigen-presenting cells with GLAT reduced the proliferative response, suggesting that GLAT inhibits antigen presentation. Images Fig. 1 Fig. 2 Fig. 4 PMID:8643529

  6. DNase I hypersensitive sites flank the mouse class II major histocompatibility complex during B cell development.

    PubMed Central

    Carson, S

    1991-01-01

    The mouse class II major histocompatibility complex (MHC) encodes a polymorphic, multigene family important in the immune response, and is expressed mainly on mature B cells, on certain types of dendritic cells and is also inducible by gamma-interferon on antigen presenting cells. To study the regulatory elements which control this expression pattern, we have examined the chromatin structure flanking the class II MHC region, in particular during B cell differentiation. Using a panel of well-characterised mouse cell lines specific for different stages of B cell development (pre-B, B, plasma cell) as well as non-B cell lines, we have mapped the DNase I hypersensitive (DHS) sites adjacent to the mouse MHC class II region. The results presented show, for the first time that there are specific hypersensitive sites flanking the class II MHC locus during pre B cell, B cell and plasma cell stages of B cell differentiation, irrespective of the status of class II MHC expression. These hypersensitive sites are not found in T cell, fibroblast or uninduced myelomonocytic cell lines. This suggests that these DHS sites define a developmentally stable, chromatin structure, which can be used as a marker of B cell lineage commitment and may indicate that a combination of these hypersensitive sites reflect regulatory proteins involved in the immediate expression of a particular class II MHC gene or possibly control of the entire locus. Images PMID:1923768

  7. Characterisation of four major histocompatibility complex class II genes of the koala (Phascolarctos cinereus).

    PubMed

    Lau, Quintin; Jobbins, Sarah E; Belov, Katherine; Higgins, Damien P

    2013-01-01

    Major histocompatibility complex (MHC) class II molecules have an integral role in the adaptive immune response, as they bind and present antigenic peptides to T helper lymphocytes. In this study of koalas, species-specific primers were designed to amplify exon 2 of the MHC class II DA and DB genes, which contain much of the peptide-binding regions of the α and β chains. A total of two DA α1 domain variants and eight DA β1 (DAB), three DB α1 and five DB β1 variants were amplified from 20 koalas from two free-living populations from South East Queensland and the Port Macquarie region in northern New South Wales. We detected greater variation in the β1 than in the α1 domains as well as evidence of positive selection in DAB. The present study provides a springboard to future investigation of the role of MHC in disease susceptibility in koalas.

  8. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Hoynowski, S. M.; Woods, K. M.; Armstrong, J. W.; Beharka, A. A.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines.

  9. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules.

    PubMed Central

    Chapes, S K; Hoynowski, S M; Woods, K M; Armstrong, J W; Beharka, A A; Iandolo, J J

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines. PMID:8359928

  10. Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection

    PubMed Central

    Cram, Erik D.; Simmons, Ryan S.; Palmer, Amy L.; Hildebrand, William H.; Rockey, Daniel D.

    2015-01-01

    The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8+ cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8+ T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8+ killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins. PMID:26597986

  11. Interactions between the Class II Transactivator and CREB Binding Protein Increase Transcription of Major Histocompatibility Complex Class II Genes

    PubMed Central

    Fontes, Joseph D.; Kanazawa, Satoshi; Jean, Dickson; Peterlin, B. Matija

    1999-01-01

    Class II major histocompatibility (class II) genes are regulated in a B-cell-specific and gamma interferon-inducible fashion. The master switch for the expression of these genes is the class II transactivator (CIITA). In this report, we demonstrate that one of the functions of CIITA is to recruit the CREB binding protein (CBP) to class II promoters. Not only functional but also specific binding interactions between CIITA and CBP were demonstrated. Moreover, a dominant negative form of CBP decreased the activity of class II promoters and levels of class II determinants on the surface of cells. Finally, the inhibition of class II gene expression by the glucocorticoid hormone could be attributed to the squelching of CBP by the glucocorticoid receptor. We conclude that CBP, a histone acetyltransferase, plays an important role in the transcription of class II genes. PMID:9858618

  12. Mechanism of induction of class I major histocompatibility antigen expression by murine leukemia virus.

    PubMed

    Faller, D V; Wilson, L D; Flyer, D C

    1988-03-01

    Alterations in expression of major histocompatibility complex (MHC) antigens on tumor cells clearly correlate with the tumorgenicity and metastatic potential of those cells. These changes in the biological behavior of the tumor cells are presumably secondary to resulting changes in their susceptibility to immune recognition and destruction. Murine leukemia viruses (MuLV) exert regulatory effects on class I genes of the MHC locus. MuLV infection results in substantial increases in cell surface expression of all three class I MHC antigens. These viral effects on MHC antigen expression profoundly influence immune-mediated interaction with the infected cells, as assessed by cytotoxic T lymphocyte recognition and killing. Control of class I MHC and beta-2 microglobulin genes by MuLV takes place via a trans-acting molecular mechanism. MuLV controls expression of widely separated endogenous cellular MHC genes, transfected xenogeneic class I MHC genes, and unintegrated chimeric genes consisting of fragments of class I MHC genes linked to a bacterial reporter gene. These findings indicate that MuLV exerts its effects on MHC expression via a trans mechanism. The MuLV-responsive sequences on the MHC genes appear to lie within 1.2 kilobases upstream of the initiation codon for those genes.

  13. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages.

    PubMed Central

    Kovacsovics-Bankowski, M; Clark, K; Benacerraf, B; Rock, K L

    1993-01-01

    Antigens in extracellular fluids can be processed and presented with major histocompatibility complex (MHC) class I molecules by a subset of antigen presenting cells (APCs). Chicken egg ovalbumin (Ova) linked to beads was presented with MHC class I molecules by these cells up to 10(4)-fold more efficiently than soluble Ova. This enhanced presentation was observed with covalently or noncovalently linked Ova and with beads of different compositions. A key parameter in the activity of these conjugates was the size of the beads. The APC that is responsible for this form of presentation is a macrophage. These cells internalize the antigen constructs through phagocytosis, since cytochalasin B inhibited presentation. Processing of the antigen and association with MHC class I molecules appears to occur intracellularly as presentation was observed under conditions where there was no detectable release of peptides into the extracellular fluids. When injected in vivo in C57BL/6 mice, Ova-beads, but not soluble Ova, primed CD4- CD8+ cytotoxic T lymphocytes (CTLs). Similar results were obtained in BALB/c mice immunized with beta-galactosidase-beads. The implications of these findings for development of nonliving vaccines that stimulate CTL immunity are discussed. PMID:8506338

  14. Lack of association between Behçet's disease and major histocompatibility complex class II antigens in an ethnically diverse North American Caucasoid patient group.

    PubMed

    Moore, S B; O'Duffy, J D

    1986-08-01

    A group of 25 North American Caucasoid patients with well defined Behcet's disease were serologically typed for HLA-DR and DQw antigens. No significant associations were seen when results were compared with a group of 73 normal Caucasoid controls tested concomitantly. PMID:3772926

  15. Association of the bovine leukocyte antigen major histocompatibility complex class II DRB3*4401 allele with host resistance to the Lone Star Tick, Amblyomma americanum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The MHC of cattle, known as the bovine leukocyte antigen (BoLA) complex, plays an integral role in disease and parasite susceptibility, and immune responsiveness of the host. While susceptibility to tick infestation in cattle is believed to be heritable, genes that may be responsible for the manife...

  16. Major histocompatibility complex class II genes and systemic sclerosis.

    PubMed

    Briggs, D; Welsh, K I

    1991-11-01

    susceptibility to the disease is conferred by neutral residues (Val, Ser, Ala), at position 57 of the DQ beta chain, while Asp at this position correlates with resistance. A similar phenomenon has been described in rheumatoid arthritis. Although DR4 in general is associated with rheumatoid arthritis, it is heterogeneous, but a subtype of DR4 which is characterised by positively charged residues at positions 70 and 71 of the beta chains is not found in patients with rheumatoid arthritis (Wordsworth B P et al, unpublished data). A similar approach applied to the study of systemic sclerosis is likely to be similarly rewarding. The precise subtyping of the class II genes and the characterisation of their associated haplotypes is therefore required for a complete understanding of the contribution of the MHC to the disease. Additional genes linked to the MHC must not be overlooked, and are relevant to associations of haplotypes with the disease. Of particular interest are the recent reports of a new class of proteins, which are determined by genes in the MHC and which are considered to play a part in the assembly of the antigen peptide/MHC molecule complex. PMID:1750798

  17. Major histocompatibility complex class II expression distinguishes two distinct B cell developmental pathways during ontogeny

    PubMed Central

    1994-01-01

    All mature B cells coexpress major histocompatibility complex (MHC) class II molecules, I-A and I-E, which are restriction elements required for antigen presentation to CD4+ T cells. However, the expression of class II during the early stages of B cell development has been unclear. We demonstrate here that there is a difference in the expression of class II during murine B cell development in the fetal liver and adult bone marrow (BM). These differences define two distinct B cell developmental pathways. The Fetal-type (FT) pathway is characterized by pre-B and immature IgM+ B cells generated in the fetal liver which initially lack all class II expression. In contrast, the Adult-type (AT) pathway is typified by B cells developing in the adult BM which express class II molecules from the pre-B cell stage. In vitro stromal cell cultures of sorted fetal liver and adult BM pro-B cells indicated that the difference in I-A expression during B cell development is intrinsic to the progenitors. In addition, we show that FT B cell development is not restricted to the fetal liver but occurs in the peritoneal cavities, spleens, liver, and BM of young mice up to at least 1 mo of age. The AT B cell development begins to emerge after birth but is, however, restricted to the BM environment. These findings indicate that there are two distinct B cell developmental pathways during ontogeny, each of which could contribute differentially to the immune repertoire and thus the functions of B cell subsets and lineages. PMID:7913950

  18. CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice

    PubMed Central

    1995-01-01

    Rather unexpectedly, major histocompatibility complex class II- deficient mice have a significant population of peripheral CD4+ T lymphocytes. We have investigated these cells at the population and clonal levels. CD4+ T lymphocytes from class II-deficient animals are thymically derived, appear early in ontogeny, exhibit the phenotype of resting memory cells, are potentially functional by several criteria, and have a diverse T cell receptor repertoire. They do not include substantially elevated numbers of NK1.1+ cells. Hybridomas derived after polyclonal stimulation of the CD4+ lymphocytes from class II- deficient animals include a subset with an unusual reactivity pattern, responding to splenocytes from many mouse strains including the strain of origin. Most members of this subset recognize the major histocompatibility complex class Ib molecule CD1; their heterogeneous reactivities and T cell receptor usage further suggest the involvement of peptides and/or highly variable posttranslational modifications. PMID:7561702

  19. Autoimmune diabetes can be induced in transgenic major histocompatibility complex class II-deficient mice

    PubMed Central

    1993-01-01

    Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease marked by hyperglycemia and mononuclear cell infiltration of insulin- producing beta islet cells. Predisposition to IDDM in humans has been linked to the class II major histocompatibility complex (MHC), and islet cells often become aberrantly class II positive during the course of the disease. We have used two recently described transgenic lines to investigate the role of class II molecules and CD4+ T cells in the onset of autoimmune insulitis. Mice that are class II deficient secondary to a targeted disruption of the A beta b gene were bred to mice carrying a transgene for the lymphocytic choriomenigitis virus (LCMV) glycoprotein (GP) targeted to the endocrine pancreas. Our results indicate that class II-deficient animals with and without the GP transgene produce a normal cytotoxic T lymphocyte response to whole LCMV. After infection with LCMV, GP-transgenic class II-deficient animals develop hyperglycemia as rapidly as their class II-positive littermates. Histologic examination of tissue sections from GP- transgenic class II-deficient animals reveals lymphocytic infiltrates of the pancreatic islets that are distinguishable from those of their class II-positive littermates only by the absence of infiltrating CD4+ T cells. These results suggest that in this model of autoimmune diabetes, CD4+ T cells and MHC class II molecules are not required for the development of disease. PMID:8101862

  20. Inhibition by chloroquine of the class II major histocompatibility complex-restricted presentation of endogenous antigens varies according to the cellular origin of the antigen-presenting cells, the nature of the T-cell epitope, and the responding T cell.

    PubMed Central

    Lombard-Platlet, S; Bertolino, P; Deng, H; Gerlier, D; Rabourdin-Combe, C

    1993-01-01

    Chloroquine treatment of antigen-presenting cells (APC) was explored as a tool to investigate the processing pathway for major histocompatibility complex (MHC) class II-restricted presentation of the endogenous secreted hen egg lysozyme (HEL) and transmembrane measles virus haemagglutinin (HA). A 72-hr pretreatment of the APC with 25 microM chloroquine blocked the presentation of the HEL(52-61) T-cell epitope generated from endogenous HEL to the I-Ak-restricted 3A9 T-cell hybridoma by MHC class II-transfected L cells expressing the invariant chain (Ii). The presentation of exogenously added HEL peptides was not affected. Under the same conditions, no inhibition of the presentation of HEL(106-116) to the I-Ed-restricted G28 high-avidity T-cell hybridoma, nor of HA when synthesized by L cells, was observed. When B-lymphoid APC were used, inhibition was observed in every case with a low number of B APC pretreated for 48 hr with chloroquine prior to the T-cell stimulation test. Moreover, addition of chloroquine to untreated B APC during the T-cell stimulation assay was sufficient to inhibit completely the presentation of HEL(106-116) to the B10.D24.42 low avidity T-cell hybridoma. Altogether these studies suggest that an apparent resistance of endogenous Ag presentation to chloroquine inhibition may not necessarily indicate the existence of a non-endosomal pathway but may be due to the nature of the T-cell epitope, to the use of 'non-professional' APC such as L cells, to the use of T cells of high avidity, and to high amounts of pre-existing MHC class II-peptide complexes expressed by the APC. We demonstrate here that, at least in conventional APC such as B cells, class II-restricted presentation of both endogenous secreted HEL and transmembrane HA involves an endosomal pathway. PMID:7508420

  1. Characterization of class I- and class II-like major histocompatibility complex loci in pedigrees of North Atlantic right whales.

    PubMed

    Gillett, Roxanne M; Murray, Brent W; White, Bradley N

    2014-01-01

    North Atlantic right whales have one of the lowest levels of genetic variation at minisatellite loci, microsatellite loci, and mitochondrial control region haplotypes among mammals. Here, adaptive variation at the peptide binding region of class I and class II DRB-like genes of the major histocompatibility complex was assessed. Amplification of a duplicated region in 222 individuals revealed at least 11 class II alleles. Six alleles were assigned to the locus Eugl-DRB1 and 5 alleles were assigned to the locus Eugl-DRB2 by assessing segregation patterns of alleles from 81 parent/offspring pedigrees. Pedigree analysis indicated that these alleles segregated into 12 distinct haplotypes. Genotyping a smaller subset of unrelated individuals (n = 5 and 10, respectively) using different primer sets revealed at least 2 class II pseudogenes (with ≥ 4 alleles) and at least 3 class I loci (with ≥ 6 alleles). Class II sequences were significantly different from neutrality at peptide binding sites suggesting loci may be under the influence of balancing selection. Trans-species sharing of alleles was apparent for class I and class II sequences. Characterization of class II loci represents the first step in determining the relationship between major histocompatibility complex variability and factors affecting health and reproduction in this species.

  2. Characterization of class I- and class II-like major histocompatibility complex loci in pedigrees of North Atlantic right whales.

    PubMed

    Gillett, Roxanne M; Murray, Brent W; White, Bradley N

    2014-01-01

    North Atlantic right whales have one of the lowest levels of genetic variation at minisatellite loci, microsatellite loci, and mitochondrial control region haplotypes among mammals. Here, adaptive variation at the peptide binding region of class I and class II DRB-like genes of the major histocompatibility complex was assessed. Amplification of a duplicated region in 222 individuals revealed at least 11 class II alleles. Six alleles were assigned to the locus Eugl-DRB1 and 5 alleles were assigned to the locus Eugl-DRB2 by assessing segregation patterns of alleles from 81 parent/offspring pedigrees. Pedigree analysis indicated that these alleles segregated into 12 distinct haplotypes. Genotyping a smaller subset of unrelated individuals (n = 5 and 10, respectively) using different primer sets revealed at least 2 class II pseudogenes (with ≥ 4 alleles) and at least 3 class I loci (with ≥ 6 alleles). Class II sequences were significantly different from neutrality at peptide binding sites suggesting loci may be under the influence of balancing selection. Trans-species sharing of alleles was apparent for class I and class II sequences. Characterization of class II loci represents the first step in determining the relationship between major histocompatibility complex variability and factors affecting health and reproduction in this species. PMID:24381183

  3. Class I and class II major histocompatibility molecules play a role in bone marrow-derived macrophage development

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Simske, S. J.; Beharka, A. A.; Balch, S.; Luttges, M. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Class I and class II major histocompatibility complex (MHC) molecules play significant roles in T cell development and immune function. We show that MHCI- and MHCII-deficient mice have low numbers of macrophage precursors and circulating monocytes, as well as abnormal bone marrow cell colony-stimulating factor type 1 secretion and bone composition. We suggest that MHCI and MHCII molecules play a significant role in macrophage development.

  4. Role of chain pairing for the production of functional soluble IA major histocompatibility complex class II molecules

    PubMed Central

    1996-01-01

    Structural studies of cellular receptor molecules involved in immune recognition require the production of large quantities of the extracellular domains of these glycoproteins. The murine major histocompatibility complex (MHC) class II-restricted response has been extensively studied by functional means, but the engineering and purification of the native, empty form of the most-studied murine MHC class II molecule, IA, has been difficult to achieve. IA molecules, which are the murine equivalent of human histocompatibility leukocyte antigen-DQ molecules, have a low efficiency of chain pairing, which results in poor transport to the cell surface and in the appearance of mixed isotype pairs. We have engineered soluble IA molecules whose pairing has been forced by the addition of leucine zipper peptide dimers at their COOH-terminus. The molecules are secreted "empty" into the extracellular medium and can be loaded with single peptide after purification. These IA molecules have been expressed in milligram quantity for crystallization as well as for activation of T cells and measurement of MHC class II-T cell receptor interactions. PMID:8642319

  5. Failure of expression of class I major histocompatibility antigens to alter tumor immunogenicity of a spontaneous murine carcinoma.

    PubMed

    Carlow, D A; Kerbel, R S; Elliott, B E

    1989-05-10

    We have shown previously that clonal immunogenic variants of murine mammary adenocarcinoma 10.1 can be isolated after treatment in vitro with the DNA-hypomethylating agent 5-azacytidine (5-aza). Such immunogenic variants frequently express elevated class I major histocompatibility complex antigens relative to the level of expression in the parent tumor and are rejected in syngeneic mice by a T-cell-dependent process. To ascertain whether elevated immunogenicity is a function of increased class I antigen expression, we isolated high class I antigen expressors from 5-aza-treated 10.1 cells by using the fluorescence-activated cell sorter. Clonal variants displaying any increase in class I antigen expression were more efficient stimulators of allo-class I antigen-specific cytolytic T-cell precursors. However, these variants displayed unaltered tumorigenicity in immunocompetent syngeneic mice. Thus, phenotypic changes other than, or in addition to, elevated class I antigen expression cause the reduced tumorigenicity of immunogenic clones of 10.1 cells isolated after 5-aza treatment.

  6. Major histocompatibility complex class II A gene polymorphism in the striped bass

    SciTech Connect

    Hardee, J.J.; Godwin, U.; Benedetto, R.; McConnell, T.J.

    1995-02-01

    Adaptions of the polymerase chain reaction were used to isolate cDNA sequences encoding the Major histocompatibility complex (Mhc) class II A gene(s) of the striped bass (Morone saxatilis). Four complete Mhc class II A genes were cloned and sequenced from a specimen originating on the Roanoke River, North Carolina, and another three A genes from a specimen originating from the Santee-Cooper Reservoir, South Carolina, identifying a total of seven unique sequences. The sequence suggests the presence of at least two Mhc class II A loci. The extensive sequence variability observed between the seven different Mhc class II clones was concentrated in the {alpha}1 encoding domain. The encoded {alpha}2, transmembrane, and cytoplasmic regions of all seven striped bass genes correlated well with those of known vertebrate Mhc class II proteins. Overall, the striped bass sequences showed greatest similarity to the Mhc class II A genes of the zebrafish. Southern blot analysis demonstrated extensive polymorphism in the Mhc class II A genes in members of a Roanoke river-caught population of striped bass versus a lesser degree of polymorphism in an aquacultured Santee-Cooper population of striped bass. 55 refs., 5 figs., 1 tab.

  7. Major histocompatibility complex class II A gene polymorphism in the striped bass.

    PubMed

    Hardee, J J; Godwin, U; Benedetto, R; McConnell, T J

    1995-01-01

    Adaptions of the polymerase chain reaction were used to isolate cDNA sequences encoding the Major histocompatibility complex (Mhc) class II A gene(s) of the striped bass (Morone saxatilis). Four complete Mhc class II A genes were cloned and sequenced from a specimen originating in the Roanoke River, North Carolina, and another three A genes from a specimen originating from the Santee-Cooper Reservoir, South Carolina, identifying a total of seven unique sequences. The sequence suggests the presence of at least two Mhc class II A loci. The extensive sequence variability observed between the seven different Mhc class II clones was concentrated in the alpha 1 encoding domain. The encoded alpha 2, transmembrane, and cytoplasmic regions of all seven striped bass genes correlated well with those of known vertebrate Mhc class II proteins. Overall, the striped bass sequences showed greatest similarity to the Mhc class II A genes of the zebrafish. Southern blot analysis demonstrated extensive polymorphism in the Mhc class II A genes in members of a Roanoke river-caught population of striped bass versus a lesser degree of polymorphism in an aquacultured Santee-Cooper population of striped bass.

  8. Specific suppression of major histocompatibility complex class I and class II genes in astrocytes by brain-enriched gangliosides

    PubMed Central

    1993-01-01

    The effect of brain-enriched gangliosides on constitutive and cytokine- inducible expression of major histocompatibility complex (MHC) class I and II genes in cultured astrocytes was studied. Before treatment with gangliosides, astrocytes expressed constitutive MHC class I but not class II molecules, however, the expression of both MHC class I and II cell surface molecules on astrocytes was induced to high levels by interferon gamma (IFN-gamma). Constitutive and IFN-gamma-inducible expression of MHC class I and II molecules was suppressed by treatment of astrocytes with exogenous bovine brain gangliosides in a dose- dependent manner. Constitutive and induced MHC class I and II mRNA levels were also suppressed by gangliosides, indicating control through transcriptional mechanisms. This was consistent with the ability of gangliosides to suppress the binding activity of transcription factors, especially NF-kappa B-like binding activity, important for the expression of both MHC class I and II genes. These studies may be important for understanding mechanisms of central nervous system (CNS)- specific regulation of major histocompatibility molecules in neuroectodermal cells and the role of gangliosides in regulating MHC- restricted antiviral and autoimmune responses within the CNS. PMID:8376939

  9. Species specificity and augmentation of responses to class II major histocompatibility complex molecules in human CD4 transgenic mice

    PubMed Central

    1992-01-01

    Murine T cell responses to human class II major histocompatibility complex (MHC) molecules were shown to be a minimum of 20-70-fold lower than responses to allogeneic molecules. Transgenic mice expressing slightly below normal (75-95%) or very high (250-380%) cell surface levels of human CD4 were utilized to determine whether this was due to a species-specific interaction between murine CD4 and class II molecules. Human CD4 was shown to function in signal transduction events in murine T cells based on the ability of anti-human CD4 antibody to synergize with suboptimal doses of anti-murine CD3 antibody in stimulating T cell proliferation. In mice expressing lower levels of human CD4, T cell responses to human class II molecules were enhanced up to threefold, whereas allogeneic responses were unaltered. In mice expressing high levels of human CD4, responses to human class II molecules were enhanced at least 10-fold, whereas allogeneic responses were between one and three times the level of normal responses. The relatively greater enhancement of the response to human class II molecules in both lines argues for a preferential interaction between human CD4 and human class II molecules. In mice expressing lower levels of human CD4, responses to human class II molecules were blocked by antibodies to CD4 of either species, indicating participation by both molecules. In mice expressing high levels of human CD4, responses to both human and murine class II molecules were almost completely blocked with anti-human CD4 antibody, whereas anti-murine CD4 antibody had no effect. However, anti-murine CD4 continued to synergize with anti-CD3 in stimulating T cell proliferation in these mice. Thus, overexpression of human CD4 selectively impaired the ability of murine CD4 to assist in the process of antigen recognition. The ability of human CD4 to support a strong allogeneic response under these conditions indicates that this molecule can interact with murine class II molecules to a

  10. Isolation and characterization of major histocompatibility complex class II B genes in cranes.

    PubMed

    Kohyama, Tetsuo I; Akiyama, Takuya; Nishida, Chizuko; Takami, Kazutoshi; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi

    2015-11-01

    In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution. PMID:26452363

  11. Selection and Trans-Species Polymorphism of Major Histocompatibility Complex Class II Genes in the Order Crocodylia

    PubMed Central

    Jaratlerdsiri, Weerachai; Isberg, Sally R.; Higgins, Damien P.; Miles, Lee G.; Gongora, Jaime

    2014-01-01

    Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and β evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II β diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II β sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85–90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia. PMID:24503938

  12. Toxic shock syndrome toxin 1 binds to major histocompatibility complex class II molecules.

    PubMed Central

    Scholl, P; Diez, A; Mourad, W; Parsonnet, J; Geha, R S; Chatila, T

    1989-01-01

    Toxic shock syndrome toxin 1 (TSST-1) is a 22-kDa exotoxin produced by strains of Staphylococcus aureus and implicated in the pathogenesis of toxic shock syndrome. In common with other staphylococcal exotoxins, TSST-1 has diverse immunological effects. These include the induction of interleukin 2 receptor expression, interleukin 2 synthesis, proliferation of human T lymphocytes, and stimulation of interleukin 1 synthesis by human monocytes. In the present study, we demonstrate that TSST-1 binds with saturation kinetics and with a dissociation constant of 17-43 nM to a single class of binding sites on human mononuclear cells. There was a strong correlation between the number of TSST-1 binding sites and the expression of major histocompatibility complex class II molecules, and interferon-gamma induced the expression of class II molecules as well as TSST-1 binding sites on human skin-derived fibroblasts. Monoclonal antibodies to HLA-DR, but not to HLA-DP or HLA-DQ, strongly inhibited TSST-1 binding. Affinity chromatography of 125I-labeled cell membranes over TSST-1-agarose resulted in the recovery of two bands of 35 kDa and 31 kDa that comigrated, respectively, with the alpha and beta chains of HLA-DR and that could be immunoprecipitated with anti-HLA-DR monoclonal antibodies. Binding of TSST-1 was demonstrated to HLA-DR and HLA-DQ L-cell transfectants. These results indicate that major histocompatibility complex class II molecules represent the major binding site for TSST-1 on human cells. Images PMID:2542966

  13. Expression Regulation of Major Histocompatibility Complex Class I and Class II Encoding Genes

    PubMed Central

    van den Elsen, Peter J.

    2011-01-01

    Major histocompatibility complex (MHC)-I and MHC-II molecules play an essential role in the immune response to pathogens by virtue of their ability to present peptides to CD8+ and CD4+ T cells, respectively. Given this critical role, MHC-I and MHC-II genes are regulated in a tight fashion at the transcriptional level by a variety of transcription factors that interact with conserved cis-acting regulatory promoter elements. In addition to the activities of these regulatory factors, modification of chromatin also plays an essential role in the efficient transcription of these genes to meet with local requirement for an effective immune response. The focus of this review is on the transcription factors that interact with conserved cis-acting promoter elements and the epigenetic mechanisms that modulate induced and constitutive expression of these MHC genes. PMID:22566838

  14. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.

  15. cDNA cloning and genetic polymorphism of the swine major histocompatibility complex (SLA) class II DMA gene.

    PubMed

    Ando, A; Kawata, H; Murakami, T; Shigenari, A; Shiina, T; Sada, M; Tsuji, T; Toriu, A; Nakanishi, Y; Mitsuhashi, T; Sekikawa, K; Inoko, H

    2001-04-01

    cDNA clones corresponding to the swine histocompatibility complex (SLA: swine leucocyte antigen)-DM alpha chain were isolated using the polymerase chain reaction (PCR) products from the third exon in the human HLA-DMA gene as a probe. Amino acid comparative analysis revealed that these clones were more closely related to the bovine and human DMA genes than to the other swine class II genes alpha chain genes, DRA, DQA and DOA. These results suggest that the SLA-DMA gene is expressed and may function, like HLA-DM, as an important modulator in class II restricted antigen processing in swine. Furthermore, based on the sequences and PCR-restriction fragment length polymorphism (PCR-RFLP) patterns in the SLA-DMA gene, no allelic variation was recognized in the second exon, but five allelic variations were recognized in the third exon in five different breeds of swine. These DMA alleles were defined by variation at four nucleotide positions. Two of these alleles resulted in an amino acid substitution. These results suggest that SLA-DMA has little polymorphism as observed in HLA-DMA and mouse H2-Ma.

  16. Engagement of major histocompatibility complex class I and class II molecules up-regulates intercellular adhesion of human B cells via a CD11/CD18-independent mechanism.

    PubMed

    Alcover, A; Juillard, V; Acuto, O

    1992-02-01

    We have studied the role of major histocompatibility complex (MHC) molecules in the regulation of intercellular adhesion of human B cells. We found that molecules able to bind to MHC class II molecules, such as monoclonal antibodies or staphylococcal enterotoxins, induced rapid and sustained homotypic adhesion of Epstein-Barr virus (EBV)-transformed B cell lines as well as peripheral blood B lymphocytes. Moreover, anti-MHC class I monoclonal antibodies also stimulated intercellular adherence. Adhesion induced upon MHC engagement was faster and stronger than that triggered by phorbol esters. It needed active metabolism, but divalent cations were not required. Monoclonal antibodies directed against LFA-1 (CD11a/CD18) or its ligand ICAM-1 (CD54) did not inhibit MHC class II-induced homotypic adhesion of various EBV-transformed B cell lines, nor of a variant of the B cell line Raji expressing very low LFA-1 surface levels. Moreover, EBV-transformed B cells from a severe lymphocyte adhesion deficiency patient, lacking surface CD11/CD18, also aggregated in response to anti-MHC class I or class II monoclonal antibodies. Together these data indicate that engagement of MHC molecules may transduce signals to B cells resulting in up-regulation of intercellular adhesion, via an LFA-1-independent mechanism. This may play a role in the stabilization of T cell/antigen-presenting cell conjugates at the moment of antigen recognition.

  17. A step-by-step overview of the dynamic process of epitope selection by major histocompatibility complex class II for presentation to helper T cells

    PubMed Central

    Sadegh-Nasseri, Scheherazade

    2016-01-01

    T cell antigen receptors (TCRs) expressed on cytotoxic or helper T cells can only see their specific target antigen as short sequences of peptides bound to the groove of proteins of major histocompatibility complex (MHC) class I, and class II respectively. In addition to the many steps, several participating proteins, and multiple cellular compartments involved in the processing of antigens, the MHC structure, with its dynamic and flexible groove, has perfectly evolved as the underlying instrument for epitope selection. In this review, I have taken a step-by-step, and rather historical, view to describe antigen processing and determinant selection, as we understand it today, all based on decades of intense research by hundreds of laboratories. PMID:27347387

  18. Lipopeptides: a novel antigen repertoire presented by major histocompatibility complex class I molecules.

    PubMed

    Morita, Daisuke; Sugita, Masahiko

    2016-10-01

    Post-translationally modified peptides, such as those containing either phosphorylated or O-glycosylated serine/threonine residues, may be presented to cytotoxic T lymphocytes (CTLs) by MHC class I molecules. Most of these modified peptides are captured in the MHC class I groove in a similar manner to that for unmodified peptides. N-Myristoylated 5-mer lipopeptides have recently been identified as a novel chemical class of MHC class I-presented antigens. The rhesus classical MHC class I allele, Mamu-B*098, was found to be capable of binding N-myristoylated lipopeptides and presenting them to CTLs. A high-resolution X-ray crystallographic analysis of the Mamu-B*098:lipopeptide complex revealed that the myristic group as well as conserved C-terminal serine residue of the lipopeptide ligand functioned as anchors, whereas the short stretch of three amino acid residues located in the middle of the lipopeptides was only exposed externally with the potential to interact directly with specific T-cell receptors. Therefore, the modes of lipopeptide-ligand interactions with MHC class I and with T-cell receptors are novel and fundamentally distinct from that for MHC class I-presented peptides. Another lipopeptide-presenting MHC class I allele has now been identified, leading us to the prediction that MHC class I molecules may be separated on a functional basis into two groups: one presenting long peptides and the other presenting short lipopeptides. Since the N-myristoylation of viral proteins is often linked to pathogenesis, CTLs capable of sensing N-myristoylation may serve to control pathogenic viruses, raising the possibility for the development of a new type of lipopeptide vaccine. PMID:27402593

  19. Ethanol Metabolism Alters Major Histocompatibility Complex Class I-Restricted Antigen Presentation In Liver Cells

    PubMed Central

    Osna, Natalia A.; White, Ronda L.; Thiele, Geoffrey M.; Donohue, Terrence M.

    2009-01-01

    The proteasome is a major enzyme that cleaves proteins for antigen presentation. Cleaved peptides traffic to the cell surface, where they are presented in the context of MHC class I. Recognition of these complexes by cytotoxic T lymphocytes is crucial for elimination of cells bearing “non-self” proteins. Our previous studies revealed that ethanol suppresses proteasome function in ethanol-metabolizing liver cells. We hypothesized that proteasome suppression reduces the hydrolysis of antigenic peptides, thereby decreasing the presentation of the peptide-MHC class I-complexes on the cell surface. To test this, we used the mouse hepatocyte cell line (CYP2E1/ADH-transfected HepB5 cells) or primary mouse hepatocytes, both derived from livers of C57Bl/6 mice, which present the ovalbumin peptide, SIINFEKL, complexed with H2Kb. To induce H2Kb expression, HepB5 cells were treated with interferon gamma (IFNγ) and then exposed to ethanol. In these cells, ethanol metabolism decreased not only proteasome activity, but also hydrolysis of the C-extended peptide, SIINFEKL-TE and the presentation of SIINFEKL-H2Kb complexes measured after the delivery of SIINFEKL-TE to cytoplasm. The suppressive effects of ethanol were, in part, attributed to ethanol-elicited impairment of IFNγ signaling. However, in primary hepatocytes, even in the absence of IFNγ, we observed a similar decline in proteasome activity and antigen presentation after ethanol exposure. We conclude that proteasome function is directly suppressed by ethanol metabolism and indirectly, by preventing the activating effects of IFNγ. Ethanol-elicited reduction in proteasome activity contributes to the suppression of SIINFEKL-H2Kb presentation on the surface of liver cells. Immune response to viral antigens plays a crucial role in the pathogenesis of hepatitis C or B viral infections (HCV and HBV, respectively). Professional antigen-presenting cells (dendritic cells and macrophages) are responsible for priming the

  20. Human class II major histocompatibility complex gene transfer into murine neuroblastoma leads to loss of tumorigenicity, immunity against subsequent tumor challenge, and elimination of microscopic preestablished tumors.

    PubMed

    Hock, R A; Reynolds, B D; Tucker-McClung, C L; Kwok, W W

    1995-01-01

    Immunological recognition of transformed cells is critically important to limit tumor development and proliferation. Because established tumors have escaped immune recognition and elimination, novel strategies to enhance antitumor immunity have been developed. A unique approach has used the introduction of genes encoding major histocompatibility complex (MHC) antigens into tumor cells. Experiments in mice have shown that the expression of syngeneic class II MHC antigens in tumor cells completely abrogates tumorigenicity and induces tumor-specific immunity. In this study we sought to determine whether a more effective antitumor immune response would be generated by introducing xenogeneic class II MHC genes into tumor cells. To address this question we used recombinant retroviruses to express human class II MHC genes in a highly malignant murine neuroblastoma cell line, Neuro-2a. We found that normal mice inoculated with Neuro-2a expressing the human class II MHC antigen did not develop tumors and were immune to subsequent challenge with unmodified Neuro-2a cells. In addition, mice bearing small established Neuro-2a tumors were cured by vaccination with Neuro-2a expressing human class II MHC. We hypothesize that a similar approach using retroviral-mediated transduction of class II MHC genes into human tumor cells may be an effective alternative to current cancer treatment.

  1. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    NASA Technical Reports Server (NTRS)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  2. Persistent Ehrlichia chaffeensis infection occurs in the absence of functional major histocompatibility complex class II genes

    NASA Technical Reports Server (NTRS)

    Ganta, Roman Reddy; Wilkerson, Melinda J.; Cheng, Chuanmin; Rokey, Aaron M.; Chapes, Stephen K.

    2002-01-01

    Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for > or =30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4(+) T cells, are critical for conferring resistance to E. chaffeensis.

  3. Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction.

    PubMed

    Strandh, Maria; Westerdahl, Helena; Pontarp, Mikael; Canbäck, Björn; Dubois, Marie-Pierre; Miquel, Christian; Taberlet, Pierre; Bonadonna, Francesco

    2012-11-01

    Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.

  4. Cloning of the major histocompatibility complex class II promoter binding protein affected in a hereditary defect in class II gene regulation.

    PubMed Central

    Reith, W; Barras, E; Satola, S; Kobr, M; Reinhart, D; Sanchez, C H; Mach, B

    1989-01-01

    The regulation of major histocompatibility complex class II gene expression is directly involved in the control of normal and abnormal immune responses. In humans, HLA-DR, -DQ, and -DP class II heterodimers are encoded by a family of alpha- and beta-chain genes clustered in the major histocompatibility complex. Their expression is developmentally controlled and normally restricted to certain cell types. This control is mediated by cis-acting sequences in class II promoters and by trans-acting regulatory factors. Several nuclear proteins bind to class II promoter sequences. In a form of hereditary immunodeficiency characterized by a defect in a trans-acting regulatory factor controlling class II gene transcription, we have observed that one of these nuclear factors (RF-X) does not bind to its target sequence (the class II X box). A cDNA encoding RF-X was isolated by screening a phage expression library with an X-box binding-site probe. The recombinant protein has the binding specificity of RF-X, including a characteristic gradient of affinity for the X boxes of HLA-DR, -DP, and -DQ promoters. RF-X mRNA is present in the regulatory mutants, indicating a defect in the synthesis of a functional form of the RF-X protein. Images PMID:2498880

  5. Altered transcription of genes coding for class I histocompatibility antigens in murine tumor cells

    PubMed Central

    1983-01-01

    Three murine tumors induced by Moloney murine leukemia virus (M-MLV) which exhibited loss of some or all H-2 class I antigens at the cell surface were analyzed at the DNA and RNA level with molecular probes specific of H-2 heavy chains and beta 2-microglobulin sequences. No observable difference could be detected at the DNA level between the tumors and the parent animals. However, a decrease in H-2 mRNA was observed, especially in phenotypically H-2 negative tumor, BM5R, where H-2 transcripts were at least 30-fold less abundant. These results show that an H-2-negative character may result from a general alteration in the transcription of H-2 genes, which could reflect some kind of regulatory process. PMID:6311935

  6. Major histocompatibility complex class II molecules can protect from diabetes by positively selecting T cells with additional specificities.

    PubMed

    Lühder, F; Katz, J; Benoist, C; Mathis, D

    1998-02-01

    Insulin-dependent diabetes is heavily influenced by genes encoded within the major histocompatibility complex (MHC), positively by some class II alleles and negatively by others. We have explored the mechanism of MHC class II-mediated protection from diabetes using a mouse model carrying the rearranged T cell receptor (TCR) transgenes from a diabetogenic T cell clone derived from a nonobese diabetic mouse. BDC2.5 TCR transgenics with C57Bl/6 background genes and two doses of the H-2(g7) allele exhibited strong insulitis at approximately 3 wk of age and most developed diabetes a few weeks later. When one of the H-2(g7) alleles was replaced by H-2(b), insulitis was still severe and only slightly delayed, but diabetes was markedly inhibited in both its penetrance and time of onset. The protective effect was mediated by the Abetab gene, and did not merely reflect haplozygosity of the Abetag7 gene. The only differences we observed in the T cell compartments of g7/g7 and g7/b mice were a decrease in CD4(+) cells displaying the transgene-encoded TCR and an increase in cells expressing endogenously encoded TCR alpha-chains. When the synthesis of endogenously encoded alpha-chains was prevented, the g7/b animals were no longer protected from diabetes. g7/b mice did not have a general defect in the production of Ag7-restricted T cells, and antigen-presenting cells from g7/b animals were as effective as those from g7/g7 mice in stimulating Ag7-restricted T cell hybridomas. These results argue against mechanisms of protection involving clonal deletion or anergization of diabetogenic T cells, or one depending on capture of potentially pathogenic Ag7-restricted epitopes by Ab molecules. Rather, they support a mechanism based on MHC class II-mediated positive selection of T cells expressing additional specificities. PMID:9449718

  7. Major histocompatibility complex haplotypes and class II genes in non-Jewish patients with pemphigus vulgaris

    SciTech Connect

    Ahmed, A.R. Center for Blood Research, Boston, MA American Red Cross Blood Services-Northeast Region, Dedham, MA ); Wagner, R.; Khatri, K.; Notani, G.; Awdeh, Z.; Alper, C.A. ); Yunis, E.J. American Red Cross Blood Services-Northeast Region, Dedham, MA )

    1991-06-01

    Previous studies demonstrated that HLA-DR4 was markedly increased among Ashkenazi Jewish patients with pemphigus vulgaris (PV), almost entirely as the common Jewish extended haplotype (HLA-B38, SC21, DR4, DQw8) or as the haplotype HLA-B35, SC31, DR4, DQw8, and that HLA-DR4, DQw8 was distributed among patients in a manner consistent with dominant expression of a class II (D-region or D-region-linked) susceptibility gene. In the present study of major histocompatibility complex (MHC) halotypes in 25 non-Jewish PV patients, DR4, DQw8 was found in 12 of the patients and DRw6, DQw5 was found in 15. Only 3 patients had neither. The non-Jewish patients were of more Southern European extraction than our controls. This suggests that there are two major MHC susceptibility alleles in American patients with PV. The more ancient apparently arose on a haplotype in the Jews, HLA-B38(35), SC21(SC31), DR4, DQw8, and spread to other populations largely as D-region segments. The other arose in or near Italy on the haplotype HLA-Bw55, SB45, DRw14, DQw5 amd has also partially fragmented so that many patients carry only DRw14, DQw5. The available data do not permit the specific localization of either the DR4, DQw8-or the DRw14, DQw5-linked susceptibility genes.

  8. Genetic variation of the major histocompatibility complex (MHC class II B gene) in the threatened Hume's pheasant, Syrmaticus humiae.

    PubMed

    Chen, Weicai; Bei, Yongjian; Li, Hanhua

    2015-01-01

    Major histocompatibility complex (MHC) genes are the most polymorphic genes in vertebrates and encode molecules that play a crucial role in pathogen resistance. As a result of their diversity, they have received much attention in the fields of evolutionary and conservation biology. Here, we described the genetic variation of MHC class II B (MHCIIB) exon 2 in a wild population of Hume's pheasant (Syrmaticus humiae), which has suffered a dramatic decline in population over the last three decades across its ranges in the face of heavy exploitation and habitat loss. Twenty-four distinct alleles were found in 73 S. humiae specimens. We found seven shared alleles among four geographical groups as well as six rare MHCIIB alleles. Most individuals displayed between one to five alleles, suggesting that there are at least three MHCIIB loci of the Hume's pheasant. The dN ⁄ dS ratio at putative antigen-binding sites (ABS) was significantly greater than one, indicating balancing selection is acting on MHCIIB exon 2. Additionally, recombination and gene conversion contributed to generating MHCIIB diversity in the Hume's pheasant. One to three recombination events and seventy-five significant gene conversion events were observed within the Hume's pheasant MHCIIB loci. The phylogenetic tree and network analysis revealed that the Hume's pheasant alleles do not cluster together, but are scattered through the tree or network indicating a trans-species evolutionary mode. These findings revealed the evolution of the Hume's pheasant MHC after suffering extreme habitat fragmentation.

  9. In situ detection of autoreactive CD4 T cells in brain and heart using major histocompatibility complex class II dextramers.

    PubMed

    Massilamany, Chandirasegaran; Gangaplara, Arunakumar; Jia, Ting; Elowsky, Christian; Li, Qingsheng; Zhou, You; Reddy, Jay

    2014-01-01

    This report demonstrates the use of major histocompatibility complex (MHC) class II dextramers for detection of autoreactive CD4 T cells in situ in myelin proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) in SJL mice and cardiac myosin heavy chain-α (Myhc) 334-352-induced experimental autoimmune myocarditis (EAM) in A/J mice. Two sets of cocktails of dextramer reagents were used, where dextramers(+) cells were analyzed by laser scanning confocal microscope (LSCM): EAE, IA(s)/PLP 139-151 dextramers (specific)/anti-CD4 and IA(s)/Theiler's murine encephalomyelitis virus (TMEV) 70-86 dextramers (control)/anti-CD4; and EAM, IA(k)/Myhc 334-352 dextramers/anti-CD4 and IA(k)/bovine ribonuclease (RNase) 43-56 dextramers (control)/anti-CD4. LSCM analysis of brain sections obtained from EAE mice showed the presence of cells positive for CD4 and PLP 139-151 dextramers, but not TMEV 70-86 dextramers suggesting that the staining obtained with PLP 139-151 dextramers was specific. Likewise, heart sections prepared from EAM mice also revealed the presence of Myhc 334-352, but not RNase 43-56-dextramer(+) cells as expected. Further, a comprehensive method has also been devised to quantitatively analyze the frequencies of antigen-specific CD4 T cells in the 'Z' serial images. PMID:25145797

  10. Regulation of major histocompatibility complex class II synthesis by interleukin-10

    PubMed Central

    Morel, Anne-Sophie; Coulton, Gary; Londei, Marco

    2002-01-01

    We have shown previously that interleukin-10 (IL-10) blocks the development and T-cell stimulatory capacity of human monocyte-derived dendritic cells, without apparently down-regulating the surface expression of co-stimulatory molecules or human leucocyte antigen (HLA) molecules. In the majority of donors (60%), the cell surface levels of HLA-DR actually increased upon IL-10 treatment. Here we have shown that IL-10 does not regulate HLA-DR transcription as assessed by polymerase chain reation. Epifluorescence microscopy analysis showed that IL-10 primarily increased the intracellular pool of HLA-DR. In fact, IL-10 directly increased HLA-DR protein synthesis. However, IL-10 did not significantly alter the synthesis of invariant chain (Ii), which plays a crucial role in the assembly, transport and loading of newly formed HLA class II molecules, nor the amount of Ii reaching the cell-surface. In contrast, IL-10 increased the amount of HLA-DR-bound Iip33 shortly after the HLA-DR complex assembly. We postulate that, upon IL-10 treatment, immature Ii-associated HLA II molecules can still transit to the cell surface as they do in immature dendritic cells and recycle to the intracellular space, where they accumulate. A higher proportion of Ii-associated HLA-DR, coupled to increased membrane recycling, may contribute to the lower T-cell stimulatory capacity of IL-10-treated dendritic cells. PMID:12047752

  11. Class II HLA antigens in multiple sclerosis.

    PubMed Central

    Miller, D H; Hornabrook, R W; Dagger, J; Fong, R

    1989-01-01

    HLA typing in Wellington revealed a stronger association of multiple sclerosis with DR2 than with DQw1. The association with DQw1 appeared to be due to linkage disequilibrium of this antigen with DR2. These results, when considered in conjunction with other studies, are most easily explained by the hypothesis that susceptibility to multiple sclerosis is influenced by multiple risk factors, with DR2 being an important risk factor in Caucasoid populations. PMID:2732726

  12. Serum proteases alter the antigenicity of peptides presented by class I major histocompatibility complex molecules.

    PubMed Central

    Falo, L D; Colarusso, L J; Benacerraf, B; Rock, K L

    1992-01-01

    Any effect of serum on the antigenicity of peptides is potentially relevant to their use as immunogens in vivo. Here we demonstrate that serum contains distinct proteases that can increase or decrease the antigenicity of peptides. By using a functional assay, we show that a serum component other than beta 2-microglobulin enhances the presentation of ovalbumin peptides produced by cyanogen bromide cleavage. Three features of this serum activity implicate proteolysis: it is temperature dependent, it results in increased antigenicity in a low molecular weight peptide fraction, and it is inhibited by the protease inhibitor leupeptin. Conversely, presentation of the synthetic peptide OVA-(257-264) is inhibited by serum. This inhibition is unaffected by leupeptin but is blocked by bestatin, a protease inhibitor with distinct substrate specificities. Implications for peptide-based vaccine design and immunotherapy are discussed. PMID:1518868

  13. Distribution and origin of bovine major histocompatibility complex class II DQA1 genes in Japan.

    PubMed

    Takeshima, S; Chen, S; Miki, M; Kado, M; Aida, Y

    2008-09-01

    We sequenced the major histocompatibility complex (MHC) class II DQA1 gene in 352 Japanese cattle (95 Japanese Black, 91 Holstein, 102 Japanese Shorthorn and 64 Jersey cattle) using a new sequence-based typing method. In total, 19 bovine MHC (BoLA)-DQA1 alleles, of which two were novel alleles, were detected. The Holstein, Jersey, Japanese Shorthorn and Japanese Black breeds had 13, 12, 10 and 15 alleles, respectively. The dendrogram that was constructed by the neighbor-joining method on the basis of the DQA1 gene allele frequencies of the four Japanese cattle breeds showed that the Holstein and Japanese Black breeds were closest to each other, with Jersey being farther from these two breeds than Japanese Shorthorn. In addition, Wu-Kabat analysis showed that the DQA1 alleles of the Holstein and Japanese Black were the most and least polymorphic, respectively. Phylogenetic analyses indicated that the DQA1 gene of Bovidae such as cattle, sheep, bison and goat were more similar to pig SLA-DQA genes than to human HLA-DQA1 and dog DLA-DQA genes. The cattle, goat, bison, sheep, human and pig DQA1 molecules had similar rates of amino acid sequence polymorphism, but the distribution of their polymorphic residues differed from that in the dog DQA1 protein. However, the Bovidae DQA1 molecule had more polymorphic residues than the human, pig and dog DQA molecules at two regions, namely positions 52-53 and 65-66. This indicates that the Bovidae DQA1 locus is more polymorphic than the DQA loci of other species.

  14. Cooperativity between the J and S elements of class II major histocompatibility complex genes as enhancers in normal and class II- negative patient and mutant B cell lines

    PubMed Central

    1995-01-01

    The class II major histocompatibility complex genes all contain in their proximal promoters three cis-elements called S, X, and Y that are conserved in both sequence and position, and a fourth element, J, conserved in sequence but not in position. J, X, and Y and, to some extent, S, have been shown to be functionally important in regulation of expression of these genes. In the present study, a protein factor that binds cooperatively to the S plus J elements of the promoter of the class II major histocompatibility complex gene DPA has been detected. Moreover, functional cooperativity between S and J in activation of the enhancerless -40 interferon-beta (-40 IFN-beta) promoter has been demonstrated. Finally, the latter assay appears to subdivide complementation group A of class II negative human B cell lines that includes both mutants generated in vitro and cells from patients with the bare lymphocyte syndrome (type II). In three of these cell lines, the enhancerless -40 IFN-beta promoter containing the S plus J elements was functionally active, while in the others it was inactive. PMID:7790817

  15. Major histocompatibility complex haplotypes and class II genes in non-Jewish patients with pemphigus vulgaris.

    PubMed Central

    Ahmed, A R; Wagner, R; Khatri, K; Notani, G; Awdeh, Z; Alper, C A; Yunis, E J

    1991-01-01

    Previous studies demonstrated that HLA-DR4 was markedly increased among Ashkenazi Jewish patients with pemphigus vulgaris (PV), almost entirely as the common Jewish extended haplotype [HLA-B38, SC21, DR4, DQw8] or as the haplotype HLA-B35, SC31, DR4, DQw8, and that HLA-DR4, DQw8 was distributed among patients in a manner consistent with dominant expression of a class II (D-region or D-region-linked) susceptibility gene. In the present study of major histocompatibility complex (MHC) haplotypes in 25 non-Jewish PV patients, DR4, DQw8 was found in 12 of the patients and DRw6, DQw5 was found in 15. Only 3 patients had neither. Only 1 of the DR4, DQw8 haplotypes was [HLA-B38, SC21, DR4, DQw8] and 2 were HLA-B35, SC31, DR4, DQw8; most were the presumed fragments (SC31, DR4, DQw8) or (SC21, DR4, DQw8) or DR4, DQw8 with some other complotype. Of the patients with DRw6, DQw5, all were DRw14, DQw5, and 6 had a rare Caucasian haplotype, HLA-Bw55, SB45, DRw14, DQw5. Four of 6 of these were found in patients of Italian extraction, as was the 1 normal example. The non-Jewish patients were of more Southern European extraction than our controls. This suggests that there are two major MHC susceptibility alleles in American patients with PV. The more ancient apparently arose on a haplotype in the Jews, HLA-B38(35), SC21(SC31), DR4, DQw8, and spread to other populations largely as D-region segments. The other arose in or near Italy on the haplotype HLA-Bw55, SB45, DRw14, DQw5 and has also partially fragmented so that many patients carry only DRw14, DQw5. The available data do not permit the specific localization of either the DR4, DQw8- or the DRw14, DQw5-linked susceptibility genes. Images PMID:1675792

  16. Genetic diversity of the class II major histocompatibility DRA locus in European, Asiatic and African domestic donkeys.

    PubMed

    Vranova, Marie; Alloggio, Ingrid; Qablan, Moneeb; Vyskocil, Mirko; Baumeisterova, Aneta; Sloboda, Michal; Putnova, Lenka; Vrtkova, Irena; Modry, David; Horin, Petr

    2011-07-01

    The major histocompatibility complex (MHC) genes coding for antigen presenting molecules are the most polymorphic genes in vertebrate genome. The MHC class II DRA gene shows only small variation in many mammalian species, but it exhibits relatively high level of polymorphism in Equidae, especially in donkeys. This extraordinary degree of polymorphism together with signatures of selection in specific amino acids sites makes the donkey DRA gene a suitable model for population diversity studies. The objective of this study was to investigate the DRA gene diversity in three different populations of donkeys under infectious pressure of protozoan parasites, Theileria equi and Babesia caballi. Three populations of domestic donkeys from Italy (N = 68), Jordan (N = 43), and Kenya (N = 78) were studied. A method of the donkey MHC DRA genotyping based on PCR-RFLP and sequencing was designed. In addition to the DRA gene, 12 polymorphic microsatellite loci were genotyped. The presence of Theileria equi and Babesia caballi parasites in peripheral blood was investigated by PCR. Allele and genotype frequencies, observed and expected heterozygosities and F(IS) values were computed as parameters of genetic diversity for all loci genotyped. Genetic distances between the three populations were estimated based on F(ST) values. Statistical associations between parasite infection and genetic polymorphisms were sought. Extensive DRA locus variation characteristic for Equids was found. The results showed differences between populations both in terms of numbers of alleles and their frequencies as well as variation in expected heterozygosity values. Based on comparisons with neutral microsatellite loci, population sub-structure characteristics and association analysis, convincing evidence of pathogen-driven selection at the population level was not provided. It seems that genetic diversity observed in the three populations reflects mostly effects of selective breeding and their different

  17. Antibody recognition of an immunogenic influenza hemagglutinin-human leukocyte antigen class II complex

    PubMed Central

    1991-01-01

    The A/Japan/57 influenza hemagglutin (HA) peptide HA 128-145, when bound by human histocompatibility leukocyte antigen-DRw11 cells, is recognized by the human CD4+ T cell clone V1. A rabbit antiserum has been raised against HA 128-145 which recognizes not only the free peptide, but also the HA 128-145/DRw11 complex on a solid matrix, in solution, or on the surface of viable cells. The detection of these complexes on viable cells was shown to be class II specific, DRw11 restricted, and commensurate with the level of DRw11 expression. The identity of DRw11 as the cell surface molecule binding HA 128-145 was confirmed by immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and tryptic peptide mapping. Using this antiserum HA 128-145/DRw11 complexes could be detected on the cell surface as soon as 30 min after the peptide was added, and increased up to 24 h. Dissociation kinetics showed these complexes were long-lived, with a half-life of approximately 14 h. This anti-HA peptide antiserum represents the first direct means of studying antigenic peptide-human leukocyte antigen class II complexes on the surface of living cells without the addition of a non-amino acid moiety to the peptide. The properties of this antiserum thus provide the potential to study naturally processed antigenic peptides as well as the mechanism of processing itself in a physiologically relevant system. PMID:2056278

  18. Relationship between major histocompatibility antigens and disease

    PubMed Central

    Oldstone, Michael B. A.

    1975-01-01

    Histocompatibility antigens, virus infections, and disease are discussed relative to avenues of research in humans with arenavirus infections. The data implicating a relationship between histocompatibility complexes in man and animals and diseases of the central nervous system are reviewed. Histocompatibility antigens may share common antigenic determinants with viruses, act as receptor sites for attachment of viruses, and be altered by viruses. In addition, genes regulating immune responses to a variety of natural and synthetic antigens are linked, in many species, to the major histocompatibility complex. Since injury associated with virus infections may be largely due to the activity of the immune system, study of immune response genes may provide insight into understanding resistance to disease. Further, histoincompatibility reactions can activate latent viruses with resultant disease. PMID:60183

  19. Low major histocompatibility complex class II DQA diversity in the Giant Panda (Ailuropoda melanoleuca)

    PubMed Central

    Zhu, Liang; Ruan, Xiang-Dong; Ge, Yun-Fa; Wan, Qiu-Hong; Fang, Sheng-Guo

    2007-01-01

    Background The giant panda (Ailuropoda melanoleuca) is one of the most endangered animals due to habitat fragmentation and loss. Although the captive breeding program for this species is now nearly two decades old, researches on the genetic background of such captive populations, especially on adaptive molecular polymorphism of major histocompatibility complex (MHC), are still limited. In this study, we characterized adaptive variation of the giant panda's MHC DQA gene by PCR amplification of its antigen-recognizing region (i.e. the exon 2) and subsequent single-strand conformational polymorphism (SSCP) and sequence analyses. Results The results revealed a low level of DQA exon 2 diversity in this rare animal, presenting 6 alleles from 61 giant panda individuals. The observed polymorphism was restricted to 9 amino acid substitutions, all of which occurred at and adjacent to positions forming the functionally important antigen-binding sites. All the samples were in Hardy-Weinberg proportions. A significantly higher rate of non-synonymous than synonymous substitutions at the antigen-binding sites indicated positive selection for diversity in the locus. Conclusion The DQA allelic diversity of giant pandas was low relative to other vertebrates. Nonetheless, the pandas exhibited more alleles in DQA than those in DRB, suggesting the alpha chain genes would play a leading role when coping with certain pathogens and thus should be included in conservation genetic investigation. The microsatellite and MHC loci might predict long-term persistence potential and short-term survival ability, respectively. Consequently, it is recommended to utilize multiple suites of microsatellite markers and multiple MHC loci to detect overall genetic variation in order to design unbiased conservation strategies. PMID:17555583

  20. Organization and characteristics of the major histocompatibility complex class II region in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis)

    PubMed Central

    Ruan, Rui; Ruan, Jue; Wan, Xiao-Ling; Zheng, Yang; Chen, Min-Min; Zheng, Jin-Song; Wang, Ding

    2016-01-01

    Little is known about the major histocompatibility complex (MHC) in the genome of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) (YFP) or other cetaceans. In this study, a high-quality YFP bacterial artificial chromosome (BAC) library was constructed. We then determined the organization and characterization of YFP MHC class II region by screening the BAC library, followed by sequencing and assembly of positive BAC clones. The YFP MHC class II region consists of two segregated contigs (218,725 bp and 328,435 bp respectively) that include only eight expressed MHC class II genes, three pseudo MHC genes and twelve non-MHC genes. The YFP has fewer MHC class II genes than ruminants, showing locus reduction in DRB, DQA, DQB, and loss of DY. In addition, phylogenic and evolutionary analyses indicated that the DRB, DQA and DQB genes might have undergone birth-and-death evolution, whereas the DQB gene might have evolved under positive selection in cetaceans. These findings provide an essential foundation for future work, such as estimating MHC genetic variation in the YFP or other cetaceans. This work is the first report on the MHC class II region in cetaceans and offers valuable information for understanding the evolution of MHC genome in cetaceans. PMID:26932528

  1. Organization and characteristics of the major histocompatibility complex class II region in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis).

    PubMed

    Ruan, Rui; Ruan, Jue; Wan, Xiao-Ling; Zheng, Yang; Chen, Min-Min; Zheng, Jin-Song; Wang, Ding

    2016-01-01

    Little is known about the major histocompatibility complex (MHC) in the genome of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) (YFP) or other cetaceans. In this study, a high-quality YFP bacterial artificial chromosome (BAC) library was constructed. We then determined the organization and characterization of YFP MHC class II region by screening the BAC library, followed by sequencing and assembly of positive BAC clones. The YFP MHC class II region consists of two segregated contigs (218,725 bp and 328,435 bp respectively) that include only eight expressed MHC class II genes, three pseudo MHC genes and twelve non-MHC genes. The YFP has fewer MHC class II genes than ruminants, showing locus reduction in DRB, DQA, DQB, and loss of DY. In addition, phylogenic and evolutionary analyses indicated that the DRB, DQA and DQB genes might have undergone birth-and-death evolution, whereas the DQB gene might have evolved under positive selection in cetaceans. These findings provide an essential foundation for future work, such as estimating MHC genetic variation in the YFP or other cetaceans. This work is the first report on the MHC class II region in cetaceans and offers valuable information for understanding the evolution of MHC genome in cetaceans. PMID:26932528

  2. Recognition of Major Histocompatibility Complex Antigens on Cultured Human Biliary Epithelial Cells by Alloreactive Lymphocytes

    PubMed Central

    Saidman, Susan L.; Duquesnoy, Rene J.; Zeevi, Adriana; Fung, John J.; Starzl, Thomas E.; Demetris, A. Jake

    2010-01-01

    We have developed an in vitro system to study the interactions between biliary epithelium and lymphocytes using cultured human biliary epithelial cells. No class II antigens were detected by immunoperoxidase staining of the normal biliary epithelial cells, but alloactivated lymphocyte culture supernatants were able to induce class II expression. The activity of the supernatants was blocked with an anti-γ-interferon monoclonal antibody. In addition, recombinant human γ-interferon alone induced the expression of class II antigens and increased the intensity of class I staining of cultured biliary epithelial cells. Biliary epithelial cell–induced proliferation of alloreactive T lymphocytes demonstrated that the major histocompatibility complex molecules carry functional lymphocyte-activating determinants. The recognition of major histocompatibility complex determinants was confirmed by monoclonal antibody–blocking studies and by stimulation of an alloreactive T-cell clone. However, the biliary epithelial cells were much less potent stimulators than arterial endothelial cells tested in the same assay system. PMID:1704868

  3. Major Histocompatibility Complex Class II Expression and Hemagglutinin Subtype Influence the Infectivity of Type A Influenza Virus for Respiratory Dendritic Cells ▿

    PubMed Central

    Hargadon, Kristian M.; Zhou, Haixia; Albrecht, Randy A.; Dodd, Haley A.; García-Sastre, Adolfo; Braciale, Thomas J.

    2011-01-01

    Dendritic cells (DC) play a key role in antiviral immunity, functioning both as innate effector cells in early phases of the immune response and subsequently as antigen-presenting cells that activate the adaptive immune response. In the murine respiratory tract, there are several respiratory dendritic cell (RDC) subsets, including CD103+ DC, CD11bhi DC, monocyte/macrophage DC, and plasmacytoid DC. However, little is known about the interaction between these tissue-resident RDC and viruses that are encountered during natural infection in the respiratory tract. Here, we show both in vitro and in vivo that the susceptibility of murine RDC to infection with type A influenza virus varies with the level of MHC class II expression by RDC and with the virus strain. Both CD103+ and CD11bhi RDC, which express the highest basal level of major histocompatibility complex (MHC) class II, are highly susceptible to infection by type A influenza virus. However, efficient infection is restricted to type A influenza virus strains of the H2N2 subtype. Furthermore, enhanced infectivity by viruses of the H2N2 subtype is linked to expression of the I-E MHC class II locus product. These results suggest a potential novel role for MHC class II molecules in influenza virus infection and pathogenesis in the respiratory tract. PMID:21917972

  4. Identification and mapping of two divergent, unlinked major histocompatibility complex class II B genes in Xiphophorus fishes.

    PubMed Central

    McConnell, T J; Godwin, U B; Norton, S F; Nairn, R S; Kazianis, S; Morizot, D C

    1998-01-01

    We have isolated two major histocompatibility complex (MHC) class II B genes from the inbred fish strain Xiphophorus maculatus Jp 163 A. We mapped one of these genes, designated here as DXB, to linkage group III, linked to a malic enzyme locus, also syntenic with human and mouse MHC. Comparison of genomic and cDNA clones shows the gene consists of six exons and five introns. The encoded beta1 domain has three amino acids deleted and a cytoplasmic tail nine amino acids longer than in other teleost class II beta chains, more similar to HLA-DRB, clawed frog Xela-F3, and nurse shark Gici-B. Key residues for disulfide bonds, glycosylation, and interaction with alpha chains are conserved. These same features are also present in a swordtail (Xiphophorus helleri) genomic DXB PCR clone. A second type of class II B clone was amplified by PCR from X. maculatus and found to be orthologous to class II genes identified in other fishes. This DAB-like gene is 63% identical to the X. maculatus DXB sequence in the conserved beta2-encoding exon and was mapped to new unassigned linkage group LG U24. The DXB gene, then, represents an unlinked duplicated locus not previously identified in teleosts. PMID:9691047

  5. Beta 2-microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2Db or of a truncated H-2Db.

    PubMed

    Allen, H; Fraser, J; Flyer, D; Calvin, S; Flavell, R

    1986-10-01

    beta 2-Microglobulin (beta 2m) has been thought essential for transport of all major histocompatibility complex class I antigens to the cell surface. Here, we show that the mouse class I antigen H-2Db is expressed at the cell surface even when there is no beta 2m present within the cell. This was established by transfecting the H-2Db gene into the R1E cell line, which lacks beta 2m. The conformation of the Db antigen expressed by the R1E transfectant is very different from that of the native molecule. This Db antigen is not recognized by Db-allospecific and Db-restricted cytotoxic T lymphocytes or by most monoclonal antibodies to the native Db. We show further that a deletion construct of the Db gene, which consists of exon 1 linked to exons 4-8, expresses a truncated Db antigen lacking domains 1 and 2 [Db-(1 + 2)] at the cell surface after transfection into the R1E line. Previous biochemical and crystallographic data have indicated that domain 3 is associated with beta 2m; unexpectedly, Db-(1 + 2) does not associate with beta 2m when the mouse beta 2mb gene is transfected into the R1E transfectant expressing the truncated Db. This suggests that interactions with domains 1 and 2 are important for the paired association of domain 3 and beta 2m in the native Db antigen.

