Science.gov

Sample records for histone h3 thr-45

  1. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  2. Identification of Tension Sensing Motif of Histone H3 in Saccharomyces cerevisiae and Its Regulation by Histone Modifying Enzymes.

    PubMed

    Luo, Jianjun; Deng, Xiexiong; Buehl, Christopher; Xu, Xinjing; Kuo, Min-Hao

    2016-11-01

    To ensure genome stability during cell division, all chromosomes must attach to spindles emanating from the opposite spindle pole bodies before segregation. The tension between sister chromatids generated by the poleward pulling force is an integral part of chromosome biorientation. In budding yeast, the residue Gly44 of histone H3 is critical for retaining the conserved Shugoshin protein Sgo1p at the pericentromeres for monitoring the tension status during mitosis. Studies carried out in this work showed that Lys42, Gly44, and Thr45 of H3 form the core of a tension sensing motif (TSM). Similar to the previously reported G44S mutant, K42A, G44A, and T45A alleles all rendered cells unable to respond to erroneous spindle attachment, a phenotype suppressed by Sgo1p overexpression. TSM functions by physically recruiting or retaining Sgo1p at pericentromeres as evidenced by chromatin immunoprecipitation and by in vitro pulldown experiments. Intriguingly, the function of TSM is likely regulated by multiple histone modifying enzymes, including the histone acetyltransferase Gcn5p, and deacetylases Rpd3p and Hos2p Defects caused by TSM mutations can be suppressed by the expression of a catalytically inactive mutant of Gcn5p Conversely, G44S mutant cells exhibit prominent chromatin instability phenotype in the absence of RPD3 Importantly, the gcn5(-) suppressor restores the tension sensing function in tsm(-) background in a fashion that bypasses the need of stably associating Sgo1p with chromatin. These results demonstrate that the TSM of histone H3 is a key component of a mechanism that ensures faithful segregation, and that interaction with chromatin modifying enzymes may be an important part of the mitotic quality control process. Copyright © 2016 by the Genetics Society of America.

  3. Uncoupling histone turnover from transcription-associated histone H3 modifications.

    PubMed

    Ferrari, Paolo; Strubin, Michel

    2015-04-30

    Transcription in eukaryotes is associated with two major changes in chromatin organization. Firstly, nucleosomal histones are continuously replaced by new histones, an event that in yeast occurs predominantly at transcriptionally active promoters. Secondly, histones become modified post-translationally at specific lysine residues. Some modifications, including histone H3 trimethylation at lysine 4 (H3K4me3) and acetylation at lysines 9 (H3K9ac) and 14 (H3K14ac), are specifically enriched at active promoters where histones exchange, suggesting a possible causal relationship. Other modifications accumulate within transcribed regions and one of them, H3K36me3, is thought to prevent histone exchange. Here we explored the relationship between these four H3 modifications and histone turnover at a few selected genes. Using lysine-to-arginine mutants and a histone exchange assay, we found that none of these modifications plays a major role in either promoting or preventing histone turnover. Unexpectedly, mutation of H3K56, whose acetylation occurs prior to chromatin incorporation, had an effect only when introduced into the nucleosomal histone. Furthermore, we used various genetic approaches to show that histone turnover can be experimentally altered with no major consequence on the H3 modifications tested. Together, these results suggest that transcription-associated histone turnover and H3 modification are two correlating but largely independent events.

  4. Methylation of histone H3 lysine 9 occurs during translation.

    PubMed

    Rivera, Carlos; Saavedra, Francisco; Alvarez, Francisca; Díaz-Celis, César; Ugalde, Valentina; Li, Jianhua; Forné, Ignasi; Gurard-Levin, Zachary A; Almouzni, Geneviève; Imhof, Axel; Loyola, Alejandra

    2015-10-30

    Histone post-translational modifications are key contributors to chromatin structure and function, and participate in the maintenance of genome stability. Understanding the establishment and maintenance of these marks, along with their misregulation in pathologies is thus a major focus in the field. While we have learned a great deal about the enzymes regulating histone modifications on nucleosomal histones, much less is known about the mechanisms establishing modifications on soluble newly synthesized histones. This includes methylation of lysine 9 on histone H3 (H3K9), a mark that primes the formation of heterochromatin, a critical chromatin landmark for genome stability. Here, we report that H3K9 mono- and dimethylation is imposed during translation by the methyltransferase SetDB1. We discuss the importance of these results in the context of heterochromatin establishment and maintenance and new therapeutic opportunities in pathologies where heterochromatin is perturbed.

  5. Methylation of histone H3 lysine 9 occurs during translation

    PubMed Central

    Rivera, Carlos; Saavedra, Francisco; Alvarez, Francisca; Díaz-Celis, César; Ugalde, Valentina; Li, Jianhua; Forné, Ignasi; Gurard-Levin, Zachary A.; Almouzni, Geneviève; Imhof, Axel; Loyola, Alejandra

    2015-01-01

    Histone post-translational modifications are key contributors to chromatin structure and function, and participate in the maintenance of genome stability. Understanding the establishment and maintenance of these marks, along with their misregulation in pathologies is thus a major focus in the field. While we have learned a great deal about the enzymes regulating histone modifications on nucleosomal histones, much less is known about the mechanisms establishing modifications on soluble newly synthesized histones. This includes methylation of lysine 9 on histone H3 (H3K9), a mark that primes the formation of heterochromatin, a critical chromatin landmark for genome stability. Here, we report that H3K9 mono- and dimethylation is imposed during translation by the methyltransferase SetDB1. We discuss the importance of these results in the context of heterochromatin establishment and maintenance and new therapeutic opportunities in pathologies where heterochromatin is perturbed. PMID:26405197

  6. Protein kinase C coordinates histone H3 phosphorylation and acetylation

    PubMed Central

    Darieva, Zoulfia; Webber, Aaron; Warwood, Stacey; Sharrocks, Andrew D

    2015-01-01

    The re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S. cerevisiae under conditions of replicative stress. Pkc1 phosphorylates the histone acetyl transferase Rtt109 and promotes its ability to acetylate H3K56. Our data also reveal novel cross-talk between two different histone modifications as Pkc1 also enhances H3T45 phosphorylation and this modification is required for H3K56 acetylation. Our data therefore uncover an important role for Pkc1 in coordinating the deposition of two different histone modifications that are important for chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.09886.001 PMID:26468616

  7. Structure and function of human histone H3.Y nucleosome

    PubMed Central

    Kujirai, Tomoya; Horikoshi, Naoki; Sato, Koichi; Maehara, Kazumitsu; Machida, Shinichi; Osakabe, Akihisa; Kimura, Hiroshi; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2016-01-01

    Histone H3.Y is a primate-specific, distant H3 variant. It is evolutionarily derived from H3.3, and may function in transcription regulation. However, the mechanism by which H3.Y regulates transcription has not been elucidated. In the present study, we determined the crystal structure of the H3.Y nucleosome, and found that many H3.Y-specific residues are located on the entry/exit sites of the nucleosome. Biochemical analyses revealed that the DNA ends of the H3.Y nucleosome were more flexible than those of the H3.3 nucleosome, although the H3.Y nucleosome was stable in vitro and in vivo. Interestingly, the linker histone H1, which compacts nucleosomal DNA, appears to bind to the H3.Y nucleosome less efficiently, as compared to the H3.3 nucleosome. These characteristics of the H3.Y nucleosome are also conserved in the H3.Y/H3.3 heterotypic nucleosome, which may be the predominant form in cells. In human cells, H3.Y preferentially accumulated around transcription start sites (TSSs). Taken together, H3.Y-containing nucleosomes around transcription start sites may form relaxed chromatin that allows transcription factor access, to regulate the transcription status of specific genes. PMID:27016736

  8. Low Proteolytic Clipping of Histone H3 in Cervical Cancer.

    PubMed

    Sandoval-Basilio, Jorge; Serafín-Higuera, Nicolás; Reyes-Hernandez, Octavio D; Serafín-Higuera, Idanya; Leija-Montoya, Gabriela; Blanco-Morales, Magali; Sierra-Martínez, Monica; Ramos-Mondragon, Roberto; García, Silvia; López-Hernández, Luz Berenice; Yocupicio-Monroy, Martha; Alcaraz-Estrada, Sofia L

    2016-01-01

    Chromatin in cervical cancer (CC) undergoes chemical and structural changes that alter the expression pattern of genes. Recently, a potential mechanism, which regulates gene expression at transcriptional levels is the proteolytic clipping of histone H3. However, until now this process in CC has not been reported. Using HeLa cells as a model of CC and human samples from patients with CC, we identify that the H3 cleavage was lower in CC compared with control tissue. Additionally, the histone H3 clipping was performed by serine and aspartyl proteases in HeLa cells. These results suggest that histone H3 clipping operates as part of post-translational modification system in CC.

  9. Low Proteolytic Clipping of Histone H3 in Cervical Cancer

    PubMed Central

    Sandoval-Basilio, Jorge; Serafín-Higuera, Nicolás; Reyes-Hernandez, Octavio D.; Serafín-Higuera, Idanya; Leija-Montoya, Gabriela; Blanco-Morales, Magali; Sierra-Martínez, Monica; Ramos-Mondragon, Roberto; García, Silvia; López-Hernández, Luz Berenice; Yocupicio-Monroy, Martha; Alcaraz-Estrada, Sofia L.

    2016-01-01

    Chromatin in cervical cancer (CC) undergoes chemical and structural changes that alter the expression pattern of genes. Recently, a potential mechanism, which regulates gene expression at transcriptional levels is the proteolytic clipping of histone H3. However, until now this process in CC has not been reported. Using HeLa cells as a model of CC and human samples from patients with CC, we identify that the H3 cleavage was lower in CC compared with control tissue. Additionally, the histone H3 clipping was performed by serine and aspartyl proteases in HeLa cells. These results suggest that histone H3 clipping operates as part of post-translational modification system in CC. PMID:27698925

  10. Histone H3R2 symmetric dimethylation and histone H3K4 trimethylation are tightly correlated in eukaryotic genomes

    PubMed Central

    Yuan, Chih-Chi; Matthews, Adam G.W.; Jin, Yi; Chen, Chang Feng; Chapman, Brad A.; Ohsumi, Toshiro K.; Glass, Karen C.; Kutateladze, Tatiana G.; Borowsky, Mark L.; Struhl, Kevin; Oettinger, Marjorie A.

    2012-01-01

    Summary The preferential in vitro interaction of the PHD finger of RAG2, a subunit of the V(D)J recombinase, with histone H3 tails simultaneously trimethylated at lysine 4 and symmetrically dimethylated at arginine 2 (H3R2me2sK4me3) predicted the existence of the previously unknown histone modification, H3R2me2s. Here, we report the in vivo identification of H3R2me2s . Consistent with the binding specificity of the RAG2 PHD finger, high levels of H3R2me2sK4me3 are found at antigen receptor gene segments ready for rearrangement. However, this double modification is much more general; it is conserved throughout eukaryotic evolution. In mouse, H3R2me2s is tightly correlated with H3K4me3 at active promoters throughout the genome. Mutational analysis in S. cerevisiae reveals that deposition of H3R2me2s requires the same Set1 complex that deposits H3K4me3. Our work suggests that H3R2me2sK4me3, not simply H3K4me3 alone, is the mark of active promoters, and that factors that recognize H3K4me3 will have their binding modulated by their preference for H3R2me2s. PMID:22720264

  11. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant.

