Science.gov

Sample records for histocompatibility class ii

  1. Expression of major histocompatibility complex class I and class II antigens in canine masticatory muscle myositis.

    PubMed

    Paciello, Orlando; Shelton, G Diane; Papparella, Serenella

    2007-04-01

    Studies in human immune-mediated inflammatory myopathies have documented expression of major histocompatibility complex class I (MHC class I) and class II (MHC class II) antigens on muscle fiber membranes in the presence or absence of cellular infiltration. Here we evaluate the presence and distribution of these antigens in canine masticatory muscle myositis, an immune-mediated inflammatory myopathy. Twelve samples of temporalis and masseter muscles from dogs with a clinical diagnosis of canine masticatory muscle myositis were examined by immunohistochemistry and double-immunofluorescence confocal microscopy. MHC class I and class II antigens were expressed in muscle fibers independent of inflammatory cell infiltration. Furthermore MHC class I and class II antigens were expressed on the sarcolemma and co-localized with dystrophin. Our results suggest that MHC class I and class II expression in canine masticatory muscle myositis may play a role in the initiation and maintenance of the pathological condition, rather than just a consequence of a preceding local inflammation.

  2. Nonlinkage of major histocompatibility complex class I and class II loci in bony fishes.

    PubMed

    Sato, A; Figueroa, F; Murray, B W; Málaga-Trillo, E; Zaleska-Rutczynska, Z; Sültmann, H; Toyosawa, S; Wedekind, C; Steck, N; Klein, J

    2000-02-01

    In tetrapods, the functional (classical) class I and class II B loci of the major histocompatibility complex (Mhc) are tightly linked in a single chromosomal region. In an earlier study, we demonstrated that in the zebrafish, Danio rerio, order Cypriniformes, the two classes are present on different chromosomes. Here, we show that the situation is similar in the stickleback, Gasterosteus aculeatus, order Gasterosteiformes, the common guppy, Poecilia reticulata, order Cyprinodontiformes, and the cichlid fish Oreochromis niloticus, order Perciformes. These data, together with unpublished results from other laboratories suggest that in all Euteleostei, the classical class I and class II B loci are in separate linkage groups, and that in at least some of these taxa, the class II loci are in two different groups. Since Euteleostei are at least as numerous as tetrapods, in approximately one-half of jawed vertebrates, the class I and class II regions are not linked.

  3. Ii Chain Controls the Transport of Major Histocompatibility Complex Class II Molecules to and from Lysosomes

    PubMed Central

    Brachet, Valérie; Raposo, Graça; Amigorena, Sebastian; Mellman, Ira

    1997-01-01

    Major histocompatibility complex class II molecules are synthesized as a nonameric complex consisting of three αβ dimers associated with a trimer of invariant (Ii) chains. After exiting the TGN, a targeting signal in the Ii chain cytoplasmic domain directs the complex to endosomes where Ii chain is proteolytically processed and removed, allowing class II molecules to bind antigenic peptides before reaching the cell surface. Ii chain dissociation and peptide binding are thought to occur in one or more postendosomal sites related either to endosomes (designated CIIV) or to lysosomes (designated MIIC). We now find that in addition to initially targeting αβ dimers to endosomes, Ii chain regulates the subsequent transport of class II molecules. Under normal conditions, murine A20 B cells transport all of their newly synthesized class II I-Ab αβ dimers to the plasma membrane with little if any reaching lysosomal compartments. Inhibition of Ii processing by the cysteine/serine protease inhibitor leupeptin, however, blocked transport to the cell surface and caused a dramatic but selective accumulation of I-Ab class II molecules in lysosomes. In leupeptin, I-Ab dimers formed stable complexes with a 10-kD NH2-terminal Ii chain fragment (Ii-p10), normally a transient intermediate in Ii chain processing. Upon removal of leupeptin, Ii-p10 was degraded and released, I-Ab dimers bound antigenic peptides, and the peptide-loaded dimers were transported slowly from lysosomes to the plasma membrane. Our results suggest that alterations in the rate or efficiency of Ii chain processing can alter the postendosomal sorting of class II molecules, resulting in the increased accumulation of αβ dimers in lysosome-like MIIC. Thus, simple differences in Ii chain processing may account for the highly variable amounts of class II found in lysosomal compartments of different cell types or at different developmental stages. PMID:9105036

  4. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    PubMed Central

    2012-01-01

    Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405

  5. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

    PubMed Central

    Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149

  6. Isotypic and allotypic variation of human class II histocompatibility antigen alpha-chain genes.

    PubMed

    Auffray, C; Lillie, J W; Arnot, D; Grossberger, D; Kappes, D; Strominger, J L

    DNA sequences of four human class II histocompatibility antigen alpha chain DNA sequences (derived from cDNA and genomic clones representing DC1 alpha, DC4 alpha, DX alpha and SB alpha) are presented and compared to DR alpha and to mouse I-A alpha and I-E alpha sequences. These data suggest possible mechanisms for the generation of polymorphism and the evolution of the DR, DC and SB families.

  7. Major histocompatibility complex class II antigen expression in B and T cell non-Hodgkin's lymphoma.

    PubMed Central

    Smith, M E; Holgate, C S; Williamson, J M; Grigor, I; Quirke, P; Bird, C C

    1987-01-01

    An immunohistochemical study of 46 B and T cell non-Hodgkin's lymphomas, using monoclonal antibodies to the products of the major histocompatibility complex (MHC) class II antigen subregions, DP, DQ, and DR, showed that most B and T cell lymphomas express these antigens. Both coordinate and non-coordinate expression of MHC class II antigens was observed, but this did not correlate with immunological phenotype, morphological grade, or proliferation index as determined by flow cytometry. Images Fig 1 Fig 2 Fig 3 PMID:3546388

  8. Histone Acetylation and the Regulation of Major Histocompatibility Class II Gene Expression.

    PubMed

    Suzuki, K; Luo, Y

    Major histocompatibility complex (MHC) class II molecules are essential for processing and presenting exogenous pathogen antigens to activate CD4(+) T cells. Given their central role in adaptive immune responses, MHC class II genes are tightly regulated in a tissue- and activation-specific manner. The regulation of MHC class II gene expression involves various transcription factors that interact with conserved proximal cis-acting regulatory promoter elements, as well as MHC class II transactivator that interacts with a variety of chromatin remodeling machineries. Recent studies also identified distal regulatory elements within MHC class II gene locus that provide enormous insight into the long-range coordination of MHC class II gene expression. Novel therapeutic modalities that can modify MHC class II genes at the epigenetic level are emerging and are currently in preclinical and clinical trials. This review will focus on the role of chromatin remodeling, particularly remodeling that involves histone acetylation, in the constitutive and inducible regulation of MHC class II gene expression. © 2017 Elsevier Inc. All rights reserved.

  9. Differential Transmembrane Domain GXXXG Motif Pairing Impacts Major Histocompatibility Complex (MHC) Class II Structure*

    PubMed Central

    Dixon, Ann M.; Drake, Lisa; Hughes, Kelly T.; Sargent, Elizabeth; Hunt, Danielle; Harton, Jonathan A.; Drake, James R.

    2014-01-01

    Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2− I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response. PMID:24619409

  10. Characterization of class I- and class II-like major histocompatibility complex loci in pedigrees of North Atlantic right whales.

    PubMed

    Gillett, Roxanne M; Murray, Brent W; White, Bradley N

    2014-01-01

    North Atlantic right whales have one of the lowest levels of genetic variation at minisatellite loci, microsatellite loci, and mitochondrial control region haplotypes among mammals. Here, adaptive variation at the peptide binding region of class I and class II DRB-like genes of the major histocompatibility complex was assessed. Amplification of a duplicated region in 222 individuals revealed at least 11 class II alleles. Six alleles were assigned to the locus Eugl-DRB1 and 5 alleles were assigned to the locus Eugl-DRB2 by assessing segregation patterns of alleles from 81 parent/offspring pedigrees. Pedigree analysis indicated that these alleles segregated into 12 distinct haplotypes. Genotyping a smaller subset of unrelated individuals (n = 5 and 10, respectively) using different primer sets revealed at least 2 class II pseudogenes (with ≥ 4 alleles) and at least 3 class I loci (with ≥ 6 alleles). Class II sequences were significantly different from neutrality at peptide binding sites suggesting loci may be under the influence of balancing selection. Trans-species sharing of alleles was apparent for class I and class II sequences. Characterization of class II loci represents the first step in determining the relationship between major histocompatibility complex variability and factors affecting health and reproduction in this species.

  11. Class I and class II major histocompatibility molecules play a role in bone marrow-derived macrophage development

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Simske, S. J.; Beharka, A. A.; Balch, S.; Luttges, M. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Class I and class II major histocompatibility complex (MHC) molecules play significant roles in T cell development and immune function. We show that MHCI- and MHCII-deficient mice have low numbers of macrophage precursors and circulating monocytes, as well as abnormal bone marrow cell colony-stimulating factor type 1 secretion and bone composition. We suggest that MHCI and MHCII molecules play a significant role in macrophage development.

  12. Expression of major histocompatibility complex class II and costimulatory molecules in oral carcinomas in vitro.

    PubMed

    Villarroel-Dorrego, Mariana; Speight, Paul M; Barrett, A William

    2005-01-01

    Recognition in the 1980 s that keratinocytes can express class II molecules of the Major Histocompatibility Complex (MHC) first raised the possibility that these cells might have an immunological function, and may even act as antigen presenting cells (APC). For effective T lymphocyte activation, APC require, in addition to MHC II, appropriate costimulatory signals. The aim of this study was to determine the expression of MHC class II and the co-stimulatory molecules CD40, CD80 and CD86 in keratinocytes derived from healthy oral mucosa and oral carcinomas. Using flow cytometry, it was confirmed that oral keratinocytes, switch on, expression of MHC class II molecules after stimulation with IFNgamma in vitro. All keratinocyte lines expressed CD40 constitutively; by contrast, CD80 and CD86 were universally absent. Loss of CD80 and CD86 may be one means whereby tumours escape immunological surveillance.

  13. A structural transition in class II major histocompatibility complex proteins at mildly acidic pH

    PubMed Central

    1996-01-01

    Peptide binding by class II major histocompatibility complex proteins is generally enhanced at low pH in the range of hydrogen ion concentrations found in the endosomal compartments of antigen- presenting cells. We and others have proposed that class II molecules undergo a reversible conformational change at low pH that is associated with enhanced peptide loading. However, no one has previously provided direct evidence for a structural change in class II proteins in the mildly acidic pH conditions in which enhanced peptide binding is observed. In this study, susceptibility to denaturation induced by sodium dodecyl sulfate (SDS) detergent or heat was used to probe the conformation of class II at different hydrogen ion concentrations. Class II molecules became sensitive to denaturation at pH 5.5-6.5 depending on the allele and experimental conditions. The observed structural transition was fully reversible if acidic pH was neutralized before exposure to SDS or heat. Experiments with the environment- sensitive fluorescent probe ANS (8-anilino-1-naphthalene-sulfonic acid) provided further evidence for a reversible structural transition at mildly acidic pH associated with an increase in exposed hydrophobicity in class II molecules. IAd conformation was found to change at a higher pH than IEd, IEk, or IAk, which correlates with the different pH optimal for peptide binding by these molecules. We conclude that pH regulates peptide binding by influencing the structure of class II molecules. PMID:8551215

  14. Specific suppression of major histocompatibility complex class I and class II genes in astrocytes by brain-enriched gangliosides

    PubMed Central

    1993-01-01

    The effect of brain-enriched gangliosides on constitutive and cytokine- inducible expression of major histocompatibility complex (MHC) class I and II genes in cultured astrocytes was studied. Before treatment with gangliosides, astrocytes expressed constitutive MHC class I but not class II molecules, however, the expression of both MHC class I and II cell surface molecules on astrocytes was induced to high levels by interferon gamma (IFN-gamma). Constitutive and IFN-gamma-inducible expression of MHC class I and II molecules was suppressed by treatment of astrocytes with exogenous bovine brain gangliosides in a dose- dependent manner. Constitutive and induced MHC class I and II mRNA levels were also suppressed by gangliosides, indicating control through transcriptional mechanisms. This was consistent with the ability of gangliosides to suppress the binding activity of transcription factors, especially NF-kappa B-like binding activity, important for the expression of both MHC class I and II genes. These studies may be important for understanding mechanisms of central nervous system (CNS)- specific regulation of major histocompatibility molecules in neuroectodermal cells and the role of gangliosides in regulating MHC- restricted antiviral and autoimmune responses within the CNS. PMID:8376939

  15. Class II major histocompatibility complex tetramer staining: progress, problems, and prospects

    PubMed Central

    Vollers, Sabrina S; Stern, Lawrence J

    2008-01-01

    The use of major histocompatibility complex (MHC) tetramers in the detection and analysis of antigen-specific T cells has become more widespread since its introduction 11 years ago. Early challenges in the application of tetramer staining to CD4+ T cells centred around difficulties in the expression of various class II MHC allelic variants and the detection of low-frequency T cells in mixed populations. As many of the technical obstacles to class II MHC tetramer staining have been overcome, the focus has returned to uncertainties concerning how oligomer valency and T-cell receptor/MHC affinity affect tetramer binding. Such issues have become more important with an increase in the number of studies relying on direct ex vivo analysis of antigen-specific CD4+ T cells. In this review we discuss which problems in class II MHC tetramer staining have been solved to date, and which matters remain to be considered. PMID:18251991

  16. A general model of invariant chain association with class II major histocompatibility complex proteins.

    PubMed Central

    Lee, C; McConnell, H M

    1995-01-01

    The binding of invariant chain to major histocompatibility complex (MHC) proteins is an important step in processing of MHC class II proteins and in antigen presentation. The question of how invariant chain can bind to all MHC class II proteins is central to understanding these processes. We have employed molecular modeling to predict the structure of class II-associated invariant chain peptide (CLIP)-MHC protein complexes and to ask whether the predicted mode of association could be general across all MHC class II proteins. CLIP fits identically into the MHC class II alleles HLA-DR3, I-Ak, I-Au, and I-Ad, with a consistent pattern of hydrogen bonds, contacts, and hydrophobic burial and without bad contacts. Our model predicts the burial of CLIP residues Met-91 and Met-99 in the deep P1 and P9 anchor pockets and other detailed interactions, which we have compared with available data. The predicted pattern of I-A allele-specific effects on CLIP binding is very similar to that observed experimentally by alanine-scanning mutations of CLIP. Together, these results indicate that CLIP may bind in a single, general way across products of MHC class II alleles. Images Fig. 1 Fig. 2 Fig. 3 PMID:7667280

  17. Molecular characterization of major histocompatibility complex class II alleles in wild tiger salamanders (Ambystoma tigrinum).

    PubMed

    Bos, David H; DeWoody, J Andrew

    2005-11-01

    Major histocompatibility complex (MHC) class II genes are usually among the most polymorphic in vertebrate genomes because of their critical role (antigen presentation) in immune response. Prior to this study, the MHC was poorly characterized in tiger salamanders (Ambystoma tigrinum), but the congeneric axolotl (Ambystoma mexicanum) is thought to have an unusual MHC. Most notably, axolotl class II genes lack allelic variation and possess a splice variant without a full peptide binding region (PBR). The axolotl is considered immunodeficient, but it is unclear how or to what extent MHC genetics and immunodeficiency are interrelated. To study the evolution of MHC genes in urodele amphibians, we describe for the first time an expressed polymorphic class II gene in wild tiger salamanders. We sequenced the PBR of a class II gene from wild A. tigrinum (n=33) and identified nine distinct alleles. Observed heterozygosity was 73%, and there were a total of 46 polymorphic sites, most of which correspond to amino acid positions that bind peptides. Patterns of nucleotide substitutions exhibit the signature of diversifying selection, but no recombination was detected. Not surprisingly, trans-species evolution of tiger salamander and axolotl class II alleles was apparent. We have no direct data on the immunodeficiency of tiger salamanders, but the levels of polymorphism in our study population should suffice to bind a variety of foreign peptides (unlike axolotls). Our tiger salamander data suggest that the monomorphism and immunodeficiencies associated with axolotl class II genes is a relic of their unique historical demography, not their phylogenetic legacy.

  18. Subtle conformational changes induced in major histocompatibility complex class II molecules by binding peptides.

    PubMed

    Chervonsky, A V; Medzhitov, R M; Denzin, L K; Barlow, A K; Rudensky, A Y; Janeway, C A

    1998-08-18

    Intracellular trafficking of major histocompatibility complex (MHC) class II molecules is characterized by passage through specialized endocytic compartment(s) where antigenic peptides replace invariant chain fragments in the presence of the DM protein. These changes are accompanied by structural transitions of the MHC molecules that can be visualized by formation of compact SDS-resistant dimers, by changes in binding of mAbs, and by changes in T cell responses. We have observed that a mAb (25-9-17) that is capable of staining I-Ab on the surface of normal B cells failed to interact with I-Ab complexes with a peptide derived from the Ealpha chain of the I-E molecule but bound a similar covalent complex of I-Ab with the class II binding fragment (class II-associated invariant chain peptides) of the invariant chain. Moreover, 25-9-17 blocked activation of several I-Ab-reactive T cell hybridomas but failed to block others, suggesting that numerous I-Ab-peptide complexes acquire the 25-9-17(+) or 25-9-17(-) conformation. Alloreactive T cells were also able to discriminate peptide-dependent variants of MHC class II molecules. Thus, peptides impose subtle structural transitions upon MHC class II molecules that affect T cell recognition and may thus be critical for T cell selection and autiommunity.

  19. Dynamics of Major Histocompatibility Complex Class II Compartments during B Cell Receptor–mediated Cell Activation

    PubMed Central

    Lankar, Danielle; Vincent-Schneider, Hélène; Briken, Volker; Yokozeki, Takeaki; Raposo, Graça; Bonnerot, Christian

    2002-01-01

    Antigen recognition by clonotypic B cell receptor (BcR) is the first step of B lymphocytes differentiation into plasmocytes. This B cell function is dependent on efficient major histocompatibility complex (MHC) class II–restricted presentation of BcR-bound antigens. In this work, we analyzed the subcellular mechanisms underlying antigen presentation after BcR engagement on B cells. In quiescent B cells, we found that MHC class II molecules mostly accumulated at the cell surface and in an intracellular pool of tubulovesicular structures, whereas H2-M molecules were mostly detected in distinct lysosomal compartments devoid of MHC class II. BcR stimulation induced the transient intracellular accumulation of MHC class II molecules in newly formed multivesicular bodies (MVBs), to which H2-M was recruited. The reversible downregulation of cathepsin S activity led to the transient accumulation of invariant chain–MHC class II complexes in MVBs. A few hours after BcR engagement, cathepsin S activity increased, the p10 invariant chain disappeared, and MHC class II–peptide complexes arrived at the plasma membrane. Thus, BcR engagement induced the transient formation of antigen-processing compartments, enabling antigen-specific B cells to become effective antigen-presenting cells. PMID:11854359

  20. Characterisation of four major histocompatibility complex class II genes of the koala (Phascolarctos cinereus).

    PubMed

    Lau, Quintin; Jobbins, Sarah E; Belov, Katherine; Higgins, Damien P

    2013-01-01

    Major histocompatibility complex (MHC) class II molecules have an integral role in the adaptive immune response, as they bind and present antigenic peptides to T helper lymphocytes. In this study of koalas, species-specific primers were designed to amplify exon 2 of the MHC class II DA and DB genes, which contain much of the peptide-binding regions of the α and β chains. A total of two DA α1 domain variants and eight DA β1 (DAB), three DB α1 and five DB β1 variants were amplified from 20 koalas from two free-living populations from South East Queensland and the Port Macquarie region in northern New South Wales. We detected greater variation in the β1 than in the α1 domains as well as evidence of positive selection in DAB. The present study provides a springboard to future investigation of the role of MHC in disease susceptibility in koalas.

  1. Isolation and characterization of major histocompatibility complex class II B genes in cranes.

    PubMed

    Kohyama, Tetsuo I; Akiyama, Takuya; Nishida, Chizuko; Takami, Kazutoshi; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi

    2015-11-01

    In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution.

  2. Toxic shock syndrome toxin 1 binds to major histocompatibility complex class II molecules.

    PubMed Central

    Scholl, P; Diez, A; Mourad, W; Parsonnet, J; Geha, R S; Chatila, T

    1989-01-01

    Toxic shock syndrome toxin 1 (TSST-1) is a 22-kDa exotoxin produced by strains of Staphylococcus aureus and implicated in the pathogenesis of toxic shock syndrome. In common with other staphylococcal exotoxins, TSST-1 has diverse immunological effects. These include the induction of interleukin 2 receptor expression, interleukin 2 synthesis, proliferation of human T lymphocytes, and stimulation of interleukin 1 synthesis by human monocytes. In the present study, we demonstrate that TSST-1 binds with saturation kinetics and with a dissociation constant of 17-43 nM to a single class of binding sites on human mononuclear cells. There was a strong correlation between the number of TSST-1 binding sites and the expression of major histocompatibility complex class II molecules, and interferon-gamma induced the expression of class II molecules as well as TSST-1 binding sites on human skin-derived fibroblasts. Monoclonal antibodies to HLA-DR, but not to HLA-DP or HLA-DQ, strongly inhibited TSST-1 binding. Affinity chromatography of 125I-labeled cell membranes over TSST-1-agarose resulted in the recovery of two bands of 35 kDa and 31 kDa that comigrated, respectively, with the alpha and beta chains of HLA-DR and that could be immunoprecipitated with anti-HLA-DR monoclonal antibodies. Binding of TSST-1 was demonstrated to HLA-DR and HLA-DQ L-cell transfectants. These results indicate that major histocompatibility complex class II molecules represent the major binding site for TSST-1 on human cells. Images PMID:2542966

  3. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.

  4. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.

  5. Major histocompatibility complex class II expression distinguishes two distinct B cell developmental pathways during ontogeny

    PubMed Central

    1994-01-01

    All mature B cells coexpress major histocompatibility complex (MHC) class II molecules, I-A and I-E, which are restriction elements required for antigen presentation to CD4+ T cells. However, the expression of class II during the early stages of B cell development has been unclear. We demonstrate here that there is a difference in the expression of class II during murine B cell development in the fetal liver and adult bone marrow (BM). These differences define two distinct B cell developmental pathways. The Fetal-type (FT) pathway is characterized by pre-B and immature IgM+ B cells generated in the fetal liver which initially lack all class II expression. In contrast, the Adult-type (AT) pathway is typified by B cells developing in the adult BM which express class II molecules from the pre-B cell stage. In vitro stromal cell cultures of sorted fetal liver and adult BM pro-B cells indicated that the difference in I-A expression during B cell development is intrinsic to the progenitors. In addition, we show that FT B cell development is not restricted to the fetal liver but occurs in the peritoneal cavities, spleens, liver, and BM of young mice up to at least 1 mo of age. The AT B cell development begins to emerge after birth but is, however, restricted to the BM environment. These findings indicate that there are two distinct B cell developmental pathways during ontogeny, each of which could contribute differentially to the immune repertoire and thus the functions of B cell subsets and lineages. PMID:7913950

  6. Mutations and selection in the generation of class II histocompatibility antigen polymorphism.

    PubMed Central

    Gustafsson, K; Wiman, K; Emmoth, E; Larhammar, D; Böhme, J; Hyldig-Nielsen, J J; Ronne, H; Peterson, P A; Rask, L

    1984-01-01

    A comparison of seven human DR and DC class II histocompatibility antigen beta-chain amino acid sequences indicates that the allelic variation is of comparable magnitude within the DR and DC beta-chain genes. Silent and replacement nucleotide substitutions in six DR and DC beta-chain sequences, as well as in seven murine class II sequences (three I-A beta and four I-A alpha alleles) were analyzed. The results suggest that the mutation rates are of a comparable magnitude in the nucleotide sequences encoding the first and second external domains of the class II molecules. Nevertheless, the allelic amino acid replacements are predominantly located in the first domains. We conclude that a conservative selective pressure acts on the second domains, whereas in many positions in the first domains replacement substitutions are selectively neutral or maybe even favoured. Thus, the difference between the first and second domains as regards the number of amino acid replacements is mainly due to selection. PMID:6589154

  7. New genes in the class II region of the human major histocompatibility complex.

    PubMed

    Hanson, I M; Poustka, A; Trowsdale, J

    1991-06-01

    A detailed map of the class II region of the human major histocompatibility complex has been constructed by pulsed-field gel electrophoresis. This map revealed clusters of sites for enzymes that cut preferentially in unmethylated CpG-rich DNA often found at the 5' ends of genes. Three of these clusters have been cloned by cosmid walking and chromosome jumping. Analysis of the clones encompassing these regions through the use of zoo blots, Northern blots, and cDNA libraries resulted in the discovery of four novel genes. The D6S111E and D6S112E genes are centromeric to the HLA-DPB2 gene, while D6S113E and D6S114E are between HLA-DNA and HLA-DOB. Preliminary characterization of the new genes indicates that they are unrelated to the class II genes themselves, although D6S114E expression, like class II expression, is inducible with interferon. In addition, the HLA-DNA gene has been accurately positioned and oriented for the first time.

  8. Chicken major histocompatibility complex class II molecules of the B haplotype present self and foreign peptides.

    PubMed

    Cumberbatch, J A; Brewer, D; Vidavsky, I; Sharif, S

    2006-08-01

    The chicken major histocompatibility complex (MHC), or B-complex, mediates genetic resistance and susceptibility to infectious disease. For example, the B19 haplotype is associated with susceptibility to Marek's disease. Here, we describe the sequencing and analysis of peptides presented by B19 MHC class II molecules. A B19/B19 B-cell line was used for the immunoaffinity purification of MHC class II molecules, which was followed by acid elution of the bound peptides. The eluted peptides were then analysed using tandem mass spectrometry. Thirty peptide sequences were obtained, ranging from 11 to 25 amino acids in length. Source protein cellular localization included the plasma membrane, cytosol and endosomal pathway. In addition, five peptides from the envelope glycoprotein of chicken syncytial virus (CSV) were identified. Chicken syncytial virus had been used as a helper virus along with reticuloendotheliosis virus strain T for transformation of B19/B19B cells. Alignment and analysis of the peptide sequence pool provided a putative peptide-binding motif for the B19 MHC class II.

  9. Stress-induced alterations in interferon production and class II histocompatibility antigen expression

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Cunnick, J. E.; Armfield, A. V.; Wood, P. G.; Rabin, B. S.

    1992-01-01

    Mild electric foot-shock has been shown to be a stressor that can alter immune responses. Male Lewis rats were exposed to one session of 16 5.0-s 1.6-mA foot-shocks. Production of interferon-gamma by splenocytes in response to concanavalin-A was decreased in spleens from the shocked rats compared to control spleens. Spleen cells from rats treated with nadolol, a peripherally acting beta-adrenergic receptor antagonist, and then shocked, showed dose-dependent attenuation of the suppression of interferon-gamma production. This suggests that catecholamines mediate shock-induced suppression of interferon-gamma production. The percentage of splenic mononuclear cells expressing class II histocompatibility (Ia) antigens on their surfaces from spleens of shocked rats was determined by flow cytometry. Significantly decreased class II positive mononuclear cells were present in the spleens of shocked rats in comparison to the spleens of control rats. This may reflect an alteration of cell trafficking or decreased production of class II antigens.

  10. Skeletal muscle major histocompatibility complex class I and II expression differences in adult and juvenile dermatomyositis

    PubMed Central

    Shinjo, Samuel Katsuyuki; Sallum, Adriana Maluf Elias; Silva, Clovis Artur; Marie, Suely Kazue Nagahashi

    2012-01-01

    OBJECTIVE: To analyze major histocompatibility complex expression in the muscle fibers of juvenile and adult dermatomyositis. METHOD: In total, 28 untreated adult dermatomyositis patients, 28 juvenile dermatomyositis patients (Bohan and Peter's criteria) and a control group consisting of four dystrophic and five Pompe's disease patients were analyzed. Routine histological and immunohistochemical (major histocompatibility complex I and II, StreptoABComplex/HRP, Dakopatts) analyses were performed on serial frozen muscle sections. Inflammatory cells, fiber damage, perifascicular atrophy and increased connective tissue were analyzed relative to the expression of major histocompatibility complexes I and II, which were assessed as negatively or positively stained fibers in 10 fields (200X). RESULTS: The mean ages at disease onset were 42.0±15.9 and 7.3±3.4 years in adult and juvenile dermatomyositis, respectively, and the symptom durations before muscle biopsy were similar in both groups. No significant differences were observed regarding gender, ethnicity and frequency of organ involvement, except for higher creatine kinase and lactate dehydrogenase levels in adult dermatomyositis (p<0.050). Moreover, a significantly higher frequency of major histocompatibility complex I (96.4% vs. 50.0%, p<0.001) compared with major histocompatibility complex II expression (14.3% vs. 53.6%, p = 0.004) was observed in juvenile dermatomyositis. Fiber damage (p = 0.006) and increased connective tissue (p<0.001) were significantly higher in adult dermatomyositis compared with the presence of perifascicular atrophy (p<0.001). The results of the histochemical and histological data did not correlate with the demographic data or with the clinical and laboratory features. CONCLUSION: The overexpression of major histocompatibility complex I was an important finding for the diagnosis of both groups, particularly for juvenile dermatomyositis, whereas there was lower levels of expression

  11. Interpretation of biphasic dissociation kinetics for isomeric class II major histocompatibility complex-peptide complexes

    PubMed Central

    Anderson, TG; McConnell, HM

    1999-01-01

    Antigenic peptides bound to class II major histocompatibility complex (MHC) proteins play a key role in the distinction between "self" and "nonself" by the cellular immune system. Although the formation and dissociation of these complexes are often thought of in terms of the simple mechanism MHC + P &rlharr; MHC-P, studies of MHC-peptide dissociation kinetics suggest that multiple interconverting forms of the bound MHC-peptide complex can be formed. However, the precise relationship between observed dissociation data and proposed multiple-complex mechanisms has not been systematically examined. Here we provide a mathematical analysis to fill this gap and attempt to clarify the kinetic behavior that is expected to result from the proposed mechanisms. We also examine multiple-complex dynamics that can be "hidden" in conventional experiments. Although we focus on MHC-peptide interactions, the analysis provided here is fully general and applies to any ligand-receptor system having two distinct bound states. PMID:10545347

  12. 454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher

    PubMed Central

    2010-01-01

    Background Because of their functional significance, the Major Histocompatibility Complex (MHC) class I and II genes have been the subject of continuous interest in the fields of ecology, evolution and conservation. In some vertebrate groups MHC consists of multiple loci with similar alleles; therefore, the multiple loci must be genotyped simultaneously. In such complex systems, understanding of the evolutionary patterns and their causes has been limited due to challenges posed by genotyping. Results Here we used 454 amplicon sequencing to characterize MHC class IIB exon 2 variation in the collared flycatcher, an important organism in evolutionary and immuno-ecological studies. On the basis of over 152,000 sequencing reads we identified 194 putative alleles in 237 individuals. We found an extreme complexity of the MHC class IIB in the collared flycatchers, with our estimates pointing to the presence of at least nine expressed loci and a large, though difficult to estimate precisely, number of pseudogene loci. Many similar alleles occurred in the pseudogenes indicating either a series of recent duplications or extensive concerted evolution. The expressed alleles showed unambiguous signals of historical selection and the occurrence of apparent interlocus exchange of alleles. Placing the collared flycatcher's MHC sequences in the context of passerine diversity revealed transspecific MHC class II evolution within the Muscicapidae family. Conclusions 454 amplicon sequencing is an effective tool for advancing our understanding of the MHC class II structure and evolutionary patterns in Passeriformes. We found a highly dynamic pattern of evolution of MHC class IIB genes with strong signals of selection and pronounced sequence divergence in expressed genes, in contrast to the apparent sequence homogenization in pseudogenes. We show that next generation sequencing offers a universal, affordable method for the characterization and, in perspective, genotyping of MHC systems of

  13. Remarkably low affinity of CD4/peptide-major histocompatibility complex class II protein interactions

    PubMed Central

    Jönsson, Peter; Southcombe, Jennifer H.; Santos, Ana Mafalda; Huo, Jiandong; Fernandes, Ricardo A.; McColl, James; Lever, Melissa; Evans, Edward J.; Hudson, Alexander; Chang, Veronica T.; Hanke, Tomáš; Godkin, Andrew; Dunne, Paul D.; Horrocks, Mathew H.; Palayret, Matthieu; Screaton, Gavin R.; Petersen, Jan; Rossjohn, Jamie; Fugger, Lars; Dushek, Omer; Xu, Xiao-Ning; Davis, Simon J.; Klenerman, David

    2016-01-01

    The αβ T-cell coreceptor CD4 enhances immune responses more than 1 million-fold in some assays, and yet the affinity of CD4 for its ligand, peptide-major histocompatibility class II (pMHC II) on antigen-presenting cells, is so weak that it was previously unquantifiable. Here, we report that a soluble form of CD4 failed to bind detectably to pMHC II in surface plasmon resonance-based assays, establishing a new upper limit for the solution affinity at 2.5 mM. However, when presented multivalently on magnetic beads, soluble CD4 bound pMHC II-expressing B cells, confirming that it is active and allowing mapping of the native coreceptor binding site on pMHC II. Whereas binding was undetectable in solution, the affinity of the CD4/pMHC II interaction could be measured in 2D using CD4- and adhesion molecule-functionalized, supported lipid bilayers, yielding a 2D Kd of ∼5,000 molecules/μm2. This value is two to three orders of magnitude higher than previously measured 2D Kd values for interacting leukocyte surface proteins. Calculations indicated, however, that CD4/pMHC II binding would increase rates of T-cell receptor (TCR) complex phosphorylation by threefold via the recruitment of Lck, with only a small, 2–20% increase in the effective affinity of the TCR for pMHC II. The affinity of CD4/pMHC II therefore seems to be set at a value that increases T-cell sensitivity by enhancing phosphorylation, without compromising ligand discrimination. PMID:27114505

  14. Molecular characterization of the Pb recombination hotspot in the mouse major histocompatibility complex class II region.

    PubMed

    Isobe, Taku; Yoshino, Masayasu; Mizuno, Ken-Ichi; Lindahl, Kirsten Fischer; Koide, Tsuyoshi; Gaudieri, Silvana; Gojobori, Takashi; Shiroishi, Toshihiko

    2002-08-01

    In the mouse major histocompatibility complex (MHC) class II region, meiotic recombination breakpoints are clustered in four specific sites known as hotspots. Here we reveal the primary structure of a hotspot near the Pb gene. A total of 12 crossover points were found to be confined to a 15-kb DNA segment of the Pb pseudogene. Moreover, the crossover points are concentrated in a 341-bp segment, which includes a part of exon 4 and intron 4 of the Pb gene. All four MHC hotspots appear to be located within genes or at the 3' end of genes, contrasting with characterized hotspots in budding yeast, which are mostly located at the 5'-promoter regions of genes. The Pb hotspot has several consensus motifs, an octamer transcription factor-binding sequence, the B-motif-like transcription factor-binding sequence, and tandem repeats of tetramer sequence-all of which are shared by the other three hotspots. Systematic analysis of the public database demonstrated that the full motif set occurs rarely in the nucleotide sequence of the entire MHC class II region. All results suggest that the motif set has an indispensable role in determining their site specificity.

  15. Persistent Ehrlichia chaffeensis infection occurs in the absence of functional major histocompatibility complex class II genes

    NASA Technical Reports Server (NTRS)

    Ganta, Roman Reddy; Wilkerson, Melinda J.; Cheng, Chuanmin; Rokey, Aaron M.; Chapes, Stephen K.

    2002-01-01

    Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for > or =30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4(+) T cells, are critical for conferring resistance to E. chaffeensis.

  16. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    NASA Technical Reports Server (NTRS)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  17. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    NASA Technical Reports Server (NTRS)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  18. Persistent Ehrlichia chaffeensis infection occurs in the absence of functional major histocompatibility complex class II genes

    NASA Technical Reports Server (NTRS)

    Ganta, Roman Reddy; Wilkerson, Melinda J.; Cheng, Chuanmin; Rokey, Aaron M.; Chapes, Stephen K.

    2002-01-01

    Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for > or =30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4(+) T cells, are critical for conferring resistance to E. chaffeensis.

  19. The overlooked "nonclassical" functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells.

    PubMed

    Altomonte, M; Pucillo, C; Maio, M

    1999-06-01

    Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.

  20. Cloning of the major histocompatibility complex class II promoter binding protein affected in a hereditary defect in class II gene regulation.

    PubMed Central

    Reith, W; Barras, E; Satola, S; Kobr, M; Reinhart, D; Sanchez, C H; Mach, B

    1989-01-01

    The regulation of major histocompatibility complex class II gene expression is directly involved in the control of normal and abnormal immune responses. In humans, HLA-DR, -DQ, and -DP class II heterodimers are encoded by a family of alpha- and beta-chain genes clustered in the major histocompatibility complex. Their expression is developmentally controlled and normally restricted to certain cell types. This control is mediated by cis-acting sequences in class II promoters and by trans-acting regulatory factors. Several nuclear proteins bind to class II promoter sequences. In a form of hereditary immunodeficiency characterized by a defect in a trans-acting regulatory factor controlling class II gene transcription, we have observed that one of these nuclear factors (RF-X) does not bind to its target sequence (the class II X box). A cDNA encoding RF-X was isolated by screening a phage expression library with an X-box binding-site probe. The recombinant protein has the binding specificity of RF-X, including a characteristic gradient of affinity for the X boxes of HLA-DR, -DP, and -DQ promoters. RF-X mRNA is present in the regulatory mutants, indicating a defect in the synthesis of a functional form of the RF-X protein. Images PMID:2498880

  1. Diversity at the major histocompatibility complex Class II in the platypus, Ornithorhynchus anatinus.

    PubMed

    Lillie, Mette; Woodward, Rachael E; Sanderson, Claire E; Eldridge, Mark D B; Belov, Katherine

    2012-07-01

    The platypus (Ornithorhynchus anatinus) is the sole survivor of a previously widely distributed and diverse lineage of ornithorhynchid monotremes. Its dependence on healthy water systems imposes an inherent sensitivity to habitat degradation and climate change. Here, we compare genetic diversity at the major histocompatibility complex (MHC) Class II-DZB gene and 3 MHC-associated microsatellite markers with diversity at 6 neutral microsatellite markers in 70 platypuses from across their range, including the mainland of Australia and the isolated populations of Tasmania, King Island, and Kangaroo Island. Overall, high DZB diversity was observed in the platypus, with 57 DZB β1 alleles characterized. Significant positive selection was detected within the DZB peptide-binding region, promoting variation in this domain. Low levels of genetic diversity were detected at all markers in the 2 island populations, King Island (endemic) and Kangaroo Island (introduced), with the King Island platypuses monomorphic at the DZB locus. Loss of MHC diversity on King Island is of concern, as the population may have compromised immunological fitness and reduced ability to resist changing environmental conditions.

  2. Major histocompatibility complex haplotypes and class II genes in non-Jewish patients with pemphigus vulgaris

    SciTech Connect

    Ahmed, A.R. Center for Blood Research, Boston, MA American Red Cross Blood Services-Northeast Region, Dedham, MA ); Wagner, R.; Khatri, K.; Notani, G.; Awdeh, Z.; Alper, C.A. ); Yunis, E.J. American Red Cross Blood Services-Northeast Region, Dedham, MA )

    1991-06-01

    Previous studies demonstrated that HLA-DR4 was markedly increased among Ashkenazi Jewish patients with pemphigus vulgaris (PV), almost entirely as the common Jewish extended haplotype (HLA-B38, SC21, DR4, DQw8) or as the haplotype HLA-B35, SC31, DR4, DQw8, and that HLA-DR4, DQw8 was distributed among patients in a manner consistent with dominant expression of a class II (D-region or D-region-linked) susceptibility gene. In the present study of major histocompatibility complex (MHC) halotypes in 25 non-Jewish PV patients, DR4, DQw8 was found in 12 of the patients and DRw6, DQw5 was found in 15. Only 3 patients had neither. The non-Jewish patients were of more Southern European extraction than our controls. This suggests that there are two major MHC susceptibility alleles in American patients with PV. The more ancient apparently arose on a haplotype in the Jews, HLA-B38(35), SC21(SC31), DR4, DQw8, and spread to other populations largely as D-region segments. The other arose in or near Italy on the haplotype HLA-Bw55, SB45, DRw14, DQw5 amd has also partially fragmented so that many patients carry only DRw14, DQw5. The available data do not permit the specific localization of either the DR4, DQw8-or the DRw14, DQw5-linked susceptibility genes.

  3. Evolution of the major histocompatibility complex: isolation of class II A cDNA clones from the cartilaginous fish.

    PubMed Central

    Kasahara, M; Vazquez, M; Sato, K; McKinney, E C; Flajnik, M F

    1992-01-01

    Along with the T-cell receptor and immunoglobulin, the major histocompatibility complex (MHC) plays a key role in mounting immune responses to foreign antigen. To gain insights into the evolution of the MHC, class II A cDNA clones were isolated from nurse sharks, a member of the class of cartilaginous fish. Two closely related cDNA clones, which might encode allelic products, were identified; of the three amino acid substitutions found in the alpha 1 domain, two were located at positions postulated to interact with processed peptides. The deduced nurse shark MHC class II alpha chains showed conspicuous structural similarity to their mammalian counterparts. Isolation of cDNA clones encoding typical MHC class II alpha chains was unexpected since no direct evidence for T-cell-mediated immune responses has been obtained in the cartilaginous fish. The cartilaginous fish is phylogenetically the most primitive class of vertebrates from which any MHC gene has been isolated. PMID:1495958

  4. Major histocompatibility complex class II genetic variation in forest musk deer (Moschus berezovskii) in China.

    PubMed

    Yao, Gang; Zhu, Ying; Wan, Qiu-Hong; Fang, Sheng-Guo

    2015-10-01

    The major histocompatibility complex (MHC) plays an important role in the immune system of vertebrates. We used the second exon of four MHC class II genes (DRA, DQA1, DQA2 and DRB3) to assess the overall MHC variation in forest musk deer (Moschus berezovskii). We also compared the MHC variation in captive and wild populations. We observed 22 alleles at four loci (four at DRA, four at DQA1, four at DQA2 and 10 at DRB3), 15 of which were newly identified alleles. Results suggest that forest musk deer maintain relatively high MHC variation, which may result from balancing selection. Moreover, considerable diversity was observed at the DRA locus. We found a high frequency of Mobe-DRA*02, Mobe-DQA1*01 and Mobe-DQA2*05 alleles, which may be important for pathogen resistance. A Ewens-Watterson test showed that the DRB3 locus in the wild population had experienced recent balancing selection. We detected a small divergence at the DRA locus, suggesting the effect of weak positive selection on the DRA gene. Alternatively, this locus may be young and not yet adapted a wide spectrum of alleles for pathogen resistance. The significant heterozygosity deficit observed at the DQA1 and DRB3 loci in the captive population and at all four loci in the wild population may be the result of a population bottleneck. Additionally, MHC genetic diversity was higher in the wild population than in the captive, suggesting that the wild population may have the ability to respond to a wider range of pathogens.

  5. Detection of autoreactive CD4 T cells using major histocompatibility complex class II dextramers

    PubMed Central

    2011-01-01

    Background Tetramers are useful tools to enumerate the frequencies of antigen-specific T cells. However, unlike CD8 T cells, CD4 T cells - especially self-reactive cells - are challenging to detect with major histocompatibility complex (MHC) class II tetramers because of low frequencies and low affinities of their T cell receptors to MHC-peptide complexes. Here, we report the use of fluorescent multimers, designated MHC dextramers that contain a large number of peptide-MHC complexes per reagent. Results The utility of MHC dextramers was evaluated in three autoimmune disease models: 1) proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis in SJL/J (H-2s) mice; 2) myelin oligodendrocyte glycoprotein (MOG) 35-55-induced experimental autoimmune encephalomyelitis in C57Bl/6 (H-2b) mice; and 3) cardiac myosin heavy chain (Myhc)-α 334-352-induced experimental autoimmune myocarditis in A/J (H-2a) mice. Flow cytometrically, we demonstrate that IAs/PLP 139-151, IAb/MOG 35-55 and IAk/Myhc-α 334-352 dextramers detect the antigen-sensitized cells with specificity, and with a detection sensitivity significantly higher than that achieved with conventional tetramers. Furthermore, we show that binding of dextramers, but not tetramers, is less dependent on the activation status of cells, permitting enumeration of antigen-specific cells ex vivo. Conclusions The data suggest that MHC dextramers are useful tools to track the generation and functionalities of self-reactive CD4 cells in various experimental systems. PMID:21767394

  6. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Hoynowski, S. M.; Woods, K. M.; Armstrong, J. W.; Beharka, A. A.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines.

  7. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Hoynowski, S. M.; Woods, K. M.; Armstrong, J. W.; Beharka, A. A.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines.

  8. Active suppression of major histocompatibility complex class II gene expression during differentiation from B cells to plasma cells

    SciTech Connect

    Latron, F.; Maffei, A.; Scarpellino, L.; Bernard, M.; Accolla, R.S. ); Jotterand-Bellomo, M. ); Strominger, J.L. )

    1988-04-01

    Constitutive expression of major histocompatibility complex class II genes is acquired very early in B-cell ontogeny and is maintained up to the B-cell blast stage. Terminal differentiation in plasma cells is, however, accompanied by a loss of class II gene expression. In B cells this gene system is under the control of several loci encoding transacting factors with activator function, one of which, the aIr-1 gene product, operates across species barriers. In this report human class II gene expression is shown to be extinguished in somatic cell hybrids between the human class II-positive B-cell line Raji and the mouse class-II negative plasmacytoma cell line P3-U1. Since all murine chromosomes are retained in these hybrids and no preferential segregation of a specific human chromosome is observed, the results are compatible with the presence of suppressor factors of mouse origin, operating across species barriers and inhibiting class II gene expression. Suppression seems to act at the level of transcription or accumulation of class II-specific mRNA, since no human, and very few murine, class II transcripts are detectable in the hybrids.

  9. Clinical, immunological and genetic features in eleven Algerian patients with major histocompatibility complex class II expression deficiency.

    PubMed

    Djidjik, Réda; Messaoudani, Nesrine; Tahiat, Azzedine; Meddour, Yanis; Chaib, Samia; Atek, Aziz; Khiari, Mohammed Elmokhtar; Benhalla, Nafissa Keltoum; Smati, Leila; Bensenouci, Abdelatif; Baghriche, Mourad; Ghaffor, Mohammed

    2012-08-03

    Presenting processed antigens to CD4+ lymphocytes during the immune response involves major histocompatibility complex class II molecules. MHC class II genes transcription is regulated by four transcription factors: CIITA, RFXANK, RFX5 and RFXAP. Defects in these factors result in major histocompatibility complex class II expression deficiency, a primary combined immunodeficiency frequent in North Africa. Autosomal recessive mutations in the RFXANK gene have been reported as being the principal defect found in North African patients with this disorder. In this paper, we describe clinical, immunological and genetic features of 11 unrelated Algerian patients whose monocytes display a total absence of MHC class II molecules. They shared mainly the same clinical picture which included protracted diarrhoea and respiratory tract recurrent infections. Genetic analysis revealed that 9 of the 11 patients had the same RFXANK founder mutation, a 26 bp deletion (named I5E6-25_I5E6+1, also known as 752delG26). Immunological and genetic findings in our series may facilitate genetic counselling implementation for Algerian consanguineous families. Further studies need to be conducted to determine 752delG26 heterozygous mutation frequency in Algerian population.

  10. Clinical, immunological and genetic features in eleven Algerian patients with major histocompatibility complex class II expression deficiency

    PubMed Central

    2012-01-01

    Presenting processed antigens to CD4+ lymphocytes during the immune response involves major histocompatibility complex class II molecules. MHC class II genes transcription is regulated by four transcription factors: CIITA, RFXANK, RFX5 and RFXAP. Defects in these factors result in major histocompatibility complex class II expression deficiency, a primary combined immunodeficiency frequent in North Africa. Autosomal recessive mutations in the RFXANK gene have been reported as being the principal defect found in North African patients with this disorder. In this paper, we describe clinical, immunological and genetic features of 11 unrelated Algerian patients whose monocytes display a total absence of MHC class II molecules. They shared mainly the same clinical picture which included protracted diarrhoea and respiratory tract recurrent infections. Genetic analysis revealed that 9 of the 11 patients had the same RFXANK founder mutation, a 26 bp deletion (named I5E6-25_I5E6+1, also known as 752delG26). Immunological and genetic findings in our series may facilitate genetic counselling implementation for Algerian consanguineous families. Further studies need to be conducted to determine 752delG26 heterozygous mutation frequency in Algerian population. PMID:22863278

  11. Failure of a protective major histocompatibility complex class II molecule to delete autoreactive T cells in autoimmune diabetes.

    PubMed

    Slattery, R M; Miller, J F; Heath, W R; Charlton, B

    1993-11-15

    The association of major histocompatibility complex genes with autoimmune diseases is firmly established, but the mechanisms by which these genes confer resistance or susceptibility remain controversial. The controversy extends to the nonobese diabetic (NOD) mouse that develops disease similar to human insulin-dependent diabetes mellitus. The transgenic incorporation of certain class II major histocompatibility complex genes protects NOD mice from diabetes, and clonal deletion or functional silencing of autoreactive T cells has been proposed as the mechanism by which these molecules provide protection. We show that neither thymic deletion nor anergy of autoreactive T cells occurs in NOD mice transgenic for I-Ak. Autoreactive T cells are present, functional, and can transfer diabetes to appropriate NOD-recipient mice.

  12. The role of "indirect" recognition in initiating rejection of skin grafts from major histocompatibility complex class II-deficient mice.

    PubMed Central

    Auchincloss, H; Lee, R; Shea, S; Markowitz, J S; Grusby, M J; Glimcher, L H

    1993-01-01

    In vitro studies have revealed several pathways by which T cells can respond to alloantigens, including CD4+ direct responses to allogeneic class II antigens, CD8+ direct responses to allogeneic class I antigens, and CD4+ "indirect" responses to peptides of alloantigens presented in association with responder class II molecules. In vivo studies of skin graft rejection, however, have so far provided clear evidence for the contribution of only the two direct pathways and not for indirect recognition. We have used major histocompatibility complex class II-deficient mice as donors to test the role of indirect recognition in rejection of skin grafts. Class II-deficient skin was always rejected without delay by normal recipients. Removal of recipient CD8+ cells (to leave the animals dependent on CD4+ function) or depletion of recipient CD4+ cells revealed that CD4+ cells were usually involved and sometimes absolutely required in this rapid rejection. Since the donor grafts lacked class II antigens, the CD4+ cells must have recognized donor antigens presented in association with recipient class II molecules. These results therefore indicate that indirect recognition can initiate rapid skin graft rejection. PMID:8475083

  13. Trafficking of major histocompatibility complex class II molecules through intracellular compartments containing HLA-DM.

    PubMed

    Robbins, N F; Hammond, C; Denzin, L K; Pan, M; Cresswell, P

    1996-01-01

    The endosomal site(s) where MHC class II molecules become competent to bind antigenic peptide has not been completely characterized. We identified endocytic compartments through which newly synthesized MHC class II molecules move prior to their expression on the plasma membrane. The compartments co-sediment with lysosomes in the most dense regions of Percoll gradients. The appearance of proteolytic fragments of the invariant chain (I chain), namely leupeptin-induced proteins (LIPs) and class-II-associated invariant chain peptides (CLIP), in this region of the gradient suggests that the release of MHC class II molecules from I chain association occurs within these vesicles. The formation of SDS-stable alpha beta dimers indicated that MHC class II molecules contained within these compartments are receptive to peptide binding. A majority of the HLA-DM protein was found in the same region of the Percoll gradient, consistent with its established function in MHC class-II-restricted antigen presentation. Immunoelectron micrographs of dense-sedimenting compartments indicated that I chain, MHC class II, and DM molecules are contained within both multivesicular and multilamellar vesicles. The final stages of I chain dissociation from MHC class II molecules and DM-mediated peptide loading probably occur in these compartments.

  14. Species specificity and augmentation of responses to class II major histocompatibility complex molecules in human CD4 transgenic mice

    PubMed Central

    1992-01-01

    Murine T cell responses to human class II major histocompatibility complex (MHC) molecules were shown to be a minimum of 20-70-fold lower than responses to allogeneic molecules. Transgenic mice expressing slightly below normal (75-95%) or very high (250-380%) cell surface levels of human CD4 were utilized to determine whether this was due to a species-specific interaction between murine CD4 and class II molecules. Human CD4 was shown to function in signal transduction events in murine T cells based on the ability of anti-human CD4 antibody to synergize with suboptimal doses of anti-murine CD3 antibody in stimulating T cell proliferation. In mice expressing lower levels of human CD4, T cell responses to human class II molecules were enhanced up to threefold, whereas allogeneic responses were unaltered. In mice expressing high levels of human CD4, responses to human class II molecules were enhanced at least 10-fold, whereas allogeneic responses were between one and three times the level of normal responses. The relatively greater enhancement of the response to human class II molecules in both lines argues for a preferential interaction between human CD4 and human class II molecules. In mice expressing lower levels of human CD4, responses to human class II molecules were blocked by antibodies to CD4 of either species, indicating participation by both molecules. In mice expressing high levels of human CD4, responses to both human and murine class II molecules were almost completely blocked with anti-human CD4 antibody, whereas anti-murine CD4 antibody had no effect. However, anti-murine CD4 continued to synergize with anti-CD3 in stimulating T cell proliferation in these mice. Thus, overexpression of human CD4 selectively impaired the ability of murine CD4 to assist in the process of antigen recognition. The ability of human CD4 to support a strong allogeneic response under these conditions indicates that this molecule can interact with murine class II molecules to a

  15. Organization and characteristics of the major histocompatibility complex class II region in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis)

    PubMed Central

    Ruan, Rui; Ruan, Jue; Wan, Xiao-Ling; Zheng, Yang; Chen, Min-Min; Zheng, Jin-Song; Wang, Ding

    2016-01-01

    Little is known about the major histocompatibility complex (MHC) in the genome of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) (YFP) or other cetaceans. In this study, a high-quality YFP bacterial artificial chromosome (BAC) library was constructed. We then determined the organization and characterization of YFP MHC class II region by screening the BAC library, followed by sequencing and assembly of positive BAC clones. The YFP MHC class II region consists of two segregated contigs (218,725 bp and 328,435 bp respectively) that include only eight expressed MHC class II genes, three pseudo MHC genes and twelve non-MHC genes. The YFP has fewer MHC class II genes than ruminants, showing locus reduction in DRB, DQA, DQB, and loss of DY. In addition, phylogenic and evolutionary analyses indicated that the DRB, DQA and DQB genes might have undergone birth-and-death evolution, whereas the DQB gene might have evolved under positive selection in cetaceans. These findings provide an essential foundation for future work, such as estimating MHC genetic variation in the YFP or other cetaceans. This work is the first report on the MHC class II region in cetaceans and offers valuable information for understanding the evolution of MHC genome in cetaceans. PMID:26932528

  16. Accumulation of Major Histocompatibility Complex Class II Molecules in Mast Cell Secretory Granules and Their Release upon Degranulation

    PubMed Central

    Raposo, Graça; Tenza, Danielle; Mecheri, Salahedine; Peronet, Roger; Bonnerot, Christian; Desaymard, Catherine

    1997-01-01

    To investigate the relationship between major histocompatibility complex (MHC) class II compartments, secretory granules, and secretory lysosomes, we analyzed the localization and fate of MHC class II molecules in mast cells. In bone marrow-derived mast cells, the bulk of MHC class II molecules is contained in two distinct compartments, with features of both lysosomal compartments and secretory granules defined by their protein content and their accessibility to endocytic tracers. Type I granules display internal membrane vesicles and are accessed by exogenous molecules after a time lag of 20 min; type II granules are reached by the endocytic tracer later and possess a serotonin-rich electron-dense core surrounded by a multivesicular domain. In these type I and type II granules, MHC class II molecules, mannose-6-phosphate receptors and lysosomal membrane proteins (lamp1 and lamp2) localize to small intralumenal vesicles. These 60–80-nm vesicles are released along with inflammatory mediators during mast cell degranulation triggered by IgE-antigen complexes. These observations emphasize the intimate connection between the endocytic and secretory pathways in cells of the hematopoietic lineage which allows regulated secretion of the contents of secretory lysosomes, including membrane proteins associated with small vesicles. PMID:9398681

  17. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation.

    PubMed

    Raposo, G; Tenza, D; Mecheri, S; Peronet, R; Bonnerot, C; Desaymard, C

    1997-12-01

    To investigate the relationship between major histocompatibility complex (MHC) class II compartments, secretory granules, and secretory lysosomes, we analyzed the localization and fate of MHC class II molecules in mast cells. In bone marrow-derived mast cells, the bulk of MHC class II molecules is contained in two distinct compartments, with features of both lysosomal compartments and secretory granules defined by their protein content and their accessibility to endocytic tracers. Type I granules display internal membrane vesicles and are accessed by exogenous molecules after a time lag of 20 min; type II granules are reached by the endocytic tracer later and possess a serotonin-rich electron-dense core surrounded by a multivesicular domain. In these type I and type II granules, MHC class II molecules, mannose-6-phosphate receptors and lysosomal membrane proteins (lamp1 and lamp2) localize to small intralumenal vesicles. These 60-80-nm vesicles are released along with inflammatory mediators during mast cell degranulation triggered by IgE-antigen complexes. These observations emphasize the intimate connection between the endocytic and secretory pathways in cells of the hematopoietic lineage which allows regulated secretion of the contents of secretory lysosomes, including membrane proteins associated with small vesicles.

  18. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules*

    PubMed Central

    Barroso, Margarida; Tucker, Heidi; Drake, Lisa; Nichol, Kathleen; Drake, James R.

    2015-01-01

    Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen. PMID:26400081

  19. SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling.

    PubMed

    Draber, Peter; Vonkova, Ivana; Stepanek, Ondrej; Hrdinka, Matous; Kucova, Marketa; Skopcova, Tereza; Otahal, Pavel; Angelisova, Pavla; Horejsi, Vaclav; Yeung, Mandy; Weiss, Arthur; Brdicka, Tomas

    2011-11-01

    Formation of the immunological synapse between an antigen-presenting cell (APC) and a T cell leads to signal generation in both cells involved. In T cells, the lipid raft-associated transmembrane adaptor protein LAT plays a central role. Its phosphorylation is a crucial step in signal propagation, including the calcium response and mitogen-activated protein kinase activation, and largely depends on its association with the SLP76 adaptor protein. Here we report the discovery of a new palmitoylated transmembrane adaptor protein, termed SCIMP. SCIMP is expressed in B cells and other professional APCs and is localized in the immunological synapse due to its association with tetraspanin-enriched microdomains. In B cells, it is constitutively associated with Lyn kinase and becomes tyrosine phosphorylated after major histocompatibility complex type II (MHC-II) stimulation. When phosphorylated, SCIMP binds to the SLP65 adaptor protein and also to the inhibitory kinase Csk. While the association with SLP65 initiates the downstream signaling cascades, Csk binding functions as a negative regulatory loop. The results suggest that SCIMP is involved in signal transduction after MHC-II stimulation and therefore serves as a regulator of antigen presentation and other APC functions.

  20. Bare lymphocyte syndrome. Consequences of absent class II major histocompatibility antigen expression for B lymphocyte differentiation and function.

    PubMed Central

    Clement, L T; Plaeger-Marshall, S; Haas, A; Saxon, A; Martin, A M

    1988-01-01

    The bare lymphocyte syndrome is a rare combined immunodeficiency disorder associated with the absence of class I and/or class II major histocompatibility (MHC) antigens. Although it has been inferred that the immune deficiency is a consequence of disordered MHC-restricted interactions among otherwise normal cells, the biological capabilities and differentiation of B lymphocytes deficient in class II MHC antigens have not been rigorously analyzed. We have examined the phenotypic and functional attributes of B cells with absent class II MHC antigens. Our data demonstrate that these B cells are intrinsically defective in their responses to membrane-mediated activation stimuli. In addition, virtually all the B cells had phenotypic evidence of arrested differentiation at an immature stage. Finally, these B cells also failed to express the C3d-EBV receptor normally present on all B lymphocytes. These data indicate that class II MHC molecules are vital participants in early events of the B cell activation cascade, and that other non-MHC membrane molecules may also be absent as a consequence of either arrested differentiation or as a result of the basic defect affecting the expression of MHC membrane antigens. PMID:3257764

  1. Selection and trans-species polymorphism of major histocompatibility complex class II genes in the order Crocodylia.

    PubMed

    Jaratlerdsiri, Weerachai; Isberg, Sally R; Higgins, Damien P; Miles, Lee G; Gongora, Jaime

    2014-01-01

    Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and β evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II β diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II β sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85-90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia.

  2. Selection and Trans-Species Polymorphism of Major Histocompatibility Complex Class II Genes in the Order Crocodylia

    PubMed Central

    Jaratlerdsiri, Weerachai; Isberg, Sally R.; Higgins, Damien P.; Miles, Lee G.; Gongora, Jaime

    2014-01-01

    Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and β evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II β diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II β sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85–90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia. PMID:24503938

  3. Two putative subunits of a peptide pump encoded in the human major histocompatibility complex class II region.

    PubMed Central

    Bahram, S; Arnold, D; Bresnahan, M; Strominger, J L; Spies, T

    1991-01-01

    The class II region of the human major histocompatibility complex (MHC) may encode several genes controlling the processing of endogenous antigen and the presentation of peptide epitopes by MHC class I molecules to cytotoxic T lymphocytes. A previously described peptide supply factor (PSF1) is a member of the multidrug-resistance family of transporters and may pump cytosolic peptides into the membrane-bound compartment where class I molecules assemble. A second transporter gene, PSF2, was identified 10 kilobases (kb) from PSF1, near the class II DOB gene. The complete sequences of PSF1 and PSF2 were determined from cDNA clones. The translation products are closely related in sequence and predicted secondary structure. Both contain a highly conserved ATP-binding fold and share 25% homology in a hydrophobic domain with a tentative number of eight membrane-spanning segments. Based on the principle dimeric organization of these two domains in other transporters, PSF1 and PSF2 may function as complementary subunits, independently as homodimers, or both. Taken together with previous genetic evidence, the coregulation of PSF1 and PSF2 by gamma interferon and the to-some-degree coordinate transcription of these genes suggest a common role in peptide-loading of class I molecules, although a distinct function of PSF2 cannot be ruled out. Images PMID:1946428

  4. The CLIP region of invariant chain plays a critical role in regulating major histocompatibility complex class II folding, transport, and peptide occupancy.

    PubMed

    Romagnoli, P; Germain, R N

    1994-09-01

    Invariant chain (Ii) contributes in a number of distinct ways to the proper functioning of major histocompatibility complex (MHC) class II molecules. These include promoting effective association and folding of newly synthesized MHC class II alpha and beta subunits, increasing transit of assembled heterodimers out of the endoplasmic reticulum (ER), inhibiting class II peptide binding, and facilitating class II movement to or accumulation in endosomes/lysosomes. Although the cytoplasmic tail of Ii makes a key contribution to the endocytic localization of class II, the relationship between the structure of Ii and its other diverse functions remains unknown. We show here that two thirds of the lumenal segment of Ii can be eliminated without affecting its contributions to the secretory pathway events of class II folding, ER to Golgi transport, or inhibition of peptide binding. These same experiments reveal that a short (25 residue) contiguous internal segment of Ii (the CLIP region), frequently found associated with purified MHC class II molecules, is critical for all three functions. Together with other recent findings, these results raise the possibility that the contributions of Ii to the early postsynthetic behavior of class II may depend on its interaction with the class II binding site. This would be consistent with the intracellular behavior of unoccupied MHC class I and class II molecules as incompletely folded proteins and imply a related structural basis for the similar contributions of Ii to class II and of short peptides to class I assembly and transport.

  5. Effects of pH and polysaccharides on peptide binding to class II major histocompatibility complex molecules.

    PubMed Central

    Harding, C V; Roof, R W; Allen, P M; Unanue, E R

    1991-01-01

    The binding of immunogenic peptides to class II major histocompatibility molecules was examined at various pH values. We studied binding of peptides containing residues 52-61 from hen egg lysozyme (HEL) to I-Ak on fixed peritoneal macrophages or to solubilized affinity-purified I-Ak. Optimum binding occurred at pH 5.5-6.0 with accelerated kinetics relative to pH 7.4; equilibrium binding was also higher at pH 5.5-6.0 than at 7.4. Similar enhancement at pH 5-6 was observed for the binding of hemoglobin-(64-76) to I-Ek and of ribonuclease-(41-61) to I-Ak. In contrast, the binding of HEL-(34-45) to I-Ak was minimally enhanced at acid pH. Dissociation of cell-associated or purified peptide-I-Ak complexes was minimal between pH 5.5 and 7.4, with increased dissociation only at or below pH 4.0 [HEL-(46-61)] or pH 5.0 [HEL-(34-45)]. Thus, optimum peptide binding occurs at pH values similar to the endosomal environment, where the complexes appear to be formed during antigen processing. In addition, we examined the effect of a number of polysaccharides on the binding of peptide to I-Ak. None of these competed with the HEL peptide 125I-labeled YE52-61 for binding to I-Ak. [3H]Dextran also failed to bind purified I-Ak. Polysaccharides do not appear to bind to class II major histocompatibility complex molecules, which explains the T-cell independence of polysaccharide antigens. PMID:2011583

  6. Crystal structure of staphylococcal enterotoxin I (SEI) in complex with a human major histocompatibility complex class II molecule.

    PubMed

    Fernández, Marisa M; Guan, Rongjin; Swaminathan, Chittoor P; Malchiodi, Emilio L; Mariuzza, Roy A

    2006-09-01

    Superantigens are bacterial or viral proteins that elicit massive T cell activation through simultaneous binding to major histocompatibility complex (MHC) class II and T cell receptors. This activation results in uncontrolled release of inflammatory cytokines, causing toxic shock. A remarkable property of superantigens, which distinguishes them from T cell receptors, is their ability to interact with multiple MHC class II alleles independently of MHC-bound peptide. Previous crystallographic studies have shown that staphylococcal and streptococcal superantigens belonging to the zinc family bind to a high affinity site on the class II beta-chain. However, the basis for promiscuous MHC recognition by zinc-dependent superantigens is not obvious, because the beta-chain is polymorphic and the MHC-bound peptide forms part of the binding interface. To understand how zinc-dependent superantigens recognize MHC, we determined the crystal structure, at 2.0 A resolution, of staphylococcal enterotoxin I bound to the human class II molecule HLA-DR1 bearing a peptide from influenza hemagglutinin. Interactions between the superantigen and DR1 beta-chain are mediated by a zinc ion, and 22% of the buried surface of peptide.MHC is contributed by the peptide. Comparison of the staphylococcal enterotoxin I.peptide.DR1 structure with ones determined previously revealed that zinc-dependent superantigens achieve promiscuous binding to MHC by targeting conservatively substituted residues of the polymorphic beta-chain. Additionally, these superantigens circumvent peptide specificity by engaging MHC-bound peptides at their conformationally conserved N-terminal regions while minimizing sequence-specific interactions with peptide residues to enhance cross-reactivity.