  6. Determinant selection of major histocompatibility complex class I- restricted antigenic peptides is explained by class I-peptide affinity and is strongly influenced by nondominant anchor residues

    PubMed Central

    1994-01-01

    The contribution of major histocompatibility complex (MHC) class I- peptide affinity to immunodominance of particular peptide antigens (Ags) in the class I-restricted cytotoxic T lymphocyte (CTL) response is not clearly established. Therefore, we have compared the H-2Kb- restricted binding and presentation of the immunodominant ovalbumin (OVA)257-264 (SIINFEKL) determinant to that of a subdominant OVA determinant OVA55-62 (KVVRFDKL). Immunodominance of OVA257-264 was not attributable to the specific T cell repertoire but correlated instead with more efficient Ag presentation. This enhanced Ag presentation could be accounted for by the higher affinity of Kb/OVA257-264 compared with Kb/OVA55-62 despite the presence of a conserved Kb-binding motif in both peptides. Kinetic binding studies using purified soluble H-2Kb molecules (Kbs) and biosensor techniques indicated that the Kon for association of OVA257-264-C6 and Kbs at 25 degrees C was integral of 10- fold faster (5.9 x 10(3) M-1 s-1 versus 6.5 x 10(2) M-1 s-1), and the Koff approximately twofold slower (9.1 x 10(-6) s-1 versus 1.6 x 10(-5) s-1), than the rate constants for interaction of OVA55-62-C6 and Kbs. The association of these peptides with Kb was significantly influenced by multiple residues at presumed nonanchor sites within the peptide sequence. The contribution of each peptide residue to Kb-binding was dependent upon the sequence context and the summed contributions were not additive. Thus the affinity of MHC class I-peptide binding is a critical factor controlling presentation of peptide Ag and immunodominance in the class I-restricted CTL response. PMID:7523572

  7. Major Histocompatibility Class II Pathway Is Not Required for the Development of Nonalcoholic Fatty Liver Disease in Mice.

    PubMed

    Willemin, Gilles; Roger, Catherine; Bauduret, Armelle; Minehira, Kaori

    2013-01-01

    Single-nucleotide polymorphisms within major histocompatibility class II (MHC II) genes have been associated with an increased risk of drug-induced liver injury. However, it has never been addressed whether the MHC II pathway plays an important role in the development of nonalcoholic fatty liver disease, the most common form of liver disease. We used a mouse model that has a complete knockdown of genes in the MHC II pathway (MHCII(Δ/Δ)). Firstly we studied the effect of high-fat diet-induced hepatic inflammation in these mice. Secondly we studied the development of carbon-tetra-chloride- (CCl4-) induced hepatic cirrhosis. After the high-fat diet, both groups developed obesity and hepatic steatosis with a similar degree of hepatic inflammation, suggesting no impact of the knockdown of MHC II on high-fat diet-induced inflammation in mice. In the second study, we confirmed that the CCl4 injection significantly upregulated the MHC II genes in wild-type mice. The CCl4 treatment significantly induced genes related to the fibrosis formation in wild-type mice, whereas this was lower in MHCII(Δ/Δ) mice. The liver histology, however, showed no detectable difference between groups, suggesting that the MHC II pathway is not required for the development of hepatic fibrosis induced by CCl4.

  8. The great diversity of major histocompatibility complex class II genes in Philippine native cattle.

    PubMed

    Takeshima, S N; Miyasaka, T; Polat, M; Kikuya, M; Matsumoto, Y; Mingala, C N; Villanueva, M A; Salces, A J; Onuma, M; Aida, Y

    2014-12-01

    Bovine leukocyte antigens (BoLA) are extensively used as markers for bovine disease and immunological traits. However, none of the BoLA genes in Southeast Asian breeds have been characterized by polymerase chain reaction (PCR)-sequence-based typing (SBT). Therefore, we sequenced exon 2 of the BoLA class II DRB3 gene from 1120 individual cows belonging to the Holstein, Sahiwal, Simbrah, Jersey, Brahman, and Philippine native breeds using PCR-SBT. Several cross-breeds were also examined. BoLA-DRB3 PCR-SBT identified 78 previously reported alleles and five novel alleles. The number of BoLA-DRB3 alleles identified in each breed from the Philippines was higher (71 in Philippine native cattle, 58 in Brahman, 46 in Holstein × Sahiwal, and 57 in Philippine native × Brahman) than that identified in breeds from other countries (e.g., 23 alleles in Japanese Black and 35 in Bolivian Yacumeño cattle). A phylogenetic tree based on the DA distance calculated from the BoLA-DRB3 allele frequency showed that Philippine native cattle from different Philippine islands are closely related, and all of them are closely similar to Philippine Brahman cattle but not to native Japanese and Latin American breeds. Furthermore, the BoLA-DRB3 allele frequency in Philippine native cattle from Luzon Island, located in the Northern Philippines was different from that in cattle from Iloilo, Bohol, and Leyte Islands, which are located in the Southern Philippines. Therefore, we conclude that Philippine native cattle can be divided into two populations, North and South areas. Moreover, a neutrality test revealed that Philippine native cattle from Leyte showed significantly greater genetic diversity, which may be maintained by balancing selection. This study shows that Asian breeds have high levels of BoLA-DRB3 polymorphism. This finding, especially the identification of five novel BoLA-DRB3 alleles, will be helpful for future SBT studies of BoLA-DRB3 alleles in East Asian cattle. PMID:25606401

  9. The great diversity of major histocompatibility complex class II genes in Philippine native cattle.

    PubMed

    Takeshima, S N; Miyasaka, T; Polat, M; Kikuya, M; Matsumoto, Y; Mingala, C N; Villanueva, M A; Salces, A J; Onuma, M; Aida, Y

    2014-12-01

    Bovine leukocyte antigens (BoLA) are extensively used as markers for bovine disease and immunological traits. However, none of the BoLA genes in Southeast Asian breeds have been characterized by polymerase chain reaction (PCR)-sequence-based typing (SBT). Therefore, we sequenced exon 2 of the BoLA class II DRB3 gene from 1120 individual cows belonging to the Holstein, Sahiwal, Simbrah, Jersey, Brahman, and Philippine native breeds using PCR-SBT. Several cross-breeds were also examined. BoLA-DRB3 PCR-SBT identified 78 previously reported alleles and five novel alleles. The number of BoLA-DRB3 alleles identified in each breed from the Philippines was higher (71 in Philippine native cattle, 58 in Brahman, 46 in Holstein × Sahiwal, and 57 in Philippine native × Brahman) than that identified in breeds from other countries (e.g., 23 alleles in Japanese Black and 35 in Bolivian Yacumeño cattle). A phylogenetic tree based on the DA distance calculated from the BoLA-DRB3 allele frequency showed that Philippine native cattle from different Philippine islands are closely related, and all of them are closely similar to Philippine Brahman cattle but not to native Japanese and Latin American breeds. Furthermore, the BoLA-DRB3 allele frequency in Philippine native cattle from Luzon Island, located in the Northern Philippines was different from that in cattle from Iloilo, Bohol, and Leyte Islands, which are located in the Southern Philippines. Therefore, we conclude that Philippine native cattle can be divided into two populations, North and South areas. Moreover, a neutrality test revealed that Philippine native cattle from Leyte showed significantly greater genetic diversity, which may be maintained by balancing selection. This study shows that Asian breeds have high levels of BoLA-DRB3 polymorphism. This finding, especially the identification of five novel BoLA-DRB3 alleles, will be helpful for future SBT studies of BoLA-DRB3 alleles in East Asian cattle.

  10. The great diversity of major histocompatibility complex class II genes in Philippine native cattle

    PubMed Central

    Takeshima, S.N.; Miyasaka, T.; Polat, M.; Kikuya, M.; Matsumoto, Y.; Mingala, C.N.; Villanueva, M.A.; Salces, A.J.; Onuma, M.; Aida, Y.

    2014-01-01

    Bovine leukocyte antigens (BoLA) are extensively used as markers for bovine disease and immunological traits. However, none of the BoLA genes in Southeast Asian breeds have been characterized by polymerase chain reaction (PCR)-sequence-based typing (SBT). Therefore, we sequenced exon 2 of the BoLA class II DRB3 gene from 1120 individual cows belonging to the Holstein, Sahiwal, Simbrah, Jersey, Brahman, and Philippine native breeds using PCR-SBT. Several cross-breeds were also examined. BoLA-DRB3 PCR-SBT identified 78 previously reported alleles and five novel alleles. The number of BoLA-DRB3 alleles identified in each breed from the Philippines was higher (71 in Philippine native cattle, 58 in Brahman, 46 in Holstein × Sahiwal, and 57 in Philippine native × Brahman) than that identified in breeds from other countries (e.g., 23 alleles in Japanese Black and 35 in Bolivian Yacumeño cattle). A phylogenetic tree based on the DA distance calculated from the BoLA-DRB3 allele frequency showed that Philippine native cattle from different Philippine islands are closely related, and all of them are closely similar to Philippine Brahman cattle but not to native Japanese and Latin American breeds. Furthermore, the BoLA-DRB3 allele frequency in Philippine native cattle from Luzon Island, located in the Northern Philippines was different from that in cattle from Iloilo, Bohol, and Leyte Islands, which are located in the Southern Philippines. Therefore, we conclude that Philippine native cattle can be divided into two populations, North and South areas. Moreover, a neutrality test revealed that Philippine native cattle from Leyte showed significantly greater genetic diversity, which may be maintained by balancing selection. This study shows that Asian breeds have high levels of BoLA-DRB3 polymorphism. This finding, especially the identification of five novel BoLA-DRB3 alleles, will be helpful for future SBT studies of BoLA-DRB3 alleles in East Asian cattle. PMID:25606401

  11. Molecular and biological interaction between major histocompatibility complex class I antigens and luteinizing hormone receptors or beta-adrenergic receptors triggers cellular response in mice.

    PubMed Central

    Solano, A R; Cremaschi, G; Sánchez, M L; Borda, E; Sterin-Borda, L; Podestá, E J

    1988-01-01

    Purified IgG from BALB/c mouse anti-C3H serum exerts positive inotropic and chronotropic effects in C3H mouse atria and induces testosterone synthesis in C3H mouse Leydig cells. The effect depends on IgG concentration and can be abolished by beta-adrenergic-receptor and luteinizing hormone-receptor antagonists. IgG interferes with the binding of dihydroalprenolol and luteinizing hormone. Monoclonal antibodies against major histocompatibility complex class I antigens were active on the Leydig cells of C3H and BALB/c mice. There was a parallelism between the effect of each individual monoclonal antibody with specificity for a particular haplotype and the response of the target cell from the strains carrying such haplotypes. These antibodies could precipitate the soluble luteinizing hormone-receptor complex. The results suggested that bound hormone triggers the association of major histocompatibility class I antigen with the receptor, thereby activating the respective target cells. PMID:2839829

  12. Coexpression of class I major histocompatibility antigen and viral RNA in central nervous system of mice infected with Theiler's virus: a model for multiple sclerosis.

    PubMed

    Lindsley, M D; Patick, A K; Prayoonwiwat, N; Rodriguez, M

    1992-09-01

    Chronic infection of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in central nervous system (CNS) demyelination similar to multiple sclerosis. Demyelination induced by TMEV is mediated, in part, by class I-restricted CD8+ T lymphocytes. For these T cells to function, they must recognize virus-infected CNS targets in the presence of class I major histocompatibility complex (MHC) antigen. Therefore, we studied in vivo expression of class I MHC antigen and viral antigen-RNA in prototypic mouse strains that are susceptible (SJL/J) or resistant (C57BL/10SNJ) to TMEV-induced demyelination. In brains of resistant mice, viral antigen-RNA expression peaked on day 3 after infection and was effectively diminished by day 5 such that few virus-infected cells were ever detected in the spinal cord. In contrast, susceptible mice demonstrated delay in clearance of TMEV from the brain and a subsequent increase and persistence of viral antigen-RNA in the spinal cord for as long as 277 days. Viral infection resulted in "upregulation" of class I MHC expression in the CNS. Class I MHC antigens were expressed as early as 1 day after infection in the choroid plexus of both strains of mice before detection of viral antigen or inflammation. In resistant mice, class I MHC expression predominated in the gray matter of the brain and spinal cord on day 7 after infection but returned to undetectable levels by day 28. In susceptible mice, class I MHC expression in the CNS persisted and was intense in the white matter of the spinal cord throughout chronic infection and demyelination. No class I MHC expression was detected in the CNS of uninfected mice. Coexpression of viral RNA and class I MHC antigen was demonstrated in CNS cells by using simultaneous in situ hybridization and immunoperoxidase technique. These results support the hypothesis that a class I-restricted immune response directed against virus-infected cells may be important in the mechanism

  13. Susceptibility to Theiler's virus-induced demyelinating disease correlates with astrocyte class II induction and antigen presentation.

    PubMed Central

    Borrow, P; Nash, A A

    1992-01-01

    Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus which induces a chronic demyelinating disease of the central nervous system (CNS) in certain susceptible mouse strains. Demyelination has been shown to result from immunopathological responses mediated by CD4+, major histocompatibility complex (MHC) class II-restricted T cells. As little or no class II is expressed in the normal mouse CNS, the ability of astrocytes to express these proteins and present antigen to T cells from TMEV-infected mice was investigated here. It is shown that astrocytes are capable of presenting TMEV to virus-specific T cells in vitro, and that this ability is dependent on prior induction of MHC class II by interferon-gamma (IFN-gamma) treatment. Unlike other viruses such as murine hepatitis virus-JHM (a coronavirus) and measles, TMEV is not capable of inducing class II on astrocytes directly. There is a correlation between the ease of class II induction on astrocytes from different mouse strains by IFN-gamma and mouse strain susceptibility to TMEV-induced demyelinating disease. These results suggest that following viral infection and initial T-cell infiltration into the CNS, class II induction on astrocytes is a key step allowing local antigen presentation and amplification of immunopathological responses within the CNS and hence the development of demyelinating disease. PMID:1628891

  14. Susceptibility to Theiler's virus-induced demyelinating disease correlates with astrocyte class II induction and antigen presentation.

    PubMed

    Borrow, P; Nash, A A

    1992-05-01

    Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus which induces a chronic demyelinating disease of the central nervous system (CNS) in certain susceptible mouse strains. Demyelination has been shown to result from immunopathological responses mediated by CD4+, major histocompatibility complex (MHC) class II-restricted T cells. As little or no class II is expressed in the normal mouse CNS, the ability of astrocytes to express these proteins and present antigen to T cells from TMEV-infected mice was investigated here. It is shown that astrocytes are capable of presenting TMEV to virus-specific T cells in vitro, and that this ability is dependent on prior induction of MHC class II by interferon-gamma (IFN-gamma) treatment. Unlike other viruses such as murine hepatitis virus-JHM (a coronavirus) and measles, TMEV is not capable of inducing class II on astrocytes directly. There is a correlation between the ease of class II induction on astrocytes from different mouse strains by IFN-gamma and mouse strain susceptibility to TMEV-induced demyelinating disease. These results suggest that following viral infection and initial T-cell infiltration into the CNS, class II induction on astrocytes is a key step allowing local antigen presentation and amplification of immunopathological responses within the CNS and hence the development of demyelinating disease.

  15. Crystal Structure of Staphylococcal Enterotoxin I (SEI) in Complex with a Human Major Histocompatibility Complex Class II Molecule*

    PubMed Central

    Fernández, Marisa M.; Guan, Rongjin; Swaminathan, Chittoor P.; Malchiodi, Emilio L.; Mariuzza, Roy A.

    2009-01-01

    Superantigens are bacterial or viral proteins that elicit massive T cell activation through simultaneous binding to major histocompatibility complex (MHC) class II and T cell receptors. This activation results in uncontrolled release of inflammatory cytokines, causing toxic shock. A remarkable property of superantigens, which distinguishes them from T cell receptors, is their ability to interact with multiple MHC class II alleles independently of MHC-bound peptide. Previous crystallographic studies have shown that staphylococcal and streptococcal superantigens belonging to the zinc family bind to a high affinity site on the class II β-chain. However, the basis for promiscuous MHC recognition by zinc-dependent superantigens is not obvious, because the β-chain is polymorphic and the MHC-bound peptide forms part of the binding interface. To understand how zinc-dependent superantigens recognize MHC, we determined the crystal structure, at 2.0 Å resolution, of staphylococcal enterotoxin I bound to the human class II molecule HLA-DR1 bearing a peptide from influenza hemagglutinin. Interactions between the superantigen and DR1 β-chain are mediated by a zinc ion, and 22% of the buried surface of peptide·MHC is contributed by the peptide. Comparison of the staphylococcal enterotoxin I·peptide·DR1 structure with ones determined previously revealed that zinc-dependent superantigens achieve promiscuous binding to MHC by targeting conservatively substituted residues of the polymorphic β-chain. Additionally, these superantigens circumvent peptide specificity by engaging MHC-bound peptides at their conformationally conserved N-terminal regions while minimizing sequence-specific interactions with peptide residues to enhance cross-reactivity. PMID:16829512

  16. Stereospecific alignment of the X and Y elements is required for major histocompatibility complex class II DRA promoter function.

    PubMed Central

    Vilen, B J; Cogswell, J P; Ting, J P

    1991-01-01

    The regulatory mechanisms controlling expression of the major histocompatibility complex (MHC) class II genes involve several cis-acting DNA elements, including the X and Y boxes. These two elements are conserved within all murine and human class II genes and are required for accurate and efficient transcription from MHC class II promoters. Interestingly, the distance between the X and Y elements is also evolutionarily conserved at 18 to 20 bp. To investigate the function of the invariant spacing in the human MHC class II gene, HLA-DRA, we constructed a series of spacing mutants which alters the distance between the X and Y elements by integral and half-integral turns of the DNA helix. Transient transfection of the spacing constructs into Raji cells revealed that inserting integral turns of the DNA helix (+20 and +10 bp) did not reduce promoter activity, while inserting or deleting half-integral turns of the DNA helix (+15, +5, and -5 bp) drastically reduced promoter activity. The loss of promoter function in these half-integral turn constructs was due neither to the inability of the X and Y elements to bind proteins nor to improper binding of the X- and Y-box-binding proteins. These data indicate that the X and Y elements must be aligned on the same side of the DNA helix to ensure normal function. This requirement for stereospecific alignment strongly suggests that the X- and Y-box-binding proteins either interact directly or are components of a larger transcription complex which assembles on one face of the DNA double helix. Images PMID:1901941

  17. Murine retroviruses control class I major histocompatibility antigen gene expression via a trans effect at the transcriptional level.

    PubMed

    Wilson, L D; Flyer, D C; Faller, D V

    1987-07-01

    Moloney murine leukemia virus (M-MuLV) and Moloney murine sarcoma virus (M-MSV) exert a regulatory effect on the class I genes of the murine major histocompatibility complex (MHC). We have previously shown that M-MuLV infection of mouse fibroblasts results in a substantial increase in cell surface expression of H-2K, H-2D, and H-2L proteins, whereas M-MSV, upon coinfection of the same cells, is apparently able to override the MuLV-induced increase in H-2 expression. As a result of this modulation, immune recognition of the infected cells is profoundly altered. Our efforts have been directed toward elucidating the molecular basis for this phenomenon. We report here that stimulation of interferon production as a result of infection with MuLV does not occur and, therefore, is not the cause of MuLV-induced enhancement of MHC expression. Control of H-2 class I and beta 2-microglobulin gene expression by M-MuLV, and probably by M-MSV, takes place at the transcriptional level as indicated by nuclear runoff studies and analysis of steady-state mRNA levels. Our demonstration that M-MuLV controls expression of widely separated endogenous cellular genes (those coding for H-2D, H-2K, H-2L, and beta 2-microglobulin), transfected class I MHC genes, and unintegrated chimeric genes consisting of fragments of class I MHC genes linked to sequences encoding a procaryotic enzyme, chloramphenicol acetyltransferase, suggests that M-MuLV exerts its effect in trans and not by proviral integration in the vicinity of the H-2 gene complex. Finally, we show that the sequences of at least one MHC gene, which are responsive to trans regulation by M-MuLV, lie within 1.2 kilobases upstream of the initiation codon for that gene.

  18. Identification of two major histocompatibility (MH) class II A genes and their association to Vibrio anguillarum infection in half-smooth tongue sole ( Cynoglossus semilaevis)

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Wang, Xubo; Zhang, Quanqi; Wang, Zhigang; Qi, Jie; Yi, Qilin; Liu, Zhipeng; Wang, Yanan; Yu, Haiyang

    2012-03-01

    Major histocompatibility complex class II antigens are important in vertebrate immune system. In the present study, the full cDNA sequence of class II A gene was synthesized by RACE-PCR from half-smooth tongue sole ( Cynoglossus semilaevis), and its open reading frame (ORF) polymorphism was studied. The whole cDNA sequence was 992 bp in length, including the ORF with 717 bp. Twenty-five alleles were identified and clustered into two distinct groups according to the specific nucleotides/ amino acids in specific positions. Eleven alleles belonged to Cyse-DAA while fourteen alleles belonged to Cyse-DBA. Four Cyse-DAA alleles were observed in one individual, and three to five Cyse-DBA alleles were observed in each of the three detected individuals, which indicated that at least two loci existed in each gene. Moreover, in order to study the function of the alleles in resistance to infection, 200 individuals were intraperitoneally injected with Vibrio anguillarum and the first 20 dead individuals and 20 surviving ones were selected for genotype analysis. Fifty-six alleles were identified among the 40 individuals. Twenty-nine alleles belonged to Cyse-DAA and the other 27 alleles belonged to Cyse-DBA. Eighteen alleles were selected for studying their function in resistance to infection. Alleles Cyse-DAA*0201, Cyse-DAA*1101, Cyse-DBA*0401, Cyse-DBA*1102, Cyse-DBA*1801 and Cyse-DBA*2201 were identified only in surviving individuals, while alleles Cyse- DAA*0901, Cyse-DBA*1101 and Cyse-DBA*1401 occurred more frequently in dead individuals. This study confirmed the existence and polymorphism of two class II A genes as well as the relationship between alleles of class II A genes and disease susceptibility/ resistance in half-smooth tongue sole.

  19. Class II-antigen-negative patient and mutant B-cell lines represent at least three, and probably four, distinct genetic defects defined by complementation analysis.

    PubMed Central

    Bénichou, B; Strominger, J L

    1991-01-01

    Expression of class II major histocompatibility complex antigens in defective B-lymphoblastoid cell lines from patients with class II antigen deficiency and from in vitro mutants generated with the same phenotype was studied. By heterogenetic fusion experiments, at least three, and probably four, complementation groups were defined. Furthermore, clone 13 (a DR-, DP-, but DQ+ cell line) appeared to belong to the RJ2.2.5 complementation group, for which all other members are DR-, DP-, and also DQ-. Thus, it is hypothesized that the cell lines of this group lack the activity of a gene that can differentially regulate the DR/DP and the DQ promoters. Images PMID:1852002

  20. Zinc Induces Dimerization of the Class II Major Histocompatibility Complex Molecule That Leads to Cooperative Binding to a Superantigen

    SciTech Connect

    Li,H.; Zhao, Y.; Guo, Y.; Li, Z.; Eislele, L.; Mourad, W.

    2007-01-01

    Dimerization of class II major histocompatibility complex (MHC) plays an important role in the MHC biological function. Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing specific T cell receptor V{beta} elements. Here we have used structural, sedimentation, and surface plasmon resonance detection approaches to investigate the molecular interactions between MAM and the class II MHC molecule HLA-DR1 in the context of a hemagglutinin peptide-(306-318) (HA). Our results revealed that zinc ion can efficiently induce the dimerization of the HLA-DR1/HA complex. Because the crystal structure of the MAM/HLA-DR1/hemagglutinin complex in the presence of EDTA is nearly identical to the structure of the complex crystallized in the presence of zinc ion, Zn{sup 2+} is evidently not directly involved in the binding between MAM and HLA-DR1. Sedimentation and surface plasmon resonance studies further revealed that MAM binds the HLA-DR1/HA complex with high affinity in a 1:1 stoichiometry, in the absence of Zn{sup 2+}. However, in the presence of Zn{sup 2+}, a dimerized MAM/HLA-DR1/HA complex can arise through the Zn{sup 2+}-induced DR1 dimer. In the presence of Zn{sup 2+}, cooperative binding of MAM to the DR1 dimer was also observed.

  1. Domain structures and molecular evolution of class I and class II major histocompatibility gene complex (MHC) products deduced from amino acid and nucleotide sequence homologies

    NASA Astrophysics Data System (ADS)

    Ohnishi, Koji

    1984-12-01

    Domain structures of class I and class II MHC products were analyzed from a viewpoint of amino acid and nucleotide sequence homologies. Alignment statistics revealed that class I (transplantation) antigen H chains consist of four mutually homologous domains, and that class II (HLA-DR) antigen β and α chains are both composed of three mutually homologous ones. The N-terminal three and two domains of class I and class II (both β and α) gene products, respectively, all of which being ˜90 residues long, were concluded to be homologous to β2-microglobulin (β2M). The membraneembedded C-terminal shorter domains of these MHC products were also found to be homologous to one another and to the third domain of class I H chains. Class I H chains were found to be more closely related to class II α chains than to class II β chains. Based on these findings, an exon duplication history from a common ancestral gene encoding a β2M-like primodial protein of one-domain-length up to the contemporary MHC products was proposed.

  2. Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide.

    PubMed

    Boder, Eric T; Bill, Jerome R; Nields, Andrew W; Marrack, Philippa C; Kappler, John W

    2005-11-20

    Microbial protein display technologies have enabled directed molecular evolution of binding and stability properties in numerous protein systems. In particular, dramatic improvements to antibody binding affinity and kinetics have been accomplished using these tools in recent years. Examples of successful application of display technologies to other immunological proteins have been limited to date. Herein, we describe the expression of human class II major histocompatibility complex allele (MHCII) HLA-DR4 on the surface of Saccharomyces cerevisiae as a noncovalently associated heterodimer. The yeast-displayed MHCII is fully native as assessed by binding of conformationally specific monoclonal antibodies; failure of antibodies specific for empty HLA-DR4 to bind yeast-displayed protein indicates antigenic peptide is bound. This report represents the first example of a noncovalent protein dimer displayed on yeast and of successful display of wild-type MHCII. Results further point to the potential for using yeast surface display for engineering and analyzing the antigen binding properties of MHCII.

  3. Dominating expression of negative regulatory factors downmodulates major histocompatibility complex Class-II expression on dendritic cells in chronic hepatitis C infection

    PubMed Central

    Tomer, Shallu; Chawla, Yogesh K; Duseja, Ajay; Arora, Sunil K

    2016-01-01

    AIM: To elucidate the molecular mechanisms leading to development of functionally impaired dendritic cells (DCs) in chronic hepatitis C (CHC) patients infected with genotype 3 virus. METHODS: This prospective study was conducted on the cohorts of CHC individuals identified as responders or non-responders to antiviral therapy. Myeloid DCs were isolated from the peripheral blood of each subject using CD1c (BDCA1)+ DC isolation Kit. Monocytes from healthy donor were cultured with DC growth factors such as IL-4 and GM-CSF either in the presence or absence of hepatitis C virus (HCV) viral proteins followed by LPS stimulation. Phenotyping was done by flowcytometry and gene expression profiling was evaluated by real-time PCR. RESULTS: Non-responders [sustained virological response (SVR)-ve] to conventional antiviral therapy had significantly higher expression of genes associated with interferon responsive element such as IDO1 and PD-L1 (6-fold) and negative regulators of JAK-STAT pathway such as SOCS (6-fold) as compared to responders (SVR+ve) to antiviral therapy. The down-regulated genes in non-responders included factors involved in antigen processing and presentation mainly belonging to major histocompatibility complex (MHC) Class-II family as HLA-DP, HLA-DQ (2-fold) and superoxide dismutase (2-fold). Cells grown in the presence of HCV viral proteins had genes down-regulated for factors involved in innate response, interferon signaling, DC maturation and co-stimulatory signaling to T-cells, while the genes for cytokine signaling and Toll-like receptors (4-fold) were up-regulated as compared to cells grown in absence of viral proteins. CONCLUSION: Underexpressed MHC class-II genes and upregulated negative regulators in non-responders indicate diminished capacity to present antigen and may constitute mechanism of functionally defective state of DCs. PMID:27298560

  4. Multivesicular bodies in intestinal epithelial cells: responsible for MHC class II-restricted antigen processing and origin of exosomes

    PubMed Central

    Büning, Jürgen; von Smolinski, Dorthe; Tafazzoli, Kianush; Zimmer, Klaus-Peter; Strobel, Stephan; Apostolaki, Maria; Kollias, George; Heath, Joan K; Ludwig, Diether; Gebert, Andreas

    2008-01-01

    In normal conditions intestinal epithelial cells (IECs) constitutively stimulate regulatory CD4+ T cells. However, in Crohn's disease (CD), this major histocompatibility complex (MHC) class II-restricted antigen presentation results in stimulation of proinflammatory CD4+ T cells. We hypothesized that these alternative functions might be mediated by differential sorting and processing of antigens into distinct MHC II-enriched compartments (MIICs). Accordingly, we analysed the endocytic pathways of lumenally applied ovalbumin (OVA) in IECs of the jejunum and ileum of wild-type (WT) and TNFΔARE/WT mice that develop a CD-resembling ileitis. Using quantitative reverse transcription polymerase chain reaction, we found that messenger RNA levels of interferon-γ, tumour necrosis factor-α, interleukin-17 and interleukin-10 were significantly up-regulated in the inflamed ileum of TNFΔARE/WT mice, confirming CD-like inflammation. Fluorescence and immunoelectron microscopy revealed the presence of MHC II and invariant chain throughout the late endocytic compartments, with most molecules concentrated in the multivesicular bodies (MVB). OVA was targeted into MVB and, in contrast to other MIICs, accumulated in these structures within 120 min of exposure. The IEC-specific A33 antigen localized to internal vesicles of MVB and A33/class II-bearing exosomes were identified in intercellular spaces. Remarkably, the expression pattern of MHC II/invariant chain molecules and the trafficking of OVA were independent of mucosal inflammation and the specific region in the small intestine. MVB seem to be principally responsible for class II-associated antigen processing in IECs and to constitute the origin of MHC II-loaded exosomes. The distinctive functions of IECs in antigen presentation to CD4+ T cells might arise as a result of differential processing within the MVB identified here. PMID:18710406

  5. Two-dimensional nuclear magnetic resonance analysis of a labeled peptide bound to a class II major histocompatibility complex molecule.

    PubMed

    Driscoll, P C; Altman, J D; Boniface, J J; Sakaguchi, K; Reay, P A; Omichinski, J G; Appella, E; Davis, M M

    1993-07-20

    The formation of peptide/major histocompatibility complex (MHC) complexes and their subsequent recognition by T cells is a pivotal event in the initiation of an immune response. While X-ray crystal structures are now available for class I MHC/peptide complexes, little detailed structural information is known about the class II MHC equivalent, and there are no solution structure data for either. A 16 amino acid residue moth cytochrome c peptide (residues 88 to 103) was 13C-labeled for two-dimensional isotope-edited NMR analysis. The peptide was labeled either selectively in the methyl groups of alanine residues or uniformly at every carbon position, and bound to unlabeled soluble mouse I-Ek class II MHC molecules. Although alpha-helical in the native cytochrome c protein and with no uniform structure in solution, the peptide is bound to the I-Ek molecule with the alpha-carbon atoms of the 11 C-terminal residues held in the binding groove. This indicates that the class II MHC peptide binding site is somewhat larger than that of class I MHC molecules (> or = 11 amino acid residues versus 8 to 10 amino acid residues), consistent with recent data on eluted peptides. Despite the large size of the complex (approximately 70 kDa), nuclear Overhauser effects are clearly detectable between peptide side-chains and the MHC molecule. Indications of the buried or exposed nature of particular side-chains within the bound peptide are derived from the NMR data and these are used together with information from previous biological studies to propose a crude model of the interaction of the peptide with the groove of the MHC molecule. We find no evidence for a conformational change in the peptide/MHC complex in the spectra at pH 5.0 versus pH 7.0, despite a 40-fold faster on-rate for the peptide at the lower pH value. PMID:8393933

  6. Characterization of class II β chain major histocompatibility complex genes in a family of Hawaiian honeycreepers: 'amakihi (Hemignathus virens).

    PubMed

    Jarvi, Susan I; Bianchi, Kiara R; Farias, Margaret Em; Txakeeyang, Ann; McFarland, Thomas; Belcaid, Mahdi; Asano, Ashley

    2016-07-01

    Hawaiian honeycreepers (Drepanidinae) have evolved in the absence of mosquitoes for over five million years. Through human activity, mosquitoes were introduced to the Hawaiian archipelago less than 200 years ago. Mosquito-vectored diseases such as avian malaria caused by Plasmodium relictum and Avipoxviruses have greatly impacted these vulnerable species. Susceptibility to these diseases is variable among and within species. Due to their function in adaptive immunity, the role of major histocompatibility complex genes (Mhc) in disease susceptibility is under investigation. In this study, we evaluate gene organization and levels of diversity of Mhc class II β chain genes (exon 2) in a captive-reared family of Hawaii 'amakihi (Hemignathus virens). A total of 233 sequences (173 bp) were obtained by PCR+1 amplification and cloning, and 5720 sequences were generated by Roche 454 pyrosequencing. We report a total of 17 alleles originating from a minimum of 14 distinct loci. We detected three linkage groups that appear to represent three distinct haplotypes. Phylogenetic analysis revealed one variable cluster resembling classical Mhc sequences (DAB) and one highly conserved, low variability cluster resembling non-classical Mhc sequences (DBB). High net evolutionary divergence values between DAB and DBB resemble that seen between chicken BLB system and YLB system genes. High amino acid identity among non-classical alleles from 12 species of passerines (DBB) and four species of Galliformes (YLB) was found, suggesting that these non-classical passerine sequences may be related to the Galliforme YLB sequences. PMID:26971289

  7. The structure of the antigen-binding groove of major histocompatibility complex class I molecules determines specific selection of self-peptides.

    PubMed Central

    van Bleek, G M; Nathenson, S G

    1991-01-01

    We have examined the effect of diversity in the antigen-binding groove of the Kb, Db, Kbm1, and Kbm8 major histocompatibility complex (MHC) class I molecules on the set of self-peptides they present on the cell surface, by using a procedure we recently developed in our laboratory to isolate endogenously processed peptides bound to MHC class I molecules. We found that such naturally processed peptides are 7-10 amino acids long. A major motif of tyrosine and phenylalanine residues at positions three and five was found for peptides binding to Kb. The availability of Kb mutant molecules Kbm1 and Kbm8, each with localized clustered changes in the antigen-binding cleft, allowed us to probe the effect of such small alterations on peptide selection. We found that such changes in different regions in the antigen-binding groove exert an absolute effect by changing subsets of self-peptides bound to these MHC molecules. In the Kbm1 mutant, the binding of the characteristic major set of Kb-associated peptides with tyrosine at position three or both positions three and five is abrogated, although this MHC molecule still binds peptides with tyrosine at position seven; the latter peptides also bind to Kb. Kbm8 shares the major Tyr-3, Tyr-5 peptide set that binds to Kb but does not bind the peptides with tyrosine at position seven. Thus differences in binding selectivity in Kbm1 and Kbm8 appear to be the major determinant for the observed alterations in in vivo immune responses. PMID:1763019

  8. Minor histocompatibility antigens: past, present, and future.

    PubMed

    Spierings, Eric

    2014-10-01

    Minor histocompatibility (H) antigens are key molecules driving allo-immune responses in both graft-versus-host-disease (GvHD) and in graft-versus-leukemia (GvL) reactivity in human leukocyte antigen (HLA)-matched hematopoietic stem-cell transplantation (HSCT). Dissection of the dual function of minor H antigens became evident through their different modes of tissue and cell expression, i.e. hematopoietic system-restricted or broad. Broadly expressed minor H antigens can cause both GvHD and GvL effects, while hematopoietic system-restricted minor H antigens are more prone to induce GvL responses. This phenomenon renders the latter group of minor H antigens as curative tools for HSCT-based immunotherapy of hematological malignancies and disorders, in which minor H antigen-specific responses are enhanced in order to eradicate the malignant cells. This article describes the immunogenetics of minor H antigens and methods that have been developed to identify them. Moreover, it summarizes the clinical relevance of minor H antigens in transplantation, with special regards to allogeneic HSCT and solid-organ transplantation.

  9. Pseudomonas aeruginosa Cif protein enhances the ubiquitination and proteasomal degradation of the transporter associated with antigen processing (TAP) and reduces major histocompatibility complex (MHC) class I antigen presentation.

    PubMed

    Bomberger, Jennifer M; Ely, Kenneth H; Bangia, Naveen; Ye, Siying; Green, Kathy A; Green, William R; Enelow, Richard I; Stanton, Bruce A

    2014-01-01

    Cif (PA2934), a bacterial virulence factor secreted in outer membrane vesicles by Pseudomonas aeruginosa, increases the ubiquitination and lysosomal degradation of some, but not all, plasma membrane ATP-binding cassette transporters (ABC), including the cystic fibrosis transmembrane conductance regulator and P-glycoprotein. The goal of this study was to determine whether Cif enhances the ubiquitination and degradation of the transporter associated with antigen processing (TAP1 and TAP2), members of the ABC transporter family that play an essential role in antigen presentation and intracellular pathogen clearance. Cif selectively increased the amount of ubiquitinated TAP1 and increased its degradation in the proteasome of human airway epithelial cells. This effect of Cif was mediated by reducing USP10 deubiquitinating activity, resulting in increased polyubiquitination and proteasomal degradation of TAP1. The reduction in TAP1 abundance decreased peptide antigen translocation into the endoplasmic reticulum, an effect that resulted in reduced antigen available to MHC class I molecules for presentation at the plasma membrane of airway epithelial cells and recognition by CD8(+) T cells. Cif is the first bacterial factor identified that inhibits TAP function and MHC class I antigen presentation.

  10. Role of major histocompatibility complex class II in resistance of mice to naturally acquired infection with Syphacia obvelata

    NASA Technical Reports Server (NTRS)

    Stewart, Patricia W.; Chapes, Stephen K.

    2003-01-01

    Genetics plays a substantial role in host resistance in many host-parasite interactions. We examined the prevalence of naturally acquired infection with Syphacia obvelata in a number of mouse strains housed in a non-barrier facility. These mice, which included cross-bred and congenic, inbred strains on various genetic backgrounds, differ in the loci for the immune function genes--major histocompatibility complex class II (MHCII), toll-like receptor 4 (Tlr4), and solute carrier family 11, member 1 (Slc11a1)--which allowed comparisons of the impact of these genes on resistance to pinworm infection. Male and female mice of various ages were sampled over an 18-month period; infection was determined by use of the cellophane tape test. Results indicated that mice that were MHCII+/+ had a significantly lower prevalence of infection than did mice that were MHCII-/-. Differences were not seen between male and female mice. Although MHCII+/+ mice had an age-associated decrease in infection prevalence, such decrease was not seen in MHCII-/- mice. In contrast, infection prevalence in mice with the normal Tlr4 gene (Tlr4(LPS-n/LPS-n)) gene did not differ significantly compared with that in mice that were homozygous for either the point mutation (Tlr4(LPS-d/LPS-d)) or deletion (Tlr4(LPS-del/LPS-del)) of that gene. Likewise, the presence (Sle11a1r/r) or absence (Slc11a1s/s) of functional alleles for Slc11a1 had no effect on the prevalence of infection with S. obvelata. In conclusion, presence of MHCII, but not Tlr4 or Slc11a1 significantly influences prevalence of naturally acquired infection with S. obvelata. These data justify further comprehensive analyses of the immune components that are involved in pinworm resistance.

  11. Selective immunosuppression by administration of major histocompatibility complex (MHC) class II-binding peptides. I. Evidence for in vivo MHC blockade preventing T cell activation

    PubMed Central

    1992-01-01

    Draining lymph node cells (LNC) from mice immunized with hen egg white lysozyme (HEL) display at their surface antigen-MHC complexes able to stimulate, in the absence of any further antigen addition, HEL peptide- specific, class II-restricted T cell hybridomas. Chloroquine addition to these LNC cultures fails to inhibit antigen presentation, indicating that antigenic complexes of class II molecules and HEL peptides are formed in vivo. MHC class II restriction of antigen presentation by LNC from HEL-primed mice was verified by the use of anti-class II monoclonal antibodies. Coinjection of HEL and the I-Ak-binding peptide HEL 112-129 in mice of H-2k haplotype inhibits the ability of LNC to stimulate I-Ak-restricted, HEL 46-61-specific T cell hybridomas. Similar results are obtained in mice coinjected with the HEL peptides 46-61 and 112-129. Inhibition of T hybridoma activation can also be observed using as antigen-presenting cells irradiated, T cell-depleted LNC from mice coinjected with HEL 46-61 and HEL 112-129, ruling out the possible role of either specific or nonspecific suppressor T cells. Inhibition of T cell proliferation is associated with MHC-specific inhibition of antigen presentation and with occupancy by the competitor of class II binding sites, as measured by activation of peptide- specific T cell hybridomas. These results demonstrate that administration of MHC class II binding peptide competitors selectively inhibits antigen presentation to class II-restricted T cells, indicating competitive blockade of class II molecules in vivo. PMID:1569402

  12. Reassociation with beta 2-microglobulin is necessary for Kb class I major histocompatibility complex binding of exogenous peptides.

    PubMed Central

    Rock, K L; Rothstein, L E; Gamble, S R; Benacerraf, B

    1990-01-01

    T lymphocytes recognize endogenously produced antigenic peptides in association with major histocompatibility complex (MHC)-encoded molecules. Peptides from the extracellular fluid can be displayed in association with class I and class II MHC molecules. Here we report that mature Kb class I MHC molecules bind peptides upon dissociation and reassociation of their light chain. Intact Kb heterodimers, unlike class II MHC molecules, are relatively unreceptive to binding peptides. This property may maintain segregation of class I and class II MHC-restricted peptides and has implications for the use of peptides as vaccines. Images PMID:2217182

  13. Structural analysis of the human interferon gamma receptor: a small segment of the intracellular domain is specifically required for class I major histocompatibility complex antigen induction and antiviral activity.

    PubMed Central

    Cook, J R; Jung, V; Schwartz, B; Wang, P; Pestka, S

    1992-01-01

    Mutations of the human interferon gamma (IFN-gamma) receptor intracellular domain have permitted us to define a restricted region of that domain as necessary for both induction of class I major histocompatibility complex antigen by IFN-gamma and protection against encephalomyocarditis virus. This region consists of five amino acids (YDKPH), all of which are conserved in the human and murine receptors. Tyr-457 and His-461 are essential for activity. Approximately 80% of the amino acids of the intracellular domain of the receptor is not required for major histocompatibility complex class I antigen induction or for antiviral protection against encephalomyocarditis virus. The observation that there was no protection by IFN-gamma against vesiculostomatitis virus indicates that other factors, in addition to chromosome 21 accessory factor(s), are required to generate the full complement of transduction signals from the human IFN-gamma receptor. Images PMID:1454813

  14. A synthetic peptide from the third hypervariable region of major histocompatibility complex class II beta chain as a vaccine for treatment of experimental autoimmune encephalomyelitis.

    PubMed Central

    Topham, D J; Nag, B; Arimilli, S; Sriram, S

    1994-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a class II major histocompatibility complex (MHC)-restricted, T-cell-mediated, demyelinating autoimmune disease of the central nervous system and represents a model for human multiple sclerosis. The present study demonstrates that vaccination of SJL/J mice with an 18-amino acid synthetic peptide from the third hypervariable region of the murine class II MHC IAs beta chain (IAs beta 58-75; 18-mer peptide) is capable of eliciting auto-anti-IAs antibodies specific for the IAs beta chain and preventing and treating EAE. A similar approach may be useful in the treatment of human autoimmune diseases in which susceptibility is linked to class II MHC genes. Images PMID:8058747

  15. Patterns of selection and allele diversity of class I and class II major histocompatibility loci across the species range of sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Kaukinen, Karia H; Beacham, Terry D; Withler, Ruth E; Miller, Kristina M

    2013-09-01

    The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non-neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations. PMID:24033436

  16. Class II-targeted antigen is superior to CD40-targeted antigen at stimulating humoral responses in vivo.

    PubMed

    Frleta, D; Demian, D; Wade, W F

    2001-02-01

    We examined the efficacy of using monoclonal antibodies to target antigen (avidin) to different surface molecules expressed on antigen presenting cells (APC). In particular, we targeted CD40 to test whether the "adjuvant" properties of CD40 signaling combined with targeted antigen would result in enhanced serologic responses. We targeted avidin to class II as a positive control and to CD11c as a negative control. These surface proteins represent an ensemble of surface molecules that signal upon ligation and that are expressed on professional APC, in particular dendritic cells (DC). We observed that targeting class II molecules on APC was superior to targeting CD40, or CD11c. However, CD40 and CD11c could function as targets for antigen bound monoclonal antibodies under certain conditions. Interestingly, inclusion of anti-CD40 mAb with the targeting anti-class II-targeted antigens negatively affects humoral response, suggesting that CD40 signaling under certain conditions may suppress processing and/or presentation of targeted antigen. PMID:11360928

  17. Predicting promiscuous antigenic T cell epitopes of Mycobacterium tuberculosis mymA operon proteins binding to MHC Class I and Class II molecules.

    PubMed

    Saraav, Iti; Pandey, Kirti; Sharma, Monika; Singh, Swati; Dutta, Prasun; Bhardwaj, Anshu; Sharma, Sadhna

    2016-10-01

    Limited efficacy of Bacillus Calmette-Guérin vaccine has raised the need to explore other immunogenic candidates to develop an effective vaccine against Mycobacterium tuberculosis (Mtb). Both CD4+ and CD8+ T cells play a critical role in host immunity to Mtb. Infection of macrophages with Mtb results in upregulation of mymA operon genes thereby suggesting their importance as immune targets. In the present study, after exclusion of self-peptides mymA operon proteins of Mtb were analyzed in silico for the presence of Human Leukocyte Antigen (HLA) Class I and Class II binding peptides using Bioinformatics and molecular analysis section, NetMHC 3.4, ProPred and Immune epitope database software. Out of 56 promiscuous epitopes obtained, 41 epitopes were predicted to be antigenic for MHC Class I. In MHC Class II, out of 336 promiscuous epitopes obtained, 142 epitopes were predicted to be antigenic. The comparative bioinformatics analysis of mymA operon proteins found Rv3083 to be the best vaccine candidate. Molecular docking was performed with the most antigenic peptides of Rv3083 (LASGAASVV with alleles HLA-B51:01, HAATSGTLI with HLA-A02, IVTATGLNI and EKIHYGLKVNTA with HLA-DRB1_01:01) to study the structural basis for recognition of peptides by various HLA molecules. The software binding prediction was validated by the obtained molecular docking score of peptide-HLA complex. These peptides can be further investigated for their immunological relevance in patients of tuberculosis using major histocompatibility complex tetramer approach. PMID:27389362

  18. Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens

    PubMed Central

    Young, Louise J.; Wilson, Nicholas S.; Schnorrer, Petra; Mount, Adele; Lundie, Rachel J.; La Gruta, Nicole L.; Crabb, Brendan S.; Belz, Gabrielle T.; Heath, William R.; Villadangos, Jose A.

    2007-01-01

    When dendritic cells (DCs) encounter signals associated with infection or inflammation, they become activated and undergo maturation. Mature DCs are very efficient at presenting antigens captured in association with their activating signal but fail to present subsequently encountered antigens, at least in vitro. Such impairment of MHC class II (MHC II) antigen presentation has generally been thought to be a consequence of down-regulation of endocytosis, so it might be expected that antigens synthesized by the DCs themselves (for instance, viral antigens) would still be presented by mature DCs. Here, we show that DCs matured in vivo could still capture and process soluble antigens, but were unable to present peptides derived from these antigens. Furthermore, presentation of viral antigens synthesized by the DCs themselves was also severely impaired. Indeed, i.v. injection of pathogen mimics, which caused systemic DC activation in vivo, impaired the induction of CD4 T cell responses against subsequently encountered protein antigens. This immunosuppressed state could be reversed by adoptive transfer of DCs loaded exogenously with antigens, demonstrating that impairment of CD4 T cell responses was due to lack of antigen presentation rather than to overt suppression of T cell activation. The biochemical mechanism underlying this phenomenon was the down-regulation of MHC II–peptide complex formation that accompanied DC maturation. These observations have important implications for the design of prophylactic and therapeutic DC vaccines and contribute to the understanding of the mechanisms causing immunosuppression during systemic blood infections. PMID:17978177

  19. Enhanced induction of thyroid cell MHC class II antigen expression in rats highly responsive to thyroglobulin.

    PubMed

    Lahat, N; Hirose, W; Davies, T F

    1989-04-01

    Initial experiments demonstrated that the degree of autoantibody and proliferative T cell responses to syngeneic rat thyroglobulin differed markedly between Buffalo (high responder) and Fisher (low responder) rats after classical immunization schedules. While varying immune responsiveness may be due to qualitative and quantitative T and B cell differences, the role of thyroid cell MHC class II antigens may be pivotal to the onset of autoimmune thyroiditis in such animal models. We, therefore, examined the induction of MHC class II antigens in thyroid monolayers derived from Buffalo and Fisher rats treated with methimazole (0.1% in their water) for 4 weeks to induce mild thyroid hyperplasia. After thyroidectomy, thyroid cell monolayers were prepared and exposed to recombinant rat gamma-interferon (gamma IF; 10-1000 U/ml) for 1-7 days in the presence and absence of TSH (1 mU/ml). Both Buffalo and Fisher thyroid monolayers responded to gamma IF with MHC class II antigen expression when assessed by laser flow cytometry using MRC OX-6 monoclonal anti-RT1.B. In both types of culture, TSH enhanced MHC class II antigen expression in the presence of gamma IF to the same degree. However, there was a consistently earlier and greater degree of MHC class II antigen expression in Buffalo thyroid monolayers compared to Fisher monolayers, a phenomenon not explicable on the basis of fibroblast contamination as assessed by cytokeratin staining. These data demonstrate that end-organ sensitivity to MHC class II antigen expression may be important in the pathogenesis of autoimmune thyroid disease.

  20. The major histocompatibility complex class II-linked cim locus controls the kinetics of intracellular transport of a classical class I molecule

    PubMed Central

    1991-01-01

    The dominant trans-acting major histocompatibility complex (MHC)-linked class I modifier (cim) locus, previously recognized through its ability to determine altered alloantigenicity of a rat class I molecule, RT1.A3, is shown here to influence class I intracellular transport. The MHC recombinant laboratory rat strains PVG.R1 and PVG.R8 display unusually long retention of RT1.Aa within the endoplasmic reticulum or cis-Golgi. In appropriate F1 hybrid cells heterozygous for RT1.Aa and another class I MHC allele, RT1.Ac, only the RT1.Aa protein is subject to slow transport. The cim gene product therefore shows class I allele specificity in its action, cim appears to be a polymorphic locus whose product is directly involved in the processes of class I MHC assembly and/or intracellular transport. PMID:2007857

  1. Macroautophagy in Endogenous Processing of Self- and Pathogen-Derived Antigens for MHC Class II Presentation

    PubMed Central

    Duraes, Fernanda V.; Niven, Jennifer; Dubrot, Juan; Hugues, Stéphanie; Gannagé, Monique

    2015-01-01

    Although autophagy is a process that has been studied for several years its link with antigen presentation and T cell immunity has only recently emerged. Autophagy, which means “self-eating,” is important to maintain cell homeostasis and refers to a collection of mechanisms that delivers intracellular material for degradation into lysosomes. Among them, macroautophagy pathway has many implications in different biological processes, including innate and adaptive immunity. In particular, macroautophagy can provide a substantial source of intracellular antigens for loading onto MHC class II molecules using the alternative MHC class II pathway. Through autophagosomes, endogenous self-antigens as well as antigens derived from intracellular pathogens can be delivered to MHC class II compartment and presented to CD4+ T cells. The pathway will, therefore, impact both peripheral T cell tolerance and the pathogen specific immune response. This review will describe the contribution of autophagy to intracellular presentation of endogenous self- or pathogen-derived antigens via MHC class II and its consequences on CD4+ T cell responses. PMID:26441964

  2. Human CD4-major histocompatibility complex class II (DQw6) transgenic mice in an endogenous CD4/CD8-deficient background: reconstitution of phenotype and human-restricted function

    PubMed Central

    1994-01-01

    To reconstitute the human immune system in mice, transgenic mice expressing human CD4 and human major histocompatibility complex (MHC) class II (DQw6) molecules in an endogenous CD4- and CD8-deficient background (mCD4/8-/-), after homologous recombination, have been generated. We report that expression of human CD4 molecule in mCD4/8-/- mice rescues thymocyte development and completely restores the T cell compartment in peripheral lymphoid organs. Upon vesicular stomatitis virus (VSV) challenge, the reconstituted mature T cell population effectively provide T help to B cells in immunoglobulin class switching from IgM to specific IgG-neutralizing antibodies. Human CD4+DQw6+ double transgenic mice are tolerant to DQw6 and the DQw6 molecule functions in antigen presentation, effectively generating a human MHC class II-restricted T cell response to streptococcal M6C2 peptide. These data show that both the hCD4 and DQw6 molecules are functional in mCD4/8-/- mice, fully and stably reconstituting this limb of the human immune system in mice. This animal model provides a powerful in vivo tool to dissect the human CD4-human class II MHC interaction, especially its role in human autoimmune diseases, superantigen-mediated diseases, and acquired immunodeficiency syndrome (AIDS). PMID:7964466

  3. Evolution of the major histocompatibility complex: Isolation of class II beta cDNAs from two monotremes, the platypus and the short-beaked echidna.

    PubMed

    Belov, Katherine; Lam, Mary K P; Hellman, Lars; Colgan, Donald J

    2003-09-01

    Extant mammals are composed of three lineages: the eutherians, the marsupials and the monotremes. The majority of the mammalian major histocompatibility complex (MHC) data is based on the eutherian mammals, which generally have three classical MHC class II beta chain gene clusters - DRB, DQB and DPB, as well as the non-classical DMB and DOB. Marsupial DMB, DAB and DBB have been characterised. Confusion still surrounds the relationship of the marsupial DAB and DBB genes with the classical eutherian class II clusters. Here we present the first monotreme MHC class II beta chain sequences. Four MHC class II beta chain sequences were isolated from a spleen cDNA library from the short-beaked echidna, and one from a spleen cDNA library from platypus using a brushtail possum DAB probe. Given the non-orthologous relationship of the monotreme sequences with marsupial and eutherian beta chain clusters, we recommend that the five new monotreme sequences be assigned the nomenclature 'DZB', signifying the description of a new mammalian beta chain cluster. Our analysis suggests that all mammalian beta chain sequences (except DMB) evolved from a common ancestor. Maximum likelihood analysis places the monotreme beta chain sequences at the base of the mammalian clade, indicating their ancestral status. However, within the mammalian clade, monophyletic clades are not robust, and elucidation of the order of gene duplication that gave rise to the present-day gene clusters is not yet possible.

  4. Correction of the X-linked immunodeficiency phenotype by transgenic expression of human Bruton tyrosine kinase under the control of the class II major histocompatibility complex Ea locus control region

    PubMed Central

    Drabek, Dubravka; Raguz, Selina; De Wit, Ton P. M.; Dingjan, Gemma M.; Savelkoul, Huub F. J.; Grosveld, Frank; Hendriks, Rudolf W.

    1997-01-01

    Bruton tyrosine kinase (Btk) is essential for the development of pre-B cells to mature B cell stages. Btk-deficient mice manifest an X-linked immunodeficiency (xid) defect characterized by a reduction of peripheral IgMlow IgDhigh B cells, a lack of peritoneal CD5+ B cells, low serum levels of IgM and IgG3, and impaired responses to T cell independent type II (TI-II) antigens. We have generated transgenic mice in which expression of the human Btk gene is driven by the murine class II major histocompatibility complex Ea gene locus control region, which provides gene expression from the pre-B cell stage onwards. When these transgenic mice were mated onto a Btk− background, correction of the xid B cell defects was observed: B cells differentiated to mature IgMlowIgDhigh stages, peritoneal CD5+ B cells were present, and serum Ig levels and in vivo responses to TI-II antigens were in the normal ranges. A comparable rescue by transgenic Btk expression was also observed in heterozygous Btk+/− female mice in those B-lineage cells that were Btk-deficient as a result of X chromosome inactivation. These findings indicate that the Btk− phenotype in the mouse can be corrected by expression of human Btk from the pre-B cell stage onwards. PMID:9012832

  5. Increased susceptibility to Strongyloides venezuelensis infection is related to the parasite load and absence of major histocompatibility complex (MHC) class II molecules.

    PubMed

    Rodrigues, Rosângela Maria; Cardoso, Cristina Ribeiro; Gonçalves, Ana Lúcia Ribeiro; Silva, Neide Maria; Massa, Virgínia; Alves, Ronaldo; Ueta, Marlene Tiduko; Silva, João Santana; Costa-Cruz, Julia Maria

    2013-11-01

    In human and murine models strongyloidiasis induce a Th2 type response. In the current study we investigated the role of different loads of Strongyloides venezuelensis in the immune response raised against the parasite and the participation of the major histocompatibility complex (MHC) class II molecule in the disease outcome in face of the different parasite burden. The C57BL/6 wild type (WT) and MHC II(-/-) mice were individually inoculated by subcutaneous injection with 500 or 3000 S. venezuelensis L3. The MHC II(-/-) mice infected with 3000L3 were more susceptible to S. venezuelensis infection when compared with WT groups, in which the parasite was completely eliminated. The production of Th2 cytokines and specific IgG1 or IgE antibodies against parasite were significantly lowered in MHC II(-/-) infected mice with different larvae inoculums. The infection of MHC II(-/-) mice with S. venezuelensis induced slight inflammatory alterations in the small intestine, and these lesions were lower when compared with WT mice, irrespective of the parasite load utilized to infect animals. Finally, we concluded that MHC class II molecules are essential in the immune response against S. venezuelensis mainly when infection occurs with high parasite inoculum.

  6. Efficient Targeting of Protein Antigen to the Dendritic Cell Receptor DEC-205 in the Steady State Leads to Antigen Presentation on Major Histocompatibility Complex Class I Products and Peripheral CD8+ T Cell Tolerance

    PubMed Central

    Bonifaz, Laura; Bonnyay, David; Mahnke, Karsten; Rivera, Miguel; Nussenzweig, Michel C.; Steinman, Ralph M.

    2002-01-01

    To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation. PMID:12486105

  7. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance.

    PubMed

    Bonifaz, Laura; Bonnyay, David; Mahnke, Karsten; Rivera, Miguel; Nussenzweig, Michel C; Steinman, Ralph M

    2002-12-16

    To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal alphaDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c- cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When alphaDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4-48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of alphaDEC-205:OVA to DCs in the steady state initially induced 4-7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with alphaDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic alphaCD40 antibody produced large amounts of interleukin 2 and interferon gamma, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.

  8. MHC Class II Association with Lipid Rafts on the Antigen Presenting Cell Surface

    PubMed Central

    Anderson, Howard A.; Roche, Paul A.

    2014-01-01

    MHC class II (MHC-II) molecules function by binding peptides derived from either self-or foreign proteins and expressing these peptides on the surface of antigen presenting cells (APCs) for recognition by CD4 T cells. MHC-II is known to exist on clusters on the surface of APCs, and a variety of biochemical and functional studies have suggested that these clusters represent lipid raft microdomain-associated MHC-II. This review will summarize data exploring the biosynthesis of raft-associated MHC-II and the role that lipid raft association plays in regulating T cell activation by APCs. PMID:25261705

  9. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II

    PubMed Central

    Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin

    2015-01-01

    ABSTRACT The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8+ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8+ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8+ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4+ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8+ and CD4+ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8+ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8+ T cells specific for

  10. Variations in the Electrostatic Landscape of Class II Human Leukocyte Antigen Molecule Induced by Modifications in the Myelin Basic Protein Peptide: A Theoretical Approach

    PubMed Central

    Agudelo, William A.; Galindo, Johan F.; Ortiz, Marysol; Villaveces, José L.; Daza, Edgar E.; Patarroyo, Manuel E.

    2009-01-01

    The receptor-ligand interactions involved in the formation of the complex between Class II Major Histocompatibility Complex molecules and antigenic peptides, which are essential for establishing an adaptive immunological response, were analyzed in the Class II Human Leukocyte Antigen (HLA) - Myelin Basic Protein (MBP) peptide complex (HLA-DRβ1*1501-MBP) using a multipolar molecular electrostatic potential approach. The Human Leukocyte Antigen - peptide complex system was divided into four pockets together with their respective peptide fragment and the corresponding occupying amino acid was replaced by each of the remaining 19 amino acids. Partial atomic charges were calculated by a quantum chemistry approach at the Hatree Fock/3-21*G level, to study the behavior of monopole, dipole and quadrupole electrostatic multipolar moments. Two types of electrostatic behavior were distinguished in the pockets' amino acids: “anchoring” located in Pocket 1 and 4, and “recognition” located in Pocket 4 and 7. According to variations in the electrostatic landscape, pockets were ordered as: Pocket 1>Pocket 9≫Pocket 4≈Pocket 7 which is in agreement with the binding ability reported for Class II Major Histocompatibility Complex pockets. In the same way, amino acids occupying the polymorphic positions β13R, β26F, β28D, β9W, β74A, β47F and β57D were shown to be key for this Receptor-Ligand interaction. The results show that the multipolar molecular electrostatic potential approach is appropriate for characterizing receptor-ligand interactions in the MHC–antigenic peptide complex, which could have potential implications for synthetic vaccine design. PMID:19132105

  11. Vaccinia Virus A35R Inhibits MHC Class II Antigen Presentation

    PubMed Central

    Rehm, Kristina E.; Connor, Ramsey F.; Jones, Gwendolyn J.B.; Yimbu, Kenneth; Roper, Rachel L.

    2009-01-01

    The Vaccinia virus gene A35R (Copenhagen designation) is highly conserved in mammalian-tropic poxviruses and is an important virulence factor, but its function was unknown. We show herein that A35 does not affect viral infectivity, apoptosis induction, or replication; however, we found that A35 significantly inhibited MHC class II-restricted antigen presentation, immune priming of T lymphocytes, and subsequent chemokine and cytokine synthesis. A35 localized to endosomes and reduced the amount of a model antigenic peptide displayed in the cleft of class II MHC. In addition, A35 decreased VV specific T cell responses in vivo. Thus, this is the first report identifying a function for the A35 protein in virulence as well as the first report identifying a VV gene that inhibits peptide antigen presentation. PMID:19954808

  12. Sequence polymorphism of two major histocompatibility (MH) class II B genes and their association with Vibrio anguillarum infection in half-smooth tongue sole ( Cynoglossus semilaevis)

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Zhang, Quanqi; Yu, Yan; Li, Shuo; Zhong, Qiwang; Sun, Yeying; Wang, Zhigang; Qi, Jie; Zhai, Jieming; Wang, Xubo

    2011-11-01

    Major histocompatibility complex (MHC) class II B molecules play an important role in the adaptive immune response in fish. Previous study has reported that two highly polymorphic class II B genes, Cyse-DAB and Cyse-DBB exist in half-smooth tongue sole ( Cynoglossus semilaevis). In this study, the polymorphism within exon 2 of the class II B genes following bacterial challenge was evaluated. Two hundred C. semilaevis individuals were injected intraperitoneally with Vibrio anguillarum. Muscle tissue from the first 20 dead and 20 of the survivors was collected for genotyping. Sixty alleles from the 40 individuals were isolated, of which 32 belonged to Cyse-DAB and 28 belonged to Cyse-DBB. The rate of d N (non-synonymous substitution) was higher than that of d S (synonymous substitution) in the PBRs (peptide binding residues) of both class II B genes. Conversely, the rate of d S was higher than d N in the non-PBRs and the complete exon 2 sequence. Thus, the results suggest that positive selection has occurred in the PBRs and purifying selection in the non-PBRs and exon 2. Thirteen class II B alleles were used to study the association between alleles and resistance to infection. Though not significant, alleles Cyse-DAB*0601, Cyse-DAB*0706, and Cyse-DBB*0101, Cyse-DBB*1301 were only found in surviving individuals and may represent alleles that have resistance against V. anguillarum infection. Alleles Cyse-DAB*0701 and Cyse-DAB*1301 were significantly more prevalent in dead individuals than in surviving ones and may represent alleles that are associated with increased susceptibility to V. anguillarum infection.

  13. Major histocompatibility complex markers and red cell antibodies to the Rh (D) antigen. Absence of association.

    PubMed

    Kruskall, M S; Yunis, E J; Watson, A; Awdeh, Z; Alper, C A

    1990-01-01

    Between 20 and 35 percent of Rh(D) antigen-negative individuals do not develop antibodies to D even after multiple transfusions of Rh-positive red cells. To evaluate the possibility that antibody production after exposure to the D antigen was related to a major histocompatibility complex immune response gene, analysis of the HLA genotypes of 38 Rh-sensitized women and their families was performed. No significant deviations were found in the frequency of any individual HLA class I, II, or III allele or of any extended haplotype (fixed allelic combinations of HLA-B, HLA-DR, and the complement components BF, C2, C4A, and C4B). Type 1 errors due to the extreme allelic polymorphism of the HLA system, as well as the ethnic variation in patient groups, may have contributed to HLA allele-antibody responder relationships reported in earlier studies.

  14. Histone deacetylase 1/mSin3A disrupts gamma interferon-induced CIITA function and major histocompatibility complex class II enhanceosome formation.