    PubMed

    Earnshaw, W C; Allshire, R C; Black, B E; Bloom, K; Brinkley, B R; Brown, W; Cheeseman, I M; Choo, K H A; Copenhaver, G P; Deluca, J G; Desai, A; Diekmann, S; Erhardt, S; Fitzgerald-Hayes, M; Foltz, D; Fukagawa, T; Gassmann, R; Gerlich, D W; Glover, D M; Gorbsky, G J; Harrison, S C; Heun, P; Hirota, T; Jansen, L E T; Karpen, G; Kops, G J P L; Lampson, M A; Lens, S M; Losada, A; Luger, K; Maiato, H; Maddox, P S; Margolis, R L; Masumoto, H; McAinsh, A D; Mellone, B G; Meraldi, P; Musacchio, A; Oegema, K; O'Neill, R J; Salmon, E D; Scott, K C; Straight, A F; Stukenberg, P T; Sullivan, B A; Sullivan, K F; Sunkel, C E; Swedlow, J R; Walczak, C E; Warburton, P E; Westermann, S; Willard, H F; Wordeman, L; Yanagida, M; Yen, T J; Yoda, K; Cleveland, D W

    2013-04-01

    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.

  12. Molecular dynamics for computational proteomics of methylated histone H3.

    PubMed

    Grauffel, Cédric; Stote, Roland H; Dejaegere, Annick

    2015-05-01

    Post-translational modifications of histones, and in particular of their disordered N-terminal tails, play a major role in epigenetic regulation. The identification of proteins and proteic domains that specifically bind modified histones is therefore of paramount importance to understand the molecular mechanisms of epigenetics. We performed an energetic analysis using the MM/PBSA method in order to study known complexes between methylated histone H3 and effector domains of the PHD family. We then developed a simple molecular dynamics based predictive model based on our analysis. We present a thorough validation of our procedure, followed by the computational predictions of new PHD domains specific for binding histone H3 methylated on lysine 4 (K4). PHD domains recognize methylated K4 on histone H3 in the context of a linear interaction motif (LIM) formed by the first four amino acids of histone H3 as opposed to recognition of a single methylated site. PHD domains with different sequences find chemically equivalent solutions for stabilizing the histone LIM and these can be identified from energetic analysis. This analysis, in turn, allows for the identification of new PHD domains that bind methylated H3K4 using information that cannot be retrieved from sequence comparison alone. Molecular dynamics simulations can be used to devise computational proteomics protocols that are both easy to implement and interpret, and that yield reliable predictions that compare favorably to and complement experimental proteomics methods. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Transcription in the absence of histone H3.2 and H3K4 methylation.

    PubMed

    Hödl, Martina; Basler, Konrad

    2012-12-04

    Histone H3 proteins play fundamental roles in DNA packaging, gene transcription, and the transmission of epigenetic states. In addition to posttranslational modifications of their N termini, the use of H3 variants contributes to their regulatory repertoire. Canonical histone H3.2 is expressed during S phase and differs by four amino acid residues from the variant histone H3.3, which is synthesized in a cell-cycle-independent manner. Because H3.3 is enriched within actively transcribed loci, and because di- and trimethylation of H3 lysine 4 are hallmarks of chromatin at such sites in the genome, the H3.3K4 residue is considered to serve as the major regulatory determinant for the transcriptional state of a gene. Here we use genetic approaches in Drosophila to replace all 46 gene copies of His3.2 with mutant derivatives and thereby demonstrate that canonical and variant H3 can functionally replace each other. Cells are able to divide and differentiate when H3.2 is entirely absent but replaced by S phase-expressed H3.3. Moreover, although slowed down in their proliferative capacity, cells that code for a nonmethylatable residue instead of K4 in all canonical and variant H3 genes are competent to respond to major developmental signaling pathways by activating target gene expression. Hence, the presence of different H3 protein species is not essential in Drosophila and transcriptional regulation can occur in the complete absence of H3K4 methylation.

  14. Marking histone H3 variants: how, when and why?

    PubMed

    Loyola, Alejandra; Almouzni, Geneviève

    2007-09-01

    DNA in eukaryotic cells is compacted into chromatin, a regular repeated structure in which the nucleosome represents the basic unit. The nucleosome not only serves to compact the genetic material but also provides information that affects nuclear functions including DNA replication, repair and transcription. This information is conveyed through numerous combinations of histone post-translational modifications (PTMs) and histone variants. A recent challenge has been to understand how and when these combinations of PTMs are imposed and to what extent they are determined by the choice of a specific histone variant. Here we focus on histone H3 variants and the PTMs that they carry before and after their assembly into chromatin. We review and discuss recent knowledge about how the choice and initial modifications of a specific variant might affect PTM states and eventually the final epigenetic state of a chromosomal domain.

  15. Structural cooperativity in histone H3 tail modifications.

    PubMed

    Sanli, Deniz; Keskin, Ozlem; Gursoy, Attila; Erman, Burak

    2011-12-01

    Post-translational modifications of histone H3 tails have crucial roles in regulation of cellular processes. There is cross-regulation between the modifications of K4, K9, and K14 residues. The modifications on these residues drastically promote or inhibit each other. In this work, we studied the structural changes of the histone H3 tail originating from the three most important modifications; tri-methylation of K4 and K9, and acetylation of K14. We performed extensive molecular dynamics simulations of four types of H3 tails: (i) the unmodified H3 tail having no chemical modification on the residues, (ii) the tri-methylated lysine 4 and lysine 9 H3 tail (K4me3K9me3), (iii) the tri-methylated lysine 4 and acetylated lysine 14 H3 tail (K4me3K14ace), and (iv) tri-methylated lysine 9 and acetylated lysine 14 H3 tail (K9me3K14ace). Here, we report the effects of K4, K9, and K14 modifications on the backbone torsion angles and relate these changes to the recognition and binding of histone modifying enzymes. According to the Ramachandran plot analysis; (i) the dihedral angles of K4 residue are significantly affected by the addition of three methyl groups on this residue regardless of the second modification, (ii) the dihedral angle values of K9 residue are similarly altered majorly by the tri-methylation of K4 residue, (iii) different combinations of modifications (tri-methylation of K4 and K9, and acetylation of K14) have different influences on phi and psi values of K14 residue. Finally, we discuss the consequences of these results on the binding modes and specificity of the histone modifying enzymes such as DIM-5, GCN5, and JMJD2A.

  16. Cadmium Induces Histone H3 Lysine Methylation by Inhibiting Histone Demethylase Activity

    PubMed Central

    Xiao, Chunlian; Liu, Yin; Xie, Chengfeng; Tu, Wei; Xia, Yujie; Costa, Max; Zhou, Xue

    2015-01-01

    Cadmium is an established human lung carcinogen with weak mutagenicity. However, the mechanisms underlying cadmium-induced carcinogenesis remain obscure. It has been suggested that epigenetic mechanisms may play a role in cadmium-induced carcinogenesis. In this study, we investigated the effects of cadmium on histone methylation and histone demethylases, and the role of histone methylation in transformation of immortalized normal human bronchial epithelial (BEAS-2B) cells. Exposure to 0.625, 1.25, 2.5, and 5.0 μM of cadmium for 6, 24, and 48 h increased global trimethylated histone H3 on lysine 4 (H3K4me3) and dimethylated histone H3 on lysine 9 (H3K9me2) in BEAS-2B cells compared with untreated cells, and most of these changes remained after the removal of cadmium (P < .05 or P < .01 for most modifications). Meanwhile, cadmium inhibited the activities of histone H3 on lysine 4 (H3K4) and histone H3 on lysine 9 (H3K9) demethylases which were detected by histone demethylation assay. However, there was no significant change in the protein levels of the H3K4 demethylase lysine-specific demethylase 5A (KDM5A) and the H3K9 demethylase lysine-specific demethylase 3A (KDM3A). Interestingly, during transformation of BEAS-2B cells by 20 weeks of exposure to 2.0 μM cadmium as assessed by anchorage-independent growth in soft agar, global H3K4me3, and H3K9me2 were significantly increased at 4 weeks (P < .05 or P < .01), whereas no significant change was observed at 8, 12, 16, and 20 weeks compared with control. Our study suggests that cadmium increases global H3K4me3 and H3K9me2 by inhibiting the activities of histone demethylases, and aberrant histone methylation that occurs early (48 h) and at 4 weeks is associated with cadmium-induced transformation of BEAS-2B cells at the early stage. PMID:25673502

  17. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition

    SciTech Connect

    Elsässer, Simon J; Huang, Hongda; Lewis, Peter W; Chin, Jason W; Allis, C David; Patel, Dinshaw J

    2013-01-24

    Histone chaperones represent a structurally and functionally diverse family of histone-binding proteins that prevent promiscuous interactions of histones before their assembly into chromatin. DAXX is a metazoan histone chaperone specific to the evolutionarily conserved histone variant H3.3. Here we report the crystal structures of the DAXX histone-binding domain with a histone H3.3–H4 dimer, including mutants within DAXX and H3.3, together with in vitro and in vivo functional studies that elucidate the principles underlying H3.3 recognition specificity. Occupying 40% of the histone surface-accessible area, DAXX wraps around the H3.3–H4 dimer, with complex formation accompanied by structural transitions in the H3.3–H4 histone fold. DAXX uses an extended α-helical conformation to compete with major inter-histone, DNA and ASF1 interaction sites. Our structural studies identify recognition elements that read out H3.3-specific residues, and functional studies address the contributions of Gly90 in H3.3 and Glu225 in DAXX to chaperone-mediated H3.3 variant recognition specificity.

  18. Conformational changes in the H3. H4 histone complex

    SciTech Connect

    Feldman, L.; Beaudette, N.V.; Stollar, B.D.; Fasman, G.D.

    1980-08-10

    The H3.H4 complex has been extracted from calf thymus chromatin in either 0.05 M NaOAc, pH 5.0, or in 2.0 M KCl, 0.1 M KPO/sub 4/, pH 6.7, and both forms have been shown to consist solely of histones H3 and H4 when examined on sodium dodecyl sulfate-polyacrylamide gels. Serological and circular dichroism analyses indicate the existence of structural differences between the two forms. Dilution of the high salt form of the complex into low salt produces a time-dependent conformational change which is related to reduction in the ..cap alpha.. helix content of the complex and which exposes antigenic sites on the complex. The existence of multiple forms of the H3.H4 complex may be related to the dynamic equilibrium of nucleosome structure in vivo.

  19. Histone H3 Threonine Phosphorylation Regulates Asymmetric Histone Inheritance in the Drosophila Male Germline.

    PubMed

    Xie, Jing; Wooten, Matthew; Tran, Vuong; Chen, Bi-Chang; Pozmanter, Caitlin; Simbolon, Christine; Betzig, Eric; Chen, Xin

    2015-11-05

    A long-standing question concerns how stem cells maintain their identity through multiple divisions. Previously, we reported that pre-existing and newly synthesized histone H3 are asymmetrically distributed during Drosophila male germline stem cell (GSC) asymmetric division. Here, we show that phosphorylation at threonine 3 of H3 (H3T3P) distinguishes pre-existing versus newly synthesized H3. Converting T3 to the unphosphorylatable residue alanine (H3T3A) or to the phosphomimetic aspartate (H3T3D) disrupts asymmetric H3 inheritance. Expression of H3T3A or H3T3D specifically in early-stage germline also leads to cellular defects, including GSC loss and germline tumors. Finally, compromising the activity of the H3T3 kinase Haspin enhances the H3T3A but suppresses the H3T3D phenotypes. These studies demonstrate that H3T3P distinguishes sister chromatids enriched with distinct pools of H3 in order to coordinate asymmetric segregation of "old" H3 into GSCs and that tight regulation of H3T3 phosphorylation is required for male germline activity.