  7. Zinc Induces Dimerization of the Class II Major Histocompatibility Complex Molecule That Leads to Cooperative Binding to a Superantigen

    SciTech Connect

    Li,H.; Zhao, Y.; Guo, Y.; Li, Z.; Eislele, L.; Mourad, W.

    2007-01-01

    Dimerization of class II major histocompatibility complex (MHC) plays an important role in the MHC biological function. Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing specific T cell receptor V{beta} elements. Here we have used structural, sedimentation, and surface plasmon resonance detection approaches to investigate the molecular interactions between MAM and the class II MHC molecule HLA-DR1 in the context of a hemagglutinin peptide-(306-318) (HA). Our results revealed that zinc ion can efficiently induce the dimerization of the HLA-DR1/HA complex. Because the crystal structure of the MAM/HLA-DR1/hemagglutinin complex in the presence of EDTA is nearly identical to the structure of the complex crystallized in the presence of zinc ion, Zn{sup 2+} is evidently not directly involved in the binding between MAM and HLA-DR1. Sedimentation and surface plasmon resonance studies further revealed that MAM binds the HLA-DR1/HA complex with high affinity in a 1:1 stoichiometry, in the absence of Zn{sup 2+}. However, in the presence of Zn{sup 2+}, a dimerized MAM/HLA-DR1/HA complex can arise through the Zn{sup 2+}-induced DR1 dimer. In the presence of Zn{sup 2+}, cooperative binding of MAM to the DR1 dimer was also observed.

  8. Zinc Induces Dimerization of the Class II Major Histocompatibility Complex Molecule That Leads to Cooperative Binding to a Superantigen*

    PubMed Central

    Li, Hongmin; Zhao, Yiwei; Guo, Yi; Li, Zhong; Eisele, Leslie; Mourad, Walid

    2014-01-01

    Dimerization of class II major histocompatibility complex (MHC) plays an important role in the MHC biological function. Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing specific T cell receptor Vβ elements. Here we have used structural, sedimentation, and surface plasmon resonance detection approaches to investigate the molecular interactions between MAM and the class II MHC molecule HLA-DR1 in the context of a hemagglutinin peptide-(306–318) (HA). Our results revealed that zinc ion can efficiently induce the dimerization of the HLA-DR1/HA complex. Because the crystal structure of the MAM/HLA-DR1/hemagglutinin complex in the presence of EDTA is nearly identical to the structure of the complex crystallized in the presence of zinc ion, Zn2+ is evidently not directly involved in the binding between MAM and HLA-DR1. Sedimentation and surface plasmon resonance studies further revealed that MAM binds the HLA-DR1/HA complex with high affinity in a 1:1 stoichiometry, in the absence of Zn2+. However, in the presence of Zn2+, a dimerized MAM/HLA-DR1/HA complex can arise through the Zn2+-induced DR1 dimer. In the presence of Zn2+, cooperative binding of MAM to the DR1 dimer was also observed. PMID:17166841

  9. Major histocompatibility complex class II alleles and haplotypes associated with non-suppurative meningoencephalitis in greyhounds.

    PubMed

    Shiel, R E; Kennedy, L J; Nolan, C M; Mooney, C T; Callanan, J J

    2014-09-01

    Non-suppurative meningoencephalitis is a breed-restricted canine neuroinflammatory disorder affecting young greyhounds in Ireland. A genetic risk factor is suspected because of the development of disease in multiple siblings and an inability to identify a causative infectious agent. The aim of this study was to examine potential associations between dog leucocyte antigen (DLA) class II haplotype and the presence of the disease. DLA three locus haplotypes were determined in 31 dogs with non-suppurative meningoencephalitis and in 115 healthy control dogs using sequence-based typing (SBT) methods. All dogs were unrelated at the parental level. Two haplotypes (DRB1*01802/DQA1*00101/DQB1*00802 and DRB1*01501/DQA1*00601/DQB1*02201) were significantly (P = 0.0099 and 0.037) associated with the presence of meningoencephalitis, with odds ratios (95% confidence interval) of 5.531 (1.168-26.19) and 3.736 (1.446-9.652), respectively. These results confirm that there is an association between DLA class II haplotype and greyhound meningoencephalitis, suggesting an immunogenetic risk factor for the development of the disease. Greyhound meningoencephalitis may be a suitable model for human neuroinflammatory diseases with an immunogenetic component. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Two distinct nuclear factors bind the conserved regulatory sequences of a rabbit major histocompatibility complex class II gene.

    PubMed Central

    Sittisombut, N

    1988-01-01

    The constitutive coexpression of the major histocompatibility complex (MHC) class II genes in B lymphocytes requires positive, trans-acting transcriptional factors. The need for these trans-acting factors has been suggested by the reversion of the MHC class II-negative phenotype of rare B-lymphocyte mutants through somatic cell fusion with B cells or T-cell lines. The mechanism by which the trans-acting factors exert their effect on gene transcription is unknown. The possibility that two highly conserved DNA sequences, located 90 to 100 base pairs (bp) (the A sequence) and 60 to 70 bp (the B sequence) upstream of the transcription start site of the class II genes, are recognized by the trans-acting factors was investigated in this study. By using the gel electrophoresis retardation assay, a minimum of two proteins which specifically bound the conserved A or B sequence of a rabbit DP beta gene were identified in murine nuclear extracts of a B-lymphoma cell line, A20-2J. Fractionation of nuclear extract through a heparin-agarose column allowed the identification of one protein, designated NF-MHCIIB, which bound an oligonucleotide containing the B sequence and protected the entire B sequence in the DNase I protection analysis. Another protein, designated NF-MHCIIA, which bound an oligonucleotide containing the A sequence and partially protected the 3' half of this sequence, was also identified. NF-MHCIIB did not protect a CCAAT sequence located 17 bp downstream of the B sequence. The possible relationship between these DNA-binding factors and the trans-acting factors identified in the cell fusion experiments is discussed. Images PMID:3133552

  11. Characterization of major histocompatibility complex class I and class II genes from the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Siddle, Hannah V; Sanderson, Claire; Belov, Katherine

    2007-09-01

    The Tasmanian devil (Sarcophilus harrisii) is currently threatened by an emerging wildlife disease, devil facial tumour disease. The disease is decreasing devil numbers dramatically and may lead to the extinction of the species. At present, nothing is known about the immune genes or basic immunology of the devil. In this study, we report the construction of the first genetic library for the Tasmanian devil, a spleen cDNA library, and the isolation of full-length MHC Class I and Class II genes. We describe six unique Class II beta chain sequences from at least three loci, which belong to the marsupial Class II DA gene family. We have isolated 13 unique devil Class I sequences, representing at least seven Class I loci, two of which are most likely non-classical genes. The MHC Class I sequences from the devil have little heterogeneity, indicating recent divergence. The MHC genes described here are most likely involved in antigen presentation and are an important first step for studying MHC diversity and immune response in the devil.

  12. Giant panda BAC library construction and assembly of a 650-kb contig spanning major histocompatibility complex class II region

    PubMed Central

    Zeng, Chang-Jun; Pan, Hui-Juan; Gong, Shao-Bin; Yu, Jian-Qiu; Wan, Qiu-Hong; Fang, Sheng-Guo

    2007-01-01

    Background Giant panda is rare and endangered species endemic to China. The low rates of reproductive success and infectious disease resistance have severely hampered the development of captive and wild populations of the giant panda. The major histocompatibility complex (MHC) plays important roles in immune response and reproductive system such as mate choice and mother-fetus bio-compatibility. It is thus essential to understand genetic details of the giant panda MHC. Construction of a bacterial artificial chromosome (BAC) library will provide a new tool for panda genome physical mapping and thus facilitate understanding of panda MHC genes. Results A giant panda BAC library consisting of 205,800 clones has been constructed. The average insert size was calculated to be 97 kb based on the examination of 174 randomly selected clones, indicating that the giant panda library contained 6.8-fold genome equivalents. Screening of the library with 16 giant panda PCR primer pairs revealed 6.4 positive clones per locus, in good agreement with an expected 6.8-fold genomic coverage of the library. Based on this BAC library, we constructed a contig map of the giant panda MHC class II region from BTNL2 to DAXX spanning about 650 kb by a three-step method: (1) PCR-based screening of the BAC library with primers from homologous MHC class II gene loci, end sequences and BAC clone shotgun sequences, (2) DNA sequencing validation of positive clones, and (3) restriction digest fingerprinting verification of inter-clone overlapping. Conclusion The identifications of genes and genomic regions of interest are greatly favored by the availability of this giant panda BAC library. The giant panda BAC library thus provides a useful platform for physical mapping, genome sequencing or complex analysis of targeted genomic regions. The 650 kb sequence-ready BAC contig map of the giant panda MHC class II region from BTNL2 to DAXX, verified by the three-step method, offers a powerful tool for

  13. Human epidermal Langerhans cells cointernalize by receptor-mediated endocytosis "nonclassical" major histocompatibility complex class I molecules (T6 antigens) and class II molecules (HLA-DR antigens).

    PubMed Central

    Hanau, D; Fabre, M; Schmitt, D A; Garaud, J C; Pauly, G; Tongio, M M; Mayer, S; Cazenave, J P

    1987-01-01

    HLA-DR and T6 surface antigens are expressed only by Langerhans cells and indeterminate cells in normal human epidermis. We have previously demonstrated that T6 antigens are internalized in Langerhans cells and indeterminate cells by receptor-mediated endocytosis. This process is induced by the binding of BL6, a monoclonal antibody directed against T6 antigens. In the present study, using a monoclonal antibody directed against HLA-DR antigens, on human epidermal cells in suspension, we show that the surface HLA-DR antigens are also internalized by receptor-mediated endocytosis in Langerhans and indeterminate cells. Moreover, using immunogold double labeling, we demonstrate that T6 and HLA-DR antigens are internalized through common coated regions of the membrane of Langerhans or indeterminate cells. The receptor-mediated endocytosis that is induced involves coated pits and vesicles, receptosomes, lysosomes, and also, in Langerhans cells, the Birbeck granules. Thus, T6 antigens, which are considered to be "unusual" or "nonclassical" major histocompatibility complex class I molecules, and the major histocompatibility complex class II molecules, HLA-DR, are internalized in Langerhans and indeterminate cells through common receptor-mediated endocytosis organelles. Images PMID:3106979

  14. Polymorphism in a second ABC transporter gene located within the class II region of the human major histocompatibility complex.

    PubMed Central

    Powis, S H; Mockridge, I; Kelly, A; Kerr, L A; Glynne, R; Gileadi, U; Beck, S; Trowsdale, J

    1992-01-01

    Recent studies have identified genes within the major histocompatibility complex (MHC) that may play a role in presentation of antigenic peptides to T cells. We have previously described RING4, a gene within the human MHC class II region that has sequence homology with members of the ABC ("ATP-binding cassette") transporter superfamily. We now report the nucleotide sequence of RING11, a second ABC transporter gene located approximately 7 kilobases telomeric to RING4, RING11 is gamma-interferon inducible, a property shared with other genes involved in antigen presentation. Comparison between the amino acid sequences of RING11 and RING4 reveals strong homology. We propose that they form a heterodimer that transports peptides from the cytoplasm into the endoplasmic reticulum. We have identified two RING11 alleles, which differ in the length of their derived protein sequence by 17 amino acids. The more common of these alleles is present in a Caucasoid population at a frequency of 79%. Images PMID:1741401

  15. Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental.

    PubMed

    Guil, Sara; Rodríguez-Castro, Marta; Aguilar, Francisco; Villasevil, Eugenia M; Antón, Luis C; Del Val, Margarita

    2006-12-29

    CD8(+) T lymphocytes recognize infected cells that display virus-derived antigenic peptides complexed with major histocompatibility complex class I molecules. Peptides are mainly byproducts of cellular protein turnover by cytosolic proteasomes. Cytosolic tripeptidyl-peptidase II (TPPII) also participates in protein degradation. Several peptidic epitopes unexpectedly do not require proteasomes, but it is unclear which proteases generate them. We studied antigen processing of influenza virus nucleoprotein epitope NP(147-155), an archetype epitope that is even destroyed by a proteasome-mediated mechanism. TPPII, with the assistance of endoplasmic reticulum trimming metallo-aminopeptidases, probably ERAAP (endoplasmic reticulum aminopeptidase associated with antigen processing), was crucial for nucleoprotein epitope generation both in the presence of functional proteasomes and when blocked by lactacystin, as shown with specific chemical inhibitors and gene silencing. Different protein contexts and subcellular targeting all allowed epitope processing by TPPII as well as trimming. The results show the plasticity of the cell's assortment of proteases for providing ligands for recognition by antiviral CD8(+) T cells. Our observations identify for the first time a set of proteases competent for antigen processing of an epitope that is susceptible to destruction by proteasomes.

  16. Genetic variation of the major histocompatibility complex (MHC class II B gene) in the threatened Hume's pheasant, Syrmaticus humiae.

    PubMed

    Chen, Weicai; Bei, Yongjian; Li, Hanhua

    2015-01-01

    Major histocompatibility complex (MHC) genes are the most polymorphic genes in vertebrates and encode molecules that play a crucial role in pathogen resistance. As a result of their diversity, they have received much attention in the fields of evolutionary and conservation biology. Here, we described the genetic variation of MHC class II B (MHCIIB) exon 2 in a wild population of Hume's pheasant (Syrmaticus humiae), which has suffered a dramatic decline in population over the last three decades across its ranges in the face of heavy exploitation and habitat loss. Twenty-four distinct alleles were found in 73 S. humiae specimens. We found seven shared alleles among four geographical groups as well as six rare MHCIIB alleles. Most individuals displayed between one to five alleles, suggesting that there are at least three MHCIIB loci of the Hume's pheasant. The dN ⁄ dS ratio at putative antigen-binding sites (ABS) was significantly greater than one, indicating balancing selection is acting on MHCIIB exon 2. Additionally, recombination and gene conversion contributed to generating MHCIIB diversity in the Hume's pheasant. One to three recombination events and seventy-five significant gene conversion events were observed within the Hume's pheasant MHCIIB loci. The phylogenetic tree and network analysis revealed that the Hume's pheasant alleles do not cluster together, but are scattered through the tree or network indicating a trans-species evolutionary mode. These findings revealed the evolution of the Hume's pheasant MHC after suffering extreme habitat fragmentation.

  17. Characterization of class II β chain major histocompatibility complex genes in a family of Hawaiian honeycreepers: 'amakihi (Hemignathus virens).

    PubMed

    Jarvi, Susan I; Bianchi, Kiara R; Farias, Margaret Em; Txakeeyang, Ann; McFarland, Thomas; Belcaid, Mahdi; Asano, Ashley

    2016-07-01

    Hawaiian honeycreepers (Drepanidinae) have evolved in the absence of mosquitoes for over five million years. Through human activity, mosquitoes were introduced to the Hawaiian archipelago less than 200 years ago. Mosquito-vectored diseases such as avian malaria caused by Plasmodium relictum and Avipoxviruses have greatly impacted these vulnerable species. Susceptibility to these diseases is variable among and within species. Due to their function in adaptive immunity, the role of major histocompatibility complex genes (Mhc) in disease susceptibility is under investigation. In this study, we evaluate gene organization and levels of diversity of Mhc class II β chain genes (exon 2) in a captive-reared family of Hawaii 'amakihi (Hemignathus virens). A total of 233 sequences (173 bp) were obtained by PCR+1 amplification and cloning, and 5720 sequences were generated by Roche 454 pyrosequencing. We report a total of 17 alleles originating from a minimum of 14 distinct loci. We detected three linkage groups that appear to represent three distinct haplotypes. Phylogenetic analysis revealed one variable cluster resembling classical Mhc sequences (DAB) and one highly conserved, low variability cluster resembling non-classical Mhc sequences (DBB). High net evolutionary divergence values between DAB and DBB resemble that seen between chicken BLB system and YLB system genes. High amino acid identity among non-classical alleles from 12 species of passerines (DBB) and four species of Galliformes (YLB) was found, suggesting that these non-classical passerine sequences may be related to the Galliforme YLB sequences.

  18. A single nomenclature and associated database for alleles at the major histocompatibility complex class II DRB1 locus of sheep.

    PubMed

    Ballingall, K T; Herrmann-Hoesing, L; Robinson, J; Marsh, S G E; Stear, M J

    2011-06-01

    The development of standardised nomenclatures with associated databases containing reference sequences for alleles at polymorphic loci within the major histocompatibility complex (MHC) has been facilitated by the development of the immuno polymorphism database (IPD). Recently, included within IPD-MHC is information on allelic diversity within sheep species (IPD-MHC-OLA). Here, we present the first report of progress in populating the sheep IPD-MHC database with alleles at the class II MHC DRB1 locus. The sequence of 63 Ovar-DRB1 alleles within 24 allelic families is now held within the database, each meeting the minimum requirement of a complete second exon. These sequences are derived from a combination of genomic and cDNA-based approaches and represent the most extensive collection of validated alleles at the sheep DRB1 locus yet described. Although these 63 alleles probably represent only a fraction of the DRB1 allelic diversity in sheep species worldwide, we encourage the research community to use the official allelic nomenclature and to contribute allelic sequences to the database via its web-based submission tool. In time, the IPD-MHC-OLA resource will underpin population-based MHC genotyping studies and help to simplify meta-analyses of multi-source data from wild and domestic sheep populations.

  19. Low major histocompatibility complex class II DQA diversity in the Giant Panda (Ailuropoda melanoleuca)

    PubMed Central

    Zhu, Liang; Ruan, Xiang-Dong; Ge, Yun-Fa; Wan, Qiu-Hong; Fang, Sheng-Guo

    2007-01-01

    Background The giant panda (Ailuropoda melanoleuca) is one of the most endangered animals due to habitat fragmentation and loss. Although the captive breeding program for this species is now nearly two decades old, researches on the genetic background of such captive populations, especially on adaptive molecular polymorphism of major histocompatibility complex (MHC), are still limited. In this study, we characterized adaptive variation of the giant panda's MHC DQA gene by PCR amplification of its antigen-recognizing region (i.e. the exon 2) and subsequent single-strand conformational polymorphism (SSCP) and sequence analyses. Results The results revealed a low level of DQA exon 2 diversity in this rare animal, presenting 6 alleles from 61 giant panda individuals. The observed polymorphism was restricted to 9 amino acid substitutions, all of which occurred at and adjacent to positions forming the functionally important antigen-binding sites. All the samples were in Hardy-Weinberg proportions. A significantly higher rate of non-synonymous than synonymous substitutions at the antigen-binding sites indicated positive selection for diversity in the locus. Conclusion The DQA allelic diversity of giant pandas was low relative to other vertebrates. Nonetheless, the pandas exhibited more alleles in DQA than those in DRB, suggesting the alpha chain genes would play a leading role when coping with certain pathogens and thus should be included in conservation genetic investigation. The microsatellite and MHC loci might predict long-term persistence potential and short-term survival ability, respectively. Consequently, it is recommended to utilize multiple suites of microsatellite markers and multiple MHC loci to detect overall genetic variation in order to design unbiased conservation strategies. PMID:17555583

  20. The great diversity of major histocompatibility complex class II genes in Philippine native cattle

    PubMed Central

    Takeshima, S.N.; Miyasaka, T.; Polat, M.; Kikuya, M.; Matsumoto, Y.; Mingala, C.N.; Villanueva, M.A.; Salces, A.J.; Onuma, M.; Aida, Y.

    2014-01-01

    Bovine leukocyte antigens (BoLA) are extensively used as markers for bovine disease and immunological traits. However, none of the BoLA genes in Southeast Asian breeds have been characterized by polymerase chain reaction (PCR)-sequence-based typing (SBT). Therefore, we sequenced exon 2 of the BoLA class II DRB3 gene from 1120 individual cows belonging to the Holstein, Sahiwal, Simbrah, Jersey, Brahman, and Philippine native breeds using PCR-SBT. Several cross-breeds were also examined. BoLA-DRB3 PCR-SBT identified 78 previously reported alleles and five novel alleles. The number of BoLA-DRB3 alleles identified in each breed from the Philippines was higher (71 in Philippine native cattle, 58 in Brahman, 46 in Holstein × Sahiwal, and 57 in Philippine native × Brahman) than that identified in breeds from other countries (e.g., 23 alleles in Japanese Black and 35 in Bolivian Yacumeño cattle). A phylogenetic tree based on the DA distance calculated from the BoLA-DRB3 allele frequency showed that Philippine native cattle from different Philippine islands are closely related, and all of them are closely similar to Philippine Brahman cattle but not to native Japanese and Latin American breeds. Furthermore, the BoLA-DRB3 allele frequency in Philippine native cattle from Luzon Island, located in the Northern Philippines was different from that in cattle from Iloilo, Bohol, and Leyte Islands, which are located in the Southern Philippines. Therefore, we conclude that Philippine native cattle can be divided into two populations, North and South areas. Moreover, a neutrality test revealed that Philippine native cattle from Leyte showed significantly greater genetic diversity, which may be maintained by balancing selection. This study shows that Asian breeds have high levels of BoLA-DRB3 polymorphism. This finding, especially the identification of five novel BoLA-DRB3 alleles, will be helpful for future SBT studies of BoLA-DRB3 alleles in East Asian cattle. PMID:25606401

  1. Major histocompatibility complex class II (MHC II) expression during the development of human fetal cerebral occipital lobe, cerebellum, and hematopoietic organs.

    PubMed

    Wierzba-Bobrowicz, T; Kosno-Kruszewska, E; Gwiazda, E; Lechowicz, W

    2000-01-01

    In adults, under physiological conditions proteins of the major histocompatibility complex, class II (MHC II) molecules are synthesized and then presented on the surface of the cells known under a common name as antigen presenting cells (APCs). Dendritic cells (DCs), microglia, macrophages, ameboid microglia and lymphocytes B are qualified as APCs. The aim of present study was to evaluate the expression of MHC II molecules in the central nervous system (CNS) and hematopoietic organs during the fetal development. Observations were made on the cerebral occipital lobe, cerebellum, thymus, spleen and liver of 30 normal human fetuses, between 11 and 22 week of gestation (GW). Histological, histochemical and immunohistochemical techniques were used to identify cells with expression of MHC II molecules. In the brain, MHC II molecules were detected on macrophages/ameboid microglia in meninges, choroid plexus and single cells of ramified microglia in deeper layers of the cortex and white matter. In the other organs besides macrophages and dendritic cells, MHC II molecules were also immunopositive in thymic epithelial cells, and in the spleen and liver also in other cells of stroma and lobule. The expression of MHC II molecules on so extensive population of cells, at an early stage of the fetal development, may evidence their significant involvement in histogenesis and morphogenesis. It seems that in adults the complex of MHC II with protein is originated from the foreign antigen. On the contrary, during normal fetal development the complex of MHC II with protein origins most probably from the fetus own structures.

  2. Major histocompatibility complex class I and class II alleles may confer susceptibility to or protection against morphea: findings from the Morphea in Adults and Children cohort.

    PubMed

    Jacobe, Heidi; Ahn, Chul; Arnett, Frank C; Reveille, John D

    2014-11-01

    To determine the HLA class I and class II alleles of the human major histocompatibility complex showing an association with morphea (localized scleroderma) in the Morphea in Adults and Children (MAC) cohort, using a nested case-control association study. Patients with morphea were identified from the MAC cohort, and matched controls were obtained from the National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases Scleroderma Family Registry and DNA Repository and from the Division of Rheumatology at the University of Texas Health Science Center at Houston. HLA class II genotyping and single-strand conformational polymorphism typing were performed to identify HLA-A, B, and C alleles. Associations between HLA class I and class II alleles and morphea, as well as its subphenotypes, were determined. Two hundred eleven patients with morphea and 726 matched controls were available for HLA class I typing, and 158 patients with morphea and 1,008 matched controls were available for HLA class II typing. The strongest associations were found with DRB1*04:04 (odds ratio [OR] 2.3, 95% confidence interval [95% CI] 1.4-4.0, P = 0.002), and HLA-B*37 conferred the highest OR among the class I alleles (OR 3.2, 95% CI 1.5-6.5, P = 0.001). Comparison of the risk allele profile in this cohort with the risk alleles previously identified in patients with systemic sclerosis, determined using the same methods and same control population, revealed one allele in common, DRB*04:04. These results demonstrate that specific HLA class I and class II alleles are associated with morphea and are also likely to be associated with generalized and linear subtypes of morphea. The morphea-associated alleles are different from those found in scleroderma, suggesting that morphea is immunogenetically distinct. Risk alleles in morphea are also associated with conditions such as rheumatoid arthritis (RA) and other autoimmune conditions. Population-based studies have

  3. Role of major histocompatibility complex class II in resistance of mice to naturally acquired infection with Syphacia obvelata

    NASA Technical Reports Server (NTRS)

    Stewart, Patricia W.; Chapes, Stephen K.

    2003-01-01

    Genetics plays a substantial role in host resistance in many host-parasite interactions. We examined the prevalence of naturally acquired infection with Syphacia obvelata in a number of mouse strains housed in a non-barrier facility. These mice, which included cross-bred and congenic, inbred strains on various genetic backgrounds, differ in the loci for the immune function genes--major histocompatibility complex class II (MHCII), toll-like receptor 4 (Tlr4), and solute carrier family 11, member 1 (Slc11a1)--which allowed comparisons of the impact of these genes on resistance to pinworm infection. Male and female mice of various ages were sampled over an 18-month period; infection was determined by use of the cellophane tape test. Results indicated that mice that were MHCII+/+ had a significantly lower prevalence of infection than did mice that were MHCII-/-. Differences were not seen between male and female mice. Although MHCII+/+ mice had an age-associated decrease in infection prevalence, such decrease was not seen in MHCII-/- mice. In contrast, infection prevalence in mice with the normal Tlr4 gene (Tlr4(LPS-n/LPS-n)) gene did not differ significantly compared with that in mice that were homozygous for either the point mutation (Tlr4(LPS-d/LPS-d)) or deletion (Tlr4(LPS-del/LPS-del)) of that gene. Likewise, the presence (Sle11a1r/r) or absence (Slc11a1s/s) of functional alleles for Slc11a1 had no effect on the prevalence of infection with S. obvelata. In conclusion, presence of MHCII, but not Tlr4 or Slc11a1 significantly influences prevalence of naturally acquired infection with S. obvelata. These data justify further comprehensive analyses of the immune components that are involved in pinworm resistance.

  4. Genetic diversity of the class II major histocompatibility DRA locus in European, Asiatic and African domestic donkeys.

    PubMed

    Vranova, Marie; Alloggio, Ingrid; Qablan, Moneeb; Vyskocil, Mirko; Baumeisterova, Aneta; Sloboda, Michal; Putnova, Lenka; Vrtkova, Irena; Modry, David; Horin, Petr

    2011-07-01

    The major histocompatibility complex (MHC) genes coding for antigen presenting molecules are the most polymorphic genes in vertebrate genome. The MHC class II DRA gene shows only small variation in many mammalian species, but it exhibits relatively high level of polymorphism in Equidae, especially in donkeys. This extraordinary degree of polymorphism together with signatures of selection in specific amino acids sites makes the donkey DRA gene a suitable model for population diversity studies. The objective of this study was to investigate the DRA gene diversity in three different populations of donkeys under infectious pressure of protozoan parasites, Theileria equi and Babesia caballi. Three populations of domestic donkeys from Italy (N = 68), Jordan (N = 43), and Kenya (N = 78) were studied. A method of the donkey MHC DRA genotyping based on PCR-RFLP and sequencing was designed. In addition to the DRA gene, 12 polymorphic microsatellite loci were genotyped. The presence of Theileria equi and Babesia caballi parasites in peripheral blood was investigated by PCR. Allele and genotype frequencies, observed and expected heterozygosities and F(IS) values were computed as parameters of genetic diversity for all loci genotyped. Genetic distances between the three populations were estimated based on F(ST) values. Statistical associations between parasite infection and genetic polymorphisms were sought. Extensive DRA locus variation characteristic for Equids was found. The results showed differences between populations both in terms of numbers of alleles and their frequencies as well as variation in expected heterozygosity values. Based on comparisons with neutral microsatellite loci, population sub-structure characteristics and association analysis, convincing evidence of pathogen-driven selection at the population level was not provided. It seems that genetic diversity observed in the three populations reflects mostly effects of selective breeding and their different

  5. Role of major histocompatibility complex class II in resistance of mice to naturally acquired infection with Syphacia obvelata

    NASA Technical Reports Server (NTRS)

    Stewart, Patricia W.; Chapes, Stephen K.

    2003-01-01

    Genetics plays a substantial role in host resistance in many host-parasite interactions. We examined the prevalence of naturally acquired infection with Syphacia obvelata in a number of mouse strains housed in a non-barrier facility. These mice, which included cross-bred and congenic, inbred strains on various genetic backgrounds, differ in the loci for the immune function genes--major histocompatibility complex class II (MHCII), toll-like receptor 4 (Tlr4), and solute carrier family 11, member 1 (Slc11a1)--which allowed comparisons of the impact of these genes on resistance to pinworm infection. Male and female mice of various ages were sampled over an 18-month period; infection was determined by use of the cellophane tape test. Results indicated that mice that were MHCII+/+ had a significantly lower prevalence of infection than did mice that were MHCII-/-. Differences were not seen between male and female mice. Although MHCII+/+ mice had an age-associated decrease in infection prevalence, such decrease was not seen in MHCII-/- mice. In contrast, infection prevalence in mice with the normal Tlr4 gene (Tlr4(LPS-n/LPS-n)) gene did not differ significantly compared with that in mice that were homozygous for either the point mutation (Tlr4(LPS-d/LPS-d)) or deletion (Tlr4(LPS-del/LPS-del)) of that gene. Likewise, the presence (Sle11a1r/r) or absence (Slc11a1s/s) of functional alleles for Slc11a1 had no effect on the prevalence of infection with S. obvelata. In conclusion, presence of MHCII, but not Tlr4 or Slc11a1 significantly influences prevalence of naturally acquired infection with S. obvelata. These data justify further comprehensive analyses of the immune components that are involved in pinworm resistance.

  6. Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells.

    PubMed

    Moffat, Jessica M; Cheong, Wan-Shoo; Villadangos, José A; Mintern, Justine D; Netter, Hans J

    2013-04-26

    Virus-like particles (VLPs) represent high density displays of viral proteins that efficiently trigger immunity. VLPs composed of the small hepatitis B virus envelope protein (HBsAgS) are useful vaccine platforms that induce humoral and cellular immune responses. Notably, however, some studies suggest HBsAgS VLPs impair dendritic cell (DC) function. Here we investigated HBsAgS VLP interaction with DC subsets and antigen access to major histocompatibility complex (MHC) class I and II antigen presentation pathways in primary DCs. HBsAgS VLPs impaired plasmacytoid DC (pDC) interferon alpha (IFNα) production in response to CpG in vitro, but did not alter conventional DC (cDC) or pDC phenotype when administered in vivo. To assess cellular immune responses, HBsAgS VLPs were generated containing the ovalbumin (OVA) model epitopes OVA(257-264) and OVA(323-339) to access MHCI and MHCII antigen presentation pathways, respectively; both in vitro and following immunisation in vivo. HBsAgS VLP-OVA(257-264) elicited CTL responses in vivo that were not enhanced by inclusion of an additional MHCII helper epitope. HBsAgS VLP-OVA(257-264) administered in vivo was cross-presented by CD8(+) DCs, but not CD8(-) DCs. Therefore, HBsAgS VLPs can deliver antigen to both MHCI and MHCII antigen presentation pathways in primary DCs and promote cytotoxic and helper T cell priming despite their suppressive effect on pDCs.

  7. Graft-versus-host resistance induced by class II major histocompatibility complex-specific T cell clones

    PubMed Central

    1991-01-01

    Possible mechanisms of graft-vs.-host (GVH) resistance have been studied using a panel of seven class II major histocompatibility complex-specific T cell clones for elicitation and challenge. One clone recognized I-Ak,d,f, and expressed V beta 8.3 together with J beta 1.5. The remaining six clones were I-Ek specific and expressed V beta 15 rearranged to J beta 1.1 or J beta 1.3. The I-Ek-specific clones were also homologous to each other and different from the I-A-reactive one in the D and N regions. Four of the seven clones exhibited I-Ek- specific cytolytic activity. Each clone, when injected in sublethal numbers into appropriate recipients, could induce resistance to a subsequent lethal dose of any other clone in the panel. The resistance did not require sharing of either T cell receptor beta chains or antigen specificity, or MHC molecules by the eliciting and challenging clone. Cytolytic and noncytolytic clones were equally efficient in inducing GVH resistance. A prerequisite of resistance induction was the activation of eliciting clone subsequent to recognition of class II molecules in the host. Clones preactivated with high concentrations of recombinant interleukin 2, in vitro, could induce GVH resistance also in syngeneic hosts, suggesting that resistance induction was associated with the activated state of clone, rather than antigen recognition per se. In all instances of resistance, the challenging clones failed to induce vascular leakage, which was the cause of death in susceptible recipients (Lehmann, P. V., G. Schumm, D. Moon, U. Hurtenbach, F. Falcioni, S. Muller, and Z. A. Nagy. 1990. J. Exp. Med. 171:1485). Lipopolysaccharide (LPS) induced resistance to vascular leakage did not provide crossresistance to GVH and vice versa, suggesting that interleukin 1 alpha and tumor necrosis factor alpha implicated in LPS resistance are not involved in GVH resistance. Although the mechanism remains unclear, the most likely explanation for GVH resistance in this

  8. Characterization of major histocompatibility complex class I, and class II DRB loci of captive and wild Indian leopards (Panthera pardus fusca).

    PubMed

    Parmar, Drashti R; Mitra, Siuli; Bhadouriya, Snehalata; Rao, Tirupathi; Kunteepuram, Vaishnavi; Gaur, Ajay

    2017-08-22

    The major histocompatibility complex (MHC), in vertebrate animals, is a multi-genic protein complex that encodes various receptors. During a disease, MHC interacts with the antigen and triggers a cascade of adaptive immune responses to overcome a disease outbreak. The MHC is very important region from immunological point of view, but it is poorly characterized among Indian leopards. During this investigation, we examined genetic diversity for MHC class I (MHC-I) and MHC class II-DRB (MHC-II) among wild and captive Indian leopards. This study estimated a pool of 9 and 17 alleles for MHC-I and MHC-II, respectively. The wild group of individuals showed higher nucleotide diversity and amino acid polymorphism compared to the captive group. A phylogenetic comparison with other felids revealed a clustering in MHC-I and interspersed presence in MHC-II sequences. A test for selection also revealed a deviation from neutrality at MHC-II DRB loci and higher non-synonymous substitution rate (dN) among the individuals from wild group. Further, the wild individuals showed higher dN for both MHC I and II genes compared to the group that was bred under captive conditions. These findings suggest the role of micro-evolutionary forces, such as pathogen-mediated selection, to cause MHC variations among the two groups of Indian leopards, because the two groups have been bred in two different environments for a substantial period of time. Since, MHC diversity is often linked with the quality of immunological health; the results obtained from this study fill the gap of knowledge on disease predisposition among wild and captive Indian leopards.

  9. Transcription of a subset of human class II major histocompatibility complex genes is regulated by a nucleoprotein complex that contains c-fos or an antigenically related protein.

    PubMed Central

    Ono, S J; Bazil, V; Levi, B Z; Ozato, K; Strominger, J L

    1991-01-01

    Transcriptional regulation of the human major histocompatibility complex class II genes requires at least two upstream elements, the X and Y boxes, located in the -50- to -150-base-pair region of all class II promoters. The DRA and DPB promoters contain phorbol ester-responsive elements overlapping the 3' side of their X boxes. Mutation of this sequence down-regulates the efficiency of the DRA promoter, suggesting that a positive regulator(s) binds to this site. In this report, anti-sense c-fos RNA and an anti-c-fos antibody were used to show that the product of the protooncogene c-fos or an antigenically related protein is a component of a complex that binds to the X box and is required for maximal transcription from the DRA and DPB promoters. As c-fos (or its related proteins) cannot bind alone to DNA, these results suggest that it may dimerize with other members of the JUN/AP-1 family, such as hXBP1, to participate in the activation of a subset of class II major histocompatibility complex genes. Images PMID:1709740

  10. Major histocompatibility complex class II polymorphisms in forest musk deer (Moschus berezovskii) and their probable association with purulent disease.

    PubMed

    Li, L; Wang, B B; Ge, Y F; Wan, Q H

    2014-10-01

    Genes of the major histocompatibility complex (MHC) family are crucial in immune responses because they present pathogenic peptides to T cells. In this study, we analysed the genetic variation in forest musk deer (Moschus berezovskii) MHC II genes and its potential association with musk deer purulent disease. In total, 53 purulent disease-susceptible and 46 purulent disease-resistant individuals were selected for MHC II exon 2 fragment analysis. Among them, 16 DQ alleles and four additional DR alleles were identified, with DQ exon 2 fragments displaying a low level of polymorphism. The nonsynonymous substitutions exceeded the synonymous substitutions in the peptide-binding sites of DQA2, DQB1 and DQB2. Then, 28 MHC II alleles were used to analyse the distribution patterns of purulent disease between the susceptible and resistant groups. Among them, three alleles (DQA1*01, DQA1*02 and DQA2*04) were found to be resistant, and five alleles (DRB3*07, DQA1*03, DQA1*04, DQA2*05 and DQA2*06) were found to increase susceptibility. Additionally, three haplotypes were found to be putatively associated with musk deer purulent disease. However, these three haplotypes were only found in the resistant or susceptible group, and their frequencies were low. The results from our study support a contributory role of MHC II polymorphisms in the development of purulent disease in forest musk deer.

  11. Disruption of Hydrogen Bonds between Major Histocompatibility Complex Class II and the Peptide N-Terminus Is Not Sufficient to Form a Human Leukocyte Antigen-DM Receptive State of Major Histocompatibility Complex Class II

    PubMed Central

    Schulze, Monika-Sarah E. D.; Anders, Anne-Kathrin; Sethi, Dhruv K.; Call, Melissa J.

    2013-01-01

    Peptide presentation by MHC class II is of critical importance to the function of CD4+ T cells. HLA-DM resides in the endosomal pathway and edits the peptide repertoire of newly synthesized MHC class II molecules before they are exported to the cell surface. HLA-DM ensures MHC class II molecules bind high affinity peptides by targeting unstable MHC class II:peptide complexes for peptide exchange. Research over the past decade has implicated the peptide N-terminus in modulating the ability of HLA-DM to target a given MHC class II:peptide combination. In particular, attention has been focused on both the hydrogen bonds between MHC class II and peptide, and the occupancy of the P1 anchor pocket. We sought to solve the crystal structure of a HLA-DR1 molecule containing a truncated hemagglutinin peptide missing three N-terminal residues compared to the full-length sequence (residues 306–318) to determine the nature of the MHC class II:peptide species that binds HLA-DM. Here we present structural evidence that HLA-DR1 that is loaded with a peptide truncated to the P1 anchor residue such that it cannot make select hydrogen bonds with the peptide N-terminus, adopts the same conformation as molecules loaded with full-length peptide. HLA-DR1:peptide combinations that were unable to engage up to four key hydrogen bonds were also unable to bind HLA-DM, while those truncated to the P2 residue bound well. These results indicate that the conformational changes in MHC class II molecules that are recognized by HLA-DM occur after disengagement of the P1 anchor residue. PMID:23976922

  12. Partial plasma cell differentiation as a mechanism of lost major histocompatibility complex class II expression in diffuse large B-cell lymphoma.

    PubMed

    Wilkinson, Sarah T; Vanpatten, Kristie A; Fernandez, Diane R; Brunhoeber, Patrick; Garsha, Karl E; Glinsmann-Gibson, Betty J; Grogan, Thomas M; Teruya-Feldstein, Julie; Rimsza, Lisa M

    2012-02-09

    Loss of major histocompatibility complex class II (MHC II) expression is associated with poor patient outcome in diffuse large B-cell lymphoma (DLBCL). As MHC II molecules are lost with plasmacytic differentiation in normal cells, we asked whether MHC II loss in DLBCL is associated with an altered differentiation state. We used gene expression profiling, quantum dots, and immunohistochemistry to study the relationship between MHC II and plasma cell markers in DLBCL and plasmablastic lymphoma (PBL). Results demonstrate that MHC II(-) DLBCL immunophenotypically overlap with PBL and demonstrate an inverse correlation between MHC II and plasma cell markers MUM1, PRDM1/Blimp1, and XBP1s. In addition, MHC II expression is significantly higher in germinal center-DLBCL than activated B cell-DLBCL. A minor subset of cases with an unusual pattern of mislocalized punctate MHC II staining and intermediate levels of mRNA is also described. Finally, we show that PBL is negative for MHC II. The results imply a spectrum of MHC II expression that is more frequently diminished in tumors derived from B cells at the later stages of differentiation (with complete loss in PBL). Our observations provide a possible unifying concept that may contribute to the poor outcome reported in all MHC II(-) B-cell tumors.

  13. Major Histocompatibility Complex Class II Dextramers: New Tools for the Detection of antigen-Specific, CD4 T Cells in Basic and Clinical Research.

    PubMed

    Massilamany, C; Krishnan, B; Reddy, J

    2015-11-01

    The advent of major histocompatibility complex (MHC) tetramer technology has been a major contribution to T cell immunology, because tetramer reagents permit detection of antigen-specific T cells at the single-cell level in heterogeneous populations by flow cytometry. However, unlike MHC class I tetramers, the utility of MHC class II tetramers has been less frequently reported. MHC class II tetramers can be used successfully to enumerate the frequencies of antigen-specific CD4 T cells in cells activated in vitro, but their use for ex vivo analyses continues to be a problem, due in part to their activation dependency for binding with T cells. To circumvent this problem, we recently reported the creation of a new generation of reagents called MHC class II dextramers, which were found to be superior to their counterparts. In this review, we discuss the utility of class II dextramers vis-a-vis tetramers, with respect to their specificity and sensitivity, including potential applications and limitations. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  14. Major histocompatibility complex class II dextramers: New tools for the detection of antigen-specific, CD4 T cells in basic and clinical research

    PubMed Central

    Massilamany, Chandirasegaran; Krishnan, Bharathi; Reddy, Jay

    2015-01-01

    The advent of major histocompatibility complex (MHC) tetramer technology has been a major contribution to T cell immunology, because tetramer reagents permit detection of antigen-specific T cells at the single-cell level in heterogeneous populations by flow cytometry. However, unlike MHC class I tetramers, the utility of MHC class II tetramers has been less frequently reported. MHC class II tetramers can be used successfully to enumerate the frequencies of antigen-specific CD4 T cells in cells activated in vitro, but their use for ex vivo analyses continues to be a problem, due in part to their activation dependency for binding with T cells. To circumvent this problem, we recently reported the creation of a new generation of reagents called MHC class II dextramers, which were found to be superior to their counterparts. In this review, we discuss the utility of class II dextramers vis-a-vis tetramers, with respect to their specificity and sensitivity, including potential applications and limitations. PMID:26207337

  15. Evolution of the major histocompatibility complex: Isolation of class II beta cDNAs from two monotremes, the platypus and the short-beaked echidna.

    PubMed

    Belov, Katherine; Lam, Mary K P; Hellman, Lars; Colgan, Donald J

    2003-09-01

    Extant mammals are composed of three lineages: the eutherians, the marsupials and the monotremes. The majority of the mammalian major histocompatibility complex (MHC) data is based on the eutherian mammals, which generally have three classical MHC class II beta chain gene clusters - DRB, DQB and DPB, as well as the non-classical DMB and DOB. Marsupial DMB, DAB and DBB have been characterised. Confusion still surrounds the relationship of the marsupial DAB and DBB genes with the classical eutherian class II clusters. Here we present the first monotreme MHC class II beta chain sequences. Four MHC class II beta chain sequences were isolated from a spleen cDNA library from the short-beaked echidna, and one from a spleen cDNA library from platypus using a brushtail possum DAB probe. Given the non-orthologous relationship of the monotreme sequences with marsupial and eutherian beta chain clusters, we recommend that the five new monotreme sequences be assigned the nomenclature 'DZB', signifying the description of a new mammalian beta chain cluster. Our analysis suggests that all mammalian beta chain sequences (except DMB) evolved from a common ancestor. Maximum likelihood analysis places the monotreme beta chain sequences at the base of the mammalian clade, indicating their ancestral status. However, within the mammalian clade, monophyletic clades are not robust, and elucidation of the order of gene duplication that gave rise to the present-day gene clusters is not yet possible.

  16. Identification of a novel major histocompatibility complex class II-restricted tumor antigen resulting from a chromosomal rearrangement recognized by CD4(+) T cells.

    PubMed

    Wang, R F; Wang, X; Rosenberg, S A

    1999-05-17

    CD4(+) T cells play an important role in antitumor immune responses and autoimmune and infectious diseases. Although many major histocompatibility complex (MHC) class I-restricted tumor antigens have been identified in the last few years, little is known about MHC class II- restricted human tumor antigens recognized by CD4(+) T cells. Here, we describe the identification of a novel melanoma antigen recognized by an human histocompatibility leukocyte antigen (HLA)-DR1-restricted CD4(+) tumor-infiltrating lymphocyte (TIL)1363 using a genetic cloning approach. DNA sequencing analysis indicated that this was a fusion gene generated by a low density lipid receptor (LDLR) gene in the 5' end fused to a GDP-L-fucose:beta-D-galactoside 2-alpha-L-fucosyltransferase (FUT) in an antisense orientation in the 3' end. The fusion gene encoded the first five ligand binding repeats of LDLR in the NH2 terminus followed by a new polypeptide translated in frame with LDLR from the FUT gene in an antisense direction. Southern blot analysis showed that chromosomal DNA rearrangements occurred in the 1363mel cell line. Northern blot analysis detected two fusion RNA transcripts present only in the autologous 1363mel, but not in other cell lines or normal tissues tested. Two minimal peptides were identified from the COOH terminus of the fusion protein. This represents the first demonstration that a fusion protein resulting from a chromosomal rearrangement in tumor cells serves as an immune target recognized by CD4(+) T cells.

  17. Masking of a cathepsin G cleavage site in vivo contributes to the proteolytic resistance of major histocompatibility complex class II molecules

    PubMed Central

    Burster, Timo; Macmillan, Henriette; Hou, Tieying; Schilling, James; Truong, Phi; Boehm, Bernhard O; Zou, Fang; Lau, Kenneth; Strohman, Michael; Schaffert, Steven; Busch, Robert; Mellins, Elizabeth D

    2010-01-01

    The expression of major histocompatibility complex class II (MHC II) molecules is post-translationally regulated by endocytic protein turnover. Here, we identified the serine protease cathepsin G (CatG) as an MHC II-degrading protease by in vitro screening and examined its role in MHC II turnover in vivo. CatG, uniquely among endocytic proteases tested, initiated cleavage of detergent-solubilized native and recombinant soluble MHC II molecules. CatG cleaved human leukocyte antigen (HLA)-DR isolated from both HLA-DM-expressing and DM-null cells. Even following CatG cleavage, peptide binding was retained by pre-loaded, soluble recombinant HLA-DR. MHC II cleavage occurred on the loop between fx1 and fx2 of the membrane-proximal β2 domain. All allelic variants of HLA-DR tested and murine I-Ag7 class II molecules were susceptible, whereas murine I-Ek and HLA-DM were not, consistent with their altered sequence at the P1’ position of the CatG cleavage site. CatG effects were reduced on HLA-DR molecules with DRB mutations in the region implicated in interaction with HLA-DM. In contrast, addition of CatG to intact B-lymphoblastoid cell lines (B-LCLs) did not cause degradation of membrane-bound MHC II. Moreover, inhibition or genetic ablation of CatG in primary antigen-presenting cells did not cause accumulation of MHC II molecules. Thus, in vivo, the CatG cleavage site is sterically inaccessible or masked by associated molecules. A combination of intrinsic and context-dependent proteolytic resistance may allow peptide capture by MHC II molecules in harshly proteolytic endocytic compartments, as well as persistent antigen presentation in acute inflammatory settings with extracellular proteolysis. PMID:20331476

  18. Sequence polymorphism of two major histocompatibility (MH) class II B genes and their association with Vibrio anguillarum infection in half-smooth tongue sole ( Cynoglossus semilaevis)

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Zhang, Quanqi; Yu, Yan; Li, Shuo; Zhong, Qiwang; Sun, Yeying; Wang, Zhigang; Qi, Jie; Zhai, Jieming; Wang, Xubo

    2011-11-01

    Major histocompatibility complex (MHC) class II B molecules play an important role in the adaptive immune response in fish. Previous study has reported that two highly polymorphic class II B genes, Cyse-DAB and Cyse-DBB exist in half-smooth tongue sole ( Cynoglossus semilaevis). In this study, the polymorphism within exon 2 of the class II B genes following bacterial challenge was evaluated. Two hundred C. semilaevis individuals were injected intraperitoneally with Vibrio anguillarum. Muscle tissue from the first 20 dead and 20 of the survivors was collected for genotyping. Sixty alleles from the 40 individuals were isolated, of which 32 belonged to Cyse-DAB and 28 belonged to Cyse-DBB. The rate of d N (non-synonymous substitution) was higher than that of d S (synonymous substitution) in the PBRs (peptide binding residues) of both class II B genes. Conversely, the rate of d S was higher than d N in the non-PBRs and the complete exon 2 sequence. Thus, the results suggest that positive selection has occurred in the PBRs and purifying selection in the non-PBRs and exon 2. Thirteen class II B alleles were used to study the association between alleles and resistance to infection. Though not significant, alleles Cyse-DAB*0601, Cyse-DAB*0706, and Cyse-DBB*0101, Cyse-DBB*1301 were only found in surviving individuals and may represent alleles that have resistance against V. anguillarum infection. Alleles Cyse-DAB*0701 and Cyse-DAB*1301 were significantly more prevalent in dead individuals than in surviving ones and may represent alleles that are associated with increased susceptibility to V. anguillarum infection.

  19. Alternative endogenous protein processing via an autophagy-dependent pathway compensates for Yersinia-mediated inhibition of endosomal major histocompatibility complex class II antigen presentation.

    PubMed

    Rüssmann, Holger; Panthel, Klaus; Köhn, Brigitte; Jellbauer, Stefan; Winter, Sebastian E; Garbom, Sara; Wolf-Watz, Hans; Hoffmann, Sigrid; Grauling-Halama, Silke; Geginat, Gernot

    2010-12-01

    Extracellular Yersinia pseudotuberculosis employs a type III secretion system (T3SS) for translocating virulence factors (Yersinia outer proteins [Yops]) directly into the cytosol of eukaryotic cells. Recently, we used YopE as a carrier molecule for T3SS-dependent secretion and translocation of listeriolysin O (LLO) from Listeria monocytogenes. We demonstrated that translocation of chimeric YopE/LLO into the cytosol of macrophages by Yersinia results in the induction of a codominant antigen-specific CD4 and CD8 T-cell response in orally immunized mice. In this study, we addressed the requirements for processing and major histocompatibility complex (MHC) class II presentation of chimeric YopE proteins translocated into the cytosol of macrophages by the Yersinia T3SS. Our data demonstrate the ability of Yersinia to counteract exogenous MHC class II antigen presentation of secreted hybrid YopE by the action of wild-type YopE and YopH. In the absence of exogenous MHC class II antigen presentation, an alternative pathway was identified for YopE fusion proteins originating in the cytosol. This endogenous antigen-processing pathway was sensitive to inhibitors of phagolysosomal acidification and macroautophagy, but it did not require the function either of the proteasome or of transporters associated with antigen processing. Thus, by an autophagy-dependent mechanism, macrophages are able to compensate for the YopE/YopH-mediated inhibition of the endosomal MHC class II antigen presentation pathway for exogenous antigens. This is the first report demonstrating that autophagy might enable the host to mount an MHC class II-restricted CD4 T-cell response against translocated bacterial virulence factors. We provide critical new insights into the interaction between the mammalian immune system and a human pathogen.

  20. Antibodies to major histocompatibility complex class II antigens directly prime neutrophils and cause acute lung injury in a two-event in vivo rat model.

    PubMed

    Kelher, Marguerite R; Banerjee, Anirban; Gamboni, Fabia; Anderson, Cameron; Silliman, Christopher C

    2016-12-01

    Transfusion-related acute lung injury (TRALI) is a significant cause of mortality, especially after transfusions containing antibodies to major histocompatibility complex (MHC) class II antigens. We hypothesize that a first event induces both 1) polymorphonuclear neutrophils (PMNs) to express MHC class II antigens, and 2) activation of the pulmonary endothelium, leading to PMN sequestration, so that the infusion of specific MHC class II antibodies to these antigens causes PMN-mediated acute lung injury (ALI). Rats were treated with saline (NS), endotoxin (lipopolysaccharide [LPS]), or cytokines (interferon-γ [IFNγ], macrophage colony-stimulating factor [MCSF], tumor necrosis factor-α [TNFα]); the PMNs were isolated; and the surface expression of the MHC class II antigen OX6 and priming by OX6 antibodies were measured by flow cytometry or priming assays. A two-event model of ALI was completed with NS, LPS, or IFNγ/MCSF/TNFα (first events) and the infusion of OX6 (second event). Compared with NS incubation, rats treated with either LPS or IFNγ/MCSF/TNFα exhibited OX6 PMN surface expression, OX6 antibodies primed the formyl-methionyl-leucyl phenylalanine (fMLF)-activated respiratory burst, and PMN sequestration was increased. OX6 antibody infusion into LPS-incubated or IFNγ/MCSF/TNFα-incubated rats elicited ALI, the OX6 antibody was present on the PMNs, and PMN depletion abrogated ALI. Proinflammatory first events induce PMN MHC class II surface expression, activation of the pulmonary endothelium, and PMN sequestration such that the infusion of cognate antibodies precipitates TRALI. © 2016 AABB.

  1. Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology

    PubMed Central

    Viļuma, Agnese; Mikko, Sofia; Hahn, Daniela; Skow, Loren; Andersson, Göran; Bergström, Tomas F.

    2017-01-01

    The mammalian Major Histocompatibility Complex (MHC) region contains several gene families characterized by highly polymorphic loci with extensive nucleotide diversity, copy number variation of paralogous genes, and long repetitive sequences. This structural complexity has made it difficult to construct a reliable reference sequence of the horse MHC region. In this study, we used long-read single molecule, real-time (SMRT) sequencing technology from Pacific Biosciences (PacBio) to sequence eight Bacterial Artificial Chromosome (BAC) clones spanning the horse MHC class II region. The final assembly resulted in a 1,165,328 bp continuous gap free sequence with 35 manually curated genomic loci of which 23 were considered to be functional and 12 to be pseudogenes. In comparison to the MHC class II region in other mammals, the corresponding region in horse shows extraordinary copy number variation and different relative location and directionality of the Eqca-DRB, -DQA, -DQB and –DOB loci. This is the first long-read sequence assembly of the horse MHC class II region with rigorous manual gene annotation, and it will serve as an important resource for association studies of immune-mediated equine diseases and for evolutionary analysis of genetic diversity in this region. PMID:28361880

  2. Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology.

    PubMed

    Viļuma, Agnese; Mikko, Sofia; Hahn, Daniela; Skow, Loren; Andersson, Göran; Bergström, Tomas F

    2017-03-31

    The mammalian Major Histocompatibility Complex (MHC) region contains several gene families characterized by highly polymorphic loci with extensive nucleotide diversity, copy number variation of paralogous genes, and long repetitive sequences. This structural complexity has made it difficult to construct a reliable reference sequence of the horse MHC region. In this study, we used long-read single molecule, real-time (SMRT) sequencing technology from Pacific Biosciences (PacBio) to sequence eight Bacterial Artificial Chromosome (BAC) clones spanning the horse MHC class II region. The final assembly resulted in a 1,165,328 bp continuous gap free sequence with 35 manually curated genomic loci of which 23 were considered to be functional and 12 to be pseudogenes. In comparison to the MHC class II region in other mammals, the corresponding region in horse shows extraordinary copy number variation and different relative location and directionality of the Eqca-DRB, -DQA, -DQB and -DOB loci. This is the first long-read sequence assembly of the horse MHC class II region with rigorous manual gene annotation, and it will serve as an important resource for association studies of immune-mediated equine diseases and for evolutionary analysis of genetic diversity in this region.

  3. Class II major histocompatibility complex molecules regulate the development of the T4+T8- inducer phenotype of cultured human thymocytes.

    PubMed Central

    Blue, M L; Daley, J F; Levine, H; Schlossman, S F

    1985-01-01

    We demonstrate that a variety of Ia+ cells has the ability to promote the development of human T4+T8- thymocytes in vitro. Prolonged thymocyte culture in the absence of Ia+ accessory cells results in a predominantly T8+T4- cell population. The generation of T4+ cells in the presence of irradiated Ia+ cells could be suppressed up to 70% by a monoclonal antibody directed against a nonpolymorphic epitope on HLA-DR. Using two-color fluorescence sorting techniques, we were able to identify the activated T4+T8+ thymocyte as the cell that interacts with Ia and gives rise to the T4+T8- cell subset. These results directly and specifically implicate class II major histocompatibility complex molecules in the differentiative pathway of the human thymocyte. Images PMID:2933749

  4. Parasite Manipulation of the Invariant Chain and the Peptide Editor H2-DM Affects Major Histocompatibility Complex Class II Antigen Presentation during Toxoplasma gondii Infection

    PubMed Central

    Nishi, Manami; El-Hage, Sandy; Fox, Barbara A.; Bzik, David J.

    2015-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4+ T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-II in vitro. CD74 mRNA and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74 accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication. Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid organs in mice, as well as activation of CD4+ T cells and interferon gamma (IFN-γ) levels during acute infection. Cyst burdens and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway. PMID:26195549

  5. Mycobacterium tuberculosis Synergizes with ATP To Induce Release of Microvesicles and Exosomes Containing Major Histocompatibility Complex Class II Molecules Capable of Antigen Presentation ▿ †

    PubMed Central

    Ramachandra, Lakshmi; Qu, Yan; Wang, Ying; Lewis, Colleen J.; Cobb, Brian A.; Takatsu, Kiyoshi; Boom, W. Henry; Dubyak, George R.; Harding, Clifford V.

    2010-01-01

    Major histocompatibility complex class II (MHC-II) molecules are released by murine macrophages upon lipopolysaccharide (LPS) stimulation and ATP signaling through the P2X7 receptor. These studies show that infection of macrophages with Mycobacterium tuberculosis or M. bovis strain BCG enhances MHC-II release in synergy with ATP. Shed MHC-II was contained in two distinct organelles, exosomes and plasma membrane-derived microvesicles, which were both able to present exogenous antigenic peptide to T hybridoma cells. Furthermore, microvesicles from mycobacterium-infected macrophages were able to directly present M. tuberculosis antigen (Ag) 85B(241-256)-I-Ab complexes that were generated by the processing of M. tuberculosis Ag 85B in infected cells to both M. tuberculosis-specific T hybridoma cells and naïve P25 M. tuberculosis T-cell receptor (TCR)-transgenic T cells. In the presence of prefixed macrophages, exosomes from mycobacterium-infected macrophages provided weak stimulation to M. tuberculosis-specific T hybridoma cells but not naïve P25 T cells. Thus, infection with M. tuberculosis primes macrophages for the increased release of exosomes and microvesicles bearing M. tuberculosis peptide-MHC-II complexes that may generate antimicrobial T-cell responses. PMID:20837713

  6. Selective abrogation of major histocompatibility complex class II expression on extrahematopoietic cells in mice lacking promoter IV of the class II transactivator gene.

    PubMed

    Waldburger, J M; Suter, T; Fontana, A; Acha-Orbea, H; Reith, W

    2001-08-20

    MHC class II (MHCII) molecules play a pivotal role in the induction and regulation of immune responses. The transcriptional coactivator class II transactivator (CIITA) controls MHCII expression. The CIITA gene is regulated by three independent promoters (pI, pIII, pIV). We have generated pIV knockout mice. These mice exhibit selective abrogation of interferon (IFN)-gamma-induced MHCII expression on a wide variety of non-bone marrow-derived cells, including endothelia, epithelia, astrocytes, and fibroblasts. Constitutive MHCII expression on cortical thymic epithelial cells, and thus positive selection of CD4(+) T cells, is also abolished. In contrast, constitutive and inducible MHCII expression is unaffected on professional antigen-presenting cells, including B cells, dendritic cells, and IFN-gamma-activated cells of the macrophage lineage. pIV(-/-) mice have thus allowed precise definition of CIITA pIV usage in vivo. Moreover, they represent a unique animal model for studying the significance and contribution of MHCII-mediated antigen presentation by nonprofessional antigen-presenting cells in health and disease.

  7. Isolation of chicken major histocompatibility complex class II (B-L) beta chain sequences: comparison with mammalian beta chains and expression in lymphoid organs.

    PubMed Central

    Bourlet, Y; Béhar, G; Guillemot, F; Fréchin, N; Billault, A; Chaussé, A M; Zoorob, R; Auffray, C

    1988-01-01

    By cross-hybridization in low stringency conditions, using a probe derived from an HLA-DQ beta cDNA clone, we have isolated several chicken genomic DNA clones. These clones were mapped to the major histocompatibility complex (MHC) of the chick (B complex) by virtue of their ability to detect restriction enzyme length polymorphisms between congenic lines of chicken. Evidence was obtained for the presence of at least three B-L beta genes in the chicken genome. The B-L beta genes are transcribed specifically in tissues containing cells of the B lymphocyte and myeloid lineages and expressing the B-L antigens. Exons encoding the beta 1, beta 2 and transmembrane domains of a B-L beta chain have been identified with 63, 66 and 62% similarity with the HLA-DQ beta sequence. This first isolation of an MHC class II gene outside of the mammalian class provides insight into the evolution of MHC genes based on the comparison of avian and mammalian class II beta chain amino acid and nucleotide sequences. Images PMID:2841107

  8. Giant Panda Genomic Data Provide Insight into the Birth-and-Death Process of Mammalian Major Histocompatibility Complex Class II Genes

    PubMed Central

    Wan, Qiu-Hong; Zeng, Chang-Jun; Ni, Xiao-Wei; Pan, Hui-Juan; Fang, Sheng-Guo

    2009-01-01

    To gain an understanding of the genomic structure and evolutionary history of the giant panda major histocompatibility complex (MHC) genes, we determined a 636,503-bp nucleotide sequence spanning the MHC class II region. Analysis revealed that the MHC class II region from this rare species contained 26 loci (17 predicted to be expressed), of which 10 are classical class II genes (1 DRA, 2 DRB, 2 DQA, 3 DQB, 1 DYB, 1 DPA, and 2 DPB) and 4 are non-classical class II genes (1 DOA, 1 DOB, 1 DMA, and 1 DMB). The presence of DYB, a gene specific to ruminants, prompted a comparison of the giant panda class II sequence with those of humans, cats, dogs, cattle, pigs, and mice. The results indicated that birth and death events within the DQ and DRB-DY regions led to major lineage differences, with absence of these regions in the cat and in humans and mice respectively. The phylogenetic trees constructed using all expressed alpha and beta genes from marsupials and placental mammals showed that: (1) because marsupials carry loci corresponding to DR, DP, DO and DM genes, those subregions most likely developed before the divergence of marsupials and placental mammals, approximately 150 million years ago (MYA); (2) conversely, the DQ and DY regions must have evolved later, but before the radiation of placental mammals (100 MYA). As a result, the typical genomic structure of MHC class II genes for the giant panda is similar to that of the other placental mammals and corresponds to BTNL2∼DR1∼DQ∼DR2∼DY∼DO_box∼DP∼COL11A2. Over the past 100 million years, there has been birth and death of mammalian DR, DQ, DY, and DP genes, an evolutionary process that has brought about the current species-specific genomic structure of the MHC class II region. Furthermore, facing certain similar pathogens, mammals have adopted intra-subregion (DR and DQ) and inter-subregion (between DQ and DP) convergent evolutionary strategies for their alpha and beta genes, respectively. PMID:19127303

  9. Identification of two major histocompatibility (MH) class II A genes and their association to Vibrio anguillarum infection in half-smooth tongue sole ( Cynoglossus semilaevis)

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Wang, Xubo; Zhang, Quanqi; Wang, Zhigang; Qi, Jie; Yi, Qilin; Liu, Zhipeng; Wang, Yanan; Yu, Haiyang

    2012-03-01

    Major histocompatibility complex class II antigens are important in vertebrate immune system. In the present study, the full cDNA sequence of class II A gene was synthesized by RACE-PCR from half-smooth tongue sole ( Cynoglossus semilaevis), and its open reading frame (ORF) polymorphism was studied. The whole cDNA sequence was 992 bp in length, including the ORF with 717 bp. Twenty-five alleles were identified and clustered into two distinct groups according to the specific nucleotides/ amino acids in specific positions. Eleven alleles belonged to Cyse-DAA while fourteen alleles belonged to Cyse-DBA. Four Cyse-DAA alleles were observed in one individual, and three to five Cyse-DBA alleles were observed in each of the three detected individuals, which indicated that at least two loci existed in each gene. Moreover, in order to study the function of the alleles in resistance to infection, 200 individuals were intraperitoneally injected with Vibrio anguillarum and the first 20 dead individuals and 20 surviving ones were selected for genotype analysis. Fifty-six alleles were identified among the 40 individuals. Twenty-nine alleles belonged to Cyse-DAA and the other 27 alleles belonged to Cyse-DBA. Eighteen alleles were selected for studying their function in resistance to infection. Alleles Cyse-DAA*0201, Cyse-DAA*1101, Cyse-DBA*0401, Cyse-DBA*1102, Cyse-DBA*1801 and Cyse-DBA*2201 were identified only in surviving individuals, while alleles Cyse- DAA*0901, Cyse-DBA*1101 and Cyse-DBA*1401 occurred more frequently in dead individuals. This study confirmed the existence and polymorphism of two class II A genes as well as the relationship between alleles of class II A genes and disease susceptibility/ resistance in half-smooth tongue sole.

  10. Brucella abortus Inhibits Major Histocompatibility Complex Class II Expression and Antigen Processing through Interleukin-6 Secretion via Toll-Like Receptor 2▿

    PubMed Central

    Barrionuevo, Paula; Cassataro, Juliana; Delpino, M. Victoria; Zwerdling, Astrid; Pasquevich, Karina A.; Samartino, Clara García; Wallach, Jorge C.; Fossati, Carlos A.; Giambartolomei, Guillermo H.

    2008-01-01

    The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-γ)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-γ production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection. PMID:17984211

  11. Brucella abortus inhibits major histocompatibility complex class II expression and antigen processing through interleukin-6 secretion via Toll-like receptor 2.

    PubMed

    Barrionuevo, Paula; Cassataro, Juliana; Delpino, M Victoria; Zwerdling, Astrid; Pasquevich, Karina A; García Samartino, Clara; Wallach, Jorge C; Fossati, Carlos A; Giambartolomei, Guillermo H

    2008-01-01

    The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-gamma)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-gamma production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection.

  12. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors

    PubMed Central

    Silberman, Daniel; Krovi, Sai Harsha; Tuttle, Kathryn D.; Crooks, James; Reisdorph, Richard; White, Janice; Gross, James; Matsuda, Jennifer L.; Gapin, Laurent; Marrack, Philippa; Kappler, John W.