    PubMed

    Zika, Eleni; Greer, Susanna F; Zhu, Xin-Sheng; Ting, Jenny P-Y

    2003-05-01

    The class II transactivator (CIITA) is a master transcriptional regulator of major histocompatibility complex class II (MHC-II) promoters. CIITA does not bind DNA, but it interacts with the transcription factors RFX5, NF-Y, and CREB and associated chromatin-modifying enzymes to form an enhanceosome. This report examines the effects of histone deacetylases 1 and 2 (HDAC1/HDAC2) on MHC-II gene induction by gamma interferon (IFN-gamma) and CIITA. The results show that an inhibitor of HDACs, trichostatin A, enhances IFN-gamma-induced MHC-II expression, while HDAC1/HDAC2 inhibits IFN-gamma- and CIITA-induced MHC-II gene expression. mSin3A, a corepressor of HDAC1/HDAC2, is important for this inhibition, while NcoR, a corepressor of HDAC3, is not. The effect of this inhibition is directed at CIITA, since HDAC1/HDAC2 reduces transactivation by a GAL4-CIITA fusion protein. CIITA binds to overexpressed and endogenous HDAC1, suggesting that HDAC and CIITA may affect each other by direct or indirect association. Inhibition of HDAC activity dramatically increases the association of NF-YB and RFX5 with CIITA, the assembly of CIITA, NF-YB, and RFX5 enhanceosome, and the extent of H3 acetylation at the MHC-II promoter. These results suggest a model where HDAC1/HDAC2 affect the function of CIITA through a disruption of MHC-II enhanceosome and relevant coactivator-transcription factor association and provide evidence that CIITA may act as a molecular switch to modulate MHC-II transcription by coordinating the functions of both histone acetylases and HDACs.

  15. MHC class II antigen presentation pathway in murine tumours: tumour evasion from immunosurveillance?

    PubMed Central

    Walter, W; Lingnau, K; Schmitt, E; Loos, M; Maeurer, M J

    2000-01-01

    Qualitative differences in the MHC class II antigen processing and presentation pathway may be instrumental in shaping the CD4+ T cell response directed against tumour cells. Efficient loading of many MHC class II alleles with peptides requires the assistance of H2-M, a heterodimeric MHC class II-like molecule. In contrast to the HLA-DM region in humans, the β-chain locus is duplicated in mouse, with the H2-Mb1 (Mb1β-chain distal to H2-Mb2 (Mb2) and the H2-Ma (Ma) α-chain gene). Here, we show that murine MHC class II and H2-M genes are coordinately regulated in murine tumour cell lines by T helper cell 1 (IFN-γ) and T helper cell 2 (IL-4 or IL-10) cytokines in the presence of the MHC class II-specific transactivator CIITA as determined by mRNA expression and Western blot analysis. Furthermore, Mαβ1 and Mαβ2 heterodimers are differentially expressed in murine tumour cell lines of different histology. Both H2-M isoforms promote equally processing and presentation of native protein antigens to H2-Ad- and H2-Ed-restricted CD4+ T cells. Murine tumour cell lines could be divided into three groups: constitutive MHC class II and CIITA expression; inducible MHC class II and CIITA expression upon IFN-γ-treatment; and lack of constitutive and IFN-γ-inducible MHC class II and CIITA expression. These differences may impact on CD4+ T cell recognition of cancer cells in murine tumour models. © 2000 Cancer Research Campaign PMID:11027433

  16. Class II major histocompatibility complex molecules regulate the development of the T4+T8- inducer phenotype of cultured human thymocytes.

    PubMed Central

    Blue, M L; Daley, J F; Levine, H; Schlossman, S F

    1985-01-01

    We demonstrate that a variety of Ia+ cells has the ability to promote the development of human T4+T8- thymocytes in vitro. Prolonged thymocyte culture in the absence of Ia+ accessory cells results in a predominantly T8+T4- cell population. The generation of T4+ cells in the presence of irradiated Ia+ cells could be suppressed up to 70% by a monoclonal antibody directed against a nonpolymorphic epitope on HLA-DR. Using two-color fluorescence sorting techniques, we were able to identify the activated T4+T8+ thymocyte as the cell that interacts with Ia and gives rise to the T4+T8- cell subset. These results directly and specifically implicate class II major histocompatibility complex molecules in the differentiative pathway of the human thymocyte. Images PMID:2933749

  17. Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells.

    PubMed

    Cho, Kyung-Jin; Walseng, Even; Ishido, Satoshi; Roche, Paul A

    2015-08-18

    MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.

  18. Endocytosis of the class I major histocompatibility antigen via a phorbol myristate acetate-inducible pathway is a cell-specific phenomenon and requires the cytoplasmic domain [published erratum appears in J Cell Biol 1989 Sep;109(3):1381

    PubMed Central

    1989-01-01

    Class I major histocompatibility (MHC) antigens are expressed by virtually all mammalian cells, yet their levels of expression and behavior on the cell surface vary in a cell-specific fashion. A panel of lymphoid (both B and T) and nonlymphoid cell lines was used to study the kinetics of internalization of the H-2Ld class I MHC in different cell types. These studies revealed that endocytosis of H-2Ld occurs by both constitutive and PMA-regulated pathways in lymphoid cells, but only by a PMA-refractory pathway in the nonlymphoid cells tested. Transfectant derivatives of the T lymphoma, EL4, which express wild- type or mutant H-2Ld class I MHC antigens, were used to investigate the requirement for the cytoplasmic domain of the class I MHC antigen for its endocytosis in T lymphocytes. These studies showed that modification or deletion of the cytoplasmic domain of H-2Ld abrogates endocytosis via a PMA-regulated pathway. The role of cytoplasmic domain phosphorylation in PMA-inducible endocytosis was examined. The wild- type H-2Ld antigen is phosphorylated in all cell types examined, and this phosphorylation is up-regulated by PMA treatment. In contrast, cytoplasmic domain mutants of H-2Ld fail to be phosphorylated in vivo, in the presence or absence of PMA. The universality of PMA-inducible hyperphosphorylation of the class I MHC antigen among diverse cell types leads us to conclude that phosphorylation of the cytoplasmic domain, while perhaps necessary, is not sufficient for triggering endocytosis via a PMA-inducible pathway. Furthermore, the results with the cytoplasmic domain mutants of H-2Ld suggest that a structural conformation of the class I MHC cytoplasmic domain is required for endocytosis via this route. PMID:2925787

  19. Deletion of naïve T cells recognizing the minor histocompatibility antigen HY with toxin-coupled peptide-MHC class I tetramers inhibits cognate CTL responses and alters immunodominance.

    PubMed

    Hess, Sabrina M; Young, Ellen F; Miller, Keith R; Vincent, Benjamin G; Buntzman, Adam S; Collins, Edward J; Frelinger, Jeffrey A; Hess, Paul R

    2013-12-01

    Alloreactive T-cell responses directed against minor histocompatibility (H) antigens, which arise from diverse genetic disparities between donor and recipient outside the MHC, are an important cause of rejection of MHC-matched grafts. Because clinically significant responses appear to be directed at only a few antigens, the selective deletion of naïve T cells recognizing donor-specific, immunodominant minor H antigens in recipients before transplantation may be a useful tolerogenic strategy. We have previously demonstrated that peptide-MHC class I tetramers coupled to a toxin can efficiently eliminate specific TCR-transgenic T cells in vivo. Here, using the minor histocompatibility antigen HY as a model, we investigated whether toxic tetramers could inhibit the subsequent priming of the two H2-D(b)-restricted, immunodominant T-cell responses by deleting precursor CTL. Immunization of female mice with male bone marrow elicited robust CTL activity against the Uty and Smcy epitopes, with Uty constituting the major response. As hypothesized, toxic tetramer administration prior to immunization increased survival of cognate peptide-pulsed cells in an in vivo CTL assay, and reduced the frequency of corresponding T cells. However, tetramer-mediated decreases in either T-cell population magnified CTL responses against the non-targeted epitope, suggesting that D(b)-Uty(+) and D(b)-Smcy(+) T cells compete for a limited common resource during priming. Toxic tetramers conceivably could be used in combination to dissect manipulate CD8(+) T-cell immunodominance hierarchies, and to prevent the induction of donor-specific, minor H antigen CTL responses in allotransplantation.

  20. Deletion of naïve T cells recognizing the minor histocompatibility antigen HY with toxin-coupled peptide-MHC class I tetramers inhibits cognate CTL responses and alters immunodominance

    PubMed Central

    Hess, Sabrina M.; Young, Ellen F.; Miller, Keith R.; Vincent, Benjamin G.; Buntzman, Adam S.; Collins, Edward J.; Frelinger, Jeffrey A.; Hess, Paul R.

    2013-01-01

    Alloreactive T-cell responses directed against minor histocompatibility (H) antigens, which arise from diverse genetic disparities between donor and recipient outside the MHC, are an important cause of rejection of MHC-matched grafts. Because clinically significant responses appear to be directed at only a few antigens, the selective deletion of naïve T cells recognizing donor-specific, immunodominant minor H antigens in recipients before transplantation may be a useful tolerogenic strategy. We have previously demonstrated that peptide-MHC class I tetramers coupled to a toxin can efficiently eliminate specific TCR-transgenic T cells in vivo. Here, using the minor histocompatibility antigen HY as a model, we investigated whether toxic tetramers could inhibit the subsequent priming of the two H2-Db-restricted, immunodominant T-cell responses by deleting precursor CTL. Immunization of female mice with male bone marrow elicited robust CTL activity against the Uty and Smcy epitopes, with Uty constituting the major response. As hypothesized, toxic tetramer administration prior to immunization increased survival of cognate peptide-pulsed cells in an in vivo CTL assay, and reduced the frequency of corresponding T cells. However, tetramer-mediated decreases in either T-cell population magnified CTL responses against the non-targeted epitope, suggesting that Db-Uty+ and Db-Smcy+ T cells compete for a limited common resource during priming. Toxic tetramers conceivably could be used in combination to dissect or manipulate CD8+ T-cell immunodominance hierarchies, and to prevent the induction of donor-specific, minor H antigen CTL responses in allotransplantation. PMID:24161680

  1. Molecular characterization by high-resolution isoelectric focusing of the products encoded by the class II region loci of the major histocompatibility complex in humans. I. DR and DQ gene variants.

    PubMed

    Rodriguez de Cordoba, S; Nunez-Roldan, A; Winchester, R; Marshall, P; Carrier, C; Mollen, N; Walker, M; Ginsberg-Fellner, F; Rubinstein, P

    1987-09-01

    We describe a new approach to the analysis of the structural polymorphism of the DR beta, DQ alpha, and DQ beta polypeptide chains of human histocompatibility class II antigens. In comparison to conventional two-dimensional gel studies, this method provides sharper definition of the protein bands and side-by-side comparisons within the same gel, thereby permitting the detection of minor differences in the isoelectric points of the protein chains. Using this methodology we have analyzed the IEF polymorphism and the variability in the number of the DR beta chains encoded by different DR haplotypes. Twenty DR beta chain variants, which include the products of no less than two separate DR beta loci, have been thus far identified. Alleles at one of these loci are assumed to code for DR beta chains carrying the DR alloespecificities DR1, DR2, DR3, DR4, DR5, DRw6, DR7, and DR8. Alleles at a second DR beta locus encode DR beta chains that may be shared by serologically DR-different haplotypes and carry supertypic serologic specificities (i.e., DRw52 and DRw53). We also demonstrate here that the structural polymorphisms of the DQ alpha and DQ beta chains are more extensive than previously thought, report the characterization of 14 DQ beta variants, and define their relationship to the previously described DQw serologic specificities. In addition, we describe the class II haplotype associations observed for the different DR and DQ variants characterized. PMID:3679903

  2. Major Histocompatibility Complex class IIB polymorphism in an ancient Spanish breed.

    PubMed

    Atlija, Marina; Gutíerrez-Gil, Beatriz; Arranz, Juan-Jose; Semmer, Jördis; Stear, Michael J; Buitkamp, Johannes

    2015-09-01

    Genes from the Major Histocompatibility Complex class II region are involved in the presentation of antigens. Therefore, they have the key role in regulating the immune response and in the resistance to infections. We investigated the Major Histocompatibility Complex class IIB genes, DRB and DQB, in Churra sheep, one of the most important indigenous breeds of Spain. These genes are among the most polymorphic in the mammalian genome. Furthermore, often different numbers of class IIB genes per haplotype exist, complicating the genotyping and sequencing of these genes. Especially the DQB region is only partially characterized in sheep and the repertoire of DRB and DQB alleles in Churra sheep, an ancient breed, is unknown. Here, we sequenced the class IIB genes for 15 rams that are the pedigree heads of a selection Nucleus herd. In total, we found 12 DRB and 25 DQB alleles. From these, 3 and 15 were new, respectively. Fourteen haplotypes carrying one or two DQB alleles could be deduced and the evolutionary relationship of these was investigated by phylogenetic trees. Based on the sequences of these most common class II alleles, a more efficient genotyping system for larger numbers of Churra sheep will be developed. PMID:26184839

  3. Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens

    PubMed Central

    Molee, A.; Kongroi, K.; Kuadsantia, P.; Poompramun, C.; Likitdecharote, B.

    2016-01-01

    The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study. PMID:26732325

  4. A molecular map of the chicken major histocompatibility complex: the class II beta genes are closely linked to the class I genes and the nucleolar organizer.

    PubMed Central

    Guillemot, F; Billault, A; Pourquié, O; Béhar, G; Chaussé, A M; Zoorob, R; Kreibich, G; Auffray, C

    1988-01-01

    We have cloned in a cosmid vector four DNA clusters covering 320 kb of the chicken MHC (B complex), including five class II (B-L) beta genes defining two related isotypic families. Additional B complex genes have been revealed using tissue-specific cDNA probes. A cosmid fragment has been used to isolate a cDNA for a class I (B-F) transcript. This transcript, that is by far the most divergent known member of the class I gene family, hybridized to six B-F genes present in the cosmids. One of the clusters was shown to contain two rRNA transcriptional units from the nucleolar organizer region (NOR), marking the telomeric boundary of the B complex. None of the other B complex genes hybridizes to, or has the transcriptional characteristics of mammalian MHC class II alpha or class III genes. The map we have obtained shows that the B complex does not contain well defined class I and class II regions since B-F and B-L beta genes are closely associated with unrelated genes. Moreover, class II beta genes are very closely linked to class I genes in two clusters, and to the NOR in a third one. Images PMID:3141149

  5. Major histocompatibility complex class I-restricted alloreactive CD4+ T cells.

    PubMed

    Boyle, Louise H; Goodall, Jane C; Gaston, J S Hill

    2004-05-01

    Although it is well established that CD4+ T cells generally recognize major histocompatibility complex (MHC) class II molecules, MHC class I-reactive CD4+ T cells have occasionally been reported. Here we describe the isolation and characterization of six MHC class I-reactive CD4+ T-cell lines, obtained by co-culture of CD4+ peripheral blood T cells with the MHC class II-negative, transporter associated with antigen processing (TAP)-negative cell line, T2, transfected with human leucocyte antigen (HLA)-B27. Responses were inhibited by the MHC class I-specific monoclonal antibody (mAb), W6/32, demonstrating the direct recognition of MHC class I molecules. In four cases, the restriction element was positively identified as HLA-A2, as responses by these clones were completely inhibited by MA2.1, an HLA-A2-specific mAb. Interestingly, three of the CD4+ T-cell lines only responded to cells expressing HLA-B27, irrespective of their restricting allele, implicating HLA-B27 as a possible source of peptides presented by the stimulatory MHC class I alleles. In addition, these CD4+ MHC class I alloreactive T-cell lines could recognize TAP-deficient cells and therefore may have particular clinical relevance to situations where the expression of TAP molecules is decreased, such as viral infection and transformation of cells. PMID:15096184

  6. Combination of the histone deacetylase inhibitor depsipeptide and 5-fluorouracil upregulates major histocompatibility complex class II and p21 genes and activates caspase-3/7 in human colon cancer HCT-116 cells

    PubMed Central

    Okada, Kouji; Hakata, Shuko; Terashima, Jun; Gamou, Toshie; Habano, Wataru; Ozawa, Shogo

    2016-01-01

    Epigenetic anticancer drugs such as histone deacetylase (HDAC) inhibitors have been combined with existing anticancer drugs for synergistic or additive effects. In the present study, we found that a very low concentration of depsipeptide, an HDAC inhibitor, potentiated the antitumor activity of 5-fluorouracil (5-FU) in a human colon cancer cell model using HCT-116, HT29, and SW48 cells via the inhibition of colony formation ability or cellular viability. Exposure to a combination of 5-FU (1.75 µM) and 1 nM depsipeptide for 24 and 48 h resulted in a 3- to 4-fold increase in activated caspase-3/7, while 5-FU alone failed to activate caspase-3/7. Microarray and subsequent gene ontology analyses revealed that compared to 5-FU or depsipeptide alone, the combination treatment of 5-FU and depsipeptide upregulated genes related to cell death and the apoptotic process consistent with the inhibition of colony formation and caspase-3/7 activation. These analyses indicated marked upregulation of antigen processing and presentation of peptide or polysaccharide antigen via major histocompatibility complex (MHC) class (GO:0002504) and MHC protein complex (GO:0042611). Compared with vehicle controls, the cells treated with the combination of 5-FU and depsipeptide showed marked induction (3- to 8.5-fold) of expression of MHC class II genes, but not of MHC class I genes. Furthermore, our global analysis of gene expression, which was focused on genes involved in the molecular regulation of MHC class II genes, showed enhancement of pro-apoptotic PCAF and CIITA after the combination of 5-FU and depsipeptide. These results may indicate a closer relationship between elevation of MHC class II expression and cellular apoptosis induced by the combination of depsipeptide and 5-FU. To the best of our knowledge, this is the first study to report that the combination of 5-FU and depsipeptide induces human colon cancer cell apoptosis in a concerted manner with the induction of MHC class II gene

  7. Combination of the histone deacetylase inhibitor depsipeptide and 5-fluorouracil upregulates major histocompatibility complex class II and p21 genes and activates caspase-3/7 in human colon cancer HCT-116 cells.

    PubMed

    Okada, Kouji; Hakata, Shuko; Terashima, Jun; Gamou, Toshie; Habano, Wataru; Ozawa, Shogo

    2016-10-01

    Epigenetic anticancer drugs such as histone deacetylase (HDAC) inhibitors have been combined with existing anticancer drugs for synergistic or additive effects. In the present study, we found that a very low concentration of depsipeptide, an HDAC inhibitor, potentiated the antitumor activity of 5-fluorouracil (5-FU) in a human colon cancer cell model using HCT-116, HT29, and SW48 cells via the inhibition of colony formation ability or cellular viability. Exposure to a combination of 5-FU (1.75 µM) and 1 nM depsipeptide for 24 and 48 h resulted in a 3- to 4-fold increase in activated caspase-3/7, while 5-FU alone failed to activate caspase-3/7. Microarray and subsequent gene ontology analyses revealed that compared to 5-FU or depsipeptide alone, the combination treatment of 5-FU and depsipeptide upregulated genes related to cell death and the apoptotic process consistent with the inhibition of colony formation and caspase-3/7 activation. These analyses indicated marked upregulation of antigen processing and presentation of peptide or polysaccharide antigen via major histocompatibility complex (MHC) class (GO:0002504) and MHC protein complex (GO:0042611). Compared with vehicle controls, the cells treated with the combination of 5-FU and depsipeptide showed marked induction (3- to 8.5-fold) of expression of MHC class II genes, but not of MHC class I genes. Furthermore, our global analysis of gene expression, which was focused on genes involved in the molecular regulation of MHC class II genes, showed enhancement of pro-apoptotic PCAF and CIITA after the combination of 5-FU and depsipeptide. These results may indicate a closer relationship between elevation of MHC class II expression and cellular apoptosis induced by the combination of depsipeptide and 5-FU. To the best of our knowledge, this is the first study to report that the combination of 5-FU and depsipeptide induces human colon cancer cell apoptosis in a concerted manner with the induction of MHC

  8. Antigen presentation by liposomes bearing class II MHC and membrane IL-1.

    PubMed Central

    Bakouche, O.; Lachman, L. B.

    1990-01-01

    Liposomes containing membrane IL-1, Iak, and the antigen conalbumin were evaluated as "synthetic antigen presenting cells." The role of these three molecules in macrophage-T cell interaction was studied by testing their ability to induce the proliferation of a T-cell clone specific to conalbumin (the D10 cell line) or immune spleen cells sensitized three times in vivo with conalbumin. In the latter case, splenic macrophages were eliminated by adherence and a lysomotropic agent. The antigen conalbumin was presented on the surface of the liposomes as native undigested protein. When the liposomes presented native conalbumin, Iak, and membrane IL-1, significant proliferation occurred, but if the liposomes lacked membrane IL-1, the proliferation of the T-cell clone and the spleen cells reached only about 60 percent of the previous signal. Native conalbumin and class II antigen alone were required for T-cell activation, while membrane IL-1 only amplified the response. When the liposomes were made with only Iak and membrane IL-1, lacking conalbumin, there was no proliferation of antigen-specific target cells. These results indicated that in this synthetic system, membrane IL-1 increases the magnitude of the response but is not essential for the proliferative response of antigen-specific T cells. PMID:2399741

  9. Key Role of Toll-Like Receptor 2 in the Inflammatory Response and Major Histocompatibility Complex Class II Downregulation in Brucella abortus-Infected Alveolar Macrophages

    PubMed Central

    Ferrero, Mariana C.; Hielpos, M. Soledad; Carvalho, Natalia B.; Barrionuevo, Paula; Corsetti, Patricia P.; Giambartolomei, Guillermo H.; Oliveira, Sergio C.

    2014-01-01

    Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival. PMID:24478078

  10. Key role of Toll-like receptor 2 in the inflammatory response and major histocompatibility complex class ii downregulation in Brucella abortus-infected alveolar macrophages.

    PubMed

    Ferrero, Mariana C; Hielpos, M Soledad; Carvalho, Natalia B; Barrionuevo, Paula; Corsetti, Patricia P; Giambartolomei, Guillermo H; Oliveira, Sergio C; Baldi, Pablo C

    2014-02-01

    Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival. PMID:24478078

  11. Typing of HLA class II and class I antigens using PHA-activated, IL-2-propagated T lymphocytes.

    PubMed

    Leshem, B; Cohen, I; Sherman, L; Brautbar, C; Kedar, E

    1988-06-28

    We describe here a simple procedure, by which HLA class II antigens can be accurately and reliably identified in those patients where there is minimal or absent expression of HLA-DR,DQw antigens on B cells, or when the total number of leukocytes recovered from the patients do not permit reliable typing. Ficoll-Hypaque-separated peripheral blood mononuclear leukocytes, fresh or cryopreserved, were activated by PHA and then propagated in IL-2-containing medium until enough cells for typing were obtained (usually 7-14 days). At this stage, the cultured cells were shown to be primarily T cells (greater than 90% CD3+). Since the activated T cells propagate in the presence of IL-2, even a small number (10(4] of fresh or cryopreserved patients' cells suffice for this protocol. To date we have been able to successfully HLA-DR,DQw type 34/34 bone marrow transplantation candidates and 12/12 long-term dialysis patients, who were untypable using fresh cells. HLA-DR,DQw antigens on activated T cells from normal individuals were identical to those found on their uncultured B cells. In addition, class I antigens that were undetectable on the uncultured cells of one patient could be identified on activated T cells. The HLA antigens identified on the patients' activated T cells were confirmed by phenotypic analysis of cells from family members. PMID:3260612

  12. Characterization and evolution of major histocompatibility complex class II genes in the aye-aye, Daubentonia madagascariensis.

    PubMed

    Go, Yasuhiro; Rakotoarisoa, Gilbert; Kawamoto, Yoshi; Shima, Taizo; Koyama, Naoki; Randrianjafy, Albert; Mora, Roger; Hirai, Hirohisa

    2005-04-01

    Major histocompatibility complex genes (Mhc-DQB and Mhc-DRB) were sequenced in seven aye-ayes (Daubentonia madagascariecsis), which is an endemic and endangered species in Madagascar. An aye-aye from a north-eastern population showed genetic relatedness to individuals of a north-western population and had a somewhat different repertoire from another north-eastern individual. These observations suggest that the extent of genetic variation in Mhc genes is not excessively small in the aye-aye in spite of recent rapid destruction of their habitat by human activities. In light of Mhc gene evolution, trans-species and allelic polymorphisms can be estimated to have been retained for more than 50 Ma (million years) based on the time scale of lemur evolution. PMID:15322927

  13. Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor-antigen complexes at the cell surface.

    PubMed

    Wooldridge, Linda; van den Berg, Hugo A; Glick, Meir; Gostick, Emma; Laugel, Bruno; Hutchinson, Sarah L; Milicic, Anita; Brenchley, Jason M; Douek, Daniel C; Price, David A; Sewell, Andrew K

    2005-07-29

    The off-rate (k(off)) of the T cell receptor (TCR)/peptide-major histocompatibility complex class I (pMHCI) interaction, and hence its half-life, is the principal kinetic feature that determines the biological outcome of TCR ligation. However, it is unclear whether the CD8 coreceptor, which binds pMHCI at a distinct site, influences this parameter. Although biophysical studies with soluble proteins show that TCR and CD8 do not bind cooperatively to pMHCI, accumulating evidence suggests that TCR associates with CD8 on the T cell surface. Here, we titrated and quantified the contribution of CD8 to TCR/pMHCI dissociation in membrane-constrained interactions using a panel of engineered pMHCI mutants that retain faithful TCR interactions but exhibit a spectrum of affinities for CD8 of >1,000-fold. Data modeling generates a "stabilization factor" that preferentially increases the predicted TCR triggering rate for low affinity pMHCI ligands, thereby suggesting an important role for CD8 in the phenomenon of T cell cross-reactivity.

  14. T cell stimulation by staphylococcal enterotoxins. Clonally variable response and requirement for major histocompatibility complex class II molecules on accessory or target cells

    PubMed Central

    1988-01-01

    Staphylococcal enterotoxins (SE) are the most potent mitogens for T lymphocytes known; concentrations of less than 10(-9) M are sufficient for T cell activation. The mechanism of T cell activation by SE is unknown. We have used cloned human cytotoxic and proliferative T lymphocytes to dissect the molecular mechanism of T cell activation by SE. With rare exceptions, all TCR alpha/beta chain-expressing T cell clones of CD4+ or CD8+ phenotype, as well as CD4-8- TCR alpha/beta chain negative chain-expressing T lymphocyte clones, respond with proliferation and/or cytotoxicity to SE. For triggering of all these clones, the presence of autologous or allogeneic MHC class II molecules on accessory or target cells is necessary. This requirement for class II antigens is not due to an immunological recognition of processed SE, since inhibition of antigen processing has no influence on the T cell response to SE. SE acts on the T cells directly since (a) they stimulate a rise in intracellular calcium concentration in T cell lines or purified T cells, and (b) accessory cells can be replaced by phorbolesters in the proliferative activation of resting T cells by SE. Furthermore, the T cell response to SE shows extensive clonal heterogeneity. These results suggest that SE are functionally bivalent mitogens binding highly selectively to HLA class II molecules and the TCR. Thus, compared with other polyclonal T cell activating agents, activation with SE most closely mimicks the physiological way of MHC- restricted antigen recognition by T lymphocytes. PMID:3259256

  15. A trans-acting major histocompatibility complex-linked gene whose alleles determine gain and loss changes in the antigenic structure of a classical class I molecule

    PubMed Central

    1989-01-01

    The RT1.A locus of the rat MHC encodes the H chain of the single classical class I molecule of this species. One of the alleles of this polymorphic locus, RT1.Aa, is present in several laboratory inbred, congenic, and MHC recombinant rat strains. Studies of the RT1.Aa class I molecule from a number of these strains as a target for CTL show that its antigenicity, both as an alloantigen and a restricting element, is subject to gain and loss alterations by the action of a gene mapping in the MHC to the right of RT1.A. This locus is apparently present in two allelic forms (one possibly a null allele) corresponding to the presence or absence of a dominant transacting modifier, and has been named class I modification, or cim. The antigenic change brought about by cim is scarcely detectable serologically but highly immunogenic for CTL. Biochemical investigations show that cim affects the post- translational modification of RT1.Aa. PMID:2475574

  16. Low Major Histocompatibility Complex Class II Variation in the Endangered Indo-Pacific Humpback Dolphin (Sousa chinensis): Inferences About the Role of Balancing Selection.

    PubMed

    Zhang, Xiyang; Lin, Wenzhi; Zhou, Ruilian; Gui, Duan; Yu, Xinjian; Wu, Yuping

    2016-03-01

    It has been widely reported that the major histocompatibility complex (MHC) is under balancing selection due to its immune function across terrestrial and aquatic mammals. The comprehensive studies at MHC and other neutral loci could give us a synthetic evaluation about the major force determining genetic diversity of species. Previously, a low level of genetic diversity has been reported among the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary (PRE) using both mitochondrial marker and microsatellite loci. Here, the expression and sequence polymorphism of 2 MHC class II genes (DQB and DRB) in 32 S. chinensis from PRE collected between 2003 and 2011 were investigated. High ratios of non-synonymous to synonymous substitution rates, codon-based selection analysis, and trans-species polymorphism (TSP) support the hypothesis that balancing selection acted on S. chinensis MHC sequences. However, only 2 haplotypes were detected at either DQB or DRB loci. Moreover, the lack of deviation from the Hardy-Weinberg expectation at DRB locus combined with the relatively low heterozygosity at both DQB locus and microsatellite loci suggested that balancing selection might not be sufficient, which further suggested that genetic drift associated with historical bottlenecks was not mitigated by balancing selection in terms of the loss of MHC and neutral variation in S. chinensis. The combined results highlighted the importance of maintaining the genetic diversity of the endangered S. chinensis. PMID:26787544

  17. Extensive polymorphism and evidence of selection pressure on major histocompatibility complex DLA-DRB1, DQA1 and DQB1 class II genes in Croatian grey wolves.

    PubMed

    Arbanasić, H; Huber, Đ; Kusak, J; Gomerčić, T; Hrenović, J; Galov, A

    2013-01-01

    The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for measuring fitness-related genetic variation in wildlife populations. Because of human persecution and habitat fragmentation, the grey wolf has become extinct from a large part of Western and Central Europe, and remaining populations have become isolated. In Croatia, the grey wolf population, part of the Dinaric-Balkan population, shrank nearly to extinction during the 20th century, and is now legally protected. Using the cloning-sequencing method, we investigated the genetic diversity and evolutionary history of exon 2 of MHC class II DLA-DRB1, DQA1 and DQB1 genes in 77 individuals. We identified 13 DRB1, 7 DQA1 and 11 DQB1 highly divergent alleles, and 13 DLA-DRB1/DQA1/DQB1 haplotypes. Selection analysis comparing the relative rates of non-synonymous to synonymous mutations (d(N)/d(S)) showed evidence of positive selection pressure acting on all three loci. Trans-species polymorphism was found, suggesting the existence of balancing selection. Evolutionary codon models detected considerable difference between alpha and beta chain gene selection patterns: DRB1 and DQB1 appeared to be under stronger selection pressure, while DQA1 showed signs of moderate selection. Our results suggest that, despite the recent contraction of the Croatian wolf population, genetic variability in selectively maintained immune genes has been preserved. PMID:23134500

  18. Low Major Histocompatibility Complex Class II Variation in the Endangered Indo-Pacific Humpback Dolphin (Sousa chinensis): Inferences About the Role of Balancing Selection.

    PubMed

    Zhang, Xiyang; Lin, Wenzhi; Zhou, Ruilian; Gui, Duan; Yu, Xinjian; Wu, Yuping

    2016-03-01

    It has been widely reported that the major histocompatibility complex (MHC) is under balancing selection due to its immune function across terrestrial and aquatic mammals. The comprehensive studies at MHC and other neutral loci could give us a synthetic evaluation about the major force determining genetic diversity of species. Previously, a low level of genetic diversity has been reported among the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary (PRE) using both mitochondrial marker and microsatellite loci. Here, the expression and sequence polymorphism of 2 MHC class II genes (DQB and DRB) in 32 S. chinensis from PRE collected between 2003 and 2011 were investigated. High ratios of non-synonymous to synonymous substitution rates, codon-based selection analysis, and trans-species polymorphism (TSP) support the hypothesis that balancing selection acted on S. chinensis MHC sequences. However, only 2 haplotypes were detected at either DQB or DRB loci. Moreover, the lack of deviation from the Hardy-Weinberg expectation at DRB locus combined with the relatively low heterozygosity at both DQB locus and microsatellite loci suggested that balancing selection might not be sufficient, which further suggested that genetic drift associated with historical bottlenecks was not mitigated by balancing selection in terms of the loss of MHC and neutral variation in S. chinensis. The combined results highlighted the importance of maintaining the genetic diversity of the endangered S. chinensis.

  19. Allelic and haplotype variation of major histocompatibility complex class II DRB1 and DQB loci in the St Lawrence beluga (Delphinapterus leucas).

    PubMed

    1999-07-01

    In order to assess levels of major histocompatibility complex (Mhc) variation within the St Lawrence beluga (Delphinapterus leucas) the variation at the beluga Mhc DRB1 class II locus was assessed by single-strand conformation polymorphism (SSCP) analysis of the peptide-binding region for 313 whales collected from 13 sampling locations across North America. In addition, samples from west Greenland and the St Lawrence were also typed at the DQB locus, allowing comparison to a previous study and assessment of linkage disequilibrium of alleles at the two loci. Comparisons of DRB1 and DQB allele frequencies among all sampling locations indicated genetic structure (alpha < 0.005). Most of this structure resulted from differences between the different wintering groups. Significant genetic structure (alpha = 0.05) exists among each pair of the following groups at both the DRB1 and DQB loci; St Lawrence, Hudson Strait, Bering Sea, Cunningham Inlet, and Davis Strait (minus Cunningham Inlet), except the St Lawrence and Hudson Strait for the DQB locus. In the St Lawrence population, six of the eight DRB1 alleles are present representing all five known allelic lineages. Evidence of linkage disequilibrium between the DRB1 and DQB is present in two sampling locations, the St Lawrence and Nuussuaq (alpha = 0.05). Analysis of probable DRB1-DQB haplotypes among groups of beluga suggests a haplotype reduction in the St Lawrence. PMID:10447854

  20. A mutational analysis of the Abetaz/Aalphad major histocompatibility complex class II molecule that restricts autoreactive T cells in (NZBxNZW)F1 mice. The critical influence of alanine at position 69 in the Aalphad chain.

    PubMed

    Sai, T; Mine, M; Fukuoka, M; Koarada, S; Kimoto, M

    1999-03-01

    Autoimmune symptoms of (NZBxNZW)F1 (H-2d/z) mice are reported to be critically related to the heterozygosity at the H-2 complex of the murine major histocompatibility complex (MHC). We previously showed that several Abetaz/Aalphad MHC class II molecule-restricted autoreactive T-cell clones from B/WF1 mice were pathogenic upon transfer to preautoimmune B/WF1 mice. In this study, to identify the crucial amino acid residues in Abetaz/Aalphad molecules for T-cell activation, we generated a panel of transfectant cell lines. These transfectant cell lines express the Abetaz/Aalphad MHC molecules with a mutation at each residue alpha11, alpha28, alpha57, alpha69, alpha70, alpha76 of Aalphad chain and beta86 of Abetaz chain. Replacing alpha69 alanine with threonine, valine or serine completely eliminated the ability to stimulate autoreactive T-cell clones without affecting the ability to present foreign antigen keyhole limpet haemocyanin (KLH) or L-plastin peptide to specific T-cell clones. Replacing beta86 valine with aspartic acid resulted in a decrease in the stimulation for antigen-reactive as well as autoreactive T-cell clones. Substitutions at other residues had minimal or no effect on the stimulation of either auto- or antigen-reactive T-cell clones. These results suggest that alanine at residue 69 of the Aalphad chain is critical for the activation of autoreactive Abetaz/Aalphad-restricted T-cell clones. Possible explanations for this are discussed. PMID:10233712

  1. Major histocompatibility complex class II DAB alleles associated with intestinal parasite load in the vulnerable Chinese egret (Egretta eulophotes).

    PubMed

    Lei, Wei; Zhou, Xiaoping; Fang, Wenzhen; Lin, Qingxian; Chen, Xiaolin

    2016-07-01

    The maintenance of major histocompatibility complex (MHC) polymorphism has been hypothesized to result from many mechanisms such as rare-allele advantage, heterozygote advantage, and allele counting. In the study reported herein, 224 vulnerable Chinese egrets (Egretta eulophotes) were used to examine these hypotheses as empirical results derived from bird studies are rare. Parasite survey showed that 147 (65.63%) individuals were infected with 1-3 helminths, and 82.31% of these infected individuals carried Ascaridia sp. Using asymmetric polymerase chain reaction technique, 10 DAB1, twelve DAB2, and three DAB3 exon 2 alleles were identified at each single locus. A significant association of the rare allele Egeu-DAB2*05 (allele frequency: 0.022) with helminth resistance was found for all helminths, as well as for the most abundant morphotype Ascaridia sp. in the separate analyses. Egeu-DAB2*05 occurred frequently in uninfected individuals, and individuals carrying Egeu-DAB2*05 had significantly lower helminth morphotypes per individual (HMI) (the number of HMI) and the fecal egg count values. Further, the parasite infection measurements were consistently lower in individuals with an intermediate number of different alleles in the duplicated DAB loci. Significantly, heterozygosity within each DAB locus was not correlated with any parasite infection measurements. These results indicate that the diversity in MHC Egeu-DAB gene is associated with intestinal parasite load and maintained by pathogen-driven selection that probably operate through both the rare-allele advantage and the allele counting strategy, and suggest that Egeu-DAB2*05 might be a valuable indicator of better resistance to helminth diseases in the vulnerable Chinese egret. PMID:27386085

  2. DNA analysis of histocompatibility antigens: identification of new DQw specificities and of DPw patterns.

    PubMed

    Goldberg, A C; Kalil, J

    1989-01-01

    1. The HLA-D region of the major histocompatibility complex has several subregions, the most important of which are DR, DQ and DP. The genes coding for the beta chains of these proteins present most of the polymorphisms which result in the large variety of class II antigens observed. 2. We have studied the restriction fragment length polymorphism (RFLP) of the DQ beta and DP beta genes in order to establish accurate typing patterns. 3. The data show that DQ typing based on RFLP permits the identification of the recently described DQw1 splits (new antigenic specificities), DQw5 and DQw6. The TA10-monoclonal antibody-positive split of DQw3, designated DQw7, is associated with specific DNA fragments after digestion with four different enzymes: Taq I, Hind III, Pvu II and Bgl II. Furthermore, the recently reported specificity DQw4 (formerly typed as a blank) is associated with a specific 2.4-kb fragment when the DNA is digested with EcoRV. 4. DP typing proved to be more difficult even though six enzymes were used, and only broad groups could be identified. PMID:2483530

  3. Disentangling the effects of recombination, selection, and demography on the genetic variation at a major histocompatibility complex class II gene in the alpine chamois.

    PubMed

    Mona, S; Crestanello, B; Bankhead-Dronnet, S; Pecchioli, E; Ingrosso, S; D'Amelio, S; Rossi, L; Meneguz, P G; Bertorelle, G

    2008-09-01

    The major histocompatibility complex (MHC) harbours some of the most polymorphic loci in vertebrate genomes. MHC genes are thought to be subject to some form of balancing selection, most likely pathogen-mediated selection. Hence, MHC genes are excellent candidates for exploring adaptive processes. In this study, we investigated the genetic variation at exon 2 of the DRB class II MHC locus in 191 alpine chamois (Rupicapra rupicapra) from 10 populations in the eastern Alps of Italy. In particular, we were interested in distinguishing and estimating the relative impact of selective and demographic factors, while taking into account the confounding effect of recombination. The extremely high d(n)/d(s) ratio and the presence of trans-species polymorphisms suggest that a strong long-term balancing selection effect has been operating at this locus throughout the evolutionary history of this species. We analysed patterns of genetic variation within and between populations, and the mitochondrial D-loop polymorphism patterns were analysed to provide a baseline indicator of the effects of demographic processes. These analyses showed that (i) the chamois experienced a demographic decline in the last 5000-30 000 years, most likely related to the postglacial elevation in temperature; (ii) this demographic process can explain the results of neutrality tests applied to MHC variation within populations, but cannot justify the much weaker divergence between populations implied by MHC as opposed to mitochondrial DNA; (iii) similar sets of divergent alleles are probably maintained with similar frequencies by balancing selection in different populations, and this mechanism is also operating in small isolated populations, which are strongly affected by drift.

  4. T-cell infiltration and expression of MHC class II antigen by macrophages and microglia in a heterogeneous group in leukoencephalopathy.

    PubMed Central

    Tomimoto, H.; Akiguchi, I.; Akiyama, H.; Kimura, J.; Yanagihara, T.

    1993-01-01

    We report here on T-cell infiltration and diffuse expression of the major histocompatibility complex (MHC) class II antigen in a heterogeneous group of macrophages and microglia in leukoencephalopathy (LE). Microglia reacting positively for HLA-DR were five times more numerous in LE than those in non-LE cases and were distributed densely in the degenerated white matter but sparsely in the subcortical arcuate fibers. CD4- and CD8-positive lymphocytes were 9 and 15 times more plentiful, respectively, in LE cases; they aggregated in the expanded Virchow-Robin spaces and frequently infiltrated the neural parenchyma. An intimate association of T cells with macrophages, and the expression of leukocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1), accessory molecules in antigen presentation, were observed in each cell in the region of macrophage clusters. These results indicate that expression of MHC antigen is accompanied by cell adhesion molecules and by infiltration of T cells in a heterogeneous group in leukoencephalopathy and suggests their immunocompetence, although it may be secondary to destruction of myelin. Images Figure 1 Figure 2 Figure 3 PMID:8102032

  5. Effect of herpes simplex virus types 1 and 2 on surface expression of class I major histocompatibility complex antigens on infected cells.

    PubMed Central

    Jennings, S R; Rice, P L; Kloszewski, E D; Anderson, R W; Thompson, D L; Tevethia, S S

    1985-01-01

    Cytotoxic T lymphocytes (CTL) generated in C57BL/6 (H-2b) mice in response to infection with the serologically distinct herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2) were cross-reactive against target cells infected with either serotype. However, HSV-2-infected cells were shown to be much less susceptible to CTL-mediated lysis, and analysis through the use of HSV-1 X HSV-2 intertypic recombinants mapped the reduced susceptibility to a region contained within 0.82 to 1.00 map units of the HSV-2 genome. The study reported here was undertaken to determine the possible reasons for the reduced susceptibility of HSV-2-infected cells to lysis by CTL. Competition for the specific lysis of labeled HSV-1-infected cells by either HSV-1- or HSV-2-infected, unlabeled inhibitor cells and frequency analysis of the CTL precursor able to recognize HSV-1- and HSV-2-infected cells suggested that the reduced susceptibility of HSV-2-infected cells to lysis could be explained, at least in part, by reduced levels of target cell recognition. A determination of the surface expression of the critical elements involved in target cell recognition by CTL following infection with HSV-1 or HSV-2 revealed that all the major HSV-specific glycoprotein species were expressed. Infection with both HSV-1 and HSV-2 caused a reduction in the expression of the class I H-2 antigens. However, this reduction was much greater following infection with HSV-2. This suggested that one important factor contributing to reduced lysis of HSV-2-infected cells may be the altered or reduced expression of the class I H-2 self-antigens. PMID:2999432

  6. Upregulation and induction of surface antigens with special reference to MHC class II expression in microglia in postnatal rat brain following intravenous or intraperitoneal injections of lipopolysaccharide.

    PubMed Central

    Xu, J; Ling, E A

    1994-01-01

    The effects of bacterial lipopolysaccharide (LPS) on the expression of surface antigens including major histocompatibility complex (MHC) and complement type 3 (CR3) receptors on microglial cells in the corpus callosum in postnatal rat brain were investigated. When LPS was injected intravenously (i.v.) in 1-d-old rats, the immunostaining of callosal amoeboid microglial cells with OX-18 directed against MHC class I antigen was enhanced 24 h after the injection in comparison with the controls. The expression of MHC class II (Ia) antigen on the same cell type as shown by its immunoreactivity with OX-6 was also elicited especially after 2 intraperitoneal (i.p.) injections of LPS. Thus 7 d after a single i.p. injection of LPS into 1-d-old rats, only a few OX-6 positive cells showing a moderate staining reaction were observed in the corpus callosum. The immunoreactivity diminished 14 d after the injection. However, in rats receiving 2 successive i.p. injections of LPS at 1 and 4 d of age and killed 7 d after the 1st injection, a significant number of intensely stained OX-6 positive amoeboid microglial cells were observed in the corpus callosum. The expression of MHC class II antigens induced by 2 injections of LPS was sustained at least until d 14 when the callosal ramified microglial cells, known to be derived from gradual metamorphic transformation of amoeboid microglia, still exhibited intense immunoreactivity with OX-6. The effect of LPS on the expression of CR3 on amoeboid microglial cells was not obvious after a single injection, but the immunoreactivity with OX-42 was also augmented in rats given 2 i.p. administration of LPS into rats at 1 an 4 d of age. It is concluded from this study that the expression of MHC class I and class II antigens on amoeboid microglial cells in corpus callosum was upregulated and induced respectively after i.v. or i.p. injection of LPS into early postnatal rats. Although relatively fewer in number when compared with OX-18 and OX-42

  7. Effects of messenger RNA structure and other translational control mechanisms on major histocompatibility complex-I mediated antigen presentation

    PubMed Central

    Murat, Pierre; Tellam, Judy

    2015-01-01

    Effective T-cell surveillance of antigen-presenting cells is dependent on the expression of an array of antigenic peptides bound to major histocompatibility complex (MHC) class I (MHC-I) or class II (MHC-II) molecules. Pathogens co-evolving with their hosts exploit crucial translational regulatory mechanisms in order to evade host immune recognition and thereby sustain their infection. Evasion strategies that downregulate viral protein synthesis and thereby restrict antigen presentation to cytotoxic T-cells through the endogenous MHC-I pathway have been implicated in the pathogenesis of viral-associated malignancies. An understanding of the mechanisms by which messenger RNA (mRNA) structure modulates both viral mRNA translation and the antigen processing machinery to escape immune surveillance, will stimulate the development of alternative therapeutic strategies focused on RNA-directed drugs designed to enhance immune responses against infected cells. In this review, we discuss regulatory aspects of the MHC-I pathway and summarize current knowledge of the role attributed by mRNA structure and other translational regulatory mechanisms in immune evasion. In particular we highlight the impact of recently identified G-quadruplex structures within virally encoded transcripts as unique regulatory signals for translational control and antigen presentation. WIREs RNA 2015, 6:157–171. doi: 10.1002/wrna.1262 PMID:25264139

  8. High-affinity binding of short peptides to major histocompatibility complex class II molecules by anchor combinations.

    PubMed Central

    Hammer, J; Belunis, C; Bolin, D; Papadopoulos, J; Walsky, R; Higelin, J; Danho, W; Sinigaglia, F; Nagy, Z A

    1994-01-01

    We have previously identified four anchor positions in HLA-DRB1*0101-binding peptides, and three anchors involved in peptide binding to DRB1*0401 and DRB1*1101 molecules, by screening of an M13 peptide display library (approximately 20 million independent nonapeptides) for DR-binding activity. In this study, high stringency screening of the M13 library for DRB1*0401 binding has resulted in identification of three further anchor positions. Taken together, a peptide-binding motif has been obtained, in which six of seven positions show enrichment of certain residues. We have demonstrated an additive effect of anchors in two different ways: (i) the addition of more anchors is shown to compensate for progressive truncation of designer peptides; (ii) the incorporation of an increasing number of anchors into 6- or 7-residue-long designer peptides is shown to result in a gradual increase of binding affinity to the level of 13-residue-long high-affinity epitopes. The anchor at relative position 1 seems to be obligatory, in that its substitution abrogates binding completely, whereas the elimination of other anchors results only in partial loss of binding affinity. The spacing between anchors is critical, since their effect is lost by shifting them one position toward the N or C terminus. The information born out of this study has been successfully used to identify DR-binding sequences from natural proteins. PMID:8183931

  9. Induction of tolerance against the arthritogenic antigen with type-II collagen peptide-linked soluble MHC class II molecules

    PubMed Central

    Park, Yoon-Kyung; Jung, Sundo; Park, Se-Ho

    2016-01-01

    In murine collagen-induced arthritis (CIA), self-reactive T cells can recognize peptide antigens derived from type-II collagen (CII). Activation of T cells is an important mediator of autoimmune diseases. Thus, T cells have become a focal point of study to treat autoimmune diseases. In this study, we evaluated the efficacy of recombinant MHC class II molecules in the regulation of antigen-specific T cells by using a self peptide derived from CII (CII260-274; IAGFKGEQGPKGEPG) linked to mouseI-Aq in a murine CIA model. We found that recombinant I-Aq/CII260-274 molecules could be recognized by CII-specific T cells and inhibit the same T cells in vitro. Furthermore, the development of CIA in mice was successfully prevented by in vivo injection of recombinant I-Aq/CII260-274 molecules. Thus, treatment with recombinant soluble MHC class II molecules in complex with an immunodominant self-peptide might offer a potential therapeutic for chronic inflammation in autoimmune disease such as rheumatoid arthritis. [BMB Reports 2016; 49(6): 331-336 PMID:26779996

  10. Transcription analysis of class II human leukocyte antigen genes from normal and immunodeficient B lymphocytes, using polymerase chain reaction.

    PubMed Central

    Bull, M; van Hoef, A; Gorski, J

    1990-01-01

    The RNA transcript levels of all human leukocyte antigen class II loci were determined from class II congenital immunodeficient B cells by polymerase chain reaction amplification of cDNA. No mRNA was observed under conditions in which 0.01% normal levels could be visualized. Pre-mRNA could be amplified from normal B cells but not from immunodeficient B cells, indicating a transcription defect. Images PMID:2113177

  11. Minor Histocompatibility Antigens Are Expressed in Syncytiotrophoblast and Trophoblast Debris

    PubMed Central

    Holland, Olivia J.; Linscheid, Caitlin; Hodes, Herbert C.; Nauser, Traci L.; Gilliam, Melissa; Stone, Peter; Chamley, Larry W.; Petroff, Margaret G.

    2012-01-01

    The fetal semi-allograft can induce expansion and tolerance of antigen-specific maternal T and B cells through paternally inherited major histocompatibility complex and minor histocompatibility antigens (mHAgs). The effects of these antigens have important consequences on the maternal immune system both during and long after pregnancy. Herein, we investigate the possibility that the placental syncytiotrophoblast and deported trophoblastic debris serve as sources of fetal mHAgs. We mapped the expression of four mHAgs (human mHAg 1, pumilio domain-containing protein KIAA0020, B-cell lymphoma 2–related protein A1, and ribosomal protein S4, Y linked) in the placenta. Each of these proteins was expressed in several placental cell types, including the syncytiotrophoblast. These antigens and two additional Y chromosome–encoded antigens [DEAD box polypeptide 3, Y linked (DDX3Y), and lysine demethylase5D] were also identified by RT-PCR in the placenta, purified trophoblast cells, and cord blood cells. Finally, we used a proteomic approach to investigate the presence of mHAgs in the syncytiotrophoblast and trophoblast debris shed from first-trimester placenta. By this method, four antigens (DDX3Y; ribosomal protein S4, Y linked; solute carrier 1A5; and signal sequence receptor 1) were found in the syncytiotrophoblast, and one antigen (DDX3Y) was found in shed trophoblast debris. The finding of mHAgs in the placenta and in trophoblast debris provides the first direct evidence that fetal antigens are present in debris shed from the human placenta. The data, thus, suggest a mechanism by which the maternal immune system is exposed to fetal alloantigens, possibly explaining the relationship between parity and graft-versus-host disease. PMID:22079431

  12. Minor histocompatibility antigens on canine hemopoietic progenitor cells.

    PubMed

    Weber, Martin; Lange, Claudia; Günther, Wolfgang; Franz, Monika; Kremmer, Elisabeth; Kolb, Hans-Jochem

    2003-06-15

    Adoptive immunotherapy with CTL against minor histocompatibility Ags (mHA) provides a promising way to treat leukemia relapse in allogeneic chimeras. Here we describe the in vitro generation of CTL against mHA in the dog. We tested their inhibitory effect on the growth of hemopoietic progenitor cells stimulated by hemopoietic growth factors in a 4-day suspension culture. CTL were produced by coculture of donor PBMC with bone marrow-derived dendritic cells (DCs). These DCs were characterized by morphology, high expression of MHC class II and CD1a, and the absence of the monocyte-specific marker CD14. Characteristically these cells stimulated allogeneic lymphocytes (MLR) and, after pulsing with a foreign Ag (keyhole limpet hemocyanin), autologous T cells. CTL were generated either ex vivo by coculture with DCs of DLA-identical littermates or in vivo by immunization of the responder with DCs obtained from a DLA-identical littermate. In suspension culture assays the growth of hemopoietic progenitor cells was inhibited in 53% of DLA-identical littermate combinations. In canine families mHA segregated with DLA as restriction elements. One-way reactivity against mHA was found in five littermate combinations. In two cases mHA might be Y chromosome associated, in three cases autosomally inherited alleles were detected. We conclude that CTL can be produced in vitro and in vivo against mHA on canine hemopoietic progenitor cells using bone marrow-derived DCs. PMID:12794111

  13. JC Polyomavirus Infection Is Strongly Controlled by Human Leucocyte Antigen Class II Variants

    PubMed Central

    Sundqvist, Emilie; Buck, Dorothea; Warnke, Clemens; Albrecht, Eva; Gieger, Christian; Khademi, Mohsen; Lima Bomfim, Izaura; Fogdell-Hahn, Anna; Link, Jenny; Alfredsson, Lars; Søndergaard, Helle Bach; Hillert, Jan; Oturai, Annette B.; Hemme, Bernhard

    2014-01-01

    JC polyomavirus (JCV) carriers with a compromised immune system, such as in HIV, or subjects on immune-modulating therapies, such as anti VLA-4 therapy may develop progressive multifocal leukoencephalopathy (PML) which is a lytic infection of oligodendrocytes in the brain. Serum antibodies to JCV mark infection occur only in 50–60% of infected individuals, and high JCV-antibody titers seem to increase the risk of developing PML. We here investigated the role of human leukocyte antigen (HLA), instrumental in immune defense in JCV antibody response. Anti-JCV antibody status, as a surrogate for JCV infection, were compared to HLA class I and II alleles in 1621 Scandinavian persons with MS and 1064 population-based Swedish controls and associations were replicated in 718 German persons with MS. HLA-alleles were determined by SNP imputation, sequence specific (SSP) kits and a reverse PCR sequence-specific oligonucleotide (PCR-SSO) method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR = 0.42, p = 7×10−15) and controls (OR = 0.53, p = 2×10−5). In contrast, the DQB1*06:03 haplotype was positively associated with JCV sero-status, in Scandinavian MS cases (OR = 1.63, p = 0.006), and controls (OR = 2.69, p = 1×10−5). The German dataset confirmed these findings (OR = 0.54, p = 1×10−4 and OR = 1.58, p = 0.03 respectively for these haplotypes). HLA class II restricted immune responses, and hence CD4+ T cell immunity is pivotal for JCV infection control. Alleles within the HLA-DR1*15 haplotype are associated with a protective effect on JCV infection. Alleles within the DQB1*06:03 haplotype show an opposite association. These associations between JC virus antibody response and human leucocyte antigens supports the notion that CD4+ T cells are crucial in the immune defence to JCV and lays

  14. JC polyomavirus infection is strongly controlled by human leucocyte antigen class II variants.

    PubMed

    Sundqvist, Emilie; Buck, Dorothea; Warnke, Clemens; Albrecht, Eva; Gieger, Christian; Khademi, Mohsen; Lima Bomfim, Izaura; Fogdell-Hahn, Anna; Link, Jenny; Alfredsson, Lars; Søndergaard, Helle Bach; Hillert, Jan; Oturai, Annette B; Hemmer, Bernhard; Hemme, Bernhard; Kockum, Ingrid; Olsson, Tomas

    2014-04-01

    JC polyomavirus (JCV) carriers with a compromised immune system, such as in HIV, or subjects on immune-modulating therapies, such as anti VLA-4 therapy may develop progressive multifocal leukoencephalopathy (PML) which is a lytic infection of oligodendrocytes in the brain. Serum antibodies to JCV mark infection occur only in 50-60% of infected individuals, and high JCV-antibody titers seem to increase the risk of developing PML. We here investigated the role of human leukocyte antigen (HLA), instrumental in immune defense in JCV antibody response. Anti-JCV antibody status, as a surrogate for JCV infection, were compared to HLA class I and II alleles in 1621 Scandinavian persons with MS and 1064 population-based Swedish controls and associations were replicated in 718 German persons with MS. HLA-alleles were determined by SNP imputation, sequence specific (SSP) kits and a reverse PCR sequence-specific oligonucleotide (PCR-SSO) method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR = 0.42, p = 7×10(-15)) and controls (OR = 0.53, p = 2×10(-5)). In contrast, the DQB1*06:03 haplotype was positively associated with JCV sero-status, in Scandinavian MS cases (OR = 1.63, p = 0.006), and controls (OR = 2.69, p = 1×10(-5)). The German dataset confirmed these findings (OR = 0.54, p = 1×10(-4) and OR = 1.58, p = 0.03 respectively for these haplotypes). HLA class II restricted immune responses, and hence CD4+ T cell immunity is pivotal for JCV infection control. Alleles within the HLA-DR1*15 haplotype are associated with a protective effect on JCV infection. Alleles within the DQB1*06:03 haplotype show an opposite association. These associations between JC virus antibody response and human leucocyte antigens supports the notion that CD4+ T cells are crucial in the immune defence to JCV and lays the

  15. Phenotypic characterization of mononuclear cells and class II antigen expression in angular cheilitis infected by Candida albicans or Staphylococcus aureus.

    PubMed

    Ohman, S C; Jontell, M; Jonsson, R

    1989-04-01

    In the present study we characterized the phenotypes of infiltrating mononuclear cells in angular cheilitis lesions to further explore the pathogenesis of this disorder. Frozen sections from lesions infected by Candida albicans and/or Staphylococcus aureus were subjected to immunohistochemical analysis utilizing monoclonal antibodies directed to subsets of T-lymphocytes, B-lymphocytes, and macrophages. In addition, the expression of Class II antigens (HLA-DP, -DQ, -DR), the interleukin 2- and transferrin-receptors was studied on resident and infiltrating cells. An intense infiltration of T-lymphocytes was accompanied by expression of Class II antigens on the epidermal keratinocytes in lesion infected by Candida albicans. The Staphylococcus aureus infected lesions displayed a diffuse infiltration of T-lymphocytes but virtually no expression of Class II antigen by epidermal keratinocytes. These observations suggest that the cell-mediated arm of the immune system is involved in the inflammatory reaction of lesions infected by Candida albicans. In addition, the present study confirms that epidermal expression of Class II antigens is closely related to the type and magnitude of the infiltrating T-lymphocyte. Finally, these findings indicate that the type of inflammatory reaction in angular cheilitis is primarily dependent on the isolated microorganism, although the clinical pictures of the disorder are virtually identical. PMID:2468179

  16. T cell receptor genes in a series of class I major histocompatibility complex-restricted cytotoxic T lymphocyte clones specific for a Plasmodium berghei nonapeptide: implications for T cell allelic exclusion and antigen-specific repertoire

    PubMed Central

    1991-01-01

    We report here the first extensive study of a T cell repertoire for a class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocyte (CTL) response. We have found that the T cell receptors (TCRs) carried by 28 H-2Kd-restricted CTL clones specific for a single Plasmodium berghei circumsporozoite nonapeptide are highly diverse in terms of V alpha, J alpha, and J beta segments and aminoacid composition of the junctional regions. However, despite this extensive diversity, a high proportion of the TCRs contain the same V beta segment. These results are in contrast to most previously reported T cell responses towards class II MHC-peptide complexes, where the TCR repertoires appeared to be much more limited. In our study, the finding of a dominant V beta in the midst of otherwise highly diverse TCRs suggests the importance of the V beta segment in shaping the T cell repertoire specific for a given MHC-peptide complex. As an additional finding, we observed that nearly all clones have rearranged both TCR alpha loci. Moreover, as many as one-third of the CTL clones that we analyzed apparently display two productive alpha rearrangements. This argues against a regulated model of sequential recombination at the alpha locus and consequently raises the question of whether allelic exclusion of the TCR alpha chain is achieved at all. PMID:1836010

  17. Design of a ProDer f 1 vaccine delivered by the MHC class II pathway of antigen presentation and analysis of the effectiveness for specific immunotherapy

    PubMed Central

    Liu, Zhiming; Jiang, Yuxin; Li, Chaopin

    2014-01-01

    Dermatophagoides farinae (Der f 1) is one of leading cause for allergic asthma, and allergen-specific immunotherapy (SIT) is currently recognized as the only etiological therapy to ameliorate asthmatic symptom. The current study was designed on the major histocompatibility complex (MHC) class II pathway, invariant chain (Ii)-segment hybrids as vaccine basis to explore the efficacy of Der f 1 hybrid vaccine by virtue of Ii as carrier in enhancing the protective immune response to asthma. Initially, we engineered a fused molecule, DCP-IhC-ProDer f 1, to deliver ProDer f 1 antigen via specific dendritic cell-targeting peptides to dendritic cells (DCs). Then the DCP-IhC-ProDer f 1 was immunized to the asthmatic models of murine induced by ProDer f 1 allergen. The findings showed that the cytokine repertoire in the murine model was shifted after SIT, including stronger secretion of IFN-γ and IL-10, and a decreased production of IL-4 and IL-17. ELISA determination revealed that the hybrid displayed weak IgE and IgG1 reactivities, and IgG2a levels were elevated. Furthermore, DCP-IhC-ProDer f 1 treatment inhibited inflammatory cell infiltration in the lung tissues. Our results suggest that the DCP-Ihc-ProDer f 1 may be used as a candidate SIT against asthma. PMID:25197336

  18. Clones of T cells discriminate between native and deglycosylated forms of MHC class II antigen in allostimulation.

    PubMed

    Culley, D; Waldron-Edward, D; Manjunath, P; Mamer, O A; Abikar, K; Rode, H; Gordon, J

    1993-07-01

    The aim of this study was to clarify the role of the oligosaccharide side chains of MHC Class II antigens in allostimulation. The approach was to cleave the oligosaccharides from protein by subjecting plasma membranes (PM) of the Daudi cell line to chemical deglycosylation yielding deglycosylated (dgl) proteins and a supernatant fraction containing plasma membrane oligosaccharides (dgl sup). MHC Class II antigens affinity purified from the native and the dgl PM were inserted into the plasma membrane of peripheral blood leukocytes (PBL) used as stimulators in a mixed leukocyte reaction (MLR). Cells used as stimulators and as responders were from the same donor. Both native and to a lesser extent the dgl antigen could elicit a proliferative as well as a cytolytic (CML) response. A comparable reduction in the CML reaction was also obtained when native antigen was used to elicit effector cells, but the target was stripped of N-linked oligosaccharides by pretreatment with tunicamycin (TM). Five clones of responding cells raised against the native antigen were studied. Two gave proliferative reactions of equal magnitude to native and to dgl antigen alike, while three responded only to the native form. These three clones did not lyse TM-treated target cells. Inhibition experiments of CML were performed with either the dgl sup containing Daudi PM oligosaccharides or with an anti MHC-Class II MoAb. CML reactivity of the three clones which responded to native antigen was blocked by the dgl sup but not by the anti-MHC antibody. Conversely, the reaction of the two clones reactive to both forms of antigen was only inhibited by the anti-MHC antibody using intact or TM-treated targets. Accordingly, in terms of the latter set of clones oligosaccharide side chains of MHC may not be required for allostimulation. Data obtained with the set of three clones suggest that oligosaccharides could act as target of cytotoxic T cells.

  19. Development of novel major histocompatibility complex class I and class II-deficient NOD-SCID IL2R gamma chain knockout mice for modeling human xenogeneic graft-versus-host disease.