  20. Histone H3 Threonine Phosphorylation Regulates Asymmetric Histone Inheritance in the Drosophila Male Germline

    PubMed Central

    Xie, Jing; Wooten, Matthew; Tran, Vuong; Chen, Bi-Chang; Pozmanter, Caitlin; Simbolon, Christine; Betzig, Eric; Chen, Xin

    2015-01-01

    SUMMARY A long-standing question concerns how stem cells maintain their identity through multiple divisions. Previously we reported that pre-existing and newly synthesized histone H3 are asymmetrically distributed during Drosophila male germline stem cell (GSC) asymmetric division. Here we show that phosphorylation at Threonine 3 of H3 (H3T3P) distinguishes preexisting versus newly synthesized H3. Converting T3 to the unphosphorylatable residue alanine (H3T3A) or to the phosphomimetic aspartate (H3T3D) disrupts asymmetric H3 inheritance. Expression of H3T3A or H3T3D specifically in early-stage germline also leads to cellular defects including GSC loss and germline tumors. Finally, compromising the activity of the H3T3 kinase Haspin enhances the H3T3A but suppresses the H3T3D phenotypes. Together these studies demonstrate that H3T3P distinguishes sister chromatids enriched with distinct pools of H3, coordinating asymmetric segregation of “old” H3 into GSCs, and that a tight regulation of H3T3 phosphorylation is required for male germline activity. PMID:26522592

  1. Structure of the histone chaperone ASF1 bound to the histone H3 C-terminal helix and functional insights.

    PubMed

    Agez, Morgane; Chen, Jun; Guerois, Raphaël; van Heijenoort, Carine; Thuret, Jean-Yves; Mann, Carl; Ochsenbein, Francoise

    2007-02-01

    Asf1 is a histone chaperone that favors histone H3/H4 assembly and disassembly. We solved the structure of the conserved domain of human ASF1A in complex with the C-terminal helix of histone H3 using nuclear magnetic resonance spectroscopy. This structure is fully compatible with an association of ASF1 with the heterodimeric form of histones H3/H4. In our model, ASF1 substitutes for the second H3/H4 heterodimer that is normally found in heterotetrameric H3/H4 complexes. This result constitutes an essential step in the fundamental understanding of the mechanisms of nucleosome assembly by histone chaperones. Point mutations that perturb the Asf1/histone interface were designed from the structure. The decreased binding affinity of the Asf1-H3/H4 complex correlates with decreased levels of H3-K56 acetylation and phenotypic defects in vivo.

  2. Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation Without Affecting H3 Lysine 56 Acetylation

    PubMed Central

    Drogaris, Paul; Villeneuve, Valérie; Pomiès, Christelle; Lee, Eun-Hye; Bourdeau, Véronique; Bonneil, Éric; Ferbeyre, Gerardo; Verreault, Alain; Thibault, Pierre

    2012-01-01

    Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56. PMID:22355734

  3. The differential mobilization of histones H3.1 and H3.3 by herpes simplex virus 1 relates histone dynamics to the assembly of viral chromatin.

    PubMed

    Conn, Kristen L; Hendzel, Michael J; Schang, Luis M

    2013-01-01

    During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly.

  4. The Differential Mobilization of Histones H3.1 and H3.3 by Herpes Simplex Virus 1 Relates Histone Dynamics to the Assembly of Viral Chromatin

    PubMed Central

    Conn, Kristen L.; Hendzel, Michael J.; Schang, Luis M.

    2013-01-01

    During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly. PMID:24130491

  5. New functions for an old variant: no substitute for histone H3.3

    PubMed Central

    Elsaesser, Simon J; Goldberg, Aaron D; Allis, C David

    2010-01-01

    Histone proteins often come in different variants serving specialized functions in addition to their fundamental role in packaging DNA. The metazoan histone H3.3 has been most closely associated with active transcription. Its role in histone replacement at active genes and promoters is conserved to the single histone H3 in yeast. However, recent genetic studies in flies have challenged its importance as a mark of active chromatin, and revealed unexpected insights into essential functions of H3.3 in the germline. With strikingly little amino acid sequence difference to the canonical H3, H3.3 therefore accomplishes a surprising variety of cellular and developmental processes. PMID:20153629

  6. Histone H1 binding is inhibited by histone variant H3.3.

    PubMed

    Braunschweig, Ulrich; Hogan, Greg J; Pagie, Ludo; van Steensel, Bas

    2009-12-02

    Linker histones are involved in the formation of higher-order chromatin structure and the regulation of specific genes, yet it remains unclear what their principal binding determinants are. We generated a genome-wide high-resolution binding map for linker histone H1 in Drosophila cells, using DamID. H1 binds at similar levels across much of the genome, both in classic euchromatin and heterochromatin. Strikingly, there are pronounced dips of low H1 occupancy around transcription start sites for active genes and at many distant cis-regulatory sites. H1 dips are not due to lack of nucleosomes; rather, all regions with low binding of H1 show enrichment of the histone variant H3.3. Knockdown of H3.3 causes H1 levels to increase at these sites, with a concomitant increase in nucleosome repeat length. These changes are independent of transcriptional changes. Our results show that the H3.3 protein counteracts association of H1, providing a mechanism to keep diverse genomic sites in an open chromatin conformation.

  7. Histone H3 Acetyl K9 and Histone H3 Tri Methyl K4 as Prognostic Markers for Patients with Cervical Cancer.

    PubMed

    Beyer, Susanne; Zhu, Junyan; Mayr, Doris; Kuhn, Christina; Schulze, Sandra; Hofmann, Simone; Dannecker, Christian; Jeschke, Udo; Kost, Bernd P

    2017-02-23

    Chromatin remodeling alters gene expression in carcinoma tissue. Although cervical cancer is the fourth most common cancer in women worldwide, a systematic study about the prognostic value of specific changes in the chromatin structure, such as histone acetylation or histone methylation, is missing. In this study, the expression of histone H3 acetyl K9, which is known to denote active regions at enhancers and promoters, and histone H3 tri methyl K4, which preferentially identifies active gene promoters, were examined as both show high metastatic potential. A panel of patients with cervical cancer was selected and the importance of the histone modifications concerning survival-time (overall survival and relapse-free survival) was analyzed in 250 cases. Histone H3 acetyl K9 staining was correlated with low grading, low FIGO (TNM classification and the International Federation of Gynecology and Obstetrics) status, negative N-status and low T-status in cervical cancer, showing a higher expression in adenocarcinoma than in squamous cell carcinoma. Cytoplasmic expression of histone H3 tri methyl K4 in a cervical cancer specimen was correlated with advanced T-status and poor prognosis. While cytoplasmic H3K4me3 expression seemed to be a marker of relapse-free survival, nuclear expression showed a correlation to poor prognosis in overall survival. Within this study, we analyzed the chemical modification of two histone proteins that are connected to active gene expression. Histone H3 acetyl K9 was found to be an independent marker of overall survival. Histone H3 tri methyl K4 was correlated with poor prognosis and it was found to be an independent marker of relapse-free survival. Therefore, we could show that chromatin remodeling plays an important role in cervical cancer biology.

  8. Histone H3 Acetyl K9 and Histone H3 Tri Methyl K4 as Prognostic Markers for Patients with Cervical Cancer

    PubMed Central

    Beyer, Susanne; Zhu, Junyan; Mayr, Doris; Kuhn, Christina; Schulze, Sandra; Hofmann, Simone; Dannecker, Christian; Jeschke, Udo; Kost, Bernd P.

    2017-01-01

    Chromatin remodeling alters gene expression in carcinoma tissue. Although cervical cancer is the fourth most common cancer in women worldwide, a systematic study about the prognostic value of specific changes in the chromatin structure, such as histone acetylation or histone methylation, is missing. In this study, the expression of histone H3 acetyl K9, which is known to denote active regions at enhancers and promoters, and histone H3 tri methyl K4, which preferentially identifies active gene promoters, were examined as both show high metastatic potential. A panel of patients with cervical cancer was selected and the importance of the histone modifications concerning survival-time (overall survival and relapse-free survival) was analyzed in 250 cases. Histone H3 acetyl K9 staining was correlated with low grading, low FIGO (TNM classification and the International Federation of Gynecology and Obstetrics) status, negative N-status and low T-status in cervical cancer, showing a higher expression in adenocarcinoma than in squamous cell carcinoma. Cytoplasmic expression of histone H3 tri methyl K4 in a cervical cancer specimen was correlated with advanced T-status and poor prognosis. While cytoplasmic H3K4me3 expression seemed to be a marker of relapse-free survival, nuclear expression showed a correlation to poor prognosis in overall survival. Within this study, we analyzed the chemical modification of two histone proteins that are connected to active gene expression. Histone H3 acetyl K9 was found to be an independent marker of overall survival. Histone H3 tri methyl K4 was correlated with poor prognosis and it was found to be an independent marker of relapse-free survival. Therefore, we could show that chromatin remodeling plays an important role in cervical cancer biology. PMID:28241481

  9. WDR5 Intearcts with Mixed Lineage Leukemia (MLL) Protein via the Histone H3-binding Pocket

    SciTech Connect

    Song, J.; Kingston, R

    2008-01-01

    WDR5 is a component of the mixed lineage leukemia (MLL) complex, which methylates lysine 4 of histone H3, and was identified as a methylated Lys-4 histone H3-binding protein. Here, we present a crystal structure of WDR5 bound to an MLL peptide. Surprisingly, we find that WDR5 utilizes the same pocket shown to bind histone H3 for this MLL interaction. Furthermore, the WDR5-MLL interaction is disrupted preferentially by mono- and di-methylated Lys-4 histone H3 over unmodified and tri-methylated Lys-4 histone H3. These data implicate a delicate interplay between the effector, WDR5, the catalytic subunit, MLL, and the substrate, histone H3, of the MLL complex. We suggest that the activity of the MLL complex might be regulated through this interplay.

  10. Histone h3 glutathionylation in proliferating mammalian cells destabilizes nucleosomal structure.

    PubMed

    García-Giménez, José Luis; Òlaso, Gloria; Hake, Sandra B; Bönisch, Clemens; Wiedemann, Sonja M; Markovic, Jelena; Dasí, Francisco; Gimeno, Amparo; Pérez-Quilis, Carme; Palacios, Oscar; Capdevila, Mercè; Viña, José; Pallardó, Federico V

    2013-10-20

    Here we report that chromatin, the complex and dynamic eukaryotic DNA packaging structure, is able to sense cellular redox changes. Histone H3, the only nucleosomal protein that possesses cysteine(s), can be modified by glutathione (GSH). Using Biotin labeled glutathione ethyl ester (BioGEE) treatment of nucleosomes in vitro, we show that GSH, the most abundant antioxidant in mammals, binds to histone H3. BioGEE treatment of NIH3T3 cells indicates that glutathionylation of H3 is maximal in fast proliferating cells, correlating well with enhanced levels of H3 glutathionylation in different tumor cell lines. Furthermore, glutathionylation of H3 in vivo decreases in livers from aged SAMP8 and C57BL/6J mice. We demonstrate biochemically and by mass spectrometry that histone variants H3.2/H3.3 are glutathionylated on their cysteine residue 110. Furthermore, circular dichroism, thermal denaturation of reconstituted nucleosomes, and molecular modeling indicate that glutathionylation of histone H3 produces structural changes affecting nucleosomal stability. We characterize the implications of histone H3 glutathionylation in cell physiology and the modulation of core histone proteins structure affected by this modification. Histone H3 senses cellular redox changes through glutathionylation of Cys, which increases during cell proliferation and decreases during aging. Glutathionylation of histone H3 affects nucleosome stability structure leading to a more open chromatin structure.