    2016-01-01

    The interaction of αβ T-cell antigen receptors (TCRs) with peptides bound to MHC molecules lies at the center of adaptive immunity. Whether TCRs have evolved to react with MHC or, instead, processes in the thymus involving coreceptors and other molecules select MHC-specific TCRs de novo from a random repertoire is a longstanding immunological question. Here, using nuclease-targeted mutagenesis, we address this question in vivo by generating three independent lines of knockin mice with single-amino acid mutations of conserved class II MHC amino acids that often are involved in interactions with the germ-line–encoded portions of TCRs. Although the TCR repertoire generated in these mutants is similar in size and diversity to that in WT mice, the evolutionary bias of TCRs for MHC is suggested by a shift and preferential use of some TCR subfamilies over others in mice expressing the mutant class II MHCs. Furthermore, T cells educated on these mutant MHC molecules are alloreactive to each other and to WT cells, and vice versa, suggesting strong functional differences among these repertoires. Taken together, these results highlight both the flexibility of thymic selection and the evolutionary bias of TCRs for MHC. PMID:27588903

  13. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors.

    PubMed

    Silberman, Daniel; Krovi, Sai Harsha; Tuttle, Kathryn D; Crooks, James; Reisdorph, Richard; White, Janice; Gross, James; Matsuda, Jennifer L; Gapin, Laurent; Marrack, Philippa; Kappler, John W

    2016-09-20

    The interaction of αβ T-cell antigen receptors (TCRs) with peptides bound to MHC molecules lies at the center of adaptive immunity. Whether TCRs have evolved to react with MHC or, instead, processes in the thymus involving coreceptors and other molecules select MHC-specific TCRs de novo from a random repertoire is a longstanding immunological question. Here, using nuclease-targeted mutagenesis, we address this question in vivo by generating three independent lines of knockin mice with single-amino acid mutations of conserved class II MHC amino acids that often are involved in interactions with the germ-line-encoded portions of TCRs. Although the TCR repertoire generated in these mutants is similar in size and diversity to that in WT mice, the evolutionary bias of TCRs for MHC is suggested by a shift and preferential use of some TCR subfamilies over others in mice expressing the mutant class II MHCs. Furthermore, T cells educated on these mutant MHC molecules are alloreactive to each other and to WT cells, and vice versa, suggesting strong functional differences among these repertoires. Taken together, these results highlight both the flexibility of thymic selection and the evolutionary bias of TCRs for MHC.

  14. Membrane Ia expression and antigen-presenting accessory cell function of L cells transfected with class II major histocompatibility complex genes

    PubMed Central

    1984-01-01

    To study the relationship between the structure and function of Ia antigens, as well as the physiologic requirements for antigen presentation to major histocompatibility complex-restricted T cells, class II A alpha and A beta genes from the k and d haplotypes were transfected into Ltk- fibroblasts using the calcium phosphate coprecipitation technique. Individually transfected genes were actively transcribed in the L cells without covalent linkage to, or cotransformation with, viral enhancer sequences. However, cell surface expression of detectable I-A required the presence of transfected A alpha dA beta d or A alpha kA beta k pairs in a single cell. The level of I-A expression under these conditions was 1/5-1/10 that of Ia+ B lymphoma cells, or B lymphoma cells expressing transfected class II genes. These I-A-expressing transfectants were tested for accessory cell function and shown to present polypeptide and complex protein antigens to T cell clones and hybridomas in the context of the transfected gene products. One T cell clone, restricted to I-Ak plus GAT (L-glutamic acid60-L-alanine30-L-tyrosine10), had a profound cytotoxic effect on I-Ak- but not I-Ad-expressing transfectants in the presence of specific antigen. Assays of unprimed T cells showed that both Ia+ and Ia- L cells could serve as accessory cells for concanavalin A-induced proliferative responses. These data indicate that L cells can transcribe, translate, and express transfected class II genes and that such I-A-bearing L cells possess the necessary metabolic mechanisms for presenting these antigens to T lymphocytes in the context of their I-A molecules. PMID:6436430

  15. Natural selection coupled with intragenic recombination shapes diversity patterns in the major histocompatibility complex class II genes of the giant panda.

    PubMed

    Chen, Yi-Yan; Zhang, Ying-Ying; Zhang, He-Min; Ge, Yun-Fa; Wan, Qiu-Hong; Fang, Sheng-Guo

    2010-05-15

    Ample variations of the major histocompatibility complex (MHC) genes are essential for vertebrates to adapt to various environmental conditions. In this study, we investigated the genetic variations and evolutionary patterns of seven functional MHC class II genes (one DRA, two DRB, two DQA, and two DQB) of the giant panda. The results showed the presence of two monomorphic loci (DRA and DQB2) and five polymorphic loci with different numbers of alleles (seven at DRB1, six at DRB3, seven at DQA1, four at DQA2, six at DQB1). The presence of balancing selection in the giant panda was supported by the following pieces of evidence: (1) The observed heterozygosity was higher than expected. (2) Amino acid heterozygosity was significantly higher at antigen-binding sites (ABS) compared with non-ABS sequences. (3) The selection parameter omega (d(N)/d(S)) was significantly higher at ABS compared with non-ABS sequences. (4) Approximately 95.45% of the positively selected codons (P>0.95) were located at or adjacent to an ABS. Furthermore, this study showed that (1) The Qinling subspecies exhibited high omega values across each locus (all >1), supporting its extensive positive selection. (2) The Sichuan subspecies displayed small omega at DRB1 (omega<0.72) and DQA2 (omega<0.48), suggesting that these sites underwent strong purifying selection. (3) Intragenic recombination was detected in DRB1, DQA1, and DQB1. The molecular diversity in classic Aime-MHC class II genes implies that the giant panda had evolved relatively abundant variations in its adaptive immunity along the history of host-pathogen co-evolution. Collectively, these findings indicate that natural selection accompanied by recombination drives the contrasting diversity patterns of the MHC class II genes between the two studied subspecies of giant panda.

  16. Cost effective and time efficient measurement of CD4, CD8, major histocompatibility complex Class II, and macrophage antigen expression in the lungs of chickens.

    PubMed

    Fletcher, Oscar J; Tan, Xun; Cortes, Lucia; Gimeno, Isabel

    2012-05-15

    Cells expressing CD4, CD8, major histocompatibility complex (MHC) Class II, and macrophage biomarkers in lungs of chickens were quantified by measuring total area of antigen expressed using imageJ, a software program developed at the National Institutes of Health and available at no cost. The procedures reported here were rapid, and reproducible. Total area of antigen expressed had positive correlation with manual counts of cells expressing CD4 and CD8 biomarkers after inoculation with serotype 1 Marek's disease virus (MDV) vaccines. Visual inspection and overlays prepared from outlines of cells counted by imageJ confirmed agreement between antigen expression and area measured. Total area measured was not dependent on time of image acquisition from randomly selected fields from the same slides. Total area values were not computer specific, but acquisition of the original images required standardization of microscope used and camera setup. All steps in the process from sample collection through sectioning, staining, and image acquisition must be standardized as much as possible. Chickens infected with a very virulent+ (vv(+)) isolate of MDV (648A) had increased CD4, CD8, MHC Class II, and macrophage biomarker expression compared to noninfected control chickens at 10 days post infection, but variable responses depending on the specific biomarker measured at 3 and 5 days post infection. The procedure described here is faster and more reproducible than manual counting in cases (CD4 and CD8) where the number of positive cells is low enough for manual counts. Manual counting is not possible with MHC Class II and macrophage antigens nor when CD4(+) cells are present in large numbers following proliferation to tumors, thus subjective systems are used for scoring in these conditions. Using imageJ as described eliminates the need for subjective and less reproducible methods for measuring expression of these antigens.

  17. Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens

    PubMed Central

    Molee, A.; Kongroi, K.; Kuadsantia, P.; Poompramun, C.; Likitdecharote, B.

    2016-01-01

    The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study. PMID:26732325

  18. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection

    PubMed Central

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D.; Ndung'u, Thumbi

    2017-01-01

    ABSTRACT Immune control of viral infections is heavily dependent on helper CD4+ T cell function. However, the understanding of the contribution of HIV-specific CD4+ T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4+ T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4+ T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4+ T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4+ T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4+ T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = −0.5, P = 0.02). These data identify an association between HIV-specific CD4+ T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4+ T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4+ T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4+ T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV

  19. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer(+) Gag-Specific CD4(+) T Cells in Chronic Clade C HIV-1 Infection.

    PubMed

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D; Ndung'u, Thumbi; Ndhlovu, Zaza M

    2017-04-01

    Immune control of viral infections is heavily dependent on helper CD4(+) T cell function. However, the understanding of the contribution of HIV-specific CD4(+) T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4(+) T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4(+) T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4(+) T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4(+) T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4(+) T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4(+) T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4(+) T cell responses in natural infections.IMPORTANCE Increasing evidence suggests that virus-specific CD4(+) T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4(+) T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of

  20. First report of major histocompatibility complex class II loci from the Amazon pink river dolphin (genus Inia).

    PubMed

    Martínez-Agüero, M; Flores-Ramírez, S; Ruiz-García, M

    2006-07-31

    We report the first major histocompatibility complex (MHC) DQB1 sequences for the two species of pink river dolphins (Inia geoffrensis and Inia boliviensis) inhabiting the Amazon and Orinoco River basins. These sequences were found to be polymorphic within the Inia genus and showed shared homology with cetacean DQB-1 sequences, especially, those of the Monodontidae and Phocoenidae. On the other hand, these sequences were shown to be divergent from those described for other riverine dolphin species, such as Lipotes vexillifer, the Chinese river dolphin. Two main conclusions can be drawn from our results: 1) the Mhc DQB1 sequences seem to evolve more rapidly than other nuclear sequences in cetaceans, and 2) differential positive selective pressures acting on these genes cause concomitant divergent evolutionary histories that derive phylogenetic reconstructions that could be inconsistent with widely accepted intertaxa evolutionary relationships elucidated with other molecular markers subjected to a neutral dynamics.

  1. Key Role of Toll-Like Receptor 2 in the Inflammatory Response and Major Histocompatibility Complex Class II Downregulation in Brucella abortus-Infected Alveolar Macrophages

    PubMed Central

    Ferrero, Mariana C.; Hielpos, M. Soledad; Carvalho, Natalia B.; Barrionuevo, Paula; Corsetti, Patricia P.; Giambartolomei, Guillermo H.; Oliveira, Sergio C.

    2014-01-01

    Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival. PMID:24478078

  2. Key role of Toll-like receptor 2 in the inflammatory response and major histocompatibility complex class ii downregulation in Brucella abortus-infected alveolar macrophages.

    PubMed

    Ferrero, Mariana C; Hielpos, M Soledad; Carvalho, Natalia B; Barrionuevo, Paula; Corsetti, Patricia P; Giambartolomei, Guillermo H; Oliveira, Sergio C; Baldi, Pablo C

    2014-02-01

    Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival.

  3. Expression of major histocompatibility complex class I and class II antigens in human Schwann cell cultures and effects of infection with Mycobacterium leprae.

    PubMed Central

    Samuel, N M; Mirsky, R; Grange, J M; Jessen, K R

    1987-01-01

    Recent experiments on rats have raised the possibility that Schwann cells can present antigens to T lymphocytes. We have investigated whether this mechanism might be relevant in leprosy by determining under what conditions human Schwann cells express class I and class II antigens, and whether infection with Mycobacterium leprae affects this expression. The distribution of these antigens was examined on human Schwann cells in dissociated cell cultures derived from human fetal peripheral nerves. We find that both Schwann cells and fibroblastic cells in these cultures normally express class I antigens but not class II antigens. When Schwann cells are infected with live Mycobacterium leprae for 48 h, 73% of Schwann cells phagocytose the bacteria. Mycobacterium leprae prevents 3H-thymidine incorporation into cultured human Schwann cells, but does not affect class I expression in these cells. Treatment of normal and Mycobacterium leprae infected cultures with gamma-interferon for 72 h induces class II expression on most Schwann cells but not on the majority of fibroblastic cells. The fact that human Schwann cells infected with Mycobacterium leprae can be induced by gamma-interferon to express class II antigens suggests that they may be able to present Mycobacterium leprae antigens to T lymphocytes and thus initiate immune responses against the bacteria. We suggest that a failure of this response, such as that seen within nerve trunks in lepromatous leprosy, is caused by deficient class II expression on Schwann cells. This deficiency in class II expression, in turn, may be caused by the reduced gamma-interferon production characteristic of lepromatous leprosy. Images Fig. 1 Fig. 2 Fig. 3 PMID:3115648

  4. Up-regulation of major histocompatibility complex class II antigen expression in the central nervous system of dogs with spontaneous canine distemper virus encephalitis.

    PubMed

    Alldinger, S; Wünschmann, A; Baumgärtner, W; Voss, C; Kremmer, E

    1996-09-01

    Major histocompatibility complex class II (MHC II) and canine distemper virus (CDV) antigen expression were compared by immunohistochemistry in the cerebellar white matter of ten dogs with naturally occurring canine distemper encephalitis. In addition, infiltrating mononuclear cells were characterized by employing poly- and monoclonal antibodies directed against human CD3, canine MHC II, CD5, B cell antigen and CDV-specific nucleoprotein. Positive antigen-antibody reaction was visualized by the avidin-biotin-peroxidase complex method on frozen sections. Histologically, neuropathological changes were categorized into acute, subacute, and chronic. In control brains, MHC II expression was weak and predominantly detected on resident microglia of the white matter and on endothelial, perivascular and intravascular cells. In CDV antigen-positive brains, MHC II was mainly found on microglia and to a lesser extent on endothelial, meningeal, choroid plexus epithelial, ependymal and intravascular cells. In addition, virtually all of the perivascular cells expressed MHC II antigen. CDV antigen was demonstrated most frequently in astrocytes. Of the perivascular lymphocytes, the majority were CD3-positive cells, followed by B cells. Only a small proportion of perivascular cells expressed the CD5 antigen. In addition, B cells and CD3 and CD5 antigen-positive cells were found occasionally in subacute and frequently in chronic demyelinating plaques. In acute encephalitis, CDV antigen exhibited a multifocal or diffuse distribution, and MHC II was moderately up-regulated throughout the white matter and accentuated in CDV antigen-positive plaques. In subacute encephalitis, moderate multifocal CDV antigen and moderate to strong diffuse MHC II-specific staining, especially prominent in CDV antigen-positive lesions, were observed. In chronic encephalitis, CDV antigen expression was restricted to single astrocytes at the edge of the lesions or was absent, while MHC II expression

  5. Dendritic cells inhibit the progression of Listeria monocytogenes intracellular infection by retaining bacteria in major histocompatibility complex class II-rich phagosomes and by limiting cytosolic growth.

    PubMed

    Westcott, Marlena M; Henry, Curtis J; Amis, Jacqueline E; Hiltbold, Elizabeth M

    2010-07-01

    Dendritic cells (DC) provide a suboptimal niche for the growth of Listeria monocytogenes, a facultative intracellular bacterial pathogen of immunocompromised and pregnant hosts. This is due in part to a failure of large numbers of bacteria to escape to the cytosol, an essential step in the intracellular life cycle that is mediated by listeriolysin O (LLO). Here, we demonstrate that wild-type bacteria that failed to enter the cytosol of bone marrow-derived DC were retained in a LAMP2+ compartment. An isogenic L. monocytogenes strain that produces an LLO protein with reduced pore-forming activity had a severe escape and growth phenotype in DC. Few mutant bacteria entered the cytosol in the first 2 h and were instead found in LAMP2+, major histocompatibility complex class II+ (MHC-II+) H2-DM vesicles characteristic of MHC-II antigen loading compartments (MIIC). In contrast, the mutant had a minor phenotype in bone marrow-derived macrophages (BMM) despite the reduced LLO activity. In the first hour, DC phagosomes acidified to a pH that was, on average, half a point higher than that of BMM phagosomes. Unlike BMM, L. monocytogenes growth in DC was minimal after 5 h, and consequently, DC remained viable and matured late in infection. Taken together, the data are consistent with a model in which phagosomal maturation events associated with the acquisition of MHC-II molecules present a suboptimal environment for L. monocytogenes escape to the DC cytosol, possibly by limiting the activity of LLO. This, in combination with an undefined mechanism that controls bacterial growth late in infection, promotes DC survival during the critical maturation response.

  6. Dendritic Cells Inhibit the Progression of Listeria monocytogenes Intracellular Infection by Retaining Bacteria in Major Histocompatibility Complex Class II-Rich Phagosomes and by Limiting Cytosolic Growth▿ †

    PubMed Central

    Westcott, Marlena M.; Henry, Curtis J.; Amis, Jacqueline E.; Hiltbold, Elizabeth M.

    2010-01-01

    Dendritic cells (DC) provide a suboptimal niche for the growth of Listeria monocytogenes, a facultative intracellular bacterial pathogen of immunocompromised and pregnant hosts. This is due in part to a failure of large numbers of bacteria to escape to the cytosol, an essential step in the intracellular life cycle that is mediated by listeriolysin O (LLO). Here, we demonstrate that wild-type bacteria that failed to enter the cytosol of bone marrow-derived DC were retained in a LAMP2+ compartment. An isogenic L. monocytogenes strain that produces an LLO protein with reduced pore-forming activity had a severe escape and growth phenotype in DC. Few mutant bacteria entered the cytosol in the first 2 h and were instead found in LAMP2+, major histocompatibility complex class II+ (MHC-II+) H2-DM vesicles characteristic of MHC-II antigen loading compartments (MIIC). In contrast, the mutant had a minor phenotype in bone marrow-derived macrophages (BMM) despite the reduced LLO activity. In the first hour, DC phagosomes acidified to a pH that was, on average, half a point higher than that of BMM phagosomes. Unlike BMM, L. monocytogenes growth in DC was minimal after 5 h, and consequently, DC remained viable and matured late in infection. Taken together, the data are consistent with a model in which phagosomal maturation events associated with the acquisition of MHC-II molecules present a suboptimal environment for L. monocytogenes escape to the DC cytosol, possibly by limiting the activity of LLO. This, in combination with an undefined mechanism that controls bacterial growth late in infection, promotes DC survival during the critical maturation response. PMID:20404078

  7. Low Major Histocompatibility Complex Class II Variation in the Endangered Indo-Pacific Humpback Dolphin (Sousa chinensis): Inferences About the Role of Balancing Selection.

    PubMed

    Zhang, Xiyang; Lin, Wenzhi; Zhou, Ruilian; Gui, Duan; Yu, Xinjian; Wu, Yuping

    2016-03-01

    It has been widely reported that the major histocompatibility complex (MHC) is under balancing selection due to its immune function across terrestrial and aquatic mammals. The comprehensive studies at MHC and other neutral loci could give us a synthetic evaluation about the major force determining genetic diversity of species. Previously, a low level of genetic diversity has been reported among the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary (PRE) using both mitochondrial marker and microsatellite loci. Here, the expression and sequence polymorphism of 2 MHC class II genes (DQB and DRB) in 32 S. chinensis from PRE collected between 2003 and 2011 were investigated. High ratios of non-synonymous to synonymous substitution rates, codon-based selection analysis, and trans-species polymorphism (TSP) support the hypothesis that balancing selection acted on S. chinensis MHC sequences. However, only 2 haplotypes were detected at either DQB or DRB loci. Moreover, the lack of deviation from the Hardy-Weinberg expectation at DRB locus combined with the relatively low heterozygosity at both DQB locus and microsatellite loci suggested that balancing selection might not be sufficient, which further suggested that genetic drift associated with historical bottlenecks was not mitigated by balancing selection in terms of the loss of MHC and neutral variation in S. chinensis. The combined results highlighted the importance of maintaining the genetic diversity of the endangered S. chinensis. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Extensive polymorphism and evidence of selection pressure on major histocompatibility complex DLA-DRB1, DQA1 and DQB1 class II genes in Croatian grey wolves.

    PubMed

    Arbanasić, H; Huber, Đ; Kusak, J; Gomerčić, T; Hrenović, J; Galov, A

    2013-01-01

    The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for measuring fitness-related genetic variation in wildlife populations. Because of human persecution and habitat fragmentation, the grey wolf has become extinct from a large part of Western and Central Europe, and remaining populations have become isolated. In Croatia, the grey wolf population, part of the Dinaric-Balkan population, shrank nearly to extinction during the 20th century, and is now legally protected. Using the cloning-sequencing method, we investigated the genetic diversity and evolutionary history of exon 2 of MHC class II DLA-DRB1, DQA1 and DQB1 genes in 77 individuals. We identified 13 DRB1, 7 DQA1 and 11 DQB1 highly divergent alleles, and 13 DLA-DRB1/DQA1/DQB1 haplotypes. Selection analysis comparing the relative rates of non-synonymous to synonymous mutations (d(N)/d(S)) showed evidence of positive selection pressure acting on all three loci. Trans-species polymorphism was found, suggesting the existence of balancing selection. Evolutionary codon models detected considerable difference between alpha and beta chain gene selection patterns: DRB1 and DQB1 appeared to be under stronger selection pressure, while DQA1 showed signs of moderate selection. Our results suggest that, despite the recent contraction of the Croatian wolf population, genetic variability in selectively maintained immune genes has been preserved.

  9. The effects of historical fragmentation on major histocompatibility complex class II β and microsatellite variation in the Aegean island reptile, Podarcis erhardii.

    PubMed

    Santonastaso, Trent; Lighten, Jackie; van Oosterhout, Cock; Jones, Kenneth L; Foufopoulos, Johannes; Anthony, Nicola M

    2017-07-01

    The major histocompatibility complex (MHC) plays a key role in disease resistance and is the most polymorphic gene region in vertebrates. Although habitat fragmentation is predicted to lead to a loss in MHC variation through drift, the impact of other evolutionary forces may counter this effect. Here we assess the impact of selection, drift, migration, and recombination on MHC class II and microsatellite variability in 14 island populations of the Aegean wall lizard Podarcis erhardii. Lizards were sampled from islands within the Cyclades (Greece) formed by rising sea levels as the last glacial maximum approximately 20,000 before present. Bathymetric data were used to determine the area and age of each island, allowing us to infer the corresponding magnitude and timing of genetic bottlenecks associated with island formation. Both MHC and microsatellite variation were positively associated with island area, supporting the hypothesis that drift governs neutral and adaptive variation in this system. However, MHC but not microsatellite variability declined significantly with island age. This discrepancy is likely due to the fact that microsatellites attain mutation-drift equilibrium more rapidly than MHC. Although we detected signals of balancing selection, recombination and migration, the effects of these evolutionary processes appeared negligible relative to drift. This study demonstrates how land bridge islands can provide novel insights into the impact of historical fragmentation on genetic diversity as well as help disentangle the effects of different evolutionary forces on neutral and adaptive diversity.

  10. Differential immune response of congenic mice to ultraviolet-treated major histocompatibility complex class II-incompatible skin grafts

    SciTech Connect

    Vermeer, B.J.; Santerse, B.; Van De Kerckhove, B.A.; Schothorst, A.A.; Claas, F.H.

    1988-03-01

    The influence of ultraviolet (UVB) irradiation on the survival of H-2 class II-disparate skin grafts was studied in congenic mouse strains. Isolated skin was UVB irradiated in vitro at a dose of 40 mJ/cm/sup 2/ from both sides to remove Ia immunogenicity. Immediately after irradiation the skin was transplanted onto the flank of allogeneic mice. When B10.AQR grafts were transplanted onto B10.T(6R) recipients, a significant prolongation of the survival time was observed, while 50% of the UVB-treated grafts were not rejected at all. However, in the opposite direction--i.e., B10.T(6R) grafts onto B10.AQR recipients, no significant prolongation of the survival was observed. To test whether this effect was due to a difference in susceptibility of the donor skin to UVB irradiation or to a different immune response in the recipients, (B10.T(6R) x B10.AQR) grafts were transplanted onto the parent strains. Similar results were obtained, in that UVB-treated grafts did not show a prolonged survival in B10.AQR recipients, whereas a significant prolongation (50% of the grafts survived more than 100 days) was observed in B10.T(6R) recipients. UVB-treated (B10.T(6R) x B10.AQR)F1 grafts were also transplanted onto (B10.T(6R) x C57B1/10)F1, (B10.AQR x C57B1/10)F1, (B10.T(6R) x Balb/c)F1 and (B10.AQR x Balb/c)F1 recipients--but in none of these combinations was a prolonged survival time observed. These data suggest that, in contrast to all in vitro experiments, the abrogation of the immune response by UVB treatment of the stimulator cells is, in vivo, not a general phenomenon. The genetic constitution of the responder mice seems to play an important role in determining whether or not an immune response takes place.

  11. Polymorphism in the major histocompatibility complex (MHC class II B) genes of the Rufous-backed Bunting (Emberiza jankowskii)

    PubMed Central

    Li, Dan; Zhao, Yunjiao; Lin, Aiqing; Li, Shi; Feng, Jiang

    2017-01-01

    Genetic diversity is one of the pillars of conservation biology research. High genetic diversity and abundant genetic variation in an organism may be suggestive of capacity to adapt to various environmental changes. The major histocompatibility complex (MHC) is known to be highly polymorphic and plays an important role in immune function. It is also considered an ideal model system to investigate genetic diversity in wildlife populations. The Rufous-backed Bunting (Emberiza jankowskii) is an endangered species that has experienced a sharp decline in both population and habitat size. Many historically significant populations are no longer present in previously populated regions, with only three breeding populations present in Inner Mongolia (i.e., the Aolunhua, Gahaitu and Lubei557 populations). Efforts focused on facilitating the conservation of the Rufous-backed Bunting (Emberiza jankowskii) are becoming increasingly important. However, the genetic diversity of E. jankowskii has not been investigated. In the present study, polymorphism in exon 2 of the MHCIIB of E. jankowskii was investigated. This polymorphism was subsequently compared with a related species, the Meadow Bunting (Emberiza cioides). A total of 1.59 alleles/individual were detected in E. jankowskii and 1.73 alleles/individual were identified in E. cioides. The maximum number of alleles per individual from the three E. jankowskii populations suggest the existence of at least three functional loci, while the maximum number of alleles per individual from the three E. cioides populations suggest the presence of at least four functional loci. Two of the alleles were shared between the E. jankowskii and E. cioides. Among the 12 unique alleles identified in E. jankowskii, 10.17 segregating sites per allele were detected, and the nucleotide diversity was 0.1865. Among the 17 unique alleles identified in E. cioides, eight segregating sites per allele were detected, and the nucleotide diversity was 0

  12. Gastric mucosal hyperplasia via upregulation of gastrin induced by persistent activation of gastric innate immunity in major histocompatibility complex class II deficient mice

    PubMed Central

    Fukui, T; Nishio, A; Okazaki, K; Uza, N; Ueno, S; Kido, M; Inoue, S; Kitamura, H; Kiriya, K; Ohashi, S; Asada, M; Tamaki, H; Matsuura, M; Kawasaki, K; Suzuki, K; Uchida, K; Fukui, H; Nakase, H; Watanabe, N; Chiba, T

    2006-01-01

    Background and aim Major histocompatibility complex class II deficient (Aα0/0) mice have decreased CD4+ T cells, making them immunologically similar to patients with acquired immunodeficiency syndrome (AIDS). Both patients with AIDS and Aα0/0 mice have hypertrophic gastric folds. To clarify the mechanism of gastric mucosal hyperplasia, we investigated the pathophysiology and the role of the innate immunity in the stomach of Aα0/0 mice. Methods Stomachs from 1–6 month old Aα0/0 mice, kept under specific pathogen free conditions, were examined at 1 month intervals histologically and immunohistochemically. Gene expression of proinflammatory cytokines, Toll‐like receptors (TLRs), cyclooxygenase (COX)‐2, and myeloperoxidase (MPO) activity in the gastric mucosa was investigated. Serum gastrin levels and gastric acidity were measured. Bacterial culture of the stomach was performed. To clarify the roles of hypergastrinaemia in the gastric mucosa, a gastrin receptor antagonist (AG041R) was administered. Results Aα0/0 mice had a diffusely thick corpus mucosa with infiltration of CD11b+ granulocytes and macrophages. Anti‐Ki67 staining demonstrated expansion of the proliferating neck zone. Gene expression of interleukin 1β, interferon γ, TLR‐2, TLR‐4, and COX‐2 were upregulated, and MPO activity was increased. Only a small amount of non‐pathogenic bacteria was detected in the stomach. Serum gastrin levels and Reg‐Iα positive cells in the gastric mucosa increased, despite normal gastric acidity. After treatment with AG041R, gastric mucosal thickness was significantly reduced. Conclusion Persistent activation of innate immunity in the stomach induced gastric mucosal hyperplasia through upregulation of gastrin synthesis in Aα0/0 mice, suggesting a pathophysiology similar to the gastric changes in patients with AIDS. PMID:16322110

  13. Short communication: Establishment of a new polymerase chain reaction-sequence-based typing method for genotyping cattle major histocompatibility complex class II DRB3.

    PubMed

    Takeshima, S-N; Matsumoto, Y; Aida, Y

    2009-06-01

    Sequence-based typing (SBT) is the most comprehensive method for characterizing major histocompatibility complex (MHC) gene polymorphisms. We report here a new PCR-SBT method for genotyping cattle MHC (BoLA) class II DRB3 using the Assign 400ATF ver. 1.0.2.41 software (Conexio Genomics, Fremantle, Australia), which detects alleles in a semiautomated manner. We examined 12 sets of PCR reactions for their ability to amplify BoLA-DRB3 exon 2 and selected an optimal primer set, which used ERB3N-HL031 for first-round PCR and ALL-DRB3B for second-round PCR. Next, we constructed a BoLA-DRB3 allele database using the reference sequences of the Assign 400ATF software and successfully assigned heterozygous samples (including those with deletion alleles) using bidirectional sequencing, unlike our previously described method, which used unidirectional sequencing for detecting of deletion alleles. Next, blood samples of 128 Holstein cattle were used to correlate the results of our modified PCR-SBT method with those of our previously described PCR-SBT method. Each new PCR-SBT result corresponded completely with the DRB3 allele that was genotyped by our previously described PCR-SBT method. Moreover, we confirmed the accuracy of our modified PCR-SBT method by genotyping 7 sire cattle and their 22 calves using Japanese Black cattle. This new method will contribute to high-throughput genotyping of BoLA-DRB3 by sequence-based typing.

  14. Identification and characterization of the major histocompatibility complex class II DQB (MhcMath-DQB1) alleles in Tibetan macaques (Macaca thibetana).

    PubMed

    Yao, Y-F; Zhao, J-J; Dai, Q-X; Li, J-Y; Zhou, L; Wang, Y-T; Ni, Q-Y; Zhang, M-w; Xu, H-L

    2013-08-01

    Tibetan macaque (Macaca thibetana), an endangered primate species endemic to China, have been used as experimental animal model for various human diseases. Major histocompatibility complex (MHC) genes play a crucial role in the susceptibility and/or resistance to many human diseases, but little is known about Tibetan macaques. To gain an insight into the MHC background and to facilitate the experimental use of Tibetan macaques, the second exon of Mhc-DQB1 gene was sequenced in a cohort of wild Tibetan macaques living in the Sichuan province of China. A total of 23 MhcMath-DQB1 alleles were identified for the first time, illustrating a marked allelic polymorphism at the DQB1 locus for these macaques. Most of the sequences (74%) observed in this study belong to DQB1*06 (9 alleles) and DQB1*18 (8 alleles) lineages, and the rest (26%) belong to DQB1*15 (3 alleles) and DQB1*17 (3 alleles) lineages. The most frequent alleles detected among these macaques were MhcMath-DQB1*15:02:02 (17.9%), followed by Math-DQB1*06:06, 17:03 and 18:01, which were detected in 9 (16.1%) of the monkeys, respectively. Non-synonymous substitutions occurred at a significantly higher frequency than synonymous substitutions in the peptide-binding region, suggesting balancing selection for maintaining polymorphisms at the MHC class II DQB1 locus. Phylogenetic analyses confirms the trans-species model of evolution of the Mhc-DQB1 genes in non-human primates, and in particular, the extensive allele sharing is observed between Tibetan and other macaque species.

  15. Antigen-Specific Signaling by a Soluble, Dimeric Peptide/Major Histocompatibility Complex Class II/Fc Chimera Leading to T Helper Cell Type 2 Differentiation

    PubMed Central

    Casares, Sofia; Zong, Cong S.; Radu, Dorel L.; Miller, Alexander; Bona, Constantin A.; Brumeanu, Teodor-Doru

    1999-01-01

    Interaction between a T cell receptor (TCR) and various ligands, i.e., anti-TCR antibodies, superantigens, peptides, or altered peptide ligands in the context of major histocompatibility complex (MHC) molecules can trigger different T helper cell (Th) effector functions. Herein, we studied the T cell response induced by a soluble, dimeric peptide/MHC class II chimera, namely hemagglutinin (HA)110-120/I-Edαβ/Fcγ2a (DEF). We have previously demonstrated that the soluble DEF molecule binds stably and specifically to HA110-120–specific TCRs expressed by a T cell hybridoma. Administration of DEF in vivo induced differentiation of resting and activated peptide-specific T cells toward a Th2 response, as indicated by the increase of interleukin (IL)-4, IL-10, and specific immunoglobulin (Ig)G1 antibodies and decrease of IL-2, specific IgG2a antibodies, and cytotoxic T lymphocyte activity. In contrast to HA110-120 peptide presented by the DEF molecule to T cells, the nominal synthetic peptide induced a predominant Th1 response, and the PR8 virus–derived HA110-120 peptides induced a mixed Th1/Th2 response. Independent of antigen processing, soluble DEF was almost 2 logs more potent in stimulating cognate T cells than the nominal peptide. Polarization of cognate T cells toward the Th2 response occurred upon interaction of soluble DEF with TCR and CD4 molecules followed by early activation of p56lck and ZAP-70 tyrosine kinases, and negative signaling of the signal transducer and activator of transcription (STAT)4 pathway of Th1 differentiation. DEF-like molecules may provide a new tool to study the mechanisms of signaling toward Th2 differentiation and may also provide a potential immunotherapeutic approach to modulate autoreactive T cells toward protective Th2 immune responses. PMID:10449525

  16. Major Histocompatibility Complex Class II HLA-DRα Is Downregulated by Kaposi's Sarcoma-Associated Herpesvirus-Encoded Lytic Transactivator RTA and MARCH8

    PubMed Central

    Sun, Zhiguo; Jha, Hem Chandra; Pei, Yong-gang

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) maintains two modes of life cycle, the latent and lytic phases. To evade the attack of the cell host's immune system, KSHV switches from the lytic to the latent phase, a phase in which only a few of viral proteins are expressed. The mechanism by which KSHV evades the attack of the immune system and establishes latency has not been fully understood. Major histocompatibility complex class II (MHC-II) molecules are key components of the immune system defense mechanism against viral infections. Here we report that HLA-DRα, a member of the MHC-II molecules, was downregulated by the replication and transcription activator (RTA) protein encoded by KSHV ORF50, an important regulator of the viral life cycle. RTA not only downregulated HLA-DRα at the protein level through direct binding and degradation through the proteasome pathway but also indirectly downregulated the protein level of HLA-DRα by enhancing the expression of MARCH8, a member of the membrane-associated RING-CH (MARCH) proteins. Our findings indicate that KSHV RTA facilitates evasion of the virus from the immune system through manipulation of HLA-DRα. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) has a causal role in a number of human cancers, and its persistence in infected cells is controlled by the host's immune system. The mechanism by which KSHV evades an attack by the immune system has not been well understood. This work represents studies which identify a novel mechanism by which the virus can facilitate evasion of an immune system. We now show that RTA, the replication and transcription activator encoded by KSHV (ORF50), can function as an E3 ligase to degrade HLA-DRα. It can directly bind and induce degradation of HLA-DRα through the ubiquitin-proteasome degradation pathway. In addition to the direct regulation of HLA-DRα, RTA can also indirectly downregulate the level of HLA-DRα protein by upregulating transcription of MARCH8

  17. Cloning and sequence analysis of a gene encoding a 67-kilodalton myosin-cross-reactive antigen of Streptococcus pyogenes reveals its similarity with class II major histocompatibility antigens.

    PubMed Central

    Kil, K S; Cunningham, M W; Barnett, L A

    1994-01-01

    The group A streptococcal sequela acute rheumatic fever (ARF) has been associated with immunological cross-reactivity between streptococcal and heart proteins. To identify Streptococcus pyogenes genes that encode a myosin cross-reactive antigen(s) recognized by ARF sera, a genomic library from an emm deletion strain (T28/51/4) was screened with a single ARF serum. A positively identified lambda EMBL3 clone (T.2.18) produced a protein which reacted with myosin-specific antibodies affinity purified from individual ARF sera. The recombinant protein was initially estimated to be 60 kDa in size by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; however, upon sequence analysis it had a molecular mass equivalent to 67 kDa. Sera from patients with streptococcal infections, acute glomerulonephritis, and ARF were reactive with the recombinant 67-kDa protein. However, individual sera from healthy persons were negative or demonstrated low levels of reactivity with the 67-kDa antigen. The gene encoding the 67-kDa myosin-cross-reactive antigen was subcloned, and its nucleotide sequence was determined by using a combined strategy of DNA sequencing of the cloned gene and N-terminal amino acid sequencing of the protein expressed in Escherichia coli. The amino-terminal sequence deduced from the nucleotide sequence of an open reading frame was identical to that determined from the 67-kDa protein expressed in E. coli. The gene encoded 590 amino acids with a calculated molecular weight of 67,381. No cleavable signal peptide was detected with the 67-kDa protein expressed in E. coli. The deduced amino acid sequence of the 67-kDa protein did not exhibit significant similarity to any known streptococcal proteins. However, it was found to be 19% identical and 62% similar over 151 amino acid residues to the beta chain of mouse major histocompatibility complex class II antigen (I-Au). Similar degrees of homology to the beta chains of other murine and human class II haplotypes were

  18. Comprehensive Analysis of Contributions from Protein Conformational Stability and Major Histocompatibility Complex Class II-Peptide Binding Affinity to CD4+ Epitope Immunogenicity in HIV-1 Envelope Glycoprotein

    PubMed Central

    Li, Tingfeng; Steede, N. Kalaya; Nguyen, Hong-Nam P.; Freytag, Lucy C.; McLachlan, James B.; Mettu, Ramgopal R.; Robinson, James E.

    2014-01-01

    ABSTRACT Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an

  19. Association analysis of the major histocompatibility complex, class II, DQ β1 gene, HLA-DQB1, with narcolepsy in Han Chinese patients from Taiwan.

    PubMed

    Chen, Yun-Hsiang; Huang, Yu-Shu; Chien, Wei-Hsien; Chen, Chia-Hsiang

    2013-12-01

    Narcolepsy is a rare, chronic, disabling neuropsychiatric disorder characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, sleep paralysis, and abnormal rapid eye movement sleep. It is strongly associated with the HLA-DQB1(∗)06:02 allele in various ethnic groups. Our study aimed to investigate the allelic spectrum of HLA-DQB1 in a sample of Han Chinese patients with narcolepsy and control subjects from Taiwan. We determined the genotype of the major histocompatibility complex, class II, DQ β1 gene, HLA-DQB1, in 72 narcolepsy subjects (44 men, 28 women), including 52 narcolepsy subjects with cataplexy (narcolepsy+cataplexy), 20 narcolepsy subjects without cataplexy (narcolepsy-cataplexy), and 194 control subjects (94 men, 100 women) using a sequence-specific oligonucleotide-probe hybridization technique. We found a strong HLA-DQB1(∗)06:02 association in narcolepsy+cataplexy subjects (odds ratio [OR], 321.4 [95% confidence interval {CI}, 70.7-1461.4]). The association was less prominent in narcolepsy-cataplexy subjects (OR, 6.9 [95% CI, 2.4-20.1]). In addition to the DQB1(∗)06:02, we found that (∗)03:01 also was a predisposing allele (OR, 2.0 [95% CI, 1.1-3.7]) in narcolepsy+cataplexy subjects, though the (∗)06:01 was a predisposing allele (OR, 2.8 [95% CI, 1.2-6.7]) in narcolepsy-cataplexy subjects. Furthermore, we found a significant overrepresentation of DQB1(∗)06:02 homozygotes in narcolepsy+cataplexy subjects. Our data add further support to the strong association of the HLA-DQB1(∗)06:02 allele with narcolepsy, especially in narcolepsy+cataplexy patients. Our study also indicates additional HLA-DQB1 alleles may modify the presentation of narcolepsy+cataplexy patients, such as DQB1(∗)03:01 and DQB1(∗)06:01 in our study. Our results are limited by the small sample size and can only be considered as preliminary findings. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The Effect of Class II Major Histocompatibility Complex Expression on Adherence of Helicobacter pylori and Induction of Apoptosis in Gastric Epithelial Cells: A Mechanism for T Helper Cell Type 1–mediated Damage

    PubMed Central

    Fan, Xuejun; Crowe, Sheila E.; Behar, Simon; Gunasena, Harshani; Ye, Gang; Haeberle, Helene; Van Houten, Nancy; Gourley, William K.; Ernst, Peter B.; Reyes, Victor E.

    1998-01-01

    Helicobacter pylori infection is associated with gastric epithelial damage, including apoptosis, ulceration, and cancer. Although bacterial factors and the host response are believed to contribute to gastric disease, no receptor has been identified that explains how the bacteria attach and signal the host cell to undergo apoptosis. Using H. pylori as “bait” to capture receptor proteins in solubilized membranes of gastric epithelial cells, class II major histocompatibility complex (MHC) molecules were identified as a possible receptor. Signaling through class II MHC molecules leading to the induction of apoptosis was confirmed using cross-linking IgM antibodies to surface class II MHC molecules. Moreover, binding of H. pylori and the induction of apoptosis were inhibited by antibodies recognizing class II MHC. Since type 1 T helper cells are present during infection and produce interferon (IFN)-γ, which increases class II MHC expression, gastric epithelial cell lines were exposed to H. pylori in the presence or absence of IFN-γ. IFN-γ increased the attachment of the bacteria as well as the induction of apoptosis in gastric epithelial cells. In contrast to MHC II–negative cell lines, H. pylori induced apoptosis in cells expressing class II MHC molecules constitutively or after gene transfection. These data describe a novel receptor for H. pylori and provide a mechanism by which bacteria and the host response interact in the pathogenesis of gastric epithelial cell damage. PMID:9584144

  1. Transforming growth factors type beta 1 and beta 2 suppress rat astrocyte autoantigen presentation and antagonize hyperinduction of class II major histocompatibility complex antigen expression by interferon-gamma and tumor necrosis factor-alpha.

    PubMed

    Schluesener, H J

    1990-04-01

    The transforming growth factors (TGF) type beta 1 and beta 2 are regulatory cytokines strongly affecting rat astrocyte immune functions. Both cytokines suppressed presentation of autoantigen by astrocytes: highly encephalitogenic T cells cocultured with TGF-beta-treated astrocytes in the presence of myelin basic protein did not become activated to transfer experimental allergic encephalomyelitis, a central nervous system (CNS) autoimmune disease. Furthermore, TGF-beta 1 and -beta 2 antagonized hyperinduction of astrocyte major histocompatibility complex (MHC) class II antigen expression by interferon-gamma and tumor necrosis factor-alpha. Thus, TGF-beta might be a potential regulator of CNS inflammation.

  2. Affinity-purified CCAAT-box-binding protein (YEBP) functionally regulates expression of a human class II major histocompatibility complex gene and the herpes simplex virus thymidine kinase gene

    SciTech Connect

    Zeleznik-Le, N.J.; Azizkhan, J.C.; Ting, J.P.Y. )

    1991-03-01

    Efficient major histocompatibility complex class II gene expression requires conseved protein-binding promoter elements, including X and Y elements. The authors affinity purified an HLA-DRA Y-element (CCAAT)-binding protein (YEBP) and used it to reconstitute Y-depleted HLA-DRA in vitro transcription. This directly demonstrates a positive functional role for YEBP in HLA-DRA transcription. The ability of YEBP to regulate divergent CCAAT elements was also assessed; YEBP was found to partially activate the thymidine kinase promoter. This functional analysis of YEBP shows that this protein plays an important role in the regulation of multiple genes.

  3. Detection of aberrant transcription of major histocompatibility complex class II antigen presentation genes in chronic lymphocytic leukaemia identifies HLA-DOA mRNA as a prognostic factor for survival.

    PubMed

    Souwer, Yuri; Chamuleau, Martine E D; van de Loosdrecht, Arjan A; Tolosa, Eva; Jorritsma, Tineke; Muris, Jettie J F; Dinnissen-van Poppel, Marion J; Snel, Sander N; van de Corput, Lisette; Ossenkoppele, Gert J; Meijer, Chris J L M; Neefjes, Jacques J; Marieke van Ham, S

    2009-05-01

    In human B cells, effective major histocompatibility complex (MHC) class II-antigen presentation depends not only on MHC class II, but also on the invariant chain (CD74 or Ii), HLA-DM (DM) and HLA-DO (DO), the chaperones regulating the antigen loading process of MHC class II molecules. We analysed immediate ex vivo expression of HLA-DR (DR), CD74, DM and DO in B cell chronic lymphocytic leukaemia (B-CLL). Real-time reverse transcription polymerase chain reaction demonstrated a highly significant upregulation of DRA, CD74, DMB, DOA and DOB mRNA in purified malignant cells compared to B cells from healthy donors. The increased mRNA levels were not translated into enhanced protein levels but could reflect aberrant transcriptional regulation. Indeed, upregulation of DRA, DMB, DOA and DOB mRNA correlated with enhanced expression of class II transactivator (CIITA). In-depth analysis of the various CIITA transcripts demonstrated a significant increased activity of the interferon-gamma-inducible promoter CIITA-PIV in B-CLL. Comparison of the aberrant mRNA levels with clinical outcome identified DOA mRNA as a prognostic indicator for survival. Multivariate analysis revealed that the prognostic value of DOA mRNA was independent of the mutational status of the IGHV genes. Thus, aberrant transcription of DOA forms a novel and additional prognostic indicator for survival in B-CLL.

  4. Rapid assignment of the swine major histocompatibility complex (SLA) class I and II genotypes in Clawn miniature swine using PCR-SSP and PCR-RFLP methods.

    PubMed

    Ando, Asako; Ota, Masao; Sada, Masaharu; Katsuyama, Yoshihiko; Goto, Rieko; Shigenari, Atsuko; Kawata, Hisako; Anzai, Tatsuya; Iwanaga, Takahiro; Miyoshi, Yukari; Fujimura, Nobuyuki; Inoko, Hidetoshi

    2005-03-01

    Inbred miniature swine with defined novel SLA haplotypes will be useful in allo- and xeno-transplantation studies, which can be carried out representing variable combinations of SLA haplotypes. In Clawn miniature swine, two haplotypes (c1 and c2) and one crossover haplotype (c3) have been assigned by nucleotide sequence determination of RT-PCR products of the three SLA classical class I genes and two SLA class II genes. To select SLA class I and II homozygotes in Clawn miniature swine individuals, we developed a rapid and simple SLA-class I- and II-DNA typing method by a combination of polymerase chain reaction-sequence specific primer (PCR-SSP) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques. Seven allele specific primer pairs were designed for amplification of the second exons of three SLA class I genes, SLA-1, SLA-2, and SLA-3, and one SLA class II gene, DRB1. Furthermore, based on PCR-RFLP patterns in the SLA-DQB1 gene, two allelic variants were recognized in the second exon in the Clawn miniature swine. Three haplotypes, c1, c2 and c3, were simply identified by the combination of PCR-SSP and PCR-RFLP methods in 22 samples from five families. A single allele at each of the class I and II genes was also observed in seven samples as SLA class I and II homozygotes with either the c1 or c2 haplotype. The combination of PCR-SSP and PCR-RFLP methods facilitate the rapid identification of the three haplotypes and SLA class I and II homozygotes in individual Clawn miniature swine.

  5. Major histocompatibility complex (MHC) class I and II alleles which confer susceptibility or protection in the Morphea in Adults and Children (MAC) cohort

    PubMed Central

    Jacobe, Heidi; Ahn, Chul; Arnett, Frank; Reveille, John D.

    2014-01-01

    Objective To determine human leukocyte antigen class I (HLA-class I) and II (HLA-class II) alleles associated with morphea (localized scleroderma) in the Morphea in Adults and Children (MAC) cohort by a nested case–control association study. Methods Morphea patients were included from MAC cohort and matched controls from the NIH/NIAMS Scleroderma Family Registry and DNA Repository and Division of Rheumatology at the University of Texas Health Science Center at Houston. HLA- Class II genotyping and SSCP typing was performed of HLA-A, -B, -C alleles. Associations between HLA-Class I and II alleles and morphea as well as its subphenotypes were determined. Results There were 211 cases available for HLA-class I typing with 726 matched controls and 158 cases available for HLA Class-II typing with 1108 matched controls. The strongest associations were found with DRB1*04:04 (OR 2.3, 95% CI 1.4–4.0 P=0.002) and HLA-B*37 conferred the highest OR among Class I alleles (3.3, 95% CI 1.6–6.9, P= 0.0016). Comparison with risk alleles in systemic sclerosis determined using the same methods and control population revealed one common allele (DRB*04:04). Conclusion Results of the present study demonstrate specific HLA Class I and II alleles are associated with morphea and likely generalized and linear subtypes. The associated morphea alleles are different than in scleroderma, implicating morphea is also immunogenetically distinct. Risk alleles in morphea are also associated with conditions such as rheumatoid arthritis (RA) and other autoimmune conditions. Population based studies indicate patients with RA have increased risk of morphea, implicating a common susceptibility allele. PMID:25223600

  6. Prognostic Significance of Major Histocompatibility Complex Class II Expression in Pediatric Adrenocortical Tumors: A St. Jude and Children's Oncology Group Study.

    PubMed

    Pinto, Emilia Modolo; Rodriguez-Galindo, Carlos; Choi, John Kim; Pounds, Stanley; Liu, Zhifa; Neale, Geoffrey; Finkelstein, David; Hicks, John M; Pappo, Alberto S; Figueiredo, Bonald C; Ribeiro, Raul C; Zambetti, Gerard P

    2016-12-15

    Histologic markers that differentiate benign and malignant pediatric adrenocortical tumors are lacking. Previous studies have implicated an association of MHC class II expression with adrenocortical tumor prognosis. Here, we determined the expression of MHC class II as well as the cell of origin of these immunologic markers in pediatric adrenocortical tumor. The impact of MHC class II gene expression on outcome was determined in a cohort of uniformly treated children with adrenocortical carcinomas. We analyzed the expression of MHC class II and a selected cluster of differentiation genes in 63 pediatric adrenocortical tumors by Affymetrix Human U133 Plus 2.0 or HT HG-U133+PM gene chip analyses. Cells expressing MHC class II were identified by morphologic and immunohistochemical assays. MHC class II expression was significantly greater in adrenocortical adenomas than in carcinomas (P = 4.8 ×10(-6)) and was associated with a higher progression-free survival (PFS) estimate (P = 0.003). Specifically, HLA-DPA1 expression was most significantly associated with PFS after adjustment for tumor weight and stage. HLA-DPA1 was predominantly expressed by hematopoietic infiltrating cells and undetectable in tumor cells in 23 of 26 cases (88%). MHC class II expression, which is produced by tumor-infiltrating immune cells, is an indicator of disease aggressiveness in pediatric adrenocortical tumor. Our results suggest that immune responses modulate adrenocortical tumorigenesis and may allow the refinement of risk stratification and treatment for this disease. Clin Cancer Res; 22(24); 6247-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Bovine leukocyte antigen major histocompatibility complex class II DRB3*2703 and DRB3*1501 alleles are associated with variation in levels of protection against Theileria parva challenge following immunization with the sporozoite p67 antigen.

    PubMed

    Ballingall, Keith T; Luyai, Anthony; Rowlands, G John; Sales, Jill; Musoke, Anthony J; Morzaria, Subash P; McKeever, Declan J

    2004-05-01

    Initial laboratory trials of an experimental subunit vaccine against Theileria parva based on the 67-kDa major sporozoite surface antigen revealed a range of responses to challenge. We have analyzed convergence in seven sets of monozygotic twins which suggests that genetic factors may have an influence in determining the degree of protection provided by p67 immunization. In addition, we have examined whether allelic diversity at major histocompatibility complex class II loci influences protection. Analysis of bovine leukocyte antigen DRB3 diversity in 201 animals identified significant associations with vaccine success (DRB3*2703; P = 0.027) and vaccine failure (DRB3*1501; P = 0.013). Furthermore, DRB3*2703 was associated with the likelihood of immunized animals showing little to no clinical signs of disease following challenge. We discuss the acquired and innate immune mechanisms that may be behind the associations described here.

  8. Brief Note Low diversity of the major histocompatibility complex class II DRA gene in domestic goats (Capra hircus) in Southern China.

    PubMed

    Chen, L P; E, G X; Zhao, Y J; Na, R S; Zhao, Z Q; Zhang, J H; Ma, Y H; Sun, Y W; Zhong, T; Zhang, H P; Huang, Y F

    2015-06-18

    DRA encodes the alpha chain of the DR heterodimer, is closely linked to DRB and is considered almost monomorphic in major histocompatibility complex region. In this study, we identified the exon 2 of DRA to evaluate the immunogenetic diversity of Chinese south indigenous goat. Two single nucleotide polymorphisms in an untranslated region and one synonymous substitution in coding region were identified. These data suggest that high immunodiversity in native Chinese population.

  9. Accumulation of major histocompatibility complex class II(+)CD11c(-) non-lymphoid cells in the spleen during infection with Plasmodium yoelii is lymphocyte-dependent.

    PubMed

    Kamei, Rika; Miyakoda, Mana; Tamura, Takahiko; Kimura, Daisuke; Honma, Kiri; Kimura, Kazumi; Yui, Katsuyuki

    2013-03-01

    The spleen is the main organ for immune defense during infection with Plasmodium parasites and splenomegaly is one of the major symptoms of such infections. Using a rodent model of Plasmodium yoelii infection, MHC class II(+)CD11c(-) non-T, non-B cells in the spleen were characterized. Although the proportion of conventional dendritic cells was reduced, that of MHC II(+)CD11c(-) non-T, non-B cells increased during the course of infection. The increase in this subpopulation was dependent on the presence of lymphocytes. Experiments using Rag-2(-/-) mice with adoptively transferred normal spleen cells indicated that these cells were non-lymphoid cells; however, their accumulation in the spleen during infection with P. yoelii depended on lymphocytes. Functionally, these MHC II(+)CD11c(-) non-T, non-B cells were able to produce the proinflammatory cytokines alpha tumor necrosis factor and interleukin-6 in response to infected red blood cells, but had only a limited ability to activate antigen-specific CD4(+) T cells. This study revealed a novel interaction between MHC II(+)CD11c(-) non-lymphoid cells and lymphoid cells in the accumulations of these non-lymphoid cells in the spleen during infection with P. yoelii. © 2012 The Societies and Wiley Publishing Asia Pty Ltd.

  10. Sea bass (Dicentrarchus labrax) invariant chain and class II major histocompatibility complex: sequencing and structural analysis using 3D homology modelling.

    PubMed

    Silva, Daniela S P; Reis, Marta I R; Nascimento, Diana S; do Vale, Ana; Pereira, Pedro J B; dos Santos, Nuno M S

    2007-07-01

    The present manuscript reports for the first time the sequencing and characterisation of sea bass (sb) MHCII alpha and beta chains and Ii chain cDNAs as well as their expression analysis under resting state. 3D homology modelling, using crystal structures from mammalian orthologues, has been used to illustrate and support putative structural homologies of the sea bass counterparts. The sbIi cDNA consists of 96 bp of 5'-UTR, a 843 bp open reading frame (ORF) and 899 bp of 3'-UTR including a canonical polyadenylation signal 16 nucleotides before the polyadenylation tail. The ORF was translated into a 280 amino acid sequence, in which all characteristic domains found in the Ii p41 human form could be identified, including the cytoplasmic N-terminus domain, the transmembrane (TM) region, the CLIP domain, the trimerization domain and the thyroglobulin (Tg) type I domain. The trimerization and Tg domains of sbIi were successfully modelled using the human counterparts as templates. Four different sequences of each class II alpha and beta MHCII were obtained from a single fish, apparently not derived from a single locus. All the characteristic features of the MHCII chain structure could be identified in the predicted ORF of sea bass alpha and beta sequences, consisting of leader peptide (LP), alpha1/beta1 and alpha2/beta2 domains, connecting peptide and TM and cytoplasmic regions. Furthermore, independently of the HLA-DR crystal structure used as template in homology modelling, a similar predicted 3D structure and trimeric quaternary architecture was obtained for sbMHC, with major deviations occurring only within the sea bass MHCII alpha1 domain.

  11. Association of the bovine leukocyte antigen major histocompatibility complex class II DRB3*4401 allele with host resistance to the Lone Star tick, Amblyomma americanum.

    PubMed

    Untalan, Pia M; Pruett, John H; Steelman, C Dayton

    2007-04-10

    The MHC of cattle, known as the bovine leukocyte antigen (BoLA) complex, plays an integral role in disease and parasite susceptibility, and immune responsiveness of the host. While susceptibility to tick infestation in cattle is believed to be heritable, genes that may be responsible for the manifestation of this phenotype remain elusive. In an effort to analyze the role that genes within the BoLA complex may play in host resistance to ticks, we have evaluated components of this system within a herd of cattle established at our laboratory that has been phenotyped for ectoparasite susceptibility. Of three microsatellite loci within the BoLA complex analyzed, alleles of two microsatellite loci within the BoLA class IIa cluster (DRB1-118 and DRB3-174) associated with the tick-resistant phenotype, prompting further investigation of gene sequences within the DRB3 region. DRB3 is a class IIa gene, the second exon of which is highly polymorphic since it encodes the antigen recognition site of the DR class II molecule. Analysis of the second exon of the DRB3 gene from the phenotyped calves in our herd revealed a significant association between the DRB3*4401 allele and the tick-resistant phenotype. To our knowledge, this is the first report of a putative association between a class IIa DRB3 sequence and host resistance to the Lone Star tick. Elucidation of the mechanism involved in tick resistance will contribute to improving breeding schemes for parasite resistance, which will be beneficial to the cattle industry.

  12. A factor that regulates the class II major histocompatibility complex gene DPA is a member of a subfamily of zinc finger proteins that includes a Drosophila developmental control protein.

    PubMed Central

    Sugawara, M; Scholl, T; Ponath, P D; Strominger, J L

    1994-01-01

    A novel DNA sequence element termed the J element involved in the regulated expression of class II major histocompatibility complex genes was recently described. To study this element and its role in class II gene regulation further, a cDNA library was screened with oligonucleotide probes containing both the S element and the nearby J element of the human DPA gene. Several DNA clones were obtained by this procedure, one of which, clone 18, is reported and characterized here. It encodes a protein predicted to contain 688 amino acid residues, including 11 zinc finger motifs of the C2H2 type in the C-terminal region, that are Krüppel-like in the conservation of the H/C link sequence connecting them. The 160 N-terminal amino acids in the nonfinger region of clone 18 are highly homologous with similar regions of several other human, mouse, and Drosophila sequences, defining a subfamily of Krüppel-like zinc finger proteins termed TAB (tramtrack [ttk]-associated box) here. One of the Drosophila sequences, ttk, is a developmental control gene, while a second does not contain a zinc finger region but encodes a structure important in oocyte development. An acidic activation domain is located between the N-terminal conserved region of clone 18 and its zinc fingers. This protein appears to require both the S and J elements, which are separated by 10 bp for optimal binding. Antisense cDNA to clone 18 inhibited the expression of a reporter construct containing the DPA promoter, indicating its functional importance in the expression of this class II gene. Images PMID:7969177

  13. Reassociation with beta 2-microglobulin is necessary for Kb class I major histocompatibility complex binding of exogenous peptides.

    PubMed Central

    Rock, K L; Rothstein, L E; Gamble, S R; Benacerraf, B

    1990-01-01

    T lymphocytes recognize endogenously produced antigenic peptides in association with major histocompatibility complex (MHC)-encoded molecules. Peptides from the extracellular fluid can be displayed in association with class I and class II MHC molecules. Here we report that mature Kb class I MHC molecules bind peptides upon dissociation and reassociation of their light chain. Intact Kb heterodimers, unlike class II MHC molecules, are relatively unreceptive to binding peptides. This property may maintain segregation of class I and class II MHC-restricted peptides and has implications for the use of peptides as vaccines. Images PMID:2217182

  14. Structural Requirements for Recognition of Major Histocompatibility Complex Class II by Membrane-associated RING-CH (MARCH) Protein E3 Ligases*

    PubMed Central

    Jahnke, Martin; Trowsdale, John; Kelly, Adrian P.

    2012-01-01

    MARCH E3 ligases play a key role in controlling MHC class II surface expression by regulated ubiquitination of a lysine residue in the β-chain. Little is known concerning how these enzymes target their specific substrates. Here we show that recognition of HLA-DR by MARCH proteins is complex. Several features associated with the transmembrane domain and bordering regions influence the overall efficiency of receptor internalization. A cluster of residues at the interface of the lipid bilayer and the cytosol plays the most important role in MARCH8 recognition of HLA-DRβ. Variation in this sequence also determines specificity of MARCH9 for HLA-DQ. Residues located in helical face four of HLA-DRβ together with a charged residue at the boundary with the stalk region also contribute significantly to recognition. Truncation analysis suggested that a dileucine-like motif in the DRβ cytoplasmic tail influences the efficiency of co-localization of HLA-DR with MARCH8. The DRβ-encoded acceptor lysine functioned optimally when placed in its natural location relative to the bilayer. In the DRα/DRβ dimer most other amino acids in the cytoplasmic tail could be substituted for alanine with minimal influence on function. Our data support a model whereby multiple features of HLA-DR are involved in substrate recognition by MARCH8. The single most important region is located at the interface between the transmembrane domain and the cytosol. Variation in sequence in this location between different class II isotypes controls efficiency of recognition by different MARCH E3 ligases. PMID:22761441

  15. Major histocompatibility complex class II polymorphisms are associated with the development of anti-resorptive agent-induced osteonecrosis of the jaw.

    PubMed

    Stockmann, Philipp; Nkenke, Emeka; Englbrecht, Matthias; Schlittenbauer, Tilo; Wehrhan, Falk; Rauh, Claudia; Beckmann, Matthias W; Fasching, Peter A; Kreusch, Thomas; Mackensen, Andreas; Wullich, Bernd; Schett, Georg; Spriewald, Bernd M

    2013-01-01

    The aetiology of anti-resorptive agent-induced osteonecrosis of the jaw (ARONJ) is still under debate. Clinical and genetic risk factors are currently being investigated to help understand its pathogenesis. This case-control study analysed a large number of cancer patients (n = 230) under therapy with intravenous bisphosphonates, half of which were diagnosed with ARONJ. Multiple myeloma, greater patient age and the use of more than one bisphosphonate were identified as clinical risk factors on logistic regression analysis. In addition, 204 patients were genotyped for HLA-DRB1 and DQB1 and the allele frequencies were compared between ARONJ (n = 94) and unaffected cancer patients (n = 110). For the HLA class II alleles, a strong increase in the frequency of DRB1*15, DQB1*06:02, DRB1*01 and DQB1*05:01 was observed in the ARONJ group. These results were reinforced on analysis of the respective haplotypes, with DRB1*15-DQB1*06:02 being significantly associated with the development of ARONJ (odds ratio [OR] 2.5; 95% confidence interval [CI] 1.3-5.0). The presence of at least one of the haplotypes DRB1*15-DQB1*06:02 and DRB1*01-DQB1*05:01 was highly associated with the development of ARONJ (OR 3.0; 95% CI 1.7-5.5). The data in this study of a large number of cancer patients receiving intravenous bisphosphonates suggest that MHC class II polymorphisms represent genetic risk factors for the development of ARONJ. This result supports recent findings that inflammation and infection might play an important role in the pathogenesis of ARONJ. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Combination of the histone deacetylase inhibitor depsipeptide and 5-fluorouracil upregulates major histocompatibility complex class II and p21 genes and activates caspase-3/7 in human colon cancer HCT-116 cells

    PubMed Central

    Okada, Kouji; Hakata, Shuko; Terashima, Jun; Gamou, Toshie; Habano, Wataru; Ozawa, Shogo

    2016-01-01

    Epigenetic anticancer drugs such as histone deacetylase (HDAC) inhibitors have been combined with existing anticancer drugs for synergistic or additive effects. In the present study, we found that a very low concentration of depsipeptide, an HDAC inhibitor, potentiated the antitumor activity of 5-fluorouracil (5-FU) in a human colon cancer cell model using HCT-116, HT29, and SW48 cells via the inhibition of colony formation ability or cellular viability. Exposure to a combination of 5-FU (1.75 µM) and 1 nM depsipeptide for 24 and 48 h resulted in a 3- to 4-fold increase in activated caspase-3/7, while 5-FU alone failed to activate caspase-3/7. Microarray and subsequent gene ontology analyses revealed that compared to 5-FU or depsipeptide alone, the combination treatment of 5-FU and depsipeptide upregulated genes related to cell death and the apoptotic process consistent with the inhibition of colony formation and caspase-3/7 activation. These analyses indicated marked upregulation of antigen processing and presentation of peptide or polysaccharide antigen via major histocompatibility complex (MHC) class (GO:0002504) and MHC protein complex (GO:0042611). Compared with vehicle controls, the cells treated with the combination of 5-FU and depsipeptide showed marked induction (3- to 8.5-fold) of expression of MHC class II genes, but not of MHC class I genes. Furthermore, our global analysis of gene expression, which was focused on genes involved in the molecular regulation of MHC class II genes, showed enhancement of pro-apoptotic PCAF and CIITA after the combination of 5-FU and depsipeptide. These results may indicate a closer relationship between elevation of MHC class II expression and cellular apoptosis induced by the combination of depsipeptide and 5-FU. To the best of our knowledge, this is the first study to report that the combination of 5-FU and depsipeptide induces human colon cancer cell apoptosis in a concerted manner with the induction of MHC class II gene

  17. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II

    PubMed Central

    Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin

    2015-01-01

    ABSTRACT The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8+ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8+ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8+ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4+ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8+ and CD4+ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8+ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8+ T cells specific for

  18. Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Inhibits Major Histocompatibility Complex Class II Expression by Disrupting Enhanceosome Assembly through Binding with the Regulatory Factor X Complex

    PubMed Central

    Thakker, Suhani; Purushothaman, Pravinkumar; Gupta, Namrata; Challa, Shanthan; Cai, Qiliang

    2015-01-01

    ABSTRACT Major histocompatibility complex class II (MHC-II) molecules play a central role in adaptive antiviral immunity by presenting viral peptides to CD4+ T cells. Due to their key role in adaptive immunity, many viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), have evolved multiple strategies to inhibit the MHC-II antigen presentation pathway. The expression of MHC-II, which is controlled mainly at the level of transcription, is strictly dependent upon the binding of the class II transactivator (CIITA) to the highly conserved promoters of all MHC-II genes. The recruitment of CIITA to MHC-II promoters requires its direct interactions with a preassembled MHC-II enhanceosome consisting of cyclic AMP response element-binding protein (CREB) and nuclear factor Y (NF-Y) complex and regulatory factor X (RFX) complex proteins. Here, we show that KSHV-encoded latency-associated nuclear antigen (LANA) disrupts the association of CIITA with the MHC-II enhanceosome by binding to the components of the RFX complex. Our data show that LANA is capable of binding to all three components of the RFX complex, RFX-associated protein (RFXAP), RFX5, and RFX-associated ankyrin-containing protein (RFXANK), in vivo but binds more strongly with the RFXAP component in in vitro binding assays. Levels of MHC-II proteins were significantly reduced in KSHV-infected as well as LANA-expressing B cells. Additionally, the expression of LANA in a luciferase promoter reporter assay showed reduced HLA-DRA promoter activity in a dose-dependent manner. Chromatin immunoprecipitation assays showed that LANA binds to the MHC-II promoter along with RFX proteins and that the overexpression of LANA disrupts the association of CIITA with the MHC-II promoter. These assays led to the conclusion that the interaction of LANA with RFX proteins interferes with the recruitment of CIITA to MHC-II promoters, resulting in an inhibition of MHC-II gene expression. Thus, the data presented here identify

  19. Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes' associations of Hashimoto's thyroiditis in a Greek population.