    PubMed

    Pino, Steve; Brehm, Michael A; Covassin-Barberis, Laurence; King, Marie; Gott, Bruce; Chase, Thomas H; Wagner, Jennifer; Burzenski, Lisa; Foreman, Oded; Greiner, Dale L; Shultz, Leonard D

    2010-01-01

    Immunodeficient mice have been used as recipients of human peripheral blood mononuclear cells (PBMC) for in vivo analyses of human xeno-graft-versus-host disease (GVHD). This xeno-GVHD model system in many ways mimics the human disease. The model system is established by intravenous or intraperitoneal injection of human PBMC or spleen cells into unconditioned or irradiated immunodeficient recipient mice. Recently, the development of several stocks of immunodeficient Prkdc ( scid ) (scid) and recombination activating 1 or 2 gene (Rag1 or Rag2) knockout mice bearing a targeted mutation in the gene encoding the IL2 receptor gamma chain (IL2rgamma) have been reported. The addition of the mutated IL2rgamma gene onto an immunodeficient mouse stock facilitates heightened engraftment with human PBMC. Stocks of mice with mutations in the IL2rgamma gene have been studied in several laboratories on NOD-scid, NOD-Rag1 ( null ), BALB/c-Rag1 ( null ), BALB/c-Rag2 ( null ), and Stock-H2(d)-Rag2 ( null ) strain backgrounds. Parameters to induce human xeno-GVHD in H2(d)-Rag2 ( null ) IL2rgamma ( null ) mice have been published, but variability in the frequency of disease and kinetics of GVHD were observed. The availability of the NOD-scid IL2rgamma ( null ) stock that engrafts more readily with human PBMC than does the Stock-H2(d)-Rag2 ( null ) IL2rgamma ( null ) stock should lead to a more reproducible humanized mouse model of GVHD and for the use in drug evaluation and validation. Furthermore, GVHD in human PBMC-engrafted scid mice has been postulated to result predominately from a human anti-mouse major histocompatibility complex (MHC) class II reactivity. Our recent development of NOD-scid IL2rgamma ( null ) beta2m ( null ) and NOD-scid IL2rgamma ( null ) Ab ( null ) stocks of mice now make it possible to investigate directly the role of host MHC class I and class II in the pathogenesis of GVHD in humanized mice using NOD-scid IL2rgamma ( null ) stocks that engraft at high

  20. Analysis of T cell stimulation by superantigen plus major histocompatibility complex class II molecules or by CD3 monoclonal antibody: costimulation by purified adhesion ligands VCAM-1, ICAM-1, but not ELAM-1

    PubMed Central

    1991-01-01

    Many ligands of adhesion molecules mediate costimulation of T cell activation. The generality of this emerging concept is best determined by using model systems which exploit physiologically relevant ligands. We developed such an "antigen-specific" model system for stimulation of resting CD4+ human T cells using the following purified ligands: (a) major histocompatibility complex class II plus the superantigen Staphylococcus enterotoxin A, to engage the T cell receptor (TCR); (b) adhesion proteins vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and endothelial leukocyte adhesion molecule 1 (ELAM-1), to provide potential cell surface costimulatory signals; and (c) recombinant interleukin 1 beta (rIL-1 beta)/rIL-6 as costimulatory cytokines. In this biochemically defined system, we find that resting CD4+ T cells require costimulation in order to respond to TCR engagement. This costimulation can be provided by VCAM-1 or ICAM-1; however adhesion alone is not sufficient since ELAM-1 mediates adhesion but not costimulation. The cytokines IL-1 beta and IL-6 by themselves cannot mediate costimulation, but augment the adhesion ligand-mediated costimulation. Direct comparison with the model of TCR/CD3 engagement by CD3 monoclonal antibody demonstrated comparable costimulatory requirements in both systems, thereby authenticating the commonly used CD3 model. The costimulation mediated by the activation-dependent interaction of the VLA-4 and LFA-1 integrins with their respective ligands VCAM-1 and ICAM-1 leads to increased IL-2R alpha (CD25) expression and proliferation in both CD45RA+ CD4+ and CD45RO+ CD4+ T cells. The integrins also regulate the secretion of IL-2, IL-4, and granulocyte/macrophage colony-stimulating factor. In contrast the activation-independent adhesion of CD4+ T cell to ELAM-1 molecules does not lead to T cell stimulation as measured by proliferation, IL-2R alpha expression, or cytokine release. These findings imply

  1. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  2. The production and crystallization of the human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 complexed with deamidated gliadin peptides implicated in coeliac disease

    SciTech Connect

    Henderson, Kate N.; Reid, Hugh H.; Borg, Natalie A.; Broughton, Sophie E.; Huyton, Trevor; Anderson, Robert P.; McCluskey, James; Rossjohn, Jamie

    2007-12-01

    The production and crystallization of human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 in complex with deamidated gliadin peptides is reported. Crystals of HLA-DQ2{sup PQPELPYPQ} diffracted to 3.9 Å, while the HLA-DQ8{sup EGSFQPSQE} crystals diffracted to 2.1 Å, allowing structure determination by molecular replacement. The major histocompatibility complex (MHC) class II molecules HLA-DQ2 and HLA-DQ8 are key risk factors in coeliac disease, as they bind deamidated gluten peptides that are subsequently recognized by CD4{sup +} T cells. Here, the production and crystallization of both HLA-DQ2 and HLA-DQ8 in complex with the deamidated gliadin peptides DQ2 α-I (PQPELPYPQ) and DQ8 α-I (EGSFQPSQE), respectively, are reported.

  3. Comparison of peptide-major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells.

    PubMed

    Dolton, G; Lissina, A; Skowera, A; Ladell, K; Tungatt, K; Jones, E; Kronenberg-Versteeg, D; Akpovwa, H; Pentier, J M; Holland, C J; Godkin, A J; Cole, D K; Neller, M A; Miles, J J; Price, D A; Peakman, M; Sewell, A K

    2014-07-01

    Fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) multimers are widely used for flow cytometric visualization of antigen-specific T cells. The most common multimers, streptavidin-biotin-based 'tetramers', can be manufactured readily in the laboratory. Unfortunately, there are large differences between the threshold of T cell receptor (TCR) affinity required to capture pMHC tetramers from solution and that which is required for T cell activation. This disparity means that tetramers sometimes fail to stain antigen-specific T cells within a sample, an issue that is particularly problematic when staining tumour-specific, autoimmune or MHC class II-restricted T cells, which often display TCRs of low affinity for pMHC. Here, we compared optimized staining with tetramers and dextramers (dextran-based multimers), with the latter carrying greater numbers of both pMHC and fluorochrome per molecule. Most notably, we find that: (i) dextramers stain more brightly than tetramers; (ii) dextramers outperform tetramers when TCR-pMHC affinity is low; (iii) dextramers outperform tetramers with pMHC class II reagents where there is an absence of co-receptor stabilization; and (iv) dextramer sensitivity is enhanced further by specific protein kinase inhibition. Dextramers are compatible with current state-of-the-art flow cytometry platforms and will probably find particular utility in the fields of autoimmunity and cancer immunology. PMID:24673376

  4. Analysis of Class II human leucocyte antigens in Italian and Spanish systemic sclerosis

    PubMed Central

    Rueda, Blanca; Marchini, Maurizio; Santaniello, Alessandro; Simeón, Carmen P.; Fonollosa, Vicente; Caronni, Monica; Rios-Fernandez, Raquel; Carreira, Patricia; Rodriguez-Rodriguez, Luis; Moreno, Antonia; López-Nevot, Miguel A.; Escalera, Ana; González-Escribano, Maria F.; Martin, Javier; Scorza, Raffaella

    2012-01-01

    Objective. To determine the role of Class II HLAs in SSc patients from Italy and Spain and in SSc patients of Caucasian ancestry. Methods. Nine hundred and forty-four SSc patients (Italy 392 patients; Spain 452 patients) and 1320 ethnically matched healthy controls (Italy 398 patients; Spain 922 patients) were genotyped up to the fourth digit by PCR with sequence-specific oligonucleotides for HLA-DRB1, DQA1 and DQB1 loci. Patients included 390 ACA-positive and 254 anti-topo I-positive subjects. Associations between SSc or SSc-specific antibodies and HLA alleles or HLA haplotypes were sought via the chi-square test after 10 000-fold permutation testing. A meta-analysis including this study cohort and other Caucasoids samples was also conducted. Results. In both the cohorts, the strongest association was observed between the HLA-DRB1*1104 allele and SSc or anti-topo I antibodies. The HLA-DRB1*1104 -DQA1*0501 -DQB1*0301 haplotype was overrepresented in Italian [odds ratio (OR) = 2.069, 95% asymptotic CIs (CI95) 1.486, 2.881; P < 0.001] and in Spanish patients (OR = 6.707, CI95 3.974, 11.319; P < 0.001) as well as in anti-topo-positive patients: Italy (OR = 2.642, CI95 1.78, 3.924; P < 0.001) and Spain (OR = 20.625, CI95 11.536, 36.876; P < 0.001). In both the populations we also identified an additional risk allele (HLA-DQB1*03) and a protective allele (HLA-DQB1*0501) in anti-topo-positive patients. The meta-analysis showed different statistically significant associations, the most interesting being the differential association between HLA-DRB1*01 alleles and ACAs (OR = 1.724, CI95 1.482, 2.005; P < 0.001) or topo I antibodies (OR = 0.5, CI95 0.384, 0.651; P < 0.001). Conclusions. We describe multiple robust associations between SSc and HLA Class II antigens in Caucasoids that may help to understand the genetic architecture of SSc. PMID:22087014

  5. Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome-coronavirus infection

    PubMed Central

    Hajeer, Ali H.; Balkhy, Hanan; Johani, Sameera; Yousef, Mohammed Z.; Arabi, Yaseen

    2016-01-01

    BACKGROUND: Middle East Respiratory Syndrome (MERS) is a disease of the lower respiratory tract and is characterized by high mortality. It is caused by a beta coronavirus (CoV) referred to as MERS-CoV. Majority of MERS-CoV cases have been reported from Saudi Arabia. AIM: We investigated the human leukocyte antigen (HLA) Class II alleles in patients with severe MERS who were admitted in our Intensive Care Unit. METHODS: A total of 23 Saudi patients with severe MERS-CoV infection were typed for HLA class II, results were compared with those of 161 healthy controls. RESULTS: Two HLA class II alleles were associated with the disease; HLA-DRB1*11:01 and DQB1*02:02, but not with the disease outcome. CONCLUSIONS: Our results suggest that the HLA-DRB1*11:01 and DQB1*02:02 may be associated with susceptibility to MERS. PMID:27512511

  6. Donor MHC class II antigen is essential for induction of transplantation tolerance by bone marrow cells.

    PubMed

    Umemura, A; Monaco, A P; Maki, T

    2000-05-01

    Posttransplant infusion of donor bone marrow cells (BMC) induces tolerance to allografts in adult mice, dogs, nonhuman primates, and probably humans. Here we used a mouse skin allograft model and an allogeneic radiation chimera model to examine the role of MHC Ags in tolerance induction. Infusion of MHC class II Ag-deficient (CIID) BMC failed to prolong C57BL/6 (B6) skin grafts in ALS- and rapamycin-treated B10.A mice, whereas wild-type B6 or MHC class I Ag-deficient BMC induced prolongation. Removal of class II Ag-bearing cells from donor BMC markedly reduced the tolerogenic effect compared with untreated BMC, although graft survival was significantly longer in mice given depleted BMC than that in control mice given no BMC. Infusion of CIID BMC into irradiated syngeneic B6 or allogeneic B10.A mice produced normal lymphoid cell reconstitution including CD4+ T cells except for the absence of class II Ag-positive cells. However, irradiated B10.A mice reconstituted with CIID BMC rejected all B6 and a majority of CIID skin grafts despite continued maintenance of high degree chimerism. B10.A mice reconstituted with B6 BMC maintained chimerism and accepted both B6 and CIID skin grafts. Thus, expression of MHC class II Ag on BMC is essential for allograft tolerance induction and peripheral chimerism with cells deficient in class II Ag does not guarantee allograft acceptance. PMID:10779744

  7. Assessment of biodiversity in Chilean cattle using the distribution of major histocompatibility complex class II BoLA-DRB3 allele.

    PubMed

    Takeshima, S-N; Miyasaka, T; Matsumoto, Y; Xue, G; Diaz, V de la Barra; Rogberg-Muñoz, A; Giovambattista, G; Ortiz, M; Oltra, J; Kanemaki, M; Onuma, M; Aida, Y

    2015-01-01

    Bovine leukocyte antigens (BoLAs) are used extensively as markers for bovine disease and immunological traits. In this study, we estimated BoLA-DRB3 allele frequencies using 888 cattle from 10 groups, including seven cattle breeds and three crossbreeds: 99 Red Angus, 100 Black Angus, 81 Chilean Wagyu, 49 Hereford, 95 Hereford × Angus, 71 Hereford × Jersey, 20 Hereford × Overo Colorado, 113 Holstein, 136 Overo Colorado, and 124 Overo Negro cattle. Forty-six BoLA-DRB3 alleles were identified, and each group had between 12 and 29 different BoLA-DRB3 alleles. Overo Negro had the highest number of alleles (29); this breed is considered in Chile to be an 'Old type' European Holstein Friesian descendant. By contrast, we detected 21 alleles in Holstein cattle, which are considered to be a 'Present type' Holstein Friesian cattle. Chilean cattle groups and four Japanese breeds were compared by neighbor-joining trees and a principal component analysis (PCA). The phylogenetic tree showed that Red Angus and Black Angus cattle were in the same clade, crossbreeds were closely related to their parent breeds, and Holstein cattle from Chile were closely related to Holstein cattle in Japan. Overall, the tree provided a thorough description of breed history. It also showed that the Overo Negro breed was closely related to the Holstein breed, consistent with historical data indicating that Overo Negro is an 'Old type' Holstein Friesian cattle. This allelic information will be important for investigating the relationship between major histocompatibility complex (MHC) and disease.

  8. Balancing selection and genetic drift at major histocompatibility complex class II genes in isolated populations of golden snub-nosed monkey (Rhinopithecus roxellana)

    PubMed Central

    2012-01-01

    Background Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Results Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. Conclusions MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs

  9. Human Leukocyte Antigen Class I and II Alleles and Cervical Adenocarcinoma

    PubMed Central

    Safaeian, Mahboobeh; Johnson, Lisa G.; Yu, Kai; Wang, Sophia S.; Gravitt, Patti E.; Hansen, John A.; Carrington, Mary; Schwartz, Stephen M.; Gao, Xiaojiang; Hildesheim, Allan; Madeleine, Margaret M.

    2014-01-01

    Background: Associations between human leukocyte antigens (HLA) alleles and cervical cancer are largely representative of squamous cell carcinoma (SCC), the major histologic subtype. We evaluated the association between HLA class I (A, B, and C) and class II (DRB1 and DQB1) loci and risk of cervical adenocarcinoma (ADC), a less common but aggressive histologic subtype. Methods: We pooled data from the Eastern and Western US Cervical Cancer studies, and evaluated the association between individual alleles and allele combinations and ADC (n = 630 ADC; n = 775 controls). Risk estimates were calculated for 11 a priori (based on known associations with cervical cancer regardless of histologic type) and 38 non a priori common alleles, as odds ratios (OR) and 95% confidence intervals (CI), adjusted for age and study. In exploratory analysis, we compared the risk associations between subgroups with HPV16 or HPV18 DNA in ADC tumor tissues in the Western US study cases and controls. Results: Three of the a priori alleles were significantly associated with decreased risk of ADC [DRB1*13:01 (OR = 0.61; 95% CI: 0.41–0.93), DRB1*13:02 (OR = 0.49; 95% CI: 0.31–0.77), and DQB1*06:03 (OR = 0.64; 95% CI: 0.42–0.95)]; one was associated with increased risk [B*07:02 (OR = 1.39; 95% CI: 1.07–1.79)]. Among alleles not previously reported, DQB1*06:04 (OR = 0.46; 95% CI: 0.27–0.78) was associated with decreased risk of ADC and remained significant after correction for multiple comparisons, and C*07:02 (OR = 1.41; 95% CI: 1.09–1.81) was associated with increased risk. We did not observe a difference by histologic subtype. ADC was most strongly associated with increased risk with B*07:02/C*07:02 alleles (OR = 1.33; 95% CI: 1.01–1.76) and decreased risk with DRB1*13:02/DQB1*06:04 (OR = 0.41; 95% CI: 0.21–0.80). Conclusion: Results suggest that HLA allele associations with cervical ADC are similar to those for cervical SCC. An intriguing

  10. Identification of peptides fromm foot-and-mouth disease virus structural proteins bound by class I swine leucocyte antigen (SLA) alleles, SLA-1*0401 and SLA-2*0401

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The analysis of peptide binding to porcine major histocompatibility complex (MHC) class I molecules has not been extensively performed. Critical to understanding the adaptive immune response of swine to infection is characterization of Swine Leucocyte Antigens (SLA) class I and class II peptide bind...

  11. Immunologic ignorance of vascular endothelial cells expressing minor histocompatibility antigen.

    PubMed

    Bolinger, Beatrice; Krebs, Philippe; Tian, Yinghua; Engeler, Daniel; Scandella, Elke; Miller, Simone; Palmer, Douglas C; Restifo, Nicholas P; Clavien, Pierre-Alain; Ludewig, Burkhard

    2008-05-01

    Endothelial cells (ECs) presenting minor histocompatibility antigen (mhAg) are major target cells for alloreactive effector CD8(+) T cells during chronic transplant rejection and graft-versus-host disease (GVHD). The contribution of ECs to T-cell activation, however, is still a controversial issue. In this study, we have assessed the antigen-presenting capacity of ECs in vivo using a transgenic mouse model with beta-galactosidase (beta-gal) expression confined to the vascular endothelium (Tie2-LacZ mice). In a GVHD-like setting with adoptive transfer of beta-gal-specific T-cell receptor-transgenic T cells, beta-gal expression by ECs was not sufficient to either activate or tolerize CD8(+) T cells. Likewise, transplantation of fully vascularized heart or liver grafts from Tie2-LacZ mice into nontransgenic recipients did not suffice to activate beta-gal-specific CD8(+) T cells, indicating that CD8(+) T-cell responses against mhAg cannot be initiated by ECs. Moreover, we could show that spontaneous activation of beta-gal-specific CD8(+) T cells in Tie2-LacZ mice was exclusively dependent on CD11c(+) dendritic cells (DCs), demonstrating that mhAgs presented by ECs remain immunologically ignored unless presentation by DCs is granted.

  12. Identification of the class I genes of the mouse major histocompatibility complex by DNA-mediated gene transfer.

    PubMed

    Goodenow, R S; McMillan, M; Nicolson, M; Sher, B T; Eakle, K; Davidson, N; Hood, L

    1982-11-18

    DNA-mediated gene transfer was used to identify cloned class I genes from the major histocompatibility complex of the BALB/c mouse. Three genes encoding the transplantation antigens H-2 Kd, Dd and Ld were identified as well as genes encoding the Qa-2,3 and two TL differentiation antigens. As many as 10 putative novel class I genes were detected by the association of their gene products with beta 2-microglobulin. Alloantiserum prepared to one of the novel antigens was used to demonstrate the expression of the previously undetected antigen on spleen cells of various inbred, congeneic, and recombinant congeneic strains of mice. PMID:6815535

  13. Antigen Targeting to Human HLA Class II Molecules Increases Efficacy of DNA Vaccination

    PubMed Central

    Fredriksen, Agnete Brunsvik; Løset, Geir Åge; Vikse, Elisabeth; Fugger, Lars

    2016-01-01

    It has been difficult to translate promising results from DNA vaccination in mice to larger animals and humans. Previously, DNA vaccines encoding proteins that target Ag to MHC class II (MHC-II) molecules on APCs have been shown to induce rapid, enhanced, and long-lasting Ag-specific Ab titers in mice. In this study, we describe two novel DNA vaccines that as proteins target HLA class II (HLA-II) molecules. These vaccine proteins cross-react with MHC-II molecules in several species of larger mammals. When tested in ferrets and pigs, a single DNA delivery with low doses of the HLA-II–targeted vaccines resulted in rapid and increased Ab responses. Importantly, painless intradermal jet delivery of DNA was as effective as delivery by needle injection followed by electroporation. As an indication that the vaccines could also be useful for human application, HLA-II–targeted vaccine proteins were found to increase human CD4+ T cell responses by a factor of ×103 in vitro. Thus, targeting of Ag to MHC-II molecules may represent an attractive strategy for increasing efficacy of DNA vaccines in larger animals and humans. PMID:27671110

  14. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes

    SciTech Connect

    van Endert, P.M.; Lopez, M.T.; Patel, S.D.; McDevitt, H.O. ); Monaco, J.J. )

    1992-12-01

    Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes.

  15. T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen

    PubMed Central

    1993-01-01

    While recent evidence strongly suggests that the third complementarity determining regions (CDR3s) of T cell receptors (TCRs) directly contact antigenic peptides bound to major histocompatibility complex (MHC) molecules, the nature of other TCR contact(s) is less clear. Here we probe the extent to which different antigens can affect this interaction by comparing the responses of T cells bearing structurally related TCRs to cytochrome c peptides and staphylococcal enterotoxin A (SEA) presented by 13 mutant antigen-presenting cell (APC) lines. Each APC expresses a class II MHC molecule (I-Ek) with a single substitution of an amino acid residue predicted to be located on the MHC alpha helices and to point "up" towards the TCR. We find that very limited changes (even a single amino acid) in either a CDR3 loop of the TCR or in a contact residue of the antigenic peptide can have a profound effect on relatively distant TCR/MHC interactions. The extent of these effects can be as great as that observed between T cells bearing entirely different TCRs and recognizing different peptides. We also find that superantigen presentation entails a distinct mode of TCR/MHC interaction compared with peptide presentation. These data suggest that TCR/MHC contacts can be made in a variety of ways between the same TCR and MHC, with the final configuration apparently dominated by the antigen. These observations suggest a molecular basis for recent reports in which either peptide analogues or superantigens trigger distinct pathways of T cell activation. PMID:8393480

  16. Disruption of HLA class II antigen presentation in Burkitt lymphoma: implication of a 47,000 MW acid labile protein in CD4+ T-cell recognition.

    PubMed

    God, Jason M; Zhao, Dan; Cameron, Christine A; Amria, Shereen; Bethard, Jennifer R; Haque, Azizul

    2014-07-01

    While Burkitt lymphoma (BL) has a well-known defect in HLA class I-mediated antigen presentation, the exact role of BL-associated HLA class II in generating a poor CD4(+) T-cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4(+) T cells via the HLA class II pathway. This defect in CD4(+) T-cell recognition was not associated with low levels of co-stimulatory molecules on BL cells, as addition of external co-stimulation failed to elicit CD4(+) T-cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Interestingly, functional class II-peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II-mediated antigen presentation and CD4(+) T-cell recognition. Biochemical analysis showed that these molecules were greater than 30,000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47,000 molecular weight enolase-like molecule that enhances class II-mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II-mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies.

  17. Brief Note Low diversity of the major histocompatibility complex class II DRA gene in domestic goats (Capra hircus) in Southern China.

    PubMed

    Chen, L P; E, G X; Zhao, Y J; Na, R S; Zhao, Z Q; Zhang, J H; Ma, Y H; Sun, Y W; Zhong, T; Zhang, H P; Huang, Y F

    2015-01-01

    DRA encodes the alpha chain of the DR heterodimer, is closely linked to DRB and is considered almost monomorphic in major histocompatibility complex region. In this study, we identified the exon 2 of DRA to evaluate the immunogenetic diversity of Chinese south indigenous goat. Two single nucleotide polymorphisms in an untranslated region and one synonymous substitution in coding region were identified. These data suggest that high immunodiversity in native Chinese population. PMID:26125900

  18. Artificial antigen-presenting cells engineered by recombinant vaccinia viruses expressing antigen, MHC class II, and costimulatory molecules elicit proliferation of CD4+ lymphocytes in vitro.

    PubMed

    Oertli, D; Marti, W R; Norton, J A; Tsung, K

    1997-10-01

    The current study was designed to test the ability of recombinant Vaccinia virus (rVV) encoding essential components of an artificial antigen-presenting cell to activate antigen-specific T cells in vitro. We have constructed a set of rVV encoding separately or in combination a CD4+ T cell-specific epitope (the 133-145 peptide of chicken conalbumin), the MHC class II molecule I-Ak, and costimulatory molecules (mB7-1 and mB7-2). Cultured cells infected with rVV encoding both the antigen and the presenting MHC, but not either one alone, could activate cloned CD4+ T cells specific for the virus-encoded epitope. Additional co-expression of mB7-1 and mB7-2 resulted in further enhancement of T cell response. Thus, our rVV vector expressing four different foreign gene products elicited the highest proliferation rates of antigen-specific cloned T cells. PMID:9353162

  19. Human Leukocyte Antigen Class II Alleles Are Associated with Hepatitis C Virus Natural Susceptibility in the Chinese Population

    PubMed Central

    Yue, Ming; Xu, Ke; Wu, Meng-Ping; Han, Ya-Ping; Huang, Peng; Peng, Zhi-Hang; Wang, Jie; Su, Jing; Yu, Rong-Bin; Li, Jun; Zhang, Yun

    2015-01-01

    Human leukocyte antigen (HLA) class II molecule influences host antigen presentation and anti-viral immune response. The aim of this study was to investigate whether single nucleotide polymorphisms (SNPs) within HLA class II gene were associated with different clinical outcomes of hepatitis C virus (HCV) infection. Three HLA class II SNPs (rs3077, rs2395309 and rs2856718) were genotyped by TaqMan assay among Chinese population, including 350 persistent HCV infection patients, 194 spontaneous viral clearance subjects and 973 HCV-uninfected control subjects. After logistic regression analysis, the results indicated that the rs2856718 TC genotype was significantly associated with the protective effect of the HCV natural susceptibility (adjusted OR: 0.712, 95% CI: 0.554–0.914) when compared with reference TT genotype, and this remained significant after false discovery rate (FDR) correction (p = 0.024). Moreover, the protective effect of rs2856718 was observed in dominant genetic models (adjusted OR: 0.726, 95% CI: 0.574–0.920), and this remained significant after FDR correction (p = 0.024). In stratified analysis, a significant decreased risk was found in rs2856718C allele in the male subgroup (adjusted OR: 0.778, 95% CI: 0.627–0.966) and hemodialysis subgroup (adjusted OR: 0.713, 95% CI: 0.552–0.921). Our results indicated that the genetic variations of rs2856718 within the HLA-DQ gene are associated with the natural susceptibility to HCV infection among the Chinese population. PMID:26213920

  20. Dog leucocyte antigen class II diversity and relationships among indigenous dogs of the island nations of Indonesia (Bali), Australia and New Guinea.

    PubMed

    Runstadler, J A; Angles, J M; Pedersen, N C

    2006-11-01

    The genetic polymorphism at the dog leucocyte antigen (DLA) class II loci DQA1, DQB1 and DRB1 was studied in a large genetically diverse population of feral and wild-type dogs from the large island nations of Indonesia (Bali), Australia and New Guinea (Bali street dog, dingo and New Guinea singing dog, respectively). Sequence-based typing (SBT) of the hypervariable region of DLA-DRB1, -DQA1 and -DQB1 alleles was used to determine genetic diversity. No new DQA1 alleles were recognized among the three dog populations, but five novel DLA-DRB1 and 2 novel DLA-DQB1 allele sequences were detected. Additional unknown alleles were postulated to exist in Bali street dogs, as indicated by the large percentage of individuals (15%-33%) that had indeterminate DRB1, DQA1 and DQB1 alleles by SBT. All three groups of dogs possessed alleles that were relatively uncommon in conventional purebreds. The New Guinea singing dog and dingo shared alleles that were not present in the Bali street dogs. These findings suggested that the dingo was more closely related to indigenous dogs from New Guinea. Feral dog populations, in particular large ones such as that of Bali, show genetic diversity that existed prior to phenotypic selection for breeds originating from their respective regions. This diversity needs to be identified and maintained in the face of progressive Westernization. These populations deserve further study as potential model populations for the evolution of major histocompatibility complex alleles, for the study of canine genetic diversity, for the development of dog breeds and for studies on the comigration of ancestral human and dog populations.

  1. Dog leucocyte antigen class II diversity and relationships among indigenous dogs of the island nations of Indonesia (Bali), Australia and New Guinea.

    PubMed

    Runstadler, J A; Angles, J M; Pedersen, N C

    2006-11-01

    The genetic polymorphism at the dog leucocyte antigen (DLA) class II loci DQA1, DQB1 and DRB1 was studied in a large genetically diverse population of feral and wild-type dogs from the large island nations of Indonesia (Bali), Australia and New Guinea (Bali street dog, dingo and New Guinea singing dog, respectively). Sequence-based typing (SBT) of the hypervariable region of DLA-DRB1, -DQA1 and -DQB1 alleles was used to determine genetic diversity. No new DQA1 alleles were recognized among the three dog populations, but five novel DLA-DRB1 and 2 novel DLA-DQB1 allele sequences were detected. Additional unknown alleles were postulated to exist in Bali street dogs, as indicated by the large percentage of individuals (15%-33%) that had indeterminate DRB1, DQA1 and DQB1 alleles by SBT. All three groups of dogs possessed alleles that were relatively uncommon in conventional purebreds. The New Guinea singing dog and dingo shared alleles that were not present in the Bali street dogs. These findings suggested that the dingo was more closely related to indigenous dogs from New Guinea. Feral dog populations, in particular large ones such as that of Bali, show genetic diversity that existed prior to phenotypic selection for breeds originating from their respective regions. This diversity needs to be identified and maintained in the face of progressive Westernization. These populations deserve further study as potential model populations for the evolution of major histocompatibility complex alleles, for the study of canine genetic diversity, for the development of dog breeds and for studies on the comigration of ancestral human and dog populations. PMID:17092255

  2. Major histocompatibility complex class II polymorphisms are associated with the development of anti-resorptive agent-induced osteonecrosis of the jaw.

    PubMed

    Stockmann, Philipp; Nkenke, Emeka; Englbrecht, Matthias; Schlittenbauer, Tilo; Wehrhan, Falk; Rauh, Claudia; Beckmann, Matthias W; Fasching, Peter A; Kreusch, Thomas; Mackensen, Andreas; Wullich, Bernd; Schett, Georg; Spriewald, Bernd M

    2013-01-01

    The aetiology of anti-resorptive agent-induced osteonecrosis of the jaw (ARONJ) is still under debate. Clinical and genetic risk factors are currently being investigated to help understand its pathogenesis. This case-control study analysed a large number of cancer patients (n = 230) under therapy with intravenous bisphosphonates, half of which were diagnosed with ARONJ. Multiple myeloma, greater patient age and the use of more than one bisphosphonate were identified as clinical risk factors on logistic regression analysis. In addition, 204 patients were genotyped for HLA-DRB1 and DQB1 and the allele frequencies were compared between ARONJ (n = 94) and unaffected cancer patients (n = 110). For the HLA class II alleles, a strong increase in the frequency of DRB1*15, DQB1*06:02, DRB1*01 and DQB1*05:01 was observed in the ARONJ group. These results were reinforced on analysis of the respective haplotypes, with DRB1*15-DQB1*06:02 being significantly associated with the development of ARONJ (odds ratio [OR] 2.5; 95% confidence interval [CI] 1.3-5.0). The presence of at least one of the haplotypes DRB1*15-DQB1*06:02 and DRB1*01-DQB1*05:01 was highly associated with the development of ARONJ (OR 3.0; 95% CI 1.7-5.5). The data in this study of a large number of cancer patients receiving intravenous bisphosphonates suggest that MHC class II polymorphisms represent genetic risk factors for the development of ARONJ. This result supports recent findings that inflammation and infection might play an important role in the pathogenesis of ARONJ.

  3. An immunocytochemical study of pulpal responses to cavity preparation by laser ablation in rat molars by using antibodies to heat shock protein (Hsp) 25 and class II MHC antigen.

    PubMed

    Suzuki, Takeshi; Nomura, Shuichi; Maeda, Takeyasu; Ohshima, Hayato

    2004-03-01

    Initial responses of odontoblasts and immunocompetent cells to cavity preparation by laser ablation were investigated in rat molars. In untreated control teeth, intense heat shock protein (Hsp) 25 immunoreactivity was found in the cell bodies of odontoblasts, whereas cells immunopositive for the class II major histocompatibility complex (MHC) antigen were predominantly located beneath the odontoblast layer in the dental pulp. Cavity preparation caused the destruction of the odontoblast layer and the shift of most class-II-MHC-positive cells from the pulp-dentin border toward the pulp core at the affected site. Twelve hours after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border and extended their processes deep into the exposed dentinal tubules, but subsequently disappeared from the pulp-dentin border together with Hsp-25-immunopositive cells by 24 h after the operation. By 3-5 days postoperation, distinct abscess formation consisting of polymorphonuclear leukocytes was found in the dental pulp. The penetration of masses of oral bacteria was recognizable in the dentinal tubules beneath the prepared cavity. These findings indicate that cavity preparation by laser ablation induces remarkable inflammation by continuous bacterial infections via dentinal tubules in this experimental model, thereby delaying pulpal regeneration.

  4. Human leukocyte antigen class II DRB1*1302 allele protects against cervical cancer: At which step of multistage carcinogenesis?

    PubMed Central

    Matsumoto, Koji; Maeda, Hiroo; Oki, Akinori; Takatsuka, Naoyoshi; Yasugi, Toshiharu; Furuta, Reiko; Hirata, Ranko; Mitsuhashi, Akira; Kawana, Kei; Fujii, Takuma; Iwata, Takashi; Hirai, Yasuo; Yokoyama, Masatoshi; Yaegashi, Nobuo; Watanabe, Yoh; Nagai, Yutaka; Yoshikawa, Hiroyuki

    2015-01-01

    We investigated the role of human leukocyte antigen (HLA) class II alleles in multistage cervical carcinogenesis. Cross-sectional analysis for HLA association with cervical cancer included 1253 Japanese women: normal cytology (NL, n = 341), cervical intraepithelial neoplasia grade 1 (CIN1, n = 505), CIN grade 2 or 3 (CIN2/3, n = 96), or invasive cervical cancer (ICC, n = 311). The HLA class II allele frequencies were compared by Fisher’s exact test or the χ2-test. The Bonferroni adjustment corrected for multiple comparisons. Among the study subjects, 454 women with low-grade squamous intraepithelial lesion cytology were prospectively monitored by cytology and colposcopy every 3–4 months to analyze cumulative risk of CIN3 within the next 10 years in relation to HLA class II alleles. HLA class II DRB1*1302 allele frequency was similar between women with NL (11.7%) and CIN1 (11.9%), but significantly decreased to 5.2% for CIN2/3 and 5.8% for ICC (P = 0.0003). Correction for multiple testing did not change this finding. In women with low-grade squamous intraepithelial lesion cytology, the cumulative risk of CIN3 diagnosed within 10 years was significantly reduced among DRB1*1302-positive women (3.2% vs. 23.7%, P = 0.03). In conclusion, the two different types of analysis in this single study showed the protective effect of the DRB1*1302 allele against progression from CIN1 to CIN2/3. PMID:26235935

  5. Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes.

    PubMed

    Kropshofer, H; Spindeldreher, S; Röhn, T A; Platania, N; Grygar, C; Daniel, N; Wölpl, A; Langen, H; Horejsi, V; Vogt, A B

    2002-01-01

    Complexes of peptide and major histocompatibility complex (MHC) class II are expressed on the surface of antigen-presenting cells but their molecular organization is unknown. Here we show that subsets of MHC class II molecules localize to membrane microdomains together with tetraspan proteins, the peptide editor HLA-DM and the costimulator CD86. Tetraspan microdomains differ from other membrane areas such as lipid rafts, as they enrich MHC class II molecules carrying a selected set of peptide antigens. Antigen-presenting cells deficient in tetraspan microdomains have a reduced capacity to activate CD4+ T cells. Thus, the organization of uniformly loaded peptide-MHC class II complexes in tetraspan domains may be a very early event that determines both the composition of the immunological synapse and the quality of the subsequent T helper cell response.

  6. MOLECULAR GENETICS OF THE SWINE MAJOR HISTOCOMPATIBILITY COMPLEX, THE SLA COMPLEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The swine major histocompatibility complex (MHC) or swine leukocyte antigen (SLA) complex is one of the most gene-dense regions in the swine genome. It consists of three major gene clusters, the SLA class I, class III and class II regions, that span ~1.1, 0.7 and 0.5 Mb, respectively, making the swi...

  7. Contrasting evolutionary histories of MHC class I and class II loci in grouse—Effects of selection and gene conversion

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  8. Narcolepsy: Autoimmunity, Effector T Cell Activation Due to Infection, or T Cell Independent, Major Histocompatibility Complex Class II Induced Neuronal Loss?

    ERIC Educational Resources Information Center

    Fontana, Adriano; Gast, Heidemarie; Reith, Walter; Recher, Mike; Birchler, Thomas; Bassetti, Claudio L.

    2010-01-01

    Human narcolepsy with cataplexy is a neurological disorder, which develops due to a deficiency in hypocretin producing neurons in the hypothalamus. There is a strong association with human leucocyte antigens HLA-DR2 and HLA-DQB1*0602. The disease typically starts in adolescence. Recent developments in narcolepsy research support the hypothesis of…

  9. DMA and DMB are the only genes in the class II region of the human MHC needed for class II-associated antigen processing

    SciTech Connect

    Ceman, S.; Rudersdorf, R.A.; Petersen, J.M.

    1995-03-15

    Previous studies have shown that homozygous mutations between the LMP2 and DNA loci in the human MHC cause class II molecules to be abnormally conformed and unstable in the presence of SDS at low temperature, and impede class II-associated Ag processing and presentation. These abnormalities result from impaired ability to form intracellular class II/peptide complexes that predominate in normal cells. We show in this work that this defect results from deficient expression of either the DMA or the DMB gene. Human B-LCL.174 (DR3) cells, which have a deletion of all known expressible genes in the class II region, express transgene-encoded HLA-DR3, but have the abnormalities. Transfer of cosmid HA14, which contains the DMA and DMB genes, into .174 (DR3) cells restored normal DR3 conformation, stability in 0.4% SDS at 0{degrees}, and ability to process and present tetanus toxoid, but only when both DMA and DMB mRNAs were present. The requirement for both genetic expressions in engendering normal phenotypes was confirmed by transferring the cloned genes into .174 (DR3) cells separately or together. Because normal phenotypes were fully restored in transferent cells expressing DMA plus DMB, other genes in the {approximately} 1-mb homozygous class II region deletion in .174 (DR3) cells either do not participate in or are dispensable for apparently normal production of intracellular class II/peptide complexes. The properties of DM-deficient EBV-transformed B lymphoblastoid cell lines (LCLs) suggest ways of identifying humans in whom DM deficiency contributes to congenital immunodeficiency and malignancy. 67 refs., 5 figs., 1 tab.

  10. Molecular characterization of swine leukocyte antigen (SLA) class II genes in outbred pig populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly polymorphic swine leukocyte antigen (SLA) genes are one of the most important determinants in swine immune, disease and vaccine responses. Thus, understanding how SLA gene polymorphism affects immunity, especially in outbred pig populations with a diverse genetic background, requires accu...

  11. Rheumatoid Rescue of Misfolded Cellular Proteins by MHC Class II Molecules: A New Hypothesis for Autoimmune Diseases.

    PubMed

    Arase, Hisashi

    2016-01-01

    Misfolded proteins localized in the endoplasmic reticulum are degraded promptly and thus are not transported outside cells. However, misfolded proteins in the endoplasmic reticulum are rescued from protein degradation upon association with major histocompatibility complex (MHC) class II molecules and are transported to the cell surface by MHC class II molecules without being processed to peptides. Studies on the misfolded proteins rescued by MHC class II molecules have revealed that misfolded proteins associated with MHC class II molecules are specific targets for autoantibodies produced in autoimmune diseases. Furthermore, a strong correlation has been observed between autoantibody binding to misfolded proteins associated with MHC class II molecules and the autoimmune disease susceptibility conferred by each MHC class II allele. These new insights into MHC class II molecules suggest that misfolded proteins rescued from protein degradation by MHC class II molecules are recognized as "neo-self" antigens by immune system and are involved in autoimmune diseases as autoantibody targets.

  12. Major Histocompatibility Complex (MHC) Class I Processing of the NY-ESO-1 Antigen Is Regulated by Rpn10 and Rpn13 Proteins and Immunoproteasomes following Non-lysine Ubiquitination.

    PubMed

    Golnik, Richard; Lehmann, Andrea; Kloetzel, Peter-Michael; Ebstein, Frédéric

    2016-04-15

    The supply of MHC class I-restricted peptides is primarily ensured by the degradation of intracellular proteins via the ubiquitin-proteasome system. Depending on the target and the enzymes involved, ubiquitination is a process that may dramatically vary in terms of linkages, length, and attachment sites. Here we identified the unique lysine residue at position 124 of the NY-ESO-1 cancer/testis antigen as the acceptor site for the formation of canonical Lys-48-linkages. Interestingly, a lysine-less form of NY-ESO-1 was as efficient as its wild-type counterpart in supplying the HLA-A*0201-restricted NY-ESO-1157-165 antigenic peptide. In fact, we show that the regulation of NY-ESO-1 processing by the ubiquitin receptors Rpn10 and Rpn13 as a well as by the standard and immunoproteasome is governed by non-canonical ubiquitination on non-lysine sites. In summary, our data underscore the significance of atypical ubiquitination in the modulation of MHC class I antigen processing.

  13. Recognition of minor histocompatibility antigens on lymphocytic and myeloid leukemic cells by cytotoxic T-cell clones.

    PubMed

    van der Harst, D; Goulmy, E; Falkenburg, J H; Kooij-Winkelaar, Y M; van Luxemburg-Heijs, S A; Goselink, H M; Brand, A

    1994-02-15

    Clinical studies indicated an enhanced antileukemic effect of allogeneic bone marrow transplantation (BMT), as compared with autologous BMT. After allogeneic HLA-identical BMT, donor-derived cytotoxic T lymphocytes (CTLs) directed at minor histocompatibility (mH) antigens on the recipients, tissues can be shown. To evaluate the antileukemic reactivity of mH antigen-specific CTLs, we analyzed the expression of mH antigens on circulating lymphocytic and myeloid leukemic cells. We show that the defined mH specificities HA-1 through HA-5 and H-Y are present on leukemic cells, indicating that mH antigen-specific CTLs are capable of HLA class I-restricted antigen-specific lysis of leukemic cells. Compared with interleukin-2-stimulated normal lymphocytes, leukemic cells of lymphocytic origin are less susceptible to T-cell-mediated cytotoxicity by the HA-2 mH antigen-specific CTL and the anti-HLA-A2 CTL clone. A possible explanation for this phenomenon is impaired expression of the LFA-1 adhesion molecule. Our study suggests that mH antigen-specific HLA class I-restricted CD8+ CTLs may be involved in the graft-versus-leukemia reactivity after allogeneic BMT.

  14. Functional expression of a cattle MHC class II DR-like antigen on mouse L cells

    SciTech Connect

    Fraser, D.C.; Craigmile, S.; Campbell, J.D.M.

    1996-09-01

    Cattle DRA and DRB genes, cloned by reverse-transcription polymerase chain reaction, were transfected into mouse L cells. The cattle DR-expressing L-cell transfectant generated was analyzed serologically, biochemically, and functionally. Sequence analysis of the transfected DRB gene clearly showed showed that it was DRB3 allele DRB3*0101, which corresponds to the 1D-IEF-determined allele DRBF3. 1D-IEF analysis of the tranfectant confirmed that the expressed DR product was DRBF3. Functional integrity of the transfected gene products was demonstrated by the ability of the transfectant cell line to present two antigens (the foot-and-mouth disease virus-derived peptide FMDV15, and ovalbumin) to antigen-specific CD4{sup +} T cells from both the original animal used to obtain the genes, and also from an unrelated DRBF3{sup +} heterozygous animal. Such transfectants will be invaluable tools, allowing us to dissect the precise contributions each locus product makes to the overall immune response in heterozygous animals, information essential for rational vaccine design. 45 refs., 5 figs., 1 tab.

  15. Isolation and characterization of major histocompatibility complex class IIB genes from the nurse shark.

    PubMed Central

    Bartl, S; Weissman, I L

    1994-01-01

    The major histocompatibility complex (MHC) contains a set of linked genes which encode cell surface proteins involved in the binding of small peptide antigens for their subsequent recognition by T lymphocytes. MHC proteins share structural features and the presence and location of polymorphic residues which play a role in the binding of antigens. In order to compare the structure of these molecules and gain insights into their evolution, we have isolated two MHC class IIB genes from the nurse shark, Ginglymostoma cirratum. Two clones, most probably alleles, encode proteins which differ by 13 amino acids located in the putative antigen-binding cleft. The protein structure and the location of polymorphic residues are similar to their mammalian counterparts. Although these genes appear to encode a typical MHC protein, no T-cell-mediated responses have been demonstrated in cartilaginous fish. The nurse shark represents the most phylogenetically primitive organism in which both class IIA [Kasahara, M., Vazquez, M., Sato, K., McKinney, E.C. & Flajnik, M.F. (1992) Proc. Natl. Acad. Sci USA 89, 6688-6692] and class IIB genes, presumably encoding the alpha/beta heterodimer, have been isolated. Images Fig. 2 PMID:8278377

  16. Class I major histocompatibility proteins are an essential component of the simian virus 40 receptor.

    PubMed

    Breau, W C; Atwood, W J; Norkin, L C

    1992-04-01

    The class I molecules encoded by the major histocompatibility complex (MHC) present endogenously synthesized antigenic peptide fragments to cytotoxic T lymphocytes. We show here that these proteins are an essential component of the cell surface receptor for simian virus 40 (SV40). First, SV40 binding to cells can be blocked by two monoclonal antibodies against class I human lymphocyte antigen (HLA) proteins but not by monoclonal antibodies specific for other cell surface proteins. Second, SV40 does not bind to cells of two different human lymphoblastoid cell lines which do not express surface class I MHC proteins because of genetic defects in the beta 2-microglobulin gene in one line and in the HLA complex in the other. Transfection of these cell lines with cloned genes for beta 2-microglobulin and HLA-B8, respectively, restored expression of their surface class I MHC proteins and resulted in concomitant SV40 binding. Finally, SV40 binds to purified HLA proteins in vitro and selectively binds to class I MHC proteins in a cell surface extract.

  17. Heritable major histocompatibility complex class II-associated differences in production of tumor necrosis factor. alpha. : Relevance to genetic predisposition to systemic lupus erythematosus

    SciTech Connect

    Jacob, C.O.; Fronek, Z.; Koo, M.; McDevitt, H.O. ); Lewis, G.C. ); Hansen, J.A. )

    1990-02-01

    The authors report on the production of tumor necrosis factor (TNF)-{alpha} and TNF-{beta} by mitogen-activated peripheral blood lymphocytes or enriched monocyte subpopulations from human leukocyte antigen (HLA)-typed healthy subjects. The results indicate that HLA-DR2- and DQw1-positive donors frequently exhibit low production of TNF-{alpha}, whereas DR3- and DR4-positive subjects show high levels of TNF-{alpha} production. No correlation between TNF-{alpha} levels and HLA-A, -B, and -C genotype was found. The relevance of this quantitative polymorphism to the genetic predisposition to lupus nephritis in systemic lupus erythematosus (SLE) patients was investigated. DR2, DQw1-positive SLE patients show low levels of TNF-{alpha} inducibility; this genotype is also associated with an increased incidence of lupus nephritis. DR3-positive SLE patients, on the other hand, are not predisposed to nephritis, and these patients have high TNF-{alpha} production. DR4 haplotype is associated with high TNF-{alpha} inducibility and is negatively correlated with lupus nephritis. These data may help explain the strong association between HLA-DR2, DQw1 in SLE patients and their susceptibility to nephritis.

  18. HLA Class II Antigens and Their Interactive Effect on Perinatal Mother-To-Child HIV-1 Transmission

    PubMed Central

    Luo, Ma; Embree, Joanne; Ramdahin, Suzie; Bielawny, Thomas; Laycock, Tyler; Tuff, Jeffrey; Haber, Darren; Plummer, Mariel; Plummer, Francis A.

    2015-01-01

    HLA class II antigens are central in initiating antigen-specific CD4+ T cell responses to HIV-1. Specific alleles have been associated with differential responses to HIV-1 infection and disease among adults. This study aims to determine the influence of HLA class II genes and their interactive effect on mother-child perinatal transmission in a drug naïve, Mother-Child HIV transmission cohort established in Kenya, Africa in 1986. Our study showed that DRB concordance between mother and child increased risk of perinatal HIV transmission by three fold (P = 0.00035/Pc = 0.0014, OR: 3.09, 95%CI, 1.64-5.83). Whereas, DPA1, DPB1 and DQB1 concordance between mother and child had no significant influence on perinatal HIV transmission. In addition, stratified analysis showed that DRB1*15:03+ phenotype (mother or child) significantly increases the risk of perinatal HIV-1 transmission. Without DRB1*15:03, DRB1 discordance between mother and child provided 5 fold protection (P = 0.00008, OR: 0.186, 95%CI: 0.081-0.427). However, the protective effect of DRB discordance was diminished if either the mother or the child was DRB1*15:03+ phenotype (P = 0.49-0.98, OR: 0.7-0.99, 95%CI: 0.246-2.956). DRB3+ children were less likely to be infected perinatally (P = 0.0006, Pc = 0.014; OR:0.343, 95%CI:0.183-0.642). However, there is a 4 fold increase in risk of being infected at birth if DRB3+ children were born to DRB1*15:03+ mother compared to those with DRB1*15:03- mother. Our study showed that DRB concordance/discordance, DRB1*15:03, children’s DRB3 phenotype and their interactions play an important role in perinatal HIV transmission. Identification of genetic factors associated with protection or increased risk in perinatal transmission will help develop alternative prevention and treatment methods in the event of increases in drug resistance of ARV. PMID:25945792

  19. Lacking prognostic significance of beta 2-microglobulin, MHC class I and class II antigen expression in breast carcinomas.

    PubMed Central

    Wintzer, H. O.; Benzing, M.; von Kleist, S.

    1990-01-01

    To evaluate the impact of MHC antigen expression on the survival of patients with cancer, 77 human breast carcinomas were investigated for the expression of beta 2-microglobulin (beta 2m), HLA-A,B,C and HLA-DR. Thirty-one benign breast tumours were stained for comparison. The results for the carcinomas were related to the survival data of the cancer patients. The expression of beta 2m, HLA-A,B,C and HLA-DR was significantly lower in malignant tumours compared to the benign lesions. Whereas all benign tumours were positive for beta 2m and HLA-A,B,C and 28/31 positive for HLA-DR the following positivity rates were found in carcinomas: 74/77 for beta 2m, 57/77 for HLA-A,B,C and 10/77 for HLA-DR. The follow-up (median 45 months) of 66 cancer patients for overall survival and of 65 patients for disease-free survival revealed no influence of beta 2m, HLA-A,B,C or HLA-DR expression on the prognosis of this cancer. In conclusion, experimental data indicating the importance of MHC antigens in anti-tumour responses are not confirmed by the analysis of cancer patient survival data. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2201398

  20. Identification of the transcription factors NF-YA and NF-YB as factors A and B that bound to the promoter of the major histocompatibility complex class II gene I-A beta.

    PubMed Central

    Celada, A; McKercher, S R; Maki, R A

    1996-01-01

    The Y box is a conserved sequence in the promoter of major histocompatibility complex (MHC) class II genes, which contains a CCAAT sequence (CCAAT box). Previously, we partially purified the DNA-binding protein that recognizes the Y box of the I-A beta gene and showed that it consisted of two components (factors A and B) both of which were necessary for optimal DNA binding. The genes for the heteromeric protein NF-Y (NF-YA and NF-YB), which binds to the I-E alpha Y box have been cloned. We subsequently isolated the genes for NF-YA and NF-YB using oligonucleotides designed from the published sequences. NF-YA and NF-YB were tested for binding to the I-A beta and I-E alpha Y boxes. While neither NF-YA or NF-YB alone bound to the Y box, when the components were mixed the complex bound to the I-A beta Y box with high affinity. Moreover, NF-YA and NF-YB could be complemented for binding to DNA by factor B or factor A, respectively. These results suggest that the active binding protein is NF-YA in factor A extracts and NF-YB in factor B extracts. Finally, antibodies against NF-YA and NF-YB were shown to induce a supershift when nuclear extracts were added to the double-stranded oligodeoxynucleotide covering the Y box of the I-A beta gene. Antisense expression constructs of both NF-YA and NF-YB were made and their effect on expression from the I-A beta promoter was tested. Either antisense construction, when transfected into cells, lowered the expression of a reporter gene linked to the I-A beta promoter. This study provides direct evidence of the identification of NF-YA and NF-YB as the previously described factors A and B. Moreover, these results strongly implicate NF-Y in the expression of the MHC class II gene I-A beta. PMID:8760361

  1. Nonclassical antigen-processing pathways are required for MHC class II-restricted direct tumor recognition by NY-ESO-1-specific CD4(+) T cells.

    PubMed

    Matsuzaki, Junko; Tsuji, Takemasa; Luescher, Immanuel; Old, Lloyd J; Shrikant, Protul; Gnjatic, Sacha; Odunsi, Kunle

    2014-04-01

    Tumor antigen-specific CD4(+) T cells that directly recognize cancer cells are important for orchestrating antitumor immune responses at the local tumor sites. However, the mechanisms of direct MHC class II (MHC-II) presentation of intracellular tumor antigen by cancer cells are poorly understood. We found that two functionally distinct subsets of CD4(+) T cells were expanded after HLA-DPB1*04 (DP04)-binding NY-ESO-1157-170 peptide vaccination in patients with ovarian cancer. Although both subsets recognized exogenous NY-ESO-1 protein pulsed on DP04(+) target cells, only one type recognized target cells with intracellular expression of NY-ESO-1. The tumor-recognizing CD4(+) T cells more efficiently recognized the short 8-9-mer peptides than the non-tumor-recognizing CD4(+) T cells. In addition to endosomal/lysosomal proteases that are typically involved in MHC-II antigen presentation, several pathways in the MHC class I presentation pathways, such as the proteasomal degradation and transporter-associated with antigen-processing-mediated peptide transport, were also involved in the presentation of intracellular NY-ESO-1 on MHC-II. The presentation was inhibited significantly by primaquine, a small molecule that inhibits endosomal recycling, consistent with findings that pharmacologic inhibition of new protein synthesis enhances antigen presentation. Together, our data demonstrate that cancer cells selectively present peptides from intracellular tumor antigens on MHC-II by multiple nonclassical antigen-processing pathways. Harnessing the direct tumor-recognizing ability of CD4(+) T cells could be a promising strategy to enhance antitumor immune responses in the immunosuppressive tumor microenvironment.

  2. TNF-α Induces Macroautophagy and Regulates MHC Class II Expression in Human Skeletal Muscle Cells*

    PubMed Central

    Keller, Christian W.; Fokken, Claudia; Turville, Stuart G.; Lünemann, Anna; Schmidt, Jens; Münz, Christian; Lünemann, Jan D.

    2011-01-01

    Macroautophagy, a homeostatic process that shuttles cytoplasmic constituents into endosomal and lysosomal compartments, has recently been shown to deliver antigens for presentation on major histocompatibility complex (MHC) class II molecules. Skeletal muscle fibers show a high level of constitutive macroautophagy and express MHC class II molecules upon immune activation. We found that tumor necrosis factor-α (TNF-α), a monokine overexpressed in inflammatory myopathies, led to a marked up-regulation of macroautophagy in skeletal myocytes. Furthermore, TNF-α augmented surface expression of MHC class II molecules in interferon-γ (IFN-γ)-treated myoblasts. The synergistic effect of TNF-α and IFN-γ on the induction of MHC class II surface expression was not reflected by higher intracellular human leukocyte antigen (HLA)-DR levels and was reversed by macroautophagy inhibition, suggesting that TNF-α facilitates antigen processing via macroautophagy for more efficient MHC class II loading. Muscle biopsies from patients with sporadic inclusion body myositis, a well defined myopathy with chronic inflammation, showed that over 20% of fibers that contained autophagosomes costained for MHC class II molecules and that more than 40% of double-positive muscle fibers had contact with CD4+ and CD8+ immune cells. These findings establish a mechanism through which TNF-α regulates both macroautophagy and MHC class II expression and suggest that macroautophagy-mediated antigen presentation contributes to the immunological environment of the inflamed human skeletal muscle. PMID:20980264

  3. Necrotizing meningoencephalitis of Pug dogs associates with dog leukocyte antigen class II and resembles acute variant forms of multiple sclerosis.

    PubMed

    Greer, K A; Wong, A K; Liu, H; Famula, T R; Pedersen, N C; Ruhe, A; Wallace, M; Neff, M W

    2010-08-01

    Necrotizing meningoencephalitis (NME) is a disorder of Pug Dogs that appears to have an immune etiology and high heritability based on population studies. The present study was undertaken to identify a genetic basis for the disease. A genome-wide association scan with single tandem repeat (STR) markers showed a single strong association near the dog leukocyte antigen (DLA) complex on CFA12. Fine resolution mapping with 27 STR markers on CFA12 further narrowed association to the region containing DLA-DRB1, -DQA1 and, -DQB1 genes. Sequencing confirmed that affected dogs were more likely to be homozygous for specific alleles at each locus and that these alleles were linked, forming a single high risk haplotype. The strong DLA class II association of NME in Pug Dogs resembles that of human multiple sclerosis (MS). Like MS, NME appears to have an autoimmune basis, involves genetic and nongenetic factors, has a relatively low incidence, is more frequent in females than males, and is associated with a vascularly orientated nonsuppurative inflammation. However, NME of Pug Dogs is more aggressive in disease course than classical human MS, appears to be relatively earlier in onset, and involves necrosis rather than demyelination as the central pathobiologic feature. Thus, Pug Dog encephalitis (PDE) shares clinical features with the less common acute variant forms of MS. Accordingly, NME of Pug Dogs may represent a naturally occurring canine model of certain idiopathic inflammatory disorders of the human central nervous system.

  4. Invariant chain as a vehicle to load antigenic peptides on human MHC class I for cytotoxic T-cell activation.

    PubMed

    Wälchli, Sébastien; Kumari, Shraddha; Fallang, Lars-Egil; Sand, Kine M K; Yang, Weiwen; Landsverk, Ole J B; Bakke, Oddmund; Olweus, Johanna; Gregers, Tone F

    2014-03-01

    Protective T-cell responses depend on efficient presentation of antigen (Ag) in the context of major histocompatibility complex class I (MHCI) and class II (MHCII) molecules. Invariant chain (Ii) serves as a chaperone for MHCII molecules and mediates trafficking to the endosomal pathway. The genetic exchange of the class II-associated Ii peptide (CLIP) with antigenic peptides has proven efficient for loading of MHCII and activation of specific CD4(+) T cells. Here, we investigated if Ii could similarly activate human CD8(+) T cells when used as a vehicle for cytotoxic T-cell (CTL) epitopes. The results show that wild type Ii, and Ii in which CLIP was replaced by known CTL epitopes from the cancer targets MART-1 or CD20, coprecipitated with HLA-A*02:01 and mediated colocalization in the endosomal pathway. Furthermore, HLA-A*02:01-positive cells expressing CLIP-replaced Ii efficiently activated Ag-specific CD8(+) T cells in a TAP- and proteasome-independent manner. Finally, dendritic cells transfected with mRNA encoding IiMART-1 or IiCD20 primed naïve CD8(+) T cells. The results show that Ii carrying antigenic peptides in the CLIP region can promote efficient presentation of the epitopes to CTLs independently of the classical MHCI peptide loading machinery, facilitating novel vaccination strategies against cancer.

  5. Properties and Applications of Single-Chain Major Histocompatibility Complex Class I Molecules

    PubMed Central

    Kotsiou, Eleni; Brzostek, Joanna

    2011-01-01

    Abstract Stable major histocompatibility complex (MHC) class I molecules at the cell surface consist of three separate, noncovalently associated components: the class I heavy chain, the β2-microglobulin light chain, and a presented peptide. These three components are assembled inside cells via complex pathways involving many other proteins that have been studied extensively. Correct formation of disulfide bonds in the endoplasmic reticulum is central to this process of MHC class I assembly. For a single specific peptide to be presented at the cell surface for possible immune recognition, between hundreds and thousands of peptide-containing precursor polypeptides are required, so the overall process is relatively inefficient. To increase the efficiency of antigen presentation by MHC class I molecules, and for possible therapeutic purposes, single-chain molecules have been developed in which the three, normally separate components have been joined together via flexible linker sequences in a single polypeptide chain. Remarkably, these single-chain MHC class I molecules fold up correctly, as judged by functional recognition by cells of the immune system, and more recently by X-ray crystallographic structural data. This review focuses on the interesting properties and potential of this new type of engineered MHC class I molecule. Antioxid. Redox Signal. 15, 645–655. PMID:21126187

  6. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II {beta} subunit (CSNK2B)

    SciTech Connect

    Albertella, M.R.; Jones, H.; Thomson, W.

    1996-09-01

    A wide range of autoimmune and other diseases are known to be associated with the major histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility antigens in the class I and class II regions, but some appear to be more strongly associated with genes in the central 1100-kb class III region, making it important to characterize this region fully for the presence of novel genes. An {approximately}220-kb segment of DNA in the class III region separating the Hsp70 (HSPA1L) and BAT1 (D6S8IE) genes, which was previously known to contain 14 genes. Genomic DNA fragments spanning the gaps between the known genes were used as probes to isolate cDNAs corresponding to five new genes within this region. Evidence from Northern blot analysis and exon trapping experiments that suggested the presence of at least two more new genes was also obtained. Partial cDNA and complete exonic genomic sequencing of one of the new genes has identified it as the casein kinase II{beta} subunit (CSNK2B). Two of the other novel genes lie within a region syntenic to that implicated in susceptibility to experimental allergic orchitis in the mouse, an autoimmune disease of the testis, and represent additional candidates for the Orch-1 locus associated with this disease. In addition, characterization of the 13-kb intergenic gap separating the RD (D6545) and G11 (D6S60E) genes has revealed the presence of a gene encoding a 1246-amino-acid polypeptide that shows significant sequence similarity to the yeast anti-viral Ski2p gene product. 49 refs., 8 figs.

  7. Histocompatibility antigens in a population based silicosis series.

    PubMed Central

    Kreiss, K; Danilovs, J A; Newman, L S

    1989-01-01

    Individual susceptibility to silicosis is suggested by the lack of a uniform dose response relation and by the presence of immunological epiphenomena, such as increased antibody levels and associated diseases that reflect altered immune regulation. Human leucocyte antigens (HLA) are linked with immune response capability and might indicate a possible genetic susceptibility to silicosis. Forty nine silicotic subjects were identified from chest radiographs in a population based study in Leadville, Colorado. They were interviewed for symptoms and occupational history and gave a blood specimen for HLA-A, -B, -DR, and -DQ typing and for antinuclear antibody, immune complexes, immunoglobulins, and rheumatoid factor. Silicotic subjects had twice the prevalence of B44 (45%) of the reference population and had triple the prevalence of A29 (20%), both of which were statistically significant when corrected for the number of comparisons made. No perturbations in D-region antigen frequencies were detected. B44-positive subjects were older at diagnosis and had less dyspnoea than other subjects. A29-positive subjects were more likely to have abnormal levels of IgA and had higher levels of immune complexes. This study is the first to find significant HLA antigen excesses among a series of silicotic cases and extends earlier reported hypotheses that were based on groups of antigens of which B44 and A29 are components. PMID:2818968

  8. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  9. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules.

    PubMed

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these "non-traditional" class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  10. Human Leukocyte Antigen Class II Alleles Influence Levels of Antibodies to the Plasmodium falciparum Asexual-Stage Apical Membrane Antigen 1 but Not to Merozoite Surface Antigen 2 and Merozoite Surface Protein 1

    PubMed Central

    Johnson, Armead H.; Leke, Rose G. F.; Mendell, Nancy R.; Shon, Dewon; Suh, Young Ju; Bomba-Nkolo, Dennis; Tchinda, Viviane; Kouontchou, Samuel; Thuita, Lucy W.; van der Wel, Anne Marie; Thomas, Alan; Stowers, Anthony; Saul, Allan; Zhou, Ainong; Taylor, Diane W.; Quakyi, Isabella A.

    2004-01-01

    The apical membrane antigen 1 (AMA1), merozoite surface antigen 2 (MSA2), and merozoite surface protein 1 (MSP1) are asexual-stage proteins currently being evaluated for inclusion in a vaccine for Plasmodium falciparum. Accordingly, it is important to understand factors that control antibody responses to these antigens. Antibody levels in plasma from residents of Etoa, Cameroon, between the ages of 5 and 70 years, were determined using recombinant AMA1, MSA2, and the N-terminal region of MSP1 (MSP1-190L). In addition, antibody responses to four variants of the C-terminal region of MSP1 (MSP119) were assessed. Results showed that all individuals produced antibodies to AMA1, MSA2, and MSP1-190L; however, a proportion of individuals never produced antibodies to the MSP119 variants, although the percentage of nonresponders decreased with age. The influence of age and human leukocyte antigen (HLA)-DRB1/DQB1 alleles on antibody levels was evaluated using two-way analysis of variance. Age was correlated with levels of antibodies to AMA1 and MSP119 but not with levels of antibodies to MSA2 and MSP1-190L. No association was found between a single HLA allele and levels of antibodies to MSA2, MSP1-190L, or any of the MSP119 variants. However, individuals positive for DRB1*1201 had higher levels of antibodies to the variant of recombinant AMA1 tested than did individuals of all other HLA types. Since the effect was seen across all age groups, HLA influenced the level but not the rate of antibody acquisition. This association for AMA1, combined with the previously reported association between HLA class II alleles and levels of antibodies to rhoptry-associated protein 1 (RAP1) and RAP2, indicates that HLA influences the levels of antibodies to three of the five vaccine candidate antigens that we have evaluated. PMID:15102786

  11. Blood groups and histocompatibility antigens in habitual abortion.

    PubMed

    Carapella-de Luca, E; Purpura, M; Coghi, I; Nicotra, M; Bottini, E

    1980-01-01

    Forty-six couples with at least two consecutive abortions were examined. The morphological and the functional clinical check-ups were constantly negative. In all the couples a karyotype analysis was carried out including an investigation of C and/or G bands. The phenotypes of ABO, Rh, MNSs and HLA-systems were also determined. No significant difference was observed in the distribution of ABO phenotypes between males and females, or between subjects with abortions and controls. Regarding the Rh system, the most important findings are the absence of phenotypes with the E allele in double dose, the reduction of the frequency of the CCDee phenotype and the increase in the frequency of the ccDEe phenotype. Concerning MNSs system, an increase in the frequency of the phenotypes with the S allele in double dose is observed. Females with habitual abortions show a higher incidence of Bw35 as compared both to males and to the controls. No significant differences were observed for other antigens. The persistence of a genetic disequilibrium both in the Rh and the MNSs systems suggests that the selection might act against certain antigenic combinations, independently from the state of materno-foetal compatibility. Though preliminary, our data seem to give some support to this hypothesis. They also suggest that Bw35 antigen may be important in human reproduction.

  12. Genetic variability in swine leukocyte antigen class II and Toll-like receptors affects immune responses to vaccination for bacterial infections in pigs.

    PubMed

    Shinkai, H; Arakawa, A; Tanaka-Matsuda, M; Ide-Okumura, H; Terada, K; Chikyu, M; Kawarasaki, T; Ando, A; Uenishi, H

    2012-12-01

    The genes encoding swine leukocyte antigen (SLA) and Toll-like receptor (TLR) are highly polymorphic in pig populations, and likely have influences on infection and the effects of vaccination. We explored the associations of different genotypes of SLA class II and of the genes TLR1, TLR4, TLR5, and TLR6 with antibody responses after vaccination against Erysipelothrix rhusiopathiae (ER) and Actinobacillus pleuropneumoniae (APP) serotypes 1, 2, and 5 in 191 Duroc pigs maintained under specific pathogen-free conditions. We demonstrated close relationships between SLA class II and ER antibody response and between TLR genes other than TLR4 and APP antibody responses. Pigs with specific haplotypes in SLA class II or TLR5 showed decreased antibody response to ER vaccination or increased responses to APP2 and APP5 vaccination, respectively. It might be possible to breed for responsiveness to vaccination and to implement new vaccine development strategies unaffected by genetic backgrounds of pigs.

  13. Transport and intracellular distribution of MHC class II molecules and associated invariant chain in normal and antigen-processing mutant cell lines.