  11. Histone H3 Glutathionylation in Proliferating Mammalian Cells Destabilizes Nucleosomal Structure

    PubMed Central

    Olaso, Gloria; Hake, Sandra B.; Bönisch, Clemens; Wiedemann, Sonja M.; Markovic, Jelena; Dasí, Francisco; Gimeno, Amparo; Pérez-Quilis, Carme; Palacios, Òscar; Capdevila, Mercè; Viña, José

    2013-01-01

    Abstract Aims: Here we report that chromatin, the complex and dynamic eukaryotic DNA packaging structure, is able to sense cellular redox changes. Histone H3, the only nucleosomal protein that possesses cysteine(s), can be modified by glutathione (GSH). Results: Using Biotin labeled glutathione ethyl ester (BioGEE) treatment of nucleosomes in vitro, we show that GSH, the most abundant antioxidant in mammals, binds to histone H3. BioGEE treatment of NIH3T3 cells indicates that glutathionylation of H3 is maximal in fast proliferating cells, correlating well with enhanced levels of H3 glutathionylation in different tumor cell lines. Furthermore, glutathionylation of H3 in vivo decreases in livers from aged SAMP8 and C57BL/6J mice. We demonstrate biochemically and by mass spectrometry that histone variants H3.2/H3.3 are glutathionylated on their cysteine residue 110. Furthermore, circular dichroism, thermal denaturation of reconstituted nucleosomes, and molecular modeling indicate that glutathionylation of histone H3 produces structural changes affecting nucleosomal stability. Innovation: We characterize the implications of histone H3 glutathionylation in cell physiology and the modulation of core histone proteins structure affected by this modification. Conclusion: Histone H3 senses cellular redox changes through glutathionylation of Cys, which increases during cell proliferation and decreases during aging. Glutathionylation of histone H3 affects nucleosome stability structure leading to a more open chromatin structure. Antioxid. Redox Signal. 19, 1305–1320. PMID:23541030

  12. Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106

    SciTech Connect

    Su, Dan; Hu, Qi; Li, Qing; Thompson, James R; Cui, Gaofeng; Fazly, Ahmed; Davies, Brian A; Botuyan, Maria Victoria; Zhang, Zhiguo; Mer, Georges

    2013-04-08

    Dynamic variations in the structure of chromatin influence virtually all DNA-related processes in eukaryotes and are controlled in part by post-translational modifications of histones. One such modification, the acetylation of lysine 56 (H3K56ac) in the amino-terminal α-helix (αN) of histone H3, has been implicated in the regulation of nucleosome assembly during DNA replication and repair, and nucleosome disassembly during gene transcription. In Saccharomyces cerevisiae, the histone chaperone Rtt106 contributes to the deposition of newly synthesized H3K56ac-carrying H3-H4 complex on replicating DNA, but it is unclear how Rtt106 binds H3-H4 and specifically recognizes H3K56ac as there is no apparent acetylated lysine reader domain in Rtt106. Here, we show that two domains of Rtt106 are involved in a combinatorial recognition of H3-H4. An N-terminal domain homodimerizes and interacts with H3-H4 independently of acetylation while a double pleckstrin-homology (PH) domain binds the K56-containing region of H3. Affinity is markedly enhanced upon acetylation of K56, an effect that is probably due to increased conformational entropy of the αN helix of H3. Our data support a mode of interaction where the N-terminal homodimeric domain of Rtt106 intercalates between the two H3-H4 components of the (H3-H4)2 tetramer while two double PH domains in the Rtt106 dimer interact with each of the two H3K56ac sites in (H3-H4)2. We show that the Rtt106-(H3-H4)2 interaction is important for gene silencing and the DNA damage response.

  13. Recognition of Histone H3K4 Trimethylation by the Plant Homeodomain of PHF2 Modulates Histone Demethylation

    SciTech Connect

    Wen, Hong; Li, Jingzhi; Song, Tanjing; Lu, Ming; Kan, Pu-Yeh; Lee, Min Gyu; Sha, Bingdong; Shi, Xiaobing

    2010-10-28

    Distinct lysine methylation marks on histones create dynamic signatures deciphered by the 'effector' modules, although the underlying mechanisms remain unclear. We identified the plant homeodomain- and Jumonji C domain-containing protein PHF2 as a novel histone H3K9 demethylase. We show in biochemical and crystallographic analyses that PHF2 recognizes histone H3K4 trimethylation through its plant homeodomain finger and that this interaction is essential for PHF2 occupancy and H3K9 demethylation at rDNA promoters. Our study provides molecular insights into the mechanism by which distinct effector domains within a protein cooperatively modulate the 'cross-talk' of histone modifications.

  14. Differential Expression of Histone H3 Gene Variants during Cell Cycle and Somatic Embryogenesis in Alfalfa

    PubMed Central

    Kapros, Tamás; Bögre, László; Németh, Kinga; Bakó, László; Györgyey, János; Wu, Sheng Cheng; Dudits, Dénes

    1992-01-01

    Northern analysis has revealed substantial differences in mRNA accumulation of the two histone H3 gene variants represented by pH3c-1 and pH3c-11 cDNA clones. Both in partially synchronized cell suspension cultures and in protoplast-derived cells from alfalfa, Medicago varia, the maximal level of the histone H3-1 gene transcript coincided with the peak in [3H]thymidine incorporation. Histone H3-11 mRNA was detectable in cells throughout the period of the cell cycle studied. Various stress factors such as medium replacement, enzyme digestion of the cell wall, osmotic shock, and auxin treatment considerably increased the level of the histone H3-11 transcript. In alfalfa (Medicago sativa), the presence of H3-11 mRNA in unorganized tissues of microcallus suspension and in somatic embryos induced by auxin treatment supports the idea that this H3 variant exists in a continously active state of transcription. During embryo development, the early globular stage embryos showed increased accumulation of histone H3-11 mRNA in comparison with the later stages. The highest level of the histone H3-1 transcript was detectable 1 day after treatment of callus tissues with 2,4-dichlorophenoxyacetic acid. Somatic embryos contained appreciable levels of histone H3-1 transcripts at all stages of somatic embryo development. These observations suggest that the histone H3-1 gene belòngs to the class of replication-dependent histone genes. The histone H3-11 gene showed characteristics of a constitutively expressed replacement-type histone gene, with a specific characteristic that external factors can influence the level of gene transcription. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:16668686

  15. Partial purification of histone H3 proteolytic activity from the budding yeast Saccharomyces cerevisiae.

    PubMed

    Azad, Gajendra Kumar; Tomar, Raghuvir Singh

    2016-06-01

    The proteolytic clipping of histone tails has recently emerged as a novel form of irreversible post-translational modification (PTM) of histones. Histone clipping has been implicated as a regulatory process leading to the permanent removal of PTMs from histone proteins. However, there is scarcity of literature that describes the identification and characterization of histone-specific proteases. Here, we employed various biochemical methods to report histone H3-specific proteolytic activity from budding yeast. Our results demonstrate that H3 proteolytic activity was associated with sepharose bead matrices and activity was not affected by a variety of stress conditions. We have also identified the existence of an unknown protein that acts as a physiological inhibitor of the H3-clipping activity of yeast H3 protease. Moreover, through protease inhibition assays, we have also characterized yeast H3 protease as a serine protease. Interestingly, unlike glutamate dehydrogenase (GDH), yeast H3 proteolytic activity was not inhibited by Stefin B. Together, our findings suggest the existence of a novel H3 protease in yeast that is different from other reported histone H3 proteases. The presence of histone H3 proteolytic activity, along with the physiological inhibitor in yeast, suggests an interesting molecular mechanism that regulates the activity of histone proteases. Copyright © 2016 John Wiley & Sons, Ltd.

  16. The Histone Chaperones Nap1 and Vps75 Bind Histones H3 and H4 in a Tetrameric Conformation

    PubMed Central

    Bowman, Andrew; Ward, Richard; Wiechens, Nicola; Singh, Vijender; El-Mkami, Hassane; Norman, David George; Owen-Hughes, Tom

    2011-01-01

    Summary Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation, DNA damage, and histone variant exchange. Currently, the best-characterized chaperone-histone interaction is that between the ubiquitous chaperone Asf1 and a dimer of H3 and H4. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone. Using pulsed electron double resonance (PELDOR) measurements and protein crosslinking, we show that two members of this class, Nap1 and Vps75, bind histones in the tetrameric conformation also observed when they are sequestered within the nucleosome. Furthermore, H3 and H4 trapped in their tetrameric state can be used as substrates in nucleosome assembly and chaperone-mediated lysine acetylation. This alternate mode of histone interaction provides a potential means of maintaining the integrity of the histone tetramer during cycles of nucleosome reassembly. PMID:21329878

  17. The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation.

    PubMed

    Bowman, Andrew; Ward, Richard; Wiechens, Nicola; Singh, Vijender; El-Mkami, Hassane; Norman, David George; Owen-Hughes, Tom

    2011-02-18

    Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation, DNA damage, and histone variant exchange. Currently, the best-characterized chaperone-histone interaction is that between the ubiquitous chaperone Asf1 and a dimer of H3 and H4. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone. Using pulsed electron double resonance (PELDOR) measurements and protein crosslinking, we show that two members of this class, Nap1 and Vps75, bind histones in the tetrameric conformation also observed when they are sequestered within the nucleosome. Furthermore, H3 and H4 trapped in their tetrameric state can be used as substrates in nucleosome assembly and chaperone-mediated lysine acetylation. This alternate mode of histone interaction provides a potential means of maintaining the integrity of the histone tetramer during cycles of nucleosome reassembly.

  18. Structural basis for the recognition and cleavage of histone H3 by cathepsin L

    PubMed Central

    Adams-Cioaba, Melanie A.; Krupa, Joanne C.; Xu, Chao; Mort, John S.; Min, Jinrong

    2011-01-01

    Proteolysis of eukaryotic histone tails has emerged as an important factor in the modulation of cell-cycle progression and cellular differentiation. The recruitment of lysosomal cathepsin L to the nucleus where it mediates proteolysis of the mouse histone H3 tail has been described recently. Here, we report the three-dimensional crystal structures of a mature, inactive mutant of human cathepsin L alone and in complex with a peptide derived from histone H3. Canonical substrate–cathepsin L interactions are observed in the complex between the protease and the histone H3 peptide. Systematic analysis of the impact of posttranslational modifications at histone H3 on substrate selectivity suggests cathepsin L to be highly accommodating of all modified peptides. This is the first report of cathepsin L–histone H3 interaction and the first structural description of cathepsin L in complex with a substrate. PMID:21326229

  19. NuA4 links methylation of histone H3 lysines 4 and 36 to acetylation of histones H4 and H3.

    PubMed

    Ginsburg, Daniel S; Anlembom, Timi Elvuchio; Wang, Jianing; Patel, Sanket R; Li, Bing; Hinnebusch, Alan G

    2014-11-21

    Cotranscriptional methylation of histone H3 lysines 4 and 36 by Set1 and Set2, respectively, stimulates interaction between nucleosomes and histone deacetylase complexes to block cryptic transcription in budding yeast. We previously showed that loss of all H3K4 and H3K36 methylation in a set1Δset2Δ mutant reduces interaction between native nucleosomes and the NuA4 lysine acetyltransferase (KAT) complex. We now provide evidence that NuA4 preferentially binds H3 tails mono- and dimethylated on H3K4 and di- and trimethylated on H3K36, an H3 methylation pattern distinct from that recognized by the RPD3C(S) and Hos2/Set3 histone deacetylase complexes (HDACs). Loss of H3K4 or H3K36 methylation in set1Δ or set2Δ mutants reduces NuA4 interaction with bulk nucleosomes in vitro and in vivo, and reduces NuA4 occupancy of transcribed coding sequences at particular genes. We also provide evidence that NuA4 acetylation of lysine residues in the histone H4 tail stimulates SAGA interaction with nucleosomes and its recruitment to coding sequences and attendant acetylation of histone H3 in vivo. Thus, H3 methylation exerts opposing effects of enhancing nucleosome acetylation by both NuA4 and SAGA as well as stimulating nucleosome deacetylation by multiple HDACs to maintain the proper level of histone acetylation in transcribed coding sequences.

  20. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes.