    PubMed

    Kokaraki, G; Daniilidis, M; Yiangou, M; Arsenakis, M; Karyotis, N; Tsilipakou, M; Fleva, A; Gerofotis, A; Karadani, N; Yovos, J G

    2009-03-01

    Hashimoto's thyroiditis (HT) is an autoimmune disease resulting from complex interactions between genetic and environmental factors. The disease is associated with certain human leukocyte antigen (HLA) class II alleles in various populations. We aimed to determine in this study, for the first time in a Greek population, the association of HLA-DRB1*, -DQA1*, and -DQB1* alleles with HT. HLA-DRB1*, -DQA1*, and -DQB1* alleles' and -DRB1*04 subtypes' distribution was evaluated in 125 patients with HT and in 500 healthy control individuals by using a DNA-based sequence-specific primer method. Chi(_)squared tests and Bonferroni correction method were applied in the statistical analysis of the data. Significantly higher frequency of DRB1*04 (24.8% vs 7.7%, P < 0.0001) was observed in HT patients, while HLA-DRB1*07 was significantly decreased (2.8% vs 7.9%, P < 0.05). HLA-DRB1*04 subtyping showed a significant increase of DRB1*0405 (21% vs 7.8%, P < 0.0001) in HT patients. Also significant high frequencies of DQB1*0201 (14.8% vs 8.2%, P < 0.001), DQB1*0302 (18.8% vs 7.0%, P < 0.0001), and DQA1*0301 (25.6% vs 7.8%, P < 0.0001) were recorded in the patient group. Conducting the first research of this kind in a Greek population, our study tries to provide an evaluation of the prevalence of HT relating to HLA-DRB1*0405, and we report a relative risk of 2.7 for HT in a Greek population.

  20. A Mutational Analysis of the Binding of Staphylococcal Enterotoxins B and C3 to the T Cell Receptor β Chain and Major Histocompatibility Complex Class II

    PubMed Central

    Leder, Lukas; Llera, Andrea; Lavoie, Pascal M.; Lebedeva, Marina I.; Li, Hongmin; Sékaly, Rafick-Pierre; Bohach, Gregory A.; Gahr, Pamala J.; Schlievert, Patrick M.; Karjalainen, Klaus; Mariuzza, Roy A.

    1998-01-01

    The three-dimensional structure of the complex between a T cell receptor (TCR) β chain (mouse Vβ8.2Jβ2.1Cβ1) and the superantigen (SAG) staphylococcal enterotoxin C3 (SEC3) has been recently determined to 3.5 Å resolution. To evaluate the actual contribution of individual SAG residues to stabilizing the β–SEC3 complex, as well as to investigate the relationship between the affinity of SAGs for TCR and MHC and their ability to activate T cells, we measured the binding of a set of SEC3 and staphylococcal enterotoxin B (SEB) mutants to soluble recombinant TCR β chain and to the human MHC class II molecule HLA-DR1. Affinities were determined by sedimentation equilibrium and/or surface plasmon detection, while mitogenic potency was assessed using T cells from rearrangement-deficient TCR transgenic mice. We show that there is a clear and simple relationship between the affinity of SAGs for the TCR and their biological activity: the tighter the binding of a particular mutant of SEC3 or SEB to the TCR β chain, the greater its ability to stimulate T cells. We also find that there is an interplay between TCR–SAG and SAG–MHC interactions in determining mitogenic potency, such that a small increase in the affinity of a SAG for MHC can overcome a large decrease in the SAG's affinity for the TCR. Finally, we observe that those SEC3 residues that make the greatest energetic contribution to stabilizing the β–SEC3 complex (“hot spot” residues) are strictly conserved among enterotoxins reactive with mouse Vβ8.2, thereby providing a basis for understanding why SAGs having other residues at these positions show different Vβ-binding specificities. PMID:9500785

  1. Structure of a Complex of the Human α/β T Cell Receptor (TCR) HA1.7, Influenza Hemagglutinin Peptide, and Major Histocompatibility Complex Class II Molecule, HLA-DR4 (DRA*0101 and DRB1*0401)

    PubMed Central

    Hennecke, Jens; Wiley, Don C.

    2002-01-01

    The α/β T cell receptor (TCR) HA1.7 specific for the hemagglutinin (HA) antigen peptide from influenza A virus is HLA-DR1 restricted but cross-reactive for the HA peptide presented by the allo-major histocompatibility complex (MHC) class II molecule HLA-DR4. We report here the structure of the HA1.7/DR4/HA complex, determined by X-ray crystallography at a resolution of 2.4 Å. The overall structure of this complex is very similar to the previously reported structure of the HA1.7/DR1/HA complex. Amino acid sequence differences between DR1 and DR4, which are located deep in the peptide binding groove and out of reach for direct contact by the TCR, are able to indirectly influence the antigenicity of the pMHC surface by changing the conformation of HA peptide residues at position P5 and P6. Although TCR HA1.7 is cross-reactive for HA presented by DR1 and DR4 and tolerates these conformational differences, other HA-specific TCRs are sensitive to these changes. We also find a dependence of the width of the MHC class II peptide-binding groove on the sequence of the bound peptide by comparing the HA1.7/DR4/HA complex with the structure of DR4 presenting a collagen peptide. This structural study of TCR cross-reactivity emphasizes how MHC sequence differences can affect TCR binding indirectly by moving peptide atoms. PMID:11877480

  2. Major histocompatibility complex class-II molecules promote targeting of human immunodeficiency virus type 1 virions in late endosomes by enhancing internalization of nascent particles from the plasma membrane

    PubMed Central

    Finzi, Andrés; Perlman, Mira; Bourgeois-Daigneault, Marie-Claude; Thibodeau, Jacques; Cohen, Éric A.

    2014-01-01

    Summary Productive assembly of human immunodeficiency virus type 1 (HIV-1) takes place, primarily, at the plasma membrane. However, depending on the cell types, a significant proportion of nascent virus particles are internalized and routed to late endosomes. We previously reported that expression of human leucocyte antigen (HLA)-DR promoted a redistribution of Gag in late endosomes and an increased detection of mature virions in these compartments in HeLa and human embryonic kidney 293T model cell lines. Although this redistribution of Gag resulted in a marked decrease of HIV-1 release, the underlying mechanism remained undefined. Here, we provide evidence that expression of HLA-DR at the cell surface induces a redistribution of mature Gag products into late endosomes by enhancing nascent HIV-1 particle internalization from the plasma membrane through a process that relies on the presence of intact HLA-DR α and β-chain cytosolic tails. These findings raise the possibility that major histocompatibility complex class-II molecules might influence endocytic events at the plasma membrane and as a result promote endocytosis of progeny HIV-1 particles. PMID:23170932

  3. Balancing selection and genetic drift at major histocompatibility complex class II genes in isolated populations of golden snub-nosed monkey (Rhinopithecus roxellana)

    PubMed Central

    2012-01-01

    Background Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Results Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. Conclusions MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs

  4. Assessment of biodiversity in Chilean cattle using the distribution of major histocompatibility complex class II BoLA-DRB3 allele.

    PubMed

    Takeshima, S-N; Miyasaka, T; Matsumoto, Y; Xue, G; Diaz, V de la Barra; Rogberg-Muñoz, A; Giovambattista, G; Ortiz, M; Oltra, J; Kanemaki, M; Onuma, M; Aida, Y

    2015-01-01

    Bovine leukocyte antigens (BoLAs) are used extensively as markers for bovine disease and immunological traits. In this study, we estimated BoLA-DRB3 allele frequencies using 888 cattle from 10 groups, including seven cattle breeds and three crossbreeds: 99 Red Angus, 100 Black Angus, 81 Chilean Wagyu, 49 Hereford, 95 Hereford × Angus, 71 Hereford × Jersey, 20 Hereford × Overo Colorado, 113 Holstein, 136 Overo Colorado, and 124 Overo Negro cattle. Forty-six BoLA-DRB3 alleles were identified, and each group had between 12 and 29 different BoLA-DRB3 alleles. Overo Negro had the highest number of alleles (29); this breed is considered in Chile to be an 'Old type' European Holstein Friesian descendant. By contrast, we detected 21 alleles in Holstein cattle, which are considered to be a 'Present type' Holstein Friesian cattle. Chilean cattle groups and four Japanese breeds were compared by neighbor-joining trees and a principal component analysis (PCA). The phylogenetic tree showed that Red Angus and Black Angus cattle were in the same clade, crossbreeds were closely related to their parent breeds, and Holstein cattle from Chile were closely related to Holstein cattle in Japan. Overall, the tree provided a thorough description of breed history. It also showed that the Overo Negro breed was closely related to the Holstein breed, consistent with historical data indicating that Overo Negro is an 'Old type' Holstein Friesian cattle. This allelic information will be important for investigating the relationship between major histocompatibility complex (MHC) and disease.

  5. Evidence for cattle major histocompatibility complex (BoLA) class II DQA1 gene heterozygote advantage against clinical mastitis caused by Streptococci and Escherichia species.

    PubMed

    Takeshima, S; Matsumoto, Y; Chen, J; Yoshida, T; Mukoyama, H; Aida, Y

    2008-12-01

    Mastitis is an inflammatory response of the mammary gland to irritation, injury, or infectious agents and is a major problem in the dairy industry. We genotyped bovine major histocompatibility complex (BoLA)-DRB3 and BoLA-DQA1 genes in 120 Holstein cattle with clinical mastitis and 85 randomly selected Holstein cattle in Japan by polymerase chain reaction-sequence-based typing. The mastitis cattle were divided into four groups according to the bacterial species that caused the mastitis (Staphylococcus aureus, Streptococci, Escherichia, and coagulase-negative staphylococci). The BoLA-DRB3 and BoLA-DQA1 heterozygosity of each group was compared with that of the control cattle, while the expected heterozygosities based on Hardy-Weinberg proportions and the observed heterozygosities for each locus were compared for each group. The Escherichia-induced and Streptococci-induced mastitis groups showed significant differences between their expected and observed heterozygosities with regard to their BoLA-DQA1 genes. No differences were observed for any group with regard to the BoLA-DRB3 genes. We then found that two BoLA-DQA1 alleles promoted susceptibility to Streptococci-induced mastitis, namely BoLA-DQA1*0101 and BoLA-DQA1*10012 and that the homozygous BoLA-DQA1*0101/0101 and BoLA-DQA1*10011/10011 genotypes promoted susceptibility to mastitis caused by Streptococci and Escherichia, respectively. This is the first report showing that heterozygosity of the BoLA-DQA1 gene is associated with resistance to mastitis progression.

  6. Major histocompatibility complex class I polymorphism in Asiatic lions.

    PubMed

    Sachdev, M; Sankaranarayanan, R; Reddanna, P; Thangaraj, K; Singh, L

    2005-07-01

    Asiatic lions (Panthera leo persica), whose only natural habitat in the world is the Gir forest sanctuary of Gujarat State in India, are highly endangered and are considered to be highly inbred with narrow genetic diversity. An objective assessment of genetic diversity in their immune loci will help in assessing their survivability and may provide vital clues in designing strategies for their scientific management and conservation. We analyzed the comparative sequence polymorphism at exon 2 and exon 3 of major histocompatibility complex (MHC) class I in three groups of lions, i.e. wild Asiatic (from Gir forest), captive-bred Asiatic (from zoological parks in India), and Afro-Asiatic hybrid groups (from zoological parks in India) through polymorphism chain reaction-assisted sequence-based typing. The two exons were amplified, cloned, sequenced, and analyzed for polymorphism at nucleotide and putative translated product level. The analysis revealed extensive sequence polymorphism not only between clones derived from different lions but also the clones derived from a single lion. Furthermore, the wild Asiatic lions of Gir forest exhibited abundant sequence polymorphism at MHC class I comparable with that of Afro-Asiatic hybrid lions and significantly higher than that of captive-bred Asiatic lions. We hypothesize that Asiatic lions of Gir forest are not highly inbred as thought earlier and they possess abundant sequence polymorphism at MHC class I loci. During this study, 52 new sequences of the multigene MHC class I family were also identified among Asiatic lions.

  7. Apoptosis Use Case: In Silico Evaluation of a Library of Small Molecule Pharmacophore Models for Blocking the Formation of SEB-Major Histocompatibility Class II Complexes

    DTIC Science & Technology

    2007-04-27

    human MHC II molecule ( HLA - DR1 ) used X-ray crystallography with the resolution of 2.7 A (Jardetzky et al., 1994). The topological view of the binding...Staphylococcal enterotoxin B induces cytoskeletal rearrangement and apoptosis in human kidney cells. Karp, D.R. & Long, E.O. Identification of HLA DR1 ...antigens ( HLA ), are the products of a cluster of genes in the human DNA known as the MHC. These antigens are present on various human cells and enable

  8. Monokine induced by interferon-gamma (MIG/CXCL9) is derived from both donor and recipient sources during rejection of class II major histocompatibility complex disparate skin allografts.

    PubMed

    Auerbach, Michael B; Shimoda, Naohiko; Amano, Hiroyuki; Rosenblum, Joshua M; Kish, Danielle D; Farber, Joshua M; Fairchild, Robert L

    2009-06-01

    Chemokines, including monokine induced by interferon-gamma (Mig/CXCL9), are produced both in allografts and during the direct T-cell infiltration that mediates graft rejection. Neither the specific production nor contribution of allograft donor versus recipient Mig in allograft rejection is currently known. C57BL/6 mice with a targeted deletion in the Mig gene were used as both skin allograft donors and recipients in a class II major histocompatibility complex-mismatched graft model to test the requirement for donor- versus recipient-derived Mig for acute rejection. B6.Mig(-/-) allografts had a 10-day prolonged survival in B6.H-2(bm12) recipients when compared with wild-type C57BL/6 allograft donors, and B6.H-2(bm12) skin allografts had a 5-day prolonged survival in B6.Mig(-/-) versus wild-type recipients. Transplantation of B6.Mig(-/-) skin grafts onto B6.H-2(bm12).Mig(-/-) recipients resulted in further prolonged allograft survival with more than 30% of the grafts surviving longer than 60 days. Prolonged allograft survival was also associated with delayed cellular infiltration into grafts but not with altered T-cell proliferative responses to donor stimulators. Immunohistochemical staining of allograft sections indicated that Mig is produced by both donor- and recipient-derived sources, but Mig from each of these sources appeared in different areas of the allograft tissue. These results therefore demonstrate the synergy of donor- and recipient-derived Mig in promoting T-cell infiltration into allografts.

  9. Recognition of the HLA class II-peptide complex by T-cell receptor: reversal of major histocompatibility complex restriction of a T-cell clone by a point mutation in the peptide determinant.

    PubMed

    Rothbard, J B; Busch, R; Lechler, R; Trowsdale, J; Lamb, J R

    1989-06-12

    Recognition of the HLA DR-peptide complex by an influenza haemagglutinin-specific T-cell clone was examined by assaying a variety of peptide analogues for their ability to be recognized. Consistent with earlier experiments arguing that the peptide blinds the restriction element in a helical conformation, acetylation of the amino terminus and amidation of the carboxy terminus of the natural determinant (residues 307-319) resulted in a peptide that exhibited both greater propensity to form a helix, as judged by circular dichroism, and the ability to stimulate the clone at concentrations approximately two orders of magnitude lower than the native sequence. The peptide was modelled into the potential antigen-combining site of HLA class II based on the ability of analogues containing point mutations to stimulate the T-cell clone. The working model was initially tested by examining the ability of Epstein-Barr-transformed B-cell lines expressing in different DR4 subtypes to present the native haemagglutinin sequence and analogues to the clone. The different alleles could be categorized as high, intermediate, or low responders based on the resulting proliferation. DR4 dw15 was a high-responding allele, dw4, 13, and 14 were intermediate-responding alleles, whereas dw10 was a low responder. Mutation of Gln to Arg at 312 in the haemagglutinin sequence converted the high and intermediate responders to non-responders, while turning the low-responding allele into an intermediate responder. Potential explanations for these effects are discussed in the context of the model of the complex between peptide and the major histocompatibility complex.

  10. Conservation of Babesia bovis small heat shock protein (Hsp20) among strains and definition of T helper cell epitopes recognized by cattle with diverse major histocompatibility complex class II haplotypes.

    PubMed

    Norimine, Junzo; Mosqueda, Juan; Palmer, Guy H; Lewin, Harris A; Brown, Wendy C

    2004-02-01

    Babesia bovis small heat shock protein (Hsp20) is recognized by CD4+ T lymphocytes from cattle that have recovered from infection and are immune to challenge. This candidate vaccine antigen is related to a protective antigen of Toxoplasma gondii, Hsp30/bag1, and both are members of the alpha-crystallin family of proteins that can serve as molecular chaperones. In the present study, immunofluorescence microscopy determined that Hsp20 is expressed intracellularly in all merozoites. Importantly, Hsp20 is also expressed by tick larval stages, including sporozoites, so that natural tick-transmitted infection could boost a vaccine-induced response. The predicted amino acid sequence of Hsp20 from merozoites is completely conserved among different B. bovis strains. To define the location of CD4+ T-cell epitopes for inclusion in a multiepitope peptide or minigene vaccine construct, truncated recombinant Hsp20 proteins and overlapping peptides were tested for their ability to stimulate T cells from immune cattle. Both amino-terminal (amino acids [aa] 1 to 105) and carboxy-terminal (aa 48 to 177) regions were immunogenic for the majority of cattle in the study, stimulating strong proliferation and IFN-gamma production. T-cell lines from all individuals with distinct DRB3 haplotypes responded to aa 11 to 62 of Hsp20, which contained one or more immunodominant epitopes for each animal. One epitope, DEQTGLPIKS (aa 17 to 26), was identified by T-cell clones. The presence of strain-conserved T helper cell epitopes in aa 11 to 62 of the ubiquitously expressed Hsp20 that are presented by major histocompatibility complex class II molecules represented broadly in the Holstein breed supports the inclusion of this region in vaccine constructs to be tested in cattle.

  11. Major Histocompatibility Complex Class II Transactivator CIITA Is a Viral Restriction Factor That Targets Human T-Cell Lymphotropic Virus Type 1 Tax-1 Function and Inhibits Viral Replication▿

    PubMed Central

    Tosi, Giovanna; Forlani, Greta; Andresen, Vibeke; Turci, Marco; Bertazzoni, Umberto; Franchini, Genoveffa; Poli, Guido; Accolla, Roberto S.

    2011-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of an aggressive malignancy of CD4+ T lymphocytes. Since the viral transactivator Tax-1 is a major player in T-cell transformation, targeting Tax-1 protein is regarded as a possible strategy to arrest viral replication and to counteract neoplastic transformation. We demonstrate that CIITA, the master regulator of major histocompatibility complex class II gene transcription, inhibits HTLV-1 replication by blocking the transactivating function of Tax-1 both when exogenously transfected in 293T cells and when endogenously expressed by a subset of U937 promonocytic cells. Tax-1 and CIITA physically interact in vivo via the first 108 amino acids of Tax-1 and two CIITA adjacent regions (amino acids 1 to 252 and 253 to 410). Interestingly, only CIITA 1-252 mediated Tax-1 inhibition, in agreement with the fact that CIITA residues from positions 64 to 124 were required to block Tax-1 transactivation. CIITA inhibitory action on Tax-1 correlated with the nuclear localization of CIITA and was independent of the transcription factor NF-YB, previously involved in CIITA-mediated inhibition of Tax-2 of HTLV-2. Instead, CIITA severely impaired the physical and functional interaction of Tax-1 with the cellular coactivators p300/CBP-associated factor (PCAF), cyclic AMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1), which are required for the optimal activation of HTLV-1 promoter. Accordingly, the overexpression of PCAF, CREB, and ATF1 restored Tax-1-dependent transactivation of the viral long-terminal-repeat promoter inhibited by CIITA. These findings strongly support our original observation that CIITA, beside increasing the antigen-presenting function for pathogen antigens, acts as an endogenous restriction factor against human retroviruses by blocking virus replication and spreading. PMID:21813598

  12. Identification of the transcription factors NF-YA and NF-YB as factors A and B that bound to the promoter of the major histocompatibility complex class II gene I-A beta.

    PubMed Central

    Celada, A; McKercher, S R; Maki, R A

    1996-01-01

    The Y box is a conserved sequence in the promoter of major histocompatibility complex (MHC) class II genes, which contains a CCAAT sequence (CCAAT box). Previously, we partially purified the DNA-binding protein that recognizes the Y box of the I-A beta gene and showed that it consisted of two components (factors A and B) both of which were necessary for optimal DNA binding. The genes for the heteromeric protein NF-Y (NF-YA and NF-YB), which binds to the I-E alpha Y box have been cloned. We subsequently isolated the genes for NF-YA and NF-YB using oligonucleotides designed from the published sequences. NF-YA and NF-YB were tested for binding to the I-A beta and I-E alpha Y boxes. While neither NF-YA or NF-YB alone bound to the Y box, when the components were mixed the complex bound to the I-A beta Y box with high affinity. Moreover, NF-YA and NF-YB could be complemented for binding to DNA by factor B or factor A, respectively. These results suggest that the active binding protein is NF-YA in factor A extracts and NF-YB in factor B extracts. Finally, antibodies against NF-YA and NF-YB were shown to induce a supershift when nuclear extracts were added to the double-stranded oligodeoxynucleotide covering the Y box of the I-A beta gene. Antisense expression constructs of both NF-YA and NF-YB were made and their effect on expression from the I-A beta promoter was tested. Either antisense construction, when transfected into cells, lowered the expression of a reporter gene linked to the I-A beta promoter. This study provides direct evidence of the identification of NF-YA and NF-YB as the previously described factors A and B. Moreover, these results strongly implicate NF-Y in the expression of the MHC class II gene I-A beta. PMID:8760361

  13. Emerging Major Histocompatibility Complex Class I-Related Functions of NLRC5.

    PubMed

    Chelbi, S T; Dang, A T; Guarda, G

    2017-01-01

    Recent evidence demonstrates a key role for the nucleotide-binding oligomerization domain-like receptor (NLR) family member NLRC5 (NLR family, CARD domain containing protein 5) in the transcriptional regulation of major histocompatibility complex (MHC) class I and related genes. Detailed information on NLRC5 target genes in various cell types and conditions is emerging. Thanks to its analogy to CIITA (class II major MHC transactivator), a NLR family member known for over 20 years to be the master regulator of MHC class II gene transcription, also the molecular mechanisms underlying NLRC5 function are being rapidly unraveled. MHC class I molecules are crucial in regulating innate and adaptive cytotoxic responses. Whereas CD8(+) T cells detect antigens presented on MHC class I molecules by infected or transformed cells, natural killer (NK) lymphocytes eliminate target cells with downregulated MHC class I expression. Data uncovering the relevance of NLRC5 in homeostasis and activity of these two lymphocyte subsets have been recently reported. Given the importance of CD8(+) T and NK cells in controlling infection and cancer, it is not surprising that NLRC5 is also starting to emerge as a central player in these diseases. This chapter summarizes and discusses novel insights into the molecular mechanisms underlying NLRC5 activity and its relevance to pathological conditions. A thorough understanding of both aspects is essential to evaluate the clinical significance and therapeutic potential of NLRC5.

  14. The Major Histocompatibility Complex Class II Transactivator CIITA Inhibits the Persistent Activation of NF-κB by the Human T Cell Lymphotropic Virus Type 1 Tax-1 Oncoprotein

    PubMed Central

    Forlani, Greta; Abdallah, Rawan

    2016-01-01

    ABSTRACT Human T cell lymphotropic virus type 1 (HTLV-1) Tax-1, a key protein in HTLV-1-induced T cell transformation, deregulates diverse cell signaling pathways. Among them, the NF-κB pathway is constitutively activated by Tax-1, which binds to NF-κB proteins and activates the IκB kinase (IKK). Upon phosphorylation-dependent IκB degradation, NF-κB migrates into the nucleus, mediating Tax-1-stimulated gene expression. We show that the transcriptional regulator of major histocompatibility complex class II genes CIITA (class II transactivator), endogenously or ectopically expressed in different cells, inhibits the activation of the canonical NF-κB pathway by Tax-1 and map the region that mediates this effect. CIITA affects the subcellular localization of Tax-1, which is mostly retained in the cytoplasm, and this correlates with impaired migration of RelA into the nucleus. Cytoplasmic and nuclear mutant forms of CIITA reveal that CIITA exploits different strategies to suppress Tax-1-mediated NF-κB activation in both subcellular compartments. CIITA interacts with Tax-1 without preventing Tax-1 binding to both IKKγ and RelA. Nevertheless, CIITA affects Tax-1-induced IKK activity, causing retention of the inactive p50/RelA/IκB complex in the cytoplasm. Nuclear CIITA associates with Tax-1/RelA in nuclear bodies, blocking Tax-1-dependent activation of NF-κB-responsive genes. Thus, CIITA inhibits cytoplasmic and nuclear steps of Tax-1-mediated NF-κB activation. These results, together with our previous finding that CIITA acts as a restriction factor inhibiting Tax-1-promoted HTLV-1 gene expression and replication, indicate that CIITA is a versatile molecule that might also counteract Tax-1 transforming activity. Unveiling the molecular basis of CIITA-mediated inhibition of Tax-1 functions may be important in defining new strategies to control HTLV-1 spreading and oncogenic potential. IMPORTANCE HTLV-1 is the causative agent of human adult T cell leukemia

  15. The major histocompatibility complex of tassel-eared squirrels. II. Genetic diversity associated with Abert squirrels.

    PubMed

    Wettstein, P J; States, J S

    1986-01-01

    The extent of polymorphism and the rate of divergence of class I and class II sequences mapping to the mammalian major histocompatibility complex (MHC) have been the subject of experimentation and speculation. To provide further insight into the evolution of the MHC we have initiated the analysis of two geographically isolated subspecies of tassel-eared squirrels. In the preceding communication we described the number and polymorphism of TSLA class I and class II sequences in Kaibab squirrels (S. aberti kaibabensis), which live north of the Grand Canyon. In this report we present a parallel analysis of Abert squirrels (S. aberti aberti), which live south of the Grand Canyon in northern Arizona. Genomic DNA from 12 Abert squirrels was digested with restriction enzymes, electrophoresed, blotted, and hybridized with DR alpha, DR beta, DQ alpha, DQ beta, and HLA-B7 probes. The results of these hybridizations were remarkably similar to those obtained in Kaibab squirrels. The majority of class I and class II bands were identical in size and number, suggesting that Abert and Kaibab squirrels have not significantly diverged in the TSLA complex despite their geographical separation. Relative polymorphism of class II sequences was similar to that observed with Kaibab squirrels: beta sequences exhibited higher polymorphism than alpha sequences. As in Kaibab squirrels, a number of alpha and beta sequences were apparently carried on the same fragments. In comparison to class II beta sequences, there was limited polymorphism in class I sequences, although a diverse number of class I genotypes were observed. Attempts to identify segregating TSLA haplotypes were futile in that the only families of sequences with concordant distributions were DQ alpha and DQ beta. These observations and those obtained with Kaibab squirrels suggest that the present-day TSLA haplotypes of both subspecies are derived from a limited number of common, progenitor haplotypes through repeated intra

  16. Association of major histocompatibility complex II with cholesterol- and sphingolipid-rich membranes precedes peptide loading.

    PubMed

    Karacsonyi, Claudia; Knorr, Ruth; Fülbier, Angela; Lindner, Robert

    2004-08-13

    Major histocompatibility complex class II protein (MHC II) molecules present antigenic peptides to CD4-positive T-cells. Efficient T cell stimulation requires association of MHC II with membrane microdomains organized by cholesterol and glycosphingolipids or by tetraspanins. Using detergent extraction at 37 degrees C combined with a modified flotation assay, we investigated the sequence of events leading to the association of MHC II with cholesterol- and glycosphingolipid-rich membranes (DRMs) that are distinct from tetraspanins. We find two stages of association of MHC II with DRMs. In stage one, complexes of MHC II and invariant chain, a chaperone involved in MHC II transport, enter DRMs in the Golgi stack. In early endosomes, these complexes are almost quantitatively associated with DRMs. Upon transport to late endocytic compartments, MHC II-bound invariant chain is stepwise proteolyzed to the MHC class II-associated invariant chain peptide (CLIP) that remains MHC II-bound and retains a preference for DRMs. At the transition between the two stages, CLIP is exchanged against processed antigens, and the resulting MHC II-peptide complexes are transported to the cell surface. In the second stage, MHC II shows a lower overall association with DRMs. However, surface MHC II molecules occupied with peptides that induce resistance to denaturation by SDS are enriched in DRMs relative to SDS-sensitive MHC II-peptide complexes. Likewise, MHC II molecules loaded with long-lived processing products of hen-egg lysozyme containing the immunodominant epitope 48-61 show a very high preference for DRMs. Thus after an initial mainly intracellular stage of high DRM association, MHC II moves to a second stage in which its preference for DRMs is modulated by bound peptides.

  17. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  18. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  19. Recognition of class I major histocompatibility complex molecules by Ly- 49: specificities and domain interactions

    PubMed Central

    1996-01-01

    Ly-49 is a family type II transmembrane proteins encoded by a gene cluster on murine chromosome 6. One member of this family, Ly-49A, is expressed by a natural killer (NK) cell subset, binds to class I major histocompatibility complex (MHC) molecules, and blocks the killing of target cells bearing the appropriate H-2 antigens. Here we show that another member of this family which is expressed by an NK cell subset, Ly-49C, recognizes H-2b and H-2d structures which are distinct from and overlapping with those recognized by Ly-49A. Interactions between Ly- 49A and C and their class I ligands are entirely blocked by the antibodies 5E6, YE1/48, YE1/32, and A1, all of which were found to recognize epitopes contained within the carbohydrate recognition domain (CRD). However, cell-cell binding assays revealed that class I binding specificity is conferred by a combination of sequences within both the CRD and a 19-amino acid adjacent region. We also investigated the question of whether Ly-49A and C form dimers on cells which express both receptors. When coexpressed on COS cells, sequential immunoprecipitation demonstrated that these receptors pair exclusively as homodimers, with no evidence for heterodimeric structures. These observations provide insight into both the biochemical nature of the Ly- 49 family as well as the receptor functions of Ly-49C on NK cells. PMID:8666913

  20. Major histocompatibility complex class I core promoter elements are not essential for transcription in vivo.

    PubMed

    Barbash, Zohar S; Weissman, Jocelyn D; Campbell, John A; Mu, Jie; Singer, Dinah S

    2013-11-01

    The role of core promoter elements in regulating transcription initiation is largely unknown for genes subject to complex regulation. Major histocompatibility complex class I genes are ubiquitously expressed and governed by tissue-specific and hormonal signals. Transcription initiates at multiple sites within the core promoter, which contains elements homologous to the canonical elements CCAAT, TATAA, Sp1 binding site (Sp1BS), and Initiator (Inr). To determine their functions, expression of class I transgenes with individually mutated elements was assessed. Surprisingly, all mutant promoters supported transcription. However, each mutated core promoter element had a distinct effect on expression: CAAT box mutations modulated constitutive expression in nonlymphoid tissues, whereas TATAA-like element mutations dysregulated transcription in lymphoid tissues. Inr mutations aberrantly elevated expression. Sp1BS element mutations resulted in variegated transgene expression. RNA polymerase II binding and histone H3K4me3 patterns correlated with transgene expression; H3K9me3 marks partially correlated. Whereas the wild-type, TATAA-like, and CAAT mutant promoters were activated by gamma interferon, the Sp1 and Inr mutants were repressed, implicating these elements in regulation of hormonal responses. These results lead to the surprising conclusion that no single element is required for promoter activity. Rather, each plays a distinct role in promoter activity, chromatin structure, tissue-specific expression, and extracellular signaling.

  1. Major Histocompatibility Complex Class I Core Promoter Elements Are Not Essential for Transcription in vivo

    PubMed Central

    Barbash, Zohar S.; Weissman, Jocelyn D.; Campbell, John A.; Mu, Jie

    2013-01-01

    The role of core promoter elements in regulating transcription initiation is largely unknown for genes subject to complex regulation. Major histocompatibility complex class I genes are ubiquitously expressed and governed by tissue-specific and hormonal signals. Transcription initiates at multiple sites within the core promoter, which contains elements homologous to the canonical elements CCAAT, TATAA, Sp1 binding site (Sp1BS), and Initiator (Inr). To determine their functions, expression of class I transgenes with individually mutated elements was assessed. Surprisingly, all mutant promoters supported transcription. However, each mutated core promoter element had a distinct effect on expression: CAAT box mutations modulated constitutive expression in nonlymphoid tissues, whereas TATAA-like element mutations dysregulated transcription in lymphoid tissues. Inr mutations aberrantly elevated expression. Sp1BS element mutations resulted in variegated transgene expression. RNA polymerase II binding and histone H3K4me3 patterns correlated with transgene expression; H3K9me3 marks partially correlated. Whereas the wild-type, TATAA-like, and CAAT mutant promoters were activated by gamma interferon, the Sp1 and Inr mutants were repressed, implicating these elements in regulation of hormonal responses. These results lead to the surprising conclusion that no single element is required for promoter activity. Rather, each plays a distinct role in promoter activity, chromatin structure, tissue-specific expression, and extracellular signaling. PMID:24019072

  2. Biosynthesis of major histocompatibility complex molecules and generation of T cells in Ii TAP1 double-mutant mice.

    PubMed Central

    Tourne, S; van Santen, H M; van Roon, M; Berns, A; Benoist, C; Mathis, D; Ploegh, H

    1996-01-01

    Major histocompatibility complex (MHC) class I and II molecules are loaded with peptides in distinct subcellular compartments. The transporter associated with antigen processing (TAP) is responsible for delivering peptides derived from cytosolic proteins to the endoplasmic reticulum, where they bind to class I molecules, while the invariant chain (Ii) directs class II molecules to endosomal compartments, where they bind peptides originating mostly from exogenous sources. Mice carrying null mutations of the TAP1 or Ii genes (TAP10) or Ii0, respectively) have been useful tools for elucidating the two MHC/peptide loading pathways. To evaluate to what extent these pathways functionally intersect, we have studied the biosynthesis of MHC molecules and the generation of T cells in Ii0TAP10 double-mutant mice. We find that the assembly and expression of class II molecules in Ii0 and Ii0TAP10 animals are indistinguishable and that formation and display of class I molecules is the same in TAP10 and Ii0TAP10 animals. Thymic selection in the double mutants is as expected, with reduced numbers of both CD4+ CD8- and CD4- CD8+ thymocyte compartments. Surprisingly, lymph node T-cell populations look almost normal; we propose that population expansion of peripheral T cells normalizes the numbers of CD4+ and CD8+ cells in Ii0TAP10 mice. Images Fig. 1 Fig. 2 PMID:8643655

  3. Class I major histocompatibility proteins as cell surface receptors for simian virus 40.

    PubMed Central

    Atwood, W J; Norkin, L C

    1989-01-01

    Class I major histocompatibility complex proteins appear to be the major cell surface receptors for simian virus 40 (SV40), as implied by the following observations. Adsorption of SV40 to LLC-MK2 rhesus monkey kidney cells specifically inhibited binding of a monoclonal antibody (MAb) against class I human lymphocyte antigen (HLA) proteins. Conversely, pretreatment of LLC-MK2 cells with anti-HLA MAbs inhibited infection by SV40. The ability of anti-HLA to inhibit infection was greatly reduced when the order of addition of the anti-HLA and the virus was reversed. Infection was also inhibited by preincubating SV40 with purified soluble class I protein. Finally, human lymphoblastoid cells of the Daudi line, which do not express class I major histocompatibility complex proteins, were infected at relatively low levels with SV40 virions. In a control experiment, we found that pretreatment of cells with a MAb specific for the leukocytic-function-associated antigen LFA-3 actually enhanced infection. This finding may also support the premise that class I major histocompatibility complex proteins are receptors for SV40. PMID:2476575

  4. A novel cysteine-rich sequence-specific DNA-binding protein interacts with the conserved X-box motif of the human major histocompatibility complex class II genes via a repeated Cys-His domain and functions as a transcriptional repressor

    PubMed Central

    1994-01-01

    The class II major histocompatibility complex (MHC) molecules function in the presentation of processed peptides to helper T cells. As most mammalian cells can endocytose and process foreign antigen, the critical determinant of an antigen-presenting cell is its ability to express class II MHC molecules. Expression of these molecules is usually restricted to cells of the immune system and dysregulated expression is hypothesized to contribute to the pathogenesis of a severe combined immunodeficiency syndrome and certain autoimmune diseases. Human complementary DNA clones encoding a newly identified, cysteine-rich transcription factor, NF-X1, which binds to the conserved X-box motif of class II MHC genes, were obtained, and the primary amino acid sequence deduced. The major open reading frame encodes a polypeptide of 1,104 amino acids with a symmetrical organization. A central cysteine-rich portion encodes the DNA-binding domain, and is subdivided into seven repeated motifs. This motif is similar to but distinct from the LIM domain and the RING finger family, and is reminiscent of known metal-binding regions. The unique arrangement of cysteines indicates that the consensus sequence CX3CXL-XCGX1- 5HXCX3CHXGXC represents a novel cysteine-rich motif. Two lines of evidence indicate that the polypeptide encodes a potent and biologically relevant repressor of HLA-DRA transcription: (a) overexpression of NF-X1 from a retroviral construct strongly decreases transcription from the HLA-DRA promoter; and (b) the NF-X1 transcript is markedly induced late after induction with interferon gamma (IFN- gamma), coinciding with postinduction attenuation of HLA-DRA transcription. The NF-X1 protein may therefore play an important role in regulating the duration of an inflammatory response by limiting the period in which class II MHC molecules are induced by IFN-gamma. PMID:7964459

  5. Characterisation of Major Histocompatibility Complex Class I in the Australian Cane Toad, Rhinella marina

    PubMed Central

    Lillie, Mette; Shine, Richard; Belov, Katherine

    2014-01-01

    The Major Histocompatibility Complex (MHC) class I is a highly variable gene family that encodes cell-surface receptors vital for recognition of intracellular pathogens and initiation of immune responses. The MHC class I has yet to be characterised in bufonid toads (Order: Anura; Suborder: Neobatrachia; Family: Bufonidae), a large and diverse family of anurans. Here we describe the characterisation of a classical MHC class I gene in the Australian cane toad, Rhinella marina. From 25 individuals sampled from the Australian population, we found only 3 alleles at this classical class I locus. We also found large number of class I alpha 1 alleles, implying an expansion of class I loci in this species. The low classical class I genetic diversity is likely the result of repeated bottleneck events, which arose as a result of the cane toad's complex history of introductions as a biocontrol agent and its subsequent invasion across Australia. PMID:25093458

  6. Molecular characterization of major histocompatibility complex class 1 (MHC-I) from squirrel monkeys (Saimiri sciureus).

    PubMed

    Pascalis, Hervé; Heraud, Jean-Michel; Fendel, Rolf; Lavergne, Anne; Kazanji, Mirdad

    2003-12-01

    Little is known about the major histocompatibility complex (MHC) class 1 in squirrel monkeys ( Saimiri sciureus). We cloned, sequenced and characterized two alleles and the cDNA of the coding region of MHC class 1 in these New World monkeys. Phylogenetic analyses showed that these sequences are related to HLA class 1 genes ( HLA-A and HLA-G). The structure and organization of one of the two identified clones was similar to that of a class 1 MHC gene ( HLA-A2). All the exon/intron splice acceptor/donor sites are conserved and their locations correspond to the HLA-A2 gene. The sequences of the newly described cDNAs reveal that they code for the characteristic class 1 MHC proteins, with all the features thought necessary for cell surface expression. Typical sequences for the leader peptide, alpha(1), alpha(2), alpha(3), transmembrane and cytoplasmic domains were found.

  7. Class II Microcins

    NASA Astrophysics Data System (ADS)

    Vassiliadis, Gaëlle; Destoumieux-Garzón, Delphine; Peduzzi, Jean

    Class II microcins are 4.9- to 8.9-kDa polypeptides produced by and active against enterobacteria. They are classified into two subfamilies according to their structure and their gene cluster arrangement. While class IIa microcins undergo no posttranslational modification, class IIb microcins show a conserved C-terminal sequence that carries a salmochelin-like siderophore motif as a posttranslational modification. Aside from this C-terminal end, which is the signature of class IIb microcins, some sequence similarities can be observed within and between class II subclasses, suggesting the existence of common ancestors. Their mechanisms of action are still under investigation, but several class II microcins use inner membrane proteins as cellular targets, and some of them are membrane-active. Like group B colicins, many, if not all, class II microcins are TonB- and energy-dependent and use catecholate siderophore receptors for recognition/­translocation across the outer membrane. In that context, class IIb microcins are considered to have developed molecular mimicry to increase their affinity for their outer membrane receptors through their salmochelin-like posttranslational modification.

  8. Human Herpesvirus 7 U21 Tetramerizes To Associate with Class I Major Histocompatibility Complex Molecules

    PubMed Central

    May, Nathan A.; Wang, Qiuhong; Balbo, Andrea; Konrad, Sheryl L.; Buchli, Rico; Hildebrand, William H.; Schuck, Peter

    2014-01-01

    ABSTRACT The U21 gene product from human herpesvirus 7 binds to and redirects class I major histocompatibility complex (MHC) molecules to a lysosomal compartment. The molecular mechanism by which U21 reroutes class I MHC molecules to lysosomes is not known. Here, we have reconstituted the interaction between purified soluble U21 and class I MHC molecules, suggesting that U21 does not require additional cellular proteins to interact with class I MHC molecules. Our results demonstrate that U21, itself predicted to contain an MHC class I-like protein fold, interacts tightly with class I MHC molecules as a tetramer, in a 4:2 stoichiometry. These observations have helped to elucidate a refined model describing the mechanism by which U21 escorts class I MHC molecules to the lysosomal compartment. IMPORTANCE In this report, we show that the human herpesvirus 7 (HHV-7) immunoevasin U21, itself a class I MHC-like protein, binds with high affinity to class I MHC molecules as a tetramer and escorts them to lysosomes, where they are degraded. While many class I MHC-like molecules have been described in detail, this unusual viral class I-like protein functions as a tetramer, associating with class I MHC molecules in a 4:2 ratio, illuminating a functional significance of homooligomerization of a class I MHC-like protein. PMID:24390327

  9. Transcriptional and posttranscriptional regulation of class I major histocompatibility complex genes following transformation with human adenoviruses.

    PubMed Central

    Shemesh, J; Rotem-Yehudar, R; Ehrlich, R

    1991-01-01

    Transformation of rodent cells by human adenoviruses is a well-established model system for studying the expression, regulation, and function of class I antigens. In this report, we demonstrate that the highly oncogenic adenovirus type 12 operates at the transcriptional and posttranscriptional levels in regulating the activity of major histocompatibility complex class I genes and products in transformed cells. Adenovirus type 12 suppresses the cell surface expression of class I antigens in most cell lines. Nevertheless, in a number of cell lines suppression is the result of reduction in the amount of stable specific mRNA, while in another group of cell lines suppression involves interference with processing of a posttranscriptional product. The two mechanisms operate both for the endogenous H-2 genes and for a miniature swine class I transgene that is expressed in the cells. Images PMID:1895404

  10. Activation of class I major histocompatibility complex gene expression by hepatitis B virus.

    PubMed Central

    Zhou, D X; Taraboulos, A; Ou, J H; Yen, T S

    1990-01-01

    Normal hepatocytes express very few class I major histocompatibility complex (MHC I) molecules, but MHC I expression is elevated in hepatitis B virus (HBV) infection. We report here that hepatoblastoma cells with replicating HBV genomes express three- to fourfold-higher levels of MHC I protein and mRNA than do parent cells without HBV DNA. Transient transfection assays demonstrated that the HBV X protein trans activated transcription from an MHC I promoter and allowed identification of cis elements important for trans activation. Images PMID:2164611

  11. Antigen Presentation by Dendritic Cells after Immunization with DNA Encoding a Major Histocompatibility Complex Class II–restricted Viral Epitope

    PubMed Central

    Casares, Sofia; Inaba, Kayo; Brumeanu, Teodor-Doru; Steinman, Ralph M.; Bona, Constantin A.

    1997-01-01

    Intramuscular and intracutaneous immunization with naked DNA can vaccinate animals to the encoded proteins, but the underlying mechanisms of antigen presentation are unclear. We used DNA that encodes an A/PR/8/34 influenza peptide for CD4 T cells and that elicits protective antiviral immunity. DNA-transfected, cultured muscle cells released the influenza polypeptide, which then could be presented on the major histocompatibility complex class II molecules of dendritic cells. When DNA was injected into muscles or skin, and antigen-presenting cells were isolated from either the draining lymph nodes or the skin, dendritic, but not B, cells presented antigen to T cells and carried plasmid DNA. We suggest that the uptake of DNA and/or the protein expressed by dendritic cells triggers immune responses to DNA vaccines. PMID:9348305

  12. Cell surface expression and function of an HLA class II molecule with class I domain configuration

    PubMed Central

    1993-01-01

    Recombinant major histocompatibility complex (MHC) class II molecules were expressed with extracellular polypeptide domains reorganized to form heavy (H) and light (L) chains (alpha 1-beta 1-beta 2 and alpha 2) analogous to class I. Accurate protein folding and dimerization is demonstrated by the ability of this 3+1-DR1 construct to bind class II- restricted peptides and stimulate CD4+ T cells. Cell surface expression of a functional class II molecule consisting of H and L chains supports the validity of current class II models and affirms the evolutionary relatedness of class I/II. MHC functions that differ between class I/II may be influenced by domain configuration, and the use of domain- shifted constructs will allow examination of this possibility. PMID:8340763

  13. Defective Major Histocompatibility Complex Class I Expression in a Sarcomatoid Renal Cell Carcinoma Cell Line

    PubMed Central

    Jakobsen, Michael K.; Restifo, Nicholas P.; Cohen, Peter A.; Marincola, Francesco M.; Cheshire, L. Bryan; Linehan, W. Marston; Rosenberg, Steven A.; Alexander, Richard B.

    2008-01-01

    Summary We studied major histocompatibility complex (MHC) class I expression in 12 tumor cell culture lines established from patients with metastatic renal cell carcinoma (RCC). In one of these cell culture lines, UOK 123, we found no surface expression of β2-microglobulin (β2m) and MHC class I by flow cytometry. Immunofluorescence staining using three different monoclonal antibodies to β2m revealed no detectable β2m in the endoplasmic reticulum (ER), Golgi apparatus, cytoplasm, or on the cell surface. There was no evidence of folded class I molecules inside or on the surface of the cells; however, the ER stained intensively for unfolded class I molecules. Transient expression of β2m by UOK 123 after infection with a recombinant vaccinia virus containing the gene for β2m resulted in normal expression of both β2m and class I (HLA-A, B, C) determinants assessed by flow cytometry analysis. No expression of class I or β2m was seen with the recombinant vaccinia vector carrying a control gene. The inability of class I molecules to reach the cell surface is due to the requirement of β2m for proper folding and presentation of the class I MHC complex. The failure to assemble and express MHC class I complex on the cell surface renders these cells incapable of antigen presentation to cyto-toxic T cells and provides a mechanism for escape from immune recognition by the tumor. PMID:7582258

  14. Differential Incorporation of CD45, CD80 (B7-1), CD86 (B7-2), and Major Histocompatibility Complex Class I and II Molecules into Human Immunodeficiency Virus Type 1 Virions and Microvesicles: Implications for Viral Pathogenesis and Immune Regulation

    PubMed Central

    Esser, Mark T.; Graham, David R.; Coren, Lori V.; Trubey, Charles M.; Bess, Julian W.; Arthur, Larry O.; Ott, David E.; Lifson, Jeffrey D.

    2001-01-01

    Human immunodeficiency virus (HIV) infection results in a functional impairment of CD4+ T cells long before a quantitative decline in circulating CD4+ T cells is evident. The mechanism(s) responsible for this functional unresponsiveness and eventual depletion of CD4+ T cells remains unclear. Both direct effects of cytopathic infection of CD4+ cells and indirect effects in which uninfected “bystander” cells are functionally compromised or killed have been implicated as contributing to the immunopathogenesis of HIV infection. Because T-cell receptor engagement of major histocompatibility complex (MHC) molecules in the absence of costimulation mediated via CD28 binding to CD80 (B7-1) or CD86 (B7-2) can lead to anergy or apoptosis, we determined whether HIV type 1 (HIV-1) virions incorporated MHC class I (MHC-I), MHC-II, CD80, or CD86. Microvesicles produced from matched uninfected cells were also evaluated. HIV infection increased MHC-II expression on T- and B-cell lines, macrophages, and peripheral blood mononclear cells (PBMC) but did not significantly alter the expression of CD80 or CD86. HIV virions derived from all MHC-II-positive cell types incorporated high levels of MHC-II, and both virions and microvesicles preferentially incorporated CD86 compared to CD80. CD45, expressed at high levels on cells, was identified as a protein present at high levels on microvesicles but was not detected on HIV-1 virions. Virion-associated, host cell-derived molecules impacted the ability of noninfectious HIV virions to trigger death in freshly isolated PBMC. These results demonstrate the preferential incorporation or exclusion of host cell proteins by budding HIV-1 virions and suggest that host cell proteins present on HIV-1 virions may contribute to the overall pathogenesis of HIV-1 infection. PMID:11390619

  15. Chicken major histocompatibility complex class I definition using antisera induced by cloned class I sequences.

    PubMed

    Fulton, J E; Hunt, H D; Bacon, L D

    2001-11-01

    Alloantisera directed against chicken class I MHC (BFIV) antigens were produced by using transfected cell lines expressing cloned BFIV sequences. The cloned BFIV sequences were from haplotypes *12, *13, and *21. Two laboratory-derived class I mutant sequences (BFIV13m126 and BFIV21m78) were developed to analyze cross-reactive epitopes and to induce specific alloantisera. Antisera were tested in hemagglutination and flow cytometry assays. The antisera produced were highly specific and had minimal cross-reactivity. The antisera induced by the BF1V21m78 mutant confirmed the significance of amino acids 78 and 81 in cross-reactivity between haplotypes B*21 and B*5. The highly specific antisera were tested by hemagglutination on red blood cells of 31 different MHC haplotypes. The consistency of hemagglutination patterns and minimal cross-reactivity demonstrated that these BFIV antisera are extremely valuable in defining MHC haplotype in various chicken lines. Because of the extreme low level of recombination between the chicken class I and class II loci, identification of BFIV allele can be used to define MHC haplotype within a line. Complete identity between the transfected cell line and the chicken used to produce the antiserum is required to ensure the monospecificity.

  16. Ex Vivo Analysis of Human T Lymphotropic Virus Type 1–Specific CD4+ Cells by Use of a Major Histocompatibility Complex Class II Tetramer Composed of a Neurological Disease–Susceptibility Allele and Its Immunodominant Peptide

    PubMed Central

    Nose, Hirohisa; Kubota, Ryuji; Seth, Nilufer P.; Goon, Peter K.; Tanaka, Yuetsu; Izumo, Shuji; Usuku, Koichiro; Ohara, Yoshiro; Wucherpfennig, Kai W.; Bangham, Charles R. M.; Osame, Mitsuhiro; Saito, Mineki

    2015-01-01

    HLA-DRB1*0101 is associated with susceptibility to human T lymphotropic virus type 1 (HTLV-1)–associated myelopathy/tropical spastic paraparesis (HAM/TSP). Here, we used a synthetic tetramer of DRB1*0101 and its epitope peptide to analyze HTLV-1–specific CD4+ T cells ex vivo. The frequency of tetramer+CD4+ T cells was significantly greater in patients with HAM/TSP than in healthy HTLV-1 carriers (HCs) at a given proviral load and correlated with HTLV-1 tax messenger RNA expression in HCs but not in patients with HAM/TSP. These cells displayed an early to intermediate effector memory phenotype and were preferentially infected by HTLV-1. T cell receptor gene analyses of 2 unrelated DRB1*0101-positive patients with HAM/TSP showed similar Vβ repertoires and amino acid motifs in complementarity-determining region 3. Our data suggest that efficient clonal expansion of virus-specific CD4+ T cells in patients with HAM/TSP does not simply reflect higher viral burden but rather reflects a rapid turnover caused by preferential infection and/or in vivo stimulation by major histocompatibility complex–peptide complexes. PMID:18190256

  17. Cyclophilin C Participates in the US2-Mediated Degradation of Major Histocompatibility Complex Class I Molecules.

    PubMed

    Chapman, Daniel C; Stocki, Pawel; Williams, David B

    2015-01-01

    Human cytomegalovirus uses a variety of mechanisms to evade immune recognition through major histocompatibility complex class I molecules. One mechanism mediated by the immunoevasin protein US2 causes rapid disposal of newly synthesized class I molecules by the endoplasmic reticulum-associated degradation pathway. Although several components of this degradation pathway have been identified, there are still questions concerning how US2 targets class I molecules for degradation. In this study we identify cyclophilin C, a peptidyl prolyl isomerase of the endoplasmic reticulum, as a component of US2-mediated immune evasion. Cyclophilin C could be co-isolated with US2 and with the class I molecule HLA-A2. Furthermore, it was required at a particular expression level since depletion or overexpression of cyclophilin C impaired the degradation of class I molecules. To better characterize the involvement of cyclophilin C in class I degradation, we used LC-MS/MS to detect US2-interacting proteins that were influenced by cyclophilin C expression levels. We identified malectin, PDIA6, and TMEM33 as proteins that increased in association with US2 upon cyclophilin C knockdown. In subsequent validation all were shown to play a functional role in US2 degradation of class I molecules. This was specific to US2 rather than general ER-associated degradation since depletion of these proteins did not impede the degradation of a misfolded substrate, the null Hong Kong variant of α1-antitrypsin.

  18. Genetic diversity and differentiation of the rhesus macaque (Macaca mulatta) population in western Sichuan, China, based on the second exon of the major histocompatibility complex class II DQB (MhcMamu-DQB1) alleles.

    PubMed

    Yao, Yong-Fang; Dai, Qiu-Xia; Li, Jing; Ni, Qing-Yong; Zhang, Ming-Wang; Xu, Huai-Liang

    2014-06-14

    Rhesus macaques living in western Sichuan, China, have been separated into several isolated populations due to habitat fragmentation. Previous studies based on the neutral or nearly neutral markers (mitochondrial DNA or microsatellites) showed high levels of genetic diversity and moderate genetic differentiation in the Sichuan rhesus macaques. Variation at the major histocompatibility complex (MHC) loci is widely accepted as being maintained by balancing selection, even with a low level of neutral variability in some species. However, in small and isolated or bottlenecked populations, balancing selection may be overwhelmed by genetic drift. To estimate microevolutionary forces acting on the isolated rhesus macaque populations, we examined genetic variation at Mhc-DQB1 loci in 119 wild rhesus macaques from five geographically isolated populations in western Sichuan, China, and compared the levels of MHC variation and differentiation among populations with that previously observed at neutral microsatellite markers. 23 Mamu-DQB1 alleles were identified in 119 rhesus macaques in western Sichuan, China. These macaques exhibited relatively high levels of genetic diversity at Mamu-DQB1. The Hanyuan population presented the highest genetic variation, whereas the Heishui population was the lowest. Analysis of molecular variance (AMOVA) and pairwise FST values showed moderate genetic differentiation occurring among the five populations at the Mhc-DQB1 locus. Non-synonymous substitutions occurred at a higher frequency than synonymous substitutions in the peptide binding region. Levels of MHC variation within rhesus macaque populations are concordant with microsatellite variation. On the phylogenetic tree for the rhesus and crab-eating macaques, extensive allele or allelic lineage sharing is observed between the two species. Phylogenetic analyses confirm the apparent trans-species model of evolution of the Mhc-DQB1 genes in these macaques. Balancing selection plays an

  19. Genetic diversity and differentiation of the rhesus macaque (Macaca mulatta) population in western Sichuan, China, based on the second exon of the major histocompatibility complex class II DQB (MhcMamu-DQB1) alleles

    PubMed Central

    2014-01-01

    Abstracts Background Rhesus macaques living in western Sichuan, China, have been separated into several isolated populations due to habitat fragmentation. Previous studies based on the neutral or nearly neutral markers (mitochondrial DNA or microsatellites) showed high levels of genetic diversity and moderate genetic differentiation in the Sichuan rhesus macaques. Variation at the major histocompatibility complex (MHC) loci is widely accepted as being maintained by balancing selection, even with a low level of neutral variability in some species. However, in small and isolated or bottlenecked populations, balancing selection may be overwhelmed by genetic drift. To estimate microevolutionary forces acting on the isolated rhesus macaque populations, we examined genetic variation at Mhc-DQB1 loci in 119 wild rhesus macaques from five geographically isolated populations in western Sichuan, China, and compared the levels of MHC variation and differentiation among populations with that previously observed at neutral microsatellite markers. Results 23 Mamu-DQB1 alleles were identified in 119 rhesus macaques in western Sichuan, China. These macaques exhibited relatively high levels of genetic diversity at Mamu-DQB1. The Hanyuan population presented the highest genetic variation, whereas the Heishui population was the lowest. Analysis of molecular variance (AMOVA) and pairwise FST values showed moderate genetic differentiation occurring among the five populations at the Mhc-DQB1 locus. Non-synonymous substitutions occurred at a higher frequency than synonymous substitutions in the peptide binding region. Levels of MHC variation within rhesus macaque populations are concordant with microsatellite variation. On the phylogenetic tree for the rhesus and crab-eating macaques, extensive allele or allelic lineage sharing is observed betweenthe two species. Conclusions Phylogenetic analyses confirm the apparent trans-species model of evolution of the Mhc-DQB1 genes in these

  20. Class I major histocompatibility proteins are an essential component of the simian virus 40 receptor.

    PubMed Central

    Breau, W C; Atwood, W J; Norkin, L C

    1992-01-01

    The class I molecules encoded by the major histocompatibility complex (MHC) present endogenously synthesized antigenic peptide fragments to cytotoxic T lymphocytes. We show here that these proteins are an essential component of the cell surface receptor for simian virus 40 (SV40). First, SV40 binding to cells can be blocked by two monoclonal antibodies against class I human lymphocyte antigen (HLA) proteins but not by monoclonal antibodies specific for other cell surface proteins. Second, SV40 does not bind to cells of two different human lymphoblastoid cell lines which do not express surface class I MHC proteins because of genetic defects in the beta 2-microglobulin gene in one line and in the HLA complex in the other. Transfection of these cell lines with cloned genes for beta 2-microglobulin and HLA-B8, respectively, restored expression of their surface class I MHC proteins and resulted in concomitant SV40 binding. Finally, SV40 binds to purified HLA proteins in vitro and selectively binds to class I MHC proteins in a cell surface extract. Images PMID:1312619

  1. Peptide influences the folding and intracellular transport of free major histocompatibility complex class I heavy chains

    PubMed Central

    1995-01-01

    Class I major histocompatibility complex molecules require both beta 2- microglobulin (beta 2m) and peptide for efficient intracellular transport. With the exception of H-2Db and Ld, class I heavy chains have not been detectable at the surface of cells lacking beta 2m. We show that properly conformed class I heavy chains can be detected in a terminally glycosylated form indicative of cell surface expression in H- 2b, H-2d, and H-2s beta 2m-/- concanavalin A (Con A)-stimulated splenocytes incubated at reduced temperature. Furthermore, we demonstrate the presence of Kb molecules at the surface of beta 2m-/- cells cultured at 37 degrees C. The mode of assembly of class I molecules encompasses two major pathways: binding of peptide to preformed "empty" heterodimers, and binding of peptide to free heavy chains, followed by recruitment of beta 2m. In support of the existence of the latter pathway, we provide evidence for a role of peptide in intracellular transport of free class I heavy chains, through analysis of Con A-stimulated splenocytes from transporter associated with antigen processing 1 (TAP1)-/-, beta 2m-/-, and double-mutant TAP1/beta 2m-/- mice. PMID:7869032

  2. Contrasting responses to selection in class I and class IIα major histocompatibility-linked markers in salmon

    PubMed Central

    Consuegra, S; de Eyto, E; McGinnity, P; Stet, R J M; Jordan, W C

    2011-01-01

    Comparison of levels and patterns of genetic variation in natural populations either across loci or against neutral expectation can yield insight into locus-specific differences in the strength and direction of evolutionary forces. We used both approaches to test the hypotheses on patterns of selection on major histocompatibility (MH)-linked markers. We performed temporal analyses of class I and class IIα MH-linked markers and eight microsatellite loci in two Atlantic salmon populations in Ireland on two temporal scales: over six decades and 9 years in the rivers Burrishoole and Delphi, respectively. We also compared contemporary Burrishoole and Delphi samples with nearby populations for the same loci. On comparing patterns of temporal and spatial differentiation among classes of loci, the class IIα MH-linked marker was consistently identified as an outlier compared with patterns at the other microsatellite loci or neutral expectation. We found higher levels of temporal and spatial heterogeneity in heterozygosity (but not in allelic richness) for the class IIα MH-linked marker compared with microsatellites. Tests on both within- and among-population differentiation are consistent with directional selection acting on the class IIα-linked marker in both temporal and spatial comparisons, but only in temporal comparisons for the class I-linked marker. Our results indicate a complex pattern of selection on MH-linked markers in natural populations of Atlantic salmon. These findings highlight the importance of considering selection on MH-linked markers when using these markers for management and conservation purposes. PMID:21266985

  3. A Small Peptide (CEL-1000) Derived from the Beta-Chain of the Human Major Histocompatibility Complex Class II Molecule Induces Complete Protection Against Malaria in an Antigen-Independent Manner

    DTIC Science & Technology

    2004-07-01

    mice by conjugates of HGP -30 (peptide analog of HIV-1SF2 p17) and peptide seg- ments of human -2-microglobulin or MHC II chain. Vaccine 19:4750– 4759. VOL. 48, 2004 CEL-1000-INDUCED PROTECTION AGAINST MALARIA 2463

  4. A second lineage of mammalian major histocompatibility complex class I genes.

    PubMed Central

    Bahram, S; Bresnahan, M; Geraghty, D E; Spies, T

    1994-01-01

    Major histocompatibility complex (MHC) class I genes typically encode polymorphic peptide-binding chains which are ubiquitously expressed and mediate the recognition of intracellular antigens by cytotoxic T cells. They constitute diverse gene families in different species and include the numerous so-called nonclassical genes in the mouse H-2 complex, of which some have been adapted to variously modified functions. We have identified a distinct family of five related sequences in the human MHC which are distantly homologous to class I chains. These MIC genes (MHC class I chain-related genes) evolved in parallel with the human class I genes and with those of most if not all mammalian orders. The MICA gene in this family is located near HLA-B and is by far the most divergent mammalian MHC class I gene known. It is further distinguished by its unusual exon-intron organization and preferential expression in fibroblasts and epithelial cells. However, the presence of diagnostic residues in the MICA amino acid sequence translated from cDNA suggests that the putative MICA chain folds similarly to typical class I chains and may have the capacity to bind peptide or other short ligands. These results define a second lineage of evolutionarily conserved MHC class I genes. This implies that MICA and possibly other members in this family have been selected for specialized functions that are either ancient or derived from those of typical MHC class I genes, in analogy to some of the nonclassical mouse H-2 genes. Images PMID:8022771

  5. Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs

    USGS Publications Warehouse

    Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.

    2010-01-01

    Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.

  6. Class I major histocompatibility complex antigens and tumor ploidy in breast and bronchogenic carcinomas.

    PubMed

    Redondo, M; Concha, A; Ruiz-Cabello, F; Morell, M; Esteban, F; Talavera, P; Garrido, F

    1997-01-01

    We determined the frequency of expression of the major histocompatibility complex antigens HLA-A,B,C in tumor cells from 207 primary tumor lesions of breast and bronchogenic carcinomas, to see if the expression of theses antigens was linked with several clinicopathological parameters associated with tumor aggressivity, such as abnormal cellular DNA content. We compared tumor tissues with nonneoplastic tissues and tissues from 15 benign breast lesions. HLA class I expressor and nonexpressor tumor cells were determined by using immunohistochemical stains (PAP and APAAP methods) and antibodies against these antigens. Reduction of HLA class I antigen was detected in 65 tumors (31.7%) and was significantly associated with poor tumor differentiation and abnormal cellular DNA content (p < 0.001). These characteristics might define a group of aggressive tumors in which the decrease of HLA class I antigens would enable tumor cells to avoid eliciting host immune responses. On the other hand, the altered regulatory mechanisms, of tumors with abnormal cellular DNA content, might modulate the expression of HLA class I molecules.

  7. Prediction of peptide binding to a major histocompatibility complex class I molecule based on docking simulation.

    PubMed

    Ishikawa, Takeshi

    2016-10-01

    Binding between major histocompatibility complex (MHC) class I molecules and immunogenic epitopes is one of the most important processes for cell-mediated immunity. Consequently, computational prediction of amino acid sequences of MHC class I binding peptides from a given sequence may lead to important biomedical advances. In this study, an efficient structure-based method for predicting peptide binding to MHC class I molecules was developed, in which the binding free energy of the peptide was evaluated by two individual docking simulations. An original penalty function and restriction of degrees of freedom were determined by analysis of 361 published X-ray structures of the complex and were then introduced into the docking simulations. To validate the method, calculations using a 50-amino acid sequence as a prediction target were performed. In 27 calculations, the binding free energy of the known peptide was within the top 5 of 166 peptides generated from the 50-amino acid sequence. Finally, demonstrative calculations using a whole sequence of a protein as a prediction target were performed. These data clearly demonstrate high potential of this method for predicting peptide binding to MHC class I molecules.

  8. Evolutionary relationships of major histocompatibility complex class I genes in simian primates.

    PubMed

    Sawai, Hiromi; Kawamoto, Yoshi; Takahata, Naoyuki; Satta, Yoko

    2004-04-01

    New World monkeys (NWMs) occupy a critical phylogenetic position in elucidating the evolutionary process of major histocompatibility complex (MHC) class I genes in primates. From three subfamilies of Aotinae, Cebinae, and Atelinae, the 5'-flanking regions of 18 class I genes are obtained and phylogenetically examined in terms of Alu/LINE insertion elements as well as the nucleotide substitutions. Two pairs of genes from Aotinae and Atelinae are clearly orthologous to human leukocyte antigen (HLA) -E and -F genes. Of the remaining 14 genes, 8 belong to the distinct group B, together with HLA-B and -C, to the exclusion of all other HLA class I genes. These NWM genes are classified into four groups, designated as NWM-B1, -B2, -B3, and -B4. Of these, NWM-B2 is orthologous to HLA-B/C. Also, orthologous relationships of NWM-B1, -B2, and -B3 exist among different families of Cebidae and Atelidae, which is in sharp contrast to the genus-specific gene organization within the subfamily Callitrichinae. The other six genes belong to the distinct group G. However, a clade of these NWM genes is almost equally related to HLA-A, -J, -G, and -K, and there is no evidence for their orthologous relationships to HLA-G. It is argued that class I genes in simian primates duplicated extensively in their common ancestral lineage and that subsequent evolution in descendant species has been facilitated mainly by independent loss of genes.