    PubMed

    Riberdy, J M; Avva, R R; Geuze, H J; Cresswell, P

    1994-06-01

    We have compared the intracellular transport and subcellular distribution of MHC class II-invariant chain complexes in a wild-type HLA-DR3 homozygous cell line and a mutant cell line, T2.DR3. The latter has a defect in antigen processing and accumulates HLA-DR3 molecules associated with an invariant chain-derived peptide (CLIP) rather than the normal complement of peptides derived from endocytosed proteins. We find that in the wild-type cells, CLIP is transiently associated with HLA-DR3 molecules, suggesting that the peptide is a normal class II-associated intermediate generated during proteolysis of the invariant chain. In the mutant cell line proteolysis of the invariant chain is less efficient, and HLA-DR3/CLIP complexes are generated much more slowly. Examination of the mutant cell line by immunoelectronmicroscopy shows that class II-invariant chain complexes accumulate intracellularly in large acidic vesicles which contain lysosomal markers, including beta-hexosaminidase, cathepsin D, and the lysosomal membrane protein CD63. The markers in these vesicles are identical to those seen in the class II-containing vesicles (MIICs) seen in the wild-type cells but the morphology is drastically different. The vesicles in the mutant cells are endocytic, as measured by the internalization of BSA-gold conjugates. The implication of these findings for antigen processing in general and the nature of the mutation in particular are discussed.

  14. Trophoblast Major Histocompatibility Complex Class I Expression Is Associated with Immune-Mediated Rejection of Bovine Fetuses Produced by Cloning.

    PubMed

    Rutigliano, Heloisa M; Thomas, Aaron J; Wilhelm, Amanda; Sessions, Benjamin R; Hicks, Brady A; Schlafer, Donald H; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Trophoblast cells from bovine somatic cell nuclear transfer (SCNT) conceptuses express major histocompatibility complex class I (MHC-I) proteins early in gestation, and this may be one cause of the significant first-trimester embryonic mortality observed in these pregnancies. MHC-I homozygous-compatible (n = 9), homozygous-incompatible (n = 8), and heterozygous-incompatible (n = 5) SCNT pregnancies were established. The control group consisted of eight pregnancies produced by artificial insemination. Uterine and placental samples were collected on Day 35 ± 1 of pregnancy, and expression of MHC-I, leukocyte markers, and cytokines were examined by immunohistochemistry. Trophoblast cells from all SCNT pregnancies expressed MHC-I, while trophoblast cells from age-matched control pregnancies were negative for MHC-I expression. Expression of MHC-I antigens by trophoblast cells from SCNT pregnancies was associated with lymphocytic infiltration in the endometrium. Furthermore, MHC-I-incompatible conceptuses, particularly the heterozygous-incompatible ones, induced a more pronounced lymphocytic infiltration than MHC-I-compatible conceptuses. Cells expressing cluster of differentiation (CD) 3, gamma/deltaTCR, and MHC-II were increased in the endometrium of SCNT pregnancies compared to the control group. CD4(+) lymphocytes were increased in MHC-I-incompatible pregnancies compared to MHC-I-compatible and control pregnancies. CD8(+), FOXP3(+), and natural killer cells were increased in MHC-I heterozygous-incompatible SCNT pregnancies compared to homozygous SCNT and control pregnancies.

  15. Trophoblast Major Histocompatibility Complex Class I Expression Is Associated with Immune-Mediated Rejection of Bovine Fetuses Produced by Cloning.

    PubMed

    Rutigliano, Heloisa M; Thomas, Aaron J; Wilhelm, Amanda; Sessions, Benjamin R; Hicks, Brady A; Schlafer, Donald H; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Trophoblast cells from bovine somatic cell nuclear transfer (SCNT) conceptuses express major histocompatibility complex class I (MHC-I) proteins early in gestation, and this may be one cause of the significant first-trimester embryonic mortality observed in these pregnancies. MHC-I homozygous-compatible (n = 9), homozygous-incompatible (n = 8), and heterozygous-incompatible (n = 5) SCNT pregnancies were established. The control group consisted of eight pregnancies produced by artificial insemination. Uterine and placental samples were collected on Day 35 ± 1 of pregnancy, and expression of MHC-I, leukocyte markers, and cytokines were examined by immunohistochemistry. Trophoblast cells from all SCNT pregnancies expressed MHC-I, while trophoblast cells from age-matched control pregnancies were negative for MHC-I expression. Expression of MHC-I antigens by trophoblast cells from SCNT pregnancies was associated with lymphocytic infiltration in the endometrium. Furthermore, MHC-I-incompatible conceptuses, particularly the heterozygous-incompatible ones, induced a more pronounced lymphocytic infiltration than MHC-I-compatible conceptuses. Cells expressing cluster of differentiation (CD) 3, gamma/deltaTCR, and MHC-II were increased in the endometrium of SCNT pregnancies compared to the control group. CD4(+) lymphocytes were increased in MHC-I-incompatible pregnancies compared to MHC-I-compatible and control pregnancies. CD8(+), FOXP3(+), and natural killer cells were increased in MHC-I heterozygous-incompatible SCNT pregnancies compared to homozygous SCNT and control pregnancies. PMID:27385783

  16. Complete amino acid sequence of human plasma Zn-. cap alpha. /sub 2/-glycoprotein and its homology to histocompatibility antigens

    SciTech Connect

    Araki, T.; Gejyo, F.; Takagaki, K.; Haupt, H.; Schwick, H.G.; Buergi, W.; Marti, T.; Schaller, J.; Rickli, E.; Brossmer, R.

    1988-02-01

    In the present study the complete amino acid sequence of human plasma Zn-..cap alpha../sub 2/-glycoprotein was determined. This protein whose biological function is unknown consists of a single polypeptide chain of 276 amino acid residues including 8 tryptophan residues and has a pyroglutamyl residue at the amino terminus. The location of the two disulfide bonds in the polypeptide chain was also established. The three glycans, whose structure was elucidated with the aid of 500 MHz /sup 1/H NMR spectroscopy, were sialylated N-biantennas. The molecular weight calculated from the polypeptide and carbohydrate structure is 38,478, which is close to the reported value of approx. = 41,000 based on physicochemical measurements. The predicted secondary structure appeared to comprised of 23% ..cap alpha..-helix, 27% ..beta..-sheet, and 22% ..beta..-turns. The three N-glycans were found to be located in ..beta..-turn regions. An unexpected finding was made by computer analysis of the sequence data; this revealed that Zn-..cap alpha../sub 2/-glycoprotein is closely related to antigens of the major histocompatibility complex in amino acid sequence and in domain structure. There was an unusually high degree of sequence homology with the ..cap alpha.. chains of class I histocompatibility antigens. Moreover, this plasma protein was shown to be a member of the immunoglobulin gene superfamily. Zn-..cap alpha../sub 2/-glycoprotein appears to be truncated secretory major histocompatibility complex-related molecule, and it may have a role in the expression of the immune response.

  17. Major histocompatibility complex class I expression on neurons in subacute sclerosing panencephalitis and experimental subacute measles encephalitis

    SciTech Connect

    Gogate, N.; Yamabe, Toshio; Verma, L.; Dhib-Jalbut, S.

    1996-04-01

    Lack of major histocompatibility class I antigens on neurons has been implicated as a possible mechanism for viral persistence in the brain since these antigens are required for cytotoxic T-lymphocyte recognition of infected cells. In subacute sclerosing panencephalitis (SSPE), measles virus (MV) persists in neurons, resulting in a fatal chronic infection. MHC class I mRNA expression was examined in formalin-fixed brain tissue from 6 SSPE patients by in situ hybridization. In addition MHC class I protein expression in MV-infected neurons was examined in experimental Subacute Measles Encephalitis (SME) by double immunohistochemistry. MHC class I mRNA expression was found to be upregulated in SSPE tissues studied, and in 5 out of 6 cases the expression was definitively seen on neurons. The percentage of neurons expressing MHC class I mRNA ranged between 20 to 84% in infected areas. There was no correlation between the degree of infection and expression of MHC class I molecules on neurons. Importantly, the number of neurons co-expressing MHC class I and MV antigens was markedly low, varying between 2 to 8%. Similar results were obtained in SME where 20 to 30% of the neurons expressed MHC class I but < 8% co-expressed MHC class I and MV antigens. Perivascular infiltrating cells in the infected regions in SME expressed IFN{gamma} immunoreactivity. The results suggest that MV may not be directly involved in the induction of MHC class I on neurons and that cytokines such as IFN{gamma} may play an important role. Furthermore, the paucity of neurons co-expressing MHC class I and MV antigens in SSPE and SME suggests that such cells are either rapidly cleared by cytotoxic T lymphocytes (CTL), or, alternatively, lack of co-expression of MHC class I on MV infected neurons favors MV persistence in these cells by escaping CTL recognition. 33 refs., 3 figs., 3 tabs.

  18. Primary in vitro generation of cytotoxic cells specific for human minor histocompatibility antigens between HLA-identical siblings.

    PubMed

    Tekolf, W A; Shaw, S

    1984-04-01

    A limiting dilution culture system was developed for the primary in vitro detection of human minor histocompatibility antigens by cytotoxic T lymphocytes (CTL). CTL were generated in primary in vitro culture between two HLA-identical sibling pairs and propagated as stable CTL lines. Population and family studies indicate that these CTL lines recognize minor histocompatibility antigens in an HLA-restricted manner. The antigen recognized by one CTL line is detected on six (out of 37) HLA-B7-positive donors but not on 32 HLA-B7-negative donors. The cytotoxicity of this CTL line is mediated by T3+, T8+ effector cells. The antigen detected by this CTL population is different from all known human minor histocompatibility antigens. The data of this study, like those in the mouse system, suggest that a suppressor cell is diluted out in a limiting dilution culture, which allows the activation of the CTL precursors.

  19. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain.

    PubMed

    Zagzag, David; Salnikow, Konstantin; Chiriboga, Luis; Yee, Herman; Lan, Li; Ali, M Aktar; Garcia, Roberto; Demaria, Sandra; Newcomb, Elizabeth W

    2005-03-01

    Invasion into surrounding brain tissue is a fundamental feature of gliomas and the major reason for treatment failure. The process of brain invasion in gliomas is not well understood. Differences in gene expression and/or gene products between invading and noninvading glioma cells may identify potential targets for new therapies. To look for genes associated with glioma invasion, we first employed Affymetrix microarray Genechip technology to identify genes differentially expressed in migrating glioma cells in vitro and in invading glioma cells in vivo using laser capture microdissection. We observed upregulation of a variety of genes, previously reported to be linked to glioma cell migration and invasion. Remarkably, major histocompatiblity complex (MHC) class I and II genes were significantly downregulated in migrating cells in vitro and in invading cells in vivo. Decreased MHC expression was confirmed in migrating glioma cells in vitro using RT-PCR and in invading glioma cells in vivo by immunohistochemical staining of human and murine glioblastomas for beta2 microglobulin, a marker of MHC class I protein expression. To the best of our knowledge, this report is the first to describe the downregulation of MHC class I and II antigens in migrating and invading glioma cells, in vitro and in vivo, respectively. These results suggest that the very process of tumor invasion is associated with decreased expression of MHC antigens allowing glioma cells to invade the surrounding brain in a 'stealth'-like manner.

  20. Covalent assembly of a soluble T cell receptor-peptide-major histocompatibility class I complex.

    PubMed Central

    Grégoire, C; Lin, S Y; Mazza, G; Rebai, N; Luescher, I F; Malissen, B

    1996-01-01

    We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels. Images Fig. 3 Fig. 4 PMID:8692966

  1. The impact of HLA class I and EBV latency-II antigen-specific CD8(+) T cells on the pathogenesis of EBV(+) Hodgkin lymphoma.

    PubMed

    Jones, K; Wockner, L; Brennan, R M; Keane, C; Chattopadhyay, P K; Roederer, M; Price, D A; Cole, D K; Hassan, B; Beck, K; Gottlieb, D; Ritchie, D S; Seymour, J F; Vari, F; Crooks, P; Burrows, S R; Gandhi, M K

    2016-02-01

    In 40% of cases of classical Hodgkin lymphoma (cHL), Epstein-Barr virus (EBV) latency-II antigens [EBV nuclear antigen 1 (EBNA1)/latent membrane protein (LMP)1/LMP2A] are present (EBV(+) cHL) in the malignant cells and antigen presentation is intact. Previous studies have shown consistently that HLA-A*02 is protective in EBV(+) cHL, yet its role in disease pathogenesis is unknown. To explore the basis for this observation, gene expression was assessed in 33 cHL nodes. Interestingly, CD8 and LMP2A expression were correlated strongly and, for a given LMP2A level, CD8 was elevated markedly in HLA-A*02(-) versus HLA-A*02(+) EBV(+) cHL patients, suggesting that LMP2A-specific CD8(+) T cell anti-tumoral immunity may be relatively ineffective in HLA-A*02(-) EBV(+) cHL. To ascertain the impact of HLA class I on EBV latency antigen-specific immunodominance, we used a stepwise functional T cell approach. In newly diagnosed EBV(+) cHL, the magnitude of ex-vivo LMP1/2A-specific CD8(+) T cell responses was elevated in HLA-A*02(+) patients. Furthermore, in a controlled in-vitro assay, LMP2A-specific CD8(+) T cells from healthy HLA-A*02 heterozygotes expanded to a greater extent with HLA-A*02-restricted compared to non-HLA-A*02-restricted cell lines. In an extensive analysis of HLA class I-restricted immunity, immunodominant EBNA3A/3B/3C-specific CD8(+) T cell responses were stimulated by numerous HLA class I molecules, whereas the subdominant LMP1/2A-specific responses were confined largely to HLA-A*02. Our results demonstrate that HLA-A*02 mediates a modest, but none the less stronger, EBV-specific CD8(+) T cell response than non-HLA-A*02 alleles, an effect confined to EBV latency-II antigens. Thus, the protective effect of HLA-A*02 against EBV(+) cHL is not a surrogate association, but reflects the impact of HLA class I on EBV latency-II antigen-specific CD8(+) T cell hierarchies.

  2. A cDNA clone containing the entire coding sequence of a mouse H-2Kd histocompatibility antigen

    PubMed Central

    Lalanne, Jean-Louis; Delarbre, Christiane; Gachelin, Gabriel; Kourilsky, Philippe

    1983-01-01

    We have isolated a cDNA clone carrying a 1560 bp long insert which contains the entire coding and 3′ untranslated regions of an H-2Kd mouse histocompatibility antigen. Its sequence and overal features are described. They point to the existence of unique properties of DNA sequences associated with the H-2Kd antigen. PMID:6298749

  3. The relationships between HLA class II alleles and antigens with gestational diabetes mellitus: A meta-analysis

    PubMed Central

    Guo, Cong-cong; Jin, Yi-mei; Lee, Kenneth Ka Ho; Yang, Guang; Jing, Chun-xia; Yang, Xuesong

    2016-01-01

    Gestational diabetes mellitus (GDM) is defined as glucose intolerance with onset or first recognition during pregnancy. It is associated with an increased risk of pregnancy complications. Susceptibility to GDM is partly determined by genetics and linked with type 1 diabetes-associated high risk HLA class II genes. However, the evidence for this relationship is still highly controversial. In this study, we assessed the relationship between HLA class II variants and GDM. We performed meta-analysis on all of literatures available in PubMed, Embase, Web of Science and China National Knowledge Infrastructure databases. The odds ratio and 95% confidence interval of each variant were estimated. All statistical analyses were conducted using the Comprehensive Meta Analysis 2.2.064 software. At the allelic analysis, DQB1*02, DQB1*0203, DQB1*0402, DQB1*0602, DRB1*03, DRB1*0301 and DRB1*1302 reached a nominal level of significance, and only DQB1*02, DQB1*0602 and DRB1*1302 were statistically significant after Bonferroni correction. At the serological analysis, none of DQ2, DQ6, DR13 and DR17 was statistically significant following Bonferroni correction although they reached a nominal level of significance. In sum, our meta-analysis demonstrated that there were the associations between HLA class II variants and GDM but more studies are required to elucidate how these variants contribute to GDM susceptibility. PMID:27721507

  4. Genomic organization of duplicated major histocompatibility complex class I regions in Atlantic salmon (Salmo salar)

    PubMed Central

    Lukacs, Morten F; Harstad, Håvard; Grimholt, Unni; Beetz-Sargent, Marianne; Cooper, Glenn A; Reid, Linda; Bakke, Hege G; Phillips, Ruth B; Miller, Kristina M; Davidson, William S; Koop, Ben F

    2007-01-01

    Background We have previously identified associations between major histocompatibility complex (MHC) class I and resistance towards bacterial and viral pathogens in Atlantic salmon. To evaluate if only MHC or also closely linked genes contributed to the observed resistance we ventured into sequencing of the duplicated MHC class I regions of Atlantic salmon. Results Nine BACs covering more than 500 kb of the two duplicated MHC class I regions of Atlantic salmon were sequenced and the gene organizations characterized. Both regions contained the proteasome components PSMB8, PSMB9, PSMB9-like and PSMB10 in addition to the transporter for antigen processing TAP2, as well as genes for KIFC1, ZBTB22, DAXX, TAPBP, BRD2, COL11A2, RXRB and SLC39A7. The IA region contained the recently reported MHC class I Sasa-ULA locus residing approximately 50 kb upstream of the major Sasa-UBA locus. The duplicated class IB region contained an MHC class I locus resembling the rainbow trout UCA locus, but although transcribed it was a pseudogene. No other MHC class I-like genes were detected in the two duplicated regions. Two allelic BACs spanning the UBA locus had 99.2% identity over 125 kb, while the IA region showed 82.5% identity over 136 kb to the IB region. The Atlantic salmon IB region had an insert of 220 kb in comparison to the IA region containing three chitin synthase genes. Conclusion We have characterized the gene organization of more than 500 kb of the two duplicated MHC class I regions in Atlantic salmon. Although Atlantic salmon and rainbow trout are closely related, the gene organization of their IB region has undergone extensive gene rearrangements. The Atlantic salmon has only one class I UCA pseudogene in the IB region while trout contains the four MHC UCA, UDA, UEA and UFA class I loci. The large differences in gene content and most likely function of the salmon and trout class IB region clearly argues that sequencing of salmon will not necessarily provide information

  5. Posttranscriptional Inhibition of Class I Major Histocompatibility Complex Presentation on Hepatocytes and Lymphoid Cells in Chronic Woodchuck Hepatitis Virus Infection

    PubMed Central

    Michalak, Tomasz I.; Hodgson, Paul D.; Churchill, Norma D.

    2000-01-01

    Woodchuck hepatitis virus (WHV), similar to human hepatitis B virus, causes acute liver inflammation that can progress to chronic hepatitis and hepatocellular carcinoma. WHV also invades cells of the host lymphatic system, where it persists for life. We report here that acute and chronic hepadnavirus hepatitis is characterized by a profound difference in the expression of class I major histocompatibility complex (MHC) molecules on the surface of infected hepatocytes and, notably, lymphoid cells. While acute WHV infection is accompanied by the enhanced hepatocyte surface presentation of class I MHC antigen and upregulated transcription of the relevant hepatic genes, inhibition of class I antigen display on liver cells is a uniform hallmark of chronic WHV infection. This inhibition in chronic hepatitis occurs despite augmented (as in acute infection) expression of hepatic genes for class I MHC heavy chain, β2-microglobulin, and transporters associated with antigen processing (TAP1 and TAP2). Further, the class I antigen inhibition is not related to the histological severity of hepatocellular injury, the extent of lymphocytic infiltrations, the level of intrahepatic gamma interferon induction, or the hepatic WHV load. Importantly, the antigen expression is also inhibited on organ lymphoid cells of chronically infected hosts. The results obtained in this study demonstrate that the defective presentation of class I MHC molecules on cells supporting persistent WHV replication is due to viral posttranscriptional interference. This event may diminish the susceptibility of infected hepatocytes to virus-specific T-cell-mediated elimination, hinder virus clearance, and deregulate the class I MHC-dependent functions of the host immune system. This multifarious effect could be critical for perpetuation of liver damage and evasion of the antiviral immunological surveillance in chronic infection and therefore could be supportive of hepadnavirus persistence. PMID:10775584

  6. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications.

    PubMed

    Afridi, Saifullah; Hoessli, Daniel C; Hameed, Muhammad Waqar

    2016-07-01

    Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.

  7. Reassociation with beta 2-microglobulin is necessary for Db class I major histocompatibility complex binding of an exogenous influenza peptide.

    PubMed Central

    Rock, K L; Gamble, S; Rothstein, L; Benacerraf, B

    1991-01-01

    A synthetic peptide corresponding to residues 365-380 of the influenza nucleoprotein (NP365-380) has been previously shown to associate with class I major histocompatibility complex-encoded molecules and to stimulate cytotoxic T lymphocytes [Townsend, A. R. M., Rothbard, J., Gotch, F. M., Bahadur, G., Wraith, D. & McMichael, A. J. (1986) Cell 44, 959-968]. We find that intact Db class I heterodimers on the cell surface are unreceptive to binding this antigen. However, NP365-380 readily associates with Db molecules on the plasma membrane in the presence of exogenous beta 2-microglobulin. In addition, there is a second pathway through which this peptide associates with class I molecules that requires energy and de novo protein synthesis. These findings have implications for maintaining the immunological identity of cells and for the use of peptides as vaccines for priming cytolytic T-cell immunity. Images PMID:1986378

  8. Swine leukocyte antigen class II genes (SLA-DRA, SLA-DRB1, SLA-DQA, SLA-DQB1) polymorphism and genotyping in Guizhou minipigs.

    PubMed

    Liu, Z Z; Xia, J H; Xin, L L; Wang, Z G; Qian, L; Wu, S G; Yang, S L; Li, K

    2015-11-30

    The swine leukocyte antigen (SLA) complex harbors highly polymorphic gene clusters encoding glycoproteins that are involved in responses to vaccines, infectious disease, and production performance. Pigs with well-defined SLA class II genes are useful for the study of disease, immunology, and vaccines. In this study, we analyzed four SLA class II genes (SLA-DRA, SLA-DRB1, SLA-DQA, SLA-DQB1) in 22 founder Guizhou minipigs using a sequence-based typing method. Twelve alleles were detected, compared with the SLA class II allele sequences in the GenBank, and one of twelve alleles was found to be novel in Guizhou minipigs. There are four SLA II haplotypes, and one of them has been previously reported in Meishan pigs. Furthermore, based on sequence information of these alleles, we developed a simple SLA typing method implemented to SLA-typing for unknown offspring of Guizhou minipigs, relying on designed twelve sequence specific primers that could discriminate between each other. According to the combination of sequence-based typing and PCR-SSP, we were able to rapidly check SLA typing of Guizhou breeding stock and identified four SLA haplotypes in the herd. Therefore, SLA-defined Guizhou minipigs will be useful as animal models for xenotransplantation and immunological research.

  9. Establishment of the reversible peptide-major histocompatibility complex (pMHC) class I Histamer technology: tool for visualization and selection of functionally active antigen-specific CD8(+) T lymphocytes.

    PubMed

    Tischer, Sabine; Kaireit, Till; Figueiredo, Constança; Hiller, Oliver; Maecker-Kolhoff, Britta; Geyeregger, Renè; Immenschuh, Stephan; Blasczyk, Rainer; Eiz-Vesper, Britta

    2012-09-01

    Multimers of soluble peptide-major histocompatibilty complex (pMHC) molecules are used in both basic and clinical immunology. They allow the specific visualization and isolation of antigen-specific T cells from ex vivo samples. Adoptive transfer of antigen-specific T cells sorted by pMHC multimers is an effective strategy for treatment of patients with malignancies or infectious diseases after transplantation. We developed a new reversible pMHC multimer called 'Histamer' to enable the specific detection and isolation of antiviral T cells from peripheral blood. HLA-A*02:01/CMVpp65 (495-503) Histamer (A02/CMV Histamer) was generated by coupling 6xHis-tagged pMHC molecules onto cobalt-based magnetic beads. The specificity of the Histamer was evaluated by flow cytometry. Sorting of antiviral CD8(+) cytotoxic T lymphocytes (CTLs) was performed by magnetic cell separation, followed by the monomerization of the Histamer after addition of the competitor L-histidine. Sorted T cells were analyzed for phenotype and function. The reversible pMHC Histamer proved to be highly specific and sensitive. CMV-specific T cells of up to 99.6% purity were isolated using the Histamer technology. Rapid and complete disassembly of the T-cell surface-bound A02/CMV Histamer followed by the subsequent dissociation of the pMHC monomers from CD8(+) CTL receptors was achieved using 100 mM L-histidine. The function of CMV-specific T cells enriched by Histamer staining did not differ from CTLs induced by standard T-cell assays. This reversible T-cell staining procedure preserves the functionality of antigen-specific T cells and can be adapted to good manufacturing practice conditions. The pMHC Histamer technology offers full flexibility and fulfills all requirements to generate clinical-grade T lymphocytes. PMID:22740564

  10. High resolution human leukocyte antigen (HLA) class I and class II allele typing in Mexican mestizo women with sporadic breast cancer: case-control study

    PubMed Central

    2009-01-01

    Background The development of breast cancer is multifactorial. Hormonal, environmental factors and genetic predisposition, among others, could interact in the presentation of breast carcinoma. Human leukocyte antigen (HLA) alleles play an important role in immunity (cellular immunity) and may be important genetic traits. HLAAllele-specific interaction has not been well established. Recently, several studies had been conducted in order to do so, but the results are controversial and in some instances contradictory. Methods We designed a case-control study to quantify the association of HLA class I and II genes and breast cancer. HLA typing was performed by high resolution sequence-specific oligotyping after DNA amplification (PCR-SSOP) of 100 breast cancer Mexican mestizo patients and 99 matched healthy controls. Results HLA-A frequencies that we were able to observe that there was no difference between both groups from the statistical viewpoint. HLA-B*1501 was found three times more common in the case group (OR, 3.714; p = 0.031). HLA-Cw is not a marker neither for risk, nor protection for the disease, because we did not find significant statistical differences between the two groups. DRB1*1301, which is expressed in seven cases and in only one control, observing an risk increase of up to seven times and DRB1*1602, which behaves similarly in being present solely in the cases (OR, 16.701; 95% CI, 0.947 – 294.670). DQ*0301-allele expression, which is much more common in the control group and could be protective for the presentation of the disease (OR, 0.078; 95% CI, 0.027–0.223, p = 0.00001). Conclusion Our results reveal the role of the MHC genes in the pathophysiology of breast cancer, suggesting that in the development of breast cancer exists a disorder of immune regulation. The triggering factor seems to be restricted to certain ethnic groups and certain geographical regions since the relevant MHC alleles are highly diverse. This is the first study in Mexican

  11. Role of Plasmacytoid Dendritic Cells for Aberrant Class II Expression in Exocrine Glands from Estrogen-Deficient Mice of Healthy Background

    PubMed Central

    Arakaki, Rieko; Nagaoka, Ai; Ishimaru, Naozumi; Yamada, Akiko; Yoshida, Satoko; Hayashi, Yoshio

    2009-01-01

    Although it has been well documented that aberrant major histocompatibility complex class II molecules may contribute to the development of autoimmune disorders, the precise mechanisms responsible for their tissue-specific expression remain unknown. Here we show that estrogen deficiency induces aberrant class II major histocompatibility complex expression in exocrine glands via interactions between epithelial cells and plasmacytoid dendritic cells. Relatively modest but functionally significant expression levels of major histocompatibility complex class II and class II transactivator molecules were observed in the exocrine glands of ovariectomized (Ovx) C57BL/6 (B6) mice, but were not seen in the exocrine glands of control B6 mice. We observed that the salivary dendritic cells adjacent to the apoptotic epithelial cells positive for terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, were activated in Ovx mice, but were not activated in control mice. We obtained evidence that the salivary gland cells express both interferon regulatory factor-1 and class II transactivator type IV molecules in Ovx mice. Salivary gland cells from Ovx mice were also capable of inducing the activation of antigen-specific T cells from OT-II transgenic mice. These findings indicate that estrogen deficiency initiates class II transactivator type IV mRNA expression in exocrine glands via interactions between epithelial cells and plasmacytoid dendritic cells, suggesting that plasmacytoid dendritic cells play a pivotal role in gender-based autoimmune disorders in postmenopausal women. PMID:19359524

  12. Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules, which are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating cytotoxic lymphocytes (CTLs). The polymorp...

  13. Dynamics of Major Histocompatibility Complex Class I Association with the Human Peptide-loading Complex*

    PubMed Central

    Panter, Michaela S.; Jain, Ankur; Leonhardt, Ralf M.; Ha, Taekjip; Cresswell, Peter

    2012-01-01

    Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC. PMID:22829594

  14. High-throughput engineering and analysis of peptide binding to class II MHC.

    PubMed

    Jiang, Wei; Boder, Eric T

    2010-07-27

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity.

  15. Defective major histocompatibility complex class I expression on lymphoid cells in autoimmunity.

    PubMed Central

    Fu, Y; Nathan, D M; Li, F; Li, X; Faustman, D L

    1993-01-01

    Lymphocytes from patients with insulin-dependent diabetes mellitus (IDDM), a chronic autoimmune disease, have recently been shown to have decreased surface expression of MHC class I antigens. Since IDDM and other autoimmune diseases share a strong genetic association with MHC class II genes, which may in turn be linked to genes that affect MHC class I expression, we studied other autoimmune diseases to determine whether MHC class I expression is abnormal. Fresh PBLs were isolated from patients with IDDM, Hashimoto's thyroiditis, Graves' disease, systemic lupus erythematosis, rheumatoid arthritis, and Sjogren's syndrome. Nondiabetic and non-insulin-dependent diabetes mellitus patients served as controls. MHC class I expression was measured with a conformationally dependent monoclonal antibody, W6/32. Freshly prepared PBLs from the autoimmune diseases studied and the corresponding fresh EBV-transformed B cell lines had decreased MHC class I expression compared with PBLs from normal volunteers and non-insulin-dependent (nonautoimmune) diabetic patients. Only 3 of more than 180 donors without IDDM or other clinically recognized autoimmune disease had persistently decreased MHC class I expression; one patient was treated with immunosuppressive drugs, and subsequent screening of the other two patients revealed high titers of autoantibodies, revealing clinically occult autoimmunity. Patients with nonautoimmune inflammation (osteomyelitis or tuberculosis) had normal MHC class I expression. Autoimmune diseases are characterized by decreased expression of MHC class I on lymphocytes. MHC class I expression may be necessary for self-tolerance, and abnormalities in such expression may lead to autoimmunity. PMID:8486790

  16. Major histocompatibility complex class I-specific and -restricted killing of beta 2-microglobulin-deficient cells by CD8+ cytotoxic T lymphocytes.

    PubMed Central

    Glas, R; Franksson, L; Ohlén, C; Höglund, P; Koller, B; Ljunggren, H G; Kärre, K

    1992-01-01

    Cytotoxic T lymphocytes (CTLs) recognize major histocompatibility complex (MHC) class I molecules, normally composed of a heavy chain, a beta 2-microglobulin (beta 2m), and peptide antigens. beta 2m is considered essential for the assembly and intracellular transport of MHC class I molecules as well as their peptide presentation to CTLs. Contrary to this dogma, we now report the generation of allospecific and restricted CD8+ and TCR alpha beta+ CTLs (where TCR is T-cell receptor) capable of killing beta 2m-deficient cells. Such CTLs were obtained by priming mice with live allogeneic beta 2m- spleen cells or mutant lymphoma cells producing MHC class I protein but no detectable beta 2m. Although both beta 2m- and beta 2m-expressing lymphoma cells were rejected in allogeneic mice, only the former were efficient inducers of CTLs recognizing beta 2m- cells. These CTLs were MHC class I (H-2Kb or Db)-specific and CD8-dependent and did not require serum as a source of external beta 2m in the culture. They could be induced across major and minor histocompatibility barriers. The H-2-restricted CTLs generated in the latter case failed to kill the antigen-processing-deficient target RMA-S cells. The results show that MHC class I heavy chains in beta 2m- cells can be transported to the cell surface and act as antigens or antigen-presenting molecules to allospecific and MHC-restricted CTLs. PMID:1454824

  17. Peptide-β2-microglobulin-major histocompatibility complex expressing cells are potent antigen-presenting cells that can generate specific T cells

    PubMed Central

    Obermann, Sonja; Petrykowska, Susanne; Manns, Michael P; Korangy, Firouzeh; Greten, Tim F

    2007-01-01

    Adoptive T-cell therapy represents a promising therapeutic approach for the treatment of cancer. Successful adoptive immunotherapy depends on the ex vivo priming and expansion of antigen-specific T cells. However, the in vitro generation of adequate numbers of functional antigen-specific T cell remains a major obstacle. It is important to develop efficient and reproducible methods to generate high numbers of antigen-specific T cells for adoptive T-cell transfer. We have developed a new artificial antigen-presenting cell (aAPC) by transfection of major histocompatibility (MHC) class I negative Daudi cells with a peptide-β2-microglobulin–MHC fusion construct (single-chain aAPC) ensuring presentation of the peptide–MHC complex of interest. Using this artificial antigen-presenting cell, we could generate up to 9·2 × 108 antigen-specific cytotoxic CD8+ T cells from 10 ml blood. In vitro generated T cells lysed endogenously presented antigens. Direct comparison of the single-chain aAPC with autologous monocyte-derived dendritic cells demonstrated that these cells were equally efficient in stimulation of T cells. Finally, we were able to generate antigen-specific T cell lines from perpheral blood mononuclear cells of patients receiving cytotoxic chemotherapy. The use of single-chain aAPC represent a promising option for the generation of antigen-specific CD8+ T cells, which could be used for adoptive T-cell therapy. PMID:17472719

  18. Peptide-beta2-microglobulin-major histocompatibility complex expressing cells are potent antigen-presenting cells that can generate specific T cells.

    PubMed

    Obermann, Sonja; Petrykowska, Susanne; Manns, Michael P; Korangy, Firouzeh; Greten, Tim F

    2007-09-01

    Adoptive T-cell therapy represents a promising therapeutic approach for the treatment of cancer. Successful adoptive immunotherapy depends on the ex vivo priming and expansion of antigen-specific T cells. However, the in vitro generation of adequate numbers of functional antigen-specific T cell remains a major obstacle. It is important to develop efficient and reproducible methods to generate high numbers of antigen-specific T cells for adoptive T-cell transfer. We have developed a new artificial antigen-presenting cell (aAPC) by transfection of major histocompatibility (MHC) class I negative Daudi cells with a peptide-beta2-microglobulin-MHC fusion construct (single-chain aAPC) ensuring presentation of the peptide-MHC complex of interest. Using this artificial antigen-presenting cell, we could generate up to 9.2 x 10(8) antigen-specific cytotoxic CD8(+) T cells from 10 ml blood. In vitro generated T cells lysed endogenously presented antigens. Direct comparison of the single-chain aAPC with autologous monocyte-derived dendritic cells demonstrated that these cells were equally efficient in stimulation of T cells. Finally, we were able to generate antigen-specific T cell lines from perpheral blood mononuclear cells of patients receiving cytotoxic chemotherapy. The use of single-chain aAPC represent a promising option for the generation of antigen-specific CD8(+) T cells, which could be used for adoptive T-cell therapy.

  19. Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma

    PubMed Central

    Cycon, Kelly A; Mulvaney, Kathleen; Rimsza, Lisa M; Persky, Daniel; Murphy, Shawn P

    2013-01-01

    Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin's lymphoma (NHL) diagnosed in the USA, consists of at least two distinct subtypes: germinal centre B (GCB) and activated B-cell (ABC). Decreased MHC class II (MHCII) expression on the tumours in both DLBCL subtypes directly correlates with significant decreases in patient survival. One common mechanism accounting for MHCII down-regulation in DLBCL is reduced expression of the MHC class II transactivator (CIITA), the master regulator of MHCII transcription. Furthermore, reduced CIITA expression in ABC DLBCL correlates with the presence of the transcriptional repressor positive regulatory domain-I-binding factor-1 (PRDI-BF1). However, the mechanisms underlying down-regulation of CIITA in GCB DLBCL are currently unclear. In this study, we demonstrate that neither PRDI-BF1 nor CpG hypermethylation at the CIITA promoters are responsible for decreased CIITA in GCB DLBCL. In contrast, histone modifications associated with an open chromatin conformation and active transcription were significantly lower at the CIITA promoters in CIITA− GCB cells compared with CIITA+ B cells, which suggests that epigenetic mechanisms contribute to repression of CIITA transcription. Treatment of CIITA− or CIITAlow GCB cells with several different histone deacetylase inhibitors (HDACi) activated modest CIITA and MHCII expression. However, CIITA and MHCII levels were significantly higher in these cells after exposure to the HDAC-1-specific inhibitor MS-275. These results suggest that CIITA transcription is repressed in GCB DLBCL cells through epigenetic mechanisms involving HDACs, and that HDACi treatment can alleviate repression. These observations may have important implications for patient therapy. PMID:23789844

  20. Intracellular transport of membrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface

    PubMed Central

    1985-01-01

    The intracellular transport of two closely related membrane glycoproteins was studied in the murine B cell lymphoma line, AKTB-1b. Using pulse-chase radiolabeling, the kinetics of appearance of the class I histocompatibility antigens, H-2Kk and H-2Dk, at the cell surface were compared and found to be remarkably different. Newly synthesized H-2Kk is transported rapidly such that all radiolabeled molecules reach the surface within 1 h. In contrast, the H-2Dk antigen is transported slowly with a half-time of 4-5 h. The rates of surface appearance for the two antigens closely resemble the rates at which their Asn-linked oligosaccharides mature from endoglucosaminidase H (endo H)-sensitive to endo H-resistant forms, a process that occurs in the Golgi apparatus. This suggests that the rate-limiting step in the transport of H-2Dk to the cell surface occurs before the formation of endo H-resistant oligosaccharides in the Golgi apparatus. Subcellular fractionation experiments confirmed this conclusion by identifying the endoplasmic reticulum (ER) as the site where the H-2Dk antigen accumulates. The retention of this glycoprotein in the ER does not appear to be due to a lack of solubility or an inability of the H-2Dk heavy chain to associate with beta 2-microglobulin. Our data is inconsistent with a passive membrane flow mechanism for the intracellular transport of membrane glycoproteins. Rather, it suggests that one or more receptors localized to the ER membrane may mediate the selective transport of membrane glycoproteins out of the ER to the Golgi apparatus. The fact that H-2Kk and H-2Dk are highly homologous (greater than or equal to 80%) indicates that this process can be strongly influenced by limited alterations in protein structure. PMID:3928633

  1. Intracellular transport of membrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface.

    PubMed

    Williams, D B; Swiedler, S J; Hart, G W

    1985-09-01

    The intracellular transport of two closely related membrane glycoproteins was studied in the murine B cell lymphoma line, AKTB-1b. Using pulse-chase radiolabeling, the kinetics of appearance of the class I histocompatibility antigens, H-2Kk and H-2Dk, at the cell surface were compared and found to be remarkably different. Newly synthesized H-2Kk is transported rapidly such that all radiolabeled molecules reach the surface within 1 h. In contrast, the H-2Dk antigen is transported slowly with a half-time of 4-5 h. The rates of surface appearance for the two antigens closely resemble the rates at which their Asn-linked oligosaccharides mature from endoglucosaminidase H (endo H)-sensitive to endo H-resistant forms, a process that occurs in the Golgi apparatus. This suggests that the rate-limiting step in the transport of H-2Dk to the cell surface occurs before the formation of endo H-resistant oligosaccharides in the Golgi apparatus. Subcellular fractionation experiments confirmed this conclusion by identifying the endoplasmic reticulum (ER) as the site where the H-2Dk antigen accumulates. The retention of this glycoprotein in the ER does not appear to be due to a lack of solubility or an inability of the H-2Dk heavy chain to associate with beta 2-microglobulin. Our data is inconsistent with a passive membrane flow mechanism for the intracellular transport of membrane glycoproteins. Rather, it suggests that one or more receptors localized to the ER membrane may mediate the selective transport of membrane glycoproteins out of the ER to the Golgi apparatus. The fact that H-2Kk and H-2Dk are highly homologous (greater than or equal to 80%) indicates that this process can be strongly influenced by limited alterations in protein structure. PMID:3928633

  2. Genetic polymorphism of the swine major histocompatibility complex ( SLA) class I genes, SLA-1, -2 and -3.

    PubMed

    Ando, Asako; Kawata, Hisako; Shigenari, Atsuko; Anzai, Tatsuya; Ota, Masao; Katsuyama, Yoshihiko; Sada, Masaharu; Goto, Rieko; Takeshima, Shin-Nosuke; Aida, Yoko; Iwanaga, Takahiro; Fujimura, Nobuyuki; Suzuki, Yoshiyuki; Gojobori, Takashi; Inoko, Hidetoshi

    2003-12-01

    In order to identify and characterize genetic polymorphism of the swine major histocompatibility complex ( Mhc: SLA) class I genes, RT-PCR products of the second and third exons of the three SLA classical class I genes, SLA-1, SLA-2 and SLA-3 were subjected to nucleotide determination. These analyses allowed the identification of four, eight and seven alleles at the SLA-1, SLA-2 and SLA-3 loci, respectively, from three different breeds of miniature swine and one mixed breed. Among them, 12 alleles were novel. Construction of a phylogenetic tree using the nucleotide sequences of those 19 alleles indicated that the SLA-1 and -2 genes are more closely related to each other than to SLA-3. Selective forces operating at single amino acid sites of the SLA class I molecules were analyzed by the Adaptsite Package program. Ten positive selection sites were found at the putative antigen recognition sites (ARSs). Among the 14 positively selected sites observed in the human MHC ( HLA) classical class I molecules, eight corresponding positions in the SLA class I molecules were inferred as positively selected. On the other hand, four amino acids at the putative ARSs were identified as negatively selected in the SLA class I molecules. These results suggest that selective forces operating in the SLA class I molecules are almost similar to those of the HLA class I molecules, although several functional sites for antigen and cytotoxic T-lymphocyte recognition by the SLA class I molecules may be different from those of the HLA class I molecules.

  3. Endoplasmic reticulum aminopeptidase 1 function and its pathogenic role in regulating innate and adaptive immunity in cancer and major histocompatibility complex class I-associated autoimmune diseases.

    PubMed

    Fruci, D; Romania, P; D'Alicandro, V; Locatelli, F

    2014-08-01

    Major histocompatibility complex (MHC) class I molecules present antigenic peptides on the cell surface to alert natural killer (NK) cells and CD8(+) T cells for the presence of abnormal intracellular events, such as virus infection or malignant transformation. The generation of antigenic peptides is a multistep process that ends with the trimming of N-terminal extensions in the endoplasmic reticulum (ER) by aminopeptidases ERAP1 and ERAP2. Recent studies have highlighted the potential role of ERAP1 in reprogramming the immunogenicity of tumor cells in order to elicit innate and adaptive antitumor immune responses, and in conferring susceptibility to autoimmune diseases in predisposed individuals. In this review, we will provide an overview of the current knowledge about the role of ERAP1 in MHC class I antigen processing and how its manipulation may constitute a promising tool for cancer immunotherapy and treatment of MHC class I-associated autoimmune diseases.

  4. Dog leukocyte antigen class II-associated genetic risk testing for immune disorders of dogs: simplified approaches using Pug dog necrotizing meningoencephalitis as a model.

    PubMed

    Pedersen, Niels; Liu, Hongwei; Millon, Lee; Greer, Kimberly

    2011-01-01

    A significantly increased risk for a number of autoimmune and infectious diseases in purebred and mixed-breed dogs has been associated with certain alleles or allele combinations of the dog leukocyte antigen (DLA) class II complex containing the DRB1, DQA1, and DQB1 genes. The exact level of risk depends on the specific disease, the alleles in question, and whether alleles exist in a homozygous or heterozygous state. The gold standard for identifying high-risk alleles and their zygosity has involved direct sequencing of the exon 2 regions of each of the 3 genes. However, sequencing and identification of specific alleles at each of the 3 loci are relatively expensive and sequencing techniques are not ideal for additional parentage or identity determination. However, it is often possible to get the same information from sequencing only 1 gene given the small number of possible alleles at each locus in purebred dogs, extensive homozygosity, and tendency for disease-causing alleles at each of the 3 loci to be strongly linked to each other into haplotypes. Therefore, genetic testing in purebred dogs with immune diseases can be often simplified by sequencing alleles at 1 rather than 3 loci. Further simplification of genetic tests for canine immune diseases can be achieved by the use of alternative genetic markers in the DLA class II region that are also strongly linked with the disease genotype. These markers consist of either simple tandem repeats or single nucleotide polymorphisms that are also in strong linkage with specific DLA class II genotypes and/or haplotypes. The current study uses necrotizing meningoencephalitis of Pug dogs as a paradigm to assess simple alternative genetic tests for disease risk. It was possible to attain identical necrotizing meningoencephalitis risk assessments to 3-locus DLA class II sequencing by sequencing only the DQB1 gene, using 3 DLA class II-linked simple tandem repeat markers, or with a small single nucleotide polymorphism array

  5. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...

  6. Expression and gene transcript of Fc receptors for IgG, HLA class II antigens and Langerhans cells in human cervico-vaginal epithelium.

    PubMed Central

    Hussain, L A; Kelly, C G; Fellowes, R; Hecht, E M; Wilson, J; Chapman, M; Lehner, T

    1992-01-01

    The mechanism of transmission of HIV from the male to the female genital tract or in the reverse order is not clear. CD4 glycoprotein is the receptor for HIV and Langerhans cells and the related dendritic cells could play a role in the initial transmission of HIV. Fc receptors (FcR) for IgG might be involved in antibody-mediated binding of HIV. We carried out an immunohistological study of normal human cervical and vaginal epithelia for the presence of CD4 glycoprotein, Langerhans cells and FcR to IgG. CD4+ glycoprotein was not found in the vaginal or cervical epithelium, with the exception of a few endocervical epithelial cells. A small number of CD4+ mononuclear cells were found in the endocervical epithelium of a third of the specimens but a large number of CD4+ cells was found in the submucosa of most of the cervical and vaginal specimens. Langerhans cells expressing CD4, HLA class II, Fc gamma R2 and Fc gamma R3 were detected in most vaginal, ectocervical and transformation zone epithelia and in 9/14 endocervical tissues. Fc gamma R3 was detected in about two-thirds of the columnar endocervical epithelium and the transformation zone. A smaller number of specimens expressed Fc gamma R2 in these epithelia, but Fc gamma R1 was not detected. We then demonstrated mRNA for Fc gamma R3 in the columnar endocervical epithelial cells and transformation zone by in situ hybridization, using a CD16-RNA probe. Fc gamma R3 and Fc gamma R2 gene transcripts were also found in fetal cervical tissue by applying the polymerase chain reaction to amplify portions of the Fc gamma R3 and Fc gamma R2 coding sequences in cDNA prepared from fetal RNA. HLA-DR was found in the endocervical cells, transformation zone and in Langerhans cells of all specimens. The presence of Langerhans cells, Fc gamma receptors and HLA class II antigen offers three potential mechanisms for cervico-vaginal HIV transmission: (i) direct HIV infection of Langerhans cells, (ii) binding of HIV antibody complexes

  7. Early Endosomes Are Required for Major Histocompatiblity Complex Class II Transport to Peptide-loading Compartments

    PubMed Central

    Brachet, Valérie; Péhau-Arnaudet, Gérard; Desaymard, Catherine; Raposo, Graça; Amigorena, Sebastian

    1999-01-01

    Antigen presentation to CD4+ T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19°C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor–containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most αβIi complexes accumulated in tubules and vesicles devoid of γ-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes. PMID:10473634

  8. LAMP-2C Inhibits MHC Class II Presentation of Cytoplasmic Antigens by Disrupting Chaperone-Mediated Autophagy.

    PubMed

    Pérez, Liliana; McLetchie, Shawna; Gardiner, Gail J; Deffit, Sarah N; Zhou, Delu; Blum, Janice S

    2016-03-15

    Cells use multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein-2 (LAMP-2) regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA), which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy and phagocytosis. Yet, far less is known about LAMP-2C function. Whereas LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, we used ectopic gene expression. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact macroautophagy. The gene expression of other LAMP2 isoforms and proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins that are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA that can selectively skew MHCII presentation of cytoplasmic Ags. PMID:26856698

  9. Development of a Minor Histocompatibility Antigen Vaccine Regimen in the Canine Model of Hematopoietic Cell Transplantation

    PubMed Central

    Rosinski, Steven L.; Stone, Brad; Graves, Scott S.; Fuller, Deborah H.; De Rosa, Stephen C.; Spies, Gregory A.; Mize, Gregory J.; Fuller, James T.; Storb, Rainer

    2015-01-01

    Background Minor histocompatibility (miHA) antigen vaccines have the potential to augment graft-versus-tumor effects without graft-versus-host disease (GVHD). We used mixed hematopoietic chimerism in the canine model of MHC-matched allogeneic hematopoietic cell transplantation (HCT) as a platform to develop a miHA vaccination regimen. Methods We engineered DNA plasmids and replication-deficient human adenovirus type 5 (rAd5) constructs encoding large sections of canine SMCY and the entire canine SRY gene. Results Priming with rAd5 constructs and boosting with ex vivo plasmid-transfected dendritic cells and cutaneous delivery of plasmids with a particle-mediated epidermal delivery device (PMED) in two female dogs induced antigen-specific T cell responses. Similar responses were observed following a prime-boost vaccine regimen in three female HCT donors. Subsequent donor lymphocyte infusion resulted in a significant change of chimerism in 1 of 3 male recipients without any signs of GVHD. The change in chimerism in the recipient occurred in association with the development of CD4+ and CD8+ T cell responses to the same peptide pools detected in the donor. Conclusions These studies describe the first in vivo response to miHA vaccination in a large, outbred animal model without using recipient cells to sensitize the donor. This model provides a platform for ongoing experiments designed to define optimal miHA targets, and develop protocols to directly vaccinate the recipient. PMID:25965411

  10. A cytotoxic rabbit T-cell line infected with a gamma-herpes virus which expresses CD8 and class II antigens.

    PubMed Central

    Wilkinson, J M; Galea-Lauri, J; Reid, H W

    1992-01-01

    A rabbit T-cell line, BJ-610, has been derived from a New Zealand White rabbit infected with Alcelaphine herpes virus-1, which has the characteristics of a lymphokine activated killer (LAK) cell. The surface phenotype of this cell line has been studied by flow cytometry, using a panel of monoclonal antibodies (mAb) to rabbit leucocyte surface markers, and compared with that of another rabbit T-cell line, RL-5, transformed with herpes virus ateles. The expression of a number of markers is common to the two lines; these include the rabbit analogues of CD11a/CD18, CD43, CD44 and CD45. Three antigens are expressed on BJ-610 but not RL-5. One of these is recognized by a mAb thought to recognize CD8, while a second is a class II R-DQ molecule. The third antigen is expressed on thymocytes, a subset of T cells, neutrophils and platelets but its molecular nature is unknown. These two cell lines should prove useful in preparing reagents which recognize subsets of rabbit T cells and for studying the mechanism of herpes virus-induced lymphoid cell deregulation. PMID:1328042

  11. Characterisation of Major Histocompatibility Complex Class I in the Australian Cane Toad, Rhinella marina

    PubMed Central

    Lillie, Mette; Shine, Richard; Belov, Katherine

    2014-01-01

    The Major Histocompatibility Complex (MHC) class I is a highly variable gene family that encodes cell-surface receptors vital for recognition of intracellular pathogens and initiation of immune responses. The MHC class I has yet to be characterised in bufonid toads (Order: Anura; Suborder: Neobatrachia; Family: Bufonidae), a large and diverse family of anurans. Here we describe the characterisation of a classical MHC class I gene in the Australian cane toad, Rhinella marina. From 25 individuals sampled from the Australian population, we found only 3 alleles at this classical class I locus. We also found large number of class I alpha 1 alleles, implying an expansion of class I loci in this species. The low classical class I genetic diversity is likely the result of repeated bottleneck events, which arose as a result of the cane toad's complex history of introductions as a biocontrol agent and its subsequent invasion across Australia. PMID:25093458

  12. Possible involvement of the OKT4 molecule in T cell recognition of class II HLA antigens. Evidence from studies of cytotoxic T lymphocytes specific for SB antigens.

    PubMed

    Biddison, W E; Rao, P E; Talle, M A; Goldstein, G; Shaw, S

    1982-10-01

    A recently described HLA gene, SB, which maps between GLO and HLA-DR, codes for Ia-like molecules that are similar to but distinct from HLA-DR molecules. Cytotoxic T lymphocytes (CTL) specific for SB1, SB2, SB3, and SB4 were compared with HLA-A2-specific CTL with respect to their surface expression of the T cell differentiation antigens OKT3, OKT4, and OKT8. All CTL activity was eliminated by treatment with OKT3 and C'. The SB-specific cytotoxicity was eliminated by OKT4 plus C' but not by OKT8 plus C'. In contrast, HLA-A2-specific killing was completely susceptible to treatment with OKT8 plus C' but not with OKT4 plus C'. Cytotoxicity was analyzed in the presence of OKT8 and a series of monoclonal antibodies (OKT4A, 4B, 4C, and 4D) that react with distinct epitopes on the OKT4 molecule. SB1-, SB3-, and SB4-specific CTL were partially inhibited by OKT4A and 4B (45-75%), whereas HLA-A2-specific CTL were partially inhibited by OKT8 (48-63%) but not by OKT4. SB2-specific CTL were not inhibited (less than 26%) by OKT8 or by any of the OKT4-related antibodies. These results suggest that the OKT4 marker may be expressed on most T cells that recognize allogeneic Ia or self Ia plus foreign antigens; OKT4+ cells do not appear to be functionally homogeneous in that they can act both as helper/inducer and cytotoxic cells. Models are proposed for the functional involvement of the OKT4 molecule in T cell-Ia antigen interactions. PMID:6984061

  13. Proteogenomic-based discovery of minor histocompatibility antigens with suitable features for immunotherapy of hematologic cancers.

    PubMed

    Granados, D P; Rodenbrock, A; Laverdure, J-P; Côté, C; Caron-Lizotte, O; Carli, C; Pearson, H; Janelle, V; Durette, C; Bonneil, E; Roy, D C; Delisle, J-S; Lemieux, S; Thibault, P; Perreault, C

    2016-06-01

    Pre-clinical studies have shown that injection of allogeneic T cells primed against a single minor histocompatibility antigen (MiHA) could cure hematologic cancers (HC) without causing any toxicity to the host. However, translation of this approach in humans has been hampered by the paucity of molecularly defined human MiHAs. Using a novel proteogenomic approach, we have analyzed cells from 13 volunteers and discovered a vast repertoire of MiHAs presented by the most common HLA haplotype in European Americans: HLA-A*02:01;B*44:03. Notably, out of >6000 MiHAs, we have identified a set of 39 MiHAs that share optimal features for immunotherapy of HCs. These 'optimal MiHAs' are coded by common alleles of genes that are preferentially expressed in hematopoietic cells. Bioinformatic modeling based on MiHA allelic frequencies showed that the 39 optimal MiHAs would enable MiHA-targeted immunotherapy of practically all HLA-A*02:01;B*44:03 patients. Further extension of this strategy to a few additional HLA haplotypes would allow treatment of almost all patients. PMID:26857467

  14. Human Herpesvirus 7 U21 Tetramerizes To Associate with Class I Major Histocompatibility Complex Molecules

    PubMed Central

    May, Nathan A.; Wang, Qiuhong; Balbo, Andrea; Konrad, Sheryl L.; Buchli, Rico; Hildebrand, William H.; Schuck, Peter

    2014-01-01

    ABSTRACT The U21 gene product from human herpesvirus 7 binds to and redirects class I major histocompatibility complex (MHC) molecules to a lysosomal compartment. The molecular mechanism by which U21 reroutes class I MHC molecules to lysosomes is not known. Here, we have reconstituted the interaction between purified soluble U21 and class I MHC molecules, suggesting that U21 does not require additional cellular proteins to interact with class I MHC molecules. Our results demonstrate that U21, itself predicted to contain an MHC class I-like protein fold, interacts tightly with class I MHC molecules as a tetramer, in a 4:2 stoichiometry. These observations have helped to elucidate a refined model describing the mechanism by which U21 escorts class I MHC molecules to the lysosomal compartment. IMPORTANCE In this report, we show that the human herpesvirus 7 (HHV-7) immunoevasin U21, itself a class I MHC-like protein, binds with high affinity to class I MHC molecules as a tetramer and escorts them to lysosomes, where they are degraded. While many class I MHC-like molecules have been described in detail, this unusual viral class I-like protein functions as a tetramer, associating with class I MHC molecules in a 4:2 ratio, illuminating a functional significance of homooligomerization of a class I MHC-like protein. PMID:24390327

  15. Susceptible and Protective Human Leukocyte Antigen Class II Alleles and Haplotypes in Bahraini Type 2 (Non-Insulin-Dependent) Diabetes Mellitus Patients

    PubMed Central

    Motala, Ayesha A.; Busson, Marc; Al-Harbi, Einas M.; Khuzam, Manal A. A.; Al-Omari, Emtiaz M. D.; Arekat, Mona R.; Almawi, Wassim Y.

    2005-01-01

    Whereas the genetic risk for type 1 diabetes is linked to human leukocyte antigen (HLA) class II genes, the HLA association in type 2 (non-insulin-dependent) diabetes is less clear. The association between HLA class II genotypes and type 2 diabetes was examined in adult Bahrainis, an Arab population with a high prevalence of type 2 diabetes. HLA-DRB1* and -DQB1* genotyping of 86 unrelated type 2 diabetes patients (age, 51.6 ± 8.2 years; mean duration of diabetes, 7.7 ± 7.1 years) who had a strong family history of diabetes (52 of 72 versus 0 of 89 for controls, P < 0.001) and 89 healthy subjects was done by PCR-sequence-specific priming. DRB1*040101 (0.1221 versus 0.0562, P = 0.019) and DRB1*070101 (0.2151 versus 0.0843, P < 0.001) were positively associated, while DRB1*110101 (0.0698 versus 0.1461, P = 0.014) and DRB1*160101 (0.0640 versus 0.1236, P = 0.038) were negatively associated with type 2 diabetes. DRB1*040101-DQB1*0302 (0.069 versus 0.0007; P = 0.004), DRB1*070101-DQB1*0201 (0.178 versus 0.0761, P = 0.007), DRB1*070101-DQB1*050101 (0.125 versus 0.0310, P = 0.002), and DRB1*150101-DQB1*060101 (0.0756 versus 0.0281, P = 0.008) were more prevalent among patients, while DRB1*160101-DQB1*050101 (0.0702 versus 0.0349, P = 0.05) was more prevalent among controls, conferring disease susceptibility or protection, respectively. In Bahrainis with type 2 diabetes, there is a significant association with select HLA class II genotypes, which were distinct from those in type 1 diabetes. PMID:15643010

  16. Pathways of Antigen Processing

    PubMed Central

    Blum, Janice S.; Wearsch, Pamela A.; Cresswell, Peter

    2014-01-01

    T cell recognition of antigen presenting cells depends on their expression of a spectrum of peptides bound to Major Histocompatibility Complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced. PMID:23298205

  17. Induction of antigen-presenting capacity in tumor cells upon infection with non-replicating recombinant vaccinia virus encoding murine MHC class II and costimulatory molecules.

    PubMed

    Marti, W R; Oertli, D; Meko, J B; Norton, J A; Tsung, K

    1997-01-15

    The possibility of inducing antigen-presenting capacity in cells normally lacking such capacity, currently represents a major goal in vaccine research. To address this issue we attempted to generate 'artificial' APC able to stimulate CD4+ T cell responses when tumor cells were infected with a single, recombinant, vaccinia virus (rVV) containing the two genes encoding murine MHC class II I-Ak and a third gene encoding the murine B7-1 (mB7-1) costimulatory molecule. To minimize the cytopathic effect and to improve safety, in view of possible in vivo applications, we made this rVV replication incompetent by Psoralen and long wave UV treatment. Tumor cells infected with rVV encoding I-Ak alone, pulsed with hen egg white lysozyme peptide (HEL46-61), induced IL-2 secretion by an antigen-specific T hybridoma. Tumor cells infected with the rVV encoding mB7-1 provided costimulation for activating resting CD4+ T cells in the presence of ConA. Tumor cells infected with the rVV encoding I-Ak and mB7-1, and pulsed with chicken ovotransferrin peptide (conalbumin133-145), induced a significantly higher response in a specific Th2 cell clone (D10.G4.1) as compared to cells infected with rVV encoding I-Ak molecules only. Thus, this replication incompetent rVV represents a safe, multiple gene, vector system able to confer in one single infection step effective APC capacity to non-professional APCs.

  18. The major histocompatibility complex of the rat,RT 1 : II. biochemical evidence for a complex genetic organization.

    PubMed

    Sporer, R; Black, G; Rigiero, C; Manson, L; Götze, D

    1978-12-01

    Recombinational analysis has shown that the rat MHC,RT1 is divided into two regions:RT1.A, which codes for class I (transplantation) antigens, andRT1.B, which controls the humoral immune response and proliferative response to allogeneic cells as well as the expression of class II (Ia) antigens. Serological and sequence studies suggest that there might be more than one antigen-coding locus within theRT1.A region. Results obtained by sequential immunoprecipitation reveal that both regions code for at least two gene products. By implication, theRT1 complex must therefore harbor at least four loci;RT1.A andD coding for class I glycoproteins (45,000 daltons); andRT1.B andE coding for class II (Ia) glycoproteins (35,000 and 28,000 daltons).

  19. Effect of human leukocyte antigen class II genes on Hashimoto's thyroiditis requiring replacement therapy with levothyroxine in the Japanese population.

    PubMed

    Katahira, Masahito; Hanakita, Mizuki; Ito, Tatsuo; Suzuki, Mari

    2013-05-01

    Contribution of the human leukocyte antigen (HLA) subtype to Hashimoto's thyroiditis (HT) that requires replacement therapy with levothyroxine remains unclear in the Japanese population. The frequencies of HLA DR-DQ haplotypes were compared between patients with HT requiring levothyroxine replacement therapy and the control individuals. We studied 82 patients with HT requiring levothyroxine replacement therapy. The frequencies of DRB1*08:03-DQB1*06:01 and DRB1*09:01-DQB1*03:03 haplotypes were significantly higher in HT patients, whereas those of DRB1*13:02-DQB1*06:04 and DRB1*15:01-DQB1*06:02 haplotypes were significantly lower in these patients than in the controls. Deduced from known linkage disequilibria, DRB1*13:02-DQB1*06:04 and DRB1*15:01-DQB1*06:02 haplotypes share the same DQA1*01:02 allele. Since DQB1*06:02 and DQB1*06:04 molecules differ in the beta chain by 7 residues, these DQB1 genes are very similar. The DQA1*01:02-DQB1*06 (DQB1*06:02 or DQB1*06:04) haplotype might play a pivotal role in the resistance to HT.

  20. Fusion of HCV Nonstructural Antigen to MHC Class II–associated Invariant Chain Enhances T-cell Responses Induced by Vectored Vaccines in Nonhuman Primates

    PubMed Central

    Capone, Stefania; Naddeo, Mariarosaria; D'Alise, Anna Morena; Abbate, Adele; Grazioli, Fabiana; Del Gaudio, Annunziata; Del Sorbo, Mariarosaria; Esposito, Maria Luisa; Ammendola, Virginia; Perretta, Gemma; Taglioni, Alessandra; Colloca, Stefano; Nicosia, Alfredo; Cortese, Riccardo; Folgori, Antonella

    2014-01-01

    Despite viral vectors being potent inducers of antigen-specific T cells, strategies to further improve their immunogenicity are actively pursued. Of the numerous approaches investigated, fusion of the encoded antigen to major histocompatibility complex class II–associated invariant chain (Ii) has been reported to enhance CD8+ T-cell responses. We have previously shown that adenovirus vaccine encoding nonstructural (NS) hepatitis C virus (HCV) proteins induces potent T-cell responses in humans. However, even higher T-cell responses might be required to achieve efficacy against different HCV genotypes or therapeutic effect in chronically infected HCV patients. In this study, we assessed fusion of the HCV NS antigen to murine and human Ii expressed by the chimpanzee adenovirus vector ChAd3 or recombinant modified vaccinia Ankara in mice and nonhuman primates (NHPs). A dramatic increase was observed in outbred mice in which vaccination with ChAd3 expressing the fusion antigen resulted in a 10-fold increase in interferon-γ+ CD8+ T cells. In NHPs, CD8+ T-cell responses were enhanced and accelerated with vectors encoding the Ii-fused antigen. These data show for the first time that the enhancement induced by vector vaccines encoding li-fused antigen was not species specific and can be translated from mice to NHPs, opening the way for testing in humans. PMID:24476798

  1. Dissociation of β2-microglobulin determines the surface quality control of major histocompatibility complex class I molecules.

    PubMed

    Montealegre, Sebastián; Venugopalan, Vaishnavi; Fritzsche, Susanne; Kulicke, Corinna; Hein, Zeynep; Springer, Sebastian

    2015-07-01

    Major histocompatibility complex class I proteins, which present antigenic peptides to cytotoxic T lymphocytes at the surface of all nucleated cells, are endocytosed and destroyed rapidly once their peptide ligand has dissociated. The molecular mechanism of this cellular quality control process, which prevents rebinding of exogenous peptides and thus erroneous immune responses, is unknown. To identify the nature of the decisive step in endocytic sorting of class I molecules and its location, we have followed the removal of optimally and suboptimally peptide-loaded murine H-2K(b) class I proteins from the cell surface. We find that the binding of their light chain, β2-microglobulin (β2m), protects them from endocytic destruction. Thus, the extended survival of suboptimally loaded K(b) molecules at 25°C is attributed to decreased dissociation of β2m. Because all forms of K(b) are constantly internalized but little β2m-receptive heavy chain is present at the cell surface, it is likely that β2m dissociation and recognition of the heavy chain for lysosomal degradation take place in an endocytic compartment.

  2. Association of swine leukocyte antigen class II haplotypes and immune-related traits in a swine line selected for resistance to mycoplasmal pneumonia.

    PubMed

    Ando, Asako; Shigenari, Atsuko; Kojima-Shibata, Chihiro; Nakajoh, Mitsuru; Suzuki, Keiichi; Kitagawa, Hitoshi; Shiina, Takashi; Inoko, Hidetoshi; Uenishi, Hirohide

    2016-10-01

    By selective breeding for five generations, a Landrace line has been recently established to improve resistance to mycoplasmal pneumonia of swine (MPS), daily gain (DG), back fat thickness (BF), and plasma cortisol concentrations (COR). To clarify the involvement of swine leukocyte antigen (SLA) polymorphisms in the selection process, we investigated possible associations of 11 SLA-class II haplotypes with selected traits or immune parameters. Pigs with the low-resolution SLA haplotype Lr-0.23 or Lr-0.13, which increased in frequency with the passage of generations, had less severe pathological lesions of MPS, increased leukocyte phagocytic activity, and higher white blood cell counts. In contrast, Lr-0.12 and Lr-0.2, which decreased in subsequent generations, were weakly associated with more severe pathological lesions of MPS. Therefore, in the studied Landrace line, the Lr-0.23 and Lr-0.13 haplotypes are potentially useful genetic markers for selecting and breeding animals with less severe pathological lesions of MPS. PMID:27638117

  3. Association of swine leukocyte antigen class II haplotypes and immune-related traits in a swine line selected for resistance to mycoplasmal pneumonia.