    PubMed

    Mahrez, Walid; Arellano, Minerva Susana Trejo; Moreno-Romero, Jordi; Nakamura, Miyuki; Shu, Huan; Nanni, Paolo; Köhler, Claudia; Gruissem, Wilhelm; Hennig, Lars

    2016-03-01

    In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5' end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. The C Terminus of the Histone Chaperone Asf1 Cross-Links to Histone H3 in Yeast and Promotes Interaction with Histones H3 and H4

    PubMed Central

    Dennehey, Briana K.; Noone, Seth; Liu, Wallace H.; Smith, Luke

    2013-01-01

    The central histone H3/H4 chaperone Asf1 comprises a highly conserved globular core and a divergent C-terminal tail. While the function and structure of the Asf1 core are well known, the function of the tail is less well understood. Here, we have explored the role of the yeast (yAsf1) and human (hAsf1a and hAsf1b) Asf1 tails in Saccharomyces cerevisiae. We show, using a photoreactive, unnatural amino acid, that Asf1 tail residue 210 cross-links to histone H3 in vivo and, further, that loss of C-terminal tail residues 211 to 279 weakens yAsf1-histone binding affinity in vitro nearly 200-fold. Via several yAsf1 C-terminal truncations and yeast-human chimeric proteins, we found that truncations at residue 210 increase transcriptional silencing and that the hAsf1a tail partially substitutes for full-length yAsf1 with respect to silencing but that full-length hAsf1b is a better overall substitute for full-length yAsf1. In addition, we show that the C-terminal tail of Asf1 is phosphorylated at T270 in yeast. Loss of this phosphorylation site does not prevent coimmunoprecipitation of yAsf1 and Rad53 from yeast extracts, whereas amino acid residue substitutions at the Asf1-histone H3/H4 interface do. Finally, we show that residue substitutions in yAsf1 near the CAF-1/HIRA interface also influence yAsf1's function in silencing. PMID:23184661

  2. The C terminus of the histone chaperone Asf1 cross-links to histone H3 in yeast and promotes interaction with histones H3 and H4.

    PubMed

    Dennehey, Briana K; Noone, Seth; Liu, Wallace H; Smith, Luke; Churchill, Mair E A; Tyler, Jessica K

    2013-02-01

    The central histone H3/H4 chaperone Asf1 comprises a highly conserved globular core and a divergent C-terminal tail. While the function and structure of the Asf1 core are well known, the function of the tail is less well understood. Here, we have explored the role of the yeast (yAsf1) and human (hAsf1a and hAsf1b) Asf1 tails in Saccharomyces cerevisiae. We show, using a photoreactive, unnatural amino acid, that Asf1 tail residue 210 cross-links to histone H3 in vivo and, further, that loss of C-terminal tail residues 211 to 279 weakens yAsf1-histone binding affinity in vitro nearly 200-fold. Via several yAsf1 C-terminal truncations and yeast-human chimeric proteins, we found that truncations at residue 210 increase transcriptional silencing and that the hAsf1a tail partially substitutes for full-length yAsf1 with respect to silencing but that full-length hAsf1b is a better overall substitute for full-length yAsf1. In addition, we show that the C-terminal tail of Asf1 is phosphorylated at T270 in yeast. Loss of this phosphorylation site does not prevent coimmunoprecipitation of yAsf1 and Rad53 from yeast extracts, whereas amino acid residue substitutions at the Asf1-histone H3/H4 interface do. Finally, we show that residue substitutions in yAsf1 near the CAF-1/HIRA interface also influence yAsf1's function in silencing.

  3. Quantitative Histone Mass Spectrometry Identifies Elevated Histone H3 Lysine 27 (Lys27) Trimethylation in Melanoma*

    PubMed Central

    Sengupta, Deepanwita; Byrum, Stephanie D.; Avaritt, Nathan L.; Davis, Lauren; Shields, Bradley; Mahmoud, Fade; Reynolds, Matthew; Orr, Lisa M.; Mackintosh, Samuel G.; Shalin, Sara C.; Tackett, Alan J.

    2016-01-01

    Normal cell growth is characterized by a regulated epigenetic program that drives cellular activities such as gene transcription, DNA replication, and DNA damage repair. Perturbation of this epigenetic program can lead to events such as mis-regulation of gene transcription and diseases such as cancer. To begin to understand the epigenetic program correlated to the development of melanoma, we performed a novel quantitative mass spectrometric analysis of histone post-translational modifications mis-regulated in melanoma cell culture as well as patient tumors. Aggressive melanoma cell lines as well as metastatic melanoma were found to have elevated histone H3 Lys27 trimethylation (H3K27me3) accompanied by overexpressed methyltransferase EZH2 that adds the specific modification. The altered epigenetic program that led to elevated H3K27me3 in melanoma cell culture was found to directly silence transcription of the tumor suppressor genes RUNX3 and E-cadherin. The EZH2-mediated silencing of RUNX3 and E-cadherin transcription was also validated in advanced stage human melanoma tissues. This is the first study focusing on the detailed epigenetic mechanisms leading to EZH2-mediated silencing of RUNX3 and E-cadherin tumor suppressors in melanoma. This study underscores the utility of using high resolution mass spectrometry to identify mis-regulated epigenetic programs in diseases such as cancer, which could ultimately lead to the identification of biological markers for diagnostic and prognostic applications. PMID:26621846

  4. Histone chaperone ASF1B promotes human β-cell proliferation via recruitment of histone H3.3.

    PubMed

    Paul, Pradyut K; Rabaglia, Mary E; Wang, Chen-Yu; Stapleton, Donald S; Leng, Ning; Kendziorski, Christina; Lewis, Peter W; Keller, Mark P; Attie, Alan D

    2016-12-01

    Anti-silencing function 1 (ASF1) is a histone H3-H4 chaperone involved in DNA replication and repair, and transcriptional regulation. Here, we identify ASF1B, the mammalian paralog to ASF1, as a proliferation-inducing histone chaperone in human β-cells. Overexpression of ASF1B led to distinct transcriptional signatures consistent with increased cellular proliferation and reduced cellular death. Using multiple methods of monitoring proliferation and mitotic progression, we show that overexpression of ASF1B is sufficient to induce human β-cell proliferation. Co-expression of histone H3.3 further augmented β-cell proliferation, whereas suppression of endogenous H3.3 attenuated the stimulatory effect of ASF1B. Using the histone binding-deficient mutant of ASF1B (V94R), we show that histone binding to ASF1B is required for the induction of β-cell proliferation. In contrast to H3.3, overexpression of histone H3 variants H3.1 and H3.2 did not have an impact on ASF1B-mediated induction of proliferation. Our findings reveal a novel role of ASF1B in human β-cell replication and show that ASF1B and histone H3.3A synergistically stimulate human β-cell proliferation.

  5. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes

    DOE PAGES

    Miao, Jiamin; Frazier, Taylor; Huang, Linkai; ...

    2016-07-12

    Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less

  6. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes

    PubMed Central

    Miao, Jiamin; Frazier, Taylor; Huang, Linkai; Zhang, Xinquan; Zhao, Bingyu

    2016-01-01

    Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1 genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass. PMID:27462323

  7. Histone H3 Lysine Methylation in Cognition and Intellectual Disability Disorders

    ERIC Educational Resources Information Center

    Parkel, Sven; Lopez-Atalaya, Jose P.; Barco, Angel

    2013-01-01

    Recent research indicates that epigenetic mechanisms and, in particular, the post-translational modification (PTM) of histones may contribute to memory encoding and storage. Among the dozens of possible histone PTMs, the methylation/demethylation of lysines in the N-terminal tail of histone H3 exhibits particularly strong links with cognitive…

  8. Histone H3 Lysine Methylation in Cognition and Intellectual Disability Disorders

    ERIC Educational Resources Information Center

    Parkel, Sven; Lopez-Atalaya, Jose P.; Barco, Angel

    2013-01-01

    Recent research indicates that epigenetic mechanisms and, in particular, the post-translational modification (PTM) of histones may contribute to memory encoding and storage. Among the dozens of possible histone PTMs, the methylation/demethylation of lysines in the N-terminal tail of histone H3 exhibits particularly strong links with cognitive…

  9. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4.

    PubMed

    Natsume, Ryo; Eitoku, Masamitsu; Akai, Yusuke; Sano, Norihiko; Horikoshi, Masami; Senda, Toshiya

    2007-03-15

    CIA (CCG1-interacting factor A)/ASF1, which is the most conserved histone chaperone among the eukaryotes, was genetically identified as a factor for an anti-silencing function (Asf1) by yeast genetic screening. Shortly after that, the CIA-histone-H3-H4 complex was isolated from Drosophila as a histone chaperone CAF-1 stimulator. Human CIA-I/II (ASF1a/b) was identified as a histone chaperone that interacts with the bromodomain-an acetylated-histone-recognizing domain-of CCG1, in the general transcription initiation factor TFIID. Intensive studies have revealed that CIA/ASF1 mediates nucleosome assembly by forming a complex with another histone chaperone in human cells and yeast, and is involved in DNA replication, transcription, DNA repair and silencing/anti-silencing in yeast. CIA/ASF1 was shown as a major storage chaperone for soluble histones in proliferating human cells. Despite all these biochemical and biological functional analyses, the structure-function relationship of the nucleosome assembly/disassembly activity of CIA/ASF1 has remained elusive. Here we report the crystal structure, at 2.7 A resolution, of CIA-I in complex with histones H3 and H4. The structure shows the histone H3-H4 dimer's mutually exclusive interactions with another histone H3-H4 dimer and CIA-I. The carboxy-terminal beta-strand of histone H4 changes its partner from the beta-strand in histone H2A to that of CIA-I through large conformational change. In vitro functional analysis demonstrated that CIA-I has a histone H3-H4 tetramer-disrupting activity. Mutants with weak histone H3-H4 dimer binding activity showed critical functional effects on cellular processes related to transcription. The histone H3-H4 tetramer-disrupting activity of CIA/ASF1 and the crystal structure of the CIA/ASF1-histone-H3-H4 dimer complex should give insights into mechanisms of both nucleosome assembly/disassembly and nucleosome semi-conservative replication.

  10. Histone H3.3 and its proteolytically processed form drive a cellular senescence program

    PubMed Central

    Duarte, Luis F.; Young, Andrew R. J.; Wang, Zichen; Wu, Hsan-Au; Panda, Taniya; Kou, Yan; Kapoor, Avnish; Hasson, Dan; Mills, Nicholas R.; Ma’ayan, Avi; Narita, Masashi; Bernstein, Emily

    2014-01-01

    The process of cellular senescence generates a repressive chromatin environment, however, the role of histone variants and histone proteolytic cleavage in senescence remains unclear. Using models of oncogene-induced and replicative senescence, here we report novel histone H3 tail cleavage events mediated by the protease Cathepsin L. We find that cleaved forms of H3 are nucleosomal and the histone variant H3.3 is the preferred cleaved form of H3. Ectopic expression of H3.3 and its cleavage product (H3.3cs1), which lacks the first twenty-one amino acids of the H3 tail, is sufficient to induce senescence. Further, H3.3cs1 chromatin incorporation is mediated by the HUCA histone chaperone complex. Genome-wide transcriptional profiling revealed that H3.3cs1 facilitates transcriptional silencing of cell cycle regulators including RB/E2F target genes, likely via the permanent removal of H3K4me3. Collectively, our study identifies histone H3.3 and its proteolytically processed forms as key regulators of cellular senescence. PMID:25394905

  11. Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex

    PubMed Central

    Daniel Ricketts, M; Frederick, Brian; Hoff, Henry; Tang, Yong; Schultz, David C.; Singh Rai, Taranjit; Grazia Vizioli, Maria; Adams, Peter D.; Marmorstein, Ronen

    2015-01-01

    Histone chaperones bind specific histones to mediate their storage, eviction or deposition from/or into chromatin. The HIRA histone chaperone complex, composed of HIRA, ubinuclein-1 (UBN1) and CABIN1, cooperates with the histone chaperone ASF1a to mediate H3.3-specific binding and chromatin deposition. Here we demonstrate that the conserved UBN1 Hpc2-related domain (HRD) is a novel H3.3-specific-binding domain. Biochemical and biophysical studies show the UBN1-HRD preferentially binds H3.3/H4 over H3.1/H4. X-ray crystallographic and mutational studies reveal that conserved residues within the UBN1-HRD and H3.3 G90 as key determinants of UBN1–H3.3-binding specificity. Comparison of the structure with the unrelated H3.3-specific chaperone DAXX reveals nearly identical points of contact between the chaperone and histone in the proximity of H3.3 G90, although the mechanism for H3.3 G90 recognition appears to be distinct. This study points to UBN1 as the determinant of H3.3-specific binding and deposition by the HIRA complex. PMID:26159857

  12. The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase.

    PubMed

    Lee, Nara; Zhang, Junyu; Klose, Robert J; Erdjument-Bromage, Hediye; Tempst, Paul; Jones, Richard S; Zhang, Yi

    2007-04-01

    Recent studies have demonstrated that histone methylation can be dynamically regulated through active demethylation. However, no demethylase specific to histone H3 trimethyl-Lys4 (H3K4me3) has been identified. Here we report that the Drosophila melanogaster protein 'little imaginal discs' (Lid), a JmjC domain-containing trithorax group protein, can demethylate H3K4me3. Consistent with its genetic classification, Lid positively regulates Hox gene expression in S2 cells.