  9. Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection.

    PubMed

    Cram, Erik D; Simmons, Ryan S; Palmer, Amy L; Hildebrand, William H; Rockey, Daniel D; Dolan, Brian P

    2015-11-23

    The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins.

  10. Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection

    PubMed Central

    Cram, Erik D.; Simmons, Ryan S.; Palmer, Amy L.; Hildebrand, William H.; Rockey, Daniel D.

    2015-01-01

    The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8+ cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8+ T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8+ killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins. PMID:26597986

  11. Role of CD4 molecule in the induction of interleukin 2 and interleukin 2 receptor in class II major histocompatibility complex-restricted antigen-specific T helper clones. T cell receptor/CD3 complex transmits CD4-dependent and CD4-independent signals.

    PubMed Central

    Oyaizu, N; Chirmule, N; Pahwa, S

    1992-01-01

    The CD4 molecule plays an essential role in antigen-induced activation of T helper (Th) cells, but its contribution to signal transduction events resulting in physiologic T cell function is ill defined. By utilizing anti-CD4 monoclonal antibodies (MAbs) that recognize distinct epitopes of CD4, we have investigated the role of CD4 molecule in antigen-induced interleukin 2 (IL-2) and IL-2 receptor (IL-2R) alpha chain expression in class II major histocompatibility complex-restricted antigen-specific human Th clones. Pretreatment of the Th clones with Leu3a resulted in a dose-dependent suppression of antigen-induced proliferative responses, inositol phosphate accumulation, increase in free cytoplasmic calcium ions ([Ca2+]i), IL-2 mRNA accumulation, IL-2 secretion, and membrane IL-2R expression. IL-2R mRNA accumulation, however, was unaffected even at highest Leu3a concentrations. Leu3a treatment did not affect bypass activation of T cells with PMA plus ionomycin or activation via CD2 molecule. The MAb OKT4, which binds another domain of CD4, was not inhibitory. These results suggest that after T cell antigen receptor-CD3 activation, IL-2 gene induction, IL-2 secretion, and membrane IL-2R expression are absolutely dependent upon participation of CD4 molecules, phosphatidylinositol (PI) hydrolysis, and increase in [Ca2+]i. The requirement for IL-2R gene induction, however, occurs independently of CD4 molecule participation and PI hydrolysis. Images PMID:1534818

  12. Sibling rivalry: competition between MHC class II family members inhibits immunity.

    PubMed

    Denzin, Lisa K; Cresswell, Peter

    2013-01-01

    Peptide loading of major histocompatibility complex (MHC) class II molecules in the endosomes and lysosomes of antigen-presenting cells is catalyzed by human leukocyte antigen-DM (HLA-DM) and modulated by HLA-DO. In a structural study in this issue, Guce et al. show that HLA-DO is an MHC class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM activity, thereby inhibiting MHC class II antigen presentation.

  13. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages.

    PubMed Central

    Kovacsovics-Bankowski, M; Clark, K; Benacerraf, B; Rock, K L

    1993-01-01

    Antigens in extracellular fluids can be processed and presented with major histocompatibility complex (MHC) class I molecules by a subset of antigen presenting cells (APCs). Chicken egg ovalbumin (Ova) linked to beads was presented with MHC class I molecules by these cells up to 10(4)-fold more efficiently than soluble Ova. This enhanced presentation was observed with covalently or noncovalently linked Ova and with beads of different compositions. A key parameter in the activity of these conjugates was the size of the beads. The APC that is responsible for this form of presentation is a macrophage. These cells internalize the antigen constructs through phagocytosis, since cytochalasin B inhibited presentation. Processing of the antigen and association with MHC class I molecules appears to occur intracellularly as presentation was observed under conditions where there was no detectable release of peptides into the extracellular fluids. When injected in vivo in C57BL/6 mice, Ova-beads, but not soluble Ova, primed CD4- CD8+ cytotoxic T lymphocytes (CTLs). Similar results were obtained in BALB/c mice immunized with beta-galactosidase-beads. The implications of these findings for development of nonliving vaccines that stimulate CTL immunity are discussed. PMID:8506338

  14. Modeling the interactions of a peptide-major histocompatibility class I ligand with its receptors. II. Cross-reaction between a monoclonal antibody and two αβ T cell receptors

    NASA Astrophysics Data System (ADS)

    Rognan, Didier; Engberg, Jan; Stryhn, Anette; Andersen, Peter Sejer; Buus, Søren

    2000-01-01

    The recombinant antibody, pSAN13.4.1, has a unique T cell like specificity; it binds an Influenza Hemagglutinin octapeptide (Ha255-262) in an MHC (H-2Kk)-restricted manner, and a detailed comparison of the fine specificity of pSAN13.4.1 with the fine specificity of two Ha255-262-specific, H-2Kk-restricted T cell hybridomas has supported this contention. A three-dimensional model of pSAN13.4.1 has been derived by homology modeling techniques. Subsequently, the structure of the pSAN13.4.1 antibody in complex with the antigenic Ha-Kk ligand was derived after a flexible and automated docking of the MHC-peptide pair into the Fab combining site. Interestingly, the most energetically favored binding mode shows numerous analogies to the recently determined recognition of class I MHC-peptide complexes by αβ T cell receptors (TCRs). The pSAN13.4.1 also binds diagonally across the MHC binding groove but is more deeply anchored to the peptide-MHC (pep/MHC) ligand than TCRs, notably through numerous interactions of its heavy chain. The present model accounts well for the experimentally determined binding affinity of a set of 144 single amino acid substituted Ha analogues and the observed shared specificity between the pSAN antibody and two different T cell receptors for the Ha-Kk antigenic ligand. Analogies and differences between Fab and TCR recognition are explained by dissecting the binding role of each chain of the immune receptors as well as the contribution of all peptide amino acids.

  15. Enhancement of major histocompatibility class I protein synthesis by DNA damage in cultured human fibroblasts and keratinocytes

    SciTech Connect

    Lambert, M.E.; Ronai, Z.A.; Weinstein, I.B.; Garrels, J.I.

    1989-02-01

    Exposure of primary human fibroblasts or simian virus 40-transformed human keratinocytes to several different classes of DNA damage, including UV light C (254 nm), resulted in a rapid increase in the expression of human major histocompatibility class I (MHC-I) proteins. MHC-I induction was also detected after exposure to low doses of the protein synthesis inhibitor cycloheximide, suggesting that MHC-I induction by DNA damage may be a component in a derepressible cellular SOS pathway.

  16. Characterisation of major histocompatibility complex class I genes in Japanese Ranidae frogs.

    PubMed

    Lau, Quintin; Igawa, Takeshi; Komaki, Shohei; Satta, Yoko

    2016-11-01

    The major histocompatibility complex (MHC) is a key component of adaptive immunity in all jawed vertebrates, and understanding the evolutionary mechanisms that have shaped these genes in amphibians, one of the earliest terrestrial tetrapods, is important. We characterised MHC class I variation in three common Japanese Rana species (Rana japonica, Rana ornativentris and Rana tagoi tagoi) and identified a total of 60 variants from 21 individuals. We also found evolutionary signatures of gene duplication, recombination and balancing selection (including trans-species polymorphism), all of which drive increased MHC diversity. A unique feature of MHC class I from these three Ranidae species includes low synonymous differences per site (d S) within species, which we attribute to a more recent diversification of these sequences or recent gene duplication. The resulting higher d N/d S ratio relative to other anurans studied could be related to stronger selection pressure at peptide binding sites. This is one of the first studies to investigate MHC in Japanese amphibians and permits further exploration of the polygenetic factors associated with resistance to infectious diseases.

  17. Major histocompatibility complex class I genes of the coelacanth Latimeria chalumnae.

    PubMed

    Betz, U A; Mayer, W E; Klein, J

    1994-11-08

    The coelacanth fish Latimeria chalumnae is the sole surviving species of a phylogenetic lineage that was founded more than 400 million years ago and that has changed morphologically very little since that time. Little is known about the molecular evolution of this "living fossil," considered by some taxonomists to be the closest living relative of tetrapods. Here we describe the isolation and characterization of L. chalumnae major histocompatibility complex (MHC) class I genes. The exon-intron organization of these genes is the same as that of their mammalian counterparts. The genes fall into four families, which we designate Lach-UA through Lach-UD. There are multiple loci in all of the families. Genes of the first two families are transcribed. The Lach-UA family bears the characteristics of functional, polymorphic class I genes; the other three families may be represented by nonclassical genes. All the Lach loci arose by duplication from an ancestral gene after the foundation of the coelacanth lineage. Intergenic variation is highest at positions corresponding to the mammalian peptide-binding region. The closest relatives of the Lach genes among the MHC genes sequenced thus far are those of the amphibian Xenopus.

  18. Cross-linking staphylococcal enterotoxin A bound to major histocompatibility complex class I is required for TNF-alpha secretion

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Chapes, S. K.

    1999-01-01

    The mechanism of how superantigens function to activate cells has been linked to their ability to bind and cross-link the major histocompatibility complex class II (MHCII) molecule. Cells that lack the MHCII molecule also respond to superantigens, however, with much less efficiency. Therefore, the purpose of this study was to confirm that staphylococcal enterotoxin A (SEA) could bind the MHCI molecule and to test the hypothesis that cross-linking SEA bound to MHCII-deficient macrophages would induce a more robust cytokine response than without cross-linking. We used a capture enzyme-linked immunosorbent assay and an immunprecipitation assay to directly demonstrate that MHCI molecules bind SEA. Directly cross-linking MHCI using monoclonal antibodies or cross-linking bound SEA with an anti-SEA antibody or biotinylated SEA with avidin increased TNF-alpha and IL-6 secretion by MHCII(-/-) macrophages. The induction of a vigorous macrophage cytokine response by SEA/anti-SEA cross-linking of MHCI offers a mechanism to explain how MHCI could play an important role in superantigen-mediated pathogenesis. Copyright 1999 Academic Press.

  19. Cross-linking staphylococcal enterotoxin A bound to major histocompatibility complex class I is required for TNF-alpha secretion

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Chapes, S. K.

    1999-01-01

    The mechanism of how superantigens function to activate cells has been linked to their ability to bind and cross-link the major histocompatibility complex class II (MHCII) molecule. Cells that lack the MHCII molecule also respond to superantigens, however, with much less efficiency. Therefore, the purpose of this study was to confirm that staphylococcal enterotoxin A (SEA) could bind the MHCI molecule and to test the hypothesis that cross-linking SEA bound to MHCII-deficient macrophages would induce a more robust cytokine response than without cross-linking. We used a capture enzyme-linked immunosorbent assay and an immunprecipitation assay to directly demonstrate that MHCI molecules bind SEA. Directly cross-linking MHCI using monoclonal antibodies or cross-linking bound SEA with an anti-SEA antibody or biotinylated SEA with avidin increased TNF-alpha and IL-6 secretion by MHCII(-/-) macrophages. The induction of a vigorous macrophage cytokine response by SEA/anti-SEA cross-linking of MHCI offers a mechanism to explain how MHCI could play an important role in superantigen-mediated pathogenesis. Copyright 1999 Academic Press.

  20. Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs.

    PubMed

    Kiemnec-Tyburczy, Karen M; Richmond, Jonathan Q; Savage, Anna E; Zamudio, Kelly R

    2010-12-01

    Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II β1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class IIβ exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class IIβ loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the β1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations.

  1. Expression in L cells of transfected class I genes from the mouse major histocompatibility complex.

    PubMed Central

    Schepart, B S; Woodward, J G; Palmer, M J; Macchi, M J; Basta, P; McLaughlin-Taylor, E; Frelinger, J A

    1985-01-01

    One of the major surprises of the molecular analysis of major histocompatibility complex (MHC) genes is the large number of class I (K/D)-related sequences in the genome. Both restriction fragment length polymorphisms and cosmid cloning experiments showed them all to be closely linked to the MHC. Until now little information was available concerning either their expression or recognition by the immune system. Here we report that these non-K/D genes can provoke antibody responses and be recognized by cytolytic T cells. Immunization of C3H mice with L cells transfected with class I genomic clones resulted in antisera that reacted preferentially with cells from strain B10.P (the gene donor). Thus, these genes can be expressed by L cells. These products were recognized by cytolytic T cells produced by mixed lymphocyte culture with B10.P stimulators. One gene, represented in clone lambda 3a, was chosen for further analysis. A restriction fragment length polymorphism, detected between B10.P (KpDp) and B10.F(14R) (KbDp) and between B10 (KbDb) and B10.F(13R) (KpDb), has enabled us to map the lambda 3a sequence to the D or Tla region. Restriction endonuclease mapping of the lambda 3a clone shows that the gene is intact and that, although many restriction sites are conserved, the gene in lambda 3a differs from other class I genes. When the lambda 3a clone was transfected into mouse L cells, a new product was expressed. Cells expressing this product (designated L3a cells) were killed by primary D-end-reactive, allospecific cytolytic T lymphocytes. The L3a cells were unreactive with monoclonal antibodies specific for the Kp,Dp,Qa-2, Tla.3, and Tla.5 molecules. Images PMID:2991930

  2. Polarisation of major histocompatibility complex II host genotype with pathogenesis of European Brown Hare syndrome virus.

    PubMed

    Iacovakis, Christos; Mamuris, Zissis; Moutou, Katerina A; Touloudi, Antonia; Hammer, Anne Sofie; Valiakos, George; Giannoulis, Themis; Stamatis, Costas; Spyrou, Vassiliki; Athanasiou, Labrini V; Kantere, Maria; Asferg, Tommy; Giannakopoulos, Alexios; Salomonsen, Charlotte M; Bogdanos, Dimitrios; Birtsas, Periklis; Petrovska, Liljana; Hannant, Duncan; Billinis, Charalambos

    2013-01-01

    pathogenesis and MHC class II genotype within the European brown hare in Denmark.

  3. Diacylglycerol kinase α regulates tubular recycling endosome biogenesis and major histocompatibility complex class I recycling.

    PubMed

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2014-11-14

    Major histocompatibility complex class I (MHC I) presents intracellular-derived peptides to cytotoxic T lymphocytes and its subcellular itinerary is important in regulating the immune response. While a number of diacylglycerol kinase isoforms have been implicated in clathrin-dependent internalization, MHC I lacks the typical motifs known to mediate clathrin-dependent endocytosis. Here we show that depletion of diacylglycerol kinase α (DGKα), a kinase devoid of a clathrin-dependent adaptor protein complex 2 binding site, caused a delay in MHC I recycling to the plasma membrane without affecting the rate of MHC I internalization. We demonstrate that DGKα knock-down causes accumulation of intracellular and surface MHC I, resulting from decreased degradation. Furthermore, we provide evidence that DGKα is required for the generation of phosphatidic acid required for tubular recycling endosome (TRE) biogenesis. Moreover, we show that DGKα forms a complex with the TRE hub protein, MICAL-L1. Given that MICAL-L1 and the F-BAR-containing membrane-tubulating protein Syndapin2 associate selectively with phosphatidic acid, we propose a positive feedback loop in which DGKα generates phosphatidic acid to drive its own recruitment to TRE via its interaction with MICAL-L1. Our data support a novel role for the involvement of DGKα in TRE biogenesis and MHC I recycling.

  4. Diacylglycerol Kinase α Regulates Tubular Recycling Endosome Biogenesis and Major Histocompatibility Complex Class I Recycling*

    PubMed Central

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2014-01-01

    Major histocompatibility complex class I (MHC I) presents intracellular-derived peptides to cytotoxic T lymphocytes and its subcellular itinerary is important in regulating the immune response. While a number of diacylglycerol kinase isoforms have been implicated in clathrin-dependent internalization, MHC I lacks the typical motifs known to mediate clathrin-dependent endocytosis. Here we show that depletion of diacylglycerol kinase α (DGKα), a kinase devoid of a clathrin-dependent adaptor protein complex 2 binding site, caused a delay in MHC I recycling to the plasma membrane without affecting the rate of MHC I internalization. We demonstrate that DGKα knock-down causes accumulation of intracellular and surface MHC I, resulting from decreased degradation. Furthermore, we provide evidence that DGKα is required for the generation of phosphatidic acid required for tubular recycling endosome (TRE) biogenesis. Moreover, we show that DGKα forms a complex with the TRE hub protein, MICAL-L1. Given that MICAL-L1 and the F-BAR-containing membrane-tubulating protein Syndapin2 associate selectively with phosphatidic acid, we propose a positive feedback loop in which DGKα generates phosphatidic acid to drive its own recruitment to TRE via its interaction with MICAL-L1. Our data support a novel role for the involvement of DGKα in TRE biogenesis and MHC I recycling. PMID:25248744

  5. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II {beta} subunit (CSNK2B)

    SciTech Connect

    Albertella, M.R.; Jones, H.; Thomson, W.

    1996-09-01

    A wide range of autoimmune and other diseases are known to be associated with the major histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility antigens in the class I and class II regions, but some appear to be more strongly associated with genes in the central 1100-kb class III region, making it important to characterize this region fully for the presence of novel genes. An {approximately}220-kb segment of DNA in the class III region separating the Hsp70 (HSPA1L) and BAT1 (D6S8IE) genes, which was previously known to contain 14 genes. Genomic DNA fragments spanning the gaps between the known genes were used as probes to isolate cDNAs corresponding to five new genes within this region. Evidence from Northern blot analysis and exon trapping experiments that suggested the presence of at least two more new genes was also obtained. Partial cDNA and complete exonic genomic sequencing of one of the new genes has identified it as the casein kinase II{beta} subunit (CSNK2B). Two of the other novel genes lie within a region syntenic to that implicated in susceptibility to experimental allergic orchitis in the mouse, an autoimmune disease of the testis, and represent additional candidates for the Orch-1 locus associated with this disease. In addition, characterization of the 13-kb intergenic gap separating the RD (D6545) and G11 (D6S60E) genes has revealed the presence of a gene encoding a 1246-amino-acid polypeptide that shows significant sequence similarity to the yeast anti-viral Ski2p gene product. 49 refs., 8 figs.

  6. Contrasting evolutionary histories of MHC class I and class II loci in grouse--effects of selection and gene conversion.

    PubMed

    Minias, P; Bateson, Z W; Whittingham, L A; Johnson, J A; Oyler-McCance, S; Dunn, P O

    2016-05-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  7. Contrasting evolutionary histories of MHC class I and class II loci in grouse—effects of selection and gene conversion

    PubMed Central

    Minias, P; Bateson, Z W; Whittingham, L A; Johnson, J A; Oyler-McCance, S; Dunn, P O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens. PMID:26860199

  8. Contrasting evolutionary histories of MHC class I and class II loci in grouse—Effects of selection and gene conversion

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  9. Rejection of wild-type and genetically engineered major histocompatibility complex-deficient glial cell xenografts in the central nervous system results in bystander demyelination and Wallerian degeneration.

    PubMed

    O'Leary, M T; Bujdoso, R; Blakemore, W F

    1998-07-01

    Mixed glial cell cultures prepared from neonatal wild type and mutant male mice lacking either major histocompatibility complex class I, class II or both class I and II molecules (major histocompatibility complex class I(o/o)II(o/o)), and from syngeneic male rats were transplanted into female rat spinal cord white matter. Graft survival was monitored using DNA probes specific to the Y chromosome. Survival of major histocompatibility complex class-deficient grafts was not prolonged compared to wild-type grafts and in most cases grafts could not be detected at 28 days post-transplantation, at which time syngeneic grafts were still present. However, rejection of xenografts resulted in significant bystander damage to host tissue. In recipients of wild-type and major histocompatibility complex class I(o/o) xenografts the predominant pathology was demyelination. Demyelination was also observed in recipients of major histocompatibility complex class II(o/o) and major histocompatibility complex class I(o/o)II(o/o) xenografts, however in addition there was marked collagen deposition and meningeal cell invasion. Significantly more axons had undergone Wallerian degeneration in recipients of major histocompatibility complex class II(o/o) and major histocompatibility complex class I(o/o)II(o/o) xenografts than recipients of wild-type and major histocompatibility complex class I(o/o) xenografts. These findings were interpreted as evidence of a more destructive immune response associated with rejection of grafts lacking major histocompatibility complex class II molecules. It was proposed that the difference in the severity of bystander damage may be related to the previously demonstrated ability of xenogeneic major histocompatibility complex class II molecules to activate host T cells directly, whereas xenografts lacking major histocompatibility complex class II molecules were capable of activating host T cells only by the indirect pathway.

  10. Human class I major histocompatibility complex alleles determine central nervous system injury versus repair.

    PubMed

    Wootla, Bharath; Denic, Aleksandar; Watzlawik, Jens O; Warrington, Arthur E; Zoecklein, Laurie J; Papke-Norton, Louisa M; David, Chella; Rodriguez, Moses

    2016-11-17

    We investigated the role of human HLA class I molecules in persistent central nervous system (CNS) injury versus repair following virus infection of the CNS. Human class I A11(+) and B27(+) transgenic human beta-2 microglobulin positive (Hβ2m(+)) mice of the H-2 (b) background were generated on a combined class I-deficient (mouse beta-2 microglobulin deficient, β2m(0)) and class II-deficient (mouse Aβ(0)) phenotype. Intracranial infection with Theiler's murine encephalomyelitis virus (TMEV) in susceptible SJL mice results in acute encephalitis with prominent injury in the hippocampus, striatum, and cortex. Following infection with TMEV, a picornavirus, the Aβ(0).β2m(0) mice lacking active immune responses died within 18 to 21 days post-infection. These mice showed severe encephalomyelitis due to rapid replication of the viral genome. In contrast, transgenic Hβ2m mice with insertion of a single human class I MHC gene in the absence of human or mouse class II survived the acute infection. Both A11(+) and B27(+) mice significantly controlled virus RNA expression by 45 days and did not develop late-onset spinal cord demyelination. By 45 days post-infection (DPI), B27(+) transgenic mice showed almost complete repair of the virus-induced brain injury, but A11(+) mice conversely showed persistent severe hippocampal and cortical injury. The findings support the hypothesis that the expression of a single human class I MHC molecule, independent of persistent virus infection, influences the extent of sub frequent chronic neuronal injury or repair in the absence of a class II MHC immune response.

  11. Defective MHC class II expression in an MHC class II deficiency patient is caused by a novel deletion of a splice donor site in the MHC class II transactivator gene.

    PubMed

    Peijnenburg, A; Van den Berg, R; Van Eggermond, M J; Sanal, O; Vossen, J M; Lennon, A M; Alcaïde-Loridan, C; Van den Elsen, P J

    2000-01-01

    MHC class II deficiency patients are mutated for transcription factors that regulate the expression of major histocompatibility complex (MHC) class II genes. Four complementation groups (A-D) are defined and the gene defective in group A has been shown to encode the MHC class II transactivator (CIITA). Here, we report the molecular characterization of a new MHC class II deficiency patient, ATU. Cell fusion experiments indicated that ATU belongs to complementation group A. Subsequent mutation analysis revealed that the CIITA mRNA lacked 84 nucleotides. This deletion was the result of the absence of a splice donor site in the CIITA gene of ATU. As a result of this novel homozygous genomic deletion, ATU CIITA failed to transactivate MHC class II genes. Furthermore, this truncated CIITA of ATU did not display a dominant negative effect on CIITA-mediated transactivation of various isotypic MHC class II promoters.

  12. Coexpression of intercellular adhesion molecule-1 and class I major histocompatibility complex antigens on hepatocyte membrane in chronic viral hepatitis.

    PubMed Central

    Chu, C M; Liaw, Y F

    1993-01-01

    AIMS--To evaluate the role of hepatocyte expression of leucocyte adhesion molecules and major histocompatibility complex (MHC) antigens in the pathogenesis of chronic viral hepatitis. METHODS--The expression of intercellular adhesion molecule 1 (ICAM-1), lymphocyte function associated antigen 3 (LFA-3), and MHC class I and II antigens on hepatocyte membrane in relation to the histological and biochemical activities was studied in patients with chronic B hepatitis, chronic persistent hepatitis (CPH) n = 23; chronic active hepatitis (CAH) n = 20; chronic D hepatitis (CAH) n = 6; and chronic non-A, non-B hepatitis (CPH n = 4, CAM n = 6). Six of the latter were hepatitis C virus antibody positive. RESULTS--In chronic B hepatitis ICAM-1 and MHC-I were expressed significantly more in patients with CAH than in those with CPH (p < 0.001), while the expression of LFA-3 and MHC-II showed no significant difference, irrespective of serum HBeAg or hepatitis B virus DNA. Similar findings were noted in non-A, non-B hepatitis. Regardless of the viral aetiology, patients with CAH had a significantly higher degree of ICAM-1 and MHC-I expression than LFA-3 (p < 0.001 v ICAM-1 and MHC-I, respectively) and MHC-II (p < 0.001 v ICAM-1 and MHC-I, respectively) expression. Those with CPH showed little or no difference in the expression of these four molecules. Furthermore, serum ALT values positively correlated with the hepatocyte expression of ICAM-1 (p < 0.001) and MHC-I (p < 0.001), but not LFA-3 (p > 0.05) and MHC-II (p > 0.05). CONCLUSIONS--In chronic viral hepatitis hepatocyte expression of ICAM-1 and MHC-I might be important for immunosurveillance against virally infected hepatocytes, while the expression of LFA-3 and MHC-II does not seem to have a role in the pathogenesis of chronic viral hepatitis. Images PMID:7902850

  13. Leukosialin (CD43)-major histocompatibility class I molecule interactions involved in spontaneous T cell conjugate formation

    PubMed Central

    1996-01-01

    Resting T cells spontaneously adhere in a selective manner to potent accessory cells, such as dendritic cells (DC) and lymphoblastoid B blasts (LCL). Here we demonstrate that leukosialin (CD43) and major histocompatibility complex class I molecules (MHC-I) might play a critical role in this process. T cell conjugate formation with monocyte- derived DC (md-DC) and LCL could be strongly inhibited by either preincubating T cells with Fab fragments of CD43 monoclonal antibody (mAb) 6F5 or by preincubating md-DC or LCL with MHC-I mAb W6/32. Intact CD43 mAb 6F5, in contrast to monovalent Fab fragments, enhanced T cell adhesiveness by transactivating CD2 binding to CD58 molecules. Interestingly, induction of this proadhesive signal via CD43 with intact 6F5 mAb was found to revert mAb W6/32-mediated inhibition of T cell conjugate formation. These observations indicated that CD43 cross- linkage mimics and monovalent mAb 6F5 inhibits interaction of T cell CD43 with a stimulatory ligand on opposing cells, presumably MHC-I. For the demonstration of direct physical interaction between CD43 on T cells and MHC-I-coated beads it was necessary, however, to ligate CD2 on T cells with a stimulatory pair of CD2 mAbs (VIT13 plus TS2/18). This suggests that CD2 ligation crosswise upregulates CD43 binding avidity for MHC-I and that both adhesion molecule pairs (CD43/MHC-I and CD2/CD58) act in concert to induce and mediate T cell conjugate formation with certain cell types. PMID:8920865

  14. The Effect of Photodynamic Therapy on Tumor Cell Expression of Major Histocompatibility Complex (MHC) Class I and MHC Class I-Related Molecules

    PubMed Central

    Belicha-Villanueva, Alan; Riddell, Jonah; Bangia, Naveen; Gollnick, Sandra O.

    2013-01-01

    Background and Objective Photodynamic therapy (PDT) is FDA-approved anti-cancer modality for elimination of early disease and palliation in advanced disease. PDT efficacy depends in part on elicitation of a tumor-specific immune response that is dependent on cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. The cytolytic potential of CTLs and NK cells is mediated by the ability of these cells to recognize major histocompatibility complex (MHC) class I and MHC class I-related molecules. The MHC class I-related molecules MICA and MICB are induced by oxidative stress and have been reported to activate NK cells and co-stimulate CD8+ T cells. The purpose of this study was to examine the effect of PDT on tumor cell expression of MHC classes I and II-related molecules in vivo and in vitro. Study Design/Materials and Methods Human colon carcinoma Colo205 cells and murine CT26 tumors were treated with 2-[1-hexyloxyethyl]-2-devinyl pyropheophor-bide-a (HPPH)-PDT at various doses. MHC classes I and I-related molecule expression following treatment of Colo205 cells was temporally examined by flow cytometry using antibodies specific for components of MHC class I molecules and by quantitative PCR using specific primers. Expression of MHC class I-related molecules following HPPH-based PDT (HPPH-PDT) of murine tumors was monitored using a chimeric NKG2D receptor. Results In vitro HPPH-PDT significantly induces MICA in Colo205 cells, but had no effect on MHC class I molecule expression. PDT also induced expression of NKG2D ligands (NKG2DL) following in vivo HPPH-PDT of a murine tumor. Induction of MICA corresponded to increased NK killing of PDT-treated tumor cells. Conclusions PDT induction of MICA on human tumor cells and increased expression of NKG2DL by murine tumors following PDT may play a role in PDT induction of anti-tumor immunity. This conclusion is supported by our results demonstrating that tumor cells have increased sensitivity to NK cell lysis following

  15. Variation in MHC class II B genes in marbled murrelets: implications for delineating conservation units

    Treesearch

    C. Vásquez-Carrillo; V. Friesen; L. Hall; M.Z. Peery

    2013-01-01

    Conserving genetic variation is critical for maintaining the evolutionary potential and viability of a species. Genetic studies seeking to delineate conservation units, however, typically focus on characterizing neutral genetic variation and may not identify populations harboring local adaptations. Here, variation at two major histocompatibility complex (MHC) class II...

  16. Major Histocompatibility Complex Class I Chain-Related A (MICA) Molecules: Relevance in Solid Organ Transplantation

    PubMed Central

    Baranwal, Ajay Kumar; Mehra, Narinder K.

    2017-01-01

    An ever growing number of reports on graft rejection and/or failure even with good HLA matches have highlighted an important role of non-HLA antigens in influencing allograft immunity. The list of non-HLA antigens that have been implicated in graft rejection in different types of organ transplantation has already grown long. Of these, the Major Histocompatibility Complex class I chain-related molecule A (MICA) is one of the most polymorphic and extensively studied non-HLA antigenic targets especially in the kidney transplantation. Humoral response to MICA antigens has repeatedly been associated with lower graft survival and an increased risk of acute and chronic rejection following kidney and liver transplantation with few studies showing conflicting results. Although there are clear indications of MICA antibodies being associated with adverse graft outcome, a definitive consensus on this relationship has not been arrived yet. Furthermore, only a few studies have dealt with the impact of MICA donor-specific antibodies as compared to those that are not donor specific on graft outcome. In addition to the membrane bound form, a soluble isoform of MICA (sMICA), which has the potential to engage the natural killer cell-activating receptor NKG2D resulting in endocytosis and degradation of receptor–ligand interaction complex leading to suppression of NKG2D-mediated host innate immunity, has been a subject of intense discussion. Most studies on sMICA have been directed toward understanding their influence on tumor growth, with limited literature focusing its role in transplant biology. Furthermore, a unique dimorphism (methionine to valine) at position 129 in the α2 domain categorizes MICA alleles into strong (MICA-129 met) and weak (MICA-129 val) binders of NKG2D receptor depending on whether they have methionine or valine at this position. Although the implications of MICA 129 dimorphism have been highlighted in hematopoietic stem cell transplantation, its role in

  17. Conservation of MHC class II DOA sequences among carnivores.

    PubMed

    Soll, S J; Stewart, B S; Lehman, N

    2005-03-01

    We obtained the nucleotide sequence for most of the major histocompatibility complex (MHC) class II DOA locus for Weddell, leopard, northern elephant, and southern elephant seals and from the coyote and compared them to all known DOA data available to date. We found generally low levels of interspecific polymorphisms, providing further support for stabilizing selection acting on the DOA locus. This suggests that DO gene products play a substantial functional role in the regulation of antigen presentation. A seven-amino-acid motif of VWRLPEF was found to be conserved across all DOA sequences and may be a DO-specific recognition element.

  18. Blocking MHC class II on human endothelium mitigates acute rejection

    PubMed Central

    Abrahimi, Parwiz; Qin, Lingfeng; Chang, William G.; Bothwell, Alfred L.M.; Tellides, George; Saltzman, W. Mark; Pober, Jordan S.

    2016-01-01

    Acute allograft rejection is mediated by host CD8+ cytotoxic T lymphocytes (CTL) targeting graft class I major histocompatibility complex (MHC) molecules. In experimental rodent models, rejection requires differentiation of naive CD8+ T cells into alloreactive CTL within secondary lymphoid organs, whereas in humans, CTL may alternatively develop within the graft from circulating CD8+ effector memory T cells (TEM) that recognize class I MHC molecules on graft endothelial cells (EC). This latter pathway is poorly understood. Here, we show that host CD4+ TEM, activated by EC class II MHC molecules, provide critical help for this process. First, blocking HLA-DR on EC lining human artery grafts in immunodeficient mice reduces CD8+ CTL development within and acute rejection of the artery by adoptively transferred allogeneic human lymphocytes. Second, siRNA knockdown or CRISPR/Cas9 ablation of class II MHC molecules on EC prevents CD4+ TEM from helping CD8+ TEM to develop into CTL in vitro. Finally, implanted synthetic microvessels, formed from CRISPR/Cas9-modified EC lacking class II MHC molecules, are significantly protected from CD8+ T cell–mediated destruction in vivo. We conclude that human CD8+ TEM–mediated rejection targeting graft EC class I MHC molecules requires help from CD4+ TEM cells activated by recognition of class II MHC molecules. PMID:26900601

  19. Reassociation with beta 2-microglobulin is necessary for Db class I major histocompatibility complex binding of an exogenous influenza peptide.

    PubMed Central

    Rock, K L; Gamble, S; Rothstein, L; Benacerraf, B

    1991-01-01

    A synthetic peptide corresponding to residues 365-380 of the influenza nucleoprotein (NP365-380) has been previously shown to associate with class I major histocompatibility complex-encoded molecules and to stimulate cytotoxic T lymphocytes [Townsend, A. R. M., Rothbard, J., Gotch, F. M., Bahadur, G., Wraith, D. & McMichael, A. J. (1986) Cell 44, 959-968]. We find that intact Db class I heterodimers on the cell surface are unreceptive to binding this antigen. However, NP365-380 readily associates with Db molecules on the plasma membrane in the presence of exogenous beta 2-microglobulin. In addition, there is a second pathway through which this peptide associates with class I molecules that requires energy and de novo protein synthesis. These findings have implications for maintaining the immunological identity of cells and for the use of peptides as vaccines for priming cytolytic T-cell immunity. Images PMID:1986378

  20. Expression of bovine non-classical major histocompatibility complex class 1 proteins in mouse P815 and human K562 cells

    USDA-ARS?s Scientific Manuscript database

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-class...

  1. Negative regulation by HLA-DO of MHC class II-restricted antigen processing.

    PubMed

    Denzin, L K; Sant'Angelo, D B; Hammond, C; Surman, M J; Cresswell, P

    1997-10-03

    HLA-DM is a major histocompatibility complex (MHC) class II-like molecule that facilitates antigen processing by catalyzing the exchange of invariant chain-derived peptides (CLIP) from class II molecules for antigenic peptides. HLA-DO is a second class II-like molecule that physically associates with HLA-DM in B cells. HLA-DO was shown to block HLA-DM function. Purified HLA-DM-DO complexes could not promote peptide exchange in vitro. Expression of HLA-DO in a class II+ and DM+, DO- human T cell line caused the accumulation of class II-CLIP complexes, indicating that HLA-DO blocked DM function in vivo and suggesting that HLA-DO is an important modulator of class II-restricted antigen processing.

  2. Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility molecules

    PubMed Central

    1991-01-01

    Chemical cross-linking and gel permeation chromatography were used to examine early events in the biogenesis of class I histocompatibility molecules. We show that newly synthesized class I heavy chains associate rapidly and quantitatively with an 88-kD protein in three murine tumor cell lines. This protein (p88) does not appear to possess Asn-linked glycans and it is not the abundant ER protein, GRP94. The class I-p88 complex exists transiently (t1/2 = 20-45 min depending on the specific class I heavy chain) and several lines of evidence suggest that p88 dissociates from the complex while still in the ER. Dissociation is not triggered upon binding of beta 2-microglobulin to the heavy chain (t1/2 = 2-5 min). However, the rate of dissociation does correlate with the characteristic rate of ER to Golgi transport for the particular class I molecule studied. Consequently, dissociation of p88 may be rate limiting for ER to Golgi transport. Class I molecules bind antigenic peptides, apparently in the ER, for subsequent presentation to cytotoxic T lymphocytes at the cell surface. p88 could promote peptide binding or it may retain class I molecules in the ER during formation of the ternary complex of heavy chain, beta 2- microglobulin, and peptide. PMID:1999467

  3. Identification and characterization of major histocompatibility complex class IIB alleles from three species of European ranid frogs

    PubMed Central

    A. Marosi, Béla; M. Kiemnec-Tyburczy, Karen; V. Ghira, Ioan; Sos, Tibor; Popescu, Octavian

    2014-01-01

    Immune genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in the vertebrate genome. Due to their polymorphic nature, they are often used to assess the adaptive genetic variability of natural populations. This study describes the first molecular characterization of 13 partial MHC class IIB sequences from three European ranid frogs. The utility of previously published primers was expanded by using them to successfully amplify eight exon 2 alleles from Rana arvalis.We also designed a novel primer set that successfully amplified exon 2 from Pelophylax kurtmuelleri. Pelophylax lessonae was also designed as part of this study. Results indicate the presence of one or two class IIB loci in these three species. In R. arvalis, significant evidence of positive selection acting on MHC antigen binding sites was found. Many European ranid populations are experiencing disease-related declines; the newly developed primers can, therefore, be used for further population analyses of native frogs. PMID:27843985

  4. Major histocompatibility complex class I expression on neurons in subacute sclerosing panencephalitis and experimental subacute measles encephalitis

    SciTech Connect

    Gogate, N.; Yamabe, Toshio; Verma, L.; Dhib-Jalbut, S.

    1996-04-01

    Lack of major histocompatibility class I antigens on neurons has been implicated as a possible mechanism for viral persistence in the brain since these antigens are required for cytotoxic T-lymphocyte recognition of infected cells. In subacute sclerosing panencephalitis (SSPE), measles virus (MV) persists in neurons, resulting in a fatal chronic infection. MHC class I mRNA expression was examined in formalin-fixed brain tissue from 6 SSPE patients by in situ hybridization. In addition MHC class I protein expression in MV-infected neurons was examined in experimental Subacute Measles Encephalitis (SME) by double immunohistochemistry. MHC class I mRNA expression was found to be upregulated in SSPE tissues studied, and in 5 out of 6 cases the expression was definitively seen on neurons. The percentage of neurons expressing MHC class I mRNA ranged between 20 to 84% in infected areas. There was no correlation between the degree of infection and expression of MHC class I molecules on neurons. Importantly, the number of neurons co-expressing MHC class I and MV antigens was markedly low, varying between 2 to 8%. Similar results were obtained in SME where 20 to 30% of the neurons expressed MHC class I but < 8% co-expressed MHC class I and MV antigens. Perivascular infiltrating cells in the infected regions in SME expressed IFN{gamma} immunoreactivity. The results suggest that MV may not be directly involved in the induction of MHC class I on neurons and that cytokines such as IFN{gamma} may play an important role. Furthermore, the paucity of neurons co-expressing MHC class I and MV antigens in SSPE and SME suggests that such cells are either rapidly cleared by cytotoxic T lymphocytes (CTL), or, alternatively, lack of co-expression of MHC class I on MV infected neurons favors MV persistence in these cells by escaping CTL recognition. 33 refs., 3 figs., 3 tabs.

  5. A Case of Probable MHC Class II Deficiency with Disseminated BCGitis.

    PubMed

    Alyasin, Soheyla; Abolnezhadian, Farhad; Khoshkhui, Maryam

    2015-09-01

    Major histocompatibility complex (MHC) class II deficiency is a primary immunodeficiency disease characterized by abnormality of MHC class II molecules surface expression on peripheral blood lymphocytes and monocytes. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections but the immunodeficiency is not as severe as SCID (severe combined immunodeficiency), as evidenced by failure to develop disseminated infection after BCG vaccination. Therefore, MHC II deficiency with BCGosis, that is disseminated BCGitis, is not reported commonly. We report an interesting case of BCGosis after vaccination that was diagnosed to have probable MHC II deficiency.

  6. Expression of major histocompatibility complex class I antigens as a strategy for the potentiation of immune recognition of tumor cells.

    PubMed

    Tanaka, K; Hayashi, H; Hamada, C; Khoury, G; Jay, G

    1986-11-01

    Like many primary tumors, human adenovirus type 12 (Ad12)-transformed mouse cells express greatly reduced levels of the major histocompatibility complex (MHC) class I antigens and are highly tumorigenic in immunocompetent hosts. Expression of a transfected class I gene by these cells can abrogate their tumorigenicity. Both the K and the L class I genes can suppress the malignant phenotype. Previous studies showed that interferon can induce class I gene expression in certain Ad12-transformed cells and can suppress their tumorigenic phenotype. We now demonstrate that preimmunization of mice with a nontumorigenic dose of interferon-treated Ad12-transformed tumor cells can afford protection against a subsequent challenge by a tumorigenic dose of untreated Ad12-transformed tumor cells. Similar immunity can also be induced by using cells transfected with the K gene, and the observed protection appears specific to Ad12-transformed cells. Significant protection can be achieved even if immunization is provided subsequent to the tumor challenge. Since increasing numbers of human tumors have been found to have reduced levels of MHC class I antigens, the prospect of therapy by immunization with the parental tumor cells that have been manipulated to induce class I gene expression offers an attractive experimental model.

  7. Restriction fragment length polymorphism within the class I gene loci of the equine major histocompatibility complex

    SciTech Connect

    Alexander, A.J.; Bailey, E.; Woodward, J.G.

    1986-03-05

    Fourteen standard bred horses were serotyped as homozygous for 1 of 6 Equine Leukocyte Antigen (ELA) specificities. DNA was purified from peripheral leukocytes and digested with Hind III or Pvu II. Southern blot hybridization analysis was carried out using a /sup 32/P-labeled mouse cDNA probe (PH2IIa) specific for class I MHC genes. Both enzymes generated blots that contained a large number of bands (23 to 30) per horse. Significant polymorphism existed among most fragment sizes, while a dozen highly conserved band sizes suggested the presence of Qa/tla - like genes. Only 2 animals (both W6's) showed identical band patterns. Polymorphism was greatest between horses of different serotypes and was significantly decreased within serotypes. Unique bands were present on both blots for both W1's and W6's and may account for the serologic specificity seen in ELA W1 and W6 horses. This study is consistent with the findings in other higher vertebrates and implies that the MHC of the horse includes a highly polymorphic class I multigene family.

  8. Rheumatoid Rescue of Misfolded Cellular Proteins by MHC Class II Molecules: A New Hypothesis for Autoimmune Diseases.

    PubMed

    Arase, Hisashi

    2016-01-01

    Misfolded proteins localized in the endoplasmic reticulum are degraded promptly and thus are not transported outside cells. However, misfolded proteins in the endoplasmic reticulum are rescued from protein degradation upon association with major histocompatibility complex (MHC) class II molecules and are transported to the cell surface by MHC class II molecules without being processed to peptides. Studies on the misfolded proteins rescued by MHC class II molecules have revealed that misfolded proteins associated with MHC class II molecules are specific targets for autoantibodies produced in autoimmune diseases. Furthermore, a strong correlation has been observed between autoantibody binding to misfolded proteins associated with MHC class II molecules and the autoimmune disease susceptibility conferred by each MHC class II allele. These new insights into MHC class II molecules suggest that misfolded proteins rescued from protein degradation by MHC class II molecules are recognized as "neo-self" antigens by immune system and are involved in autoimmune diseases as autoantibody targets.

  9. T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide

    SciTech Connect

    Tynan, Fleur E; Burrows, Scott R; Buckle, Ashley M; Clements, Craig S; Borg, Natalie A; Miles, John J; Beddoe, Travis; Whisstock, James C; Wilce, Matthew C; Silins, Sharon L; Burrows, Jacqueline M; Kjer-Nielsen, Lars; Kostenko, Lyudmila; Purcell, Anthony W; McCluskey, James; Rossjohn, Jamie

    2010-07-20

    Unusually long major histocompatibility complex (MHC) class I-restricted epitopes are important in immunity, but their 'bulged' conformation represents a potential obstacle to {alpha}{beta} T cell receptor (TCR)-MHC class I docking. To elucidate how such recognition is achieved while still preserving MHC restriction, we have determined here the structure of a TCR in complex with HLA-B*3508 presenting a peptide 13 amino acids in length. This complex was atypical of TCR-peptide-MHC class I interactions, being dominated at the interface by peptide-mediated interactions. The TCR assumed two distinct orientations, swiveling on top of the centrally bulged, rigid peptide such that only limited contacts were made with MHC class I. Although the TCR-peptide recognition resembled an antibody-antigen interaction, the TCR-MHC class I contacts defined a minimal 'generic footprint' of MHC-restriction. Thus our findings simultaneously demonstrate the considerable adaptability of the TCR and the 'shape' of MHC restriction.

  10. Unusual association of beta 2-microglobulin with certain class I heavy chains of the murine major histocompatibility complex.

    PubMed Central

    Bushkin, Y; Tung, J S; Pinter, A; Michaelson, J; Boyse, E A

    1986-01-01

    Class I products of the major histocompatibility complex (MHC) comprise a heavy chain of about 45 kDa noncovalently linked to a 12-kDa beta 2-microglobulin (beta 2m) light chain encoded on a different chromosome. We find that class I products of some mouse strains include an additional 62-kDa molecule which on the following evidence consists of a heavy chain linked covalently with beta 2m. Production of the 62-kDa protein invariably accorded with the occurrence of cysteine at position 121 of the heavy chain (Kb,Kbm1,Kbm3,Dd, and Ld). Substitution of arginine at position 121 invariably accorded with absence of the 62-kDa protein (Kbm6,Kbm7,Kbm9,Kd, and Db). On the basis of observed production versus nonproduction of the 62-kDa molecule, predictions are made regarding residue 121 in class I products for which this is not yet known; namely, Kk, Ks, and Dk, which produce the 62-kDa molecule, as compared with Kj, Qa-2, and TL, which do not. Reported differences in immunologic reactivity between Kb mutant strains with Arg-121 in place of Cys-121 imply that the occurrence of 62-kDa class I products in mice of Cys-121 genotype has functional consequences. Images PMID:3510435

  11. MHC evolution in three salmonid species: a comparison between class II alpha and beta genes.

    PubMed

    Gómez, Daniela; Conejeros, Pablo; Marshall, Sergio H; Consuegra, Sofia

    2010-08-01

    The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II alpha and class II beta loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II alpha and beta genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIalpha gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites.

  12. Posttranscriptional inhibition of class I major histocompatibility complex presentation on hepatocytes and lymphoid cells in chronic woodchuck hepatitis virus infection.

    PubMed

    Michalak, T I; Hodgson, P D; Churchill, N D

    2000-05-01

    Woodchuck hepatitis virus (WHV), similar to human hepatitis B virus, causes acute liver inflammation that can progress to chronic hepatitis and hepatocellular carcinoma. WHV also invades cells of the host lymphatic system, where it persists for life. We report here that acute and chronic hepadnavirus hepatitis is characterized by a profound difference in the expression of class I major histocompatibility complex (MHC) molecules on the surface of infected hepatocytes and, notably, lymphoid cells. While acute WHV infection is accompanied by the enhanced hepatocyte surface presentation of class I MHC antigen and upregulated transcription of the relevant hepatic genes, inhibition of class I antigen display on liver cells is a uniform hallmark of chronic WHV infection. This inhibition in chronic hepatitis occurs despite augmented (as in acute infection) expression of hepatic genes for class I MHC heavy chain, beta(2)-microglobulin, and transporters associated with antigen processing (TAP1 and TAP2). Further, the class I antigen inhibition is not related to the histological severity of hepatocellular injury, the extent of lymphocytic infiltrations, the level of intrahepatic gamma interferon induction, or the hepatic WHV load. Importantly, the antigen expression is also inhibited on organ lymphoid cells of chronically infected hosts. The results obtained in this study demonstrate that the defective presentation of class I MHC molecules on cells supporting persistent WHV replication is due to viral posttranscriptional interference. This event may diminish the susceptibility of infected hepatocytes to virus-specific T-cell-mediated elimination, hinder virus clearance, and deregulate the class I MHC-dependent functions of the host immune system. This multifarious effect could be critical for perpetuation of liver damage and evasion of the antiviral immunological surveillance in chronic infection and therefore could be supportive of hepadnavirus persistence.

  13. Secretory granules of mast cells accumulate mature and immature MHC class II molecules.

    PubMed

    Vincent-Schneider, H; Théry, C; Mazzeo, D; Tenza, D; Raposo, G; Bonnerot, C

    2001-01-01

    Bone marrow-derived mast cells as well as dendritic cells, macrophages and B lymphocytes express major histocompatibility complex (MHC) class II molecules. In mast cells, the majority of MHC class II molecules reside in intracellular cell type-specific compartments, secretory granules. To understand the molecular basis for the localisation of MHC class II molecules in secretory granules, MHC class II molecules were expressed, together with the invariant chain, in the mast cell line, RBL-2H3. Using electron and confocal microscopy, we observed that in RBL-2H3 cells, mature and immature class II molecules accumulate in secretory granules. Two particular features of class II transport accounted for this intracellular localization: first, a large fraction of newly synthesized MHC class II molecules remained associated with invariant chain fragments. This defect, resulting in a slower rate of MHC class II maturation, was ascribed to a low cathepsin S activity. Second, although a small fraction of class II dimers matured (i.e. became free of invariant chain), allowing their association with antigenic peptides, they were retained in secretory granules. As a consequence of this intracellular localization, cell surface expression of class II molecules was strongly increased by cell activation stimuli which induced the release of the contents of secretory granules. Our results suggest that antigen presentation, and thereby antigen specific T cell stimulation, are regulated in mast cells by stimuli which induce mast cell activation.

  14. Preferred SLA class I/class II haplotype combinations in German Landrace pigs.

    PubMed

    Gimsa, Ulrike; Ho, Chak-Sum; Hammer, Sabine E

    2017-01-01

    Major histocompatibility complex (MHC) molecules are responsible for the antigen presentation to T lymphocytes. High recombination rates in the MHC genes, as observed in humans, are believed to serve the evolutionary goal to achieve a high genetic diversity, allowing for a broad and efficient immune response. In a cohort of 155 pedigreed German Landrace pigs (65 founders and 90 piglets), we found that MHC genes occur in particular class I and class II haplotype combinations. This phenomenon has not been described before, probably because most of the earlier MHC studies in pigs were not pedigree-based. After comparing our data with published genotypes of different European pig breeds and Asian pigs, we hypothesise that the combination of particular but different haplotypes in different geographical regions may have developed under the evolutionary pressure of regionally endemic pathogens. This proposed mechanism ensures an efficient immune response despite low recombination rates.

  15. Cellular misfolded proteins rescued from degradation by MHC class II molecules are possible targets for autoimmune diseases.

    PubMed

    Arase, Noriko; Arase, Hisashi

    2015-11-01

    The major function of major histocompatibility complex (MHC) class II molecules is the presentation of peptide antigens to helper T cells. However, when misfolded proteins are associated with MHC class II molecules in the endoplasmic reticulum, they are transported to the cell surface by MHC class II molecules without processing to peptides. Of note, misfolded proteins complexed with MHC class II molecules are specifically recognized by autoantibodies produced in patients with autoimmune diseases such as rheumatoid arthritis and antiphospholipid syndrome. Furthermore, autoantibody binding to misfolded proteins complexed with MHC class II molecules is associated with the susceptibility to autoimmune diseases conferred by each MHC class II allele. Therefore, misfolded proteins rescued from degradation by MHC class II molecules may be recognized as 'neo-self' antigens by the immune system and be involved in the pathogenicity of autoimmune diseases.

  16. Human-specific evolution of killer cell immunoglobulin-like receptor recognition of major histocompatibility complex class I molecules.

    PubMed

    Parham, Peter; Norman, Paul J; Abi-Rached, Laurent; Guethlein, Lisbeth A

    2012-03-19

    In placental mammals, natural killer (NK) cells are a population of lymphocytes that make unique contributions to immune defence and reproduction, functions essential for survival of individuals, populations and species. Modulating these functions are conserved and variable NK-cell receptors that recognize epitopes of major histocompatibility complex (MHC) class I molecules. In humans, for example, recognition of human leucocyte antigen (HLA)-E by the CD94:NKG2A receptor is conserved, whereas recognition of HLA-A, B and C by the killer cell immunoglobulin-like receptors (KIRs) is diversified. Competing demands of the immune and reproductive systems, and of T-cell and NK-cell immunity-combined with the segregation on different chromosomes of variable NK-cell receptors and their MHC class I ligands-drive an unusually rapid evolution that has resulted in unprecedented levels of species specificity, as first appreciated from comparison of mice and humans. Counterparts to human KIR are present only in simian primates. Observed in these species is the coevolution of KIR and the four MHC class I epitopes to which human KIR recognition is restricted. Unique to hominids is the emergence of the MHC-C locus as a supplier of specialized and superior ligands for KIR. This evolutionary trend is most highly elaborated in the chimpanzee. Unique to the human KIR locus are two groups of KIR haplotypes that are present in all human populations and subject to balancing selection. Group A KIR haplotypes resemble chimpanzee KIR haplotypes and are enriched for genes encoding KIR that bind HLA class I, whereas group B KIR haplotypes are enriched for genes encoding receptors with diminished capacity to bind HLA class I. Correlating with their balance in human populations, B haplotypes favour reproductive success, whereas A haplotypes favour successful immune defence. Evolution of the B KIR haplotypes is thus unique to the human species.

  17. Relationship between major histocompatibility complex class I expression and prognosis in canine mammary gland tumors.

    PubMed

    Tanaka, Toshiyuki; Shimada, Terumasa; Akiyoshi, Hideo; Shimizu, Junichiro; Zheng, Cao; Yijyun, Li; Mie, Keiichiro; Hayashi, Akiyoshi; Kuwamura, Mitsuru; Hoshi, Fumio; Ohashi, Fumihito

    2013-10-01

    The aim of this study was to evaluate MHC class I expression and prognosis using tumor tissues surgically removed from 9 dogs with mammary gland carcinomas and from 13 dogs with complex carcinomas. We assessed MHC class I expression and its correlation with tumor size, B2M expression, infiltration of lymphocytes, histological grade and prognosis. Hematoxylin and eosin-stained sections were histologically graded using the Elston and Ellis grading method. MHC class I expression on tumor cells was evaluated using the avidin-biotin peroxidase complex method. Loss of MHC class I expression from canine mammary gland carcinomas was significantly correlated with poor prognosis (P<0.05). Loss of MHC class I expression showed no association with poor prognosis in canine mammary gland complex carcinomas, because the data were not balanced. Only 1 of 13 (7.6%) canine mammary gland complex carcinomas showed loss of MHC class I expression. All 13 of these dogs showed good prognosis. Thus, the low frequency of MHC class I expression loss from canine mammary gland complex carcinomas may be associated with good prognosis. Taken together, these results suggest that loss of MHC class I expression may be associated with poor prognosis in canine mammary gland carcinomas.

  18. Major histocompatibility complex class I molecules bind natural peptide ligands lacking the amino-terminal binding residue in vivo.

    PubMed

    Yague, J; Marina, A; Vazquez, J; Lopez De Castro, J A

    2001-11-23

    Major histocompatibility complex (MHC) class I-peptide complexes are stabilized by multiple interactions, including those of the peptidic NH(2)-terminal group in the A pocket of the MHC molecule. In this study, the characterization of four natural HLA-B39 ligands lacking the amino-terminal binding residue is reported. These peptides were found in the endogenous peptide pool of one or more of the B*3901, B*3905, and B*3909 allotypes and sequenced by nanoelectrospray mass spectrometry. Control experiments ruled out that they resulted from exopeptidase trimming of their NH(2)-terminally extended counterparts: NAc-SHVAVENAL, EHGPNPIL, IHEPEPHIL, and EHAGVISVL, also present in the same peptide pools, during purification. HAGVISVL and HVAVENAL behaved similarly to the corresponding NH(2)-terminally extended peptides in their binding to B*3901 and B*3909 at the cell surface in vitro, and in cell surface stabilization of B*3901. This is, to our knowledge, the first demonstration that peptides lacking the amino-terminal binding residue bind in vivo to classical MHC class I molecules. The results indicate that canonical MHC-peptide interactions in the A pocket are not always necessary for endogenous peptide presentation.

  19. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control

    PubMed Central

    van Hateren, Andy; Bailey, Alistair; Elliott, Tim

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation. PMID:28299193

  20. Molecular typing for HLA class I using ARMS-PCR: further developments following the 12th International Histocompatibility Workshop.

    PubMed

    Tonks, S; Marsh, S G; Bunce, M; Bodmer, J G

    1999-02-01

    Molecular typing for HLA class I was introduced in the 12th International Histocompatibility Workshop. Following a pilot study using three methods, sequence specific oligotyping (SSO), reverse dot blot and amplification refractory mutation system (ARMS)-PCR, the ARMS-PCR method was selected for use. A great advantage of an ARMS-PCR method is that, unlike the other two methods, it can determine whether sequence motifs are in cis or in trans, as ARMS-PCR detects two cis located motifs per reaction using forward and reverse sequence specific primers. Resolution was designed to be low to medium level for HLA-A, -B and -C alleles. Two hundred and fifty class I kits and 83 HLA-A2 subtyping kits were distributed. The A2 subtyping kit used a two round nested PCR system to identify all of the A2 alleles known at the time. Typing results on control DNA samples distributed with both the kits showed a very satisfactory performance. Since the 12th Workshop, the kits have been developed with the addition of new primers and primer mixes to increase the resolution of the test.

  1. Pathogenicity of Bovine Neonatal Pancytopenia-associated vaccine-induced alloantibodies correlates with Major Histocompatibility Complex class I expression

    PubMed Central

    Benedictus, Lindert; Luteijn, Rutger D.; Otten, Henny; Jan Lebbink, Robert; van Kooten, Peter J. S.; Wiertz, Emmanuel J. H. J.; Rutten, Victor P. M. G.; Koets, Ad P.

    2015-01-01

    Bovine Neonatal Pancytopenia (BNP), a fatal bleeding syndrome of neonatal calves, is caused by maternal alloantibodies absorbed from colostrum and is characterized by lymphocytopenia, thrombocytopenia and bone marrow hypoplasia. An inactivated viral vaccine is the likely source of alloantigens inducing BNP-associated alloantibodies in the dam. In this study the specificity of BNP alloantibodies was assessed and was linked to the pathology of BNP. We demonstrated that Major Histocompatibility Complex class I (MHC I) and Very Late Antigen-3, an integrin α3/β1 heterodimer, were the major targets of BNP alloantibodies. However, alloantibody binding to various bovine cell types correlated with MHC I expression, rather than integrin β1 or α3 expression. Likewise, alloantibody-dependent complement-mediated cell lysis correlated strongly with MHC I expression. Examination of several tissues of third trimester bovine foetuses revealed that cells, shown to be affected in calves with BNP, were characterized by high MHC class I expression and high levels of alloantibody binding. We conclude that in spite of the heterogeneous specificity of BNP associated maternal alloantibodies, MHC I-specific antibodies mediate the pathogenicity of BNP in the calf and that cells with high MHC I expression were preferentially affected in BNP. PMID:26235972

  2. Spatial and temporal variation at major histocompatibility complex class IIB genes in the endangered Blakiston's fish owl.

    PubMed

    Kohyama, Tetsuo I; Omote, Keita; Nishida, Chizuko; Takenaka, Takeshi; Saito, Keisuke; Fujimoto, Satoshi; Masuda, Ryuichi

    2015-01-01

    Quantifying intraspecific genetic variation in functionally important genes, such as those of the major histocompatibility complex (MHC), is important in the establishment of conservation plans for endangered species. The MHC genes play a crucial role in the vertebrate immune system and generally show high levels of diversity, which is likely due to pathogen-driven balancing selection. The endangered Blakiston's fish owl (Bubo blakistoni) has suffered marked population declines on Hokkaido Island, Japan, during the past several decades due to human-induced habitat loss and fragmentation. We investigated the spatial and temporal patterns of genetic diversity in MHC class IIβ genes in Blakiston's fish owl, using massively parallel pyrosequencing. We found that the Blakiston's fish owl genome contains at least eight MHC class IIβ loci, indicating recent gene duplications. An analysis of sequence polymorphism provided evidence that balancing selection acted in the past. The level of MHC variation, however, was low in the current fish owl populations in Hokkaido: only 19 alleles were identified from 174 individuals. We detected considerable spatial differences in MHC diversity among the geographically isolated populations. We also detected a decline of MHC diversity in some local populations during the past decades. Our study demonstrated that the current spatial patterns of MHC variation in Blakiston's fish owl populations have been shaped by loss of variation due to the decline and fragmentation of populations, and that the short-term effects of genetic drift have counteracted the long-term effects of balancing selection.

  3. Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex.

    PubMed

    Vigneron, Nathalie; Van den Eynde, Benoît J

    2014-11-18

    The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides.

  4. Proteasome Subtypes and Regulators in the Processing of Antigenic Peptides Presented by Class I Molecules of the Major Histocompatibility Complex

    PubMed Central

    Vigneron, Nathalie; Van den Eynde, Benoît J.

    2014-01-01

    The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides. PMID:25412285

  5. Characterization and expression of MHC class II alpha and II beta genes in mangrove red snapper (Lutjanus argentimaculatus).

    PubMed

    Wang, Tianyan; Tan, Shangjin; Cai, Zhonghua

    2015-12-01

    The major histocompatibility complex (MHC) class II plays a key role in adaptive immunity by presenting foreign peptides to CD4(+) T cells and by triggering the adaptive immune response. While the structure and function of MHC class II have been well characterized in mammalian, limited research has been done on fishes. In this study, we characterized the gene structure and expression of MHC class II α (Lunar-DAA) and II β (Lunar-DAB) of mangrove red snapper (Lutjanus argentimaculatus). Both genes shared, respectively, a high similarity and typical features with other vertebrate MHC class II α and II β. The phylogenetic analysis of the deduced peptides revealed that both Lunar-DAA and Lunar-DAB were located in the teleost subclass. Western blotting analyses indicated that both MHC class II α and II β were expressed ubiquitously in immune-related cells, tissues and organs, and that MHC class II α and II β chains existed mainly as heterodimers. While it was highly expressed in gills, thymus, head kidney (HK), spleen, head kidney macrophage and spleen leucocytes, MHC class II β chain was expressed with a low abundance in skin, intestine, stomach and heart. The highest expression of MHC class II β in thymus confirmed the conclusion that thymus is one of the primary lymphoid organs in fishes. The detection of MHC class II αβ dimers in HK macrophages and spleen leucocytes indicated that HK macrophages and spleen leucocytes play a critical role in the adaptive immunity in fishes. All these results provide valuable information for understanding the structure of MHC class II α and II β and their function in immune responses.

  6. Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP

    PubMed Central

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini

    2015-01-01

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867

  7. Lipopeptides: a novel antigen repertoire presented by major histocompatibility complex class I molecules.

    PubMed

    Morita, Daisuke; Sugita, Masahiko

    2016-10-01

    Post-translationally modified peptides, such as those containing either phosphorylated or O-glycosylated serine/threonine residues, may be presented to cytotoxic T lymphocytes (CTLs) by MHC class I molecules. Most of these modified peptides are captured in the MHC class I groove in a similar manner to that for unmodified peptides. N-Myristoylated 5-mer lipopeptides have recently been identified as a novel chemical class of MHC class I-presented antigens. The rhesus classical MHC class I allele, Mamu-B*098, was found to be capable of binding N-myristoylated lipopeptides and presenting them to CTLs. A high-resolution X-ray crystallographic analysis of the Mamu-B*098:lipopeptide complex revealed that the myristic group as well as conserved C-terminal serine residue of the lipopeptide ligand functioned as anchors, whereas the short stretch of three amino acid residues located in the middle of the lipopeptides was only exposed externally with the potential to interact directly with specific T-cell receptors. Therefore, the modes of lipopeptide-ligand interactions with MHC class I and with T-cell receptors are novel and fundamentally distinct from that for MHC class I-presented peptides. Another lipopeptide-presenting MHC class I allele has now been identified, leading us to the prediction that MHC class I molecules may be separated on a functional basis into two groups: one presenting long peptides and the other presenting short lipopeptides. Since the N-myristoylation of viral proteins is often linked to pathogenesis, CTLs capable of sensing N-myristoylation may serve to control pathogenic viruses, raising the possibility for the development of a new type of lipopeptide vaccine. © 2016 John Wiley & Sons Ltd.

  8. Altered Expression of TAP-1 and Major Histocompatibility Complex Class I in Laryngeal Papillomatosis: Correlation of TAP-1 with Disease

    PubMed Central

    Vambutas, Andrea; Bonagura, Vincent R.; Steinberg, Bettie M.

    2000-01-01

    Recurrent respiratory papillomatosis (RRP) is an insidious disease caused by human papillomavirus (HPV) infection. It is characterized by a variable clinical course that can include frequent disease recurrence, significant morbidity, and occasional mortality. The mechanisms responsible for the variability in the clinical course and the persistence of latent HPV infection remain unknown. Effective T-cell-mediated clearance of HPV-infected cells may be defective in patients with RRP, leading to recurrent disease and failure to suppress latent HPV reactivation. This study describes the down-regulation of the transporter associated with antigen presentation (TAP-1) and the major histocompatibility complex (MHC) class I protein expression in laryngeal papilloma tissue biopsies and cell culture of primary explants. There was a statistically significant correlation between reduction of TAP-1 expression in biopsy tissues and rapid recurrence of disease. Patients with RRP had less frequent recurrence if their papillomas expressed TAP-1 at levels close to that of normal tissue, compared with those with very low expression of TAP-1, who had frequent recurrence (32 versus 5 weeks to the next surgical intervention). These findings suggest that HPV may evade immune recognition by down-regulating class I MHC cell surface expression via decreased TAP-1 levels. Expression of TAP-1 could be used for prognostic evaluation of disease severity. Gamma interferon was able to restore class I MHC expression at the surfaces of laryngeal papilloma cells in culture. This up-regulation of class I MHC antigen at the cell surface potentially allows the infected cell to become a target for the immune system again. This finding provides some promise for nonsurgical treatment of laryngeal papillomas. PMID:10618282

  9. Chromosomal organization of the human major histocompatibility complex class I gene family

    SciTech Connect

    Koller, B.H.; Geraghty, D.E.; DeMars, R.; Duvick, L.; Rich, S.S.; Orr, H.T.