    PubMed

    Ando, Asako; Shigenari, Atsuko; Kojima-Shibata, Chihiro; Nakajoh, Mitsuru; Suzuki, Keiichi; Kitagawa, Hitoshi; Shiina, Takashi; Inoko, Hidetoshi; Uenishi, Hirohide

    2016-10-01

    By selective breeding for five generations, a Landrace line has been recently established to improve resistance to mycoplasmal pneumonia of swine (MPS), daily gain (DG), back fat thickness (BF), and plasma cortisol concentrations (COR). To clarify the involvement of swine leukocyte antigen (SLA) polymorphisms in the selection process, we investigated possible associations of 11 SLA-class II haplotypes with selected traits or immune parameters. Pigs with the low-resolution SLA haplotype Lr-0.23 or Lr-0.13, which increased in frequency with the passage of generations, had less severe pathological lesions of MPS, increased leukocyte phagocytic activity, and higher white blood cell counts. In contrast, Lr-0.12 and Lr-0.2, which decreased in subsequent generations, were weakly associated with more severe pathological lesions of MPS. Therefore, in the studied Landrace line, the Lr-0.23 and Lr-0.13 haplotypes are potentially useful genetic markers for selecting and breeding animals with less severe pathological lesions of MPS.

  4. Enhanced expression of class I major histocompatibility complex gene (Dk) products on immunogenic variants of a spontaneous murine carcinoma.

    PubMed

    Carlow, D A; Kerbel, R S; Feltis, J T; Elliott, B E

    1985-08-01

    Both immunogenic and nonimmunogenic variant clones were isolated from a recently obtained spontaneous murine adenocarcinoma after treatment (xenogenization) with either the mutagen ethyl methanesulfonate or the DNA hypomethylating agent, and "gene activator," 5-azacytidine. Clonal analysis of the untreated tumor population confirmed that immunogenic variants arose as a consequence of the xenogenization protocol. At a dose of 10(6) cells per mouse, nonimmunogenic variants, like the parental tumor line, grew progressively in normal syngeneic recipients. In contrast, immunogenic variants were rejected in normal syngeneic mice and grew progressively only in T-cell-deficient nude mice. Serologic analysis of the respective clonal variants revealed that immunogenic variants expressed substantially elevated (fourfold to tenfold) levels of class I H-2Dk antigen relative to parental or nonimmunogenic cell lines. Two variants exhibiting marginal immunogenicity expressed high and low levels of major histocompatibility complex (MHC) antigen, respectively suggesting that elevated MHC expression, although possibly a contributing factor, did not account for the immunogenic phenotype in all cases. Finally, the immunogenic phenotype of two variants decayed with time in culture. Clones in the process of reversion lost their elevated Dk gene expression and became progressively more tumorigenic in normal syngeneic mice. Together, these data are consistent with a hypothesis that elevated MHC expression can contribute to the immunogenic phenotype of originally low MHC-expressing tumors and that the reduced level of MHC observed in certain clinical cancers may have significant implications with regard to immunologic aspects of the tumor-host relationship.

  5. The Human Minor Histocompatibility Antigen1 Is a RhoGAP

    PubMed Central

    de Kreuk, Bart-Jan; Schaefer, Antje; Anthony, Eloise C.; Tol, Simon; Fernandez-Borja, Mar; Geerts, Dirk; Pool, Jos; Hambach, Lothar; Goulmy, Els; Hordijk, Peter L.

    2013-01-01

    The human minor Histocompatibility Antigen HMHA-1 is a major target of immune responses after allogeneic stem cell transplantation applied for the treatment of leukemia and solid tumors. The restriction of its expression to hematopoietic cells and many solid tumors raised questions regarding its cellular functions. Sequence analysis of the HMHA-1 encoding HMHA1 protein revealed the presence of a possible C-terminal RhoGTPase Activating Protein (GAP) domain and an N-terminal BAR domain. Rho-family GTPases, including Rac1, Cdc42, and RhoA are key regulators of the actin cytoskeleton and control cell spreading and migration. RhoGTPase activity is under tight control as aberrant signaling can lead to pathology, including inflammation and cancer. Whereas Guanine nucleotide Exchange Factors (GEFs) mediate the exchange of GDP for GTP resulting in RhoGTPase activation, GAPs catalyze the low intrinsic GTPase activity of active RhoGTPases, resulting in inactivation. Here we identify the HMHA1 protein as a novel RhoGAP. We show that HMHA1 constructs, lacking the N-terminal region, negatively regulate the actin cytoskeleton as well as cell spreading. Furthermore, we show that HMHA1 regulates RhoGTPase activity in vitro and in vivo. Finally, we demonstrate that the HMHA1 N-terminal BAR domain is auto-inhibitory as HMHA1 mutants lacking this region, but not full-length HMHA1, showed GAP activity towards RhoGTPases. In conclusion, this study shows that HMHA1 acts as a RhoGAP to regulate GTPase activity, cytoskeletal remodeling and cell spreading, which are crucial functions in normal hematopoietic and cancer cells. PMID:24086303

  6. Pathogenicity of Bovine Neonatal Pancytopenia-associated vaccine-induced alloantibodies correlates with Major Histocompatibility Complex class I expression

    PubMed Central

    Benedictus, Lindert; Luteijn, Rutger D.; Otten, Henny; Jan Lebbink, Robert; van Kooten, Peter J. S.; Wiertz, Emmanuel J. H. J.; Rutten, Victor P. M. G.; Koets, Ad P.

    2015-01-01

    Bovine Neonatal Pancytopenia (BNP), a fatal bleeding syndrome of neonatal calves, is caused by maternal alloantibodies absorbed from colostrum and is characterized by lymphocytopenia, thrombocytopenia and bone marrow hypoplasia. An inactivated viral vaccine is the likely source of alloantigens inducing BNP-associated alloantibodies in the dam. In this study the specificity of BNP alloantibodies was assessed and was linked to the pathology of BNP. We demonstrated that Major Histocompatibility Complex class I (MHC I) and Very Late Antigen-3, an integrin α3/β1 heterodimer, were the major targets of BNP alloantibodies. However, alloantibody binding to various bovine cell types correlated with MHC I expression, rather than integrin β1 or α3 expression. Likewise, alloantibody-dependent complement-mediated cell lysis correlated strongly with MHC I expression. Examination of several tissues of third trimester bovine foetuses revealed that cells, shown to be affected in calves with BNP, were characterized by high MHC class I expression and high levels of alloantibody binding. We conclude that in spite of the heterogeneous specificity of BNP associated maternal alloantibodies, MHC I-specific antibodies mediate the pathogenicity of BNP in the calf and that cells with high MHC I expression were preferentially affected in BNP. PMID:26235972

  7. Persistent measles virus infection enhances major histocompatibility complex class I expression and immunogenicity of murine neuroblastoma cells.

    PubMed

    Gopas, J; Itzhaky, D; Segev, Y; Salzberg, S; Trink, B; Isakov, N; Rager-Zisman, B

    1992-01-01

    The effect of persistent measles virus infection on the expression of major histocompatibility complex (MHC) class I antigens was studied. Mouse neuroblastoma cells C1300, clone NS20Y, were persistently infected with the Edmonston strain of measles virus. The persistently infected cell line, NS20Y/MS, expressed augmented levels of both H-2Kk and H-2Dd MHC class I glycoproteins. Activation of two interferon(IFN)-induced enzymes, known to be part of the IFN system: (2'-5')oligoadenylate synthetase and double-stranded-RNA-activated protein kinase, was detected. Measles-virus-infected cells elicited cytotoxic T lymphocytes that recognized and lysed virus-infected and uninfected neuroblastoma cells in an H-2-restricted fashion. Furthermore, immunization of mice with persistently infected cells conferred resistance to tumor growth after challenge with the highly malignant NS20Y cells. The rationale for using measles virus for immunotherapy is that most patients develop lifelong immunity after recovery or vaccination from this infection. Patients developing cancer are likely to have memory cells. A secondary response induced by measles-virus-infected cells may therefore induce an efficient immune response against non-infected tumour cells.

  8. Pathogenicity of Bovine Neonatal Pancytopenia-associated vaccine-induced alloantibodies correlates with Major Histocompatibility Complex class I expression.

    PubMed

    Benedictus, Lindert; Luteijn, Rutger D; Otten, Henny; Lebbink, Robert Jan; van Kooten, Peter J S; Wiertz, Emmanuel J H J; Rutten, Victor P M G; Koets, Ad P

    2015-01-01

    Bovine Neonatal Pancytopenia (BNP), a fatal bleeding syndrome of neonatal calves, is caused by maternal alloantibodies absorbed from colostrum and is characterized by lymphocytopenia, thrombocytopenia and bone marrow hypoplasia. An inactivated viral vaccine is the likely source of alloantigens inducing BNP-associated alloantibodies in the dam. In this study the specificity of BNP alloantibodies was assessed and was linked to the pathology of BNP. We demonstrated that Major Histocompatibility Complex class I (MHC I) and Very Late Antigen-3, an integrin α3/β1 heterodimer, were the major targets of BNP alloantibodies. However, alloantibody binding to various bovine cell types correlated with MHC I expression, rather than integrin β1 or α3 expression. Likewise, alloantibody-dependent complement-mediated cell lysis correlated strongly with MHC I expression. Examination of several tissues of third trimester bovine foetuses revealed that cells, shown to be affected in calves with BNP, were characterized by high MHC class I expression and high levels of alloantibody binding. We conclude that in spite of the heterogeneous specificity of BNP associated maternal alloantibodies, MHC I-specific antibodies mediate the pathogenicity of BNP in the calf and that cells with high MHC I expression were preferentially affected in BNP. PMID:26235972

  9. Glutamic Acid Decarboxylase 65 and Islet Cell Antigen 512/IA-2 Autoantibodies in Relation to Human Leukocyte Antigen Class II DR and DQ Alleles and Haplotypes in Type 1 Diabetes Mellitus ▿

    PubMed Central

    Stayoussef, Mouna; Benmansour, Jihen; Al-Jenaidi, Fayza A.; Said, Hichem B.; Rayana, Chiheb B.; Mahjoub, Touhami; Almawi, Wassim Y.

    2011-01-01

    The frequencies of autoantibodies against glutamic acid decarboxylase 65 (GAD65) and islet cell antigen (ICA) 512/IA-2 (512/IA-2) are functions of the specific human leukocyte antigen (HLA) in type 1 diabetes mellitus (T1D). We investigated the association of HLA class II (DR and DQ) alleles and haplotypes with the presence of GAD and IA-2 autoantibodies in T1D. Autoantibodies were tested in 88 Tunisian T1D patients and 112 age- and gender-matched normoglycemic control subjects by enzyme immunoassay. Among T1D patients, mean anti-GAD antibody titers were higher in the DRB1*030101 allele (P < 0.001), together with the DRB1*030101/DQB1*0201 (P < 0.001) and DRB1*040101/DQB1*0302 (P = 0.002) haplotypes, while lower anti-GAD titers were associated with the DRB1*070101 (P = 0.001) and DRB1*110101 (P < 0.001) alleles and DRB1*070101/DQB1*0201 (P = 0.001) and DRB1*110101/DQB1*030101 (P = 0.001) haplotypes. Mean anti-IA-2 antibody titers were higher in the DRB1*040101 allele (P = 0.007) and DRB1*040101/DQB1*0302 (P = 0.001) haplotypes but were lower in the DRB1*110101 allele (P = 0.010) and the DRB1*110101 (P < 0.001) and DRB1*110101/DQB1*030101 (P = 0.025) haplotypes. Multinomial regression analysis confirmed the positive association of DRB1*030101 and the negative association of DRB1*110101 and DQB1*030101, along with the DRB1*070101/DQB1*0201 and DRB1*110101/DQB1*030101 haplotypes, with anti-GAD levels. In contrast, only the DRB1*040101/DQB1*0302 haplotype was positively associated with altered anti-IA-2 titers. Increased GAD65 and IA-2 antibody positivity is differentially associated with select HLA class II alleles and haplotypes, confirming the heterogeneous nature of T1D. PMID:21490167

  10. Molecular identification, polymorphism, and expression analysis of major histocompatibility complex class IIA and B genes of turbot (Scophthalmus maximus).

    PubMed

    Zhang, Yu-Xi; Chen, Song-Lin

    2006-01-01

    Major histocompatibility complex (MHC) class II has a central role in the adaptive immune system by presenting foreign peptides to the T-cell receptor. The full lengths of MHC class II A and B cDNA were cloned from turbot by homology cloning and rapid amplification of cDNA ends polymerase chain reaction (RACE PCR), and genomic organization, molecular polymorphism, and expression of turbot class IIB gene were examined to study the function of class IIB gene in fish. The deduced amino acid sequence of turbot class II A (GenBank accession no.DQ001730) and turbot class IIB (GenBank accession no. DQ094170) had 69.8%, 67.6%, 65.5%, 59.2%, 54.5%, 52.8%, 46.2%, 46.6%, 28.3%, 28.5%, 22.2% identity and 71.5%, 70.7%, 67.1%, 68.4%, 46.7%, 53.5%, 46.7%, 50.0%, 25.2%, 29.2%, 27.6% identity with those of Japanese flounder, striped sea bass, red sea bream, cichlid, rainbow trout, Atlantic salmon, carp, zebrafish, nurse shark, mouse and human, respectively. Eleven class IIB alleles were identified from three turbot individuals. The amino acid sequence of turbot class IIB designated as Scma-DAB*0101 had 86.9%, 88.6%, 88.6%, 89.4%, 87.8%, 86.9%, 84.1%, 86.5%, 87.3%, 77.1%, and 86.9% identity with those of turbot class IIB 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 (Scma-DAB*0201- Scma-DAB*1201), respectively. Six different class IIB alleles observed in a single individual may infer the existence of three loci at least. Semiquantitative reverse transcriptase PCR (RT-PCR) demonstrated that turbot class IIA and B were ubiquitously expressed in normal tissues. Challenge of turbot with pathogenic bacteria, Vibrio anguillarum, resulted in a significant decrease in the expression of MHC class IIB mRNA from 24 h to 48 h after infection in liver and head kidney, and a significant decrease from 24 h to 72 h after infection in spleen, followed by an increase after 96 h, respectively.

  11. Cell-cell interaction in graft rejection responses: induction of anti- allo-class I H-2 tolerance is prevented by immune responses against allo-class II H-2 antigens coexpressed on tolerogen

    PubMed Central

    1992-01-01

    The intravenous sensitization of C57BL/6 (B6) mice with class I H-2- disparate B6-C-H-2bm1 (bm1) spleen cells results in almost complete abrogation of anti-bm1 CD8+ helper (proliferative and interleukin 2- producing) T cell (Th) activities. Although an appreciable portion of CD8+ cytotoxic T lymphocyte (CTL) precursors themselves remained after this regimen, such a residual CTL activity was eliminated after the engrafting of bm1 grafts, and these grafts exhibited prolonged survival. In contrast, the intravenous sensitization with (bm1 x B6-C-H- 2bm12 [bm12])F1 cells instead of bm1 cells failed to induce the prolongation of bm1 graft survival as well as bm12 and (bm1 x bm12)F1 graft survival. In the (bm1 x bm12)F1-presensitized B6 mice before as well as after the engrafting of bm1 grafts, anti-bm1 CTL responses that were comparable to or slightly stronger than those observed in unpresensitized mice were induced in the absence of anti-bm1 Th activities. bm1 graft survival was also prolonged by intravenous presensitization with a mixture of bm1 and bm12 cells but not with a mixture of bm1 and (bm1 x bm12)F1 cells. The capacity of CD4+ T cells to reject bm12 grafts was eliminated by intravenous presensitization with antigen-presenting cell (APC)-depleted bm12 spleen cells. However, intravenous presensitization with APC-depleted (bm1 x bm12)F1 cells failed to induce the prolongation of bm1 graft survival under conditions in which appreciably prolonged bm12 graft survival was induced. More surprisingly, bm1 graft survival was not prolonged even when the (bm1 x bm12)F1 cell presensitization was performed in CD4+ T cell-depleted B6 mice. This contrasted with the fact that conventional class I-disparate grafts capable of activating self Ia-restricted CD4+ as well as allo-class I-reactive CD8+ Th exhibited prolonged survival in CD4+ T cell-depleted, class I-disparate cell-presensitized mice. These results indicate that: (a) intravenous presensitization with class I- and II

  12. Molecular polymorphism and expression analysis of MHC class II B gene from red sea bream (Chrysophrys major).

    PubMed

    Chen, Song-Lin; Zhang, Yu-Xi; Xu, Mei-Yu; Ji, Xiang-Shan; Yu, Guo-Cai; Dong, Cheng-Fang

    2006-01-01

    MHC class II (major histocompatibility complex class II) plays an important role in the immune response of vertebrates. Its function is to present antigenic peptides to the T-cell receptor. In order to study the function and molecular polymorphism of class II B gene in fish, we have isolated cDNAs encoding class II B from spleen cDNA library of red sea bream (Chrysophrys major) by using EST sequencing, and examined genomic organization, molecular polymorphism and expression of red sea bream class II B gene. As in other vertebrates, five exons and four introns were identified in red sea bream class II B gene. Seven class II B alleles were identified from seven individuals of red sea bream. The deduced amino acid sequence of red sea bream MHC class II B 1(Chma-DAB*0101) had 87.1, 85.1, 87.1, 90.4, 87.1, 90.8% identity with those of red sea bream class II B 2, 3, 4, 5, 6, 7(Chma-DAB*0201-Chma-DAB*0701), respectively, and had 75.2, 74.5, 55.9, 55.1, 34.3 and 30.4% identity with those of striped sea bass, cichlid, rainbow trout, Atlantic salmon, mouse and human, respectively. Four different class II B alleles were observed in a single individual and two different 3' untranslated region (3' UTR) sequences from this individual may infer the existence of two loci at least. Semi-quantitative RT-PCR demonstrated that high expression was detected in liver, head kidney, kidney, intestine, gill, stomach, hear and spleen, low expression in muscle and blood. Challenge of red sea bream with the pathogenic bacteria, Vibrio anguillarum, resulted in a significant decrease in the expression of MHC class II B mRNA from 5 to 72 h after infection in liver, spleen, head kidney and intestine, followed by a recovery to normal level after 96 h.

  13. Restriction fragment length polymorphism within the class I gene loci of the equine major histocompatibility complex

    SciTech Connect

    Alexander, A.J.; Bailey, E.; Woodward, J.G.

    1986-03-05

    Fourteen standard bred horses were serotyped as homozygous for 1 of 6 Equine Leukocyte Antigen (ELA) specificities. DNA was purified from peripheral leukocytes and digested with Hind III or Pvu II. Southern blot hybridization analysis was carried out using a /sup 32/P-labeled mouse cDNA probe (PH2IIa) specific for class I MHC genes. Both enzymes generated blots that contained a large number of bands (23 to 30) per horse. Significant polymorphism existed among most fragment sizes, while a dozen highly conserved band sizes suggested the presence of Qa/tla - like genes. Only 2 animals (both W6's) showed identical band patterns. Polymorphism was greatest between horses of different serotypes and was significantly decreased within serotypes. Unique bands were present on both blots for both W1's and W6's and may account for the serologic specificity seen in ELA W1 and W6 horses. This study is consistent with the findings in other higher vertebrates and implies that the MHC of the horse includes a highly polymorphic class I multigene family.

  14. Cytotoxic minor histocompatibility antigen HA-1-specific CD8+ effector memory T cells: artificial APCs pave the way for clinical application by potent primary in vitro induction.

    PubMed

    Schilbach, Karin; Kerst, Gunter; Walter, Steffen; Eyrich, Matthias; Wernet, Dorothee; Handgretinger, Rupert; Xie, Weidong; Rammensee, Hans-Georg; Müller, Ingo; Bühring, Hans-Jörg; Niethammer, Dietrich

    2005-07-01

    Induction of cytotoxic T lymphocytes (CTLs) for treatment of relapsed leukemia after allogeneic stem-cell transplantation is hindered by the laborious and time-consuming procedure of generating dendritic cells for antigen presentation. Artificial antigen-presenting cells (aAPCs) offer the advantage of being readily available in sufficient numbers, thus allowing for a highly standardized in vitro induction of CTLs. We generated aAPCs coated with anti-CD28 antibody (Ab) and either high-density (HD) or low-density (LD) major histocompatibility complex (MHC) class I molecules loaded with HA-1(H), a nonapeptide derived from the hematopoiesis-restricted minor histocompatibility antigen HA-1. HD- and LD-aAPCs potently induced HA-1(H)-specific CD8+ CTLs from untouched CD8+ T cells of healthy donors. CTLs were subsequently purified by magnetic-activated cell sorting. HD- as well as LD-aAPC-induced CTLs exerted high HA-1H-specific cytotoxicity, resembled T(c)1 effector memory cells, survived a long time in vitro, and were expanded by a factor varying between 8.2 x 10(4) and 51 x 10(4). The T-cell receptor (TCR) repertoire of HA-1H tetramer-positive CTLs was oligoclonal with a prominent usage of Vbeta6. The TCR repertoire of tetramer-positive CTLs was distinct from and more restricted than that of tetramer-negative cells. These findings indicate that aAPCs are attractive tools for the ex vivo generation of HA-1H-specific CTLs suitable for immunotherapy of relapsed leukemia. PMID:15731181

  15. Closely Related Mycobacterial Strains Demonstrate Contrasting Levels of Efficacy as Antitumor Vaccines and Are Processed for Major Histocompatibility Complex Class I Presentation by Multiple Routes in Dendritic Cells

    PubMed Central

    Cheadle, Eleanor J.; O'Donnell, Dearbhaile; Selby, Peter J.; Jackson, Andrew M.

    2005-01-01

    Mycobacteria expressing recombinant antigens are already being developed as vaccines against both infections and tumors. Little is known about how dendritic cells might process such antigens. Two different mycobacterial species, the fast-growing Mycobacterium smegmatis and the slow-growing M. bovis M. bovis BCG, were engineered to express a model tumor antigen, the Kb-restricted dominant cytotoxic T-lymphocyte epitope OVA257-264. Recombinant M. bovis BCG but not recombinant M. smegmatis conferred protection to mice challenged with the B16-OVA tumor cell line. We went on to investigate whether the contrast in antitumor efficacy could be due to differences in how dendritic cells process antigen from the two mycobacterial strains for class I presentation. Both strains of mycobacteria caused phenotypic maturation of dendritic cells, but recombinant M. smegmatis infection led to a greater degree of dendritic cell maturation than recombinant M. bovis BCG infection. Antigen from recombinant M. smegmatis was processed and presented as OVA257-264 on Kb molecules by the dendritic cell line DC2.4 but not by bone marrow-derived dendritic cells (BMDC) or splenic dendritic cells. In contrast, antigen from recombinant M. bovis BCG was presented by all three dendritic cell types as long as the mycobacteria were viable. Such presentation was dependent on proteasome function and nascent major histocompatibility complex (MHC) class I molecules in DC2.4 cells but independent of the proteasome and transporter associated with antigen processings (TAP) in BMDC and splenic dendritic cells. These data demonstrate for the first time that antigen vectored by the slow-growing M. bovis BCG but not that vectored by fast-growing, readily destroyed M. smegmatis is processed and presented on MHC class I by in vitro-generated dendritic cells, which has implications for recombinant microbial vaccine development. PMID:15664917

  16. Evolutionary instability of the major histocompatibility complex class I loci in New World primates

    PubMed Central

    Cadavid, Luis F.; Shufflebotham, Clare; Ruiz, Francisco J.; Yeager, Meredith; Hughes, Austin L.; Watkins, David I.

    1997-01-01

    Homologues of the human major histocompatibility complex (MHC) HLA-A, -B, -E, -F, and -G loci are present in all the Catarrhini (Old World primates, apes, and humans), and some of their allelic lineages have survived several speciation events. Analysis of 26 MHC class I cDNAs from seven different genera of New World primates revealed that the Callitrichinae (tamarins and marmosets) are an exception to these rules of MHC stability. In gene trees of primate MHC class I genes, sequences from the Callitrichinae cluster in a genus-specific fashion, whereas in the other genera of New World primates, as in the Catarrhini, they cluster in a transgeneric way. The genus-specific clustering of the Callitrichinae cDNAs indicates that there is no orthology between MHC class I loci in genera of this phyletic group. Additionally, the Callitrichinae genera exhibit limited variability of their MHC class I genes, in contrast to the high variability displayed by all other primates. Each Callitrichinae genus, therefore, expresses its own set of MHC class I genes, suggesting that an unusually high rate of turnover of loci occurs in this subfamily. The limited variability of MHC class I genes in the Callitrichinae is likely the result of the recent origin of these loci. PMID:9405648

  17. Composition of MHC class II-enriched lipid microdomains is modified during maturation of primary dendritic cells.

    PubMed

    Setterblad, Niclas; Roucard, Corinne; Bocaccio, Claire; Abastado, Jean-Pierre; Charron, Dominique; Mooney, Nuala

    2003-07-01

    Dendritic cells (DCs) are the most potent antigen presenting cells. Major histocompatibility complex (MHC) class II molecule expression changes with maturation; immature DCs concentrate MHC class II molecules intracellularly, whereas maturation increases surface expression of MHC class II and costimulatory molecules to optimize antigen presentation. Signal transduction via MHC class II molecules localized in lipid microdomains has been described in B lymphocytes and in the THP-1 monocyte cell line. We have characterized MHC class II molecules throughout human DC maturation with particular attention to their localization in lipid-rich microdomains. Only immature DCs expressed empty MHC class II molecules, and maturation increased the level of peptide-bound heterodimers. Ligand binding to surface human leukocyte antigen (HLA)-DR induced rapid internalization in immature DCs. The proportion of cell-surface detergent-insoluble glycosphingolipid-enriched microdomain-clustered HLA-DR was higher in immature DCs despite the higher surface expression of HLA-DR in mature DCs. Constituents of HLA-DR containing microdomains included the src kinase Lyn and the cytoskeletal protein tubulin in immature DCs. Maturation modified the composition of the HLA-DR-containing microdomains to include protein kinase C (PKC)-delta, Lyn, and the cytoskeletal protein actin, accompanied by the loss of tubulin. Signaling via HLA-DR redistributed HLA-DR and -DM and PKC-delta as well as enriching the actin content of mature DC microdomains. The increased expression of HLA-DR as a result of DC maturation was therefore accompanied by modification of the spatial organization of HLA-DR. Such regulation could contribute to the distinct responses induced by ligand binding to MHC class II molecules in immature versus mature DCs.

  18. Vaccine-induced antibodies linked to bovine neonatal pancytopenia (BNP) recognize cattle major histocompatibility complex class I (MHC I).

    PubMed

    Deutskens, Fabian; Lamp, Benjamin; Riedel, Christiane M; Wentz, Eveline; Lochnit, Günter; Doll, Klaus; Thiel, Heinz-Jürgen; Rümenapf, Till

    2011-01-01

    A mysterious disease affecting calves, named bovine neonatal pancytopenia (BNP), emerged in 2007 in several European countries. Epidemiological studies revealed a connection between BNP and vaccination with an inactivated vaccine against bovine virus diarrhea (BVD). Alloantibodies reacting with blood leukocytes of calves were detected in serum and colostrum of dams, which have given birth to calves affected by BNP. To understand the linkage between vaccination and the development of alloantibodies, we determined the antigens reacting with these alloantibodies. Immunoprecipitation of surface proteins from bovine leukocytes and kidney cells using sera from dams with a confirmed case of BNP in their gestation history reacted with two dominant protein species of 44 and 12 kDa. These proteins were not detected by sera from dams, free of BVDV and not vaccinated against BVD, and from sera of animals vaccinated with a different inactivated BVD vaccine. The 44 kDa protein was identified by mass spectrometry analysis as MHC I, the other as β-2-microglobulin. The presence of major histocompatibility complex class I (MHC I) in the vaccine was confirmed by Western blot using a MHC I specific monoclonal antibody. A model of BNP pathogenesis is proposed. PMID:21878124

  19. Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs

    USGS Publications Warehouse

    Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.

    2010-01-01

    Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.

  20. Identification of 32 major histocompatibility complex class I alleles in African green monkeys.

    PubMed

    Cao, Y; Li, A; Li, L; Yan, X; Fa, Y; Zeng, L; Fan, J; Liu, B; Sun, Z

    2014-09-01

    The African green monkey may be an ideal replacement for the rhesus monkey in biomedical research, but relatively little is known about the genetic background of major histocompatibility complex (MHC) class I molecules. In analysis of 12 African green monkeys, 13 Chae-A and 19 Chae-B alleles were identified. Among these alleles, 12 Chae-A and 9 Chae-B were new lineages. The full amino acid length deduced for Chae-A genes is 365 amino acids, but for Chae-B genes, the lengths are 365, 362, 361, and 359 amino acids, respectively. There were 1-3 Chae-A alleles and 2-5 Chae-B alleles in each animal. In African green monkeys, rhesus monkeys, and cynomolgus monkeys, the MHC-A and MHC-B alleles display trans-species polymorphism, rather than being clustered in a species-specific fashion.

  1. The Hematopoietic System–specific Minor Histocompatibility Antigen HA-1 Shows Aberrant Expression in Epithelial Cancer Cells

    PubMed Central

    Klein, Christoph A.; Wilke, Martina; Pool, Jos; Vermeulen, Corine; Blokland, Els; Burghart, Elke; Krostina, Sabine; Wendler, Nicole; Passlick, Bernward; Riethmüeller, Gert; Goulmy, Els

    2002-01-01

    Allogeneic stem cell transplantation (SCT) can induce curative graft-versus-tumor reactions in patients with hematological malignancies and solid tumors. The graft-versus-tumor reaction after human histocompatibility leukocyte antigen (HLA)-identical SCT is mediated by alloimmune donor T cells specific for polymorphic minor histocompatibility antigens (mHags). Among these, the mHag HA-1 was found to be restricted to the hematopoietic system. Here, we report on the HA-1 ribonucleic acid expression by microdissected carcinoma tissues and by single disseminated tumor cells isolated from patients with various epithelial tumors. The HA-1 peptide is molecularly defined, as it forms an immunogenic peptide ligand with HLA-A2 on the cell membrane of carcinoma cell lines. HA-1–specific cytotoxic T cells lyse epithelial tumor cell lines in vitro, whereas normal epithelial cells are not recognized. Thus, HA-1–specific immunotherapy combined with HLA-identical allogeneic SCT may now be feasible for patients with HA-1+ carcinomas. PMID:12163564

  2. The major histocompatibility complex of primates.

    PubMed

    Heise, E R; Cook, D J; Schepart, B S; Manning, C H; McMahan, M R; Chedid, M; Keever, C A

    1987-08-31

    The major histocompatibility complex (MHC) encodes cell surface glycoproteins that function in self-nonself recognition and in allograft rejection. Among primates, the MHC has been well defined only in the human; in the chimpanzee and in two species of macaque monkeys the MHC is less well characterized. Serologic, biochemical and genetic evidence indicates that the basic organization of the MHC linkage group has been phylogenetically conserved. However, the number of genes and their linear relationship on the chromosomes differ between species. Class I MHC loci encode molecules that are the most polymorphic genes known. These molecules are ubiquitous in their tissue distribution and typically are recognized together with nominal antigens by cytotoxic lymphocytes. Class II MHC loci constitute a smaller family of serotypes serving as restricting elements for regulatory T lymphocytes. The distribution of class II antigens is limited mainly to cell types serving immune functions, and their expression is subject to up and down modulation. Class III loci code for components C2, C4 and Factor B (Bf) of the complement system. Interspecies differences in the extent of polymorphism occur, but the significance of this finding in relation to fitness and natural selection is unclear. Detailed information on the structure and regulation of MHC gene expression will be required to understand fully the biologic role of the MHC and the evolutionary relationships between species. Meanwhile, MHC testing has numerous applications to biomedical research, especially in preclinical tissue and organ transplantation studies, the study of disease mechanisms, parentage determination and breeding colony management. In this review, the current status of MHC definition in nonhuman primates will be summarized. Special emphasis is placed on the CyLA system of M. fascicularis which is a major focus in our laboratory. A highly polymorphic cynomolgus MHC has been partially characterized and consists

  3. Major histocompatibility class I molecules present Urtica dioica agglutinin, a superantigen of vegetal origin, to T lymphocytes.

    PubMed

    Rovira, P; Buckle, M; Abastado, J P; Peumans, W J; Truffa-Bachi, P

    1999-05-01

    The Urtica dioica agglutinin (UDA) shares with the superantigens the property of activating T cell subsets bearing particular Vbeta segments of the TCR. However, UDA is a lectin capable of binding to many glycoproteins on cell membranes. The implication of MHC versus other glycoproteins in UDA presentation was presently studied. Using mutant mice lacking MHC class I (MHC-I), MHC class II (MHC-II) or both MHC antigens, we provided evidence that MHC-I and MHC-II molecules serve as UDA receptors. Presentation by either one of these molecules ensured similar T cell responses and co-stimulatory signals were mandatory for optimal T cell activation and proliferation both in MHC-I and MHC-II contexts. Remarkably, in the absence of MHC molecules, UDA could not be efficiently presented to T cells by other glycosylated proteins. Surface plasmon resonance studies were used to confirm the binding of UDA to MHC-I molecules using a fusion protein consisting of MHC-I domains and beta2-microglobulin. The results indicated that the interaction between UDA and MHC-I molecules implicated lectin-binding site(s) of UDA. Taken together, our data demonstrate that, in addition to MHC-II antigens, MHC-I molecules serve as an alternative ligand for UDA.

  4. Adenosine signaling inhibits CIITA-mediated MHC class II transactivation in lung fibroblast cells.

    PubMed

    Fang, Mingming; Xia, Jun; Wu, Xiaoyan; Kong, Hui; Wang, Hong; Xie, Weiping; Xu, Yong

    2013-08-01

    Efficient antigen presentation by major histocompatibility complex (MHC) molecules represents a critical process in adaptive immunity. Class II transactivator (CIITA) is considered the master regulator of MHC class II (MHC II) transcription. Previously, we have shown that CIITA expression is upregulated in smooth muscle cells deficient in A2b adenosine receptor. Here, we report that treatment with the adenosine receptor agonist adenosine-5'N-ethylcarboxamide (NECA) attenuated MHC II transcription in lung fibro-blast cells as a result of CIITA repression. Further analysis revealed that NECA preferentially abrogated CIITA transcription through promoters III and IV. Blockade with a selective A2b receptor antagonist MRS-1754 restored CIITA-dependent MHC II transactivation. Forskolin, an adenylyl cyclase activator, achieved the same effect as NECA. A2b signaling repressed CIITA transcription by altering histone modifications and recruitment of key factors on the CIITA promoters in a STAT1-dependent manner. MRS-1754 blocked the antagonism of transforming growth factor beta (TGF-β) in CIITA induction by interferon gamma (IFN-γ), alluding to a potential dialogue between TGF-β and adenosine signaling pathways. Finally, A2b signaling attenuated STAT1 phosphorylation and stimulated TGF-β synthesis. In conclusion, we have identified an adenosine-A2b receptor-adenylyl cyclase axis that influences CIITA-mediated MHC II transactivation in lung fibroblast cells and as such have provided invaluable insights into the development of novel immune-modulatory strategies.

  5. Transfer of cloned human class I major histocompatibility complex genes into HLA mutant human lymphoblastoid cells.

    PubMed Central

    Shimizu, Y; Koller, B; Geraghty, D; Orr, H; Shaw, S; Kavathas, P; DeMars, R

    1986-01-01

    Three new kinds of recombinant DNA constructs were used to transfer cloned human class I HLA genes (A2 and B8) into unique HLA mutant lymphoblastoid cells: pHeBo(x): a class I gene, "x," in plasmid vector pHeBo, which contains a hygromycin resistance gene and Epstein-Barr virus oriP element that sustains extrachromosomal replication; pHPT(x): gene x in a vector with a hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene; pHPTe(x): gene x in a vector with the HPRT gene and oriP element. Cell surface class I antigen expression was strong in transferents made with class I-deficient lymphoblastoid cell line mutants .144 (A-null), .53 (B-null), and .184 (A-null, B-null). Transferents expressing HLA-A2 were recognized specifically by HLA-A2-specific cytotoxic T lymphocytes. When introduced on either of the vectors with the Epstein-Barr virus oriP element, the class I gene replicated extrachromosomally and was lost at rates of 0.2 to 0.3 per cell division. When introduced with vector pHPT (lacking Epstein-Barr virus oriP), the B8 gene was inserted at different chromosomal locations. Introduction of the HLA-B8 gene failed to restore antigen expression by HLA-B-null mutant .174, providing evidence that, unlike mutants exemplified by .53, .144, and .184, some HLA antigen loss mutants are deficient in a trans-acting function needed for class I antigen expression. Of more general interest, the results obtained with HLA class I genes in vectors that replicate extrachromosomally suggest ways of relating genic expression to chromatin structure and function and of attempting to clone functional human centromeres. Images PMID:3023867

  6. Transfer of cloned human class I major histocompatibility complex genes into HLA mutant human lymphoblastoid cells.

    PubMed

    Shimizu, Y; Koller, B; Geraghty, D; Orr, H; Shaw, S; Kavathas, P; DeMars, R

    1986-04-01

    Three new kinds of recombinant DNA constructs were used to transfer cloned human class I HLA genes (A2 and B8) into unique HLA mutant lymphoblastoid cells: pHeBo(x): a class I gene, "x," in plasmid vector pHeBo, which contains a hygromycin resistance gene and Epstein-Barr virus oriP element that sustains extrachromosomal replication; pHPT(x): gene x in a vector with a hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene; pHPTe(x): gene x in a vector with the HPRT gene and oriP element. Cell surface class I antigen expression was strong in transferents made with class I-deficient lymphoblastoid cell line mutants .144 (A-null), .53 (B-null), and .184 (A-null, B-null). Transferents expressing HLA-A2 were recognized specifically by HLA-A2-specific cytotoxic T lymphocytes. When introduced on either of the vectors with the Epstein-Barr virus oriP element, the class I gene replicated extrachromosomally and was lost at rates of 0.2 to 0.3 per cell division. When introduced with vector pHPT (lacking Epstein-Barr virus oriP), the B8 gene was inserted at different chromosomal locations. Introduction of the HLA-B8 gene failed to restore antigen expression by HLA-B-null mutant .174, providing evidence that, unlike mutants exemplified by .53, .144, and .184, some HLA antigen loss mutants are deficient in a trans-acting function needed for class I antigen expression. Of more general interest, the results obtained with HLA class I genes in vectors that replicate extrachromosomally suggest ways of relating genic expression to chromatin structure and function and of attempting to clone functional human centromeres. PMID:3023867

  7. The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules.

    PubMed Central

    Vassilakos, A; Cohen-Doyle, M F; Peterson, P A; Jackson, M R; Williams, D B

    1996-01-01

    Calnexin, a membrane protein of the endoplasmic reticulum, is generally thought to function as a molecular chaperone, based on indirect or correlative evidence. To examine calnexin's functions more directly, we reconstituted the assembly of class I histocompatibility molecules in the absence or presence of calnexin in Drosophila melanogaster cells. Calnexin enhanced the assembly of class I heavy chains with beta 2-microglobulin as much as 5-fold. The improved assembly appeared largely due to more efficient folding of heavy chains, as evidenced by increased reactivity with a conformation-sensitive monoclonal antibody and by a reduction in the level of aggregates. Similar findings were obtained in mouse or human cells when the interaction of calnexin with class I heavy chains was prevented by treatment with the oligosaccharide processing inhibitor castanospermine. The ability of calnexin to facilitate castanospermine. The ability of calnexin to facilitate heavy chain folding and to prevent the formation of aggregates provides compelling evidence that calnexin functions as a bona fide molecular chaperone. Images PMID:8612572

  8. Comparison of altered expression of histocompatibility antigens with altered immune function in murine spleen cells treated with ultraviolet radiation and/or TPA

    SciTech Connect

    Pretell, J.O.; Cone, R.E.

    1985-02-01

    Previous studies in our laboratory demonstrated that several treatments that inhibited the ability of cells to stimulate the mixed lymphocyte reaction (MLR) also blocked the shedding of histocompatibility antigens and Ia antigens from murine spleen cells. In the present studies, one of these treatments, ultraviolet radiation (UV), was shown to cause an initial loss in the density of H-2K, IA, and IE antigens prior to the block in shedding observed after culture of these cells. Further analysis revealed that the UV-induced loss of antigens could be prevented by the presence of colchicine during irradiation. Biosynthetic analyses revealed the IA antigen synthesis was also inhibited in the UV-irradiated cells. Examination of the effects of a second agent, 12-0-tetradecanoylphorbol-13-acetate (TPA) on the turnover of histocompatibility antigens revealed that the biosynthesis and shedding of these antigens were accelerated by this agent. However, addition of TPA to UV-irradiated cells did not result in a reversal of the UV-induced block in biosynthesis of IA antigens. Results of immune function assays correlated with the biochemical studies: UV-irradiation inhibited the generation of the MLR, but TPA enhanced this reaction, and addition of TPA to mixed lymphocyte cultures with UV-irradiated stimulators did not reverse the UV-induced inhibition. These results suggest that, although the turnover of histocompatibility antigens may be affected by TPA and UV in an antagonistic fashion, additional factors other than the expression of histocompatibility antigens are operating in the inhibition of stimulation of an MLR by UV radiation or its enhancement by TPA.

  9. Disparate MHC class II haplotypes in myelin oligodendrocyte glycoprotein- and myelin basic protein-induced experimental autoimmune encephalomyelitis.

    PubMed

    Muhallab, Saad; Dahlman, Ingrid; Wallström, Erik

    2005-04-01

    The major histocompatibility complex (MHC) regulates multiple sclerosis (MS) and its model experimental autoimmune encephalomyelitis (EAE). We created four new intra-MHC recombinant rat strains, between the MHC haplotypes RT1(n) (BN) and RT1(l) (LEW) on the LEW background, to define disease regulation and localization within the MHC. Immunization with recombinant myelin oligodendrocyte glycoprotein (a.a.1-125; MOG)/IFA induced EAE in strains expressing the MHC class II allele RT1.B(n), whereas strains expressing the RT1.B(l) were resistant. In myelin basic protein peptide (MBP(GP)63-88)/CFA-induced EAE, RT1.B(l) expressing strains were susceptible whereas strains expressing the RT1.B(n) were resistant. High levels of antigen-specific IFN-gamma secreting lymphoid cells and antigen-specific serum IgG antibodies were only recorded in rats with an MHC class II allele that permitted MOG- or MBP-EAE, respectively. Genetically, we localized the MHC regulation of the investigated EAE models to the central part of the MHC, containing the MHC class II (RT1.B/D) and the centromeric parts of the MHC class III. No influences were evident from the classical MHC class I (RT1.A), the telomeric parts of the MHC class III or the non-classical MHC class I (RT1.C/E/M) in contrast to previous reports. The MHC class II haplotype-specific regulation of EAE induced with two different CNS antigens demonstrates a strikingly specific MHC-association even within the same target organ. PMID:15748954

  10. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers

    PubMed Central

    Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072

  11. Major histocompatibility complex class I genes of the coelacanth Latimeria chalumnae.

    PubMed

    Betz, U A; Mayer, W E; Klein, J

    1994-11-01

    The coelacanth fish Latimeria chalumnae is the sole surviving species of a phylogenetic lineage that was founded more than 400 million years ago and that has changed morphologically very little since that time. Little is known about the molecular evolution of this "living fossil," considered by some taxonomists to be the closest living relative of tetrapods. Here we describe the isolation and characterization of L. chalumnae major histocompatibility complex (MHC) class I genes. The exon-intron organization of these genes is the same as that of their mammalian counterparts. The genes fall into four families, which we designate Lach-UA through Lach-UD. There are multiple loci in all of the families. Genes of the first two families are transcribed. The Lach-UA family bears the characteristics of functional, polymorphic class I genes; the other three families may be represented by nonclassical genes. All the Lach loci arose by duplication from an ancestral gene after the foundation of the coelacanth lineage. Intergenic variation is highest at positions corresponding to the mammalian peptide-binding region. The closest relatives of the Lach genes among the MHC genes sequenced thus far are those of the amphibian Xenopus.

  12. Major histocompatibility complex class I genes in murine fibrosarcoma IC9 are down regulated at the level of the chromatin structure.

    PubMed Central

    Maschek, U; Pülm, W; Segal, S; Hämmerling, G J

    1989-01-01

    The fibrosarcoma IC9 is deficient in the expression of the major histocompatibility complex class I genes Kb, Kk, and Dk and expresses only the Db molecule. Because class I deficiency may enable tumor cells to escape the immune response by cytotoxic T lymphocytes, we investigated why the class I genes are not expressed. Expression of the silent class I genes could not be induced, but all known DNA-binding factors specific for class I genes could be detected in nuclear extracts of IC9 cells. After cloning of the silent Kb gene from the IC9 cells and subsequent transfection of this cloned Kb gene into LTK- and IC9 cells, normal Kb antigens were expressed on the cell surface of both cell lines. Digestion of the chromatin of IC9 cells with micrococcal nuclease and DNase I showed a decreased nuclease sensitivity of the silent class I genes in comparison with active genes and the absence of DNase I hypersensitive sites in the promoter region of the silent Dk gene. These findings demonstrate that class I expression is turned off by a cis-acting regulatory mechanism at the level of the chromatin structure. Images PMID:2506438

  13. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway.

    PubMed

    Apostolopoulos, V; Pietersz, G A; Gordon, S; Martinez-Pomares, L; McKenzie, I F

    2000-06-01

    Antigens such as MUC1 coupled to oxidized mannan lead to rapid and efficient MHC class I presentation to CD8+ cells and a preferential T1 response; after reduction there is class II presentation and a T2 immune response. We now show that the selective advantage of the oxidized mannan-MUC1 is due to the presence of aldehydes and not Schiff bases, and that oxidized mannan-MUC1 binds to the mannose and not scavenger receptors and is internalized and presented by MHC class I molecules 1,000 times more efficiently than when reduced. After internalization there is rapid access to the class I pathway via endosomes but not lysosomes, proteasomal processing and transport to the endoplasmic reticulum, Golgi apparatus and cell surface. Aldehydes cause rapid entry into the class I pathway, and can therefore direct the subsequent immune response.

  14. Cross-linking staphylococcal enterotoxin A bound to major histocompatibility complex class I is required for TNF-alpha secretion

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Chapes, S. K.

    1999-01-01

    The mechanism of how superantigens function to activate cells has been linked to their ability to bind and cross-link the major histocompatibility complex class II (MHCII) molecule. Cells that lack the MHCII molecule also respond to superantigens, however, with much less efficiency. Therefore, the purpose of this study was to confirm that staphylococcal enterotoxin A (SEA) could bind the MHCI molecule and to test the hypothesis that cross-linking SEA bound to MHCII-deficient macrophages would induce a more robust cytokine response than without cross-linking. We used a capture enzyme-linked immunosorbent assay and an immunprecipitation assay to directly demonstrate that MHCI molecules bind SEA. Directly cross-linking MHCI using monoclonal antibodies or cross-linking bound SEA with an anti-SEA antibody or biotinylated SEA with avidin increased TNF-alpha and IL-6 secretion by MHCII(-/-) macrophages. The induction of a vigorous macrophage cytokine response by SEA/anti-SEA cross-linking of MHCI offers a mechanism to explain how MHCI could play an important role in superantigen-mediated pathogenesis. Copyright 1999 Academic Press.

  15. [Modified Class II tunnel preparation].

    PubMed

    Rimondini, L; Baroni, C

    1991-05-15

    Tunnel preparations for restoration of Class II carious lesions in primary molars preserve the marginal ridge and minimize sacrifice of healthy tooth substructure. Materials with improved bonding to tooth structure and increase potential for fluoride release allow Class II restorations without "extension for prevention". PMID:1864420

  16. Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells.

    PubMed

    Herouet, C; Cottin, M; LeClaire, J; Enk, A; Rousset, F

    2000-01-01

    Contact sensitivity is a T-cell-mediated immune disease that can occur when low-molecular-weight chemicals penetrate the skin. In vivo topical application of chemical sensitizers results in morphological modification of Langerhans cells (LC). Moreover, within 18 h, LC increase their major histocompatibility complex (MHC) class II antigens expression and migrate to lymph nodes where they present the sensitizer to T lymphocytes. We wanted to determine if such an effect could also be observed in vitro. However, because of the high genetic diversity encountered in humans, assays were performed with dendritic cells (DC) obtained from a Balb/c mouse strain. The capacity of a strong sensitizer, DNBS (2,4-dinitrobenzene sulfonic acid), to modulate the phenotype of bone marrow-derived DC in vitro, was investigated. A specific and marked increase of MHC class II molecules expression was observed within 18 h. To eliminate the use of animals in sensitization studies, the XS52 DC line was tested at an immature stage. A 30-min contact with the strong sensitizers DNBS and oxazolone, or the moderate mercaptobenzothiazole, resulted in upregulation of MHC class II molecules expression, analyzed after 18-h incubation. This effect was not observed with irritants (dimethyl sulfoxide and sodium lauryl sulfate) nor with a neutral molecule (sodium chloride). These data suggested the possibility of developing an in vitro model for the identification of the sensitizing potential of chemicals, using a constant and non animal-consuming material.

  17. Murine neuroblastoma vaccines produced by retroviral transfer of MHC class II genes.

    PubMed

    Hock, R A; Reynolds, B D; Tucker-McClung, C L; Heuer, J G

    1996-01-01

    Malignant tumors express tumor-related antigens, but effective antitumor immunity does not occur in the primary host. One hypothesis is that there is insufficient stimulation of T-cell responses due to ineffective antigen presentation. An approach to overcome these deficiencies is to modify tumor cells to express major histocompatibility complex (MHC) class II genes and thus facilitate the presentation of antigens directly by tumor cells. Our experiments with a murine neuroblastoma cell line (neuro-2a) transduced with DR (xenogeneic), 1-Ab (allogeneic), or 1-Ak (syngeneic) MHC class II genes support this notion. The relative potencies of the modified neuro-2a to induce immunity to unmodified neuro-2a were neuro-2a/DR > neuro-2a/1-Ab > neuro-2a/1-Ak. Modified neuro-2a also could stimulate naive splenocyte proliferation in vitro. The relative magnitude of the proliferative responses seen after stimulation with modified tumor cells was neuro-2a/DR > neuro-2a/1-Ab > neuro-2a/1-Ak > unmodified neuro-2a. Hence, the tumor cell-induced splenocyte proliferative responses observed in vitro correlate with the effectiveness of the tumor cell vaccines to induce antitumor immunity in vivo. These data show that the expression of exogenous MHC class II on tumor cells is a potent stimulus for specific antitumor immunity. Because of the correlation of the in vivo and in vitro immune responses to modified tumor cells, the tumor-induced lymphocyte proliferation assay may be useful in evaluating tumor cell vaccines produced by additional genetic modifications of tumor cells.

  18. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation

    PubMed Central

    Bataille, Arnaud; Cashins, Scott D.; Grogan, Laura; Skerratt, Lee F.; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A.; Macris, Amy; Harlow, Peter S.; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-01-01

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal. PMID:25808889

  19. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation.

    PubMed

    Bataille, Arnaud; Cashins, Scott D; Grogan, Laura; Skerratt, Lee F; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A; Macris, Amy; Harlow, Peter S; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-04-22

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal. PMID:25808889

  20. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation.

    PubMed

    Bataille, Arnaud; Cashins, Scott D; Grogan, Laura; Skerratt, Lee F; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A; Macris, Amy; Harlow, Peter S; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-04-22

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.

  1. High-throughput engineering and analysis of peptide binding to class II MHC

    PubMed Central

    Jiang, Wei; Boder, Eric T.

    2010-01-01

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity. PMID:20622157

  2. Polarisation of Major Histocompatibility Complex II Host Genotype with Pathogenesis of European Brown Hare Syndrome Virus

    PubMed Central

    Iacovakis, Christos; Mamuris, Zissis; Moutou, Katerina A.; Touloudi, Antonia; Hammer, Anne Sofie; Valiakos, George; Giannoulis, Themis; Stamatis, Costas; Spyrou, Vassiliki; Athanasiou, Labrini V.; Kantere, Maria; Asferg, Tommy; Giannakopoulos, Alexios; Salomonsen, Charlotte M.; Bogdanos, Dimitrios; Birtsas, Periklis; Petrovska, Liljana; Hannant, Duncan; Billinis, Charalambos

    2013-01-01

    and MHC class II genotype within the European brown hare in Denmark. PMID:24069299

  3. Diacylglycerol kinase α regulates tubular recycling endosome biogenesis and major histocompatibility complex class I recycling.

    PubMed

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2014-11-14

    Major histocompatibility complex class I (MHC I) presents intracellular-derived peptides to cytotoxic T lymphocytes and its subcellular itinerary is important in regulating the immune response. While a number of diacylglycerol kinase isoforms have been implicated in clathrin-dependent internalization, MHC I lacks the typical motifs known to mediate clathrin-dependent endocytosis. Here we show that depletion of diacylglycerol kinase α (DGKα), a kinase devoid of a clathrin-dependent adaptor protein complex 2 binding site, caused a delay in MHC I recycling to the plasma membrane without affecting the rate of MHC I internalization. We demonstrate that DGKα knock-down causes accumulation of intracellular and surface MHC I, resulting from decreased degradation. Furthermore, we provide evidence that DGKα is required for the generation of phosphatidic acid required for tubular recycling endosome (TRE) biogenesis. Moreover, we show that DGKα forms a complex with the TRE hub protein, MICAL-L1. Given that MICAL-L1 and the F-BAR-containing membrane-tubulating protein Syndapin2 associate selectively with phosphatidic acid, we propose a positive feedback loop in which DGKα generates phosphatidic acid to drive its own recruitment to TRE via its interaction with MICAL-L1. Our data support a novel role for the involvement of DGKα in TRE biogenesis and MHC I recycling.

  4. Introduction of protein or DNA delivered via recombinant Salmonella typhimurium into the major histocompatibility complex class I presentation pathway of macrophages.

    PubMed

    Catic, A; Dietrich, G; Gentschev, I; Goebel, W; Kaufmann, S H; Hess, J

    1999-02-01

    Recombinant (r) Salmonella typhimurium aroA strains which display the hen egg ovalbumin OVA(257-264) peptide SIINFEKL in secreted form were constructed. In addition, attenuated rS. typhimurium pcDNA-OVA constructs harbouring a eukaryotic expression plasmid encoding complete OVA were used to introduce the immunodominant OVA(257-264) epitope into the major histocompatibility complex (MHC) class I presentation pathway. Both modes of antigen delivery (DNA and protein) by Salmonella vaccine carriers stimulated OVA(257-264)-specific CD8 T-cell hybridomas. An in vitro infection system was established that allowed both rSalmonella carrier devices to facilitate MHC class I delivery of OVA(257-264) by coexpression of listeriolysin (Hly) or by coinfection with rS. typhimurium Hlys (Hess J., Gentschev I., Miko D., Welzel M., Ladel C., Goebel W., Kaufmann S.H.E., Proc. Natl. Acad. Sci. USA 93 (1996) 1458-1463). Coexpression of Hly and coinfection with rS. typhimurium Hlys slightly improved MHC class I processing of OVA. Our data provide further evidence for the feasibility of attenuated, Hly-expressing rS. typhimurium carriers secreting heterologous antigens or harbouring heterologous DNA as effective vaccines for stimulating CD8 T cells in addition to CD4 T cells. PMID:10594975

  5. Introduction of protein or DNA delivered via recombinant Salmonella typhimurium into the major histocompatibility complex class I presentation pathway of macrophages.

    PubMed

    Catic, A; Dietrich, G; Gentschev, I; Goebel, W; Kaufmann, S H; Hess, J

    1999-02-01

    Recombinant (r) Salmonella typhimurium aroA strains which display the hen egg ovalbumin OVA(257-264) peptide SIINFEKL in secreted form were constructed. In addition, attenuated rS. typhimurium pcDNA-OVA constructs harbouring a eukaryotic expression plasmid encoding complete OVA were used to introduce the immunodominant OVA(257-264) epitope into the major histocompatibility complex (MHC) class I presentation pathway. Both modes of antigen delivery (DNA and protein) by Salmonella vaccine carriers stimulated OVA(257-264)-specific CD8 T-cell hybridomas. An in vitro infection system was established that allowed both rSalmonella carrier devices to facilitate MHC class I delivery of OVA(257-264) by coexpression of listeriolysin (Hly) or by coinfection with rS. typhimurium Hlys (Hess J., Gentschev I., Miko D., Welzel M., Ladel C., Goebel W., Kaufmann S.H.E., Proc. Natl. Acad. Sci. USA 93 (1996) 1458-1463). Coexpression of Hly and coinfection with rS. typhimurium Hlys slightly improved MHC class I processing of OVA. Our data provide further evidence for the feasibility of attenuated, Hly-expressing rS. typhimurium carriers secreting heterologous antigens or harbouring heterologous DNA as effective vaccines for stimulating CD8 T cells in addition to CD4 T cells.

  6. Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions.

    PubMed

    Godkin, A J; Smith, K J; Willis, A; Tejada-Simon, M V; Zhang, J; Elliott, T; Hill, A V

    2001-06-01

    MHC class II heterodimers bind peptides 12-20 aa in length. The peptide flanking residues (PFRs) of these ligands extend from a central binding core consisting of nine amino acids. Increasing evidence suggests that the PFRs can alter the immunogenicity of T cell epitopes. We have previously noted that eluted peptide pool sequence data derived from an MHC class II Ag reflect patterns of enrichment not only in the core binding region but also in the PFRS: We sought to distinguish whether these enrichments reflect cellular processes or direct MHC-peptide interactions. Using the multiple sclerosis-associated allele HLA-DR2, pool sequence data from naturally processed ligands were compared with the patterns of enrichment obtained by binding semicombinatorial peptide libraries to empty HLA-DR2 molecules. Naturally processed ligands revealed patterns of enrichment reflecting both the binding motif of HLA-DR2 (position (P)1, aliphatic; P4, bulky hydrophobic; and P6, polar) as well as the nonbound flanking regions, including acidic residues at the N terminus and basic residues at the C terminus. These PFR enrichments were independent of MHC-peptide interactions. Further studies revealed similar patterns in nine other HLA alleles, with the C-terminal basic residues being as highly conserved as the previously described N-terminal prolines of MHC class II ligands. There is evidence that addition of C-terminal basic PFRs to known peptide epitopes is able to enhance both processing as well as T cell activation. Recognition of these allele-transcending patterns in the PFRs may prove useful in epitope identification and vaccine design.

  7. High-Throughput Identification of Potential Minor Histocompatibility Antigens by MHC Tetramer-Based Screening: Feasibility and Limitations

    PubMed Central

    Hombrink, Pleun; Hadrup, Sine R.; Bakker, Arne; Kester, Michel G. D.; Falkenburg, J. H. Frederik; von dem Borne, Peter A.; Schumacher, Ton N. M.; Heemskerk, Mirjam H. M.

    2011-01-01

    T-cell recognition of minor histocompatibility antigens (MiHA) plays an important role in the graft-versus-tumor (GVT) effect of allogeneic stem cell transplantation (allo-SCT). However, the number of MiHA identified to date remains limited, making clinical application of MiHA reactive T-cell infusion difficult. This study represents the first attempt of genome-wide prediction of MiHA, coupled to the isolation of T-cell populations that react with these antigens. In this unbiased high-throughput MiHA screen, both the possibilities and pitfalls of this approach were investigated. First, 973 polymorphic peptides expressed by hematopoietic stem cells were predicted and screened for HLA-A2 binding. Subsequently a set of 333 high affinity HLA-A2 ligands was identified and post transplantation samples from allo-SCT patients were screened for T-cell reactivity by a combination of pMHC-tetramer-based enrichment and multi-color flow cytometry. Using this approach, 71 peptide-reactive T-cell populations were generated. The isolation of a T-cell line specifically recognizing target cells expressing the MAP4K1IMA antigen demonstrates that identification of MiHA through this approach is in principle feasible. However, with the exception of the known MiHA HMHA1, none of the other T-cell populations that were generated demonstrated recognition of endogenously MiHA expressing target cells, even though recognition of peptide-loaded targets was often apparent. Collectively these results demonstrate the technical feasibility of high-throughput analysis of antigen-specific T-cell responses in small patient samples. However, the high-sensitivity of this approach requires the use of potential epitope sets that are not solely based on MHC binding, to prevent the frequent detection of T-cell responses that lack biological relevance. PMID:21850230

  8. Demonstration of cross-reactivity between bacterial antigens and class I human leukocyte antigens by using monoclonal antibodies to Shigella flexneri.

    PubMed Central

    Williams, K M; Raybourne, R B

    1990-01-01

    Bacterial envelope proteins which share immunodeterminants with the human leukocyte antigen (HLA) class I histocompatibility antigen HLA-B27 may invoke spondyloarthritic disease through the process of molecular mimicry in patients expressing this phenotype. Monoclonal antibodies generated by the immunization of BALB/c mice with envelope proteins of Shigella flexneri type 2a were tested for reactivity against cultured lymphoblastoid cell lines of defined HLA phenotype. As measured by flow microfluorometry, four immunoglobulin M monoclonal antibodies reacted preferentially with HLA-B27-positive lymphocytes (HOM-2, MM) as compared with a B27-loss mutant line (1065) or cells lacking major histocompatibility complex class I antigen (Daudi, K562). Monoclonal antibodies also reacted with mouse EL-4 cells transfected with and expressing the HLA-B7 gene. Western immunoblot analysis of isolated enterobacterial envelopes demonstrated that the reactive epitope was present on bacterial proteins with an apparent relative molecular mass of 36 and 19 kilodaltons. The structural basis for the cross-reactivity of bacterial antigen and HLA-B27 appeared to reside in the portion of the HLA molecule that is responsible for allotypic specificity (amino acids 63 through 83), since monoclonal antibodies were positive by enzyme-linked immunosorbent assay with synthetic polypeptides corresponding to this segment. Images PMID:2187807

  9. CD40-induced aggregation of MHC class II and CD80 on the cell surface leads to an early enhancement in antigen presentation.

    PubMed

    Clatza, Abigail; Bonifaz, Laura C; Vignali, Dario A A; Moreno, José

    2003-12-15

    Ligation of CD40 on B cells increases their ability to present Ag and to activate MHC class II (MHC-II)-restricted T cells. How this occurs is not entirely clear. In this study we demonstrate that CD40 ligation on Ag-presenting B cells (APC) for a short period between 30 min and 3 h has a rapid, augmenting effect on the ability of a B cell line and normal B cells to activate T cells. This is not due to alterations in Ag processing or to an increase in surface expression of CD80, CD86, ICAM-1, or MHC-II. This effect is particularly evident with naive, resting T lymphocytes and appears to be more pronounced under limiting Ag concentrations. Shortly after CD40 ligation on a B cell line, MHC-II and CD80 progressively accumulated in cholesterol-enriched microdomains on the cell surface, which correlated with an initial enhancement in their Ag presentation ability. Moreover, CD40 ligation induced a second, late, more sustained enhancement of Ag presentation, which correlates with a significant increase in CD80 expression by APC. Thus, CD40 signaling enhances the efficiency with which APC activate T cells by at least two related, but distinct, mechanisms: an early stage characterized by aggregation of MHC-II and CD80 clusters, and a late stage in which a significant increase in CD80 expression is observed. These results raise the possibility that one important role of CD40 is to contribute to the formation of the immunological synapse on the APC side.

  10. Characterization of anti-channel catfish MHC class II monoclonal antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study characterizes four monoclonal antibodies (mAb) developed against the major histocompatibility complex (MHC) class II beta chain of the channel catfish, Ictalurus punctatus. Immunoprecipitations using catfish clonal B cells revealed that each of these mAbs immunoselected proteins of appro...

  11. Direct enumeration of Borrelia-reactive CD4 T cells ex vivo by using MHC class II tetramers

    PubMed Central

    Meyer, Abbie L.; Trollmo, Christina; Crawford, Frances; Marrack, Philippa; Steere, Allen C.; Huber, Brigitte T.; Kappler, John; Hafler, David A.

    2000-01-01

    We characterized antigen-specific CD4+ T cells in six patients with treatment-resistant Lyme arthritis, using an HLA-DRB1*0401 major histocompatibility complex (MHC) class II tetramer covalently loaded with OspA164–175, an immunodominant epitope of Borrelia burgdorferi. Direct analysis of OspA-tetramer binding CD4+ cells in patients expressing the HLA-DRB1*0401 allele revealed frequencies of between <0.005 and 0.1% in peripheral blood (n = 6), and between <0.005 and 3.1% in synovial fluid (n = 3). OspA-tetramer+CD4+ cells were directly cloned at 1 cell per well and expanded by mitogen and IL-2 on allogeneic feeder cells. As measured by [3H]thymidine incorporation, 95% of 168 T cell clones from synovial fluid binding the OspA-tetramer were antigen-reactive. Clones generated from peripheral blood revealed a different pattern of responsiveness when compared with clones generated from synovial fluid, as measured by proliferation, IFN-γ, and IL-13 secretion. These clones, selected on the basis of their peptide binding, also responded to whole protein, but with a different cytokine profile. Our studies demonstrate that MHC class II tetramers can be used in humans to directly identify, isolate, and characterize antigen-reactive T cells from an inflammatory compartment. PMID:11005833

  12. Amino Acid Variation in HLA Class II Proteins Is a Major Determinant of Humoral Response to Common Viruses

    PubMed Central

    Hammer, Christian; Begemann, Martin; McLaren, Paul J.; Bartha, István; Michel, Angelika; Klose, Beate; Schmitt, Corinna; Waterboer, Tim; Pawlita, Michael; Schulz, Thomas F.; Ehrenreich, Hannelore; Fellay, Jacques

    2015-01-01

    The magnitude of the human antibody response to viral antigens is highly variable. To explore the human genetic contribution to this variability, we performed genome-wide association studies of the immunoglobulin G response to 14 pathogenic viruses in 2,363 immunocompetent adults. Significant associations were observed in the major histocompatibility complex region on chromosome 6 for influenza A virus, Epstein-Barr virus, JC polyomavirus, and Merkel cell polyomavirus. Using local imputation and fine mapping, we identified specific amino acid residues in human leucocyte antigen (HLA) class II proteins as the most probable causal variants underlying these association signals. Common HLA-DRβ1 haplotypes showed virus-specific patterns of humoral-response regulation. We observed an overlap between variants affecting the humoral response to influenza A and EBV and variants previously associated with autoimmune diseases related to these viruses. The results of this study emphasize the central and pathogen-specific role of HLA class II variation in the modulation of humoral immune response to viral antigens in humans. PMID:26456283

  13. Features of target cell lysis by class I and class II MHC restricted cytolytic T lymphocytes

    SciTech Connect

    Maimone, M.M.; Morrison, L.A.; Braciale, V.L.; Braciale, T.J.