  13. Histone H3 phosphorylation in the rat pineal gland: adrenergic regulation and diurnal variation.

    PubMed

    Chik, C L; Arnason, T G; Dukewich, W G; Price, D M; Ranger, A; Ho, A K

    2007-04-01

    In this study, we investigated phosphorylation of Ser10 in histone H3 by norepinephrine (NE) in the rat pineal gland. In whole-animal studies, we demonstrated a marked increase in histone H3 phosphorylation in the rat pineal gland during the first half of the dark period. Exposure to light during this period caused a rapid decline in histone H3 phosphorylation with an estimated t1/2 of less than 15 min, indicating a high level of dephosphorylation activity. Corresponding studies in cultured pineal cells revealed that treatment with NE produced an increase in histone H3 phosphorylation that peaked between 2 and 3 h and declined rapidly by 4 h. The NE-induced histone H3 phosphorylation was blocked by cotreatment with propranolol or KT5720, a protein kinase A inhibitor, but not by prazosin or other kinase inhibitors. Moreover, only treatment with dibutyryl cAMP but not other kinase activators mimicked the effect of NE on histone H3 phosphorylation. The NE-stimulated H3 phosphorylation was markedly increased by cotreatment with a serine/threonine phosphatase inhibitor, tautomycin or okadaic acid, supporting a high level of ongoing histone H3 dephosphorylation activity. Together, our results indicate that histone H3 phosphorylation is a naturally occurring event at night in the rat pineal gland that is driven almost exclusively by a NE-->beta-adrenergic-->cAMP/protein kinase A signaling mechanism. This transient histone H3 phosphorylation probably reflects the nocturnal activation of multiple adrenergic-regulated genes in the rat pineal gland.

  14. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation

    PubMed Central

    Bian, Chuanbing; Xu, Chao; Ruan, Jianbin; Lee, Kenneth K; Burke, Tara L; Tempel, Wolfram; Barsyte, Dalia; Li, Jing; Wu, Minhao; Zhou, Bo O; Fleharty, Brian E; Paulson, Ariel; Allali-Hassani, Abdellah; Zhou, Jin-Qiu; Mer, Georges; Grant, Patrick A; Workman, Jerry L; Zang, Jianye; Min, Jinrong

    2011-01-01

    The SAGA (Spt–Ada–Gcn5 acetyltransferase) complex is an important chromatin modifying complex that can both acetylate and deubiquitinate histones. Sgf29 is a novel component of the SAGA complex. Here, we report the crystal structures of the tandem Tudor domains of Saccharomyces cerevisiae and human Sgf29 and their complexes with H3K4me2 and H3K4me3 peptides, respectively, and show that Sgf29 selectively binds H3K4me2/3 marks. Our crystal structures reveal that Sgf29 harbours unique tandem Tudor domains in its C-terminus. The tandem Tudor domains in Sgf29 tightly pack against each other face-to-face with each Tudor domain harbouring a negatively charged pocket accommodating the first residue alanine and methylated K4 residue of histone H3, respectively. The H3A1 and K4me3 binding pockets and the limited binding cleft length between these two binding pockets are the structural determinants in conferring the ability of Sgf29 to selectively recognize H3K4me2/3. Our in vitro and in vivo functional assays show that Sgf29 recognizes methylated H3K4 to recruit the SAGA complex to its targets sites and mediates histone H3 acetylation, underscoring the importance of Sgf29 in gene regulation. PMID:21685874

  15. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation

    SciTech Connect

    Bian, Chuanbing; Xu, Chao; Ruan, Jianbin; Lee, Kenneth K.; Burke, Tara L.; Tempel, Wolfram; Barsyte, Dalia; Li, Jing; Wu, Minhao; Zhou, Bo O.; Fleharty, Brian E.; Paulson, Ariel; Allali-Hassani, Abdellah; Zhou, Jin-Qiu; Mer, Georges; Grant, Patrick A.; Workman, Jerry L.; Zang, Jianye; Min, Jinrong

    2011-09-28

    The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an important chromatin modifying complex that can both acetylate and deubiquitinate histones. Sgf29 is a novel component of the SAGA complex. Here, we report the crystal structures of the tandem Tudor domains of Saccharomyces cerevisiae and human Sgf29 and their complexes with H3K4me2 and H3K4me3 peptides, respectively, and show that Sgf29 selectively binds H3K4me2/3 marks. Our crystal structures reveal that Sgf29 harbours unique tandem Tudor domains in its C-terminus. The tandem Tudor domains in Sgf29 tightly pack against each other face-to-face with each Tudor domain harbouring a negatively charged pocket accommodating the first residue alanine and methylated K4 residue of histone H3, respectively. The H3A1 and K4me3 binding pockets and the limited binding cleft length between these two binding pockets are the structural determinants in conferring the ability of Sgf29 to selectively recognize H3K4me2/3. Our in vitro and in vivo functional assays show that Sgf29 recognizes methylated H3K4 to recruit the SAGA complex to its targets sites and mediates histone H3 acetylation, underscoring the importance of Sgf29 in gene regulation.

  16. Crystal structure of the nucleosome containing histone H3 with crotonylated lysine 122.

    PubMed

    Suzuki, Yuya; Horikoshi, Naoki; Kato, Daiki; Kurumizaka, Hitoshi

    2016-01-15

    The crotonylation of histones is an important post-translational modification, and epigenetically functions in the regulation of genomic DNA activity. The histone modifications in the structured "histone-fold" domains are considered to have an especially important impact on the nucleosome structure and dynamics. In the present study, we reconstituted the human nucleosome containing histone H3.2 crotonylated at the Lys122 residue, and determined its crystal structure at 2.56 Å resolution. We found that the crotonylation of the H3 Lys122 residue does not affect the overall nucleosome structure, but locally impedes the formation of the water-mediated hydrogen bond with the DNA backbone. Consistently, thermal stability assays revealed that the H3 Lys122 crotonylation, as well as the H3 Lys122 acetylation, clearly reduced the histone-DNA association. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Program for Processing Newly-synthesized Histones H3.1 and H4

    PubMed Central

    Campos, Eric I.; Fillingham, Jeffrey; Li, Guohong; Zheng, Haiyan; Voigt, Philipp; Kuo, Wei-Hung W.; Seepany, Harshika; Gao, Zhonghua; Day, Loren A.; Greenblatt, Jack F.

    2010-01-01

    The mechanism by which newly synthesized histones are imported into the nucleus and deposited onto replicating chromatin alongside segregating nucleosomal counterparts is poorly understood, yet this program is expected to bear on the putative epigenetic nature of histone posttranslational modifications. In order to define the events by which naïve pre-deposition histones are imported into the nucleus, we biochemically purified and characterized the gamut of histone H3.1-containing complexes from human cytoplasmic fractions and identified their associated histone PTMs. Through reconstitution assays, biophysical analyses, and live cell manipulations, we describe in detail this series of events, namely the assembly of H3-H4 dimers, the acetylation of histones by the HAT1 holoenzyme, and the transfer of histones between chaperones that culminates with their karyopherin-mediated nuclear import. We further demonstrate the high degree of conservation for this pathway between higher and lower eukaryotes. PMID:20953179

  18. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading

    PubMed Central

    Shan, Chun-Min; Wang, Jiyong; Xu, Ke; Chen, Huijie; Yue, Jia-Xing; Andrews, Stuart; Moresco, James J; Yates, John R; Nagy, Peter L; Tong, Liang; Jia, Songtao

    2016-01-01

    Histone lysine-to-methionine (K-to-M) mutations are associated with multiple cancers, and they function in a dominant fashion to block the methylation of corresponding lysines on wild type histones. However, their mechanisms of function are controversial. Here we show that in fission yeast, introducing the K9M mutation into one of the three histone H3 genes dominantly blocks H3K9 methylation on wild type H3 across the genome. In addition, H3K9M enhances the interaction of histone H3 tail with the H3K9 methyltransferase Clr4 in a SAM (S-adenosyl-methionine)-dependent manner, and Clr4 is trapped at nucleation sites to prevent its spreading and the formation of large heterochromatin domains. We further determined the crystal structure of an H3K9M peptide in complex with human H3K9 methyltransferase G9a and SAM, which reveales that the methionine side chain had enhanced van der Waals interactions with G9a. Therefore, our results provide a detailed mechanism by which H3K9M regulates H3K9 methylation. DOI: http://dx.doi.org/10.7554/eLife.17903.001 PMID:27648579

  19. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading

    SciTech Connect

    Shan, Chun-Min; Wang, Jiyong; Xu, Ke; Chen, Huijie; Yue, Jia-Xing; Andrews, Stuart; Moresco, James J.; Yates, John R.; Nagy, Peter L.; Tong, Liang; Jia, Songtao

    2016-09-20

    Histone lysine-to-methionine (K-to-M) mutations are associated with multiple cancers, and they function in a dominant fashion to block the methylation of corresponding lysines on wild type histones. However, their mechanisms of function are controversial. Here we show that in fission yeast, introducing the K9M mutation into one of the three histone H3 genes dominantly blocks H3K9 methylation on wild type H3 across the genome. In addition, H3K9M enhances the interaction of histone H3 tail with the H3K9 methyltransferase Clr4 in a SAM (S-adenosyl-methionine)-dependent manner, and Clr4 is trapped at nucleation sites to prevent its spreading and the formation of large heterochromatin domains. We further determined the crystal structure of an H3K9M peptide in complex with human H3K9 methyltransferase G9a and SAM, which reveales that the methionine side chain had enhanced van der Waals interactions with G9a. Therefore, our results provide a detailed mechanism by which H3K9M regulates H3K9 methylation.

  20. Histone H3K4 and H3K36 Methylation Independently Recruit the NuA3 Histone Acetyltransferase in Saccharomyces cerevisiae.