    1989-02-01

    17 HLA class I genes have been isolated from the genome of B-lymphoblastoid cell line 721. Sequence analysis and transfection studies indicate that three genes, in addition to those encoding the HLA-A, -B, and -C antigens can direct the synthesis of a class I alpha protein (4, 5, 21). Using gene-specific DNA probes to analyze the presence of restriction fragment-length polymorphisms within a large pedigree and in panel of HLA deletion mutant cell lines, we show here that two of these genes, designated HLA-G and HLA-F, are located on the short arm of chromosome 6 telomeric to the HLA-A locus. The third expressed non-A, -B, and -C class I gene, HLA-E, is located between HLA-A and HLA-C (4). In addition, the remaining 11 class I pseudogenes and gene fragments are localized relative to established markers on chromosome 6p.

  10. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  11. Human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment

    SciTech Connect

    Geraghty, D.E.; Koller, B.H.; Orr, H.T.

    1987-12-01

    The authors have cloned genomic DNA encoding a non-HLA-A, -B, -C class I gene located within a HindIII-generated restriction fragment of 6.0 kilobase pairs. This gene, designated HLA-6.0, is as homologous to HLA-A and HLA-B as they are to each other. The HLA class I protein encoded by HLA-6.0 is similar in organization to the HLA-A-, -B-, and -C-encoded proteins except that an in-frame termination codon prevents translation of a majority of the cytoplasmic region of the HLA-6.0 polypeptide. Moreover, the promoter region of HLA-6.0 resembles the promoter region of a Qa region gene. These structural features of HLA-6.0 suggest that this nonHLA-A, -B, -C gene is a structural homolog of a murine Qa region class I gene.

  12. Engineering and characterization of a stabilized alpha1/alpha2 module of the class I major histocompatibility complex product Ld.

    PubMed

    Jones, Lindsay L; Brophy, Susan E; Bankovich, Alexander J; Colf, Leremy A; Hanick, Nicole A; Garcia, K Christopher; Kranz, David M

    2006-09-01

    The major histocompatibility complex (MHC) is the most polymorphic locus known, with thousands of allelic variants. There is considerable interest in understanding the diversity of structures and peptide-binding features represented by this class of proteins. Although many MHC proteins have been crystallized, others have not been amenable to structural or biochemical studies due to problems with expression or stability. In the present study, yeast display was used to engineer stabilizing mutations into the class I MHC molecule, Ld. The approach was based on previous studies that showed surface levels of yeast-displayed fusion proteins are directly correlated with protein stability. To engineer a more stable Ld, we selected Ld mutants with increased surface expression from randomly mutated yeast display libraries using anti-Ld antibodies or high affinity, soluble T-cell receptors (TCRs). The most stable Ld mutant, Ld-m31, consisted of a single-chain MHC module containing only the alpha1 and alpha2 domains. The enhanced stability was in part due to a single mutation (Trp-97 --> Arg), shown previously to be present in the allele Lq. Mutant Ld-m31 could bind to Ld peptides, and the specific peptide.Ld-m31 complex (QL9.Ld-m31) was recognized by alloreactive TCR 2C. A soluble form of the Ld-m31 protein was expressed in Escherichia coli and refolded from inclusion bodies at high yields. Surface plasmon resonance showed that TCRs bound to peptide.Ld-m31 complexes with affinities similar to those of native full-length Ld. The TCR and QL9.Ld-m31 formed complexes that could be resolved by native gel electrophoresis, suggesting that stabilized alpha1/alpha2 class I platforms may enable various structural studies.

  13. The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides.

    PubMed Central

    Niedermann, G; King, G; Butz, S; Birsner, U; Grimm, R; Shabanowitz, J; Hunt, D F; Eichmann, K

    1996-01-01

    Proteasomes are involved in the proteolytic generation of major histocompatibility complex (MHC) class I epitopes but their exact role has not been elucidated. We used highly purified murine 20S proteasomes for digestion of synthetic 22-mer and 41/44-mer ovalbumin partial sequences encompassing either an immunodominant or a marginally immunogenic epitope. At various times, digests were analyzed by pool sequencing and by semiquantitative electrospray ionization mass spectrometry. Most dual cleavage fragments derived from 22-mer peptides were 7-10 amino acids long, with octa- and nonamers predominating. Digestion of 41/44-mer peptides initially revealed major cleavage sites spaced by two size ranges, 8 or 9 amino acids and 14 or 15 amino acids, followed by further degradation of the latter as well as of larger single cleavage fragments. The final size distribution was slightly broader than that of fragments derived from 22-mer peptides. The majority of peptide bonds were cleaved, albeit with vastly different efficiencies. This resulted in multiple overlapping proteolytic fragments including a limited number of abundant peptides. The immunodominant epitope was generated abundantly whereas only small amounts of the marginally immunogenic epitope were detected. The frequency distributions of amino acids flanking proteasomal cleavage sites are correlated to that reported for corresponding positions of MHC class I binding peptides. The results suggest that proteasomal degradation products may include fragments with structural properties similar to MHC class I binding peptides. Proteasomes may thus be involved in the final stages of proteolytic epitope generation, often without the need for downstream proteolytic events. Images Fig. 1 PMID:8710912

  14. Protein sorting within the MHC class II antigen-processing pathway.

    PubMed

    Marks, M S

    1998-01-01

    Major histocompatibility complex (MHC) class II molecules are required for the presentation of antigenic peptides that are derived predominantly from internalized proteins. The assembly of MHC class II/peptide complexes occurs within endosomal compartments of antigen-presenting cells (APCs). Therefore, for assembly to occur, MHC class II molecules, foreign proteins, and accessory molecules must be sorted to appropriate intracellular sites. My laboratory is trying to understand how proteins are sorted to various antigen-processing compartments as well as to conventional endosomal organelles. Using chimeric marker proteins and a variety of biochemical and genetic approaches, we are addressing the specificity of protein sorting and the mechanisms by which sorting signals are deciphered. By using a similar chimeric protein approach to target endogenous proteins to distinct compartments, we hope to address the role of processing events in each compartment in the generation of MHC class II ligands.

  15. Contrasting patterns of selection acting on MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota).

    PubMed

    Kuduk, K; Johanet, A; Allainé, D; Cohas, A; Radwan, J

    2012-08-01

    The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.

  16. Constraints within major histocompatibility complex class I restricted peptides: Presentation and consequences for T-cell recognition

    SciTech Connect

    Theodossis, Alex; Guillonneau, Carole; Welland, Andrew; Ely, Lauren K.; Clements, Craig S.; Williamson, Nicholas A.; Webb, Andrew I.; Wilce, Jacqueline A.; Mulder, Roger J.; Dunstone, Michelle A.; Doherty, Peter C.; McCluskey, James; Purcell, Anthony W.; Turner, Stephen J.; Rossjohn, Jamie

    2010-03-24

    Residues within processed protein fragments bound to major histocompatibility complex class I (MHC-I) glycoproteins have been considered to function as a series of 'independent pegs' that either anchor the peptide (p) to the MHC-I and/or interact with the spectrum of {alpha}{beta}-T-cell receptors (TCRs) specific for the pMHC-I epitope in question. Mining of the extensive pMHC-I structural database established that many self- and viral peptides show extensive and direct interresidue interactions, an unexpected finding that has led us to the idea of 'constrained' peptides. Mutational analysis of two constrained peptides (the HLA B44 restricted self-peptide (B44DP{alpha}-EEFGRAFSF)) and an H2-D{sup b} restricted influenza peptide (D{sup b}PA, SSLENFRAYV) demonstrated that the conformation of the prominently exposed arginine in both peptides was governed by interactions with MHC-I-orientated flanking residues from the peptide itself. Using reverse genetics in a murine influenza model, we revealed that mutation of an MHC-I-orientated residue (SSLENFRAYV {yields} SSLENARAYV) within the constrained PA peptide resulted in a diminished cytotoxic T lymphocyte (CTL) response and the recruitment of a limited pMHC-I specific TCR repertoire. Interactions between individual peptide positions can thus impose fine control on the conformation of pMHC-I epitopes, whereas the perturbation of such constraints can lead to a previously unappreciated mechanism of viral escape.

  17. Cellular expression and crystal structure of the murine cytomegalovirus major histocompatibility complex class I-like glycoprotein, m153.

    PubMed

    Mans, Janet; Natarajan, Kannan; Balbo, Andrea; Schuck, Peter; Eikel, Daniel; Hess, Sonja; Robinson, Howard; Simic, Hrvoje; Jonjic, Stipan; Tiemessen, Caroline T; Margulies, David H

    2007-11-30

    Mouse cytomegalovirus (MCMV), a beta-herpesvirus that establishes latent and persistent infections in mice, is a valuable model for studying complex virus-host interactions. MCMV encodes the m145 family of putative immunoevasins with predicted major histocompatibility complex, class I (MHC-I) structure. Functions attributed to some family members include down-regulation of host MHC-I (m152) and NKG2D ligands (m145, m152, and m155) and interaction with inhibitory or activating NK receptors (m157). We present the cellular, biochemical, and structural characterization of m153, which is a heavily glycosylated homodimer, that does not require beta2m or peptide and is expressed at the surface of MCMV-infected cells. Its 2.4-A crystal structure confirms that this compact molecule preserves an MHC-I-like fold and reveals a novel mode of dimerization, confirmed by site-directed mutagenesis, and a distinctive disulfide-stabilized extended N terminus. The structure provides a useful framework for comparative analysis of the divergent members of the m145 family.

  18. Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis.

    PubMed

    Song, SungWon; Miranda, Carlos J; Braun, Lyndsey; Meyer, Kathrin; Frakes, Ashley E; Ferraiuolo, Laura; Likhite, Shibi; Bevan, Adam K; Foust, Kevin D; McConnell, Michael J; Walker, Christopher M; Kaspar, Brian K

    2016-04-01

    Astrocytes isolated from individuals with amyotrophic lateral sclerosis (ALS) are toxic to motor neurons (MNs) and play a non-cell autonomous role in disease pathogenesis. The mechanisms underlying the susceptibility of MNs to cell death remain unclear. Here we report that astrocytes derived from either mice bearing mutations in genes associated with ALS or human subjects with ALS reduce the expression of major histocompatibility complex class I (MHCI) molecules on MNs; reduced MHCI expression makes these MNs susceptible to astrocyte-induced cell death. Increasing MHCI expression on MNs increases survival and motor performance in a mouse model of ALS and protects MNs against astrocyte toxicity. Overexpression of a single MHCI molecule, HLA-F, protects human MNs from ALS astrocyte-mediated toxicity, whereas knockdown of its receptor, the killer cell immunoglobulin-like receptor KIR3DL2, on human astrocytes results in enhanced MN death. Thus, our data indicate that, in ALS, loss of MHCI expression on MNs renders them more vulnerable to astrocyte-mediated toxicity.

  19. Effect of temperature on the expression of major histocompatibility complex class-I antigens.

    PubMed

    Aboud, M; Segal, S; Priel, E; Blair, D G; O'Hara, B

    1992-06-01

    In the present study we investigated the effect of temperature on MHC class-I gene expression in BALB/C 3T3 cells incubated for 5 days at 34 degrees C, 37 degrees C and 39 degrees C. FACS analysis revealed no significant difference in the cell surface expression of any of the 3 major class-I antigens at 34 degrees C and 37 degrees C. Strikingly, however, when the level of the respective mRNA was determined, only that of the H-2K was comparable at both temperatures, whereas the levels of the H-2D and H-2L mRNA were profoundly higher at 37 degrees C. These data appear to reflect a differential temperature-related transcriptional control of the different class-I genes or a different temperature effect on the stability of their mRNA. The absence of a parallel increase in surface expression of the corresponding H-2D and H-2L antigens may result from some translational or post-translational limiting factors. At 39 degrees C, however, these limiting factors seem to be overcome since the surface expression of all the 3 antigens was remarkably increased although the level of their encoding mRNA was rather lower than in 37 degrees C. This stimulatory effect might be ascribed to heat shock proteins which are known to arise in cells at heat or other stress conditions. They participate in assembly and disassembly of various protein complexes and in transport of certain proteins across intracellular membranes. Such proteins may have arisen in our cells at 39 degrees C and facilitated the intracellular assembly of the class-I molecules and their transport to the cell surface. The possible implication of such heat shock proteins in the anti-tumor effect of hyperthermia is discussed.

  20. Expression of rat class I major histocompatibility complex (MHC) alloantigens and hepatocytes and hepatoma cells

    SciTech Connect

    Hunt, J.M.; Desai, P.A.; Chakraborty, S.

    1986-03-05

    Altered expression of Class I MHC alloantigens has been reported for murine tumors, and may be associated with the tumorigenic phenotype of tumor cells. To characterize MHC Class I alloantigen expression on a chemically-induced transplantable rat hepatoma cell line, 17X, derived from a (WF x F344) F/sub 1/ rat, polyvalent anti-F344 and anti-WF rat alloantisera were first used to immunoprecipitate the rat RT1.A Class I MHC alloantigens expressed on primary (WF x F344) F/sub 1/ hepatocyptes in short-term monolayer cultures. Two-dimensional isoelectric focusing and SDS-PAGE of immunoprecipitates from /sup 35/S-methionine-labeled (WF x F344) F/sub 1/ hepatocytes clearly resolved the RT1.A/sup u/ (WF) and RT1.A/sup LvI/ (F344) parental alloantigens. Identical radiolabeling and immunoprecipitation failed to detect either parental alloantigen on the 17X hepatoma cells. However, indirect immunofluorescence and immunoblot analyses demonstrated the presence of parental alloantigens on the 17X cells. Immunization of F344 rats but not of WF rats with 17X cells resulted in antibodies cytotoxic for normal (WF X F344) F/sub 1/ spleen cells in the presence of complement. These findings indicate that a combination of detection techniques will be necessary to characterize altered alloantigen expression on rat hepatoma cells.

  1. Histocompatibility Typing.

    DTIC Science & Technology

    1981-04-01

    framework residues of the DR molecule; Genox 3.53 is a murine monoclonal antibody which * - - - ~. binds cells bearing HLA - DR1 , DR2 or DRw6 and may be...Histocompatibility typing, ID typing, bone marrow transplantation, homozygous cells, HLA -D, human hsooptblymxdlymphocytecutrpie lymphocyte test, T...significant progress in understanding the genetics of the human major histocompatibility complex LI ( HLA ). Ten new homozygous typing cells (HTCs) were

  2. Inhibition of glucose trimming by castanospermine results in rapid degradation of unassembled major histocompatibility complex class I molecules.

    PubMed

    Moore, S E; Spiro, R G

    1993-02-25

    The CMT-cKd1 cell line provides a system for studying the initial processing steps of N-linked oligosaccharides as these cells have been shown to produce major histocompatibility complex (MHC) class I molecules which, due to a defect in assembly, recycle between the endoplasmic reticulum and a pre-Golgi compartment, failing to reach the cell surface (Hsu, V.W., Yuan, L. C., Nuchtern, J. G., Lippincott-Schwartz, J., Hämmerling, G. J., and Klausner, R. D. (1991) Nature 352, 441-444). In the present study we observed that when the MHC class I heavy chain of these CMT cells was pulse-radiolabeled with [35S]methionine in the presence of the glucosidase inhibitor, castanospermine (CST), it underwent a rapid degradation during a 60-min chase, in contrast to control cells in which it remained stable during that period. The CST-promoted instability of the MHC molecule appeared to be specific, as it did not occur when 1-deoxymannojirimycin, an inhibitor of mannosidase, was added to the cells. Although endomannosidase was found to be present in the CMT cells, the electrophoretic mobility of the MHC heavy chain produced in the presence of CST indicated that deglucosylation through the alternate route provided by this enzyme did not occur. Furthermore, gamma-interferon did not prevent the rapid disappearance of the MHC molecule, although it brought about entry of this glycoprotein into the secretory pathway in cells incubated without CST. The results of our studies suggest that retention of glucose on N-linked oligosaccharides may under certain circumstances provide a signal for pre-Golgi protein degradation.

  3. Use of 8-methoxypsoralen and ultraviolet-A pretreated platelet concentrates to prevent alloimmunization against class I major histocompatibility antigens

    SciTech Connect

    Grana, N.H.; Kao, K.J. )

    1991-06-01

    The use of 8-methoxypsoralen (8-MOP) and UV-A irradiation to inactivate contaminating donor leukocytes in platelet concentrates and to prevent primary alloimmunization against donor class I major histocompatibility (MHC) antigens in mice was investigated. CBA/CaH-T6J mice with the H2k haplotype and BALB/cByJ mice with the H2d haplotype were used as donors and recipients, respectively. The mixed leukocyte reaction between these two strains of mice showed that treatment of spleen cells with 500 ng/mL 8-MOP and 5J/cm2 UV-A inhibited 99% of responder and 92% of stimulator function. There was no measurable loss of platelet aggregating activity after the treatment. After two weekly transfusions of platelets without any treatment, 93% of control mice (n = 15) developed anti-H2k antibody. In contrast, only 33% of mice (n = 15) receiving platelets treated with 8-MOP and UV-A became alloimmunized. After six weekly platelet transfusions, all mice became alloimmunized. Nevertheless, the mean titers of anti-H2k antibody in sera of the treated groups were significantly lower than the control groups. One hour posttransfusion recoveries of 51Cr-labeled donor platelets were also higher in mice transfused with the treated platelets. Thus, the pretreatment of platelet concentrates with 8-MOP and UV-A irradiation effectively reduced the alloantigenicity of class I MHC molecules. The implication of this finding in relation to the mechanism by which donor leukocytes allosensitize recipients is discussed.

  4. Full-length coding sequences of three major histocompatibility complex class I-related chain A alleles, MICA*019, MICA*027 and MICA*045, identified by sequence-based typing in Chinese individuals.

    PubMed

    Xu, Y P; Gao, S Q; Tao, H

    2015-10-01

    Full-length coding sequences of three major histocompatibility complex class I-related chain A alleles, MICA*019, MICA*027 and MICA*045. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Ethanol Metabolism Alters Major Histocompatibility Complex Class I-Restricted Antigen Presentation In Liver Cells

    PubMed Central

    Osna, Natalia A.; White, Ronda L.; Thiele, Geoffrey M.; Donohue, Terrence M.

    2009-01-01

    The proteasome is a major enzyme that cleaves proteins for antigen presentation. Cleaved peptides traffic to the cell surface, where they are presented in the context of MHC class I. Recognition of these complexes by cytotoxic T lymphocytes is crucial for elimination of cells bearing “non-self” proteins. Our previous studies revealed that ethanol suppresses proteasome function in ethanol-metabolizing liver cells. We hypothesized that proteasome suppression reduces the hydrolysis of antigenic peptides, thereby decreasing the presentation of the peptide-MHC class I-complexes on the cell surface. To test this, we used the mouse hepatocyte cell line (CYP2E1/ADH-transfected HepB5 cells) or primary mouse hepatocytes, both derived from livers of C57Bl/6 mice, which present the ovalbumin peptide, SIINFEKL, complexed with H2Kb. To induce H2Kb expression, HepB5 cells were treated with interferon gamma (IFNγ) and then exposed to ethanol. In these cells, ethanol metabolism decreased not only proteasome activity, but also hydrolysis of the C-extended peptide, SIINFEKL-TE and the presentation of SIINFEKL-H2Kb complexes measured after the delivery of SIINFEKL-TE to cytoplasm. The suppressive effects of ethanol were, in part, attributed to ethanol-elicited impairment of IFNγ signaling. However, in primary hepatocytes, even in the absence of IFNγ, we observed a similar decline in proteasome activity and antigen presentation after ethanol exposure. We conclude that proteasome function is directly suppressed by ethanol metabolism and indirectly, by preventing the activating effects of IFNγ. Ethanol-elicited reduction in proteasome activity contributes to the suppression of SIINFEKL-H2Kb presentation on the surface of liver cells. Immune response to viral antigens plays a crucial role in the pathogenesis of hepatitis C or B viral infections (HCV and HBV, respectively). Professional antigen-presenting cells (dendritic cells and macrophages) are responsible for priming the

  6. Membrane-bound versus soluble major histocompatibility complex Class I-related chain A and major histocompatibility complex Class I-related chain B differential expression: Mechanisms of tumor eradication versus evasion and current drug development strategies.

    PubMed

    Suresh, P K

    2016-01-01

    Major histocompatibility complex Class I-related chain A/chain B (MICA/MICB) is stress-inducible, highly polymorphic ligands whose expression at the transcript level has been detected in all tissues except the central nervous system. However, their restricted protein expression is due to their regulation at the posttranslational level. Its levels are elevated in virally infected and neoplastically transformed cells. Membrane expression of this NKG2DL marks the aberrant cells for elimination by those immune effector cells that express the cognate NKG2D receptor. Among the evasion strategies developed by tumors, the metalloprotease-dependent shedding of MICA/MICB from tumors (either the free or the exosome form) can contribute to the inhibition of cytolysis by the immune effector cells (all NK cells, most NKT cells; γδ CD8+ T cells and αβ CD8+ T cells, as well as some αβ CD4+ T cells). There are micro-RNA clusters that regulate surface expression and shedding. Polymorphic variants can be used as susceptibility/associative markers and can also possibly be used to correlate with tumor survival as well as staging/grading of tumors. Variations in the expression level require quantification of this marker for diagnostic/prognostic and therapeutic purposes. Mechanism-based studies would provide a better tumor-specific understanding of their relative roles in the processes of tumor cell elimination versus growth and progression. Last but not least, conventional, interlaboratory validated assays (for, e.g., antibody-based methods) should be replaced by robust, reproducible, feasible biophysics-based methods using tumor biopsies. Further, correlative DNA polymorphism-based studies can be done using biological fluids (for, e.g., human saliva) that can be sampled by minimally invasive means.

  7. Altered transcription of genes coding for class I histocompatibility antigens in murine tumor cells

    PubMed Central

    1983-01-01

    Three murine tumors induced by Moloney murine leukemia virus (M-MLV) which exhibited loss of some or all H-2 class I antigens at the cell surface were analyzed at the DNA and RNA level with molecular probes specific of H-2 heavy chains and beta 2-microglobulin sequences. No observable difference could be detected at the DNA level between the tumors and the parent animals. However, a decrease in H-2 mRNA was observed, especially in phenotypically H-2 negative tumor, BM5R, where H-2 transcripts were at least 30-fold less abundant. These results show that an H-2-negative character may result from a general alteration in the transcription of H-2 genes, which could reflect some kind of regulatory process. PMID:6311935

  8. Automatic sequence design of major histocompatibility complex class I binding peptides impairing CD8+ T cell recognition.

    PubMed

    Ogata, Koji; Jaramillo, Alfonso; Cohen, William; Briand, Jean-Paul; Connan, Francine; Choppin, Jeannine; Muller, Sylviane; Wodak, Shoshana J

    2003-01-10

    An automatic protein design procedure was used to compute amino acid sequences of peptides likely to bind the HLA-A2 major histocompatibility complex (MHC) class I allele. The only information used by the procedure are a structural template, a rotamer library, and a well established classical empirical force field. The calculations are performed on six different templates from x-ray structures of HLA-A0201-peptide complexes. Each template consists of the bound peptide backbone and the full atomic coordinates of the MHC protein. Sequences within 2 kcal/mol of the minimum energy sequence are computed for each template, and the sequences from all the templates are combined and ranked by their energies. The five lowest energy peptide sequences and five other low energy sequences re-ranked on the basis of their similarity to peptides known to bind the same MHC allele are chemically synthesized and tested for their ability to bind and form stable complexes with the HLA-A2 molecule. The most efficient binders are also tested for inhibition of the T cell receptor recognition of two known CD8(+) T effectors. Results show that all 10 peptides bind the expected MHC protein. The six strongest binders also form stable HLA-A2-peptide complexes, albeit to varying degrees, and three peptides display significant inhibition of CD8(+) T cell recognition. These results are rationalized in light of our knowledge of the three-dimensional structures of the HLA-A2-peptide and HLA-A2-peptide-T cell receptor complexes.

  9. Association of Major Histocompatibility Complex Class I Haplotypes with Disease Progression after Simian Immunodeficiency Virus Challenge in Burmese Rhesus Macaques

    PubMed Central

    Nomura, Takushi; Yamamoto, Hiroyuki; Shiino, Teiichiro; Takahashi, Naofumi; Nakane, Taku; Iwamoto, Nami; Ishii, Hiroshi; Tsukamoto, Tetsuo; Kawada, Miki; Matsuoka, Saori; Takeda, Akiko; Terahara, Kazutaka; Tsunetsugu-Yokota, Yasuko; Iwata-Yoshikawa, Naoko; Hasegawa, Hideki; Sata, Tetsutaro; Naruse, Taeko K.; Kimura, Akinori

    2012-01-01

    Nonhuman primate AIDS models are essential for the analysis of AIDS pathogenesis and the evaluation of vaccine efficacy. Multiple studies on human immunodeficiency virus and simian immunodeficiency virus (SIV) infection have indicated the association of major histocompatibility complex class I (MHC-I) genotypes with rapid or slow AIDS progression. The accumulation of macaque groups that share not only a single MHC-I allele but also an MHC-I haplotype consisting of multiple polymorphic MHC-I loci would greatly contribute to the progress of AIDS research. Here, we investigated SIVmac239 infections in four groups of Burmese rhesus macaques sharing individual MHC-I haplotypes, referred to as A, E, B, and J. Out of 20 macaques belonging to A+ (n = 6), E+ (n = 6), B+ (n = 4), and J+ (n = 4) groups, 18 showed persistent viremia. Fifteen of them developed AIDS in 0.5 to 4 years, with the remaining three at 1 or 2 years under observation. A+ animals, including two controllers, showed slower disease progression, whereas J+ animals exhibited rapid progression. E+ and B+ animals showed intermediate plasma viral loads and survival periods. Gag-specific CD8+ T-cell responses were efficiently induced in A+ animals, while Nef-specific CD8+ T-cell responses were in A+, E+, and B+ animals. Multiple comparisons among these groups revealed significant differences in survival periods, peripheral CD4+ T-cell decline, and SIV-specific CD4+ T-cell polyfunctionality in the chronic phase. This study indicates the association of MHC-I haplotypes with AIDS progression and presents an AIDS model facilitating the analysis of virus-host immune interaction. PMID:22491464

  10. Genetic Variation on the BAT1-NFKBIL1-LTA Region of Major Histocompatibility Complex Class III Associates with Periodontitis

    PubMed Central

    Marchesani, Marja; Vlachopoulou, Efthymia; Mäntylä, Päivi; Paju, Susanna; Buhlin, Kåre; Suominen, Anna L.; Contreras, Johanna; Knuuttila, Matti; Hernandez, Marcela; Huumonen, Sisko; Nieminen, Markku S.; Perola, Markus; Sinisalo, Juha; Lokki, Marja-Liisa; Pussinen, Pirkko J.

    2014-01-01

    Periodontitis is a chronic inflammatory disease with a multifactorial etiology. We investigated whether human major histocompatibility complex (MHC) polymorphisms (6p21.3) are associated with periodontal parameters. Parogene 1 population samples (n = 169) were analyzed with 13,245 single nucleotide polymorphisms (SNPs) of the MHC region. Eighteen selected SNPs (P ≤ 0.001) were replicated in Parogene 2 population samples (n = 339) and the Health 2000 Survey (n = 1,420). All subjects had a detailed clinical and radiographic oral health examination. Serum lymphotoxin-α (LTA) concentrations were measured in the Parogene populations, and the protein was detected in inflamed periodontal tissue. In the Parogene 1 population, 10 SNPs were associated with periodontal parameters. The strongest associations emerged from the parameters bleeding on probing (BOP) and a probing pocket depth (PPD) of ≥6 mm with the genes BAT1, NFKBIL1, and LTA. Six SNPs, rs11796, rs3130059, rs2239527, rs2071591, rs909253, and rs1041981 (r2, ≥0.92), constituted a risk haplotype. In the Parogene 1 population, the haplotype had the strongest association with the parameter BOP, a PPD of ≥6 mm, and severe periodontitis with odds ratios (95% confidence intervals) of 2.63 (2.21 to 3.20), 2.90 (2.37 to 3.52), and 3.10 (1.63 to 5.98), respectively. These results were replicated in the other two populations. High serum LTA concentrations in the Parogene population were associated with the periodontitis risk alleles of the LTA SNPs (rs909253 and rs1041981) of the haplotype. In addition, the protein was expressed in inflamed gingival connective tissue. We identified a novel BAT1-NFKBIL1-LTA haplotype as a significant contributor to the risk of periodontitis. The genetic polymorphisms in the MHC class III region may be functionally important in periodontitis susceptibility. PMID:24566624

  11. Molecular Architecture of the Major Histocompatibility Complex Class I-Binding Site of Ly49 Natural Killer Cell Receptors

    SciTech Connect

    Deng,L.; Cho, S.; Malchiodi, E.; Kerzic, M.; Dam, J.; Mariuzza, R.

    2008-01-01

    Natural killer (NK) cells play a vital role in the detection and destruction of virally infected and tumor cells during innate immune responses. The highly polymorphic Ly49 family of NK receptors regulates NK cell function by sensing major histocompatibility complex class I (MHC-I) molecules on target cells. Despite the determination of two Ly49-MHC-I complex structures, the molecular features of Ly49 receptors that confer specificity for particular MHC-I alleles have not been identified. To understand the functional architecture of Ly49-binding sites, we determined the crystal structures of Ly49C and Ly49G and completed refinement of the Ly49C-H-2Kb complex. This information, combined with mutational analysis of Ly49A, permitted a structure-based classification of Ly49s that we used to dissect the binding site into three distinct regions, each having different roles in MHC recognition. One region, located at the center of the binding site, has a similar structure across the Ly49 family and mediates conserved interactions with MHC-I that contribute most to binding. However, the preference of individual Ly49s for particular MHC-I molecules is governed by two regions that flank the central region and are structurally more variable. One of the flanking regions divides Ly49s into those that recognize both H-2D and H-2K versus only H-2D ligands, whereas the other discriminates among H-2D or H-2K alleles. The modular design of Ly49-binding sites provides a framework for predicting the MHC-binding specificity of Ly49s that have not been characterized experimentally.

  12. Determinant selection of major histocompatibility complex class I- restricted antigenic peptides is explained by class I-peptide affinity and is strongly influenced by nondominant anchor residues

    PubMed Central

    1994-01-01

    The contribution of major histocompatibility complex (MHC) class I- peptide affinity to immunodominance of particular peptide antigens (Ags) in the class I-restricted cytotoxic T lymphocyte (CTL) response is not clearly established. Therefore, we have compared the H-2Kb- restricted binding and presentation of the immunodominant ovalbumin (OVA)257-264 (SIINFEKL) determinant to that of a subdominant OVA determinant OVA55-62 (KVVRFDKL). Immunodominance of OVA257-264 was not attributable to the specific T cell repertoire but correlated instead with more efficient Ag presentation. This enhanced Ag presentation could be accounted for by the higher affinity of Kb/OVA257-264 compared with Kb/OVA55-62 despite the presence of a conserved Kb-binding motif in both peptides. Kinetic binding studies using purified soluble H-2Kb molecules (Kbs) and biosensor techniques indicated that the Kon for association of OVA257-264-C6 and Kbs at 25 degrees C was integral of 10- fold faster (5.9 x 10(3) M-1 s-1 versus 6.5 x 10(2) M-1 s-1), and the Koff approximately twofold slower (9.1 x 10(-6) s-1 versus 1.6 x 10(-5) s-1), than the rate constants for interaction of OVA55-62-C6 and Kbs. The association of these peptides with Kb was significantly influenced by multiple residues at presumed nonanchor sites within the peptide sequence. The contribution of each peptide residue to Kb-binding was dependent upon the sequence context and the summed contributions were not additive. Thus the affinity of MHC class I-peptide binding is a critical factor controlling presentation of peptide Ag and immunodominance in the class I-restricted CTL response. PMID:7523572

  13. Archaebacterial class I and class II aldolases from extreme halophiles

    NASA Astrophysics Data System (ADS)

    Alterkar, Wijaya; Dhar, Nenoo M.

    1988-03-01

    Both, class I (Schiff-base forming) and class II (metal requiring) fructose biphosphate aldolases were found to be distributed among halophilic archaebacteria. The aldolase activity fromHalobacterium halobium, H. salinarium, H. cutirubrum, H. mediterranei andH. volcanii exhibited properties of a bacterial class II aldolase as it was metal-dependent for activity and therefore inhibited by EDTA. In contrast, aldolase fromH. saccharovorum, Halobacterium R-113, H. vallismortis andHalobacterium CH-1 formed a Schiff-base intermediate with the substrate and therefore resembled to eukaryotic class I type. The type of aldolase did not vary by changes in the growth medium.

  14. Archaebacterial class I and class II aldolases from extreme halophiles.

    PubMed

    Altekar, W; Dhar, N M

    1988-01-01

    Both, class I (Schiff-base forming) and class II (metal requiring) fructose biphosphate aldolases were found to be distributed among halophilic archaebacteria. The aldolase activity from Halobacteriium halobium, H. salinarium, H. cutirubrum, H. mediterranei and H. volcanii exhibited properties of a bacterial class II aldolase as it was metal-dependent for activity and therefore inhibited by EDTA. In contrast, aldolase from H. saccharovorum, Halobacterium R-113, H. vallismortis and Halobacterium CH-1 formed a Schiff-base intermediate with the substrate and therefore resembled to eukaryotic class I type. The type of aldolase did not vary by changes in the growth medium.

  15. Multiple expressed MHC class II loci in salmonids; details of one non-classical region in Atlantic salmon (Salmo salar)

    PubMed Central

    Harstad, Håvard; Lukacs, Morten F; Bakke, Hege G; Grimholt, Unni

    2008-01-01

    Background In teleosts, the Major Histocompatibility Complex (MHC) class I and class II molecules reside on different linkage groups as opposed to tetrapods and shark, where the class I and class II genes reside in one genomic region. Several teleost MHC class I regions have been sequenced and show varying number of class I genes. Salmonids have one major expressed MHC class I locus (UBA) in addition to varying numbers of non-classical genes. Two other more distant lineages are also identifyed denoted L and ZE. For class II, only one major expressed class II alpha (DAA) and beta (DAB) gene has been identified in salmonids so far. Results We sequenced a genomic region of 211 kb encompassing divergent MHC class II alpha (Sasa-DBA) and beta (Sasa-DBB) genes in addition to NRGN, TIPRL, TBCEL and TECTA. The region was not linked to the classical class II genes and had some synteny to genomic regions from other teleosts. Two additional divergent and expressed class II sequences denoted DCA and DDA were also identified in both salmon and trout. Expression patterns and lack of polymorphism make these genes non-classical class II analogues. Sasa-DBB, Sasa-DCA and Sasa-DDA had highest expression levels in liver, hindgut and spleen respectively, suggestive of distinctive functions in these tissues. Phylogenetic studies revealed more yet undescribed divergent expressed MHC class II molecules also in other teleosts. Conclusion We have characterised one genomic region containing expressed non-classical MHC class II genes in addition to four other genes not involved in immune function. Salmonids contain at least two expressed MHC class II beta genes and four expressed MHC class II alpha genes with properties suggestive of new functions for MHC class II in vertebrates. Collectively, our data suggest that the class II is worthy of more elaborate studies also in other teleost species. PMID:18439319

  16. MOLECULAR GENETICS OF THE SWINE MAJOR HISTOCOMPATIBILITY COMPLEX, THE SLA COMPLEX

    USDA-ARS?s Scientific Manuscript database

    The swine major histocompatibility complex (MHC) or swine leukocyte antigen (SLA) complex is one of the most gene-dense regions in the swine genome. It consists of three major gene clusters, the SLA class I, class III and class II regions, that span ~1.1, 0.7 and 0.5 Mb, respectively, making the swi...

  17. H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element.

    PubMed Central

    Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K

    1989-01-01

    Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor. Images PMID:2554307

  18. Early Endosomes Are Required for Major Histocompatiblity Complex Class II Transport to Peptide-loading Compartments

    PubMed Central

    Brachet, Valérie; Péhau-Arnaudet, Gérard; Desaymard, Catherine; Raposo, Graça; Amigorena, Sebastian

    1999-01-01

    Antigen presentation to CD4+ T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19°C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor–containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most αβIi complexes accumulated in tubules and vesicles devoid of γ-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes. PMID:10473634

  19. Major histocompatibility complex class I evolution in songbirds: universal primers, rapid evolution and base compositional shifts in exon 3

    PubMed Central

    Alcaide, Miguel; Liu, Mark

    2013-01-01

    Genes of the Major Histocompatibility Complex (MHC) have become an important marker for the investigation of adaptive genetic variation in vertebrates because of their critical role in pathogen resistance. However, despite significant advances in the last few years the characterization of MHC variation in non-model species still remains a challenging task due to the redundancy and high variation of this gene complex. Here we report the utility of a single pair of primers for the cross-amplification of the third exon of MHC class I genes, which encodes the more polymorphic half of the peptide-binding region (PBR), in oscine passerines (songbirds; Aves: Passeriformes), a group especially challenging for MHC characterization due to the presence of large and complex MHC multigene families. In our survey, although the primers failed to amplify exon 3 from two suboscine passerine birds, they amplified exon 3 of multiple MHC class I genes in all 16 species of oscine songbirds tested, yielding a total of 120 sequences. The 16 songbird species belong to 14 different families, primarily within the Passerida, but also in the Corvida. Using a conservative approach based on the analysis of cloned amplicons (n = 16) from each species, we found between 3 and 10 MHC sequences per individual. Each allele repertoire was highly divergent, with the overall number of polymorphic sites per species ranging from 33 to 108 (out of 264 sites) and the average number of nucleotide differences between alleles ranging from 14.67 to 43.67. Our survey in songbirds allowed us to compare macroevolutionary dynamics of exon 3 between songbirds and non-passerine birds. We found compelling evidence of positive selection acting specifically upon peptide-binding codons across birds, and we estimate the strength of diversifying selection in songbirds to be about twice that in non-passerines. Analysis using comparative methods suggest weaker evidence for a higher GC content in the 3rd codon position of

  20. Consequences of cytotoxic T lymphocyte interaction with major histocompatibility complex class I-expressing neurons in vivo

    PubMed Central

    1995-01-01

    Neurons have evolved strategies to evade immune surveillance that include an inability to synthesize the heavy chain of the class I major histocompatibility complex (MHC), proteins that are necessary for cytotoxic T lymphocyte (CTL) recognition of target cells. Multiple viruses have taken advantage of the lack of CTL-mediated recognition and killing of neurons by establishing persistent neuronal infections and thereby escaping attack by antiviral CTL. We have expressed a class I MHC molecule (Db) in neurons of transgenic mice using the neuron- specific enolase (NSE) promoter to determine the pathogenic consequences of CTL recognition of virally infected, MHC-expressing central nervous system (CNS) neurons. The NSE-Db transgene was expressed in H-2b founder mice, and transgene-derived messenger RNA was detected by reverse transcriptase-polymerase chain reaction in transgenic brains from several lines. Purified primary neurons from transgenic but not from nontransgenic mice adhered to coverslips coated with a conformation-dependent monoclonal antibody directed against the Dv molecule and presented viral peptide to CTL in an MHC-restricted manner, indicating that the Db molecule was expressed on transgenic neurons in a functional form. Transgenic mice infected with the neurotropic lymphocytic choriomeningitis virus (LCMV) and given anti- LCMV, MHC-restricted CTL displayed a high morbidity and mortality when compared with controls receiving MHC-mismatched CTL or expressing alternative transgenes. After CTL transfer, transgenic brains showed an increased number of CD8+ cells compared with nontransgenic controls as well as an increased rate of clearance of infectious virus from the CNS. Additionally, an increase in blood-brain barrier permeability was detected during viral clearance in NSE-Db transgenic mice and lasted several months after clearance of virus from neurons. In contrast, LCMV- infected, nontransgenic littermates and mice expressing other gene products from

  1. Optimal lymphocytic choriomeningitis virus sequences restricted by H-2Db major histocompatibility complex class I molecules and presented to cytotoxic T lymphocytes.

    PubMed

    Gairin, J E; Mazarguil, H; Hudrisier, D; Oldstone, M B

    1995-04-01

    Infection with lymphocytic choriomeningitis virus induces the generation of CD8+ cytotoxic T lymphocytes (CTL). In the H-2b mouse, this cellular immune response is directed against three viral structural epitopes (GP1, GP2, and NP) presented by the major histocompatibility complex (MHC) class I H-2Db molecules. This study was undertaken to delineate which sequence of each of these three epitopes is optimal for MHC binding and CTL recognition. The first step was to synthesize the relevant peptides truncated at the N or C terminus and flanking the crucial H-2Db-anchoring Asn residue in position 5. These peptides were then tested (i) for their binding properties in two H-2Db-specific assays with viable cells (upregulation of H-2Db expression on the surface of RMA-S cells and competition against the Db-restricted peptide 125I-gp276-286 on T2-Db cells) and (ii) for their abilities to sensitize H-2b target cells for CTL lysis in vitro. For optimal antigenic presentation, all three epitopes required the MHC-anchoring Asn residue at position 5 of their sequences. The results clearly and unambiguously delineated optimal lengths for two of the epitopes and two options for the third. NP appeared as a conventional 9-amino-acid (aa)-long peptide, np396-404 (FQPQNGQFI). GP2 was defined as a longer peptide (11 aa), gp276-286 (SGVENPGGYCL). Characterization of the GP1 epitope was more complex: the 9-aa-long peptide gp33-41 (KAVYNFATC) and the carboxyl-extended 11-aa-long peptide gp33-43 (KAVYN FATCGI) were both established as possible optimal sequences depending on the cell line used to test binding and lysis.

  2. Optimal lymphocytic choriomeningitis virus sequences restricted by H-2Db major histocompatibility complex class I molecules and presented to cytotoxic T lymphocytes.

    PubMed Central

    Gairin, J E; Mazarguil, H; Hudrisier, D; Oldstone, M B

    1995-01-01

    Infection with lymphocytic choriomeningitis virus induces the generation of CD8+ cytotoxic T lymphocytes (CTL). In the H-2b mouse, this cellular immune response is directed against three viral structural epitopes (GP1, GP2, and NP) presented by the major histocompatibility complex (MHC) class I H-2Db molecules. This study was undertaken to delineate which sequence of each of these three epitopes is optimal for MHC binding and CTL recognition. The first step was to synthesize the relevant peptides truncated at the N or C terminus and flanking the crucial H-2Db-anchoring Asn residue in position 5. These peptides were then tested (i) for their binding properties in two H-2Db-specific assays with viable cells (upregulation of H-2Db expression on the surface of RMA-S cells and competition against the Db-restricted peptide 125I-gp276-286 on T2-Db cells) and (ii) for their abilities to sensitize H-2b target cells for CTL lysis in vitro. For optimal antigenic presentation, all three epitopes required the MHC-anchoring Asn residue at position 5 of their sequences. The results clearly and unambiguously delineated optimal lengths for two of the epitopes and two options for the third. NP appeared as a conventional 9-amino-acid (aa)-long peptide, np396-404 (FQPQNGQFI). GP2 was defined as a longer peptide (11 aa), gp276-286 (SGVENPGGYCL). Characterization of the GP1 epitope was more complex: the 9-aa-long peptide gp33-41 (KAVYNFATC) and the carboxyl-extended 11-aa-long peptide gp33-43 (KAVYN FATCGI) were both established as possible optimal sequences depending on the cell line used to test binding and lysis. PMID:7533855

  3. Early failure of Class II resin composite versus Class II amalgam restorations placed by dental students.

    PubMed

    Overton, J D; Sullivan, Diane J

    2012-03-01

    Using the information from remake request slips in a dental school's predoctoral clinic, we examined the short-term survival of Class II resin composite restorations versus Class II dental amalgam restorations. In the student clinic, resin composite is used in approximately 58 percent of Class II restorations placed, and dental amalgam is used in the remaining 42 percent. In the period examined, Class II resin composite restorations were ten times more likely to be replaced at no cost to the patient than Class II dental amalgam restorations. A total of eighty-four resin composite restorations and six amalgam restorations were replaced due to an identified failure.

  4. DNA sequence of the Peromyscus leucopus MHC class II gene Aa (MhcPeleAa)

    SciTech Connect

    Crew, M.D.; Bates, L.M.

    1996-09-01

    The genus Peromyscus has been extensively studied by populations biologists and ecologists for over eighty years, with P. leucopus (the white-footed mouse) being one of the most intensively investigated species. Polymorphic major histocompatibility complex (MHC) genes have proven useful in population genetic studies and might be helpful in understanding the population dynamics of Peromyscus species which are ubiquitously distributed over North and Central America. Polymorphism of P. leucopus MHC (MhcPele) class II genes was evident by restriction fragment length polymorphism (RFLP) analyses using human and mouse probes and Pele class II loci exhibited degrees of polymorphism similar to H2 class II genes (A-like>E-like). 8 refs., 2 figs.

  5. Presence of strong association of the major histocompatibility complex (MHC) class I allele HLA-A*26:01 with idiopathic hypoparathyroidism.

    PubMed

    Goswami, Ravinder; Singh, Archana; Gupta, Nandita; Rani, Rajni

    2012-09-01

    The pathogenesis of isolated hypoparathyroidism, also referred to as idiopathic hypoparathyroidism (IH), is not clear. There is a paucity of information related to the immunogenetic basis of the disease due to its rarity. A recurrent theme of several autoimmune disorders is aberrant antigen presentation. We investigated for the association of alleles of the human leukocyte antigen (HLA) class I and II loci with IH. A total of 134 patients with IH and 902 healthy controls from the same ethnic background participated in the study. There was a significant increase of HLA class I alleles HLA-A*26:01 [P < 1.71 × 10(-34); odds ratio (OR) = 9.29; 95% confidence interval (CI) = 6.08-14.16] and HLA-B*08:01 (P < 8.19 × 10(-6); OR = 2.59; 95% CI = 1.63-4.04) in patients with IH compared to healthy controls. However, the association of A*26:01 was primary because B*08:01 was in linkage disequilibrium with A*26:01. Although the major histocompatibility complex (MHC) is very polymorphic, several alleles of HLA loci share key residues at anchor positions in the peptide binding pockets such that similar peptides may be presented by different MHC molecules encoded by the same locus. These allelic forms with similar anchoring amino acids have been clustered in supertypes. An analysis of HLA-A locus supertypes A01, A02, A03, and A04 revealed that supertype A01 was significantly increased (P < 9.18 × 10(-9); OR = 2.95) in IH compared to controls. However, this increase in the supertype A01 was contributed by A*26:01 because 68.7% of the A01 samples had A*26:01. Other alleles of the supertype did not show any significant differences. The strong association of HLA-A*26:01 suggests an important role of MHC class I-mediated presentation of autoantigenic peptides to CD8(+) cytotoxic T cells in the pathogenesis of IH. These data provide evidence for the autoimmune etiology of IH akin to other autoimmune disorders like type 1 diabetes and rheumatoid arthritis.

  6. Transcription specificity of the class Ib genes SLA-6, SLA-7 and SLA-8 of the swine major histocompatibility complex and comparison with class Ia genes.

    PubMed

    Kusza, S; Flori, L; Gao, Y; Teillaud, A; Hu, R; Lemonnier, G; Bosze, Z; Bourneuf, E; Vincent-Naulleau, S; Rogel-Gaillard, C

    2011-10-01

    Our aim was to analyse the transcription levels of the three non-classical class Ib genes SLA-6, SLA-7 and SLA-8 of the swine major histocompatibility complex in various tissues and conditions and to compare them to the transcription levels of classical class Ia genes. Twenty-five adult tissues from two pig breeds, pig renal PK15 cells infected with the Pseudorabies virus, and peripheral blood mononuclear cells (PBMCs) stimulated by lipopolysaccharide or a mixture of phorbol myristate acetate and ionomycin were included in our study. Relative transcription was quantified by quantitative real-time PCR. On average, in adult tissues and PBMCs and compared to SLA-6, the transcription level of SLA-Ia genes was 100-1000 times higher, the level of SLA-8 was 10-20 times higher, and that of SLA-7 was five times higher. Thus, SLA-8 is the most transcribed SLA-Ib gene, followed by the SLA-7 and SLA-6 genes. The highest transcription levels of SLA-Ib transcripts were found in the lymphoid organs, followed by the lung and the digestive tract. The tissue variability of expression levels was widest for the SLA-6 gene, with a 1:32 ratio between the lowest and highest levels in contrast to a 1:12 ratio for the SLA-7 and SLA-8 genes and a 1:16 ratio for the SLA-Ia genes. During PK-15 infection and PBMC stimulation, SLA-Ia and SLA-8 genes were downregulated, whereas SLA-6 and SLA-7 were upregulated, downregulated or not significantly modified. Our overall results confirm the tissue-wide transcription of the three SLA-Ib genes and suggest that they have complementary roles. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  7. Selection of lowly immunogenic and highly tolerogenic donor and recipient allochimeric class I major histocompatibility complex proteins.

    PubMed

    Perez, John; Stepkowski, Stanislaw M; Song, Ping; Trawick, Barton; Wang, Mou-Er; Janczewska, Slawa; Kahan, Barry D

    2003-10-27

    Ten different highly polymorphic amino acids (AAs) are located in the alpha1 (alpha1h) and alpha2 (alpha2h) helical regions of the class I major histocompatibility complex RT1. An rat alloantigen. We examined the potential of alpha1h-RT1. An versus alpha2h-RT1. An polymorphic AAs to induce accelerated rejection or tolerance of heart allografts. The allochimeric alpha1h52-90n-RT1.Ac and alpha2h148-179n-RT1.Ac cDNAs were produced by the substitution of nucleotides encoding recipient RT1.Ac AAs for donor RT1. An AAs. Allochimeric and wild-type (WT)-RT1. An proteins were generated in an Escherichia coli expression system. A single portal vein administration of 100 mug alpha1h52-90n-RT1.Ac protein in combination with a 7-day course of oral cyclosporine A (4 mg/kg) induced tolerance to Brown Norway (BN) (RT1n) heart allografts in PVG (RT1c) recipients more effectively than did WT-RT1. An protein; alpha2h148-179n-RT1.Ac protein was ineffective. However, subcutaneous injection of 100 mug WT-RT1. An (but neither alpha1h52-90n-RT1.Ac nor alpha2h148-179n-RT1.Ac) protein induced accelerated rejection of BN heart allografts. Untreated PVG recipients of BN heart allografts displayed activation of both interleukin (IL)-2- and interferon-gamma-producing T helper (Th) 1 cells and IL-4- and IL-10-producing Th2 cells on days 5, 7, and 14 postgrafting, as measured by an enzyme-linked immunospot assay. In contrast, in comparison with rejectors, tolerant recipients showed down-regulation of Th1 cells and up-regulation of Th2 cells on days 5, 7, 14, and 200 postgrafting. Histology of heart allografts showed that tolerant BN heart allografts had no evidence of acute or chronic rejection when examined on day 100 after transplantation. The poorly immunogenic alpha1h52-90n-RT1.Ac allochimeric protein induces tolerance by selective activation of regulatory Th2 cells.

  8. Polycomb recruitment at the Class II transactivator gene.

    PubMed

    Boyd, Nathaniel H; Morgan, Julie E; Greer, Susanna F

    2015-10-01

    The Class II Transactivator (CIITA) is the master regulator of Major Histocompatibility Class II (MHC II) genes. Transcription of CIITA through the IFN-γ inducible CIITA promoter IV (CIITA pIV) during activation is characterized by a decrease in trimethylation of histone H3 lysine 27 (H3K27me3), catalyzed by the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2). While EZH2 is the known catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) and is present at the inactive CIITA pIV, the mechanism of PRC2 recruitment to mammalian promoters remains unknown. Here we identify two DNA-binding proteins, which interact with and regulate PRC2 recruitment to CIITA pIV. We demonstrate Yin Yang 1 (YY1) and Jumonji domain containing protein 2 (JARID2) are binding partners along with EZH2 in mammalian cells. Upon IFN-γ stimulation, YY1 dissociates from CIITA pIV while JARID2 binding to CIITA pIV increases, suggesting novel roles for these proteins in regulating expression of CIITA pIV. Knockdown of YY1 and JARID2 yields decreased binding of EZH2 and H3K27me3 at CIITA pIV, suggesting important roles for YY1 and JARID2 at CIITA pIV. JARID2 knockdown also results in significantly elevated levels of CIITA mRNA upon IFN-γ stimulation. This study is the first to identify novel roles of YY1 and JARID2 in the epigenetic regulation of the CIITA pIV by recruitment of PRC2. Our observations indicate the importance of JARID2 in CIITA pIV silencing, and also provide a novel YY1-JARID2-PRC2 regulatory complex as a possible explanation of differential PRC2 recruitment at inducible versus permanently silenced genes.

  9. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression.

    PubMed

    Busch, Robert; Rinderknecht, Cornelia H; Roh, Sujin; Lee, Andrew W; Harding, James J; Burster, Timo; Hornell, Tara M C; Mellins, Elizabeth D

    2005-10-01

    In antigen-presenting cells (APCs), loading of major histocompatibility complex class II (MHC II) molecules with peptides is regulated by invariant chain (Ii), which blocks MHC II antigen-binding sites in pre-endosomal compartments. Several molecules then act upon MHC II molecules in endosomes to facilitate peptide loading: Ii-degrading proteases, the peptide exchange factor, human leukocyte antigen-DM (HLA-DM), and its modulator, HLA-DO (DO). Here, we review our findings arguing that DM stabilizes a globally altered conformation of the antigen-binding groove by binding to a lateral surface of the MHC II molecule. Our data imply changes in the interactions between specificity pockets and peptide side chains, complementing data from others that suggest DM affects hydrogen bonds. Selective weakening of peptide/MHC interactions allows DM to alter the peptide repertoire. We also review our studies in cells that highlight the ability of several factors to modulate surface expression of MHC II molecules via post-Golgi mechanisms; these factors include MHC class II-associated Ii peptides (CLIP), DM, and microbial products that modulate MHC II traffic from endosomes to the plasma membrane. In this context, we discuss possible mechanisms by which the association of some MHC II alleles with autoimmune diseases may be linked to their low CLIP affinity.

  10. The major histocompatibility complex of the rat,RT 1 : II. biochemical evidence for a complex genetic organization.

    PubMed

    Sporer, R; Black, G; Rigiero, C; Manson, L; Götze, D

    1978-12-01

    Recombinational analysis has shown that the rat MHC,RT1 is divided into two regions:RT1.A, which codes for class I (transplantation) antigens, andRT1.B, which controls the humoral immune response and proliferative response to allogeneic cells as well as the expression of class II (Ia) antigens. Serological and sequence studies suggest that there might be more than one antigen-coding locus within theRT1.A region. Results obtained by sequential immunoprecipitation reveal that both regions code for at least two gene products. By implication, theRT1 complex must therefore harbor at least four loci;RT1.A andD coding for class I glycoproteins (45,000 daltons); andRT1.B andE coding for class II (Ia) glycoproteins (35,000 and 28,000 daltons).

  11. Molecular and biological interaction between major histocompatibility complex class I antigens and luteinizing hormone receptors or beta-adrenergic receptors triggers cellular response in mice.

    PubMed Central

    Solano, A R; Cremaschi, G; Sánchez, M L; Borda, E; Sterin-Borda, L; Podestá, E J

    1988-01-01

    Purified IgG from BALB/c mouse anti-C3H serum exerts positive inotropic and chronotropic effects in C3H mouse atria and induces testosterone synthesis in C3H mouse Leydig cells. The effect depends on IgG concentration and can be abolished by beta-adrenergic-receptor and luteinizing hormone-receptor antagonists. IgG interferes with the binding of dihydroalprenolol and luteinizing hormone. Monoclonal antibodies against major histocompatibility complex class I antigens were active on the Leydig cells of C3H and BALB/c mice. There was a parallelism between the effect of each individual monoclonal antibody with specificity for a particular haplotype and the response of the target cell from the strains carrying such haplotypes. These antibodies could precipitate the soluble luteinizing hormone-receptor complex. The results suggested that bound hormone triggers the association of major histocompatibility class I antigen with the receptor, thereby activating the respective target cells. PMID:2839829

  12. Lack of Major Histocompatibility Complex Class I Upregulation and Restrictive Infection by JC Virus Hamper Detection of Neurons by T Lymphocytes in the Central Nervous System.

    PubMed

    Wüthrich, Christian; Batson, Stephanie; Koralnik, Igor J

    2015-08-01

    The human polyomavirus JC (JCV) infects glial cells in immunosuppressed individuals, leading to progressive multifocal leukoencephalopathy. Polyomavirus JC can also infect neurons in patients with JCV granule cell neuronopathy and JCV encephalopathy. CD8-positive T cells play a crucial role in viral containment and outcome in progressive multifocal leukoencephalopathy, but whether CD8-positive T cells can also recognize JCV-infected neurons is unclear. We used immunohistochemistry to determine the prevalence of T cells in neuron-rich areas of archival brain samples from 77 patients with JCV CNS infections and 94 control subjects. Neurons predominantly sustained a restrictive infection with expression of JCV regulatory protein T antigen (T Ag), whereas glial cells were productively infected and expressed both T Ag and the capsid protein VP1. T cells were more prevalent near JCV-infected cells with intact nuclei expressing both T Ag and VP1 compared with those expressing either protein alone. CD8-positive T cells also colocalized more with JCV-infected glial cells than with JCV-infected neurons. Major histocompatibility complex class I expression was upregulated in JCV-infected areas but could only be detected in rare neurons interspersed with infected glial cells. These results suggest that isolated neurons harboring restrictive JCV infection do not upregulate major histocompatibility complex class I and thus may escape recognition by CD8-positive T cells.

  13. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications.

    PubMed

    Afridi, Saifullah; Hoessli, Daniel C; Hameed, Muhammad Waqar

    2016-07-01

    Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.

  14. Class II transactivator-induced MHC class II expression in pancreatic cancer cells leads to tumor rejection and a specific antitumor memory response.

    PubMed

    Ekkirala, Chaitanya Ramesh; Cappello, Paola; Accolla, Roberto S; Giovarelli, Mirella; Romero, Irene; Garrido, Cristina; Garcia-Lora, Angel Miguel; Novelli, Francesco

    2014-10-01

    The loss of major histocompatibility complex (MHC) classes I and II is a well-known mechanism by which cancer cells are able to escape from immune recognition. In this study, we analyzed the expression of antigen processing and presenting molecules in 2 cell lines derived from mouse models of pancreatic ductal adenocarcinoma (PDA) and the effects of the re-expression of MHC class II on PDA rejection. The PDA cell lines were analyzed for the expression of MHC class I, II, and antigen-processing molecules by flow cytometry or polymerase chain reaction. We generated stable PDA-MHC class II transactivator (CIITA) cells and injected them into syngeneic mice. The CD4 and CD8 T-cell role was analyzed in vitro and in vivo. Murine PDA cell lines were negative for MHC and antigen-processing molecules, but their expression was restored by exogenous interferon-γ. CIITA-tumor cells were rejected in 80% to 100% of injected mice, which also developed long-lasting immune memory. In vitro assays and immunohistochemical analyses revealed the recruitment of T effector cells and CD8 T cells into the tumor area. Overall, these data confirm that immunotherapy is a feasible therapeutic approach to recognize and target an aggressive cancer such as PDA.

  15. Shark Class II Invariant Chain Reveals Ancient Conserved Relationships with Cathepsins and MHC Class II

    PubMed Central

    Criscitiello, Michael F.; Ohta, Yuko; Eubanks, Jeannine O.; Chen, Patricia L.; Flajnik, Martin F.

    2011-01-01

    The invariant chain (Ii) is the critical third chain required for the MHC class II heterodimer to be properly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells. Here, we report the isolation of the nurse shark Ii gene, and the comparative analysis of Ii splice variants, expression, genomic organization, predicted structure, and function throughout vertebrate evolution. Alternative splicing to yield Ii with and without the putative protease-protective, thyroglobulin-like domain is as ancient as the MHC-based adaptive immune system, as our analyses in shark and lizard further show conservation of this mechanism in all vertebrate classes except bony fish. Remarkable coordinate expression of Ii and class II was found in shark tissues. Conserved Ii residues and cathepsin L orthologs suggest their long co-evolution in the antigen presentation pathway, and genomic analyses suggest 450 million years of conserved Ii exon/intron structure. Other than an extended linker preceding the thyroglobulin-like domain in cartilaginous fish, the Ii gene and protein are predicted to have largely similar physiology from shark to man. Duplicated Ii genes found only in teleosts appear to have become sub-functionalized, as one form is predicted to play the same role as that mediated by Ii mRNA alternative splicing in all other vertebrate classes. No Ii homologs or potential ancestors of any of the functional Ii domains were found in the jawless fish or lower chordates. PMID:21996610

  16. Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II.

    PubMed

    Criscitiello, Michael F; Ohta, Yuko; Graham, Matthew D; Eubanks, Jeannine O; Chen, Patricia L; Flajnik, Martin F

    2012-03-01

    The invariant chain (Ii) is the critical third chain required for the MHC class II heterodimer to be properly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells. Here, we report the isolation of the nurse shark Ii gene, and the comparative analysis of Ii splice variants, expression, genomic organization, predicted structure, and function throughout vertebrate evolution. Alternative splicing to yield Ii with and without the putative protease-protective, thyroglobulin-like domain is as ancient as the MHC-based adaptive immune system, as our analyses in shark and lizard further show conservation of this mechanism in all vertebrate classes except bony fish. Remarkable coordinate expression of Ii and class II was found in shark tissues. Conserved Ii residues and cathepsin L orthologs suggest their long co-evolution in the antigen presentation pathway, and genomic analyses suggest 450 million years of conserved Ii exon/intron structure. Other than an extended linker preceding the thyroglobulin-like domain in cartilaginous fish, the Ii gene and protein are predicted to have largely similar physiology from shark to man. Duplicated Ii genes found only in teleosts appear to have become sub-functionalized, as one form is predicted to play the same role as that mediated by Ii mRNA alternative splicing in all other vertebrate classes. No Ii homologs or potential ancestors of any of the functional Ii domains were found in the jawless fish or lower chordates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Developmental and cytokine-mediated regulation of MHC class II gene promoter occupancy in vivo.

    PubMed

    Kara, C J; Glimcher, L H

    1993-06-01

    The class II genes of the major histocompatibility complex are a family of genes whose expression is regulated developmentally in cells of the B lineage and by IFN-gamma in many other cell types. Using the approach of in vivo footprinting, which allows for the examination of protein-promoter interactions within intact cells, we demonstrated a transition from unoccupied to occupied to once again unoccupied class II promoters in cell lines representing the developmental pathway of B cells. IFN-gamma treatment of HeLa cells led to increased promoter occupancy of the DR alpha and DR beta promoters at the same sites that are constitutively bound in mature B cells. No IFN-gamma-specific binding site was induced. Additionally, an octamer element in the DR alpha gene displayed preferential binding in B cells. These results demonstrate that changes in the transcription of the class II genes are associated with changes in factor binding at the promoter in vivo. Moreover, given the ubiquity of class II promoter binding proteins, these results suggest that throughout B cell development and upon IFN-gamma stimulation, the accessibility of class II promoter DNA is subject to regulation.

  18. Extensive sharing of MHC class II alleles between rhesus and cynomolgus macaques.

    PubMed

    Doxiadis, Gaby G M; Rouweler, Annemiek J M; de Groot, Natasja G; Louwerse, Annet; Otting, Nel; Verschoor, Ernst J; Bontrop, Ronald E

    2006-05-01

    In contrast to rhesus monkeys, substantial knowledge on cynomolgus monkey major histocompatibility complex (MHC) class II haplotypes is lacking. Therefore, 17 animals, including one pedigreed family, were thoroughly characterized for polymorphic Mhc class II region genes as well as their mitochondrial DNA (mtDNA) sequences. Different cynomolgus macaque populations appear to exhibit unique mtDNA profiles reflecting their geographic origin. Within the present panel, 10 Mafa-DPB1, 14 Mafa-DQA1, 12 Mafa-DQB1, and 35 Mafa-DRB exon 2 sequences were identified. All of these alleles cluster into lineages that were previously described for rhesus macaques. Moreover, about half of the Mafa-DPB1, Mafa-DQA1, and Mafa-DQB1 alleles and one third of the Mafa-DRB exon 2 sequences are identical to rhesus macaque orthologues. Such a high level of Mhc class II allele sharing has not been reported for primate species. Pedigree analysis allowed the characterization of nine distinct Mafa class II haplotypes, and seven additional ones could be deduced. Two of these haplotypes harbor a duplication of the Mafa-DQB1 locus. Despite extensive allele sharing, rhesus and cynomolgus monkeys do not appear to possess identical Mhc class II haplotypes, thus illustrating that new haplotypes were generated after speciation by recombination-like processes.

  19. The biogenesis of the MHC class II compartment in human I-cell disease B lymphoblasts

    PubMed Central

    1996-01-01

    The localization and intracellular transport of major histocompatibility complex (MHC) class II molecules nd lysosomal hydrolases were studied in I-Cell Disease (ICD) B lymphoblasts, which possess a mannose 6-phosphate (Man-6-P)-independent targeting pathway for lysosomal enzymes. In the trans-Golgi network (TGN), MHC class II- invariant chain complexes colocalized with the lysosomal hydrolase cathepsin D in buds and vesicles that lacked markers of clathrin-coated vesicle-mediated transport. These vesicles fused with the endocytic pathway leading to the formation of "early" MHC class II-rich compartments (MIICs). Similar structures were observed in the TGN of normal beta lymphoblasts although they were less abundant. Metabolic labeling and subcellular fractionation experiments indicated that newly synthesized cathepsin D and MHC class II-invariant chain complexes enter a non-clathrin-coated vesicular structure after their passage through the TGN and segregation from the secretory pathway. These vesicles were also devoid of the cation-dependent mannose 6-phosphate (Man-6-P) receptor, a marker of early and late endosomes. These findings suggest that in ICD B lymphoblasts the majority of MHC class II molecules are transported directly from the TGN to "early" MIICs and that acid hydrolases cam be incorporated into MIICs simultaneously by a Man-6-P-independant process. PMID:8603911

  20. Distinct functions for the glycans of tapasin and heavy chains in the assembly of major histocompatibility complex (MHC) class I molecules

    PubMed Central

    Rizvi, Syed Monem; Cid, Natasha Del; Lybarger, Lonnie; Raghavan, Malini

    2011-01-01

    Complexes of specific assembly factors and generic endoplasmic reticulum (ER) chaperones collectively called the major histocompatibility complex (MHC) class I peptide loading complex (PLC) function in the folding and assembly of MHC class I molecules. The glycan binding chaperone calreticulin and partner oxidoreductase ERp57 are important in MHC class I assembly, but the sequence of assembly events and specific interactions involved remain incompletely understood. We show that the recruitments of calreticulin and ERp57 to the PLC are co-dependent and also dependent upon the ERp57 binding site and the glycan of the assembly factor tapasin. Furthermore, the ERp57 binding site and the glycan of tapasin enhance β2m and MHC class I heavy chain recruitment to the PLC, with the ERp57 binding site having the dominant effect. On the other hand, the conserved MHC class I heavy chain glycan played a minor role in calreticulin recruitment into the PLC, but impacted the recruitment of heavy chains into the PLC, and glycan-deficient heavy chains were impaired for tapasin-independent and tapasin-assisted assembly. The conserved MHC class I glycan and tapasin facilitated an early step in the assembly of heavy chain-β2m heterodimers, for which tapasin-ERp57 or tapasin-calreticulin complexes were not required. Together, these studies provide insights into how PLCs are constructed, demonstrate two distinct mechanisms by which PLCs can be stabilized, and suggest the presence of intermediate heavy chain-deficient PLCs. PMID:21263072

  1. Major histocompatibility class I gene transcription in thyrocytes: a series of interacting regulatory DNA sequence elements mediate thyrotropin/cyclic adenosine 3',5'-monophosphate repression.