    1986-12-01

    The lytic activity of influenza virus-specific muvine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional /sup 51/Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), the authors found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism.

  14. Presentation of human minor histocompatibility antigens by HLA-B35 and HLA-B38 molecules.

    PubMed Central

    Yamamoto, J; Kariyone, A; Akiyama, N; Kano, K; Takiguchi, M

    1990-01-01

    Cytotoxic T lymphocyte (CTL) clones specific for human minor histocompatibility antigens (hmHAs) were produced from a patient who had been grafted with the kidneys from his mother and two HLA-identical sisters. Of eight CTL clones generated, four recognized an hmHA (hmHA-1) expressed on cells from the mother and sister 3 (second donor); two recognized another antigen (hmHA-2) on cells from the father, sister 2 (third donor), and sister 3; and the remaining two clones recognized still another antigen (hmHA-3) on cells from the father and sister 3. Panel studies revealed that CTL recognition of hmHA-1 was restricted by HLA-B35 and that of hmHA-2 and hmHA-3 was restricted by HLA-B38. The HLA-B35 restriction of the hmHA-1-specific CTL clones was substantiated by the fact that they killed HLA-A null/HLA-B null Hmy2CIR targets transfected with HLA-B35 but not HLA-B51, -Bw52, or -Bw53 transfected Hmy2CIR targets. These data demonstrated that the five amino acids substitutions on the alpha 1 domain between HLA-B35 and -Bw53, which are associated with Bw4/Bw6 epitopes, play a critical role in the relationship of hmHA-1 to HLA-B35 molecules. The fact that the hmHA-1-specific CTLs failed to kill Hmy2CIR cells expressing HLA-B35/51 chimeric molecules composed of the alpha 1 domain of HLA-B35 and other domains of HLA-B51 indicated that eight residues on the alpha 2 domain also affect the interaction of hmHA-1 and the HLA-B35 molecules. PMID:2157206

  15. Comprehensive and high-resolution typing of swine leukocyte antigen DQA from genomic DNA and determination of 25 new SLA class II haplotypes.

    PubMed

    Le, M T; Choi, H; Choi, M-K; Nguyen, D T; Kim, J-H; Seo, H G; Cha, S-Y; Seo, K; Chun, T; Schook, L B; Park, C

    2012-12-01

    We previously reported the development of genomic-DNA-based high-resolution genotyping methods for SLA-DQB1 and DRB1. Here, we report the successful typing of SLA-DQA using similar methodological principles. We designed a method for comprehensive genotyping of SLA-DQA using intronic sequence information of SLA-DQA exon 2 that we had obtained from 12 animals with different SLA-DQB1 genotypes. We expanded our typing to 76 selected animals with diverse DQB1 and DRB1 genotypes, 140 random animals from 7 pig breeds, and 3 wild boars. This resulted in the identification of 17 DQA alleles with 49 genotypes. Two new alleles were identified from wild boars. Combine with SLA-DQB1, and DRB1 typing results, we identified 34 SLA class II haplotypes including 25 that were previously unreported.

  16. Gene Conversion in the Evolution of Both the H-2 and Qa Class I Genes of the Murine Major Histocompatibility Complex

    PubMed Central

    Kuhner, M.; Watts, S.; Klitz, W.; Thomson, G.; Goodenow, R. S.

    1990-01-01

    In order to better understand the role of gene conversion in the evolution of the class I gene family of the major histocompatibility complex (MHC), we have used a computer algorithm to detect clustered sequence similarities among 24 class I DNA sequences from the H-2, Qa, and Tla regions of the murine MHC. Thirty-four statistically significant clusters were detected; individual analysis of the clusters suggested at least 25 past gene conversion or recombination events. These clusters are comparable in size to the conversions observed in the spontaneously occurring H-2K(bm) and H-2K(km2) mutations, and are distributed throughout all exons of the class I gene. Thus, gene conversion does not appear to be restricted to the regions of the class I gene encoding their antigen-presentation function. Moreover, both the highly polymorphic H-2 loci and the relatively monomorphic Qa and Tla loci appear to have participated as donors and recipients in conversion events. If gene conversion is not limited to the highly polymorphic loci of the MHC, then another factor, presumably natural selection, must be responsible for maintaining the observed differences in level of variation. PMID:2076814

  17. Development of a simultaneous high resolution typing method for three SLA class II genes, SLA-DQA, SLA-DQB1, and SLA-DRB1 and the analysis of SLA class II haplotypes.

    PubMed

    Le, MinhThong; Choi, Hojun; Choi, Min-Kyeung; Cho, Hyesun; Kim, Jin-Hoi; Seo, Han Geuk; Cha, Se-Yeon; Seo, Kunho; Dadi, Hailu; Park, Chankyu

    2015-06-15

    The characterization of the genetic variations of major histocompatibility complex (MHC) is essential to understand the relationship between the genetic diversity of MHC molecules and disease resistance and susceptibility in adaptive immunity. We previously reported the development of high-resolution individual locus typing methods for three of the most polymorphic swine leukocyte antigens (SLA) class II loci, namely, SLA-DQA, SLA-DQB1, and SLA-DRB1. In this study, we extensively modified our previous protocols and developed a method for the simultaneous amplification of the three SLA class II genes and subsequent analysis of individual loci using direct sequencing. The unbiased and simultaneous amplification of alleles from the all three hyper-polymorphic and pseudogene containing genes such as MHC genes is extremely challenging. However, using this method, we demonstrated the successful typing of SLA-DQA, SLA-DQB1, and SLA-DRB1 for 31 selected individuals comprising 26 different SLA class II haplotypes which were identified from 700 animals using the single locus typing methods. The results were identical to the known genotypes from the individual locus typing. The new method has significant benefits over the individual locus typing, including lower typing cost, use of less biomaterial, less effort and fewer errors in handling large samples for multiple loci. We also extensively characterized the haplotypes of SLA class II genes and reported three new haplotypes. Our results should serve as a basis to investigate the possible association between polymorphisms of MHC class II and differences in immune responses to exogenous antigens.

  18. Blocking MHC class II on human endothelium mitigates acute rejection

    PubMed Central

    Abrahimi, Parwiz; Qin, Lingfeng; Chang, William G.; Bothwell, Alfred L.M.; Tellides, George; Saltzman, W. Mark; Pober, Jordan S.

    2016-01-01

    Acute allograft rejection is mediated by host CD8+ cytotoxic T lymphocytes (CTL) targeting graft class I major histocompatibility complex (MHC) molecules. In experimental rodent models, rejection requires differentiation of naive CD8+ T cells into alloreactive CTL within secondary lymphoid organs, whereas in humans, CTL may alternatively develop within the graft from circulating CD8+ effector memory T cells (TEM) that recognize class I MHC molecules on graft endothelial cells (EC). This latter pathway is poorly understood. Here, we show that host CD4+ TEM, activated by EC class II MHC molecules, provide critical help for this process. First, blocking HLA-DR on EC lining human artery grafts in immunodeficient mice reduces CD8+ CTL development within and acute rejection of the artery by adoptively transferred allogeneic human lymphocytes. Second, siRNA knockdown or CRISPR/Cas9 ablation of class II MHC molecules on EC prevents CD4+ TEM from helping CD8+ TEM to develop into CTL in vitro. Finally, implanted synthetic microvessels, formed from CRISPR/Cas9-modified EC lacking class II MHC molecules, are significantly protected from CD8+ T cell–mediated destruction in vivo. We conclude that human CD8+ TEM–mediated rejection targeting graft EC class I MHC molecules requires help from CD4+ TEM cells activated by recognition of class II MHC molecules. PMID:26900601

  19. MHC Class II-Restricted Presentation of the Major House Dust Mite Allergen Der p 1 Is GILT-Dependent: Implications for Allergic Asthma

    PubMed Central

    West, Laura Ciaccia; Grotzke, Jeff E.; Cresswell, Peter

    2013-01-01

    Gamma-interferon-inducible lysosomal thiol reductase (GILT) is known to reduce disulfide bonds present in proteins internalized by antigen presenting cells, facilitating optimal processing and presentation of peptides on Major Histocompatibility Complex class II molecules, as well as the subsequent activation of CD4-positive T lymphocytes. Here, we show that GILT is required for class II-restricted processing and presentation of immunodominant epitopes from the major house dust mite allergen Der p 1. In the absence of GILT, CD4-positive T cell responses to Der p 1 are significantly reduced, resulting in mitigated allergic airway inflammation in response to Der p 1 and house dust mite extracts in a murine model of asthma. PMID:23326313

  20. Mutant MHC class II epitopes drive therapeutic immune responses to cancer

    PubMed Central

    Kreiter, Sebastian; Vormehr, Mathias; van de Roemer, Niels; Diken, Mustafa; Löwer, Martin; Diekmann, Jan; Boegel, Sebastian; Schrörs, Barbara; Vascotto, Fulvia; Castle, John C.; Tadmor, Arbel D.; Schoenberger, Stephen P.; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Tumour-specific mutations are ideal targets for cancer immunotherapy as they lack expression in healthy tissues and can potentially be recognized as neo-antigens by the mature T-cell repertoire. Their systematic targeting by vaccine approaches, however, has been hampered by the fact that every patient’s tumour possesses a unique set of mutations (‘the mutanome’) that must first be identified. Recently, we proposed a personalized immunotherapy approach to target the full spectrum of a patient’s individual tumour-specific mutations1. Here we show in three independent murine tumour models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that, unexpectedly, the majority of the immunogenic mutanome is recognized by CD4+ T cells. Vaccination with such CD4+ immunogenic mutations confers strong antitumour activity. Encouraged by these findings, we established a process by which mutations identified by exome sequencing could be selected as vaccine targets solely through bioinformatic prioritization on the basis of their expression levels and major histocompatibility complex (MHC) class II-binding capacity for rapid production as synthetic poly-neo-epitope messenger RNA vaccines. We show that vaccination with such polytope mRNA vaccines induces potent tumour control and complete rejection of established aggressively growing tumours in mice. Moreover, we demonstrate that CD4+ T cell neo-epitope vaccination reshapes the tumour microenvironment and induces cytotoxic T lymphocyte responses against an independent immunodominant antigen in mice, indicating orchestration of antigen spread. Finally, we demonstrate an abundance of mutations predicted to bind to MHC class II in human cancers as well by employing the same predictive algorithm on corresponding human cancer types. Thus, the tailored immunotherapy approach introduced here may be regarded as a universally applicable blueprint for comprehensive exploitation of the substantial neo

  1. CIITA promoter I CARD-deficient mice express functional MHC class II genes in myeloid and lymphoid compartments.

    PubMed

    Zinzow-Kramer, W M; Long, A B; Youngblood, B A; Rosenthal, K M; Butler, R; Mohammed, A-U-R; Skountzou, I; Ahmed, R; Evavold, B D; Boss, J M

    2012-06-01

    Three distinct promoters control the master regulator of major histocompatibility complex (MHC) class II expression, class II transactivator (CIITA), in a cell type-specific manner. Promoter I (pI) CIITA, expressed primarily by dendritic cells (DCs) and macrophages, expresses a unique isoform that contains a caspase-recruitment domain (CARD). The activity and function of this isoform are not understood, but are believed to enhance the function of CIITA in antigen-presenting cells. To determine whether isoform I of CIITA has specific functions, CIITA mutant mice were created in which isoform I was replaced with isoform III sequences. Mice in which pI and the CARD-encoding exon were deleted were also created. No defect in the formation of CD4 T cells, the ability to respond to a model antigen or bacterial or viral challenge was observed in mice lacking CIITA isoform I. Although CIITA and MHC-II expression was decreased in splenic DCs, pI knockout animals expressed CIITA from downstream promoters, suggesting that control of pI activity is mediated by unknown distal elements that could act at pIII, the B-cell promoter. Thus, no critical function is linked to the CARD domain of CIITA isoform I with respect to basic immune system development, function and challenge.

  2. Expression of complete transplantation antigens by mammalian cells transformed with truncated class I genes.

    PubMed

    Goodenow, R S; Stroynowski, I; McMillan, M; Nicolson, M; Eakle, K; Sher, B T; Davidson, N; Hood, L

    1983-02-01

    Mouse L cells transformed with the cloned class I genes of the major histocompatibility complex of the mouse express transplantation antigens with serological determinants of the donor haplotype. However, transformation with the truncated subclones of a BALB/c H-2Ld gene containing the exons encoding the external domains also leads to the production of cells which express complete cell-surface molecules. Moreover, full-length products of the foreign haplotype, as judged by serological and biochemical criteria, are generated independently of the use of carrier DNA in transformation. However, the frequency of productive transformation is substantially less than that obtained with a complete gene. The most plausible explanation for these phenomena involves homologous recombination between host chromosomal and donor class I sequences. PMID:6823314

  3. Immunotoxin Against a Donor MHC Class II Molecule Induces Indefinite Survival of Murine Kidney Allografts

    PubMed Central

    Brown, K.; Nowocin, A. K.; Meader, L.; Edwards, L. A.; Smith, R. A.

    2016-01-01

    Rejection of donor organs depends on the trafficking of donor passenger leukocytes to the secondary lymphoid organs of the recipient to elicit an immune response via the direct antigen presentation pathway. Therefore, the depletion of passenger leukocytes may be clinically applicable as a strategy to improve graft survival. Because major histocompatibility complex (MHC) class II+ cells are most efficient at inducing immune responses, selective depletion of this population from donor grafts may dampen the alloimmune response and prolong graft survival. In a fully MHC mismatched mouse kidney allograft model, we describe the synthesis of an immunotoxin, consisting of the F(ab′)2 fragment of a monoclonal antibody against the donor MHC class II molecule I‐Ak conjugated with the plant‐derived ribosomal inactivating protein gelonin. This anti–I‐Ak gelonin immunotoxin depletes I‐Ak expressing cells specifically in vitro and in vivo. When given to recipients of kidney allografts, it resulted in indefinite graft survival with normal graft function, presence of Foxp3+ cells within donor grafts, diminished donor‐specific antibody formation, and delayed rejection of subsequent donor‐type skin grafts. Strategies aimed at the donor arm of the immune system using agents such as immunotoxins may be a useful adjuvant to existing recipient‐orientated immunosuppression. PMID:26799449

  4. Btn2a2, a T cell immunomodulatory molecule coregulated with MHC class II genes

    PubMed Central

    Sarter, Kerstin; Leimgruber, Elisa; Gobet, Florian; Agrawal, Vishal; Dunand-Sauthier, Isabelle; Barras, Emmanuèle; Mastelic-Gavillet, Béatris; Kamath, Arun; Fontannaz, Paola; Guéry, Leslie; Duraes, Fernanda do Valle; Lippens, Carla; Ravn, Ulla; Santiago-Raber, Marie-Laure; Magistrelli, Giovanni; Fischer, Nicolas; Siegrist, Claire-Anne; Hugues, Stéphanie

    2016-01-01

    Evidence has recently emerged that butyrophilins, which are members of the extended B7 family of co-stimulatory molecules, have diverse functions in the immune system. We found that the human and mouse genes encoding butyrophilin-2A2 (BTN2A2) are regulated by the class II trans-activator and regulatory factor X, two transcription factors dedicated to major histocompatibility complex class II expression, suggesting a role in T cell immunity. To address this, we generated Btn2a2-deficient mice. Btn2a2−/− mice exhibited enhanced effector CD4+ and CD8+ T cell responses, impaired CD4+ regulatory T cell induction, potentiated antitumor responses, and exacerbated experimental autoimmune encephalomyelitis. Altered immune responses were attributed to Btn2a2 deficiency in antigen-presenting cells rather than T cells or nonhematopoietic cells. These results provide the first genetic evidence that BTN2A2 is a co-inhibitory molecule that modulates T cell–mediated immunity. PMID:26809444

  5. Endothelial activation by hydrogen peroxide. Selective increases of intercellular adhesion molecule-1 and major histocompatibility complex class I.

    PubMed Central

    Bradley, J. R.; Johnson, D. R.; Pober, J. S.

    1993-01-01

    Products of activated leukocytes may alter vascular endothelial cell (EC) function. For example, ECs respond to leukocyte-derived cytokines, such as tumor necrosis factor (TNF) or interleukin-1, by reversibly altering levels of expression of specific gene products that promote inflammation. In contrast, hydrogen peroxide, a product of TNF-activated neutrophils, can produce irreversible EC injury and death. In this study, we have investigated the effects of subinjurious concentrations of hydrogen peroxide on EC inflammatory functions. Treatment with 50 to 100 mumol/L hydrogen peroxide selectively increases surface expression of intercellular adhesion molecule-1 and major histocompatibility complex class I, but not endothelial leukocyte adhesion molecule-1 (also known as E-selectin), vascular cell adhesion molecule-1, or gp96, a constitutively expressed EC surface protein. Increased major histocompatibility complex class I and intercellular adhesion molecule-1 surface expression is associated with specifically increased messenger RNA levels, suggesting selective endothelial gene activation. Hydrogen peroxide does not activate the transcription factor Nuclear Factor kappa B, an important mediator of TNF-induced gene expression. Co-treatment with hydrogen peroxide inhibits TNF-induced gene expression at 4 hours, an effect which can be attributed to reversible inhibition of TNF binding to EC surface receptors. Hydrogen peroxide also antagonizes the actions of interleukin-1. At 24 hours, TNF and hydrogen peroxide produce, at most, additive increases in intercellular adhesion molecule-1 and major histocompatibility complex class I. These results suggest that subinjurious concentrations of hydrogen peroxide can activate endothelium and that the effects of hydrogen peroxide on ECs differ from those of inflammatory cytokines. Images Figure 3 Figure 4 Figure 5 PMID:8098585

  6. T-helper cell-response to MHC class II-binding peptides of the renal cell carcinoma-associated antigen RAGE-1.

    PubMed

    Stassar, M J; Raddrizzani, L; Hammer, J; Zöller, M

    2001-08-01

    Recently, epitope prediction software for HLA-DR binding sequences has become available. In view of the importance of T helper (Th) cell activation in immunotherapy of cancer and evidences supporting immunogenicity of renal cell carcinoma (RCC), we have tested 4 peptides of RAGE-1 binding promiscuously to HLA-DR molecules for induction of an immune response. The peptides predicted by the TEPITOPE program using a stringent threshold were derived from the open reading frame 2 and 5 of RAGE-1. Induction of response was evaluated by culturing peripheral blood mononuclear cells (PBMC) in the presence of peptide-loaded dendritic cells (DC) to determine proliferative activity and cytokine expression. Two out of 5 donors did not respond to any of the 4 peptides, 2 donors responded to one peptide and one donor responded to two other peptides. Notably, as revealed by blocking studies and T cell subtype definition, peptides bound to MHC class II molecules and peptide pulsed DC exclusively activated CD4+ T cells, which were of the Th1 subtype. With respect to clinical application it is important that (un)responsiveness of individual donors' PBMC was a very consistent feature. Though we have not tested explicitly whether these peptides correspond to naturally processed peptides, the possibility to define those patients whose Th might respond to in silico predicted peptides of RAGE-1, by an in vitro assay, could well be a helpful step towards setting up a RAGE-1 based immunotherapeutic protocol.

  7. Predominance of histocompatibility antigen HL-A8 in patients with gluten-sensitive enteropathy

    PubMed Central

    Falchuk, Z. Myron; Rogentine, G. Nicholas; Strober, Warren

    1972-01-01

    HL-A phenotypes were determined in 24 unrelated patients with gluten-sensitive enteropathy (GSE) using a lymphocyte microcytotoxicity test. 21 of the 24 patients had HL-A8 in the second segregant series, a frequency of 0.875. In contrast, the HL-A8 frequency in 200 normal individuals was 0.215 (difference significant at P < 0.002), and in 6 patients with villous atrophy due to tropical sprue or hypogammaglobulinemia the HL-A8 frequency was 0.17 (difference from normal not significant). The HL-A types in the families of three HL-A8 positive patients with GSE indicated that the HL-A8 antigen was inherited as an autosomal dominant. Frequencies of the other HL-A antigens in the GSE group did not differ significantly from that of the normal group. These findings are compatible with the hypothesis that GSE is due to the presence of an abnormal “immune response (Ir) gene,” leading to the production of pathogenic antigluten antibody or, alternatively, to the presence of a particular membrane configuration leading to the binding of gluten to epithelial cells with subsequent tissue damage. PMID:5024049

  8. ITAM signaling in dendritic cells controls T helper cell priming by regulating MHC class II recycling

    PubMed Central

    Graham, Daniel B.; Akilesh, Holly M.; Gmyrek, Grzegorz B.; Piccio, Laura; Gilfillan, Susan; Sim, Julia; Belizaire, Roger; Carrero, Javier A.; Wang, Yinan; Blaufuss, Gregory S.; Sandoval, Gabriel; Fujikawa, Keiko; Cross, Anne H.; Russell, John H.; Cella, Marina

    2010-01-01

    Immature dendritic cells (DCs) specialize in antigen capture and maintain a highly dynamic pool of intracellular major histocompatibility complex class II (MHCII) that continuously recycles from peptide loading compartments to the plasma membrane and back again. This process facilitates sampling of environmental antigens for presentation to T helper cells. Here, we show that a signaling pathway mediated by the DC immunoreceptor tyrosine-based activation motif (ITAM)–containing adaptors (DAP12 and FcRγ) and Vav family guanine nucleotide exchange factors controls the half-life of surface peptide-MHCII (pMHCII) complexes and is critical for CD4 T-cell triggering in vitro. Strikingly, mice with disrupted DC ITAMs show defective T helper cell priming in vivo and are protected from experimental autoimmune encephalitis. Mechanistically, we show that deficiency in ITAM signaling results in increased pMHCII internalization, impaired recycling, and an accumulation of ubiquitinated MHCII species that are prematurely degraded in lysosomes. We propose a novel mechanism for control of T helper cell priming. PMID:20634378

  9. Molecular cloning of a human histocompatibility antigen cDNA fragment.

    PubMed Central

    Ploegh, H L; Orr, H T; Strominger, J L

    1980-01-01

    A clone (pHLA-1) containing HLA-specific cDNA was constructed by reverse transcription of partially purified HLA mRNA from the human lymphoblastoid cell line LKT. The identity of pHLA-1 was established by its ability to hybridize to HLA heavy chain mRNA and by nucleotide sequence analysis. The pHLA-1 cDNA insert (approximately 525 base pairs) corresponds to the COOH-terminal 46 amino acids of an HLA-A, -B, or -C antigen (15 residues from the hydrophobic region and the remainder from the COOH-termial hydrophilic region), together with a portion of the 3' untranslated region of the mRNA. Images PMID:6934534

  10. Enhanced Delivery of Exogenous Peptides into the Class I Antigen Processing and Presentation Pathway

    PubMed Central

    de Haan, Lolke; Hearn, Arron R.; Rivett, A. Jennifer; Hirst, Timothy R.

    2002-01-01

    Current immunization strategies, using peptide or protein antigens, generally fail to elicit cytotoxic-T-lymphocyte responses, since these antigens are unable to access intracellular compartments where loading of major histocompatibility complex class I (MHC-I) molecules occurs. In an attempt to circumvent this, we investigated whether the GM1 receptor-binding B subunit of Escherichia coli heat-labile toxin (EtxB) could be used to deliver class I epitopes. When a class I epitope was conjugated to EtxB, it was delivered into the MHC-I presentation pathway in a GM1-binding-dependent fashion and resulted in the appearance of MHC-I-epitope complexes at the cell surface. Importantly, we show that the efficiency of EtxB-mediated epitope delivery could be strikingly enhanced by incorporating, adjacent to the class I epitope, a 10-amino-acid segment from the C terminus of the DNA polymerase (Pol) of herpes simplex virus. The replacement of this 10-amino-acid segment by a heterologous sequence or the introduction of specific amino acid substitutions within this segment either abolished or markedly reduced the efficiency of class I epitope delivery. If the epitope was extended at its C terminus, EtxB-mediated delivery into the class I presentation pathway was found to be completely dependent on proteasome activity. Thus, by combining the GM1-targeting function of EtxB with the 10-amino-acid Pol segment, highly efficient delivery of exogenous epitopes into the endogenous pathway of class I antigen processing and presentation can be achieved. PMID:12011020

  11. In vitro digestion with proteases producing MHC class II ligands.

    PubMed

    Tohmé, Mira; Maschalidi, Sophia; Manoury, Bénédicte

    2013-01-01

    Proteases generate peptides that bind to MHC class II molecules to interact with a wide diversity of CD4(+) T cells. They are expressed in dedicated organelles: endosomes and lysosomes of professional antigen presenting cells (pAPCs) such as B cells, macrophages, and dendritic cells. The identification of endosomal proteases which produce antigenic peptides is important, for example, for better vaccination and to prevent autoimmune diseases. Here, we describe a panel of technics (in vitro digestion assays of protein with recombinant proteases or purified endosomes/lysosomes, T cell stimulation) to monitor the production of MHC class II ligands. PMID:23329510

  12. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining

    PubMed Central

    2013-01-01

    Background MHC (Major Histocompatibility Complex) is a key player in the immune response of most vertebrates. The computational prediction of whether a given antigenic peptide will bind to a specific MHC allele is important in the development of vaccines for emerging pathogens, the creation of possibilities for controlling immune response, and for the applications of immunotherapy. One of the problems that make this computational prediction difficult is the detection of the binding core region in peptides, coupled with the presence of bulges and loops causing variations in the total sequence length. Most machine learning methods require the sequences to be of the same length to successfully discover the binding motifs, ignoring the length variance in both motif mining and prediction steps. In order to overcome this limitation, we propose the use of time-based motif mining methods that work position-independently. Results The prediction method was tested on a benchmark set of 28 different alleles for MHC class I and 27 different alleles for MHC class II. The obtained results are comparable to the state of the art methods for both MHC classes, surpassing the published results for some alleles. The average prediction AUC values are 0.897 for class I, and 0.858 for class II. Conclusions Temporal motif mining using partial periodic patterns can capture information about the sequences well enough to predict the binding of the peptides and is comparable to state of the art methods in the literature. Unlike neural networks or matrix based predictors, our proposed method does not depend on peptide length and can work with both short and long fragments. This advantage allows better use of the available training data and the prediction of peptides of uncommon lengths. PMID:23368521

  13. HLA antigen and affective disorders: a report and critical assessment of histocompatibility studies.

    PubMed

    Temple, H; Dupont, B; Shopsin, B

    1979-01-01

    The distribution of 50 HLA antigens, of the A, B and C loci, was investigated in 38 affectively ill Caucasian patients of Eastern European Jewish ancestry. The frequencies found were compared to those of a control population matched for race as well as geographic and ethnic-religious origins. Results indicate that a negative association exists between affective disorders and Cw3 and also suggests a similar negative association between such disorders and A9. A positive association with Bw16, Bw22 and Cw1 is also indicated; Bw16 was increased in those patients with no family history of psychological illness. A review of the available literature in this area shows a glaring lack of agreement among the studies. Methodological problems exist which are likely to contribute to the variable and conflicting results and might make comparison of data irrelevant. The lack of agreement of data among the studies may also indicate that no HLA disease association exists but rather reflect the existence of a defective gene in the HLA complex but not a part of the HLA system. Additional population and family studies are required before any definitive statements can be made.

  14. HLA class II genes: typing by DNA analysis.

    PubMed

    Bidwell, J L; Bidwell, E A; Bradley, B A

    1990-04-01

    A detailed understanding of the structure and function of the human major histocompatibility complex (MHC) has ensued from studies by molecular biologist during the last decade. Virtually all of the HLA genes have now been cloned, and the nucleotide sequences of their different allelic forms have been determined. Typing for these HLA alleles is a fundamental prerequisite for tissue matching in allogeneic organ transplantation. Until very recently, typing procedures have been dominated by serological and cellular methods. The availability of cloned DNA from HLA genes has now permitted the technique of restriction fragment length polymorphism (RFLP) analysis to be applied, with remarkable success and advantage, to phenotyping of both HLA Class I and Class II determinants. For the HLA Class II genes DR and DQ, a simple two-stage RFLP analysis permits the accurate identification of all specificities defined by serology, and of many which are defined by cellular typing. At the present time, however, RFLP typing of HLA Class I genes is not as practicable or as informative as that for HLA Class II genes. The present clinical applications of HLA-DR and DQ RFLP typing are predominantly in phenotyping of living donors, including selection of HLA-matched volunteer bone marrow donors, in allograft survival studies, and in studies of HLA Class II-associated diseases. However, the time taken to perform RFLP analysis precludes its use for the typing of cadaveric kidney donors. Nucleotide sequence data for the alleles of HLA Class II genes have now permitted the development of allele-specific oligonucleotide (ASO) typing, a second category of DNA analysis. This has been greatly facilitated by the ability to amplify specific HLA Class II DNA 'target' sequences using the polymerase chain reaction (PCR) technique. The accuracy of DNA typing techniques should ensure that this methodology will eventually replace conventional HLA phenotyping.

  15. Expression of bovine non-classical major histocompatibility complex class 1 proteins in mouse P815 and human K562 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-class...

  16. Histocompatible chicken inbred lines: homogeneities in the major histocompatibility complex antigens of the GSP, GSN/1, PNP/DO and BM-C inbred lines assessed by hemagglutination, mixed lymphocyte reaction and skin transplantation.

    PubMed

    Valdez, Marcos B; Mizutani, Makoto; Fujiwara, Akira; Yazawa, Hajime; Yamagata, Takahiro; Shimada, Kiyoshi; Namikawa, Takao

    2007-10-01

    Chicken inbred lines of the GSP, GSN/1, PNP/DO and BM-C have been established by selection of a specific allele at the B blood group locus (MHC B-G region) and other polymorphic loci through pedigree mating. To extend the potential of these inbred lines as experimental animals in Aves, we assessed the antigenic homogeneities of the MHC antigens by three immunological methods. Antigenic variations of red blood cells (RBCs) were surveyed in the inbred lines and a random-bred line (NG) derived from the Nagoya breed by using ten kinds of intact antisera produced in the inbred line of chickens against RBCs of a red junglefowl and hybrids. In the hemagglutination test, no individual variations were found within the inbred line at all, while all the ten antisera detected highly heterogeneous reactions in individuals of the NG. The reciprocal one-way mixed lymphocyte reactions gave constantly higher stimulation responses (P<0.01) between individual pairs from the inbred lines having different B alleles compared to pairs within the inbred line, while lower stimulation was observed between pairs of the GSP and GSN/1 inbred lines both having the B(21) allele. In reciprocal skin transplantation, the transplanted skingrafts within the inbred line and between individuals from the GSP and GSN/1 inbred lines survived more than 100 days, while all the skingrafts showed signs of rejection within 7 days among the inbred lines having different B alleles. The results obtained by the three practical methods coincidentally indicated that the individuals in the respective four inbred lines were histocompatible, and further, that the GSP and GSN/1 individuals were histocompatible. PMID:18075192

  17. Cloning and characterization of a new swine MHC (SLA) class II DQB allele.

    PubMed

    Hosokawa, T; Tanioka, Y; Tanigawa, M; Matsumoto, Y; Onodera, T; Matsumoto, Y

    1998-06-01

    Major histocompatibility complex (MHC) of pigs is known as swine leukocyte antigen (SLA). The cDNA encoding a new allele of SLA class II DQ beta-chain was successfully isolated from a CSK miniature pig (derived from Göttingen strain) and characterized by sequence analyses. SLA-DQB cDNA fragment encoding beta 2-domain was amplified by reverse transcriptase-polymerase chain reaction using the sequences preserved in a various vertebrates as primers. Using non-radioisotope technique with the PCR product as a probe, cDNA clone G01 was isolated from a spleen cDNA library, and nucleotide sequence of this clone was determined. This clone encompassed a whole SLA-DQ beta-chain coding region, containing a total length of 1161 nucleotides with an open reading frame (ORF) of 786 nucleotides, 5' untranslated region of 15 nucleotides, and 3' untranslated region of 360 nucleotides ending with a canonical polyadenylation signal, followed by a poly A tail. Sequence comparisons of the ORF of this clone with those of known SLA-DQB genes confirmed that this clone is a new allele (SLA-DQB*G01). Phylogenetic analysis of the nucleotide sequences of swine, human, and murine MHC class II genes indicated that SLA-DQB was more similar to HLA-DQB1 than H-2A beta. Comparison of the nucleotide and deduced amino acid sequences among SLA-DQB alleles showed that the SLA-DQ beta-chain polymorphism was found almost in beta 1-domain which contains the antigenic peptide binding sites.

  18. MHC class II diversity of koala (Phascolarctos cinereus) populations across their range.

    PubMed

    Lau, Q; Jaratlerdsiri, W; Griffith, J E; Gongora, J; Higgins, D P

    2014-10-01

    Major histocompatibility complex class II (MHCII) genes code for proteins that bind and present antigenic peptides and trigger the adaptive immune response. We present a broad geographical study of MHCII DA β1 (DAB) and DB β1 (DBB) variants of the koala (Phascolarctos cinereus; n=191) from 12 populations across eastern Australia, with a total of 13 DAB and 7 DBB variants found. We identified greater MHCII variation and, possibly, additional gene copies in koala populations in the north (Queensland and New South Wales) relative to the south (Victoria), confirmed by STRUCTURE analyses and genetic differentiation using analysis of molecular variance. The higher MHCII diversity in the north relative to south could potentially be attributed to (i) significant founder effect in Victorian populations linked to historical translocation of bottlenecked koala populations and (ii) increased pathogen-driven balancing selection and/or local genetic drift in the north. Low MHCII genetic diversity in koalas from the south could reduce their potential response to disease, although the three DAB variants found in the south had substantial sequence divergence between variants. This study assessing MHCII diversity in the koala with historical translocations in some populations contributes to understanding the effects of population translocations on functional genetic diversity.

  19. MHC class II diversity of koala (Phascolarctos cinereus) populations across their range

    PubMed Central

    Lau, Q; Jaratlerdsiri, W; Griffith, J E; Gongora, J; Higgins, D P

    2014-01-01

    Major histocompatibility complex class II (MHCII) genes code for proteins that bind and present antigenic peptides and trigger the adaptive immune response. We present a broad geographical study of MHCII DA β1 (DAB) and DB β1 (DBB) variants of the koala (Phascolarctos cinereus; n=191) from 12 populations across eastern Australia, with a total of 13 DAB and 7 DBB variants found. We identified greater MHCII variation and, possibly, additional gene copies in koala populations in the north (Queensland and New South Wales) relative to the south (Victoria), confirmed by STRUCTURE analyses and genetic differentiation using analysis of molecular variance. The higher MHCII diversity in the north relative to south could potentially be attributed to (i) significant founder effect in Victorian populations linked to historical translocation of bottlenecked koala populations and (ii) increased pathogen-driven balancing selection and/or local genetic drift in the north. Low MHCII genetic diversity in koalas from the south could reduce their potential response to disease, although the three DAB variants found in the south had substantial sequence divergence between variants. This study assessing MHCII diversity in the koala with historical translocations in some populations contributes to understanding the effects of population translocations on functional genetic diversity. PMID:24690756

  20. Human B lymphoblastoid cells contain distinct patterns of cathepsin activity in endocytic compartments and regulate MHC class II transport in a cathepsin S-independent manner.

    PubMed

    Lautwein, Alfred; Kraus, Marianne; Reich, Michael; Burster, Timo; Brandenburg, J; Overkleeft, Herman S; Schwarz, Gerold; Kammer, Winfried; Weber, Ekkehard; Kalbacher, Hubert; Nordheim, Alfred; Driessen, Christoph

    2004-05-01

    Endocytic proteolysis represents a major functional component of the major histocompatibility complex class II antigen-presentation machinery. Although transport and assembly of class II molecules in the endocytic compartment are well characterized, we lack information about the pattern of endocytic protease activity along this pathway. Here, we used chemical tools that visualize endocytic proteases in an activity-dependent manner in combination with subcellular fractionation to dissect the subcellular distribution of the major cathepsins (Cat) CatS, CatB, CatH, CatD, CatC, and CatZ as well as the asparagine-specific endoprotease (AEP) in human B-lymphoblastoid cells (BLC). Endocytic proteases were distributed in two distinct patterns: CatB and CatZ were most prominent in early and late endosomes but absent from lysosomes, and CatH, CatS, CatD, CatC, and AEP distributed between late endosomes and lysosomes, suggesting that CatB and CatZ might be involved in the initial proteolytic attack on a given antigen. The entire spectrum of protease activity colocalized with human leukocyte antigen-DM and the C-terminal and N-terminal processing of invariant chain (Ii) in late endosomes. CatS was active in all endocytic compartments. Surprisingly and in contrast with results from dendritic cells, inhibition of CatS activity by leucine-homophenylalanine-vinylsulfone-phenol prevented N-terminal processing of Ii but did not alter the subcellular trafficking or surface delivery of class II complexes, as deferred from pulse-chase analysis in combination with subcellular fractionation and biotinylation of cell-surface protein. Thus, BLC contain distinct activity patterns of proteases in endocytic compartments and regulate the intracellular transport and surface-delivery of class II in a CatS-independent manner. PMID:14966190

  1. Artificial antigen-presenting cells expressing HLA class II molecules as an effective tool for amplifying human specific memory CD4(+) T cells.

    PubMed

    Garnier, Anthony; Hamieh, Mohamad; Drouet, Aurélie; Leprince, Jérôme; Vivien, Denis; Frébourg, Thierry; Le Mauff, Brigitte; Latouche, Jean-Baptiste; Toutirais, Olivier

    2016-08-01

    Owing to their multiple immune functions, CD4(+) T cells are of major interest for immunotherapy in chronic viral infections and cancer, as well as for severe autoimmune diseases and transplantation. Therefore, standardized methods allowing rapid generation of a large number of CD4(+) T cells for adoptive immunotherapy are still awaited. We constructed stable artificial antigen-presenting cells (AAPCs) derived from mouse fibroblasts. They were genetically modified to express human leukocyte antigen (HLA)-DR molecules and the human accessory molecules B7.1, Intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-3 (LFA-3). AAPCs expressing HLA-DR1, HLA-DR15 or HLA-DR51 molecules and loaded with peptides derived from influenza hemagglutinin (HA), myelin basic protein (MBP) or factor VIII, respectively, activated specific CD4(+) T-cell clones more effectively than Epstein-Barr virus (EBV)-transformed B cells. We also showed that AAPCs were able to take up and process whole Ag proteins, and present epitopes to specific T cells. In primary cultures, AAPCs loaded with HA peptide allowed generation of specific Th1 lymphocytes from healthy donors as demonstrated by tetramer and intracellular cytokine staining. Although AAPCs were less effective than autologous peripheral blood mononuclear cells (PBMCs) to stimulate CD4(+) T cells in primary culture, AAPCs were more potent to reactivate and expand memory Th1 cells in a strictly Ag-dependent manner. As the availability of autologous APCs is limited, the AAPC system represents a stable and reliable tool to achieve clinically relevant numbers of CD4(+) T cells for adoptive immunotherapy. For fundamental research in immunology, AAPCs are also useful to decipher mechanisms involved in the development of human CD4 T-cell responses. PMID:26924643

  2. Evidence of a second polymorphic ELA class I (ELA-B) locus and gene order for three loci of the equine major histocompatibility complex.

    PubMed

    Bernoco, D; Byrns, G; Bailey, E; Lew, A M

    1987-01-01

    Two antisera, B-442 and R-2046, were produced by immunizing offspring with purified peripheral blood lymphocytes from a parent matched for the ELA-A specificity carried on the unshared haplotype. Absorption analysis demonstrated that these antisera contained at least two families of cytotoxic antibodies, one directed against antigens present on T and B cells, and a second directed preferentially against antigens present on surface Ig positive cells. Immunoprecipitation studies using these antisera demonstrated that both antisera contain antibodies specific for glycoproteins with molecular weights characteristic of class I and class II MHC antigens. In lymphocyte typing tests of unfractionated lymphocytes, only the class I activity was readily detectable since the class II activity killed less than 25% of the cells. Family studies demonstrated that these antisera recognize products of genes linked to the ELA system. Based on two recombinants in an extended family it became apparent that the specificities detected by B-442 and R-2046 are not products of the ELA-A locus, but rather they are products of at least one other locus, defined in this paper as ELA-B. In this family a third recombinant was found between the A blood group system and the ELA-A locus. Based on these three recombinants, the most probable linear relationship of the following genes is: A blood group system/ELA-A/ELA-B.

  3. MHC evolution in three salmonid species: a comparison between class II alpha and beta genes.

    PubMed

    Gómez, Daniela; Conejeros, Pablo; Marshall, Sergio H; Consuegra, Sofia

    2010-08-01

    The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II alpha and class II beta loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II alpha and beta genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIalpha gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites. PMID:20521040

  4. MHC evolution in three salmonid species: a comparison between class II alpha and beta genes.

    PubMed

    Gómez, Daniela; Conejeros, Pablo; Marshall, Sergio H; Consuegra, Sofia

    2010-08-01

    The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II alpha and class II beta loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II alpha and beta genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIalpha gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites.

  5. Autoantibody Profiles in Collagen Disease Patients with Interstitial Lung Disease (ILD): Antibodies to Major Histocompatibility Complex Class I-Related Chain A (MICA) as Markers of ILD

    PubMed Central

    Furukawa, Hiroshi; Oka, Shomi; Shimada, Kota; Masuo, Kiyoe; Nakajima, Fumiaki; Funano, Shunichi; Tanaka, Yuki; Komiya, Akiko; Fukui, Naoshi; Sawasaki, Tatsuya; Tadokoro, Kenji; Nose, Masato; Tsuchiya, Naoyuki; Tohma, Shigeto

    2015-01-01

    Interstitial lung disease (ILD) is frequently associated with collagen disease. It is then designated as collagen vascular disease-associated ILD (CVD-ILD), and influences patients’ prognosis. The prognosis of acute-onset diffuse ILD (AoDILD) occurring in patients with collagen disease is quite poor. Here, we report our investigation of auto-antibody (Ab) profiles to determine whether they may be useful in diagnosing CVD-ILD or AoDILD in collagen disease. Auto-Ab profiles were analyzed using the Lambda Array Beads Multi-Analyte System, granulocyte immunofluorescence test, Proto-Array Human Protein Microarray, AlphaScreen assay, and glutathione S-transferase capture enzyme-linked immunosorbent assay in 34 patients with rheumatoid arthritis (RA) with or without CVD-ILD and in 15 patients with collagen disease with AoDILD. The average anti-major histocompatibility complex class I-related chain A (MICA) Ab levels were higher in RA patients with CVD-ILD than in those without (P = 0.0013). The ratio of the average anti-MICA Ab level to the average anti-human leukocyte antigen class I Ab level (ie, MICA/Class I) was significantly higher in RA patients with CVD-ILD compared with those without (P = 4.47 × 10−5). To the best of our knowledge, this is the first report of auto-Ab profiles in CVD-ILD. The MICA/Class I ratio could be a better marker for diagnosing CVD-ILD than KL-6 (Krebs von den lungen-6). PMID:26327779

  6. Stable isotope tagging of epitopes: a highly selective strategy for the identification of major histocompatibility complex class I-associated peptides induced upon viral infection.

    PubMed

    Meiring, Hugo D; Soethout, Ernst C; Poelen, Martien C M; Mooibroek, Dennis; Hoogerbrugge, Ronald; Timmermans, Hans; Boog, Claire J; Heck, Albert J R; de Jong, Ad P J M; van Els, Cécile A C M

    2006-05-01

    Identification of peptides presented in major histocompatibility complex (MHC) class I molecules after viral infection is of strategic importance for vaccine development. Until recently, mass spectrometric identification of virus-induced peptides was based on comparative analysis of peptide pools isolated from uninfected and virus-infected cells. Here we report on a powerful strategy aiming at the rapid, unambiguous identification of naturally processed MHC class I-associated peptides, which are induced by viral infection. The methodology, stable isotope tagging of epitopes (SITE), is based on metabolic labeling of endogenously synthesized proteins during infection. This is accomplished by culturing virus-infected cells with stable isotope-labeled amino acids that are expected to be anchor residues (i.e. residues of the peptide that have amino acid side chains that bind into pockets lining the peptide-binding groove of the MHC class I molecule) for the human leukocyte antigen allele of interest. Subsequently these cells are mixed with an equal number of non-infected cells, which are cultured in normal medium. Finally peptides are acid-eluted from immunoprecipitated MHC molecules and subjected to two-dimensional nanoscale LC-MS analysis. Virus-induced peptides are identified through computer-assisted detection of characteristic, binomially distributed ratios of labeled and unlabeled molecules. Using this approach we identified novel measles virus and respiratory syncytial virus epitopes as well as infection-induced self-peptides in several cell types, showing that SITE is a unique and versatile method for unequivocal identification of disease-related MHC class I epitopes.

  7. Autoantibody Profiles in Collagen Disease Patients with Interstitial Lung Disease (ILD): Antibodies to Major Histocompatibility Complex Class I-Related Chain A (MICA) as Markers of ILD.

    PubMed

    Furukawa, Hiroshi; Oka, Shomi; Shimada, Kota; Masuo, Kiyoe; Nakajima, Fumiaki; Funano, Shunichi; Tanaka, Yuki; Komiya, Akiko; Fukui, Naoshi; Sawasaki, Tatsuya; Tadokoro, Kenji; Nose, Masato; Tsuchiya, Naoyuki; Tohma, Shigeto

    2015-01-01

    Interstitial lung disease (ILD) is frequently associated with collagen disease. It is then designated as collagen vascular disease-associated ILD (CVD-ILD), and influences patients' prognosis. The prognosis of acute-onset diffuse ILD (AoDILD) occurring in patients with collagen disease is quite poor. Here, we report our investigation of auto-antibody (Ab) profiles to determine whether they may be useful in diagnosing CVD-ILD or AoDILD in collagen disease. Auto-Ab profiles were analyzed using the Lambda Array Beads Multi-Analyte System, granulocyte immunofluorescence test, Proto-Array Human Protein Microarray, AlphaScreen assay, and glutathione S-transferase capture enzyme-linked immunosorbent assay in 34 patients with rheumatoid arthritis (RA) with or without CVD-ILD and in 15 patients with collagen disease with AoDILD. The average anti-major histocompatibility complex class I-related chain A (MICA) Ab levels were higher in RA patients with CVD-ILD than in those without (P = 0.0013). The ratio of the average anti-MICA Ab level to the average anti-human leukocyte antigen class I Ab level (ie, MICA/Class I) was significantly higher in RA patients with CVD-ILD compared with those without (P = 4.47 × 10(-5)). To the best of our knowledge, this is the first report of auto-Ab profiles in CVD-ILD. The MICA/Class I ratio could be a better marker for diagnosing CVD-ILD than KL-6 (Krebs von den lungen-6).

  8. A new antigenic marker specifically labels a subpopulation of the class II Kenyon cells in the brain of the European honeybee Apis mellifera

    PubMed Central

    Watanabe, Takayuki; Kubo, Takeo

    2015-01-01

    The mushroom bodies are the higher-order integration center in the insect brain and are involved in higher brain functions such as learning and memory. In the social hymenopteran insects such as honeybees, the mushroom bodies are the prominent brain structures. The mushroom bodies are composed of lobed neuropils formed by thousands of parallel-projecting axons of intrinsic neurons, and the lobes are divided into parallel subdivisions. In the present paper, we report a new antigenic marker to label a single layer in the vertical lobes of the European honeybee Apis mellifera. In the brain of A. mellifera, a monoclonal antibody (mAb) 15C3, which was originally developed against an insect ecdysone receptor (EcR) protein, immunolabels a single layer of the vertical lobes that correspond to the most dorsal layer of the γ-lobe. The 15C3 mAb recognizes a single ~200 kDa protein expressed in the adult honeybee brain. In addition, the 15C3 mAb immunoreactivity was also observed in the lobes of the developing pupal mushroom bodies. Since γ-lobe is well known to their extensive reorganization that occurs during metamorphosis in Drosophila, the novel antigenic marker for the honeybee γ-lobe allows us to investigate morphological changes of the mushroom bodies during metamorphosis. PMID:27493518

  9. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    SciTech Connect

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi; Santhanagopolan, Sujatha M.; Baxter, Tiffany K.; Baker, Brian M.

    2012-05-08

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.

  10. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8+ T Cell Responses, Enabling Faster Resolution of Influenza Disease

    PubMed Central

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U.; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M.; Fredriksen, Agnete Brunsvik; Tregoning, John S.

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.

  11. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8(+) T Cell Responses, Enabling Faster Resolution of Influenza Disease.

    PubMed

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M; Fredriksen, Agnete Brunsvik; Tregoning, John S

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8(+) T cells can improve protection. To further explore the role of CD8(+) T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8(+) T cells. However, DNA vaccine regimes that induced CD8(+) T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-E(d) single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines. PMID:27602032

  12. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8+ T Cell Responses, Enabling Faster Resolution of Influenza Disease

    PubMed Central

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U.; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M.; Fredriksen, Agnete Brunsvik; Tregoning, John S.

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines. PMID:27602032

  13. Difference in number of loci of swine leukocyte antigen classical class I genes among haplotypes.

    PubMed

    Tanaka-Matsuda, Maiko; Ando, Asako; Rogel-Gaillard, Claire; Chardon, Patrick; Uenishi, Hirohide

    2009-03-01

    The structure of the entire genomic region of swine leukocyte antigen (SLA)-the porcine major histocompatibility complex--was recently elucidated in a particular haplotype named Hp-1.0 (H01). However, it has been suggested that there are differences in the number of loci of SLA genes, particularly classical class I genes, among haplotypes. To clarify the between-haplotype copy number variance in genes of the SLA region, we sequenced the genomic region carrying SLA classical class I genes on two different haplotypes, revealing increments of up to six in the number of classical class I genes in a single haplotype. All of the SLA-1(-like) (SLA-1 and newly designated SLA-12) and SLA-3 genes detected in the haplotypes thus analyzed were transcribed in the individual. The process by which duplication of SLA classical class I genes was likely to have occurred was interpreted from an analysis of repetitive sequences adjacent to the duplicated class I genes.

  14. Presence or absence of a known diabetic ketoacidosis precipitant defines distinct syndromes of "A-β+" ketosis-prone diabetes based on long-term β-cell function, human leukocyte antigen class II alleles, and sex predilection.

    PubMed

    Nalini, Ramaswami; Ozer, Kerem; Maldonado, Mario; Patel, Sanjeet G; Hampe, Christiane S; Guthikonda, Anu; Villanueva, Jesus; O'Brian Smith, E; Gaur, Lakshmi K; Balasubramanyam, Ashok

    2010-10-01

    Ketosis-prone diabetes (KPD) is heterogeneous. Longitudinal follow-up revealed that patients with "A-β+" KPD (absent autoantibodies and preserved β-cell function) segregated into 2 subgroups with distinct evolution of β-cell function and glycemic control. Generalized linear analysis demonstrated that the variable that most significantly differentiated them was presence of a clinically evident precipitating event for the index diabetic ketoacidosis (DKA). Hence, we performed a comprehensive analysis of A-β+ KPD patients presenting with "provoked" compared with "unprovoked" DKA. Clinical, biochemical, and β-cell functional characteristics were compared between provoked and unprovoked A-β+ KPD patients followed prospectively for 1 to 8 years. Human leukocyte antigen class II allele frequencies were compared between these 2 groups and population controls. Unprovoked A-β+ KPD patients (n = 83) had greater body mass index, male preponderance, higher frequency of women with oligo-/anovulation, more frequent African American ethnicity, and less frequent family history of diabetes than provoked A-β+ KPD patients (n = 64). The provoked group had higher frequencies of the human leukocyte antigen class II type 1 diabetes mellitus susceptibility alleles DQB1*0302 (than the unprovoked group or population controls) and DRB1*04 (than the unprovoked group), whereas the unprovoked group had a higher frequency of the protective allele DQB1*0602. β-Cell secretory reserve and glycemic control improved progressively in the unprovoked group but declined in the provoked group. The differences persisted in comparisons restricted to patients with new-onset diabetes. "Unprovoked" A-β+ KPD is a distinct syndrome characterized by reversible β-cell dysfunction with male predominance and increased frequency of DQB1*0602, whereas "provoked" A-β+ KPD is characterized by progressive loss of β-cell reserve and increased frequency of DQB1*0302 and DRB1*04. Unprovoked DKA predicts long

  15. Structural Basis for the Presentation of Tumor-Associated MHC Class II-Restricted Phosphopeptides to CD4+ T Cells

    SciTech Connect

    Li, Y.; Depontieu, F; Sidney, J; Salay, T; Engelhard, V; Hunt, D; Sette, A; Topalian, S; Mariuzza, R

    2010-01-01

    Dysregulated protein phosphorylation is a hallmark of malignant transformation. Transformation can generate major histocompatibility complex (MHC)-bound phosphopeptides that are differentially displayed on tumor cells for specific recognition by T cells. To understand how phosphorylation alters the antigenic identity of self-peptides and how MHC class II molecules present phosphopeptides for CD4{sup +} T-cell recognition, we determined the crystal structure of a phosphopeptide derived from melanoma antigen recognized by T cells-1 (pMART-1), selectively expressed by human melanomas, in complex with HLA-DR1. The structure revealed that the phosphate moiety attached to the serine residue at position P5 of pMART-1 is available for direct interactions with T-cell receptor (TCR) and that the peptide N-terminus adopts an unusual conformation orienting it toward TCR. This structure, combined with measurements of peptide affinity for HLA-DR1 and of peptide-MHC recognition by pMART-1-specific T cells, suggests that TCR recognition is focused on the N-terminal portion of pMART-1. This recognition mode appears to be distinct from that of foreign antigen complexes but is remarkably reminiscent of the way autoreactive TCRs engage self- or altered self-peptides, consistent with the tolerogenic nature of tumor-host immune interactions.

  16. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection

    PubMed Central

    English, Luc; Chemali, Magali; Duron, Johanne; Rondeau, Christiane; Laplante, Annie; Gingras, Diane; Alexander, Diane; Leib, David; Norbury, Christopher; Lippé, Roger; Desjardins, Michel

    2013-01-01

    Viral proteins are usually processed by the ‘classical’ major histocompatibility complex (MHC) class I presentation pathway. Here we showed that although macrophages infected with herpes simplex virus type 1 (HSV-1) initially stimulated CD8+ T cells by this pathway, a second pathway involving a vacuolar compartment was triggered later during infection. Morphological and functional analyses indicated that distinct forms of autophagy facilitated the presentation of HSV-1 antigens on MHC class I molecules. One form of autophagy involved a previously unknown type of autophagosome that originated from the nuclear envelope. Whereas interferon-γ stimulated classical MHC class I presentation, fever-like hyperthermia and the pyrogenic cytokine interleukin 1β activated autophagy and the vacuolar processing of viral peptides. Viral peptides in autophagosomes were further processed by the proteasome, which suggests a complex interaction between the vacuolar and MHC class I presentation pathways. PMID:19305394

  17. Cellular components of the immune barrier in the spinal meninges and dorsal root ganglia of the normal rat: immunohistochemical (MHC class II) and electron-microscopic observations.

    PubMed

    Braun, J S; Kaissling, B; Le Hir, M; Zenker, W

    1993-08-01

    This report deals with the distribution, morphology and specific topical relationships of bone-marrow-derived cells (free cells) in the spinal meninges and dorsal root ganglia of the normal rat. The morphology of these cells has been studied by transmission and scanning electron microscopy. Cells expressing the major histocompatibility complex (MHC) class II gene product have been recognized by immunofluorescence. At the level of the transmission electron microscope, free cells are found in all layers of the meninges. Many of them display characteristic ultrastructural features of macrophages, whereas others show a highly vacuolated cytoplasm and are endowed with many processes. These elements lack a conspicuous lysosomal system and might represent dendritic cells. Scanning electron microscopy has revealed that free cells contact the cerebrospinal fluid via abundant cytoplasmic processes that cross the cell layers of the pia mater and of the arachnoid. Cells expressing the MHC class II antigen are also found in all layers of the meninges. They are particularly abundant in the layers immediately adjacent to the subarachnoid space, in the neighbourhood of dural vessels, along the spinal roots and in the dural funnels. In addition to the meninges, strong immunoreactivity for MHC class II antigen is observed in the dorsal root ganglia. The ultrastructural and immunohistochemical findings of this study suggest the existence of a well-developed system of immunological surveillance of the subarachnoid space and of the dorsal root ganglia.

  18. Identification of a crucial energetic footprint on the alpha1 helix of human histocompatibility leukocyte antigen (HLA)-A2 that provides functional interactions for recognition by tax peptide/HLA-A2-specific T cell receptors.

    PubMed

    Baker, B M; Turner, R V; Gagnon, S J; Wiley, D C; Biddison, W E

    2001-03-01

    Structural studies have shown that class I major histocompatibility complex (MHC)-restricted peptide-specific T cell receptor (TCR)-alpha/betas make multiple contacts with the alpha1 and alpha2 helices of the MHC, but it is unclear which or how many of these interactions contribute to functional binding. We have addressed this question by performing single amino acid mutagenesis of the 15 TCR contact sites on the human histocompatibility leukocyte antigen (HLA)-A2 molecule recognized by the A6 TCR specific for the Tax peptide presented by HLA-A2. The results demonstrate that mutagenesis of only three amino acids (R65, K66, and A69) that are clustered on the alpha1 helix affected T cell recognition of the Tax/HLA-A2 complex. At least one of these three mutants affected T cell recognition by every member of a large panel of Tax/HLA-A2-specific T cell lines. Biacore measurements showed that these three HLA-A2 mutations also altered A6 TCR binding kinetics, reducing binding affinity. These results show that for Tax/HLA-A2-specific TCRs, there is a location on the central portion of the alpha1 helix that provides interactions crucial to their function with the MHC molecule. PMID:11238586

  19. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.

    PubMed

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2004-11-21

    Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred). PMID:15534705

  20. Salmonella typhimurium delta aroA delta aroD mutants expressing a foreign recombinant protein induce specific major histocompatibility complex class I-restricted cytotoxic T lymphocytes in mice.

    PubMed Central

    Turner, S J; Carbone, F R; Strugnell, R A

    1993-01-01

    Recombinant Salmonella typhimurium aroA aroD mutants which expressed ovalbumin were constructed. The two expression constructs used were based on either pUC18 or pBR322. The pBR322-based construct was more stable in vitro and in vivo than the pUC-based construct. Salmonellae containing the stable pBR322-based plasmid induced major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTL), in contrast to salmonellae containing the pUC18-based expression construct. The priming of MHC class I-restricted CTL was increased by multiple immunizations. The study described in this report suggest that S. typhimurium delta aro mutants have the capacity to induce MHC class I-restricted CTL against carried antigens and that MHC class I-restricted CTL responses require stable in vivo expression of the target antigen. Further, the results indicate that the Salmonella typhi delta aro mutants currently undergoing evaluation in studies with humans may be good carriers of viral antigens with CTL determinants. Images PMID:8225611

  1. Viral immune evasion: Lessons in MHC class I antigen presentation.

    PubMed

    van de Weijer, Michael L; Luteijn, Rutger D; Wiertz, Emmanuel J H J

    2015-03-01

    The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.

  2. Histocompatibility antigen test

    MedlinePlus

    ... the surface of almost all cells in the human body. HLAs are found in large amounts on the surface of white blood cells. They help the immune system tell the difference between body tissue and substances ...

  3. Unusual association of beta 2-microglobulin with certain class I heavy chains of the murine major histocompatibility complex.

    PubMed Central

    Bushkin, Y; Tung, J S; Pinter, A; Michaelson, J; Boyse, E A

    1986-01-01

    Class I products of the major histocompatibility complex (MHC) comprise a heavy chain of about 45 kDa noncovalently linked to a 12-kDa beta 2-microglobulin (beta 2m) light chain encoded on a different chromosome. We find that class I products of some mouse strains include an additional 62-kDa molecule which on the following evidence consists of a heavy chain linked covalently with beta 2m. Production of the 62-kDa protein invariably accorded with the occurrence of cysteine at position 121 of the heavy chain (Kb,Kbm1,Kbm3,Dd, and Ld). Substitution of arginine at position 121 invariably accorded with absence of the 62-kDa protein (Kbm6,Kbm7,Kbm9,Kd, and Db). On the basis of observed production versus nonproduction of the 62-kDa molecule, predictions are made regarding residue 121 in class I products for which this is not yet known; namely, Kk, Ks, and Dk, which produce the 62-kDa molecule, as compared with Kj, Qa-2, and TL, which do not. Reported differences in immunologic reactivity between Kb mutant strains with Arg-121 in place of Cys-121 imply that the occurrence of 62-kDa class I products in mice of Cys-121 genotype has functional consequences. Images PMID:3510435

  4. HLA-DRB1 Class II antigen level alleles are associated with persistent HPV infection in Mexican women; a pilot study

    PubMed Central

    2013-01-01

    Background Persistent infection with high-risk human papillomavirus (HPV) is a major risk factor for malignant lesions and cervical cancer. A widely studied element in the search for genetic factors influencing risk HPV infection diseases is allelic variation of the human leukocyte antigen (HLA) locus. The study was designed to search for HLA susceptibility alleles contributing to the persistence of HPV infection in Mexican women. Methods A total of 172 subjects were divided into three groups: 1) HPV–persistent patients; 2) HPV–cleared; and 3) HPV–reinfected patients. They were screened for HPV types using a polymerase chain reaction (PCR). PCR-sequence specific oligonucleotide probes (PCR-SSOP) was used for HLA DRB1 and DQB1 typing. Results We observed that HLA-DQB1*0501 allele might be associated with susceptibility of reinfection with HPV (p = 0.01, OR = 4.9, CI 95% = 1.3 -18.7). Allele frequency of HLA-DRB1*14 was particularly reduced in patients with cancer when compared with the HPV–persistent group (p = 0.04), suggesting that this allele is a possible protective factor for the development of cervical cancer (OR = 2.98). HLA-DRB1*07 might be associated with viral clearance (p = 0.04). Conclusions Genetic markers for HPV infection susceptibility are different in each population, in Mexicans several HLA-DQB1 alleles might be associated with an enhanced risk for viral persistence. In contrast, DRB1*14, seems to confer protection against cervical cancer. PMID:24000898

  5. The use of reference strand-mediated conformational analysis for the study of cheetah (Acinonyx jubatus) feline leucocyte antigen class II DRB polymorphisms.

    PubMed

    Drake, G J C; Kennedy, L J; Auty, H K; Ryvar, R; Ollier, W E R; Kitchener, A C; Freeman, A R; Radford, A D

    2004-01-01

    There is now considerable evidence to suggest the cheetah (Acinonyx jubatus) has limited genetic diversity. However, the extent of this and its significance to the fitness of the cheetah population, both in the wild and captivity, is the subject of some debate. This reflects the difficulty associated with establishing a direct link between low variability at biologically significant loci and deleterious aspects of phenotype in this, and other, species. Attempts to study one such region, the feline leucocyte antigen (FLA), are hampered by a general reliance on cloning and sequencing which is expensive, labour-intensive, subject to PCR artefact and always likely to underestimate true variability. In this study we have applied reference strand-mediated conformational analysis (RSCA) to determine the FLA-DRB phenotypes of 25 cheetahs. This technique was rapid, repeatable and less prone to polymerase chain reaction (PCR)-induced sequence artefacts associated with cloning. Individual cheetahs were shown to have up to three FLA-DRB genes. A total of five alleles were identified (DRB*ha14-17 and DRB*gd01) distributed among four genotypes. Fifteen cheetahs were DRB*ha14/ha15/ha16/ha17, three were DRB*ha15/ha16/ha17, six were DRB*ha14/ha16/ha17 and one was DRB*ha14/ha15/ha16/ha17/gd01. Sequence analysis of DRB*gd01 suggested it was a recombinant of DRB*ha16 and DRB*ha17. Generation of new alleles is difficult to document, and the clear demonstration of such an event is unusual. This study confirms further the limited genetic variability of the cheetah at a biologically significant region. RSCA will facilitate large-scale studies that will be needed to correlate genetic diversity at such loci with population fitness in the cheetah and other species.

  6. Redirecting soluble antigen for MHC class I cross-presentation during phagocytosis.

    PubMed

    Hari, Aswin; Ganguly, Anutosh; Mu, Libing; Davis, Shevaun P; Stenner, Melanie D; Lam, Raymond; Munro, Fay; Namet, Inana; Alghamdi, Enaam; Fürstenhaupt, Tobias; Dong, Wei; Detampel, Pascal; Shen, Lian Jun; Amrein, Matthias W; Yates, Robin M; Shi, Yan

    2015-02-01

    Peptides presented by MHC class I molecules are mostly derived from proteins synthesized by the antigen-presenting cell itself, while peptides presented by MHC class II molecules are predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross-presentation. Here, we report that mouse dendritic cell (DC) engagement to a phagocytic target alters endocytic processing and inhibits the proteolytic activities. During phagocytosis, endosome maturation is delayed, shows less progression toward the lysosome, and the endocytosed soluble antigen is targeted for MHC class I cross-presentation. The antigen processing in these arrested endosomes is under the control of NAPDH oxidase associated ROS. We also show that cathepsin S is responsible for the generation of the MHC class I epitope. Taken together, our results suggest that in addition to solid structure uptake, DC phagocytosis simultaneously modifies the kinetics of endosomal trafficking and maturation. As a consequence, external soluble antigens are targeted into the MHC class I cross-presentation pathway.

  7. Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells.