    PubMed

    Martin, Benjamin J E; McBurney, Kristina L; Maltby, Vicki E; Jensen, Kristoffer N; Brind'Amour, Julie; Howe, LeAnn J

    2017-03-01

    Histone post-translational modifications (PTMs) alter chromatin structure by promoting the interaction of chromatin-modifying complexes with nucleosomes. The majority of chromatin-modifying complexes contain multiple domains that preferentially interact with modified histones, leading to speculation that these domains function in concert to target nucleosomes with distinct combinations of histone PTMs. In Saccharomyces cerevisiae, the NuA3 histone acetyltransferase complex contains three domains, the PHD finger in Yng1, the PWWP domain in Pdp3, and the YEATS domain in Taf14; which in vitro bind to H3K4 methylation, H3K36 methylation, and acetylated and crotonylated H3K9, respectively. While the in vitro binding has been well characterized, the relative in vivo contributions of these histone PTMs in targeting NuA3 is unknown. Here, through genome-wide colocalization and by mutational interrogation, we demonstrate that the PHD finger of Yng1, and the PWWP domain of Pdp3 independently target NuA3 to H3K4 and H3K36 methylated chromatin, respectively. In contrast, we find no evidence to support the YEATS domain of Taf14 functioning in NuA3 recruitment. Collectively our results suggest that the presence of multiple histone PTM binding domains within NuA3, rather than restricting it to nucleosomes containing distinct combinations of histone PTMs, can serve to increase the range of nucleosomes bound by the complex. Interestingly, however, the simple presence of NuA3 is insufficient to ensure acetylation of the associated nucleosomes, suggesting a secondary level of acetylation regulation that does not involve control of HAT-nucleosome interactions. Copyright © 2017 by the Genetics Society of America.

  1. Hypoacetylation of acetyl-histone H3 (H3K9ac) as marker of poor prognosis in oral cancer.

    PubMed

    Webber, Liana P; Wagner, Vivian P; Curra, Marina; Vargas, Pablo A; Meurer, Luise; Carrard, Vinícius C; Squarize, Cristiane H; Castilho, Rogério M; Martins, Manoela D

    2017-08-01

    Epigenetics refers to changes in cell characteristics that occur independently of modifications to the DNA sequence. Oral carcinogenesis is influenced by modifications in epigenetic mechanisms, including changes in histones, which are proteins that support chromatin remodelling for the dynamic regulation of gene expression and silencing. The dysregulation of histone acetylation can lead to the uncontrolled activity of different genes, thereby triggering events associated with malignant transformation. The aim of this study was to analyse the expression of acetyl-histone H3 at lys9 (H3K9ac) in oral leucoplakia (OL) and oral squamous cell carcinoma (OSCC) in addition to its association with cell proliferation, epithelial-mesenchymal transition (EMT) and clinical-pathological findings. Samples of normal oral mucosa (NOM), OL and OSCC were submitted to immunohistochemical analysis using anti-H3K9ac, Ki67 and vimentin. Slides were submitted to quantitative analysis regarding the percentage of positive cells. OSCC presented less expression of H3K9ac in comparison to OL (P < 0.01), whereas Ki67 and vimentin levels increased from OL to OSCC (P < 0.001 and P = 0.03, respectively). OSCC patients with poor prognosis had less H3K9ac expression (P = 0.04). The Kaplan-Meier cumulative survival curves also revealed lower survival rates in patients with less H3K9ac expression (P < 0.01). The present findings suggest that changes in H3K9ac occur during the process of oral carcinogenesis along with an increase in cell proliferation and EMT. The results demonstrate that H3K9ac may be a useful novel prognostic marker for OSCC. © 2017 John Wiley & Sons Ltd.

  2. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA

    PubMed Central

    Liu, Wallace H.; Roemer, Sarah C.; Port, Alex M.; Churchill, Mair E. A.

    2012-01-01

    Anti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-terminal tail of Asf1 enhances the interaction of Asf1 with CAF-1. Surprisingly, although H3/H4 also enhances the interaction of Asf1 with the CAF-1 subunit Cac2, H3/H4 forms a tight complex with CAF-1 exclusive of Asf1, with an affinity weaker than Asf1–H3/H4 or H3/H4–DNA interactions. Unlike Asf1, monomeric CAF-1 binds to multiple H3/H4 dimers, which ultimately promotes the formation of (H3/H4)2 tetramers on DNA. Thus, transition of H3/H4 from the Asf1-associated dimer to the DNA-associated tetramer is promoted by CAF-1-induced H3/H4 oligomerization. PMID:23034810

  3. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA.

    PubMed

    Liu, Wallace H; Roemer, Sarah C; Port, Alex M; Churchill, Mair E A

    2012-12-01

    Anti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-terminal tail of Asf1 enhances the interaction of Asf1 with CAF-1. Surprisingly, although H3/H4 also enhances the interaction of Asf1 with the CAF-1 subunit Cac2, H3/H4 forms a tight complex with CAF-1 exclusive of Asf1, with an affinity weaker than Asf1-H3/H4 or H3/H4-DNA interactions. Unlike Asf1, monomeric CAF-1 binds to multiple H3/H4 dimers, which ultimately promotes the formation of (H3/H4)(2) tetramers on DNA. Thus, transition of H3/H4 from the Asf1-associated dimer to the DNA-associated tetramer is promoted by CAF-1-induced H3/H4 oligomerization.

  4. Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation

    DOE PAGES

    Zhang, Yinglu; Shan, Chun -Min; Wang, Jiyong; ...

    2017-03-03

    Histone H3 lysine 36 methylation (H3K36me) is critical for epigenetic regulation and mutations at or near H3K36 are associated with distinct types of cancers. H3K36M dominantly inhibits H3K36me on wild-type histones, whereas H3G34R/V selectively affects H3K36me on the same histone tail. Here we report the crystal structures of SETD2 SET domain in complex with an H3K36M peptide and SAM or SAH. There are large conformational changes in the substrate binding regions of the SET domain, and the K36M residue interacts with the catalytic pocket of SETD2. H3G34 is surrounded by a very narrow tunnel, which excludes larger amino acid sidemore » chains. H3P38 is in the trans configuration, and the cis configuration is incompatible with SETD2 binding. Lastly, mutations of H3G34 or H3P38 alleviate the inhibitory effects of H3K36M on H3K36me, demonstrating that the stable interaction of H3K36M with SETD2 is critical for its inhibitory effects.« less

  5. Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation

    PubMed Central

    Zhang, Yinglu; Shan, Chun-Min; Wang, Jiyong; Bao, Kehan; Tong, Liang; Jia, Songtao

    2017-01-01

    Histone H3 lysine 36 methylation (H3K36me) is critical for epigenetic regulation and mutations at or near H3K36 are associated with distinct types of cancers. H3K36M dominantly inhibits H3K36me on wild-type histones, whereas H3G34R/V selectively affects H3K36me on the same histone tail. Here we report the crystal structures of SETD2 SET domain in complex with an H3K36M peptide and SAM or SAH. There are large conformational changes in the substrate binding regions of the SET domain, and the K36M residue interacts with the catalytic pocket of SETD2. H3G34 is surrounded by a very narrow tunnel, which excludes larger amino acid side chains. H3P38 is in the trans configuration, and the cis configuration is incompatible with SETD2 binding. Finally, mutations of H3G34 or H3P38 alleviate the inhibitory effects of H3K36M on H3K36me, demonstrating that the stable interaction of H3K36M with SETD2 is critical for its inhibitory effects. PMID:28256625

  6. Histone chaperone spt16 promotes redeposition of the original h3-h4 histones evicted by elongating RNA polymerase.

    PubMed

    Jamai, Adil; Puglisi, Andrea; Strubin, Michel

    2009-08-14

    Nucleosomes are surprisingly dynamic structures in vivo, showing transcription-independent exchange of histones H2A-H2B genome-wide and exchange of H3-H4 mainly within the promoters of transcribed genes. In addition, nucleosomes are disrupted in front of and reassembled behind the elongating RNA polymerase. Here we show that inactivation of histone chaperone Spt16 in yeast results in rapid loss of H2B and H3 from transcribed genes but also from inactive genes. In all cases, histone loss is blocked by a transcription inhibitor, indicating a transcription-dependent event. Thus, nucleosomes are efficiently evicted by the polymerase but do not reform in the absence of Spt16. Yet exchange of nucleosomal H2B with free histones occurs normally, and, unexpectedly, incorporation of new H3 increases at all loci tested. This points to Spt16 restoring normal nucleosome structure by redepositing the displaced H3-H4 histones, thereby preventing incorporation of new histones and perhaps changes in histone modification patterns associated with ongoing transcription.

  7. Histone H3 globular domain acetylation identifies a new class of enhancers

    PubMed Central

    Pradeepa, Madapura M; Grimes, Graeme R; Kumar, Yatendra; Olley, Gabrielle; Taylor, Gillian C A; Schneider, Robert; Bickmore, Wendy A

    2016-01-01

    Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes1. This includes acetylation of H3 on lysine 27 (H3K27ac), which blocks the deposition of polycomb mediated H3K27me32. H3K27ac is also widely used to identify active enhancers3,4, and the assumption has been that profiling of H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of H3 (H3K64ac and H3K122ac) marks active gene promoters and also a subset of active enhancers. Moreover, we find a novel class of active functional enhancers that are marked by H3K122ac but lack H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than was previously considered. PMID:27089178

  8. Usp7-dependent histone H3 deubiquitylation regulates maintenance of DNA methylation.

    PubMed

    Yamaguchi, Luna; Nishiyama, Atsuya; Misaki, Toshinori; Johmura, Yoshikazu; Ueda, Jun; Arita, Kyohei; Nagao, Koji; Obuse, Chikashi; Nakanishi, Makoto

    2017-03-03

    Uhrf1-dependent histone H3 ubiquitylation plays a crucial role in the maintenance of DNA methylation via the recruitment of the DNA methyltransferase Dnmt1 to DNA methylation sites. However, the involvement of deubiquitylating enzymes (DUBs) targeting ubiquitylated histone H3 in the maintenance of DNA methylation is largely unknown. With the use of Xenopus egg extracts, we demonstrate here that Usp7, a ubiquitin carboxyl-terminal hydrolase, forms a stable complex with Dnmt1 and is recruited to DNA methylation sites during DNA replication. Usp7 deubiquitylates ubiquitylated histone H3 in vitro. Inhibition of Usp7 activity or its depletion in egg extracts results in enhanced and extended binding of Dnmt1 to chromatin, suppressing DNA methylation. Depletion of Usp7 in HeLa cells causes enhanced histone H3 ubiquitylation and enlargement of Dnmt1 nuclear foci during DNA replication. Our results thus suggest that Usp7 is a key factor that regulates maintenance of DNA methylation.

  9. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling

    PubMed Central

    Zhang, Fan; Qi, Bin; Wang, Likai; Zhao, Bo; Rode, Siddharth; Riggan, Nathaniel D.; Ecker, Joseph R.; Qiao, Hong

    2016-01-01

    Ethylene gas is essential for many developmental processes and stress responses in plants. EIN2 plays a key role in ethylene signalling but its function remains enigmatic. Here, we show that ethylene specifically elevates acetylation of histone H3K14 and the non-canonical acetylation of H3K23 in etiolated seedlings. The up-regulation of these two histone marks positively correlates with ethylene-regulated transcription activation, and the elevation requires EIN2. Both EIN2 and EIN3 interact with a SANT domain protein named EIN2 nuclear associated protein 1 (ENAP1), overexpression of which results in elevation of histone acetylation and enhanced ethylene-inducible gene expression in an EIN2-dependent manner. On the basis of these findings we propose a model where, in the presence of ethylene, the EIN2 C terminus contributes to downstream signalling via the elevation of acetylation at H3K14 and H3K23. ENAP1 may potentially mediate ethylene-induced histone acetylation via its interactions with EIN2 C terminus. PMID:27694846

  10. Sequential establishment of marks on soluble histones H3 and H4.

    PubMed

    Alvarez, Francisca; Muñoz, Francisca; Schilcher, Pierre; Imhof, Axel; Almouzni, Geneviève; Loyola, Alejandra

    2011-05-20

    Much progress has been made concerning histone function in the nucleus; however, following their synthesis, how their marking and subcellular trafficking are regulated remains to be explored. To gain an insight into these issues, we focused on soluble histones and analyzed endogenous and tagged H3 histones in parallel. We distinguished six complexes that we could place to account for maturation events occurring on histones H3 and H4 from their synthesis onward. In each complex, a different set of chaperones is involved, and we found specific post-translational modifications. Interestingly, we revealed that histones H3 and H4 are transiently poly(ADP-ribosylated). The impact of these marks in histone metabolism proved to be important as we found that acetylation of lysines 5 and 12 on histone H4 stimulated its nuclear translocation. Furthermore, we showed that, depending on particular histone H3 modifications, the balance in the presence of the different translocation complexes changes. Therefore, our results enabled us to propose a regulatory means of these marks for controlling cytoplasmic/nuclear shuttling and the establishment of early modification patterns.