    PubMed

    Kirshner, S; Palmer, L; Bodor, J; Saji, M; Kohn, L D; Singer, D S

    2000-01-01

    In response to TSH, thyroid cells decrease major histocompatibility (MHC) class I expression and transcription, providing an excellent model for studying the dynamic modulation of transcription of MHC class I genes. Here we show that protein kinase A (PKA), a downstream effector of the TSH/cAMP pathway, reproduces the effects of TSH in repressing class I transcription. PKA/cAMP-mediated repression of transcription involves multiple interacting upstream response elements in the class I promoter: an element extending from -127 to -90 bp containing a CRE-like core, and at least two elements within an upstream 30-bp segment (-160 to -130 bp), which overlaps with the interferon regulatory element. ICER (inducible cAMP early response), a transcriptional repressor induced by TSH/cAMP can decrease class I promoter activity when introduced into FRTL-5 thyroid cells in the absence of TSH/cAMP. ICER binds to both the CRE-like element and the upstream 30-bp segment, generating a novel TSH-induced ternary complex. The present studies led to the proposal that TSH-mediated repression of class I transcription is the result of integrating signals from transcription factors through the higher order interactions of multiple regulatory elements.

  2. Tumor-specific CD4+ T cells eradicate myeloma cells genetically deficient in MHC class II display

    PubMed Central

    Tveita, Anders; Fauskanger, Marte; Bogen, Bjarne; Haabeth, Ole Audun Werner

    2016-01-01

    CD4+ T cells have been shown to reject tumor cells with no detectable expression of major histocompatibility complex class II (MHC II). However, under certain circumstances, induction of ectopic MHC II expression on tumor cells has been reported. To confirm that CD4+ T cell-mediated anti-tumor immunity can be successful in the complete absence of antigen display on the tumor cells themselves, we eliminated MHC II on tumor cells using CRISPR/Cas9. Our results demonstrate that ablation of the relevant MHC II (I-Ed) in multiple myeloma cells (MOPC315) does not hinder rejection by tumor-specific CD4+ T cells. These findings provide conclusive evidence that CD4+ T cells specific for tumor antigens can eliminate malignant cells in the absence of endogenous MHC class II expression on the tumor cells. This occurs through antigen uptake and indirect presentation on tumor-infiltrating macrophages. PMID:27626487

  3. Retinoic acid induction of major histocompatibility complex class I genes in NTera-2 embryonal carcinoma cells involves induction of NF-kappa B (p50-p65) and retinoic acid receptor beta-retinoid X receptor beta heterodimers.

    PubMed Central

    Segars, J H; Nagata, T; Bours, V; Medin, J A; Franzoso, G; Blanco, J C; Drew, P D; Becker, K G; An, J; Tang, T

    1993-01-01

    Retinoic acid (RA) treatment of human embryonal carcinoma (EC) NTera-2 (NT2) cells induces expression of major histocompatibility complex (MHC) class I and beta-2 microglobulin surface molecules. We found that this induction was accompanied by increased levels of MHC class I mRNA, which was attributable to the activation of the two conserved upstream enhancers, region I (NF-kappa B like) and region II. This activation coincided with the induction of nuclear factor binding activities specific for the two enhancers. Region I binding activity was not present in undifferentiated NT2 cells, but binding of an NF-kappa B heterodimer, p50-p65, was induced following RA treatment. The p50-p65 heterodimer was produced as a result of de novo induction of p50 and p65 mRNAs. Region II binding activity was present in undifferentiated cells at low levels but was greatly augmented by RA treatment because of activation of a nuclear hormone receptor heterodimer composed of the retinoid X receptor (RXR beta) and the RA receptor (RAR beta). The RXR beta-RAR beta heterodimer also bound RA responsive elements present in other genes which are likely to be involved in RA triggering of EC cell differentiation. Furthermore, transfection of p50 and p65 into undifferentiated NT2 cells synergistically activated region I-dependent MHC class I reporter activity. A similar increase in MHC class I reporter activity was demonstrated by cotransfection of RXR beta and RAR beta. These data show that following RA treatment, heterodimers of two transcription factor families are induced to bind to the MHC enhancers, which at least partly accounts for RA induction of MHC class I expression in NT2 EC cells. Images PMID:8413217

  4. Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner.

    PubMed Central

    Androlewicz, M J; Anderson, K S; Cresswell, P

    1993-01-01

    We have investigated the role of the putative peptide transporters associated with antigen processing (TAP) by using a permeabilized-cell system. The main objective was to determine whether these molecules, which bear homology to the ATP-binding cassette family of transporters, translocate antigenic peptides across the endoplasmic reticulum membrane for assembly with major histocompatibility complex (MHC) class I molecules and beta 2-microglobulin light chain. The pore-forming toxin streptolysin O was used to generate permeabilized cells, and peptide translocation was determined by measuring the amount of added radiolabeled peptide bound to endogenous class I molecules. No radiolabeled peptide was associated with MHC class I glycoproteins from unpermeabilized cells. We found that efficient peptide binding to MHC class I molecules in permeabilized cells is both transporter dependent and ATP dependent. In antigen-processing mutant cells lacking a functional transporter, uptake occurs only through a less-efficient transporter and ATP-independent pathway. In addition, short peptides (8-10 amino acids) known to bind MHC class I molecules compete efficiently with a radiolabeled peptide for TAP-dependent translocation, whereas longer peptides and a peptide derived from an endoplasmic reticulum signal sequence do not compete efficiently. This result indicates that the optimal substrates for TAP possess the characteristics of MHC-binding peptides. Images Fig. 2 Fig. 3 Fig. 4 PMID:8415666

  5. Allospecific cytotoxic T lymphocytes recognize an H-2 peptide in the context of a murine major histocompatibility complex class I molecule.

    PubMed Central

    Song, E S; Linsk, R; Olson, C A; McMillan, M; Goodenow, R S

    1988-01-01

    We have isolated cytotoxic T lymphocytes (CTL) preferentially reactive with the alpha 1 external domain of the H-2Ld antigen by selecting for T cells capable of recognizing a variant major histocompatibility complex (MHC) class I antigen sharing alpha 1 sequences with H-2Ld. Using these CTL, we demonstrate that a synthetic alpha 1 peptide corresponding to one of the helices derived from the H-2Ld molecule can be presented by a class I restriction element to reconstitute a CTL determinant borne by intact H-2Ld. Moreover, several other H-2L-reactive CTL generated independently were also able to recognize H-2Ld either as an intact alloantigen or as a peptide in conjunction with appropriate class I restriction elements. These data demonstrate that an H-2 peptide can reconstitute a CTL target structure and suggest that some alloreactive T cells in fact might be directed against allogeneic class I peptides in the context of a class I framework. PMID:3258067

  6. Class II malocclusion occlusal severity description

    PubMed Central

    JANSON, Guilherme; SATHLER, Renata; FERNANDES, Thais Maria Freire; ZANDA, Marcelo; PINZAN, Arnaldo

    2010-01-01

    Objectives It is well known that the efficacy and the efficiency of a Class II malocclusion treatment are aspects closely related to the severity of the dental anteroposterior discrepancy. Even though, sample selection based on cephalometric variables without considering the severity of the occlusal anteroposterior discrepancy is still common in current papers. In some of them, when occlusal parameters are chosen, the severity is often neglected. The purpose of this study is to verify the importance given to the classification of Class II malocclusion, based on the criteria used for sample selection in a great number of papers published in the orthodontic journal with the highest impact factor. Material and Methods A search was performed in PubMed database for full-text research papers referencing Class II malocclusion in the history of the American Journal of Orthodontics and Dentofacial Orthopedics (AJO-DO). Results A total of 359 papers were retrieved, among which only 72 (20.06%) papers described the occlusal severity of the Class II malocclusion sample. In the other 287 (79.94%) papers that did not specify the anteroposterior discrepancy severity, description was considered to be crucial in 159 (55.40%) of them. Conclusions Omission in describing the occlusal severity demands a cautious interpretation of 44.29% of the papers retrieved in this study. PMID:20835576

  7. Disequilibrium patterns of the peptide transporter loci within the HLA class II region

    SciTech Connect

    Klitz, W.; Stephens, C.J.; Carrington, M.

    1994-09-01

    Disequilibrium between genetic markers is expected to decline monotonically with recombinational map distance. We present evidence from the HLA class II region which seems to violate this principle. Pairwise disequilibrium values from a sample of northern Europeans were calculated for six loci ranging in physical separation from 7 kb to 550 kb. The histocompatibility loci DRB1, DQA1 and DQB1 located on the distal end of the class II region behave as a single evolutionary unit within which extremely high linkage disequilibrium exists. Lower but significant levels of disequilibrium are present between these loci and DPB1 located at the proximal edge of the HLA complex. The peptide transporter loci TAP1 and TAP2, located in the intervening region, reveal no disequilibrium with each other and low or negligible disequilibrium with the flanking loci. This evidence suggests either a high rate of gene conversion in the TAP loci which mixes TAP alleles among haplotypes while maintaining the flanking markers, or recombinational hot spots near and between the TAP loci operating in combination with selection to preserve particular combinations of alleles at the flanking histocompatibility loci. Whatever explanation proves correct, this work demonstrates that the lack of association of TAP alleles with a DR-DQ associated disease cannot be used as evidence for a centromeric boundary of influence on that disease.

  8. Virus and cytotoxic T lymphocytes: crucial role of viral peptide secondary structure in major histocompatibility complex class I interactions.

    PubMed

    Gairin, J E; Oldstone, M B

    1993-05-01

    Viral antigens are presented to cytotoxic T lymphocytes (CTLs) by H-2-restricted major histocompatibility complex (MHC) glycoproteins. Binding of the endogenously processed viral peptides (epitopes) to their specific MHC molecules is an early intracellular event in the recognition process and is necessary for subsequent killing of virus-infected cells by virus-specific CTLs. It is now well established that interaction between a viral antigenic peptide and MHC is dependent on the primary structure (length and amino acid sequence) of that antigen. Here we show, using the H-2Db-restricted epitope GP277-286 of lymphocytic choriomeningitis virus as a model, that the secondary structure (conformation) of the viral sequence also plays a crucial role in the binding of a viral antigen to MHC glycoprotein and in its subsequent presentation to virus-specific CTLs.

  9. Virus and cytotoxic T lymphocytes: crucial role of viral peptide secondary structure in major histocompatibility complex class I interactions.

    PubMed Central

    Gairin, J E; Oldstone, M B

    1993-01-01

    Viral antigens are presented to cytotoxic T lymphocytes (CTLs) by H-2-restricted major histocompatibility complex (MHC) glycoproteins. Binding of the endogenously processed viral peptides (epitopes) to their specific MHC molecules is an early intracellular event in the recognition process and is necessary for subsequent killing of virus-infected cells by virus-specific CTLs. It is now well established that interaction between a viral antigenic peptide and MHC is dependent on the primary structure (length and amino acid sequence) of that antigen. Here we show, using the H-2Db-restricted epitope GP277-286 of lymphocytic choriomeningitis virus as a model, that the secondary structure (conformation) of the viral sequence also plays a crucial role in the binding of a viral antigen to MHC glycoprotein and in its subsequent presentation to virus-specific CTLs. PMID:7682632

  10. Studying MHC class II presentation of immobilized antigen by B lymphocytes.

    PubMed

    Yuseff, M I; Lennon-Dumenil, A M

    2013-01-01

    The ability of B lymphocytes to capture external antigens (Ag) and present them as peptide fragments, loaded on Major Histocompatibility complex (MHC) class II molecules, to CD4(+) T cells is a crucial part of the adaptive immune response. This allows T-B cooperation, a cellular communication that is required for B cells to develop into germinal centers (GC) and form mature high-affinity antibody producing cells and to further develop B cell memory. MHC class II antigen presentation by B lymphocytes is a multistep process involving (1) Recognition and capture of external Ag by B lymphocytes through their B cell receptor (BCR); (2) Ag processing, which comprises the degradation of Ag in internal compartments within the B cell and loading of the corresponding peptide fragments on MHC class II molecules and (3) Presentation of MHC II-peptide complexes to CD4(+) T cells. Here, we describe how to study MHC class II antigen presentation by B lymphocytes at these three major levels.

  11. MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris).

    PubMed

    Pokorny, Ina; Sharma, Reeta; Goyal, Surendra Prakash; Mishra, Sudanshu; Tiedemann, Ralph

    2010-10-01

    Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal.

  12. Linkage relationships in the bovine MHC region. High recombination frequency between class II subregions.

    PubMed

    Andersson, L; Lundén, A; Sigurdardottir, S; Davies, C J; Rask, L

    1988-01-01

    Class II genes of the bovine major histocompatibility complex (MHC) have been investigated by Southern blot analysis using human DNA probes. Previous studies revealed the presence of bovine DO beta, DQ alpha, DQ beta, DR alpha, and DR beta genes, and restriction fragment length polymorphisms for each of these genes were documented. In the present study, the presence of three additional class II genes, designated DZ alpha, DY alpha, and DY beta, are reported. DZ alpha was assumed to correspond to the human DZ alpha gene while the other two were designated DY because their relationship to human class II genes could not be firmly established. The linkage relationships among bovine class II genes and two additional loci, TCP1B and C4, were investigated by family segregation analysis and analysis of linkage disequilibrium. The results clearly indicated that all these loci belong to the same linkage group. This linkage group is divided into two subregions separated by a fairly high recombination frequency. One region includes the C4, DQ alpha, DQ beta, DR alpha, and DR beta loci and the other one is composed of the DO beta, DY alpha, DY beta, and TCP1B loci. No recombinant was observed within any of these subregions and there was a strong or fairly strong linkage disequilibrium between loci within groups. In contrast, as many as five recombinants among three different families were detected in the interval between these subregions giving a recombination frequency estimate of 0.17 +/- 0.07. The fairly high recombination frequency observed between class II genes in cattle is strikingly different from the corresponding recombination estimates in man and mouse. The finding implies either a much larger molecular distance between some of the bovine class II genes or alternatively the presence of a recombinational "hot spot" in the bovine class II region.

  13. Identification of a Novel Major Histocompatibility Complex Class II–restricted Tumor Antigen Resulting from a Chromosomal Rearrangement Recognized by CD4+ T Cells

    PubMed Central

    Wang, Rong-Fu; Wang, Xiang; Rosenberg, Steven A.

    1999-01-01

    CD4+ T cells play an important role in antitumor immune responses and autoimmune and infectious diseases. Although many major histocompatibility complex (MHC) class I–restricted tumor antigens have been identified in the last few years, little is known about MHC class II– restricted human tumor antigens recognized by CD4+ T cells. Here, we describe the identification of a novel melanoma antigen recognized by an human histocompatibility leukocyte antigen (HLA)-DR1–restricted CD4+ tumor-infiltrating lymphocyte (TIL)1363 using a genetic cloning approach. DNA sequencing analysis indicated that this was a fusion gene generated by a low density lipid receptor (LDLR) gene in the 5′ end fused to a GDP-l-fucose:β-d-galactoside 2-α-l-fucosyltransferase (FUT) in an antisense orientation in the 3′ end. The fusion gene encoded the first five ligand binding repeats of LDLR in the NH2 terminus followed by a new polypeptide translated in frame with LDLR from the FUT gene in an antisense direction. Southern blot analysis showed that chromosomal DNA rearrangements occurred in the 1363mel cell line. Northern blot analysis detected two fusion RNA transcripts present only in the autologous 1363mel, but not in other cell lines or normal tissues tested. Two minimal peptides were identified from the COOH terminus of the fusion protein. This represents the first demonstration that a fusion protein resulting from a chromosomal rearrangement in tumor cells serves as an immune target recognized by CD4+ T cells. PMID:10330445

  14. Gene Conversion in the Evolution of Both the H-2 and Qa Class I Genes of the Murine Major Histocompatibility Complex

    PubMed Central

    Kuhner, M.; Watts, S.; Klitz, W.; Thomson, G.; Goodenow, R. S.

    1990-01-01

    In order to better understand the role of gene conversion in the evolution of the class I gene family of the major histocompatibility complex (MHC), we have used a computer algorithm to detect clustered sequence similarities among 24 class I DNA sequences from the H-2, Qa, and Tla regions of the murine MHC. Thirty-four statistically significant clusters were detected; individual analysis of the clusters suggested at least 25 past gene conversion or recombination events. These clusters are comparable in size to the conversions observed in the spontaneously occurring H-2K(bm) and H-2K(km2) mutations, and are distributed throughout all exons of the class I gene. Thus, gene conversion does not appear to be restricted to the regions of the class I gene encoding their antigen-presentation function. Moreover, both the highly polymorphic H-2 loci and the relatively monomorphic Qa and Tla loci appear to have participated as donors and recipients in conversion events. If gene conversion is not limited to the highly polymorphic loci of the MHC, then another factor, presumably natural selection, must be responsible for maintaining the observed differences in level of variation. PMID:2076814

  15. Fluorogenic Probes for Monitoring Peptide Binding to Class II MHC Proteins in Living Cells

    SciTech Connect

    Venkatraman,P.; Nguyen, T.; Sainlos, M.; Bilsel, o.; Chitta, S.; Imperiali, B.; Stern, L.

    2007-01-01

    A crucial step in the immune response is the binding of antigenic peptides to major histocompatibility complex (MHC) proteins. Class II MHC proteins present their bound peptides to CD4+ T cells, thereby helping to activate both the humoral and the cellular arms of the adaptive immune response. Peptide loading onto class II MHC proteins is regulated temporally, spatially and developmentally in antigen-presenting cells1. To help visualize these processes, we have developed a series of novel fluorogenic probes that incorporate the environment-sensitive amino acid analogs 6-N,N-dimethylamino-2-3-naphthalimidoalanine and 4-N,N-dimethylaminophthalimidoalanine. Upon binding to class II MHC proteins these fluorophores show large changes in emission spectra, quantum yield and fluorescence lifetime. Peptides incorporating these fluorophores bind specifically to class II MHC proteins on antigen-presenting cells and can be used to follow peptide binding in vivo. Using these probes we have tracked a developmentally regulated cell-surface peptide-binding activity in primary human monocyte-derived dendritic cells.

  16. Evidence for multiple MHC class II β loci in New Zealand's critically endangered kakapo, Strigops habroptilus.

    PubMed

    Knafler, Gabrielle J; Fidler, Andrew; Jamieson, Ian G; Robertson, Bruce C

    2014-02-01

    Immunologically important genes of the major histocompatibility complex (MHC) have been characterized in a number of avian species with the general finding of considerable variation in size and structural organization among organisms. A range of nonpasserines which represent early-diverging Neoave lineages have been described as having only one MHC class II β locus potentially leading to the conclusion that this is the ancestral condition. Here, we examine the monotypic, early-diverging, critically endangered kakapo, Strigops habroptilus, for allelic variation at MHC class II β exon 2, as part of species' recovery efforts. We found two to four confirmed sequence variants per individual indicating the presence of more than one MHC class II β locus. Given the kakapo's basal evolutionary status, evidence for multiple MHC class II β loci seems to counter the proposed mono-locus history of modern birds. However, MHC gene duplication, maintenance, and loss among and within bird species may confound avian relationships making it difficult to elucidate the ancestral state. This study adds essential data for disentangling the course of MHC structural evolution in birds.

  17. T cell receptor genes in a series of class I major histocompatibility complex-restricted cytotoxic T lymphocyte clones specific for a Plasmodium berghei nonapeptide: implications for T cell allelic exclusion and antigen-specific repertoire

    PubMed Central

    1991-01-01

    We report here the first extensive study of a T cell repertoire for a class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocyte (CTL) response. We have found that the T cell receptors (TCRs) carried by 28 H-2Kd-restricted CTL clones specific for a single Plasmodium berghei circumsporozoite nonapeptide are highly diverse in terms of V alpha, J alpha, and J beta segments and aminoacid composition of the junctional regions. However, despite this extensive diversity, a high proportion of the TCRs contain the same V beta segment. These results are in contrast to most previously reported T cell responses towards class II MHC-peptide complexes, where the TCR repertoires appeared to be much more limited. In our study, the finding of a dominant V beta in the midst of otherwise highly diverse TCRs suggests the importance of the V beta segment in shaping the T cell repertoire specific for a given MHC-peptide complex. As an additional finding, we observed that nearly all clones have rearranged both TCR alpha loci. Moreover, as many as one-third of the CTL clones that we analyzed apparently display two productive alpha rearrangements. This argues against a regulated model of sequential recombination at the alpha locus and consequently raises the question of whether allelic exclusion of the TCR alpha chain is achieved at all. PMID:1836010

  18. Contemporary treatment of class II dens invaginatus.

    PubMed

    Sathorn, C; Parashos, P

    2007-04-01

    To present the nonsurgical management of a tooth with class II dens invaginatus with an open apex utilizing contemporary techniques. Root canal treatment of teeth with complex root canal anatomy such as dens invaginatus can be problematic because infected pulpal tissues may remain in inaccessible areas of the canal system. The cleaning and debridement of such root canal systems are therefore challenging and may sometimes be considered impossible. An immature apical root-end development is another challenge in root canal treatment especially in controlling the apical extent of the filling material and achieving an apical seal. When difficulties in cleaning and filling combine, management options may include surgical intervention or extraction. This article reports the nonsurgical endodontic treatment of a case of an open apex and dens invaginatus utilizing the operating microscope, endodontic ultrasonic instruments and mineral trioxide aggregate. Teeth with class II dens evaginatus and an open apex may be managed successfully with contemporary nonsurgical materials and techniques.

  19. Endoplasmic reticulum aminopeptidase 1 function and its pathogenic role in regulating innate and adaptive immunity in cancer and major histocompatibility complex class I-associated autoimmune diseases.

    PubMed

    Fruci, D; Romania, P; D'Alicandro, V; Locatelli, F

    2014-08-01

    Major histocompatibility complex (MHC) class I molecules present antigenic peptides on the cell surface to alert natural killer (NK) cells and CD8(+) T cells for the presence of abnormal intracellular events, such as virus infection or malignant transformation. The generation of antigenic peptides is a multistep process that ends with the trimming of N-terminal extensions in the endoplasmic reticulum (ER) by aminopeptidases ERAP1 and ERAP2. Recent studies have highlighted the potential role of ERAP1 in reprogramming the immunogenicity of tumor cells in order to elicit innate and adaptive antitumor immune responses, and in conferring susceptibility to autoimmune diseases in predisposed individuals. In this review, we will provide an overview of the current knowledge about the role of ERAP1 in MHC class I antigen processing and how its manipulation may constitute a promising tool for cancer immunotherapy and treatment of MHC class I-associated autoimmune diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Transloading of tumor cells with foreign major histocompatibility complex class I peptide ligand: a novel general strategy for the generation of potent cancer vaccines.

    PubMed Central

    Schmidt, W; Steinlein, P; Buschle, M; Schweighoffer, T; Herbst, E; Mechtler, K; Kirlappos, H; Birnstiel, M L

    1996-01-01

    The major hurdle to be cleared in active immunotherapy of cancer is the poor immunogenicity of cancer cells. In previous attempts to overcome this problem, whole tumor cells have been used as vaccines, either admixed with adjuvant(s) or genetically engineered to express nonself proteins or immunomodulatory factors before application. We have developed a novel approach to generate an immunogeneic, highly effective vaccine: major histocompatibility complex (MHC) class I-positive cancer cells are administered together with MHC class I-matched peptide ligands of foreign, nonself origin, generated by a procedure we term transloading. Murine tumor lines of the H2-Kd or the H2-Db haplotype, melanoma M-3 and B16-F10, respectively, as well as colon carcinoma CT-26 (H2-Kd), were transloaded with MHC-matched influenza virus-derived peptides and applied as irradiated vaccines. Mice bearing a deposit of live M-3 melanoma cells were efficiently cured by this treatment. In the CT-26 colon carcinoma and the B16-F10 melanoma, high efficacies were obtained against tumor challenge, suggesting the universal applicability of this new type of vaccine. With foreign peptide ligands adapted to the requirements of a desired MHC class I haplotype, this concept may be used for the treatment of human cancers. Images Fig. 1 PMID:8790404

  1. Lack of associations between HLA class II alleles and resistance to HIV-1 infection among white, non-Hispanic homosexual men.

    PubMed

    Liu, Chenglong; Carrington, Mary; Kaslow, Richard A; Gao, Xiaojiang; Rinaldo, Charles R; Jacobson, Lisa P; Margolick, Joseph B; Phair, John; O'Brien, Stephen J; Detels, Roger

    2004-10-01

    HLA class II alleles were molecularly typed for 100 high-risk seronegative men and 184 low-risk seroconverters from the Multicenter AIDS Cohort Study (MACS). Seven resistant individuals homozygous for CCR5 Delta32 deletions were excluded from analysis. In the univariate analysis, no significant HLA class II associations with resistance/susceptibility to HIV type 1 infection were identified. However, the transporter associated with antigen presentation 2 (TAP2) Ala 665 variant associated with resistance in earlier analyses in the MACS was in linkage disequilibrium with some HLA class II alleles. After adjusting for the established associations with HLA-A*0205 subgroup and TAP2 Ala 665 variant, no HLA class II alleles were independently associated with resistance/susceptibility to HIV-1 infection. Other genetic factors in the HLA class II-TAP region of the major histocompatibility complex might be involved.

  2. Development of MHC class I and II B primers in common carp and its molecular characterization.

    PubMed

    Jia, Zhiying; Chi, Xifeng; Li, Chitao; Shi, Lianyu

    2010-08-01

    The major histocompatibility complex (MHC) has an important role in immune response and is known as the most polymorphic locus in vertebrates. We developed three pairs of polymerase chain reaction primers of the alpha-2 domain (exon 3) of MHC class I and the beta-2 (exon 3) and beta-3 domains (exon 4) of MHC class II B gene in the German mirror common carp (Cyprinus carpio L.). We analyzed the three loci in a population of 65 individuals that had suffered the serious disease of gill rot. Five to six variable nucleotide sites and two to six variable amino acid sites (71.43%) were detected in the exon sequence of the sampled populations, indicating that many of them corresponded to amino acids involved in antigen recognition. Deviation from Hardy-Weinberg equilibrium and linkage disequilibrium were differentially found in some loci, which will be important for further study of disease resistance/susceptibility and population evolution.

  3. Polymorphisms of the equine major histocompatibility complex class II DRA locus.

    PubMed

    Brown, J J; Thomson, W; Clegg, P; Eyre, S; Kennedy, L J; Matthews, J; Carter, S; Ollier, W E R

    2004-08-01

    The full extent of the polymorphism of ELA-DRA in Equidae is not yet known. Given the apparent differences in DRA polymorphisms between Equidae and other species, the aims of this study were to more fully characterize ELA-DRA, determine the extent of gene polymorphism and establish the allele-frequency distribution. An allele reference panel for the second exon of ELA-DRA was established by sequence-based typing of 69 equine DNA samples consisting of various breeds of domestic horse (Equus caballus), together with donkeys (Equus asinus), Grant's zebras (Equus boehmi) and one onager (Equus hemionus). Five of the six previously reported alleles detected using single-strand conformation polymorphism were found: ELA-DRA*0101, ELA-DRA*0201, ELA-DRA*0301, ELA-DRA*0501 (Albright-Fraser DG et al. Polymorphism of DRA among equids. Immunogenetics 1996: 43: 315-7) and ELA-DRA*0601 (GenBank accession number AF5419361). In addition to the previously reported alleles, five novel ELA-DRA alleles were detected within the ELA-DRA allele reference panel. One of these was identified in E. caballus (ELA-DRA*JBH11), one in E. boehmi and E. hemionus (ELA-DRA*JBZ185) and three in E. asinus (ELA-DRA*JBD3, ELA-DRA*JBD17 and ELA-DRA*JBH45). A total of 565 equine DNA samples were screened using reference-strand-mediated conformation analysis, a double-stranded conformation-based mutation detection system that can be used to type existing ELA-DRA alleles and identify new variants. Based on our findings, at least 11 ELA-DRA alleles are now known to exist, and this level of polymorphism at the DRA locus appears to be unique to the genus Equus. Both the previously reported alleles and the new alleles displayed a species-specific distribution.

  4. MHC class II-assortative mate choice in European badgers (Meles meles).

    PubMed

    Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L

    2015-06-01

    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.

  5. Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Cheng, Yuanyuan; Sanderson, Claire; Jones, Menna; Belov, Katherine

    2012-07-01

    The largest remaining carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is currently under threat of extinction due to a fatal contagious cancer-devil facial tumour disease. Low major histocompatibility complex (MHC) class I diversity is believed to have contributed to the transmission of the tumour allograft through devil populations. Here, we report low MHC class II variability in this species, with DA β chain genes (Saha-DAB1, 2 and 3) exhibiting very limited diversity and the sole α chain gene (Saha-DAA) monomorphic. Three, six and three alleles were found at Saha-DAB1, 2 and 3, respectively, with a predominant allele found at each locus. Heterozygosity at these three loci is low in the eastern population and modestly higher in northwestern individuals. The results are indicative of a selective sweep likely due to an infectious disease resulting in the fixation of selectively favoured alleles and depletion of genetic diversity at devil class II loci. Several attempts were made to isolate the other marsupial classical class II gene family, namely, DB, resulting in only one DBB pseudogene being found. These findings further support the view that this species has a compromised capacity to respond to pathogen evolution, emerging infectious diseases and environmental changes.

  6. Immune response genes controlling responsiveness to major transplantation antigens. Specific major histocompatibility complex-linked defect for antibody responses to class I alloantigens

    SciTech Connect

    Butcher, G.W.; Corvalan, J.R.; Licence, D.R.; Howard, J.C.

    1982-01-01

    We have identified two major histocompatibility complex (MHC)-linked Ir genes that control the antibody response made by rats against class I major alloantigens. We have named these genes Ir-RT1Aa and Ir-RT1Ac. These Ir genes determine responsiveness of the immunized animal in a typical codominant fashion. There is no evidence so far for trans-complementation between low-responder haplotypes. Detailed studies of Ir-RT1Aa indicate that it controls the antibody response to at least two distinct alloantigenic determinants on RT1Aa molecules. These class I molecules thus behave like hapten-carrier conjugates when the response against the carrier is under Ir gene control. Analysis of the origin of alloantibody-forming cells in tetraparental radiation chimeras indicates that Ir-RT1Aa must control the provision of effective help to B cells. In many respects therefore, the properties of Ir-RT1Aa are broadly similar to those described for Ir genes controlling antibody responses to conventional antigens. The existence of apparently conventional Ir genes controlling the antibody response to major alloantigens strongly suggest that the processing of these transmembrane molecules by host antigen-presenting cells is a prerequisite for immune induction, and that it is the MHC of the responder rather than that of the allograft to which T helper cells are restricted in alloimmune responses in vivo.

  7. A large protein containing zinc finger domains binds to related sequence elements in the enhancers of the class I major histocompatibility complex and kappa immunoglobulin genes.

    PubMed Central

    Baldwin, A S; LeClair, K P; Singh, H; Sharp, P A

    1990-01-01

    A cDNA from a B-cell library was previously isolated that encodes a sequence-specific DNA-binding protein with affinities for related sites in a class I major histocompatibility complex (MHC) and kappa immunoglobulin gene enhancers. We report here approximately 6.5 kilobases of sequence of the MBP-1 (MHC enhancer binding protein 1) cDNA. MBP-1 protein has a molecular weight predicted to be greater than 200,000. A DNA-binding domain with high affinity for the MHC enhancer sequence TGGGGATTCCCCA was localized to an 118-amino-acid protein fragment containing two zinc fingers of the class Cys2-X12-His2. Analysis of expression of MBP-1 mRNA revealed relatively high expression in HeLa cells and in a human retinal cell line, with lower levels in Jurkat T cells and in two B-cell lines. Interestingly, expression of MBP-1 mRNA was inducible by mitogen and phorbol ester treatment of Jurkat T cells and by serum treatment of confluent serum-deprived human fibroblasts. Images PMID:2108316

  8. Committing Cytomegalovirus-Specific CD8 T Cells to Eliminate Tumor Cells by Bifunctional Major Histocompatibility Class I Antibody Fusion Molecules.

    PubMed

    Schmittnaegel, Martina; Levitsky, Victor; Hoffmann, Eike; Georges, Guy; Mundigl, Olaf; Klein, Christian; Knoetgen, Hendrik

    2015-07-01

    Tumor cells escape immune eradication through multiple mechanisms, including loss of antigenicity and local suppression of effector lymphocytes. To counteract these obstacles, we aimed to direct the unique cytomegalovirus (CMV)-specific immune surveillance against tumor cells. We developed a novel generation of fusion proteins composed of a tumor antigen-specific full immunoglobulin connected to a single major histocompatibility class I complex bearing a covalently linked virus-derived peptide (pMHCI-IgG). Here, we show that tumor antigen-expressing cancer cells, which are decorated with pMHCI-IgGs containing a HLA-A*0201 molecule associated with a CMV-derived peptide, are specifically eliminated through engagement of antigen-specific CD8(+) T cells isolated from peripheral blood mononuclear cell preparations of CMV-infected humans. These CD8(+) T cells act without additional expansion, preactivation, or provision of costimulatory signals. Elimination of tumor cells is induced at similar concentrations and with similar time kinetics as those seen with bispecific T-cell engagers (BiTE). However, while BiTE-like reagents indiscriminately activate T cells through binding to the T-cell receptor complex, pMHCI-IgGs selectively engage antigen-specific, constantly renewable, differentiated effector cytotoxic T lymphocytes to tumor cells, thereby representing a novel class of anticancer immunotherapeutics with potentially improved safety and efficacy profiles. ©2015 American Association for Cancer Research.

  9. 46 CFR 50.30-15 - Class II pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Class II pressure vessels. 50.30-15 Section 50.30-15... Fabrication Inspection § 50.30-15 Class II pressure vessels. (a) Class II pressure vessels shall be subject to... pressure vessels shall be performed during the welding of the longitudinal joint. At this time the...

  10. 49 CFR 238.317 - Class II brake test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... indicates that brake pipe pressure changes are properly communicated at the rear of the train; (2) For MU... 49 Transportation 4 2010-10-01 2010-10-01 false Class II brake test. 238.317 Section 238.317... Requirements for Tier I Passenger Equipment § 238.317 Class II brake test. (a) A Class II brake test shall be...

  11. Autoantibody Profiles in Collagen Disease Patients with Interstitial Lung Disease (ILD): Antibodies to Major Histocompatibility Complex Class I-Related Chain A (MICA) as Markers of ILD

    PubMed Central

    Furukawa, Hiroshi; Oka, Shomi; Shimada, Kota; Masuo, Kiyoe; Nakajima, Fumiaki; Funano, Shunichi; Tanaka, Yuki; Komiya, Akiko; Fukui, Naoshi; Sawasaki, Tatsuya; Tadokoro, Kenji; Nose, Masato; Tsuchiya, Naoyuki; Tohma, Shigeto

    2015-01-01

    Interstitial lung disease (ILD) is frequently associated with collagen disease. It is then designated as collagen vascular disease-associated ILD (CVD-ILD), and influences patients’ prognosis. The prognosis of acute-onset diffuse ILD (AoDILD) occurring in patients with collagen disease is quite poor. Here, we report our investigation of auto-antibody (Ab) profiles to determine whether they may be useful in diagnosing CVD-ILD or AoDILD in collagen disease. Auto-Ab profiles were analyzed using the Lambda Array Beads Multi-Analyte System, granulocyte immunofluorescence test, Proto-Array Human Protein Microarray, AlphaScreen assay, and glutathione S-transferase capture enzyme-linked immunosorbent assay in 34 patients with rheumatoid arthritis (RA) with or without CVD-ILD and in 15 patients with collagen disease with AoDILD. The average anti-major histocompatibility complex class I-related chain A (MICA) Ab levels were higher in RA patients with CVD-ILD than in those without (P = 0.0013). The ratio of the average anti-MICA Ab level to the average anti-human leukocyte antigen class I Ab level (ie, MICA/Class I) was significantly higher in RA patients with CVD-ILD compared with those without (P = 4.47 × 10−5). To the best of our knowledge, this is the first report of auto-Ab profiles in CVD-ILD. The MICA/Class I ratio could be a better marker for diagnosing CVD-ILD than KL-6 (Krebs von den lungen-6). PMID:26327779

  12. Proteasome-independent major histocompatibility complex class I cross-presentation mediated by papaya mosaic virus-like particles leads to expansion of specific human T cells.

    PubMed

    Leclerc, Denis; Beauseigle, Diane; Denis, Jérome; Morin, Hélène; Paré, Christine; Lamarre, Alain; Lapointe, Réjean

    2007-02-01

    The development of versatile vaccine platforms is a priority that is recognized by health authorities worldwide; such platforms should induce both arms of the immune system, the humoral and cytotoxic-T-lymphocyte responses. In this study, we have established that a vaccine platform based on the coat protein of papaya mosaic virus (PapMV CP), previously shown to induce a humoral response, can induce major histocompatibility complex (MHC) class I cross-presentation of HLA-A*0201 epitopes from gp100, a melanoma antigen, and from influenza virus M1 matrix protein. PapMV proteins were able to assemble into stable virus-like particles (VLPs) in a crystalline and repetitive structure. When we pulsed HLA-A*0201+ antigen-presenting cells (APCs) with the recombinant PapMV FLU or gp100, we noted that antigen-specific CD8+ T cells were highly reactive to these APCs, demonstrating that the epitope from the VLPs were processed and loaded on the MHC class I complex. APCs were preincubated with two different proteasome inhibitors, which did not affect the efficiency of peptide presentation on MHC class I. Classical presentation from an endogenous antigen was abolished in the same conditions. Clearly, antigen presentation mediated by the PapMV system was proteasome independent. Finally, PapMV-pulsed APCs had the capacity to expand highly avid antigen-specific T cells against the influenza virus M1 HLA-A*0201 epitope when cocultured with autologous peripheral blood mononuclear cells. This study demonstrates the potential of PapMV for MHC class I cross-presentation and for the expansion of human antigen-specific T cells. It makes VLPs from PapMV CP a very attractive platform to trigger cellular responses for vaccine development against chronic infectious diseases and cancers.

  13. Identification of a cis-acting element in the class I major histocompatibility complex gene promoter responsive to activation by retroviral sequences.

    PubMed Central

    Choi, S Y; van de Mark, K; Faller, D V

    1997-01-01

    The infection of cells with Moloney murine leukemia virus (M-MuLV) causes an increase in specific cellular gene products, including the major histocompatibility complex (MHC) class I antigens. This upregulation occurs through a transactivation process mediated by the long terminal repeat (LTR) of M-MuLV, and we show here that the gene activation response to the LTR requires at least one specific cis element within the MHC proximal promoter region. Nested deletions of MHC class I H-2Kb gene promoter sequence were subcloned into a chloramphenicol acetyltransferase (CAT) reporter vector and then transiently introduced into BALB/c-3T3 cells expressing M-MuLV or cotransfected into BALB/c-3T3 cells with a vector containing subgenomic portions of the virus, including the LTR. CAT activity assays demonstrated that a minimal H-2Kb gene promoter (-64 to +12) contained elements sufficient for this transactivation. DNase I footprinting assays located a protein-binding site in the region of -64 to -34 bp from the transcriptional start site, and point mutation analysis confirmed the location of this cis-acting element, designated the let response element (LRE), and defined a binding motif. This LRE is distinct from binding sites for currently known transcription factors in the class I MHC gene promoter and is conserved in the promoters of human and murine MHC class I genes. Mutation of the LRE resulted in dramatic reduction in both DNA-protein binding activity in electrophoretic mobility shift assay and in the ability of the mutated promoter to respond to retroviral transactivation. Addition of the LRE to a heterologous promoter conferred the ability to respond to retroviral transactivation. PMID:8995614

  14. Evidence for Directional Selection at a Novel Major Histocompatibility Class I Marker in Wild Common Frogs (Rana temporaria) Exposed to a Viral Pathogen (Ranavirus)

    PubMed Central

    Teacher, Amber G. F.; Garner, Trenton W. J.; Nichols, Richard A.

    2009-01-01

    Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower FST) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year. PMID:19240796

  15. Autoantibody Profiles in Collagen Disease Patients with Interstitial Lung Disease (ILD): Antibodies to Major Histocompatibility Complex Class I-Related Chain A (MICA) as Markers of ILD.

    PubMed

    Furukawa, Hiroshi; Oka, Shomi; Shimada, Kota; Masuo, Kiyoe; Nakajima, Fumiaki; Funano, Shunichi; Tanaka, Yuki; Komiya, Akiko; Fukui, Naoshi; Sawasaki, Tatsuya; Tadokoro, Kenji; Nose, Masato; Tsuchiya, Naoyuki; Tohma, Shigeto

    2015-01-01

    Interstitial lung disease (ILD) is frequently associated with collagen disease. It is then designated as collagen vascular disease-associated ILD (CVD-ILD), and influences patients' prognosis. The prognosis of acute-onset diffuse ILD (AoDILD) occurring in patients with collagen disease is quite poor. Here, we report our investigation of auto-antibody (Ab) profiles to determine whether they may be useful in diagnosing CVD-ILD or AoDILD in collagen disease. Auto-Ab profiles were analyzed using the Lambda Array Beads Multi-Analyte System, granulocyte immunofluorescence test, Proto-Array Human Protein Microarray, AlphaScreen assay, and glutathione S-transferase capture enzyme-linked immunosorbent assay in 34 patients with rheumatoid arthritis (RA) with or without CVD-ILD and in 15 patients with collagen disease with AoDILD. The average anti-major histocompatibility complex class I-related chain A (MICA) Ab levels were higher in RA patients with CVD-ILD than in those without (P = 0.0013). The ratio of the average anti-MICA Ab level to the average anti-human leukocyte antigen class I Ab level (ie, MICA/Class I) was significantly higher in RA patients with CVD-ILD compared with those without (P = 4.47 × 10(-5)). To the best of our knowledge, this is the first report of auto-Ab profiles in CVD-ILD. The MICA/Class I ratio could be a better marker for diagnosing CVD-ILD than KL-6 (Krebs von den lungen-6).

  16. Transfer and expression of three cloned human non-HLA-A,B,C class I major histocompatibility complex genes in mutant lymphoblastoid cells.

    PubMed Central

    Shimizu, Y; Geraghty, D E; Koller, B H; Orr, H T; DeMars, R

    1988-01-01

    The HLA-A, -B, and -C class I human histocompatibility antigens and the genes that encode them have been isolated and characterized. Apparently complete class I non-HLA-A, B, C genes have been identified on HindIII-generated 5.4-kilobase (kb), 6.0-kb, and 6.2-kb DNA fragments derived from lymphoblastoid cell line (LCL) 721. We studied the expressibility of these genes by subcloning them into the nonintegrating pHeBo vector and transferring the chimeric plasmids into mutant LCL 721.221. This mutant was derived from LCL 721 by means of immunoselections following gamma-ray mutagenesis that eliminated expressions of the HLA-A, -B, and -C alpha chains. The HLA-A, B, C-null phenotype of mutant 721.221 made it possible to monitor the expression of class I genes transferred into it by assaying cell surface binding of monoclonal antibodies BBM.1 and W6/32, which recognize beta 2-microglobulin and HLA class I alpha-chain epitopes, respectively. Increased binding of BBM.1 and W6/32 was clearly observed in transferents containing the class I gene of the 6.0-kb DNA fragment but not in transferents containing the class I genes of the 5.4- and 6.2-kb DNA fragments. However, one-dimensional gel electrophoresis of BBM.1 and W6/32 immunoprecipitates made with [35S]methionine-labeled cell lysates showed that transfer of each non-HLA-A, B, C class I gene into 721.221 resulted in the appearance of an alpha chain that coprecipitated with beta 2-microglobulin. The three previously unreported alpha chains differed from each other in size and were smaller than HLA-A, -B, and -C alpha chains. These observations clearly show that these three cloned, nonallelic, non-HLA-A, B, C class I genes encode alpha chains that can be expressed in human cells. Images PMID:3257565

  17. Class II Resin Composites: Restorative Options.

    PubMed

    Patel, Minesh; Mehta, Shamir B; Banerji, Subir

    2015-10-01

    Tooth-coloured, resin composite restorations are amongst the most frequently prescribed forms of dental restoration to manage defects in posterior teeth. The attainment of a desirable outcome when placing posterior resin composite restorations requires the clinician to have a good understanding of the benefits (as well as the limitations) posed by this material, together with a sound knowledge of placement technique. Numerous protocols and materials have evolved to assist the dental operator with this type of demanding posterior restoration. With the use of case examples, four techniques available are reported here. CPD/Clinical Relevance: This article explores varying techniques for the restoration of Class II cavities using resin composite.

  18. Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides.

    PubMed

    Wang, Mingjun; Tang, Sheila T; Stryhn, Anette; Justesen, Sune; Larsen, Mette V; Dziegiel, Morten H; Lewinsohn, David M; Buus, Søren; Lund, Ole; Claesson, Mogens H

    2011-04-01

    Major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTL) are known to play an important role in the control of Mycobacterium tuberculosis infection so identification of CTL epitopes from M. tuberculosis is of importance for the development of effective peptide-based vaccines. In the present work, bioinformatics technology was employed to predict binding motifs of 9mer peptides derived from M. tuberculosis for the 12 HLA-I supertypes. Subsequently, the predicted peptides were synthesized and assayed for binding to HLA-I molecules in a biochemically based system. The antigenicity of a total of 157 peptides with measured affinity for HLA-I molecules of K(D) ≤ 500 nM were evaluated using peripheral blood T cells from strongly purified protein derivative reactive healthy donors. Of the 157 peptides, eight peptides (5%) were found to induce T-cell responses. As judged from blocking with HLA class I and II subtype antibodies in the ELISPOT assay culture, none of the eight antigenic peptides induced HLA class I restricted CD8(+) T-cell responses. Instead all responses were blocked by pan-HLA class II and anti-HLA-DR antibodies. In addition, CD4(+) T-cell depletion before the 10 days of expansion, resulted in total loss of reactivity in the ELISPOT culture for most peptide specificities. FACS analyses with intracellular interferon-γ staining of T cells expanded in the presence of M. tuberculosis peptides confirmed that the responsive cells were indeed CD4(+). In conclusion, T-cell immunity against HLA-I binding 9mer M. tuberculosis-derived peptides might in many cases turn out to be mediated by CD4(+) T cells and restricted by HLA-II molecules. The use of 9mer peptides recognized by both CD8(+) and CD4(+) T cells might be of importance for the development of future M. tuberculosis peptide-based vaccines.

  19. Lateral cephalometric diagnosis of asymmetry in Angle Class II subdivision compared to Class I and II

    PubMed Central

    Meloti, Aparecida Fernanda; Gonçalves, Renata de Cássia; Silva, Ertty; Martins, Lídia Parsekian; dos Santos-Pinto, Ary

    2014-01-01

    Introduction Lateral cephalometric radiographs are traditionally required for orthodontic treatment, yet rarely used to assess asymmetries. Objective The objective of the present study was to use lateral cephalometric radiographs to identify existing skeletal and dentoalveolar morphological alterations in Class II subdivision and to compare them with the existing morphology in Class I and II relationship. Material and Methods Ninety initial lateral cephalometric radiographs of male and female Brazilian children aged between 12 to 15 years old were randomly and proportionally divided into three groups: Group 1 (Class I), Group 2 (Class II) and Group 3 (Class II subdivision). Analysis of lateral cephalometric radiographs included angular measurements, horizontal linear measurements and two indexes of asymmetry that were prepared for this study. Results In accordance with an Index of Dental Asymmetry (IDA), greater mandibular dental asymmetry was identified in Group 3. An Index of Mandibular Asymmetry (IMA) revealed less skeletal and dental mandibular asymmetry in Group 2, greater skeletal mandibular asymmetry in Group 1, and greater mandibular dental asymmetry in Group 3. Conclusion Both IDA and IMA revealed greater mandibular dental asymmetry for Group 3 in comparison to Groups 1 and 2. These results are in accordance with those found by other diagnostic methods, showing that lateral cephalometric radiography is an acceptable method to identify existing skeletal and dentoalveolar morphological alterations in malocclusions. PMID:25279525

  20. Swine Leukocyte Antigen (SLA) Class II is a Xenoantigen.

    PubMed

    Ladowski, Joseph M; Reyes, Luz M; Martens, Gregory R; Butler, James R; Wang, Zheng-Yu; Eckhoff, Devin E; Tector, Matt; Tector, A Joseph

    2017-08-24

    Over 130 000 patients in the United States alone need a life-saving organ transplant. Genetically modified porcine organs could resolve the donor organ shortage, but human xenoreactive antibodies destroy pig cells and are the major barrier to clinical application of xenotransplantation. The objective of this study was to determine whether waitlisted patients possess preformed antibodies to swine leukocyte antigen (SLA) class II, homologs of the class II human leukocyte antigens (HLA). Sera from people currently awaiting solid organ transplant were tested for IgG binding to class II SLA proteins when expressed on mammalian cells. Pig fibroblasts were made positive by transfection with the class II transactivator (CIITA). As a second expression system, transgenes encoding the alpha and beta chains of class II SLA were transfected into Human embryonic kidney (HEK293) cells. Human sera containing IgG specific for class II HLA molecules exhibited greater binding to class II SLA positive cells than to SLA negative cells. Sera lacking antibodies against class II HLA showed no change in binding regardless of the presence of class II SLA. These antibodies could recognize either SLA-DR or SLA-DQ complexes. Class II SLA proteins may behave as xenoantigens for people with humoral immunity towards class II HLA molecules.

  1. Characterization of polymorphism within the H2-M MHC class II loci.

    PubMed

    Hermel, E; Yuan, J; Monaco, J J

    1995-01-01

    The products of the class II-like H2-M genes of the major histocompatibility complex are required for class II antigen processing. We sequenced H2-Ma and Mb from several mouse strains to determine whether these genes are polymorphic like the classical H2-A and E genes, or are oligomorphic, like H2-O. Both Mb loci appear to be transcribed and are distinct from each other. Mb1 and Mb2 differ by about 11% at the nucleotide level and are most dissimilar in their second exons (corresponding to the beta 1 domain). Relative to the published Mb1d haplotype sequence, the products of the b, g7, f, and k2 alleles of Mb1 from Mus musculus domesticus and the separate mouse species Mus spretus differ by only one to four amino acids. The majority of the changes occurred in the second exon of Mb1, in contrast to HLA-DMB, the human orthologue. Little polymorphism was seen for Mb2, and Ma was invariant in all strains tested. The similarity of the g7 allele to those from other haplotypes makes it unlikely that the M class II genes play a role in the autoimmune diabetes of NOD strain mice. The M genes are regulated in a manner similar to classical class II genes, in that they are upregulated by IFN-gamma in macrophages, and to a lesser extent by IL4 in B cells. When modeled on the crystal structure of the HLA-DR1 class II molecule, nearly all of the differences between M beta 1 and M beta 2 affect residues facing away from the putative peptide binding groove.

  2. Analysis of cDNA coding MHC class II beta chain of the chimpanzee (Pan troglodytes).

    PubMed

    Hatta, Yuki; Kanai, Tomoko; Matsumoto, Yoshitsugu; Kyuwa, Shigeru; Hayasaka, Ikuo; Yoshikawa, Yasuhiro

    2002-04-01

    The chimpanzee (Pan troglodytes, Patr) is the closest zoological living relative of humans and shares approximately 98.6% genetic homology to human beings. Although major histocompatibility complex (MHC) plays a critical role in T cell-mediated immune responses in vertebrates, the information on Patr MHC remains at a relatively poor level. Therefore, we attempted to isolate Patr MHC class II genes and determine their nucleotide sequences. The cDNAs encoding Patr MHC class II DP, DQ and DR beta chains were isolated from the cDNA library of a chimpanzee B lymphocyte cell line Bch261. As a result of screening, the clone 6-3-1 as a representative of Patr DP clone, clone 30-1 as a Patr DQ clone, and clones 4-7-1 and 55-1 having different sequences as Patr DR clones were detected. The clone 6-3-1 consisted of 1,062 nucleotides including an open reading frame (ORF) of 777 bp. In the same way, clone 30-1 consisted of 1,172 nucleotides including ORF of 786 bp, clones 4-7-1 and 55-1 consisted of 1,163 nucleotides including ORF of 801 bp. Except for five nucleotide changes, clones 4-7-1 and 55-1 were the same sequence. By comparison with the nucleotide sequences already reported on chimpanzee MHC class II beta 1 genes, clones 6-3-1, 30-1, 4-7-1 and 55-1 were classified as PatrDPB1*16, PatrDQB1*0302, PatrDRB1*0201 and PatrDRB1*0204, respectively. This is the first report to describe complete cDNA sequences of Patr DP and DQ molecules. The nucleotide sequence data of Patr MHC class II genes obtained in this study will be useful for the genotyping of Patr MHC class II genes in individual chimpanzees.

  3. Complete nucleotide sequence of a gene encoding a functional human class I histocompatibility antigen (HLA-CW3).

    PubMed Central

    Sodoyer, R; Damotte, M; Delovitch, T L; Trucy, J; Jordan, B R; Strachan, T

    1984-01-01

    The HLA-CW3 gene contained in a cosmid clone identified by transfection expression experiments has been completely sequenced. This provides, for the first time, data on the structure of HLA-C locus products and constitutes, together with that of the gene coding for HLA-A3, the first complete nucleotide sequences of genes coding for serologically defined class I HLA molecules. In contrast to the organisation of the two class I HLA pseudogenes whose sequences have previously been determined, the sequence of the HLA-CW3 gene reveals an additional cytoplasmic encoding domain, making the organisation of this gene very similar to that of known H-2 class I genes and also the HLA-A3 gene. The deduced amino acid sequences of HLA-CW3 and HLA-A3 now allow a systematic comparison of such sequences of HLA class I molecules from the three classical transplantation antigen loci A, B, C. The compared sequences include the previously determined partial amino acid sequences of HLA-B7, HLA-B40, HLA-A2 and HLA-A28. The comparisons confirm the extreme polymorphism of HLA classical class I molecules, and permit a study of the level of diversity and the location of sequence differences. The distribution of differences is not uniform, most of them being located in the first and second extracellular domains, the third extracellular domain is extremely conserved, and the cytoplasmic domain is also a variable region. Although it is difficult to determine locus-specific regions, we have identified several candidate positions which may be C locus-specific. PMID:6609813

  4. MHC class II β genes in the endangered Hainan Eld's deer (Cervus eldi hainanus).

    PubMed

    Liu, Hong-Yi; Xue, Fei; Wan, Qiu-Hong; Ge, Yun-Fa

    2013-01-01

    Contrary to neutral markers, the major histocompatibility complex (MHC) can reflect the fitness and adaptive potential of a given species due to its association with the immune system. For this reason, the use of MHC in endangered wildlife management has increased greatly in recent years. Here, we isolated complementary DNA (cDNA) and genomic DNA (gDNA) sequences to characterize the MHC class II β genes in Hainan Eld's deer (Cervus eldi hainanus), a highly endangered cervid, which recovered from a severe population bottleneck consisting of 26 animals. Analysis of 7 individuals revealed the presence of 3 DRB and 3 DQB putatively functional gDNA sequences. The Ceel-DRB and DQB sequences displayed high variability in exon 2, and most nonsynonymous substitutions were detected in this region. Phylogenetic analysis indicated that trans-species evolution of MHC class II β might occur in the Cervinae subfamily. Comparison of the number of sequences between gDNA and cDNA revealed that all sequences isolated from the genome were detectable in the cDNA libraries derived from different tissues (including the liver, kidney, and spleen), suggesting none of these sequences were derived from silent genes or pseudogenes. Characterization of the MHC class II β genes may lay the foundation for future studies on genetic structure, mate choice, and viability analysis in Hainan Eld's deer.

  5. Improved binding activity of antibodies against major histocompatibility complex class I chain-related gene A by phage display technology for cancer-targeted therapy.

    PubMed

    Phumyen, Achara; Jumnainsong, Amonrat; Leelayuwat, Chanvit

    2012-01-01

    Major histocompatibility complex class I chain-related gene A (MICA) is an NKG2D ligand that is over-expressed under cellular stress including cancer transformation and viral infection. High expression of MICA in cancer tissues or patients' sera is useful for prognostic or follow-up markers in cancer patients. In this study, phage display technology was employed to improve antigen-binding activities of anti-MICA monoclonal antibodies (WW2G8, WW6B7, and WW9B8). The 12 amino acid residues in the complementarity determining regions (CDRs) on the V domain of the heavy chain CDR3 (HCDR3) of these anti-MICA antibodies were modified by PCR-random mutagenesis, and phages displaying mutated anti-MICA Fab were constructed. After seven rounds of panning, five clones of phages displaying mutant anti-MICA Fab which exhibited 3-7-folds higher antigen-binding activities were isolated. Two clones of the mutants (phage-displayed mutant Fab WW9B8.1 and phage-displayed mutant Fab WW9B8.21) were confirmed to have antigen-binding specificity for cell surface MICA proteins by flow cytometry. These phage clones are able to recognize MICA in a native form according to positive results obtained by indirect ELISA and flow cytometry. Thus, these phage particles could be potentially used for further development of nanomedicine specifically targeting cancer cells expressing MICA proteins.

  6. Malaria protection in β2-microglobulin-deficient mice lacking major histocompatibility complex class I antigens: essential role of innate immunity, including γδT cells

    PubMed Central

    Taniguchi, Tomoyo; Tachikawa, Saoko; Kanda, Yasuhiro; Kawamura, Toshihiko; Tomiyama-Miyaji, Chikako; Li, Changchun; Watanabe, Hisami; Sekikawa, Hiroho; Abo, Toru

    2007-01-01

    It is still controversial whether malaria protection is mediated by conventional immunity associated with T and B cells or by innate immunity associated with extrathymic T cells and autoantibody-producing B cells. Given this situation, it is important to examine the mechanism of malaria protection in β2-microglobulin-deficient (β2m(–/–)) mice. These mice lack major histocompatibility complex class I and CD1d antigens, which results in the absence of CD8+ T cells and natural killer T (NKT) cells. When C57BL/6 and β2m(–/–) mice were injected with parasitized (Plasmodium yoelii 17XNL) erythrocytes, both survived from the infection and showed a similar level of parasitaemia. The major expanding T cells were NK1.1– αβΤ-cell receptorint cells in both mice. The difference was a compensatory expansion of NK and γδT cells in β2m(–/–) mice, and an elimination experiment showed that these lymphocytes were critical for protection in these mice. These results suggest that malaria protection might be events of the innate immunity associated with multiple subsets with autoreactivity. CD8+ T and NKT cells may be partially related to this protection. PMID:17916163

  7. Newly discovered viral E3 ligase pK3 induces endoplasmic reticulum-associated degradation of class I major histocompatibility proteins and their membrane-bound chaperones.

    PubMed

    Herr, Roger A; Wang, Xiaoli; Loh, Joy; Virgin, Herbert W; Hansen, Ted H

    2012-04-27

    Viral immune invasion proteins are highly effective probes for studying physiological pathways. We report here the characterization of a new viral ubiquitin ligase pK3 expressed by rodent herpesvirus Peru (RHVP) that establishes acute and latent infection in laboratory mice. Our findings show that pK3 binds directly and specifically to class I major histocompatibility proteins (MHCI) in a transmembrane-dependent manner. This binding results in the rapid degradation of the pK3/MHCI complex by a mechanism dependent upon catalytically active pK3. Subsequently, the rapid degradation of pK3/MHCI secondarily causes the slow degradation of membrane bound components of the MHCI peptide loading complex, tapasin, and transporter associated with antigen processing (TAP). Interestingly, this secondary event occurs by cellular endoplasmic reticulum-associated degradation. Cumulatively, our findings show pK3 uses a unique mechanism of substrate detection and degradation compared with other viral or cellular E3 ligases. More importantly, our findings reveal that in the absence of nascent MHCI proteins in the endoplasmic reticulum, the transmembrane proteins TAP and tapasin that facilitate peptide binding to MHCI proteins are degraded by cellular quality control mechanisms.

  8. Transcription of non-classic major histocompatibility complex (MHC) class I in the bovine placenta throughout gestation and after Brucella abortus infection.

    PubMed

    Dos Santos, Larissa Sarmento; da Silva Mol, Juliana Pinto; de Macedo, Auricélio Alves; Silva, Ana Patrícia Carvalho; Dos Santos Ribeiro, Diego Luiz; Santos, Renato Lima; da Paixão, Tatiane Alves; de Carvalho Neta, Alcina Vieira

    2015-10-15

    Transcription of non-classical major histocompatibility complex class I (MHC-I) was assessed in the bovine placenta throughout gestation. Additionally, the effect of Brucella abortus infection on expression of non-classical MHC-I was also evaluated using a chorioallantoic membrane explant model of infection. The non-classical MHC-I genes MICB and NC3 had higher levels of transcription in the intercotyledonary region when compared to the placentome, which had higher levels of transcription at the second trimester of gestation. NC1 and classical MHC-I had very low levels of transcription throughout gestation. Trophoblastic cells of B. abortus-infected chorioallantoic membrane explants had an increase in transcription of non-classical MHC-I at 4h post infection. Therefore, this study provides an analysis of non-classical MHC-I transcription at different stages of gestation and different placental tissues, and during B. abortus infection. These findings provide additional knowledge on immune regulation in placental tissues, a known immune-privileged site.

  9. Expression and clinical value of the soluble major histocompatibility complex class I-related chain A molecule in the serum of patients with renal tumors.

    PubMed

    Zhao, Y-K; Jia, C-M; Yuan, G-J; Liu, W; Qiu, Y; Zhu, Q-G

    2015-06-29

    We investigated the expression and clinical value of the soluble major histocompatibility complex class I-related chain A (sMICA) molecule in the serum of patients with renal tumors. Sixty patients diagnosed with renal tumors were enrolled in the experimental group, whereas 20 healthy volunteers served as the control group. The sMICA levels were measured via enzyme-linked immunosorbent assay, and the results were analyzed in combination with data from pathol-ogy examination. The experimental group had a statistically significant higher sMICA level (P < 0.05) than the control group. The sMICA level was higher in patients with malignant tumors than in those with be-nign tumors. We also observed a positive relationship among different tumor-node-metastasis (TNM) pathological stages with more advanced diseases exhibiting higher sMICA levels. As a tumor-associated antigen, MICA has a close relationship with renal tumorigenesis and immune es-cape. Our results indicated that sMICA levels were related to tumor pathol-ogy, TNM stage, and metastasis. Therefore, sMICA might be a potential marker for tumor characteristics, prognosis, and recurrence prediction.

  10. Improved Binding Activity of Antibodies against Major Histocompatibility Complex Class I Chain-Related Gene A by Phage Display Technology for Cancer-Targeted Therapy

    PubMed Central

    Phumyen, Achara; Jumnainsong, Amonrat; Leelayuwat, Chanvit

    2012-01-01

    Major histocompatibility complex class I chain-related gene A (MICA) is an NKG2D ligand that is over-expressed under cellular stress including cancer transformation and viral infection. High expression of MICA in cancer tissues or patients' sera is useful for prognostic or follow-up markers in cancer patients. In this study, phage display technology was employed to improve antigen-binding activities of anti-MICA monoclonal antibodies (WW2G8, WW6B7, and WW9B8). The 12 amino acid residues in the complementarity determining regions (CDRs) on the V domain of the heavy chain CDR3 (HCDR3) of these anti-MICA antibodies were modified by PCR-random mutagenesis, and phages displaying mutated anti-MICA Fab were constructed. After seven rounds of panning, five clones of phages displaying mutant anti-MICA Fab which exhibited 3–7-folds higher antigen-binding activities were isolated. Two clones of the mutants (phage-displayed mutant Fab WW9B8.1 and phage-displayed mutant Fab WW9B8.21) were confirmed to have antigen-binding specificity for cell surface MICA proteins by flow cytometry. These phage clones are able to recognize MICA in a native form according to positive results obtained by indirect ELISA and flow cytometry. Thus, these phage particles could be potentially used for further development of nanomedicine specifically targeting cancer cells expressing MICA proteins. PMID:23226940

  11. Cutting Edge: Down-regulation of major histocompatibility complex class I-related chain A (MICA) on tumor cells by IFNγ-induced microRNA1

    PubMed Central

    Yadav, Deepak; Ngolab, Jennifer; Seung-Hwan Lim, Rod; Krishnamurthy, Siddharth; Bui, Jack D.

    2009-01-01

    NKG2D is a receptor used by natural killer (NK) cells to detect virally infected and transformed cells. It recognizes ligands that are expressed constitutively on primary tumors and tumor cell lines. In this report, we have identified four microRNAs (miRNAs) that each was sufficient to reduce the expression of the NKG2D ligand major histocompatibility complex class I-related chain A (MICA). One of these miRNAs (miR-520b) was induced by IFNγ, leading to a reduction in MICA surface protein levels. Interestingly, miR-520b acted on both the MICA 3′UTR and promoter region and caused a decrease in the levels of MICA transcript. In contrast, an anti-sense oligonucleotide inhibitor of miR-520b increased the expression of a reporter construct containing the MICA 3′UTR but not the MICA promoter region. These findings demonstrate the novel regulation of an NKG2D ligand by an endogenous miRNA that is itself induced by IFNγ. PMID:19109132

  12. Specific Capture of Peptide-Receptive Major Histocompatibility Complex Class I Molecules by Antibody Micropatterns Allows for a Novel Peptide-Binding Assay in Live Cells.

    PubMed

    Dirscherl, Cindy; Palankar, Raghavendra; Delcea, Mihaela; Kolesnikova, Tatiana A; Springer, Sebastian

    2017-02-02

    Binding assays with fluorescently labeled ligands and recombinant receptor proteins are commonly performed in 2D arrays. But many cell surface receptors only function in their native membrane environment and/or in a specific conformation, such as they appear on the surface of live cells. Thus, receptors on live cells should be used for ligand binding assays. Here, it is shown that antibodies preprinted on a glass surface can be used to specifically array a peptide receptor of the immune system, i.e., the major histocompatibility complex class I molecule H-2K(b) , into a defined pattern on the surface of live cells. Monoclonal antibodies make it feasible to capture a distinct subpopulation of H-2K(b) and hold it at the cell surface. This patterned receptor enables a novel peptide-binding assay, in which the specific binding of a fluorescently labeled index peptide is visualized by microscopy. Measurements of ligand binding to captured cell surface receptors in defined confirmations apply to many problems in cell biology and thus represent a promising tool in the field of biosensors.

  13. Techniques to improve the direct ex vivo detection of low frequency antigen-specific CD8+ T cells with peptide-major histocompatibility complex class I tetramers.