    PubMed

    Chawla, Akhil; Alatrash, Gheath; Philips, Anne V; Qiao, Na; Sukhumalchandra, Pariya; Kerros, Celine; Diaconu, Iulia; Gall, Victor; Neal, Samantha; Peters, Haley L; Clise-Dwyer, Karen; Molldrem, Jeffrey J; Mittendorf, Elizabeth A

    2016-06-01

    Neutrophil elastase (NE) is an innate immune cell-derived inflammatory mediator that we have shown increases the presentation of tumor-associated peptide antigens in breast cancer. In this study, we extend these observations to show that NE uptake has a broad effect on enhancing antigen presentation by breast cancer cells. We show that NE increases human leukocyte antigen (HLA) class I expression on the surface of breast cancer cells in a concentration and time-dependent manner. HLA class I upregulation requires internalization of enzymatically active NE. Western blots of NE-treated breast cancer cells confirm that the expression of total HLA class I as well as the antigen-processing machinery proteins TAP1, LMP2, and calnexin does not change following NE treatment. This suggests that NE does not increase the efficiency of antigen processing; rather, it mediates the upregulation of HLA class I by stabilizing and reducing membrane recycling of HLA class I molecules. Furthermore, the effects of NE extend beyond breast cancer since the uptake of NE by EBV-LCL increases the presentation of HLA class I-restricted viral peptides, as shown by their increased sensitivity to lysis by EBV-specific CD8+ T cells. Together, our results show that NE uptake increases the responsiveness of breast cancer cells to adaptive immunity by broad upregulation of membrane HLA class I and support the conclusion that the innate inflammatory mediator NE enhances tumor cell recognition and increases tumor sensitivity to the host adaptive immune response.

  8. Characterization and expression of MHC class II alpha and II beta genes in mangrove red snapper (Lutjanus argentimaculatus).

    PubMed

    Wang, Tianyan; Tan, Shangjin; Cai, Zhonghua

    2015-12-01

    The major histocompatibility complex (MHC) class II plays a key role in adaptive immunity by presenting foreign peptides to CD4(+) T cells and by triggering the adaptive immune response. While the structure and function of MHC class II have been well characterized in mammalian, limited research has been done on fishes. In this study, we characterized the gene structure and expression of MHC class II α (Lunar-DAA) and II β (Lunar-DAB) of mangrove red snapper (Lutjanus argentimaculatus). Both genes shared, respectively, a high similarity and typical features with other vertebrate MHC class II α and II β. The phylogenetic analysis of the deduced peptides revealed that both Lunar-DAA and Lunar-DAB were located in the teleost subclass. Western blotting analyses indicated that both MHC class II α and II β were expressed ubiquitously in immune-related cells, tissues and organs, and that MHC class II α and II β chains existed mainly as heterodimers. While it was highly expressed in gills, thymus, head kidney (HK), spleen, head kidney macrophage and spleen leucocytes, MHC class II β chain was expressed with a low abundance in skin, intestine, stomach and heart. The highest expression of MHC class II β in thymus confirmed the conclusion that thymus is one of the primary lymphoid organs in fishes. The detection of MHC class II αβ dimers in HK macrophages and spleen leucocytes indicated that HK macrophages and spleen leucocytes play a critical role in the adaptive immunity in fishes. All these results provide valuable information for understanding the structure of MHC class II α and II β and their function in immune responses.

  9. Characterization and expression of MHC class II alpha and II beta genes in mangrove red snapper (Lutjanus argentimaculatus).

    PubMed

    Wang, Tianyan; Tan, Shangjin; Cai, Zhonghua

    2015-12-01

    The major histocompatibility complex (MHC) class II plays a key role in adaptive immunity by presenting foreign peptides to CD4(+) T cells and by triggering the adaptive immune response. While the structure and function of MHC class II have been well characterized in mammalian, limited research has been done on fishes. In this study, we characterized the gene structure and expression of MHC class II α (Lunar-DAA) and II β (Lunar-DAB) of mangrove red snapper (Lutjanus argentimaculatus). Both genes shared, respectively, a high similarity and typical features with other vertebrate MHC class II α and II β. The phylogenetic analysis of the deduced peptides revealed that both Lunar-DAA and Lunar-DAB were located in the teleost subclass. Western blotting analyses indicated that both MHC class II α and II β were expressed ubiquitously in immune-related cells, tissues and organs, and that MHC class II α and II β chains existed mainly as heterodimers. While it was highly expressed in gills, thymus, head kidney (HK), spleen, head kidney macrophage and spleen leucocytes, MHC class II β chain was expressed with a low abundance in skin, intestine, stomach and heart. The highest expression of MHC class II β in thymus confirmed the conclusion that thymus is one of the primary lymphoid organs in fishes. The detection of MHC class II αβ dimers in HK macrophages and spleen leucocytes indicated that HK macrophages and spleen leucocytes play a critical role in the adaptive immunity in fishes. All these results provide valuable information for understanding the structure of MHC class II α and II β and their function in immune responses. PMID:26454477

  10. The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways.

    PubMed

    Samie, Mohammad; Cresswell, Peter

    2015-07-01

    Dendritic cells (DCs) can initiate immune responses by presenting exogenous antigens to T cells via both major histocompatibility complex (MHC) class I pathways and MHC class II pathways. Lysosomal activity has an important role in modulating the balance between these two pathways. The transcription factor TFEB regulates lysosomal function by inducing lysosomal activation. Here we report that TFEB expression inhibited the presentation of exogenous antigen by MHC class I while enhancing presentation via MHC class II. TFEB promoted phagosomal acidification and protein degradation. Furthermore, we found that the activation of TFEB was regulated during DC maturation and that phagosomal acidification was impaired in DCs in which the gene encoding TFEB was silenced. Our data indicate that TFEB is a key participant in the differential regulation of the presentation of exogenous antigens by DCs.

  11. Characterization of the oligodeoxynucleotide-mediated inhibition of interferon-gamma-induced major histocompatibility complex class I and intercellular adhesion molecule-1.

    PubMed

    Ramanathan, M; Lantz, M; MacGregor, R D; Garovoy, M R; Hunt, C A

    1994-10-01

    The major histocompatibility complex (MHC) Class I and II genes and intercellular adhesion molecule-1 (ICAM-1) are regulated by interferon-gamma in a variety of cell types. We have previously shown that the oligodeoxynucleotide 5'-GGG GTT GGT TGT GTT GGG TGT TGT GT-RNH2 (oligo I) inhibits the interferon-gamma-mediated enhancement of MHC Class I and ICAM-1 proteins in the K562 cell line. We have now investigated the mechanism of action of oligo I and report that it acts by inhibiting the binding of interferon-gamma to cells. We also show that the dose-response curves, the selectivity profile, and the kinetics of oligo I are consistent with this novel mechanism of action. The dose-response curves for oligo I, obtained using antibodies against the MHC Class I heavy chain, beta 2-microglobulin, or ICAM-1, are almost superimposable at each observation time. MHC Class I induction by 6400 units/ml interferon-alpha or interferon-beta or ICAM-1 enhancement by 800 units/ml tumor necrosis factor-alpha is not inhibited by oligo I. However, the synergistic induction of MHC Class I by mixtures of tumor necrosis factor-alpha and interferon-gamma is inhibited. Oligo I belongs to a class of active oligodeoxynucleotides that inhibits interferon-gamma-induced MHC Class I and ICAM-1 in K562 cells. The activity and potency is sequence-dependent, but remarkably different sequences can have comparable effects. The activity of oligo I in the HeLa S3 cell line inhibits the interferon-gamma-mediated enhancement of both ICAM-1 and MHC Class II DR and the interferon-gamma-mediated reduction in transferrin receptor expression. Thus, oligo I appears to specifically inhibit interferon-gamma-induced changes in protein expression, which is consistent with oligo I acting at an early step(s) in the induction process. Taken together, our results show that oligo I exerts its effects by inhibiting the association of interferon-gamma with the cell surface, which is a novel mechanism of action for

  12. MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFNγ–independent fashion and during development

    PubMed Central

    Vagaska, B.; New, S. E. P.; Alvarez-Gonzalez, C.; D’Acquisto, F.; Gomez, S. G.; Bulstrode, N. W.; Madrigal, A.; Ferretti, P.

    2016-01-01

    Expression of major histocompatibility antigens class-2 (MHC-II) under non-inflammatory conditions is not usually associated with the nervous system. Comparative analysis of immunogenicity of human embryonic/fetal brain-derived neural stem cells (hNSCs) and human mesenchymal stem cells with neurogenic potential from umbilical cord (UC-MSCs) and paediatric adipose tissue (ADSCs), while highlighting differences in their immunogenicity, led us to discover subsets of neural cells co-expressing the neural marker SOX2 and MHC-II antigen in vivo during human CNS development. MHC-II proteins in hNSCs are functional, and differently regulated upon differentiation along different lineages. Mimicking an inflammatory response using the inflammatory cytokine IFNγ induced MHC-II up-regulation in both astrocytes and hNSCs, but not in UC-MSCs and ADSCs, either undifferentiated or differentiated, though IFNγ receptor expression was comparable. Together, hypoimmunogenicity of both UC-MSCs and ADSCs supports their suitability for allogeneic therapy, while significant immunogenicity of hNSCs and their progeny may at least in part underlie negative effects reported in some patients following embryonic neural cell grafts. Crucially, we show for the first time that MHC-II expression in developing human brains is not restricted to microglia as previously suggested, but is present in discrete subsets of neural progenitors and appears to be regulated independently of inflammatory stimuli. PMID:27080443

  13. Differential presentation of tumor antigen-derived epitopes by MHC-class I and antigen-positive tumor cells.

    PubMed

    Held, Gerhard; Neumann, Frank; Sturm, Christine; Kaestner, Lars; Dauth, Nina; de Bruijn, Diederik R; Renner, Christoph; Lipp, Peter; Pfreundschuh, Michael

    2008-10-15

    SSX2 is a member of the family of cancer/testis antigens. The SSX2 derived peptide SSX2(103-111) has been shown to be presented to cytotoxic T-lymphocytes (CTL) by Major-Histocompatibility (MHC) Class-I complexes after endogenous processing, more precisely by the allele HLA-A*0201. The HLA-A*0201- and SSX2-positive melanoma cell line SK-Mel-37 but not Me275 had been shown to elicit reactivity in SSX2(103-111) specific cytotoxic T-lymphocytes. To analyze the correlation between SSX2(103-111) presentation and T-cell stimulation, we intended to visualize presentation of SSX2(103-111) in these melanoma cell lines. Fab-antibodies were established from a human phage library with specificity for SSX2(103-111)/HLA-A*0201 complexes (but non-reactive with HLA-A*0201 or SSX2(103-111) alone) and used to visualize the presentation of SSX2(103-111) in the context of HLA-A*0201 by fluorescence microscopy. Presentation of SSX2(103-111) the context of HLA-A*0201 was demonstrated for the majority of SK-Mel-37, but for only a small fraction (<1%) of Me275 as indicated by a clear membrane-staining pattern in fluorescence microscopy. The presentation of SSX2(103-111) on SK-Mel37 and Me275, but not the expression of the SSX2 protein correlated with the capability of these cells to stimulate cells of an SSX2(103-111)-specific T-cell clone. MHC-peptide specific antibodies are a valuable tool for the analysis of antigenic peptides in the context of MHC-I molecules and for the structural definition of immunodominant epitopes. PMID:18688854

  14. Contrasting patterns of selection acting on MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota).

    PubMed

    Kuduk, K; Johanet, A; Allainé, D; Cohas, A; Radwan, J

    2012-08-01

    The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.

  15. Provocation of skin graft rejection across murine class II differences by non--bone-marrow-derived cells

    SciTech Connect

    Stuart, P.M.; Beck-Maier, B.; Melvold, R.W.

    1984-04-01

    We have evaluated the relative contribution of bone-marrow-derived cells to skin allograft immunogenicity in mice differing only at class II major histocompatibility genes by using bone marrow radiation chimeras as donors. The mouse strains used were C57BL/6Kh (B6) and B6.C-H-2bm12 (bm12), which differ only at at A beta gene of the I region of the mouse H-2 complex. Our results demonstrated that skin from (B6----bm12) chimeras was accepted by bm12 recipients and rejected by B6 mice in a manner indistinguishable from that of normal bm12 skin. Likewise, naive bm12 mice rejected (bm12----B6) chimeric skin and normal B6 skin equally well, and B6 animals accepted both types of skin grafts. Our data argues that the donor cell-type leading to graft rejection across limited I region differences is not of bone marrow origin, and that these cells must--at least under certain circumstances--express class II antigens.

  16. Molecular characterization of MHC class II in a nonmodel anuran species, the fire-bellied toad Bombina bombina.

    PubMed

    Hauswaldt, J Susanne; Stuckas, H; Pfautsch, S; Tiedemann, R

    2007-06-01

    While the anuran Xenopus comprises one of the best characterized nonmammalian taxa regarding the major histocompatibility complex (MHC), the organization of this gene complex has never been studied in other anurans, and information on amphibian MHC (other than Xenopus) is generally very scarce. Here, we describe the characterization of the first MHC class II B cDNA sequences from a nonmodel anuran species, the European fire-bellied toad (Bombina bombina). We isolated two transcript sequences differing substantially in amino acid composition and length within the beta2 domain. To investigate the variability of the peptide binding region in this species, we sequenced a 158-bp large fragment from wild B. bombina (n = 20) and identified eight distinct alleles. All substitutions but one were nonsynonymous, and many of the highly polymorphic sites corresponded with amino acid positions known to be involved in antigen binding. The level of variation we found in B. bombina was similar compared to that previously found in a comparable sample of a wild urodelan species, Ambystoma tigrinum, and to that found in Xenopus laevis. Based on the cDNA data and the individual's allelic diversity, we conclude that Bombina possesses at least two class II B loci. With our new beta1 primers, we were able to generate sequences in other species of anurans. We provide here a first phylogenetic analysis of this gene in amphibians.

  17. Tissue-specific, inducible and functional expression of the E alpha d MHC class II gene in transgenic mice.

    PubMed Central

    Pinkert, C A; Widera, G; Cowing, C; Heber-Katz, E; Palmiter, R D; Flavell, R A; Brinster, R L

    1985-01-01

    We have introduced the class II E alpha d gene into (C57BL/6 X SJL) F2 mice which do not express their endogenous E alpha gene. The mRNA expression of the E alpha d gene shows the same tissue distribution as the endogenous class II genes except in the case of one mouse, which carried 19 copies of the E alpha d gene. In this mouse expression of E alpha d mRNA was seen in all tissues tested. Expression of the transgene was induced by gamma-interferon in isolated macrophages from the transgenic mice. In addition, fluorescence activated cell sorter (FACS) analysis, mixed lymphocyte response and antigen-presentation experiments showed that the product of the transferred gene is expressed on the cell surface and functions as a major histocompatibility complex restriction element. Transmission of the gene occurred only with female transgenic mice, all males were infertile or did not transmit the gene, suggesting an effect of the transferred DNA sequence on male reproductive function. Images Fig. 2. PMID:3935430

  18. Structural Basis for the Recognition of Mutant Self by a Tumor-Specific, MHC Class II-Restricted T Cell Receptor

    SciTech Connect

    Deng,L.; Langley, R.; Brown, P.; Xu, G.; Teng, L.; Wang, Q.; Gonzales, M.; Callender, G.; Nishimura, M.; et al.

    2007-01-01

    Structural studies of complexes of T cell receptor (TCR) and peptide-major histocompatibility complex (MHC) have focused on TCRs specific for foreign antigens or native self. An unexplored category of TCRs includes those specific for self determinants bearing alterations resulting from disease, notably cancer. We determined here the structure of a human melanoma-specific TCR (E8) bound to the MHC molecule HLA-DR1 and an epitope from mutant triosephosphate isomerase. The structure had features intermediate between 'anti-foreign' and autoimmune TCR-peptide-MHC class II complexes that may reflect the hybrid nature of altered self. E8 manifested very low affinity for mutant triosephosphate isomerase-HLA-DR1 despite the highly tumor-reactive properties of E8 cells. A second TCR (G4) had even lower affinity but underwent peptide-specific formation of dimers, suggesting this as a mechanism for enhancing low-affinity TCR-peptide-MHC interactions for T cell activation.

  19. Variation in positively selected major histocompatibility complex class I loci in rufous-collared sparrows (Zonotrichia capensis).

    PubMed

    Jones, Matthew R; Cheviron, Zachary A; Carling, Matthew D

    2014-12-01

    The major histocompatibility complex (MHC) is a highly variable family of genes involved in parasite recognition and the initiation of adaptive immune system responses. Variation in MHC loci is maintained primarily through parasite-mediated selection or disassortative mate choice. To characterize MHC diversity of rufous-collared sparrows (Zonotrichia capensis), an abundant South American passerine, we examined allelic and nucleotide variation in MHC class I exon 3 using pyrosequencing. Exon 3 comprises a substantial portion of the peptide-binding region (PBR) of class I MHC and thus plays an important role in intracellular pathogen defense. We identified 98 putatively functional alleles that produce 56 unique protein sequences across at least 6 paralogous loci. Allelic diversity per individual and exon-wide nucleotide diversity were relatively low; however, we found specific amino acid positions with high nucleotide diversity and signatures of positive selection (elevated d N /d S ) that may correspond to the PBR. Based on the variation in physicochemical properties of amino acids at these "positively selected sites," we identified ten functional MHC supertypes. Spatial variation in nucleotide diversity and the number of MHC alleles, proteins, and supertypes per individual suggests that environmental heterogeneity may affect patterns of MHC diversity. Furthermore, populations with high MHC diversity have higher prevalence of avian malaria, consistent with parasite-mediated selection on MHC. Together, these results provide a framework for subsequent investigations of selective agents acting on MHC in Z. capensis. PMID:25186067

  20. Amino Acid Polymorphisms in Hepatitis C Virus Core Affect Infectious Virus Production and Major Histocompatibility Complex Class I Molecule Expression

    PubMed Central

    Tasaka-Fujita, Megumi; Sugiyama, Nao; Kang, Wonseok; Masaski, Takahiro; Murayama, Asako; Yamada, Norie; Sugiyama, Ryuichi; Tsukuda, Senko; Watashi, Koichi; Asahina, Yasuhiro; Sakamoto, Naoya; Wakita, Takaji; Shin, Eui-Cheol; Kato, Takanobu

    2015-01-01

    Amino acid (aa) polymorphisms in the hepatitis C virus (HCV) genotype 1b core protein have been reported to be a potent predictor for poor response to interferon (IFN)-based therapy and a risk factor for hepatocarcinogenesis. We investigated the effects of these polymorphisms with genotype 1b/2a chimeric viruses that contained polymorphisms of Arg/Gln at aa 70 and Leu/Met at aa 91. We found that infectious virus production was reduced in cells transfected with chimeric virus RNA that had Gln at aa 70 (aa70Q) compared with RNA with Arg at aa 70 (aa70R). Using flow cytometry analysis, we confirmed that HCV core protein accumulated in aa70Q clone transfected cells, and it caused a reduction in cell-surface expression of major histocompatibility complex (MHC) class I molecules induced by IFN treatment through enhanced protein kinase R phosphorylation. We could not detect any effects due to the polymorphism at aa 91. In conclusion, the polymorphism at aa 70 was associated with efficiency of infectious virus production, and this deteriorated virus production in strains with aa70Q resulted in the intracellular accumulation of HCV proteins and attenuation of MHC class I molecule expression. These observations may explain the strain-associated resistance to IFN-based therapy and hepatocarcinogenesis of HCV. PMID:26365522

  1. MHC class II transcription is associated with inflammatory responses in a wild marine mammal.

    PubMed

    Montano-Frías, Jorge E; Vera-Massieu, Camila; Álvarez-Martínez, Roberto; Flores-Morán, Adriana; Acevedo-Whitehouse, Karina

    2016-08-01

    Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population. PMID:27137083

  2. Allelic diversity at class II DRB1 and DQB loci of the pig MHC (SLA).

    PubMed

    Kanai, T H; Tanioka, Y; Tanigawa, M; Matsumoto, Y; Ueda, S; Onodera, T; Matsumoto, Y

    1999-12-01

    The loci encoding the beta chain of the pig major histocompatibility complex (MHC) class II antigens, SLA-DR and -DQ, have been known to exhibit a remarkable degree of allelic polymorphism. Here, to understand the generation of SLA class II polymorphism, 25 SLA-DRB1 and 24 SLA-DQB genes including newly identified 12 SLA-DRB1 and 7 SLA-DQB genes obtained from miniature pigs were analyzed based on the nucleotide and deduced amino acid sequences. Most of the allelic diversity was attributed to the variable sequences which encode a beta1 domain consisting of a beta-pleated sheet followed by an a helix. In the beta1 domain coding region, there were four GC-rich sequences, which have been considered to involve the intra-exon sequence exchange also in other gene evolutions. The first and second GC-rich sequences were alpha-like sequences, which have been shown to be a putative recombination signal, and were stably conserved among SLA-DRB1 and DQB genes. These alpha-like sequences identified in SLA-DRB1 and SLA-DQB were found to encode the first turning point of the beta-pleated sheet and the boundary between the beta-pleated sheet and the alpha helix. Analysis of clustered sequence variation also suggested intra-exon gene conversions in which the alpha-like sequences act as putative breakpoints. In addition to point mutations and selection mechanism, intra-exon gene conversions must be an important mechanism in the generation of allelic polymorphism at the SLA-DRB1 and SLA-DQB.

  3. Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules

    PubMed Central

    Prevosto, Claudia; Usmani, M. Farooq; McDonald, Sarah; Gumienny, Aleksandra M.; Key, Tim; Goodman, Reyna S.; Gaston, J. S. Hill; Deery, Michael J.; Busch, Robert

    2016-01-01

    Major histocompatibility complex class I (MHCI) glycoproteins present cytosolic peptides to CD8+ T cells and regulate NK cell activity. Their heavy chains (HC) are expressed from up to three MHC gene loci (human leukocyte antigen [HLA]-A, -B, and -C in humans), whose extensive polymorphism maps predominantly to the antigen-binding groove, diversifying the bound peptide repertoire. Codominant expression of MHCI alleles is thus functionally critical, but how it is regulated is not fully understood. Here, we have examined the effect of polymorphism on the turnover rates of MHCI molecules in cell lines with functional MHCI peptide loading pathways and in monocyte-derived dendritic cells (MoDCs). Proteins were labeled biosynthetically with heavy water (2H2O), folded MHCI molecules immunoprecipitated, and tryptic digests analysed by mass spectrometry. MHCI-derived peptides were assigned to specific alleles and isotypes, and turnover rates quantified by 2H incorporation, after correcting for cell growth. MHCI turnover half-lives ranged from undetectable to a few hours, depending on cell type, activation state, donor, and MHCI isotype. However, in all settings, the turnover half-lives of alleles of the same isotype were similar. Thus, MHCI protein turnover rates appear to be allele-independent in normal human cells. We propose that this is an important feature enabling the normal function and codominant expression of MHCI alleles. PMID:27529174

  4. Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules.

    PubMed

    Prevosto, Claudia; Usmani, M Farooq; McDonald, Sarah; Gumienny, Aleksandra M; Key, Tim; Goodman, Reyna S; Gaston, J S Hill; Deery, Michael J; Busch, Robert

    2016-01-01

    Major histocompatibility complex class I (MHCI) glycoproteins present cytosolic peptides to CD8+ T cells and regulate NK cell activity. Their heavy chains (HC) are expressed from up to three MHC gene loci (human leukocyte antigen [HLA]-A, -B, and -C in humans), whose extensive polymorphism maps predominantly to the antigen-binding groove, diversifying the bound peptide repertoire. Codominant expression of MHCI alleles is thus functionally critical, but how it is regulated is not fully understood. Here, we have examined the effect of polymorphism on the turnover rates of MHCI molecules in cell lines with functional MHCI peptide loading pathways and in monocyte-derived dendritic cells (MoDCs). Proteins were labeled biosynthetically with heavy water (2H2O), folded MHCI molecules immunoprecipitated, and tryptic digests analysed by mass spectrometry. MHCI-derived peptides were assigned to specific alleles and isotypes, and turnover rates quantified by 2H incorporation, after correcting for cell growth. MHCI turnover half-lives ranged from undetectable to a few hours, depending on cell type, activation state, donor, and MHCI isotype. However, in all settings, the turnover half-lives of alleles of the same isotype were similar. Thus, MHCI protein turnover rates appear to be allele-independent in normal human cells. We propose that this is an important feature enabling the normal function and codominant expression of MHCI alleles. PMID:27529174

  5. Regulation of calreticulin-major histocompatibility complex (MHC) class I interactions by ATP.

    PubMed

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K; Arora, Karunesh; Brooks, Charles L; Raghavan, Malini

    2015-10-13

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin-substrate interactions and as key determinants of PLC dynamics.

  6. Unusual association of. beta. /sub 2/-microglobulin with certain class I heavy chains of the murine major histocompatibility complex

    SciTech Connect

    Bushkin, Y.; Tung, J.S.; Pinter, A.; Michaelson, J.; Boyse, E.A.

    1986-01-01

    Class I products of the major histocompatibility complex (MHC) comprise a heavy chain of about 45 kDa noncovalently linked to a 12-kDa ..beta../sub 2/-microglobulin (..beta../sub 2/m) light chain encoded on a different chromosome. The authors find that class I products of some mouse strains include an additional 62-kDa molecule which on the following evidence consists of a heavy chain linked covalently with ..beta../sub 2/m. Production of the 62-kDa protein invariably accorded with the occurrence of cysteine at position 121 of the heavy chain (K/sup b/, K/sup bm3/, D/sup d/, and L/sup d/). Substitution of arginine at position 121 invariably accorded with absence of the 62-kDa protein (K/sup bm6/, K/sup bm7/, K/sup bm9/, K/sup d/, and D/sup b/). On the basis of observed production versus nonproduction of the 62-kDa molecule, predictions are made regarding residue 121 in class I products for which this is not yet known; namely, K/sup k/, K/sup s/, and D/sup k/, which produce the 62-kDa molecule, as compared with K/sup j/, Qa-2, and TL, which do not. Reported differences in immunologic reactivity between K/sup b/ mutant strains with Arg-121 in place of Cys-121 imply that the occurrence of 62-kDa class I products in mice of Cys-121 genotype has functional consequences. Lymph node cells were labelled with (/sup 35/S)cysteine and Na/sup 125/I.

  7. Organization and evolution of D region class I genes in the mouse major histocompatibility complex

    PubMed Central

    1986-01-01

    Chromosome walking has been used to study the organization of the class I genes in the D and Qa regions of the MHC of the BALB/c mouse and in the D region of the AKR mouse. Five and eight class I genes are found in the D and Qa regions of the BALB/c mouse, respectively, while the AKR mouse contains only a single class I D region gene that has been identified by transfection as the Dk gene. Restriction map homologies and crosshybridization experiments suggest that the multiple class I genes in the D region of the BALB/c mouse have been generated by unequal crossing-over involving class I genes from the Qa region. The expanded D region of BALB/c and other H-2d haplotype mouse strains appears to be metastable, since evidence for gene contraction in the Dd region has been found in two mutant strains. Thus the D region and also the Qa region class I genes are in a dynamic state, evolving by gene expansion and contraction. PMID:3701254

  8. Coronavirus induction of class I major histocompatibility complex expression in murine astrocytes is virus strain specific

    PubMed Central

    1994-01-01

    Neurotropic strains of mouse hepatitis viruses (MHV) such as MHV-A59 (A59) and MHV-4 (JHMV) cause acute and chronic encephalomyelitis and demyelination in susceptible strains of mice and rats. They are widely used as models of human demyelinating diseases such as multiple sclerosis (MS), in which immune mechanisms are thought to participate in the development of lesions in the central nervous system (CNS). The effects of MHV infection on target cell functions in the CNS are not well understood, but A59 has been shown to induce the expression of MHC class I molecules in glial cells after in vivo and in vitro infection. Changes in class I expression in infected cells may contribute to the immunopathogenesis of MHV infection in the CNS. In this communication, a large panel of MHV strains was tested for their ability to stimulate class I expression in primary astrocytes in vitro. The data show that the more hepatotropic strains, such as MHV-A59, MHV-1, MHV-2, MHV-3, MHV-D, MHV-K, and MHV-NuU, were potent inducers of class I expression in astrocytes during acute infection, measured by radioimmunoassay. The Kb molecule was preferentially expressed over Db. By contrast, JHMV and several viral strains derived from it did not stimulate the expression of class I molecules. Assays of virus infectivity indicated that the class I-inducing activity did not correlate with the ability of the individual viral strain to replicate in astrocytes. However, exposure of the viruses or the supernatants from infected astrocytes to ultraviolet light abolished the class I-inducing activity, indicating that infectious virus is required for class I expression. These data also suggest that class I expression was induced directly by virus infection, and not by the secretion of a soluble substance into the medium by infected astrocytes. Finally, analyses of A59/JHMV recombinant viral strains suggest that class I-inducing activity resides in one of the A59 structural genes. PMID:8064222

  9. The class II transactivator (CIITA) is regulated by post-translational modification cross-talk between ERK1/2 phosphorylation, mono-ubiquitination and Lys63 ubiquitination.

    PubMed

    Morgan, Julie E; Shanderson, Ronald L; Boyd, Nathaniel H; Cacan, Ercan; Greer, Susanna F

    2015-06-19

    The class II transactivator (CIITA) is known as the master regulator for the major histocompatibility class II (MHC II) molecules. CIITA is dynamically regulated through a series of intricate post-translational modifications (PTMs). CIITA's role is to initiate transcription of MHC II genes, which are responsible for presenting extracellular antigen to CD4(+) T-cells. In the present study, we identified extracellular signal-regulated kinase (ERK)1/2 as the kinase responsible for phosphorylating the regulatory site, Ser(280), which leads to increased levels of mono-ubiquitination and an overall increase in MHC II activity. Further, we identify that CIITA is also modified by Lys(63)-linked ubiquitination. Lys(63) ubiquitinated CIITA is concentrated in the cytoplasm and following activation of ERK1/2, CIITA phosphorylation occurs and Lys=ubiquitinated CIITA translocates to the nucleus. CIITA ubiquitination and phosphorylation perfectly demonstrates how CIITA location and activity is regulated through PTM cross-talk. Identifying CIITA PTMs and understanding how they mediate CIITA regulation is necessary due to the critical role CIITA has in the initiation of the adaptive immune response.

  10. Us3 kinase encoded by herpes simplex virus 1 mediates downregulation of cell surface major histocompatibility complex class I and evasion of CD8+ T cells.

    PubMed

    Imai, Takahiko; Koyanagi, Naoto; Ogawa, Ryo; Shindo, Keiko; Suenaga, Tadahiro; Sato, Ayuko; Arii, Jun; Kato, Akihisa; Kiyono, Hiroshi; Arase, Hisashi; Kawaguchi, Yasushi

    2013-01-01

    Detection and elimination of virus-infected cells by CD8(+) cytotoxic T lymphocytes (CTLs) depends on recognition of virus-derived peptides presented by major histocompatibility complex class I (MHC-I) molecules on the surface of infected cells. In the present study, we showed that inactivation of the activity of viral kinase Us3 encoded by herpes simplex virus 1 (HSV-1), the etiologic agent of several human diseases and a member of the alphaherpesvirinae, significantly increased cell surface expression of MHC-I, thereby augmenting CTL recognition of infected cells in vitro. Overexpression of Us3 by itself had no effect on cell surface expression of MHC-I and Us3 was not able to phosphorylate MHC-I in vitro, suggesting that Us3 indirectly downregulated cell surface expression of MHC-I in infected cells. We also showed that inactivation of Us3 kinase activity induced significantly more HSV-1-specific CD8(+) T cells in mice. Interestingly, depletion of CD8(+) T cells in mice significantly increased replication of a recombinant virus encoding a kinase-dead mutant of Us3, but had no effect on replication of a recombinant virus in which the kinase-dead mutation was repaired. These results indicated that Us3 kinase activity is required for efficient downregulation of cell surface expression of MHC-I and mediates evasion of HSV-1-specific CD8(+) T cells. Our results also raised the possibility that evasion of HSV-1-specific CD8(+) T cells by HSV-1 Us3-mediated inhibition of MHC-I antigen presentation might in part contribute to viral replication in vivo.

  11. MHC class I antigen presentation: learning from viral evasion strategies.

    PubMed

    Hansen, Ted H; Bouvier, Marlene

    2009-07-01

    The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus-host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.

  12. Transgenic mice with enhanced neuronal major histocompatibility complex class I expression recover locomotor function better after spinal cord injury.

    PubMed

    Joseph, M Selvan; Bilousova, Tina; Zdunowski, Sharon; Wu, Zhongqi-Phyllis; Middleton, Blake; Boudzinskaia, Maia; Wong, Bonnie; Ali, Noore; Zhong, Hui; Yong, Jing; Washburn, Lorraine; Escande-Beillard, Nathalie; Dang, Hoa; Edgerton, V Reggie; Tillakaratne, Niranjala J K; Kaufman, Daniel L

    2011-03-01

    Mice that are deficient in classical major histocompatibility complex class I (MHCI) have abnormalities in synaptic plasticity and neurodevelopment and have more extensive loss of synapses and reduced axon regeneration after sciatic nerve transection, suggesting that MHCI participates in maintaining synapses and axon regeneration. Little is known about the biological consequences of up-regulating MHCI's expression on neurons. To understand MHCI's neurobiological activity better, and in particular its role in neurorepair after injury, we have studied neurorepair in a transgenic mouse model in which classical MHCI expression is up-regulated only on neurons. Using a well-established spinal cord injury (SCI) model, we observed that transgenic mice with elevated neuronal MHCI expression had significantly better recovery of locomotor abilities after SCI than wild-type mice. Although previous studies have implicated inflammation as both deleterious and beneficial for recovery after SCI, our results point directly to enhanced neuronal MHCI expression as a beneficial factor for promoting recovery of locomotor function after SCI.

  13. Major Histocompatibility Complex class I proteins are critical for maintaining neuronal structural complexity in the aging brain.

    PubMed

    Lazarczyk, Maciej J; Kemmler, Julia E; Eyford, Brett A; Short, Jennifer A; Varghese, Merina; Sowa, Allison; Dickstein, Daniel R; Yuk, Frank J; Puri, Rishi; Biron, Kaan E; Leist, Marcel; Jefferies, Wilfred A; Dickstein, Dara L

    2016-01-01

    Major histocompatibility complex class I (MHCI) proteins have been implicated in neuronal function through the modulation of neuritogenesis, synaptogenesis, synaptic plasticity, and memory consolidation during development. However, the involvement of MHCI in the aged brain is unclear. Here we demonstrate that MHCI deficiency results in significant dendritic atrophy along with an increase in thin dendritic spines and a reduction in stubby spines in the hippocampus of aged (12 month old) mice. Ultrastructural analyses revealed a decrease in spine head diameter and post synaptic density (PSD) area, as well as an increase in overall synapse density, and non-perforated, small spines. Interestingly, we found that the changes in synapse density and morphology appear relatively late (after the age of 6 months). Finally, we found a significant age dependent increase in the levels of the glutamate receptor, GluN2B in aged MHCI knockout mice, with no change in GluA2/3, VGluT1, PSD95 or synaptophysin. These results indicate that MHCI may be also be involved in maintaining brain integrity at post-developmental stages notably in the modulation of neuronal and spine morphology and synaptic function during non-pathological aging which could have significant implications for cognitive function. PMID:27229916

  14. Expression of major histocompatibility complex class I-related chain A/B (MICA/B) in pancreatic carcinoma.

    PubMed

    Dambrauskas, Zilvinas; Svensson, Helena; Joshi, Meghnad; Hyltander, Anders; Naredi, Peter; Iresjö, Britt-Marie

    2014-01-01

    Major histocompatibility complex class I-related chain A and B (MICA/B) are two stress-inducible ligands that bind to the immunoreceptor NKG2D and play an important role in mediating cytotoxicity of NK and T cells. Release of MIC molecules from the cell surface is thought to constitute an immune escape mechanism of tumor cells and thus could be associated with more aggressive course of tumor growth. In this study, we investigated the expression of MICA/B in ductal pancreatic carcinoma and serum in relation to tumor stage, differentiation and survival. MICA/B expression in tumor tissues and sera from patients with pancreatic cancer were analyzed by immunohistochemical staining (IHC), western blotting and ELISA, respectively. MICA/B expression was present in 17 of 22 (77%) of the tumors but not in normal pancreatic ductal epithelial cells. Poorly differentiated tumors showed more pronounced MICA/B expression compared to differentiated tumors, but did not correlate significantly to other tumor characteristics. MICA/B-negative tumors displayed significantly lower incidence of lymph node metastases (p<0.01), and less mortality within 3 years following resection (p<0.02). In conclusion, tissue levels of MICA/B expression were elevated in pancreatic cancer cells without elevated levels in serum, despite well-recognized acute phase reactants in serum. Poorly differentiated tumors showed high MICA/B expression, which was related to extended tumor lymph node metastases and less frequent long-term survival.

  15. Constraints within major histocompatibility complex class I restricted peptides: Presentation and consequences for T-cell recognition

    SciTech Connect

    Theodossis, Alex; Guillonneau, Carole; Welland, Andrew; Ely, Lauren K.; Clements, Craig S.; Williamson, Nicholas A.; Webb, Andrew I.; Wilce, Jacqueline A.; Mulder, Roger J.; Dunstone, Michelle A.; Doherty, Peter C.; McCluskey, James; Purcell, Anthony W.; Turner, Stephen J.; Rossjohn, Jamie

    2010-03-24

    Residues within processed protein fragments bound to major histocompatibility complex class I (MHC-I) glycoproteins have been considered to function as a series of 'independent pegs' that either anchor the peptide (p) to the MHC-I and/or interact with the spectrum of {alpha}{beta}-T-cell receptors (TCRs) specific for the pMHC-I epitope in question. Mining of the extensive pMHC-I structural database established that many self- and viral peptides show extensive and direct interresidue interactions, an unexpected finding that has led us to the idea of 'constrained' peptides. Mutational analysis of two constrained peptides (the HLA B44 restricted self-peptide (B44DP{alpha}-EEFGRAFSF)) and an H2-D{sup b} restricted influenza peptide (D{sup b}PA, SSLENFRAYV) demonstrated that the conformation of the prominently exposed arginine in both peptides was governed by interactions with MHC-I-orientated flanking residues from the peptide itself. Using reverse genetics in a murine influenza model, we revealed that mutation of an MHC-I-orientated residue (SSLENFRAYV {yields} SSLENARAYV) within the constrained PA peptide resulted in a diminished cytotoxic T lymphocyte (CTL) response and the recruitment of a limited pMHC-I specific TCR repertoire. Interactions between individual peptide positions can thus impose fine control on the conformation of pMHC-I epitopes, whereas the perturbation of such constraints can lead to a previously unappreciated mechanism of viral escape.

  16. Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis.

    PubMed

    Song, SungWon; Miranda, Carlos J; Braun, Lyndsey; Meyer, Kathrin; Frakes, Ashley E; Ferraiuolo, Laura; Likhite, Shibi; Bevan, Adam K; Foust, Kevin D; McConnell, Michael J; Walker, Christopher M; Kaspar, Brian K

    2016-04-01

    Astrocytes isolated from individuals with amyotrophic lateral sclerosis (ALS) are toxic to motor neurons (MNs) and play a non-cell autonomous role in disease pathogenesis. The mechanisms underlying the susceptibility of MNs to cell death remain unclear. Here we report that astrocytes derived from either mice bearing mutations in genes associated with ALS or human subjects with ALS reduce the expression of major histocompatibility complex class I (MHCI) molecules on MNs; reduced MHCI expression makes these MNs susceptible to astrocyte-induced cell death. Increasing MHCI expression on MNs increases survival and motor performance in a mouse model of ALS and protects MNs against astrocyte toxicity. Overexpression of a single MHCI molecule, HLA-F, protects human MNs from ALS astrocyte-mediated toxicity, whereas knockdown of its receptor, the killer cell immunoglobulin-like receptor KIR3DL2, on human astrocytes results in enhanced MN death. Thus, our data indicate that, in ALS, loss of MHCI expression on MNs renders them more vulnerable to astrocyte-mediated toxicity. PMID:26928464

  17. Selective modulation of MHC class II chaperons by a novel IFN-γ-inducible class II transactivator variant in lung adenocarcinoma A549 cells.

    PubMed

    Chiu, Bau-Lin; Li, Chia-Hsuan; Chang, Chien-Chung

    2013-10-11

    Class II transactivator (CIITA) plays a critical role in controlling major histocompatibility complex (MHC) class II gene expression. In this study, two novel alternatively spliced variants of human interferon (IFN)-γ-inducible CIITA, one missing exon 7 (CIITAΔE7), the other with TAG inserted at exon 4/5 junction (CIITA-TAG), were identified and characterized. Both variants are naturally occurring since they are present in primary cells. Unlike CIITA-TAG, CIITAΔE7 is expressed more abundantly in lung adenocarcinoma A549 cells than in the non-transformed counterpart BEAS-2B cells following IFN-γ stimulation. Transfection experiments showed that CIITAΔE7 induced a markedly lower level of surface HLA-DR, -DP, -DQ expression than CIITA-TAG in A549 cells but not in BEAS-2B cells, although both variants elicited similar amounts of total DR, DP, and DQ proteins. This differential effect was correlated with, in A549 cells, decreased expression of Ii and HLA-DM genes, along with increased expression of HLA-DO genes. Ii and HLA-DM are chaperons assisting in HLA class II assembly, while HLA-DO functions to inhibit endosomal peptide loading and HLA class II membrane transport. These findings raise the possibility that CIITAΔE7 interacts with unknown cancer-associated factors to selectively modulate genes involved in the assembly and transport of HLA class II molecules.

  18. A Recombinant Antibody with the Antigen-Specific, Major Histocompatibility Complex-Restricted Specificity of T Cells

    NASA Astrophysics Data System (ADS)

    Andersen, Peter S.; Stryhn, Anette; Hansen, Bjarke E.; Fugger, Lars; Engberg, Jan; Buus, Soren

    1996-03-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.

  19. H2-M3 Major Histocompatibility Complex Class Ib-Restricted CD8 T Cells Induced by Salmonella enterica Serovar Typhimurium Infection Recognize Proteins Released by Salmonella Serovar Typhimurium

    PubMed Central

    Ugrinovic, S.; Brooks, C. G.; Robson, J.; Blacklaws, B. A.; Hormaeche, C. E.; Robinson, J. H.

    2005-01-01

    Salmonella enterica serovar Typhimurium causes a typhoid-like disease in mice which has been studied extensively as a model for typhoid fever in humans. CD8 T cells contribute to protection against S. enterica serovar Typhimurium in mice, but little is known about the specificity and major histocompatibility complex (MHC) restriction of the response. We report here that CD8 T-cell lines derived from S. enterica serovar Typhimurium-infected BALB/c mice lysed bone marrow macrophages infected with S. enterica serovar Typhimurium or pulsed with proteins from S. enterica serovar Typhimurium culture supernatants. Cytoxicity was beta-2-microglobulin dependent and largely TAP dependent, although not MHC class Ia restricted, as target cells of several different MHC haplotypes were lysed. The data suggested the participation of class Ib MHC molecules although no evidence for the presence of Qa1-restricted T cells could be found, unlike in previous reports. Instead, the T-cell lines lysed H2-M3-transfected fibroblasts infected with S. enterica serovar Typhimurium SL3261 or treated with Salmonella culture supernatants. Thus, this report increases the number of MHC class Ib antigen-presenting molecules known for Salmonella antigens to three: Qa-1, HLA-E, and now H2-M3. It also expands the range of pathogens that induce H2-M3-restricted CD8 T cells to include an example of gram-negative bacteria. PMID:16299293

  20. Retinoids act as multistep modulators of the major histocompatibility class I presentation pathway and sensitize neuroblastomas to cytotoxic lymphocytes.

    PubMed

    Vertuani, Simona; De Geer, Anna; Levitsky, Victor; Kogner, Per; Kiessling, Rolf; Levitskaya, Jelena

    2003-11-15

    The current therapeutic modalities achieve low response rates in human neuroblastoma, a frequent extracranial malignancy of the early childhood. We have assessed the effect of retinoids, used presently for the treatment of neuroblastoma, on the discrete steps of the MHC class I processing machinery and susceptibility of neuroblastoma cells to CTL-mediated killing. We demonstrate that retinoic acid derivatives induce the expression of proteolytic and regulatory subunits of the immunoproteasome, increase the half-life of MHC class I complexes, and enhance the sensitivity of neuroblastoma cells to both MHC class I-restricted peptide-specific and HLA nonrestricted lysis by CTLs. Importantly, effects of retinoids on the MHC class I pathway appear to be independent of IFN-gamma and/or TNF-alpha as intermediate messengers. To our knowledge, this is the first demonstration of inflammation-unrelated biological molecules that induce systemic modulation of antigen presentation in nonprofessional antigen presenting cells. Our findings suggest that the application of retinoids and T cell-based immunotherapy may be an effective combination for the treatment of neuroblastoma.

  1. Evolutionary history of black grouse major histocompatibility complex class IIB genes revealed through single locus sequence-based genotyping

    PubMed Central

    2013-01-01

    Background Gene duplications are frequently observed in the Major Histocompatibility Complex (MHC) of many species, and as a consequence loci belonging to the same MHC class are often too similar to tell apart. In birds, single locus genotyping of MHC genes has proven difficult due to concerted evolution homogenizing sequences at different loci. But studies on evolutionary history, mode of selection and heterozygosity correlations on the MHC cannot be performed before it is possible to analyse duplicated genes separately. In this study we investigate the architecture and evolution of the MHC class IIB genes in black grouse. We developed a sequence-based genotyping method for separate amplification of the two black grouse MHC class IIB genes BLB1 and BLB2. Based on this approach we are able to study differences in structure and selection between the two genes in black grouse and relate these results to the chicken MHC structure and organization. Results Sequences were obtained from 12 individuals and separated into alleles using the software PHASE. We compared nucleotide diversity measures and employed selection tests for BLB1 and BLB2 to explore their modes of selection. Both BLB1 and BLB2 are transcribed and display classic characteristics of balancing selection as predicted for expressed MHC class IIB genes. We found evidence for both intra- and interlocus recombination or gene conversion, as well as indication for positive but differential selection at both loci. Moreover, the two loci appear to be linked. Phylogenetic analyses revealed orthology of the black grouse MHC class IIB genes to the respective BLB loci in chicken. Conclusions The results indicate that the duplication of the BLB gene occurred before the species divergence into black grouse, chicken and pheasant. Further, we conclude that BLB1 and BLB2 in black grouse are subjected to homogenizing concerted evolution due to interlocus genetic exchange after species divergence. The loci are in linkage

  2. Lectin-deficient calnexin is capable of binding class I histocompatibility molecules in vivo and preventing their degradation.

    PubMed

    Leach, Michael R; Williams, David B

    2004-03-01

    Calnexin is a membrane-bound lectin of the endoplasmic reticulum (ER) that binds transiently to newly synthesized glycoproteins. By interacting with oligosaccharides of the form Glc(1)Man(9)GlcNAc(2), calnexin enhances the folding of glycoprotein substrates, retains misfolded variants in the ER, and in some cases participates in their degradation. Calnexin has also been shown to bind polypeptides in vivo that do not possess a glycan of this form and to function in vitro as a molecular chaperone for nonglycosylated proteins. To test the relative importance of the lectin site compared with the polypeptide-binding site, we have generated six calnexin mutants defective in oligosaccharide binding using site-directed mutagenesis. Expressed as glutathione S-transferase fusions, these mutants were still capable of binding ERp57, a thiol oxidoreductase, and preventing the aggregation of a nonglycosylated substrate, citrate synthase. They were, however, unable to bind Glc(1) Man(9)GlcNAc(2) oligosaccharide and were compromised in preventing the aggregation of the monoglucosylated substrate jack bean alpha-mannosidase. Two of these mutants were then engineered into full-length calnexin for heterologous expression in Drosophila cells along with the murine class I histocompatibility molecules K(b) and D(b) as model glycoproteins. In this system, lectin site-defective calnexin was able to replace wild type calnexin in forming a complex with K(b) and D(b) heavy chains and preventing their degradation. Thus, at least for class I molecules, the lectin site of calnexin is dispensable for some of its chaperone functions. PMID:14699098

  3. Geometry Dynamics of α-Helices in Different Class I Major Histocompatibility Complexes

    PubMed Central

    Ribarics, Reiner; Kenn, Michael; Karch, Rudolf; Ilieva, Nevena; Schreiner, Wolfgang

    2015-01-01

    MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR. PMID:26649324

  4. Characterization and 454 pyrosequencing of Major Histocompatibility Complex class I genes in the great tit reveal complexity in a passerine system

    PubMed Central

    2012-01-01

    Background The critical role of Major Histocompatibility Complex (Mhc) genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major) from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help understanding how parasite

  5. Functional analysis of Mycoplasma arthritidis-derived mitogen interactions with class II molecules.

    PubMed Central

    Bernatchez, C; Al-Daccak, R; Mayer, P E; Mehindate, K; Rink, L; Mecheri, S; Mourad, W

    1997-01-01

    The ability of superantigens (SAGs) to trigger various cellular events via major histocompatibility complex (MHC) class II molecules is largely mediated by their mode of interaction. Having two MHC class II binding sites, staphylococcal enterotoxin A (SEA) is able to dimerize MHC class II molecules on the cell surface and consequently induces cytokine gene expression in human monocytes. In contrast, cross-linking with specific monoclonal antibodies or T-cell receptor is required for staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin 1 (TSST-1) to induce similar responses. In the present study, we report how Mycoplasma arthritidis-derived mitogen (MAM) may interact with MHC class II molecules to induce cytokine gene expression in human monocytes. The data presented indicate that MAM-induced cytokine gene expression in human monocytes is Zn2+ dependent. The MAM-induced response is completely abolished by pretreatment with SEA mutants that have lost their capacity to bind either the MHC class II alpha or beta chain, with wild-type SEB, or with wild-type TSST-1, suggesting that MAM induces cytokine gene expression most probably by inducing dimerization of class II molecules. In addition, it seems that SEA and MAM interact with the same or overlapping binding sites on the MHC class II beta chain and, on the other hand, that they bind to the alpha chain most probably through the regions that are involved in SEB and TSST-1 binding. PMID:9169724

  6. MHC class II genes in the European badger (Meles meles): characterization, patterns of variation, and transcription analysis.

    PubMed

    Sin, Yung Wa; Dugdale, Hannah L; Newman, Chris; Macdonald, David W; Burke, Terry

    2012-04-01

    The major histocompatibility complex (MHC) comprises many genes, some of which are polymorphic with numerous alleles. Sequence variation among alleles is most pronounced in exon 2 of the class II genes, which encodes the α1 and β1 domains that form the antigen-binding site (ABS) for the presentation of peptides. The MHC thus plays an important role in pathogen defense. European badgers (Meles meles) are a good species in which to study the MHC, as they harbor a variety of pathogens. We present the first characterization of MHC class II genes, isolated from genomic DNA (gDNA) and complementary DNA (cDNA), in the European badger. Examination of seven individuals revealed four DRB, two DQB, two DQA, and two DRA putatively functional gDNA sequences. All of these sequences, except DRA, exhibited high variability in exon 2; DRB had the highest variability. The ABS codons demonstrated high variability, due potentially to balancing selection, while non-ABS codons had lower variability. Positively selected sites were detected in DRB and DQA. Phylogenetic analysis demonstrated trans-species polymorphism of class II genes. Comparison with cDNA from whole blood revealed that only DRB had a transcription pattern reflecting the alleles that were present in the gDNA, while the other three genes had disparities between gDNA and cDNA. Only one sequence was transcribed, even though two gDNA sequences were present, from each of both DQB and DRA. Our characterization of badger MHC sequences forms a basis for further studies of MHC variability, mate choice, and pathogen resistance in this, and other, species. PMID:22038175

  7. Early failure of Class II resin composite versus Class II amalgam restorations placed by dental students.

    PubMed

    Overton, J D; Sullivan, Diane J

    2012-03-01

    Using the information from remake request slips in a dental school's predoctoral clinic, we examined the short-term survival of Class II resin composite restorations versus Class II dental amalgam restorations. In the student clinic, resin composite is used in approximately 58 percent of Class II restorations placed, and dental amalgam is used in the remaining 42 percent. In the period examined, Class II resin composite restorations were ten times more likely to be replaced at no cost to the patient than Class II dental amalgam restorations. A total of eighty-four resin composite restorations and six amalgam restorations were replaced due to an identified failure.

  8. Isolation of human CD4/CD8 double-positive, graft-versus-host disease-protective, minor histocompatibility antigen-specific regulatory T cells and of a novel HLA-DR7-restricted HY-specific CD4 clone.

    PubMed

    Eljaafari, Assia; Yuruker, Ozel; Ferrand, Christophe; Farre, Annie; Addey, Caroline; Tartelin, Marie-Laure; Thomas, Xavier; Tiberghien, Pierre; Simpson, Elizabeth; Rigal, Dominique; Scott, Diane

    2013-01-01

    Minor histocompatibility (H) Ags are classically described as self-peptides derived from intracellular proteins that are expressed at the cell surface by MHC class I and class II molecules and that induce T cell alloresponses. We have isolated three different T cell populations from a skin biopsy of a patient suffering from acute graft-versus-host disease following sex-mismatched HLA-identical bone marrow transplantation. The first population was: 1) CD4(+)/CD8(+) double-positive; 2) specific for an HLA class I-restricted autosomal Ag; 3) expressed a Tr1 profile with high levels of IL-10, but low IL-2 and IFN-γ; and 4) exerted regulatory function in the presence of recipient APCs. The second was CD8 positive, specific for an HLA class I-restricted autosomally encoded minor H Ag, but was only weakly cytotoxic. The third was CD4 single positive, specific for an HLA-DR7-restricted HY epitope and exerted both proliferative and cytotoxic functions. Identification of the peptide recognized by these latter cells revealed a new human HY epitope, TGKIINFIKFDTGNL, encoded by RPS4Y and restricted by HLA-DR7. In this paper, we show human CD4/CD8 double-positive, acute graft-versus-host disease-protective, minor H Ag-specific regulatory T cells and identify a novel HLA-DR7/ HY T cell epitope, encoded by RPS4Y, a potential new therapeutic target.

  9. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    PubMed Central

    Chabaud, Mélanie; Heuzé, Mélina L.; Bretou, Marine; Vargas, Pablo; Maiuri, Paolo; Solanes, Paola; Maurin, Mathieu; Terriac, Emmanuel; Le Berre, Maël; Lankar, Danielle; Piolot, Tristan; Adelstein, Robert S.; Zhang, Yingfan; Sixt, Michael; Jacobelli, Jordan; Bénichou, Olivier; Voituriez, Raphaël; Piel, Matthieu; Lennon-Duménil, Ana-Maria

    2015-01-01

    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space. PMID:26109323

  10. DNA sequence of the Peromyscus leucopus MHC class II gene Aa (MhcPeleAa)

    SciTech Connect

    Crew, M.D.; Bates, L.M.

    1996-09-01

    The genus Peromyscus has been extensively studied by populations biologists and ecologists for over eighty years, with P. leucopus (the white-footed mouse) being one of the most intensively investigated species. Polymorphic major histocompatibility complex (MHC) genes have proven useful in population genetic studies and might be helpful in understanding the population dynamics of Peromyscus species which are ubiquitously distributed over North and Central America. Polymorphism of P. leucopus MHC (MhcPele) class II genes was evident by restriction fragment length polymorphism (RFLP) analyses using human and mouse probes and Pele class II loci exhibited degrees of polymorphism similar to H2 class II genes (A-like>E-like). 8 refs., 2 figs.

  11. Characterization of major histocompatibility complex class I loci of the lark sparrow (Chondestes grammacus) and insights into avian MHC evolution.

    PubMed

    Lyons, Amanda C; Hoostal, Matthew J; Bouzat, Juan L

    2015-08-01

    The major histocompatibilty complex (MHC) has become increasingly important in the study of the immunocapabilities of non-model vertebrates due to its direct involvement in the immune response. The characterization of MHC class I loci in the lark sparrow (Chondestes grammacus) revealed multiple MHC class I loci with elevated genetic diversity at exon 3, evidence of differential selection between the peptide binding region (PBR) and non-PBR, and the presence of multiple pseudogenes with limited divergence. The minimum number of functional MHC class I loci was estimated at four. Sequence analysis revealed d N /d S ratios significantly less than one at non-PBR sites, indicative of negative selection, whereas PBR sites associated with antigen recognition showed ratios greater than 1 but non-significant. GenBank surveys and phylogenetic analyses of previously reported avian MHC class I sequences revealed variable signatures of evolutionary processes acting upon this gene family, including gene duplication and potential concerted evolution. An increase in the number of class I loci across species coincided with an increase in pseudogene prevalence, revealing the importance of gene duplication in the expansion of multigene families and the creation of pseudogenes.

  12. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep.

    PubMed

    Ballingall, Keith T; Rocchi, Mara S; McKeever, Declan J; Wright, Frank

    2010-01-01

    Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC) in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries). We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201) differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901), which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T-cells and the

  13. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep.

    PubMed

    Ballingall, Keith T; Rocchi, Mara S; McKeever, Declan J; Wright, Frank

    2010-06-30

    Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC) in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries). We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201) differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901), which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T-cells and the

  14. A Small Peptide (CEL-1000) Derived from the β-Chain of the Human Major Histocompatibility Complex Class II Molecule Induces Complete Protection against Malaria in an Antigen-Independent Manner

    PubMed Central

    Charoenvit, Yupin; Brice, Gary T.; Bacon, David; Majam, Victoria; Williams, Jackie; Abot, Esteban; Ganeshan, Harini; Sedegah, Martha; Doolan, Denise L.; Carucci, Daniel J.; Zimmerman, Daniel H.

    2004-01-01

    CEL-1000 (DGQEEKAGVVSTGLIGGG) is a novel potential preventative and therapeutic agent. We report that CEL-1000 confers a high degree of protection against Plasmodium sporozoite challenge in a murine model of malaria, as shown by the total absence of blood stage infection following challenge with 100 sporozoites (100% protection) and by a substantial reduction (400-fold) of liver stage parasite RNA following challenge with 50,000 sporozoites. CEL-1000 protection was demonstrated in A/J (H-2a) and C3H/HeJ (H-2k) mice but not in BALB/c (H-2d) or CAF1 (A/J × BALB/c F1 hybrid) mice. In CEL-1000-treated and protected mice, high levels of gamma interferon (IFN-γ) in serum and elevated frequencies of hepatic and splenic CD4+ IFN-γ-positive T cells were detected 24 h after administration of an additional dose of CEL-1000. Treatment of A/J mice that received CEL-1000 with antibodies against IFN-γ just prior to challenge abolished the protection, and a similar treatment with antibodies against CD4+ T cells partially reduced the level of protection, while treatment with control antibodies or antibodies specific for interleukin-12 (IL-12), CD8+ T cells, or NK cells had no effect. Our data establish that the protection induced by CEL-1000 is dependent on IFN-γ and is partially dependent on CD4+ T cells but is independent of CD8+ T cells, NK cells, and IL-12 at the effector phase and does not induce a detectable antibody response. PMID:15215094

  15. Genetic Variation on the BAT1-NFKBIL1-LTA Region of Major Histocompatibility Complex Class III Associates with Periodontitis

    PubMed Central

    Marchesani, Marja; Vlachopoulou, Efthymia; Mäntylä, Päivi; Paju, Susanna; Buhlin, Kåre; Suominen, Anna L.; Contreras, Johanna; Knuuttila, Matti; Hernandez, Marcela; Huumonen, Sisko; Nieminen, Markku S.; Perola, Markus; Sinisalo, Juha; Lokki, Marja-Liisa; Pussinen, Pirkko J.

    2014-01-01

    Periodontitis is a chronic inflammatory disease with a multifactorial etiology. We investigated whether human major histocompatibility complex (MHC) polymorphisms (6p21.3) are associated with periodontal parameters. Parogene 1 population samples (n = 169) were analyzed with 13,245 single nucleotide polymorphisms (SNPs) of the MHC region. Eighteen selected SNPs (P ≤ 0.001) were replicated in Parogene 2 population samples (n = 339) and the Health 2000 Survey (n = 1,420). All subjects had a detailed clinical and radiographic oral health examination. Serum lymphotoxin-α (LTA) concentrations were measured in the Parogene populations, and the protein was detected in inflamed periodontal tissue. In the Parogene 1 population, 10 SNPs were associated with periodontal parameters. The strongest associations emerged from the parameters bleeding on probing (BOP) and a probing pocket depth (PPD) of ≥6 mm with the genes BAT1, NFKBIL1, and LTA. Six SNPs, rs11796, rs3130059, rs2239527, rs2071591, rs909253, and rs1041981 (r2, ≥0.92), constituted a risk haplotype. In the Parogene 1 population, the haplotype had the strongest association with the parameter BOP, a PPD of ≥6 mm, and severe periodontitis with odds ratios (95% confidence intervals) of 2.63 (2.21 to 3.20), 2.90 (2.37 to 3.52), and 3.10 (1.63 to 5.98), respectively. These results were replicated in the other two populations. High serum LTA concentrations in the Parogene population were associated with the periodontitis risk alleles of the LTA SNPs (rs909253 and rs1041981) of the haplotype. In addition, the protein was expressed in inflamed gingival connective tissue. We identified a novel BAT1-NFKBIL1-LTA haplotype as a significant contributor to the risk of periodontitis. The genetic polymorphisms in the MHC class III region may be functionally important in periodontitis susceptibility. PMID:24566624

  16. Molecular Architecture of the Major Histocompatibility Complex Class I-binding Site of Ly49 Natural Killer Cell Receptors*

    PubMed Central

    Deng, Lu; Cho, Sangwoo; Malchiodi, Emilio L.; Kerzic, Melissa C.; Dam, Julie; Mariuzza, Roy A.

    2008-01-01

    Natural killer (NK) cells play a vital role in the detection and destruction of virally infected and tumor cells during innate immune responses. The highly polymorphic Ly49 family of NK receptors regulates NK cell function by sensing major histocompatibility complex class I (MHC-I) molecules on target cells. Despite the determination of two Ly49-MHC-I complex structures, the molecular features of Ly49 receptors that confer specificity for particular MHC-I alleles have not been identified. To understand the functional architecture of Ly49-binding sites, we determined the crystal structures of Ly49C and Ly49G and completed refinement of the Ly49C-H-2Kb complex. This information, combined with mutational analysis of Ly49A, permitted a structure-based classification of Ly49s that we used to dissect the binding site into three distinct regions, each having different roles in MHC recognition. One region, located at the center of the binding site, has a similar structure across the Ly49 family and mediates conserved interactions with MHC-I that contribute most to binding. However, the preference of individual Ly49s for particular MHC-I molecules is governed by two regions that flank the central region and are structurally more variable. One of the flanking regions divides Ly49s into those that recognize both H-2D and H-2K versus only H-2D ligands, whereas the other discriminates among H-2D or H-2K alleles. The modular design of Ly49-binding sites provides a framework for predicting the MHC-binding specificity of Ly49s that have not been characterized experimentally. PMID:18426793

  17. Molecular Architecture of the Major Histocompatibility Complex Class I-Binding Site of Ly49 Natural Killer Cell Receptors

    SciTech Connect

    Deng,L.; Cho, S.; Malchiodi, E.; Kerzic, M.; Dam, J.; Mariuzza, R.

    2008-01-01

    Natural killer (NK) cells play a vital role in the detection and destruction of virally infected and tumor cells during innate immune responses. The highly polymorphic Ly49 family of NK receptors regulates NK cell function by sensing major histocompatibility complex class I (MHC-I) molecules on target cells. Despite the determination of two Ly49-MHC-I complex structures, the molecular features of Ly49 receptors that confer specificity for particular MHC-I alleles have not been identified. To understand the functional architecture of Ly49-binding sites, we determined the crystal structures of Ly49C and Ly49G and completed refinement of the Ly49C-H-2Kb complex. This information, combined with mutational analysis of Ly49A, permitted a structure-based classification of Ly49s that we used to dissect the binding site into three distinct regions, each having different roles in MHC recognition. One region, located at the center of the binding site, has a similar structure across the Ly49 family and mediates conserved interactions with MHC-I that contribute most to binding. However, the preference of individual Ly49s for particular MHC-I molecules is governed by two regions that flank the central region and are structurally more variable. One of the flanking regions divides Ly49s into those that recognize both H-2D and H-2K versus only H-2D ligands, whereas the other discriminates among H-2D or H-2K alleles. The modular design of Ly49-binding sites provides a framework for predicting the MHC-binding specificity of Ly49s that have not been characterized experimentally.

  18. Equine Herpesvirus 1 Multiply Inserted Transmembrane Protein pUL43 Cooperates with pUL56 in Downregulation of Cell Surface Major Histocompatibility Complex Class I

    PubMed Central

    Huang, Teng; Ma, Guanggang

    2015-01-01

    ABSTRACT Herpesviruses have evolved an array of strategies to counteract antigen presentation by major histocompatibility complex class I (MHC-I). Previously, we identified pUL56 of equine herpesvirus 1 (EHV-1) as one major determinant of the downregulation of cell surface MHC-I (G. Ma, S. Feineis, N. Osterrieder, and G. R. Van de Walle, J. Virol. 86:3554–3563, 2012, http://dx.doi.org/10.1128/JVI.06994-11; T. Huang, M. J. Lehmann, A. Said, G. Ma, and N. Osterrieder, J. Virol. 88:12802–12815, 2014, http://dx.doi.org/10.1128/JVI.02079-14). Since pUL56 was able to exert its function only in the context of virus infection, we hypothesized that pUL56 cooperates with another viral protein. Here, we generated and screened a series of EHV-1 single-gene deletion mutants and found that the pUL43 orthologue was required for downregulation of cell surface MHC-I expression at the same time of infection as when pUL56 exerts its function. We demonstrate that the absence of pUL43 was not deleterious to virus growth and that expression of pUL43 was detectable from 2 h postinfection (p.i.) but decreased after 8 h p.i. due to lysosomal degradation. pUL43 localized within Golgi vesicles and required a unique hydrophilic N-terminal domain to function properly. Finally, coexpression of pUL43 and pUL56 in transfected cells reduced the cell surface expression of MHC-I. This process was dependent on PPxY motifs present in pUL56, suggesting that late domains are required for pUL43- and pUL56-dependent sorting of MHC class I for lysosomal degradation. IMPORTANCE We describe here that the poorly characterized herpesviral protein pUL43 is involved in downregulation of cell surface MHC-I. pUL43 is an early protein and degraded in lysosomes. pUL43 resides in the Golgi vesicles and needs an intact N terminus to induce MHC-I downregulation in infected cells. Importantly, pUL43 and pUL56 cooperate to reduce MHC-I expression on the surface of transfected cells. Our results suggest a model for

  19. Association of high CD4-positive T cell infiltration with mutations in HLA class II-regulatory genes in microsatellite-unstable colorectal cancer.

    PubMed

    Surmann, Eva-Maria; Voi