    PubMed

    Chattopadhyay, Pratip K; Melenhorst, J Joseph; Ladell, Kristin; Gostick, Emma; Scheinberg, Phillip; Barrett, A John; Wooldridge, Linda; Roederer, Mario; Sewell, Andrew K; Price, David A

    2008-11-01

    The ability to quantify and characterize antigen-specific CD8+ T cells irrespective of functional readouts using fluorochrome-conjugated peptide-major histocompatibility complex class I (pMHCI) tetramers in conjunction with flow cytometry has transformed our understanding of cellular immune responses over the past decade. In the case of prevalent CD8+ T cell populations that engage cognate pMHCI tetramers with high avidities, direct ex vivo identification and subsequent data interpretation is relatively straightforward. However, the accurate identification of low frequency antigen-specific CD8+ T cell populations can be complicated, especially in situations where T cell receptor-mediated tetramer binding occurs at low avidities. Here, we highlight a few simple techniques that can be employed to improve the visual resolution, and hence the accurate quantification, of tetramer binding CD8+ T cell populations by flow cytometry. These methodological modifications enhance signal intensity, especially in the case of specific CD8+ T cell populations that bind cognate antigen with low avidities, minimize background noise, and enable improved discrimination of true pMHCI tetramer binding events from nonspecific uptake.

  14. Structural analysis of the human interferon gamma receptor: a small segment of the intracellular domain is specifically required for class I major histocompatibility complex antigen induction and antiviral activity.

    PubMed

    Cook, J R; Jung, V; Schwartz, B; Wang, P; Pestka, S

    1992-12-01

    Mutations of the human interferon gamma (IFN-gamma) receptor intracellular domain have permitted us to define a restricted region of that domain as necessary for both induction of class I major histocompatibility complex antigen by IFN-gamma and protection against encephalomyocarditis virus. This region consists of five amino acids (YDKPH), all of which are conserved in the human and murine receptors. Tyr-457 and His-461 are essential for activity. Approximately 80% of the amino acids of the intracellular domain of the receptor is not required for major histocompatibility complex class I antigen induction or for antiviral protection against encephalomyocarditis virus. The observation that there was no protection by IFN-gamma against vesiculostomatitis virus indicates that other factors, in addition to chromosome 21 accessory factor(s), are required to generate the full complement of transduction signals from the human IFN-gamma receptor.

  15. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation

    PubMed Central

    Bataille, Arnaud; Cashins, Scott D.; Grogan, Laura; Skerratt, Lee F.; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A.; Macris, Amy; Harlow, Peter S.; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-01-01

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal. PMID:25808889

  16. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation.

    PubMed

    Bataille, Arnaud; Cashins, Scott D; Grogan, Laura; Skerratt, Lee F; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A; Macris, Amy; Harlow, Peter S; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-04-22

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.

  17. High-throughput engineering and analysis of peptide binding to class II MHC

    PubMed Central

    Jiang, Wei; Boder, Eric T.

    2010-01-01

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity. PMID:20622157

  18. A comparison of the antigen-presenting capabilities of class II MHC-expressing human lung epithelial and endothelial cells.

    PubMed Central

    Cunningham, A C; Zhang, J G; Moy, J V; Ali, S; Kirby, J A

    1997-01-01

    Human lung alveolar epithelial cells constitutively express class II major histocompatibility complex (MHC). Human lung microvascular endothelial and small airway epithelial cells can be induced to express class II MHC by stimulation with the pro-inflammatory cytokine interferon-gamma. The levels of class II MHC on lung epithelial and endothelial cells were comparable to those seen on an Epstein-Barr virus (EBV)-transformed B-cell line. However, the costimulatory molecules B7-1 and B7-2 were not expressed. The ability of the class II MHC expressing human lung parenchymal cells to present alloantigen to CD4+ T lymphocytes was investigated. Freshly isolated human alveolar epithelial cells (type II pneumocytes) and monolayers of interferon-gamma-stimulated small airway epithelial and lung microvascular endothelial cells were co-cultured with allogeneic CD4+ T lymphocytes and proliferation determined by [3H]thymidine incorporation. A clear difference was observed between effects of the epithelial and endothelial cells on CD4+ T-lymphocyte activation. Alveolar and small airway epithelial cells failed to stimulate the proliferation of allogeneic CD4+ T lymphocytes whereas lung microvascular endothelial cells did stimulate proliferation. This difference could not be explained by the levels of class II MHC or the lack of B7-1 and B7-2 solely. Microvascular endothelial cells, and not alveolar or small airway epithelial cells, possess B7-independent costimulatory pathways. PMID:9301537

  19. Expressed MHC class II genes in sea otters (Enhydra lutris) from geographically disparate populations.

    PubMed

    Bowen, L; Aldridge, B M; Miles, A K; Stott, J L

    2006-05-01

    The major histocompatibility complex (MHC) is central to maintaining the immunologic vigor of individuals and populations. Classical MHC class II genes were targeted for partial sequencing in sea otters (Enhydra lutris) from populations in California, Washington, and Alaska. Sequences derived from sea otter peripheral blood leukocyte mRNAs were similar to those classified as DQA, DQB, DRA, and DRB in other species. Comparisons of the derived amino acid compositions supported the classification of these as functional molecules from at least one DQA, DQB, and DRA locus and at least two DRB loci. While limited in scope, phylogenetic analysis of the DRB peptide-binding region suggested the possible existence of distinct clades demarcated by geographic region. These preliminary findings support the need for additional MHC gene sequencing and expansion to a comprehensive study targeting additional otters.

  20. Genetic characterization of MHC class II DQB exon 2 variants in gayal (Bos frontalis)

    PubMed Central

    Sun, Yongke; Xi, Dongmei; Li, Guozhi; Hao, Tiantian; Chen, Yuhan; Yang, Yuai

    2014-01-01

    In the present study, exon 2 of major histocompatibility complex (MHC) class II DQB gene from 39 gayals (Bos frontalis) was isolated, characterized and compared with previously reported patterns for other bovidae. It was revealed by sequence analyses that there are 36 DQB exon 2 variants among 39 gayals. These variants exhibited a high degree of nucleotide and amino acid substitutions with most amino acid variations occurring at positions forming the peptide-binding sites (PBS). The DQB loci were analysed for patterns of synonymous (d S) and non-synonymous (d N) substitution. The gayals were observed to be under strong balancing selection in the DQB exon 2 PBS (d N = 0.094, P = 0.001). It appears that this variability among gayals could confer the ability to mount immune responses to a wide variety of peptides or pathogens. PMID:26019566

  1. Expressed MHC class II genes in sea otters (Enhydra lutris) from geographically disparate populations

    USGS Publications Warehouse

    Bowen, L.; Aldridge, B.M.; Miles, A.K.; Stott, J.L.

    2006-01-01

    The major histocompatibility complex (MHC) is central to maintaining the immunologic vigor of individuals and populations. Classical MHC class II genes were targeted for partial sequencing in sea otters (Enhydra lutris) from populations in California, Washington, and Alaska. Sequences derived from sea otter peripheral blood leukocyte mRNAs were similar to those classified as DQA, DQB, DRA, and DRB in other species. Comparisons of the derived amino acid compositions supported the classification of these as functional molecules from at least one DQA, DQB, and DRA locus and at least two DRB loci. While limited in scope, phylogenetic analysis of the DRB peptide-binding region suggested the possible existence of distinct clades demarcated by geographic region. These preliminary findings support the need for additional MHC gene sequencing and expansion to a comprehensive study targeting additional otters. ?? 2006 Blackwell Munksgaard.

  2. Influence of kinship and MHC class II genotype on visual traits in zebrafish larvae (Danio rerio).

    PubMed

    Hinz, Cornelia; Gebhardt, Katharina; Hartmann, Alexander K; Sigman, Lauren; Gerlach, Gabriele

    2012-01-01

    Kin recognition can drive kin selection and the evolution of social behaviour. In zebrafish (Danio rerio, Hamilton 1822), kin recognition is based on olfactory and visual imprinting processes. If larvae are exposed to visual and chemical cues of kin at day 5 and 6 post fertilization they will recognize kin throughout life, while exposure to non-kin fails to trigger any recognition. Chemical imprinting signals are transcribed by polymorphic genes of the major histocompatibility complex (MHC) code; however, the underlying mechanism for visual imprinting remains unclear. Here we provide evidence for the existence of family-specific differences in morphometry and pigmentation pattern of six day old zebrafish larvae. While rump, tail and body pigmentation were dependent on relatedness, iris pigmentation and morphometry were also influenced by MHC class II genotype. Our study revealed that the MHC not only influences the chemical signature of individuals, but also their visual appearance.

  3. Genetic characterization of MHC class II DQB exon 2 variants in gayal (Bos frontalis).

    PubMed

    Sun, Yongke; Xi, Dongmei; Li, Guozhi; Hao, Tiantian; Chen, Yuhan; Yang, Yuai

    2014-09-03

    In the present study, exon 2 of major histocompatibility complex (MHC) class II DQB gene from 39 gayals (Bos frontalis) was isolated, characterized and compared with previously reported patterns for other bovidae. It was revealed by sequence analyses that there are 36 DQB exon 2 variants among 39 gayals. These variants exhibited a high degree of nucleotide and amino acid substitutions with most amino acid variations occurring at positions forming the peptide-binding sites (PBS). The DQB loci were analysed for patterns of synonymous (dS) and non-synonymous (dN) substitution. The gayals were observed to be under strong balancing selection in the DQB exon 2 PBS (dN = 0.094, P = 0.001). It appears that this variability among gayals could confer the ability to mount immune responses to a wide variety of peptides or pathogens.

  4. Toward a Network Model of MHC Class II-Restricted Antigen Processing

    PubMed Central

    Miller, Michael A.; Ganesan, Asha Purnima V.; Eisenlohr, Laurence C.

    2013-01-01

    The standard model of Major Histocompatibility Complex class II (MHCII)-restricted antigen processing depicts a straightforward, linear pathway: internalized antigens are converted into peptides that load in a chaperone dependent manner onto nascent MHCII in the late endosome, the complexes subsequently trafficking to the cell surface for recognition by CD4+ T cells (TCD4+). Several variations on this theme, both moderate and radical, have come to light but these alternatives have remained peripheral, the conventional pathway generally presumed to be the primary driver of TCD4+ responses. Here we continue to press for the conceptual repositioning of these alternatives toward the center while proposing that MHCII processing be thought of less in terms of discrete pathways and more in terms of a network whose major and minor conduits are variable depending upon many factors, including the epitope, the nature of the antigen, the source of the antigen, and the identity of the antigen-presenting cell. PMID:24379819

  5. Comparative genome analysis of the major histocompatibility complex (MHC) class I B/C segments in primates elucidated by genomic sequencing in common marmoset (Callithrix jacchus).

    PubMed

    Shiina, Takashi; Kono, Azumi; Westphal, Nico; Suzuki, Shingo; Hosomichi, Kazuyoshi; Kita, Yuki F; Roos, Christian; Inoko, Hidetoshi; Walter, Lutz

    2011-08-01

    Common marmoset monkeys (Callithrix jacchus) have emerged as important animal models for biomedical research, necessitating a more extensive characterization of their major histocompatibility complex (MHC) region. However, the genomic information of the marmoset MHC (Caja) is still lacking. The MHC-B/C segment represents the most diverse MHC region among primates. Therefore, in this paper, to elucidate the detailed gene organization and evolutionary processes of the Caja class I B (Caja-B) segment, we determined two parts of the Caja-B sequences with 1,079 kb in total, ranging from H6orf15 to BAT1 and compared the structure and phylogeny with that of other primates. This segment contains 54 genes in total, nine Caja-B genes (Caja-B1 to Caja-B9), two MIC genes (MIC1 and MIC2), eight non-MHC genes, two non-coding genes, and 33 non-MHC pseudogenes that have not been observed in other primate MHC-B/C segments. Caja-B3, Caja-B4, and Caja-B7 encode proper MHC class I proteins according to amino acid structural characteristics. Phylogenetic relationships based on 48 MHC-I nucleotide sequences in primates suggested (1) species-specific divergence for Caja, Mamu, and HLA/Patr/Gogo lineages, (2) independent generation of the "seven coding exon" type MHC-B genes in Mamu and HLA/Patr/Gogo lineages from an ancestral "eight coding exon" type MHC-I gene, (3) parallel correlation with the long and short segmental duplication unit length in Caja and Mamu lineages. These findings indicate that the MHC-B/C segment has been under permanent selective pressure in the evolution of primates.

  6. Heterogenous graft rejection pathways in class I major histocompatibility complex-disparate combinations and their differential susceptibility to immunomodulation induced by intravenous presensitization with relevant alloantigens

    PubMed Central

    1991-01-01

    The present study investigates the heterogeneity of graft rejection pathways in class I major histocompatibility complex (MHC)-disparate combinations and the susceptibility of each pathway to immunomodulation induced by intravenous presensitization with alloantigens. Depletion of CD8+ T cells was induced by repeated administration of anti-CD8 monoclonal antibody. CD8+ T cell-depleted mice failed to generate anti- allo class I MHC cytotoxic T cell (CTL) responses but exhibited anti- allo class I MHC T cell responses, such as mixed lymphocyte reaction (MLR)/IL-2 production, that were induced by CD4+ T cells. In contrast, donor-specific intravenous presensitization (DSP), as a model of donor- specific transfusion, induced almost complete elimination of CD4+ and CD8+ T cell-mediated MLR/IL-2 production, whereas this regimen did not affect the generation of CTL responses induced by DSP-resistant elements (CD8+ CTL precursors and CD4+ CTL helpers). Prolongation of skin graft survival was not induced by either of the above two regimens alone, but by the combination of these. Prolonged graft survival was obtained irrespective of whether the administration of anti-CD8 antibody capable of eliminating CTL was started before or after DSP. The combination of DSP with injection of anti-CD4 antibody also effectively prolonged graft survival. However, this was the case only when the injection of antibody was started before DSP, because such antibody administration was capable of inhibiting the generation of CTL responses by eliminating DSP-resistant CD4+ CTL helpers. These results indicate that (a) the graft rejection in class I-disparate combinations is induced by CD8+ CTL-involved and -independent pathways that are resistant and susceptible to DSP, respectively; (b) DSP contributes to, but is not sufficient for, the prolongation of graft survival; and (c) the suppression of graft rejection requires an additional treatment for reducing DSP-resistant CTL responses. The results are

  7. Characterization and 454 pyrosequencing of Major Histocompatibility Complex class I genes in the great tit reveal complexity in a passerine system

    PubMed Central

    2012-01-01

    Background The critical role of Major Histocompatibility Complex (Mhc) genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major) from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help understanding how parasite

  8. Altered Expression of Raet1e, a Major Histocompatibility Complex Class 1–Like Molecule, Underlies the Atherosclerosis Modifier Locus Ath11 10b

    PubMed Central

    Rodríguez, José M.; Wolfrum, Susanne; Robblee, Megan; Chen, Kwan Y.; Gilbert, Zachary N.; Choi, Jae-Hoon; Teupser, Daniel; Breslow, Jan L.

    2014-01-01

    Rationale Quantitative trait locus mapping of an intercross between C57.Apoe−/− and FVB.Apoe−/− mice revealed an atherosclerosis locus controlling aortic root lesion area on proximal chromosome 10, Ath11. In a previous work, subcongenic analysis showed Ath11 to be complex with proximal (10a) and distal (10b) regions. Objective To identify the causative genetic variation underlying the atherosclerosis modifier locus Ath11 10b. Methods and Results We now report subcongenic J, which narrows the 10b region to 5 genes, Myb, Hbs1L, Aldh8a1, Sgk1, and Raet1e. Sequence analysis of these genes revealed no amino acid coding differences between the parental strains. However, comparing aortic expression of these genes between F1.Apoe−/− Chr10SubJ(B/F) and F1.Apoe−/− Chr10SubJ(F/F) uncovered a consistent difference only for Raet1e, with decreased, virtually background, expression associated with increased atherosclerosis in the latter. The key role of Raet1e was confirmed by showing that transgene-induced aortic overexpression of Raet1e in F1.Apoe−/− Chr10SubJ(F/F) mice decreased atherosclerosis. Promoter reporter constructs comparing C57 and FVB sequences identified an FVB mutation in the core of the major aortic transcription start site abrogating activity. Conclusions This nonbiased approach has revealed Raet1e, a major histocompatibility complex class 1–like molecule expressed in lesional aortic endothelial cells and macrophage-rich regions, as a novel atherosclerosis gene and represents one of the few successes of the quantitative trait locus strategy in complex diseases. PMID:23948654

  9. Serum soluble major histocompatibility complex class I-related chain A/B expression in patients with alcoholic liver disease in Hainan Li community

    PubMed Central

    Wei, Xiaobin; Ren, Biqiong; Lin, Danqin; Luo, Bin; Fu, Xianxian; Li, Chunyun; Xia, Huan; Xiao, Xi; Yu, Ping

    2015-01-01

    Background/Aims: To study the expression and clinical significance of serum soluble major histocompatibility complex class I-related chain A/B (sMICA/B), and its correlation with percentage of CD4+, CD8+, and NK cells, Liver fibrosis screening test, and liver enzymes in alcoholic liver disease (ALD). Methods: Hainan Li ALD patients (n = 141) and healthy Li subjects (n = 100) were enrolled for the study. Liver enzymes were measured using automatic biochemical analyzer and Liver fibrosis screening test was used to study the correlation. In addition, sMICA/B expression in serum and percentage of CD4+, CD8+, and NK cells were determined using ELISA and flow cytometry respectively. Results: Liver fibrosis screening test results and liver enzymes concentration were significantly higher (both P < 0.01), whereas the expression of sMICA and sMICB was significantly indifferent (P > 0.01) between ALD patients and healthy controls. However, percentage of CD4+, CD8+, and NK cells were statistically lower in ALD patients than in healthy controls. The Kendall’s tau-b correlation coefficient for sMICA and sMICB/sMICA and LV was 0.561 and 0.120 respectively (P < 0.01). Pearson correlation coefficient of sMICA with the percentage of CD4+, CD8+%, and NK cells was -0.587, -0.525, and -0.232 respectively, whereas the coefficient of sMICB was -0.590, -0.554, and -0.292 respectively (P < 0.01). Conclusion: 1. Liver fibrosis screening test is an excellent non-invasive approach for the diagnosis of hepatic fibrosis and shows significant correlation with liver enzymes. 2. sMICA and sMICB failed to assess the degree of hepatic fibrosis. 3. Decreased percentage of CD4+, CD8+, and NK cells were attributed as one of the risk factors for ALD. PMID:26550349

  10. Soluble Major Histocompatibility Complex Class I-Related Chain B Molecules Are Increased and Correlate With Clinical Outcomes During Rhinovirus Infection in Healthy Subjects

    PubMed Central

    Telcian, Aurica G.; Caramori, Gaetano; Laza-Stanca, Vasile; Message, Simon D.; Kebadze, Tatiana; Kon, Onn M.; Groh, Veronika; Papi, Alberto; Johnston, Sebastian L.; Mallia, Patrick; Stanciu, Luminita A.

    2014-01-01

    BACKGROUND: Surface major histocompatibility complex class I-related chain (MIC) A and B molecules are increased by IL-15 and have a role in the activation of natural killer group 2 member D-positive natural killer and CD8 T cells. MICA and MICB also exist in soluble forms (sMICA and sMICB). Rhinoviruses (RVs) are the major cause of asthma exacerbations, and IL-15 levels are decreased in the airways of subjects with asthma. The role of MIC molecules in immune responses in the lung has not been studied. Here, we determine the relationship between MICA and MICB and RV infection in vitro in respiratory epithelial cells and in vivo in healthy subjects and subjects with asthma. METHODS: Surface MICA and MICB, as well as sMICA and sMICB, in respiratory epithelial cells were measured in vitro in response to RV infection and exposure to IL-15. Levels of sMICA and sMICB in serum, sputum, and BAL were measured and correlated with blood and bronchoalveolar immune cells in healthy subjects and subjects with asthma before and during RV infection. RESULTS: RV increased MICA and MICB in vitro in epithelial cells. Exogenous IL-15 upregulated sMICB levels in RV-infected epithelial cells. Levels of sMICB molecules in serum were increased in healthy subjects compared with subjects with stable asthma. Following RV infection, airway levels of sMIC are upregulated, and there are positive correlations between sputum MICB levels and the percentage of bronchoalveolar natural killer cells in healthy subjects but not subjects with asthma. CONCLUSIONS: RV infection induces MIC molecules in respiratory epithelial cells in vitro and in vivo. Induction of MICB molecules is impaired in subjects with asthma, suggesting these molecules may have a role in the antiviral immune response to RV infections. PMID:24556715

  11. The major histocompatibility complex in monotremes: an analysis of the evolution of Mhc class I genes across all three mammalian subclasses.

    PubMed

    Miska, Katarzyna B; Harrison, Gavan A; Hellman, Lars; Miller, Robert D

    2002-09-01

    We report the isolation and characterization of cDNA clones of expressed, functional major histocompatibility complex class-I ( Mhc-I) genes from two species of monotremes: the duck-billed platypus and the short-beaked echidna. The cDNA clones were isolated from libraries constructed from spleen RNA, clearly establishing their expression in at least this one peripheral lymphoid organ. From the presence of conserved amino acid residues, it appears the expressed sequences encode molecules that likely function as classical Mhc-I. These clones were isolated using monotreme Mhc-I processed pseudogenes as probes. These processed pseudogenes were isolated from genomic DNA and, based on their structure, are likely independently derived in the platypus and echidna. When all the monotreme sequences were included in phylogenetic analyses, we found no apparent orthologous relationships between the platypus and echidna Mhc-I. Analyses that included a large number of Mhc-I sequences from other taxa support a separate monotreme Mhc-I clade, basal to a therian Mhc-I clade that is comprised of sequences from marsupial and placental mammals. The phylogenies also support the hypothesis that Mhc-I genes of placental mammals, marsupials, and monotremes are derived from three separate lineages of Mhc-I genes, best explained by two rounds of duplications and deletions. The first round would have occurred prior to the divergence of monotremes and therians, and the second prior to the divergence of marsupials and placental mammals. The sequences described here represent the first reported functional monotreme Mhc-I, as well as the first processed pseudogenes of any type from monotremes.

  12. Equine herpesvirus type 4 UL56 and UL49.5 proteins downregulate cell surface major histocompatibility complex class I expression independently of each other.

    PubMed

    Said, Abdelrahman; Azab, Walid; Damiani, Armando; Osterrieder, Nikolaus

    2012-08-01

    Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses interfere with CTL-mediated elimination of infected cells by various mechanisms, including inhibition of peptide transport and loading, perturbation of MHC-I trafficking, and rerouting and proteolysis of cell surface MHC-I. In this study, we show that equine herpesvirus type 4 (EHV-4) modulates MHC-I cell surface expression through two different mechanisms. First, EHV-4 can lead to a significant downregulation of MHC-I expression at the cell surface through the product of ORF1, a protein expressed with early kinetics from a gene that is homologous to herpes simplex virus 1 UL56. The EHV-4 UL56 protein reduces cell surface MHC-I as early as 4 h after infection. Second, EHV-4 can interfere with MHC-I antigen presentation, starting at 6 h after infection, by inhibition of the transporter associated with antigen processing (TAP) through its UL49.5 protein. Although pUL49.5 has no immediate effect on overall surface MHC-I levels in infected cells, it blocks the supply of antigenic peptides to the endoplasmic reticulum (ER) and transport of peptide-loaded MHC-I to the cell surface. Taken together, our results show that EHV-4 encodes at least two viral immune evasion proteins: pUL56 reduces MHC-I molecules on the cell surface at early times after infection, and pUL49.5 interferes with MHC-I antigen presentation by blocking peptide transport in the ER.

  13. 40 CFR 144.19 - Transitioning from Class II to Class VI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Transitioning from Class II to Class VI. (a) Owners or operators that are injecting carbon dioxide for the... geologic sequestration permit when there is an increased risk to USDWs compared to Class II operations. In...) Increase in carbon dioxide injection rates; (3) Decrease in reservoir production rates; (4) Distance...

  14. 40 CFR 144.19 - Transitioning from Class II to Class VI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Transitioning from Class II to Class VI. (a) Owners or operators that are injecting carbon dioxide for the... geologic sequestration permit when there is an increased risk to USDWs compared to Class II operations. In...) Increase in carbon dioxide injection rates; (3) Decrease in reservoir production rates; (4) Distance...

  15. 40 CFR 144.19 - Transitioning from Class II to Class VI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Transitioning from Class II to Class VI. (a) Owners or operators that are injecting carbon dioxide for the... geologic sequestration permit when there is an increased risk to USDWs compared to Class II operations. In...) Increase in carbon dioxide injection rates; (3) Decrease in reservoir production rates; (4) Distance...

  16. Olfactory fingerprints for major histocompatibility complex-determined body odors II: relationship among odor maps, genetics, odor composition, and behavior.

    PubMed

    Schaefer, Michele L; Yamazaki, Kunio; Osada, Kazumi; Restrepo, Diego; Beauchamp, Gary K

    2002-11-01

    The olfactory system detects small differences in the composition of natural odorants, made up of hundreds of molecules. Odorous quality is hypothetically represented by a combinatorial code: activation of distinct but overlapping subsets of olfactory receptors resulting in activation of a distinct subset of glomeruli in the main olfactory bulb (MOB). Here we show that modification of a single gene (the K gene of the major histocompatibility locus), which results in a subtle change in the odiferous quality of urine, causes a small but significant change in the composition of urine volatiles and consequently the evoked glomerular activation pattern in the MOB. The magnitude of disparity between urine-evoked glomerular activation patterns is predictive of the extent of (1) the genetic difference among the urine donors, (2) the difference in the chemical composition of urine, and (3) the odor detector's ability to discriminate. These data on natural odors are consistent with the combinatorial code hypothesis and identify subsets of glomeruli that are apt to play a significant role in mediating individual recognition.

  17. MHC class II expression and potential antigen-presenting cells in the retina during experimental autoimmune uveitis.

    PubMed

    Lipski, Deborah A; Dewispelaere, Rémi; Foucart, Vincent; Caspers, Laure E; Defrance, Matthieu; Bruyns, Catherine; Willermain, François

    2017-07-18

    Controversy exists regarding which cell types are responsible for autoantigen presentation in the retina during experimental autoimmune uveitis (EAU) development. In this study, we aimed to identify and characterize the retinal resident and infiltrating cells susceptible to express major histocompatibility complex (MHC) class II during EAU. EAU was induced in C57BL/6 mice by adoptive transfer of autoreactive lymphocytes from IRBP1-20-immunized animals. MHC class II expression was studied by immunostainings on eye cryosections. For flow cytometry (FC) analysis, retinas were dissected and enzymatically digested into single-cell suspensions. Three MHC class II(+) retinal cell populations were sorted by FC, and their RNA processed for RNA-Seq. Immunostainings demonstrate strong induction of MHC class II expression in EAU, especially in the inner retina at the level of inflamed vessels, extending to the outer retinal layers and the subretinal space in severely inflamed eyes. Most MHC class II(+) cells express the hematopoietic marker IBA1. FC quantitative analyses demonstrate that MHC class II induction significantly correlates with disease severity and is associated with upregulation of co-stimulatory molecule expression. In particular, most MHC class II(hi) cells express co-stimulatory molecules during EAU. Further phenotyping identified three MHC class II(+) retinal cell populations: CD45(-)CD11b(-) non-hematopoietic cells with low MHC class II expression and CD45(+)CD11b(+) hematopoietic cells with higher MHC class II expression, which can be further separated into Ly6C(+) and Ly6C(-) cells, possibly corresponding to infiltrating macrophages and resident microglia. Transcriptome analysis of the three sorted populations leads to a clear sample clustering with some enrichment in macrophage markers and microglial cell markers in Ly6C(+) and Ly6C(-) cells, respectively. Functional annotation analysis reveals that both hematopoietic cell populations are more competent in

  18. Presence of third molar germs in orthodontic patients with class II/2 and class III malocclusions.

    PubMed

    Mady Maricić, Barbara; Legović, Mario; Slaj, Martina; Lapter Varga, Marina; Zuvić Butorac, Marta; Kapović, Miljenko

    2009-12-01

    The aim of this study was to determine the presence of third molar germs in patients with Class II/2 and Class III malocclusions. The study comprised 146 examinees from Zagreb and Istria. Examinees with Class II/2 malocclusions amounted to 77 and those with Class III 69. With regard to development of dentition the examinees were divided into two groups: Group I subjects with early mixed dentition (23 subjects with Class II/2 and 21 subjects with Class III), and Group II subjects with late mixed dentition (54 subjects with Class II/2 and 48 subjects with Class III). Assessments were made from panoramic radiographs and lateral cephalograms. The Pearson chi2-test and Fisher's exact test was used to determine statistical significance in differences. Assessments showed that third molar germs were present significantly more often in the upper jaw in Class II/2 (58% vs. 44%) and in the lower jaw in Class III (83% vs. 69%). In subjects with Class II/2 all third molar germs were present statistically more often in late mixed dentition, which was also determined for maxillary third molar germs in Class III. The presence of mandibular third molar germs in Class III examinees was almost equal in both periods of mixed dentitions. The study confirmed correlation between the presence of third molar germs and sagital maxillomandibular relationship and encourages investigation of the differences in calcifications of all permanent teeth in such malocclusions.

  19. Deficient Peptide Loading and MHC Class II Endosomal Sorting in a Human Genetic Immunodeficiency Disease: the Chediak-Higashi Syndrome

    PubMed Central

    Faigle, Wolfgang; Raposo, Graça; Tenza, Daniele; Pinet, Valérie; Vogt, Anne B.; Kropshofer, Harald; Fischer, Alain; de Saint-Basile, Geneviève; Amigorena, Sebastian

    1998-01-01

    The Chediak-Higashi syndrome (CHS) is a human recessive autosomal disease caused by mutations in a single gene encoding a protein of unknown function, called lysosomal-trafficking regulator. All cells in CHS patients bear enlarged lysosomes. In addition, T- and natural killer cell cytotoxicity is defective in these patients, causing severe immunodeficiencies. We have analyzed major histocompatibility complex class II functions and intracellular transport in Epstein Barr Virus–transformed B cells from CHS patients. Peptide loading onto major histocompatibility complex class II molecules and antigen presentation are strongly delayed these cells. A detailed electron microscopy analysis of endocytic compartments revealed that only lysosomal multilaminar compartments are enlarged (reaching 1–2 μm), whereas late multivesicular endosomes have normal size and morphology. In contrast to giant multilaminar compartments that bear most of the usual lysosomal markers in these cells (HLA-DR, HLA-DM, Lamp-1, CD63, etc.), multivesicular late endosomes displayed reduced levels of all these molecules, suggesting a defect in transport from the trans-Golgi network and/or early endosomes into late multivesicular endosomes. Further insight into a possible mechanism of this transport defect came from immunolocalizing the lysosomal trafficking regulator protein, as antibodies directed to a peptide from its COOH terminal domain decorated punctated structures partially aligned along microtubules. These results suggest that the product of the Lyst gene is required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules. PMID:9606205

  20. Deficient peptide loading and MHC class II endosomal sorting in a human genetic immunodeficiency disease: the Chediak-Higashi syndrome.

    PubMed

    Faigle, W; Raposo, G; Tenza, D; Pinet, V; Vogt, A B; Kropshofer, H; Fischer, A; de Saint-Basile, G; Amigorena, S

    1998-06-01

    The Chediak-Higashi syndrome (CHS) is a human recessive autosomal disease caused by mutations in a single gene encoding a protein of unknown function, called lysosomal-trafficking regulator. All cells in CHS patients bear enlarged lysosomes. In addition, T- and natural killer cell cytotoxicity is defective in these patients, causing severe immunodeficiencies. We have analyzed major histocompatibility complex class II functions and intracellular transport in Epstein Barr Virus-transformed B cells from CHS patients. Peptide loading onto major histocompatibility complex class II molecules and antigen presentation are strongly delayed these cells. A detailed electron microscopy analysis of endocytic compartments revealed that only lysosomal multilaminar compartments are enlarged (reaching 1-2 micron), whereas late multivesicular endosomes have normal size and morphology. In contrast to giant multilaminar compartments that bear most of the usual lysosomal markers in these cells (HLA-DR, HLA-DM, Lamp-1, CD63, etc.), multivesicular late endosomes displayed reduced levels of all these molecules, suggesting a defect in transport from the trans-Golgi network and/or early endosomes into late multivesicular endosomes. Further insight into a possible mechanism of this transport defect came from immunolocalizing the lysosomal trafficking regulator protein, as antibodies directed to a peptide from its COOH terminal domain decorated punctated structures partially aligned along microtubules. These results suggest that the product of the Lyst gene is required for sorting endosomal resident proteins into late multivesicular endosomes by a mechanism involving microtubules.

  1. MHC class II up-regulation and co-localization with Fas in experimental models of immune-mediated bone marrow failure

    PubMed Central

    Erie, Andrew J.; Samsel, Leigh; Takaku, Tomoiku; Desierto, Marie J.; Keyvanfar, Keyvan; McCoy, J. Philip; Young, Neal S.; Chen, Jichun

    2011-01-01

    Objective To test the hypothesis that gamma interferon (IFN-γ) promotes MHC class II expression on bone marrow (BM) cell targets that facilitates T cell-mediated BM destruction in immune-mediated BM failure. Materials and Methods Allogeneic lymph node (LN) cells were infused into MHC or minor histocompatibility antigen (minor-H) mismatched hosts to induce BM failure. MHC class II and Fas expression and cell apoptosis were analyzed by flow cytometry. MHC class II-Fas co-localization was detected by ImageStream Imaging Flow Cytometry and other cell-cell associations were visualized by confocal microscopy. T cell-mediated BM cell apoptosis and effects of IFN-γ on MHC class II-Fas co-localization on normal BM cells were studied using cell culture in vitro followed by conventional and imaging flow cytometry. Results BM failure animals had significantly up-regulated MHC class II expression on CD4−CD8−CD11b−CD45R− residual BM cells and significantly increased MHC class II-Fas co-localization on BM CD150+ and CD34+ hematopoietic cells. MHC class II+Fas+ BM cells were closely associated with CD4+ T cells in the BM of affected animals, and they were significantly more responsive to T-cell mediated cell apoptosis relative to MHC class II−Fas− BM cells. Infusion of IFN-γ-deficient LN cells into minor-H mismatched recipients resulted in no MHC class II-Fas up-regulation and no clinically overt BM failure. Treatment with recombinant IFN-γ significantly increased both MHC class II-Fas co-expression and co-localization on normal BM cells. Conclusion Elevation of the inflammatory cytokine IFN-γ stimulated MHC class II expression and MHC class II-Fas co-localization, which may facilitate T-cell mediated cell destruction. PMID:21635935

  2. Decreased monocyte class II MHC expression following major abdominal surgery in children is related to operative stress.

    PubMed

    McHoney, M; Klein, N J; Eaton, S; Pierro, A

    2006-04-01

    Monocyte class II major histocompatibility complex (MHC) expression is necessary for antigen presentation and stimulation of T-cells. The aim of this study was to correlate monocyte class II MHC response to operative stress in children and the possible influence of cytokines in the postoperative period. We studied 21 children undergoing elective abdominal surgery. Operative stress score (OSS) was calculated. Monocyte class II MHC expression was measured preoperatively, immediately after surgery, 24 and 48 h postoperatively, using flow cytometry. Class II MHC is expressed as mean fluorescence intensity (MFI) of monocytes expressing MHC (mean +/- SD). Cytokine levels (interleukins 1ra, 6, and 10, and tumor necrosis factor-alpha) were also measured. Data between time points were compared using repeated measures ANOVA. There was an immediate postoperative decrease in class II MHC expression, with lowest levels 24 h postoperatively (preoperative 50 +/- 23.6, 24 h 18.2 +/- 9.4, P < 0.0001 vs. preoperative). At 48 h there was partial recovery in class II MHC, but levels were still significantly lower than preoperative (23.9 +/- 11.1, P < 0.001). The degree of monocyte depression was related to the magnitude of operative stress. Patients who had OSS <10 displayed some recovery in expression at 48 h 25.5 +/- 11.1), whereas in patients with OSS > or = 10 (severe surgical stress), expression further decreased at 48 h (MFI 14.0 +/- 0.1). There was an elevation of interleukin-1ra in the immediate postoperative period in both groups. There was no elevation in the other cytokines. Abdominal surgery in children decreases monocyte MHC expression. Class II MHC depression was related to magnitude of surgical trauma, implying that more severe immuneparesis follows surgery of greater magnitude. This may predispose to postoperative infection.

  3. Characterization of the MHC class II region in cattle. The number of DQ genes varies between haplotypes.

    PubMed

    Andersson, L; Rask, L

    1988-01-01

    The organization of the major histocompatibility complex (MHC) class II region in cattle was investigated by Southern blot analysis using human probes corresponding to DO, DP, DQ, and DR genes. Exon-specific probes were also employed to facilitate the assessment of the number of different bovine class II genes. The results indicated the presence of single DO beta and DR alpha genes, at least three DR beta genes, while the number of DQ genes was found to vary between MHC haplotypes. Four DQ haplotypes, DQ alpha 1 beta 1 to DQ alpha 2 beta 4, possessed a single DQ alpha and a single DQ beta gene whereas both these genes were duplicated in eight other haplotypes, DQ alpha 3 beta 5 to DQ alpha 9 beta 12. No firm evidence for the presence of bovine DP genes was obtained. The same human probes were also used to investigate the genetic polymorphism of bovine class II genes. DQ alpha, DQ beta, DR alpha, DR beta, and DO beta restriction fragment length polymorphisms (RFLPs) were resolved and in particular the DQ restriction fragment patterns were highly polymorphic. Comparison of the present result with the current knowledge of the class II region in other mammalian species suggested that the DO, DP, DQ, DR, and DZ subdivision of the class II region was established already in the ancestor of mammals. The DP genes appear to be the least conserved class II genes among mammalian species and may have been lost in cattle. The degree of polymorphism of different class II genes, as revealed by RFLP analyses, shows striking similarities between species.

  4. Molecular characterization of major histocompatibility complex class I (B-F) mRNA variants from chickens differing in resistance to Marek's disease.

    PubMed

    Dalgaard, T S; Vitved, L; Skjødt, K; Thomsen, B; Labouriau, R; Jensen, K H; Juul-Madsen, H R

    2005-09-01

    In this study, the relative distributions of two alternatively polyadenylated chicken major histocompatibility complex (MHC) mRNA isoforms of approximately 1.5 and 1.9 kb were analysed in spleen cells from chickens homozygous for the MHC haplotypes B21 and B19v1 as well as in heterozygous B19v1/B21 birds. Both isoforms are likely to encode classical MHC class I (B-F) alpha chains. The B19v1 and B21 MHC haplotypes confer different levels of protection against Marek's disease (MD), which is caused by infection with MD virus (MDV). In spleen cells, MD-resistant B21 birds were shown to have the highest percentage of the 1.5 kb variant relative to the total MHC class I expression, MD-susceptible B19v1 birds the lowest and B19v1/B21 birds an intermediate percentage. Infection of 4-week-old chickens with the GA strain of MDV was shown to cause a significant increase in the relative amount of 1.5 kb transcripts in B21 birds 32 days postinfection (dpi). Alternatively polyadenylated mRNA isoforms may encode identical proteins, but differences in the 3' untranslated region (UTR) can influence polyadenylation, mRNA stability, intracellular localization and translation efficiency. It was shown that the increased 1.5 kb percentage in B21 birds 32 days postinfection may be a result of a change in the choice of poly(A) site rather than a locus-specific upregulated transcription of the BF1 gene that preferentially expresses the 1.5 kb variant. Furthermore, the 3' end of the 1.5 kb mRNA variants deriving from B19v1 and B21 chickens was characterized by Rapid Amplification of cDNA Ends (RACE) and sequencing. No potentially functional elements were identified in the 3' UTR of the RACE products corresponding to this short isoform. However, variation in polyadenylation site was observed between the BF1 and BF2 mRNA transcripts and alternative splicing-out of the sequence (exon 7) encoding the second segment of the cytoplasmic part of the mature BF2*19 molecules. This alternative exon 7

  5. 25 CFR 522.10 - Individually owned class II and class III gaming operations other than those operating on...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Individually owned class II and class III gaming... GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.10 Individually owned class II and class III...

  6. 25 CFR 522.10 - Individually owned class II and class III gaming operations other than those operating on...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Individually owned class II and class III gaming... GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.10 Individually owned class II and class III...

  7. 25 CFR 522.10 - Individually owned class II and class III gaming operations other than those operating on...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false Individually owned class II and class III gaming... GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.10 Individually owned class II and class...

  8. 25 CFR 522.10 - Individually owned class II and class III gaming operations other than those operating on...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Individually owned class II and class III gaming... GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.10 Individually owned class II and class...

  9. Genetics Home Reference: bare lymphocyte syndrome type II

    MedlinePlus

    ... Aug 14. Citation on PubMed Burd AL, Ingraham RH, Goldrick SE, Kroe RR, Crute JJ, Grygon CA. Assembly of major histocompatibility complex (MHC) class II transcription factors: association and promoter recognition of RFX proteins. Biochemistry. ...

  10. 78 FR 37114 - Self-Regulation of Class II Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... National Indian Gaming Commission 25 CFR Part 518 RIN 3141-AA44 Self-Regulation of Class II Gaming AGENCY... concerning the issuance of certificates for tribal self-regulation of Class II gaming: To correct a section... on the same day that it receives a tribe's response to the Office of Self Regulation's...

  11. 77 FR 4714 - Self-Regulation of Class II Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... National Indian Gaming Commission 25 CFR Part 518 RIN 3141-AA44 Self-Regulation of Class II Gaming AGENCY... proposes to amend the NIGC's self-regulation regulations to tailor the self-regulating qualifying criteria to a tribe's regulation of class II gaming activity and more clearly define and streamline the...

  12. [Does dental class II division 2 predispose to temporomandibular disorders?].

    PubMed

    Zuaiter, Shireen; Robin, Olivier; Gebeile-Chauty, Sarah; Raberin, Monique

    2013-09-01

    Because of its anatomical/physiological characteristics, the Class II division 2 (class II, div. 2) is one of the malocclusions considered as a possible risk factor for Temporomandibular disorders (TMD). A literature review was conducted from the electronic databases of Medline and Elsevier Masson, through the year 2010, in order to clarify the relationships that may exist between Class II division 2 and TMD. This research helped identify 50 articles: 7 articles specifically concerned the Class II div. 2, 37 articles concerned some of the characteristics of the Class II div. 2, considered individually (Class II, deep bite, retroclined maxillary incisors, mandibular retrognathism) and 6 articles orthodontic treatment. From the conclusions of these studies, the Class II, div. 2 does not appear to represent a significant risk factor for TMD. The clearest association would involve mandibular retrognathism and the risk of articular disk displacement. However, given the low number of articles published on this topic, the methodological variability and the contradictory results, it is difficult to identify reliable conclusions and, consequently, the therapeutic indications for the treatment of Class II div. 2 patients with TMD.

  13. Btn2a2, a T cell immunomodulatory molecule coregulated with MHC class II genes

    PubMed Central

    Sarter, Kerstin; Leimgruber, Elisa; Gobet, Florian; Agrawal, Vishal; Dunand-Sauthier, Isabelle; Barras, Emmanuèle; Mastelic-Gavillet, Béatris; Kamath, Arun; Fontannaz, Paola; Guéry, Leslie; Duraes, Fernanda do Valle; Lippens, Carla; Ravn, Ulla; Santiago-Raber, Marie-Laure; Magistrelli, Giovanni; Fischer, Nicolas; Siegrist, Claire-Anne; Hugues, Stéphanie

    2016-01-01

    Evidence has recently emerged that butyrophilins, which are members of the extended B7 family of co-stimulatory molecules, have diverse functions in the immune system. We found that the human and mouse genes encoding butyrophilin-2A2 (BTN2A2) are regulated by the class II trans-activator and regulatory factor X, two transcription factors dedicated to major histocompatibility complex class II expression, suggesting a role in T cell immunity. To address this, we generated Btn2a2-deficient mice. Btn2a2−/− mice exhibited enhanced effector CD4+ and CD8+ T cell responses, impaired CD4+ regulatory T cell induction, potentiated antitumor responses, and exacerbated experimental autoimmune encephalomyelitis. Altered immune responses were attributed to Btn2a2 deficiency in antigen-presenting cells rather than T cells or nonhematopoietic cells. These results provide the first genetic evidence that BTN2A2 is a co-inhibitory molecule that modulates T cell–mediated immunity. PMID:26809444

  14. The genetic architecture of the MHC class II region in British Texel sheep.

    PubMed

    Ali, Alsagher O A; Stear, Abigail; Fairlie-Clarke, Karen; Brujeni, Gholamreza Nikbakht; Isa, N Mahiza Md; Salisi, M Shahrom Bin; Donskow-Łysoniewska, Katarzyna; Groth, David; Buitkamp, Johannes; Stear, Michael J

    2017-03-01

    Understanding the structure of the major histocompatibility complex, especially the number and frequency of alleles, loci and haplotypes, is crucial for efficient investigation of the way in which the MHC influences susceptibility to disease. Nematode infection is one of the most important diseases suffered by sheep, and the class II region has been repeatedly associated with differences in susceptibility and resistance to infection. Texel sheep are widely used in many different countries and are relatively resistant to infection. This study determined the number and frequency of MHC class II genes in a small flock of Texel sheep. There were 18 alleles at DRB1, 9 alleles at DQA1, 13 alleles at DQB1, 8 alleles at DQA2 and 16 alleles at DQB2. Several haplotypes had no detectable gene products at DQA1, DQB1 or DQB2, and these were defined as null alleles. Despite the large numbers of alleles, there were only 21 distinct haplotypes in the population. The relatively small number of observed haplotypes will simplify finding disease associations because common haplotypes provide more statistical power but complicate the discrimination of causative mutations from linked marker loci.

  15. Characterization and evolution of MHC class II B genes in Ardeid birds.

    PubMed

    Li, Li; Zhou, Xiaopin; Chen, Xiaolin

    2011-06-01

    Major histocompatibility complex (MHC) is a multi-gene family that is very suitable to investigate a wide range of open questions in evolutionary ecology. In this study, we characterized two expressed MHC class II B genes (DAB1 and DAB2) in the Grey Heron (Aves: Ardea cinerea). We further developed the primer pairs to amplify and sequence two MHC class II B loci in ten ardeid birds. Phylogenetic analysis revealed that different parts of the genes showed different evolutionary patterns. The exon 2 sequences tended to cluster two gene-specific lineages. In each lineage, exon 2 sequences from several species showed closer relationships than sequences within species, and two shared identical alleles were found between species (Egretta sacra and Nycticorax nycticorax; Egretta garzetta and Bubulcus ibis), supporting the hypothesis of trans-species polymorphism. In contrast, the species-specific intron 2 plus partial exon 3 tree suggested that DAB1 and DAB2 were subject to concerted evolution. GENECONV analyses showed the gene exchange played an important role in the ardeid MHC evolution.

  16. Comprehensive analysis of MHC class II genes in teleost fish genomes reveals dispensability of the peptide-loading DM system in a large part of vertebrates

    PubMed Central

    2013-01-01

    Background Classical major histocompatibility complex (MHC) class II molecules play an essential role in presenting peptide antigens to CD4+ T lymphocytes in the acquired immune system. The non-classical class II DM molecule, HLA-DM in the case of humans, possesses critical function in assisting the classical MHC class II molecules for proper peptide loading and is highly conserved in tetrapod species. Although the absence of DM-like genes in teleost fish has been speculated based on the results of homology searches, it has not been definitively clear whether the DM system is truly specific for tetrapods or not. To obtain a clear answer, we comprehensively searched class II genes in representative teleost fish genomes and analyzed those genes regarding the critical functional features required for the DM system. Results We discovered a novel ancient class II group (DE) in teleost fish and classified teleost fish class II genes into three major groups (DA, DB and DE). Based on several criteria, we investigated the classical/non-classical nature of various class II genes and showed that only one of three groups (DA) exhibits classical-type characteristics. Analyses of predicted class II molecules revealed that the critical tryptophan residue required for a classical class II molecule in the DM system could be found only in some non-classical but not in classical-type class II molecules of teleost fish. Conclusions Teleost fish, a major group of vertebrates, do not possess the DM system for the classical class II peptide-loading and this sophisticated system has specially evolved in the tetrapod lineage. PMID:24279922

  17. Efficiency of Class I and Class II malocclusion treatment with four premolar extractions

    PubMed Central

    JANSON, Guilherme; NAKAMURA, Alexandre; BARROS, Sérgio Estelita; BOMBONATTI, Roberto; CHIQUETO, Kelly

    2014-01-01

    Four premolar extractions is a successful protocol to treat Class I malocclusion, but it is a less efficient way when compared with other Class II treatment protocols. Objective: The objective of this study was to evaluate the influence of anteroposterior discrepancy on the success of four premolar extractions protocol. For that, treatment efficiency of Class I and complete Class II malocclusions, treated with four premolar extractions were compared. Methods: A sample of 107 records from 75 Class I (mean age of 13.98 years - group 1) and 32 Class II (mean age of 13.19 years - group 2) malocclusion patients treated with four premolar extractions was selected. The initial and final occlusal status of each patient was evaluated on dental casts with the PAR index. The treatment time was calculated based on the clinical charts, and the treatment efficiency was obtained by the ratio between the percentage of PAR reduction and treatment time. The PAR index and its components, the treatment time and the treatment efficiency of the groups were statistically compared with t tests and Mann-Whitney U-test. Results: The Class II malocclusion patients had a greater final PAR index than Class I malocclusion patients, and similar duration (Class I - 28.95 mo. and Class II - 28.10 mo.) and treatment efficiency. Conclusion: The treatment of the complete Class II malocclusion with four premolar extractions presented worse occlusal results than Class I malocclusion owing to incomplete molar relationship correction. PMID:24918660

  18. Recognition of core and flanking amino acids of MHC class II-bound peptides by the T cell receptor.

    PubMed

    Sant'Angelo, Derek B; Robinson, Eve; Janeway, Charles A; Denzin, Lisa K

    2002-09-01

    CD4 T cells recognize peptides bound to major histocompatibility complex (MHC) class II molecules. Most MHC class II molecules have four binding pockets occupied by amino acids 1, 4, 6, and 9 of the minimal peptide epitope, while the residues at positions 2, 3, 5, 7, and 8 are available to interact with the T cell receptor (TCR). In addition MHC class II bound peptides have flanking residues situated outside of this peptide core. Here we demonstrate that the flanking residues of the conalbumin peptide bound to I-A(k) have no effect on recognition by the D10 TCR. To study the role of peptide flanks for recognition by a second TCR, we determined the MHC and TCR contacting amino acids of the I-A(b) bound Ealpha peptide. The Ealpha peptide is shown to bind I-A(b) using four alanines as anchor residues. TCR recognition of Ealpha peptides with altered flanking residues again suggested that, in general, no specific interactions occurred with the peptide flanks. However, using an HLA-DM-mediated technique to measure peptide binding to MHC class II molecules, we found that the peptide flanking residues contribute substantially to MHC binding.

  19. Generation of MHC class II:peptide ligands for CD4 T cell allorecognition of MHC Class II molecules

    PubMed Central

    Leddon, Scott A.; Sant, Andrea J.

    2011-01-01

    Purpose of review The molecular and cellular mechanisms that underlie allorecognition of MHC class II molecules has been the subject much debate and experimentation in recent decades. In this review, we discuss several aspects of MHC class II structure, peptide acquisition and TcR-MHC:peptide interactions that have particular relevance to recognition of cells bearing allogeneic class II molecules. Recent findings First, MHC polymorphism is heavily biased toward those amino acids that influence stable peptide binding by MHC class II. Second, the peptide repertoire presented by class II molecules is highly diverse and can be edited substantially by the molecular catalyst HLA-DM and by tissue-specific expression of HLA-DO, stress and cytokines. Third, T cell receptor docking onto MHC peptide typically involves substantial contacts with the bound peptide in the MHC class II molecule. Finally, there is increasing evidence that T cell recognition of MHC is in part germline-encoded through T cell receptor V region contacts with MHC class II alpha helices. Summary Together, these conclusions support the view that allorecognition of MHC class II molecules is likely to parallel key aspects of conventional CD4 T cell recognition, with allele-dependent variation in peptide representation accounting in large part for the high precursor frequency of alloreactive CD4 T cells PMID:20616724

  20. Varicella-Zoster Virus Downregulates Programmed Death Ligand 1 and Major Histocompatibility Complex Class I in Human Brain Vascular Adventitial Fibroblasts, Perineurial Cells, and Lung Fibroblasts

    PubMed Central

    Jones, Dallas; Blackmon, Anna; Neff, C. Preston; Palmer, Brent E.; Gilden, Don; Badani, Hussain

    2016-01-01

    ABSTRACT Varicella-zoster virus (VZV) vasculopathy produces stroke, giant cell arteritis, and granulomatous aortitis, and it develops after virus reactivates from ganglia and spreads transaxonally to arterial adventitia, resulting in persistent inflammation and pathological vascular remodeling. The mechanism(s) by which inflammatory cells persist in VZV-infected arteries is unknown; however, virus-induced dysregulation of programmed death ligand 1 (PD-L1) may play a role. Specifically, PD-L1 can be expressed on virtually all nucleated cells and suppresses the immune system by interacting with the programmed cell death protein receptor 1, found exclusively on immune cells; thus, downregulation of PD-L1 may promote inflammation, as seen in some autoimmune diseases. Both flow cytometry and immunofluorescence analyses to test whether VZV infection of adventitial cells downregulates PD-L1 showed decreased PD-L1 expression in VZV-infected compared to mock-infected human brain vascular adventitial fibroblasts (HBVAFs), perineural cells (HPNCs), and fetal lung fibroblasts (HFLs) at 72 h postinfection. Quantitative RT-PCR analyses showed no change in PD-L1 transcript levels between mock- and VZV-infected cells, indicating a posttranscriptional mechanism for VZV-mediated downregulation of PD-L1. Flow cytometry analyses showed decreased major histocompatibility complex class I (MHC-I) expression in VZV-infected cells and adjacent uninfected cells compared to mock-infected cells. These data suggest that reduced PD-L1 expression in VZV-infected adventitial cells contribute to persistent vascular inflammation observed in virus-infected arteries from patients with VZV vasculopathy, while downregulation of MHC-I prevents viral clearance. IMPORTANCE Here, we provide the first demonstration that VZV downregulates PD-L1 expression in infected HBVAFs, HPNCs, and HFLs, which, together with the noted VZV-mediated downregulation of MHC-I, might foster persistent inflammation in vessels

  1. Varicella-Zoster Virus Downregulates Programmed Death Ligand 1 and Major Histocompatibility Complex Class I in Human Brain Vascular Adventitial Fibroblasts, Perineurial Cells, and Lung Fibroblasts.

    PubMed

    Jones, Dallas; Blackmon, Anna; Neff, C Preston; Palmer, Brent E; Gilden, Don; Badani, Hussain; Nagel, Maria A

    2016-12-01

    Varicella-zoster virus (VZV) vasculopathy produces stroke, giant cell arteritis, and granulomatous aortitis, and it develops after virus reactivates from ganglia and spreads transaxonally to arterial adventitia, resulting in persistent inflammation and pathological vascular remodeling. The mechanism(s) by which inflammatory cells persist in VZV-infected arteries is unknown; however, virus-induced dysregulation of programmed death ligand 1 (PD-L1) may play a role. Specifically, PD-L1 can be expressed on virtually all nucleated cells and suppresses the immune system by interacting with the programmed cell death protein receptor 1, found exclusively on immune cells; thus, downregulation of PD-L1 may promote inflammation, as seen in some autoimmune diseases. Both flow cytometry and immunofluorescence analyses to test whether VZV infection of adventitial cells downregulates PD-L1 showed decreased PD-L1 expression in VZV-infected compared to mock-infected human brain vascular adventitial fibroblasts (HBVAFs), perineural cells (HPNCs), and fetal lung fibroblasts (HFLs) at 72 h postinfection. Quantitative RT-PCR analyses showed no change in PD-L1 transcript levels between mock- and VZV-infected cells, indicating a posttranscriptional mechanism for VZV-mediated downregulation of PD-L1. Flow cytometry analyses showed decreased major histocompatibility complex class I (MHC-I) expression in VZV-infected cells and adjacent uninfected cells compared to mock-infected cells. These data suggest that reduced PD-L1 expression in VZV-infected adventitial cells contribute to persistent vascular inflammation observed in virus-infected arteries from patients with VZV vasculopathy, while downregulation of MHC-I prevents viral clearance. Here, we provide the first demonstration that VZV downregulates PD-L1 expression in infected HBVAFs, HPNCs, and HFLs, which, together with the noted VZV-mediated downregulation of MHC-I, might foster persistent inflammation in vessels, leading to

  2. Recognition of the Major Histocompatibility Complex (MHC) Class Ib Molecule H2-Q10 by the Natural Killer Cell Receptor Ly49C.

    PubMed

    Sullivan, Lucy C; Berry, Richard; Sosnin, Natasha; Widjaja, Jacqueline M L; Deuss, Felix A; Balaji, Gautham R; LaGruta, Nicole L; Mirams, Michiko; Trapani, Joseph A; Rossjohn, Jamie; Brooks, Andrew G; Andrews, Daniel M

    2016-09-02

    Murine natural killer (NK) cells are regulated by the interaction of Ly49 receptors with major histocompatibility complex class I molecules (MHC-I). Although the ligands for inhibitory Ly49 were considered to be restricted to classical MHC (MHC-Ia), we have shown that the non-classical MHC molecule (MHC-Ib) H2-M3 was a ligand for the inhibitory Ly49A. Here we establish that another MHC-Ib, H2-Q10, is a bona fide ligand for the inhibitory Ly49C receptor. H2-Q10 bound to Ly49C with a marginally lower affinity (∼5 μm) than that observed between Ly49C and MHC-Ia (H-2K(b)/H-2D(d), both ∼1 μm), and this recognition could be prevented by cis interactions with H-2K in situ To understand the molecular details underpinning Ly49·MHC-Ib recognition, we determined the crystal structures of H2-Q10 and Ly49C bound H2-Q10. Unliganded H2-Q10 adopted a classical MHC-I fold and possessed a peptide-binding groove that exhibited features similar to those found in MHC-Ia, explaining the diverse peptide binding repertoire of H2-Q10. Ly49C bound to H2-Q10 underneath the peptide binding platform to a region that encompassed residues from the α1, α2, and α3 domains, as well as the associated β2-microglobulin subunit. This docking mode was conserved with that previously observed for Ly49C·H-2K(b) Indeed, structure-guided mutation of Ly49C indicated that Ly49C·H2-Q10 and Ly49C·H-2K(b) possess similar energetic footprints focused around residues located within the Ly49C β4-stand and L5 loop, which contact the underside of the peptide-binding platform floor. Our data provide a structural basis for Ly49·MHC-Ib recognition and demonstrate that MHC-Ib represent an extended family of ligands for Ly49 molecules.

  3. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis.

    PubMed

    Buschow, Sonja I; van Balkom, Bas W M; Aalberts, Marian; Heck, Albert J R; Wauben, Marca; Stoorvogel, Willem

    2010-01-01

    Professional antigen-presenting cells secrete major histocompatibility complex class II (MHC II) carrying exosomes with unclear physiological function(s). Exosomes are first generated as the intraluminal vesicles (ILVs) of a specific type of multivesicular body, and are then secreted by fusion of this compartment with the plasma membrane. We have previously shown that in contrast to the sorting of MHC II at lysosomally targeted multivesicular bodies, sorting of MHC II into exosomes does not rely on MHC II ubiquitination. In search for proteins that drive the incorporation of MHC II into exosomes or functionally discriminate exosomal from plasma membrane MHC II, we first analyzed the total proteome of highly purified B cell-derived exosomes using sensitive and accurate mass spectrometry (MS), and identified 539 proteins, including known and not previously identified constituents. Using quantitative MS, we then identified a small subset of proteins that were specifically co-immunoprecipitated with MHC II from detergent-solubilized exosomes. These include HSC71, HSP90, 14-3-3ɛ, CD20 and pyruvate kinase type M2 (PKM2), and we speculate on the functionality of their interaction with exosomal MHC II.

  4. HLA class II genotypes are not associated with age related macular degeneration in a case-control, population-based study.

    PubMed

    Pappas, Derek; Hollenbach, Jill; Coleman, Anne L; Gorin, Michael B; Yu, Fe; Williams, Kevin; Noble, Janelle; Tranah, Gregory J

    2015-03-01

    Multiple lines of evidence support an immunologic basis and genetic disposition for the development of age-related macular degeneration (AMD). Comprehensive human leukocyte antigens (HLA) class II typing at four loci (DRB1, DQA1, DQB1, and DPB1) was assessed using next generation sequencing methods and tested for association with age-related macular degeneration (AMD) in a case-control study of 456 AMD cases and 499 controls from the population-based Study of Osteoporotic Fractures (SOF) cohort. No statistically significant associations were identified for any of the class II loci and a previously identified association between DRB1*13:01 was not replicated in this dataset. These results reported here suggest that common HLA class II genetic variation does not contribute to AMD disease risk. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  5. Hyperexpression of interferon-gamma-induced MHC class II genes associated with reorganization of the cytoskeleton.

    PubMed Central

    Ulevitch, R. J.; Kline, L.; Schreiber, R. D.; Pingel, J.; Amaldi, I.; Reith, W.; Mach, B.

    1991-01-01

    Class I and class II major histocompatibility complex (MHC) gene products are key recognition units in the induction and regulation of the immune response. Expression of class I and class II may be constitutive or inducible by cytokines such as interferon-gamma (IFN-gamma). A key step in the induction of MHC genes is recognition of IFN-gamma by its membrane receptor. The work described here examines the regulation of the occupied IFN-gamma receptor by the cytoskeleton. To do this the authors have used the fungal metabolites dihydrocytochalasin B (DHCB) and cytochalasin D (CD), substances that bind to actin filaments and thereby disrupt the cytoskeleton. The authors have studied the effect of DHCB and CD on IFN-gamma-induced MHC gene expression in 143 B cells, a human osteosarcoma-derived cell line. Herein the authors demonstrate that alterations in the cytoskeleton induced by DHCB and CD can lead to increases in IFN-gamma-induced MHC gene expression. Dihydrocytochalasin B added up to 3 hours after IFN-gamma results in a threefold to sixfold increase in levels of class II mRNA while producing minimal enhancement of class I gene expression. In contrast, glyceraldehyde-3-phosphate dehydrogenase mRNA expression was unaltered by IFN-gamma or by the cytochalasins. The increased amount of class II mRNA can be accounted for by a concomitant increase in transcription rate of this gene. Studies using 125I-IFN-gamma demonstrate that the occupied IFN-gamma receptor associates with a Triton X-100 insoluble fraction of 143 B cells and that DHCB and CD markedly inhibit this association. The results described here provide evidence that is consistent with the hypothesis that the activity of the occupied IFN-gamma receptor may be modulated by interactions with the cytoskeleton of the cell. This receptor may be one of a group of plasma membrane receptors that are sensitive to the action of cytochalasins after ligand binding. Images Figure 1 Figure 2 PMID:1907805

  6. HLA Class I and Class II Conserved Extended Haplotypes and Their Fragments or Blocks in Mexicans: Implications for the Study of Genetic Diversity in Admixed Populations

    PubMed Central

    Ohashi, Marina; Lebedeva, Tatiana; Acuña-Alonzo, Víctor; Yunis, María; Granados-Montiel, Julio; Cruz-Lagunas, Alfredo; Vargas-Alarcón, Gilberto; Rodríguez-Reyna, Tatiana S.; Fernandez-Viña, Marcelo; Granados, Julio; Yunis, Edmond J.

    2013-01-01

    Major histocompatibility complex (MHC) genes are highly polymorphic and informative in disease association, transplantation, and population genetics studies with particular importance in the understanding of human population diversity and evolution. The aim of this study was to describe the HLA diversity in Mexican admixed individuals. We studied the polymorphism of MHC class I (HLA-A, -B, -C), and class II (HLA-DRB1, -DQB1) genes using high-resolution sequence based typing (SBT) method and we structured the blocks and conserved extended haplotypes (CEHs) in 234 non-related admixed Mexican individuals (468 haplotypes) by a maximum likelihood method. We found that HLA blocks and CEHs are primarily from Amerindian and Caucasian origin, with smaller participation of African and recent Asian ancestry, demonstrating a great diversity of HLA blocks and CEHs in Mexicans from the central area of Mexico. We also analyzed the degree of admixture in this group using short tandem repeats (STRs) and HLA-B that correlated with the frequency of most probable ancestral HLA-C/−B and -DRB1/−DQB1 blocks and CEHs. Our results contribute to the analysis of the diversity and ancestral contribution of HLA class I and HLA class II alleles and haplotypes of Mexican admixed individuals from Mexico City. This work will help as a reference to improve future studies in Mexicans regarding allotransplantation, immune responses and disease associations. PMID:24086347

  7. Management of Class II malocclusion with ectopic maxillary canines

    PubMed Central

    Mascarenhas, Rohan; Parveen, Shahista; Ansari, Tariq Aziz

    2015-01-01

    Correction of Class II relationship, deep bite and ectopically erupting canines is an orthodontic challenge for the clinician. A 13-year-old male patient presented with Class II malocclusion, ectopically erupting canines, and cross bite with maxillary left lateral incisor. He was treated with a combination of Headgear, Forsus™ fatigue resistant device [FFRD] with fixed mechanotherapy for the management of space deficiency and correction of Class II malocclusions. Headgear was used to distalize upper first molars and also to prevent further downward and forward growth of the maxilla. Then Forsus™ FFRD was used for the advancement of the mandible. The molar and canine relationship were corrected from a Class II to a Class I. The objectives were to establish good occlusion and enable eruption of unerupted canines. All these objectives were achieved and remained stable. PMID:26097371

  8. Characterization and evolution of MHC class II B genes in Galápagos marine iguanas (Amblyrhynchus cristatus).

    PubMed

    Glaberman, Scott; Moreno, Maria A; Caccone, Adalgisa

    2009-08-01

    Major histocompatibility complex (MHC) class II molecules play a key role in the adaptive immune system of vertebrates. Class II B genes appear to evolve in a very different manner in mammals and birds. Orthology is commonly observed among mammal loci, while genes tend to cluster phylogenetically within bird species. Here we present class II B data from a representative of another major group of amniotes, the squamates (i.e. lizards, snakes, amphisbaenians), with the ultimate goal of placing mammalian and avian MHC evolution into a broader context. In this study, eight class II B cDNA sequences were obtained from the Galápagos marine iguana (Amblyrhynchus cristatus) which were divided into five locus groups, Amcr-DAB1 through -DAB5, based on similarities along most of the coding and noncoding portions of the transcribed gene. All marine iguana sequences were monophyletic with respect to class II genes from other vertebrates indicating that they originated from a common ancestral locus after squamates split from other reptiles. The beta-1 domain, which is involved in antigen binding, exhibited signatures of positive selection as well as interlocus gene conversion in both long and short tracts-a pattern also observed in birds and fish, but not in mammals. On the other hand, the beta-2 domain was divergent between gene groups, which is characteristic of mammals. Based on these results, we preliminarily show that squamate class II B genes have been shaped by a unique blend of evolutionary forces that have been observed in differing degrees in other vertebrates.

  9. Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes).

    PubMed

    Strandh, Maria; Lannefors, Mimi; Bonadonna, Francesco; Westerdahl, Helena

    2011-10-01

    The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subant