  11. Aberrant levels of histone H3 acetylation induce spermatid anomaly in mouse testis.

    PubMed

    Dai, Lei; Endo, Daisuke; Akiyama, Naotaro; Yamamoto-Fukuda, Tomomi; Koji, Takehiko

    2015-02-01

    Histone acetylation is involved in the regulation of chromatin structure and gene function. We reported previously that histone H3 acetylation pattern is subject to dynamic changes and limited to certain stages of germ cell differentiation during murine spermatogenesis, suggesting a crucial role for acetylation in the process. In the present study, we investigated the effects of hyper- and hypo-acetylation on spermatogenesis. Changes in acetylation level were induced by either in vivo administration of sodium phenylbutyrate, a histone deacetylase inhibitor, or by knockdown of histone acetyltransferases using short hairpin RNA plasmids transfection. Administration of sodium phenylbutyrate induced accumulation of acetylated histone H3 at lysine 9 and lysine 18 in round spermatids, together with spermatid morphological abnormalities and induction of apoptosis through a Bax-related pathway. Knockdown of steroid receptor coactivator 1, a member of histone acetyltransferases, but not general control of amino acid synthesis 5 nor elongator protein 3 by in vivo electroporation of shRNA plasmids, reduced acetylated histone H3 at lysine 9 in round spermatids, and induced morphological abnormalities. We concluded that the proper regulation of histone H3 acetylation levels is important for spermatid differentiation and complex chromatin remodeling during spermiogenesis.

  12. Tissue-Specific Expression and Posttranslational Modification of Histone H3 Variants

    PubMed Central

    Garcia, Benjamin A.; Thomas, C. Eric; Kelleher, Neil L.; Mizzen, Craig A.

    2008-01-01

    Analyses of histone H3 from ten rat tissues using a Middle Down proteomics platform revealed tissue-specific differences in their expression and global PTM abundance. ESI/FTMS with electron capture dissociation showed that, in general, these proteins were hypomodified in heart, liver and testes. H3.3 was hypermodified compared to H3.2 in some, but not all tissues. In addition, a novel rat testes-specific H3 protein was identified with this approach. PMID:18700791

  13. Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases.

    PubMed

    Bártová, Eva; Pacherník, Jirí; Harnicarová, Andrea; Kovarík, Ales; Kovaríková, Martina; Hofmanová, Jirina; Skalníková, Magdalena; Kozubek, Michal; Kozubek, Stanislav

    2005-11-01

    The effects of the histone deacetylase inhibitors (HDACi) trichostatin A (TSA) and sodium butyrate (NaBt) were studied in A549, HT29 and FHC human cell lines. Global histone hyperacetylation, leading to decondensation of interphase chromatin, was characterized by an increase in H3(K9) and H3(K4) dimethylation and H3(K9) acetylation. The levels of all isoforms of heterochromatin protein, HP1, were reduced after HDAC inhibition. The observed changes in the protein levels were accompanied by changes in their interphase patterns. In control cells, H3(K9) acetylation and H3(K4) dimethylation were substantially reduced to a thin layer at the nuclear periphery, whereas TSA and NaBt caused the peripheral regions to become intensely acetylated at H3(K9) and dimethylated at H3(K4). The dispersed pattern of H3(K9) dimethylation was stable even at the nuclear periphery of HDACi-treated cells. After TSA and NaBt treatment, the HP1 proteins were repositioned more internally in the nucleus, being closely associated with interchromatin compartments, while centromeric heterochromatin was relocated closer to the nuclear periphery. These findings strongly suggest dissociation of HP1 proteins from peripherally located centromeres in a hyperacetylated and H3(K4) dimethylated environment. We conclude that inhibition of histone deacetylases caused dynamic reorganization of chromatin in parallel with changes in its epigenetic modifications.

  14. Altered nucleosomes of active nucleolar chromatin contain accessible histone H3 in its hyperacetylated forms

    SciTech Connect

    Johnson, E.M.; Sterner, R.; Allfrey, V.G.

    1987-05-25

    Chromatin of the organism Physarum polycephalum contains a class of conformationally altered nucleosomes previously localized to the transcribing regions of ribosomal genes in nucleoli. When nuclei are treated with 2-iodo(2-tritium)acetate, the histone H3 sulfhydryl group of the altered nucleosomes is derivatized while that of folded nucleosomes is not, and the labeled histones can then be identified by autoradiography of gels that separate H3 isoforms. The H3 derivatized is predominantly of tri- and tetraacetylated forms. In contrast, total free histone reacted with iodoacetate shows no preferential labeling of isoforms. Selective reaction of acetylated H3 is prevalent in both nucleolar and non-nucleolar chromatin. The results link specific patterns of H3 acetylation to changes in nucleosome conformation that occur during transcription.

  15. Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly

    PubMed Central

    Li, Qing; Zhou, Hui; Wurtele, Hugo; Davies, Brian; Horazdovsky, Bruce; Verreault, Alain; Zhang, Zhiguo

    2008-01-01

    SUMMARY Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106. PMID:18662540

  16. DNA damage response induces structural alterations in histone H3–H4

    PubMed Central

    Izumi, Yudai; Fujii, Kentaro; Yamamoto, Satoshi; Matsuo, Koichi; Namatame, Hirofumi; Taniguchi, Masaki; Yokoya, Akinari

    2017-01-01

    Synchrotron-radiation circular-dichroism spectroscopy was used to reveal that the DNA damage response induces a decrement of α-helix and an increment of β-strand contents of histone H3–H4 extracted from X-ray–irradiated human HeLa cells. The trend of the structural alteration was qualitatively opposite to that of our previously reported results for histone H2A–H2B. These results strongly suggest that histones share roles in DNA damage responses, particularly in DNA repair processes and chromatin remodeling, via a specific structural alteration of each histone. PMID:27672100

  17. Characterization of histone H3K27 modifications in the {beta}-globin locus

    SciTech Connect

    Kim, Yea Woon; Kim, AeRi

    2011-02-11

    Research highlights: {yields} The {beta}-globin locus control region is hyperacetylated and monomethylated at histone H3K27. {yields} Highly transcribed globin genes are marked by H3K27ac, but H3K27me2 is remarkable at silent globin genes in erythroid K562 cells. {yields} Association of PRC2 subunits is comparable with H3K27me3 pattern. {yields} Modifications of histone H3K27 are established in an enhancer-dependent manner. -- Abstract: Histone H3K27 is acetylated or methylated in the environment of nuclear chromatin. Here, to characterize the modification pattern of H3K27 in locus control region (LCR) and to understand the correlation of various H3K27 modifications with transcriptional activity of genes, we analyzed the human {beta}-globin locus using the ChIP assay. The LCR of the human {beta}-globin locus was enriched by H3K27ac and H3K27me1 in erythroid K562 cells. The highly transcribed globin genes were hyperacetylated at H3K27, but the repressed globin genes were highly dimethylated at this lysine in these cells. However, in non-erythroid 293FT cells, the {beta}-globin locus was marked by a high level of H3K27me3. EZH2 and SUZ12, subunits of polycomb repressive complex 2, were comparably detected with the H3K27me3 pattern in K562 and 293FT cells. In addition, H3K27ac, H3K27me1 and H3K27me3 were established in an enhancer-dependent manner in a model minichromosomal locus containing an enhancer and its target gene. Taken together, these results show that H3K27 modifications have distinctive correlations with the chromatin state or transcription level of genes and are influenced by an enhancer.

  18. Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica.

    PubMed

    Du, Zhou; Li, Hui; Wei, Qiang; Zhao, Xin; Wang, Chunchao; Zhu, Qilin; Yi, Xin; Xu, Wenying; Liu, X Shirley; Jin, Weiwei; Su, Zhen

    2013-09-01

    While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the genome-wide distribution of four histone modifications: di and trimethylation of H3K4 (H3K4me2 and H3K4me3) and acylation of H3K9 and H3K27 (H3K9ac and H3K27ac) in Oryza sativa L. japonica. By analyzing published DNase-Seq data, this study explored DNase-Hypersensitive (DH) sites along the rice genome. The histone marks appeared mainly in generic regions and were enriched around the transcription start sites (TSSs) of genes. This analysis demonstrated that the four histone modifications and the DH sites were all associated with active transcription. Furthermore, the four histone modifications were highly concurrent with transcript regions-a promising feature that was used to predict missing genes in the rice gene annotation. The predictions were further validated by experimentally confirming the transcription of two predicted missing genes. Moreover, a sequence motif analysis was constructed in order to identify the DH sites and many putative transcription factor binding sites.

  19. The Cac1 subunit of histone chaperone CAF-1 organizes CAF-1-H3/H4 architecture and tetramerizes histones

    PubMed Central

    Liu, Wallace H; Roemer, Sarah C; Zhou, Yeyun; Shen, Zih-Jie; Dennehey, Briana K; Balsbaugh, Jeremy L; Liddle, Jennifer C; Nemkov, Travis; Ahn, Natalie G; Hansen, Kirk C; Tyler, Jessica K; Churchill, Mair EA

    2016-01-01

    The histone chaperone Chromatin Assembly Factor 1 (CAF-1) deposits tetrameric (H3/H4)2 histones onto newly-synthesized DNA during DNA replication. To understand the mechanism of the tri-subunit CAF-1 complex in this process, we investigated the protein-protein interactions within the CAF-1-H3/H4 architecture using biophysical and biochemical approaches. Hydrogen/deuterium exchange and chemical cross-linking coupled to mass spectrometry reveal interactions that are essential for CAF-1 function in budding yeast, and importantly indicate that the Cac1 subunit functions as a scaffold within the CAF-1-H3/H4 complex. Cac1 alone not only binds H3/H4 with high affinity, but also promotes histone tetramerization independent of the other subunits. Moreover, we identify a minimal region in the C-terminus of Cac1, including the structured winged helix domain and glutamate/aspartate-rich domain, which is sufficient to induce (H3/H4)2 tetramerization. These findings reveal a key role of Cac1 in histone tetramerization, providing a new model for CAF-1-H3/H4 architecture and function during eukaryotic replication. DOI: http://dx.doi.org/10.7554/eLife.18023.001 PMID:27690308

  20. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences.

  1. Ectopic histone H3S10 phosphorylation causes chromatin structure remodeling in Drosophila.

    PubMed

    Deng, Huai; Bao, Xiaomin; Cai, Weili; Blacketer, Melissa J; Belmont, Andrew S; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M

    2008-02-01

    Histones are subject to numerous post-translational modifications that correlate with the state of higher-order chromatin structure and gene expression. However, it is not clear whether changes in these epigenetic marks are causative regulatory factors in chromatin structure changes or whether they play a mainly reinforcing or maintenance role. In Drosophila phosphorylation of histone H3S10 in euchromatic chromatin regions by the JIL-1 tandem kinase has been implicated in counteracting heterochromatization and gene silencing. Here we show, using a LacI-tethering system, that JIL-1 mediated ectopic histone H3S10 phosphorylation is sufficient to induce a change in higher-order chromatin structure from a condensed heterochromatin-like state to a more open euchromatic state. This effect was absent when a ;kinase dead' LacI-JIL-1 construct without histone H3S10 phosphorylation activity was expressed. Instead, the 'kinase dead' construct had a dominant-negative effect, leading to a disruption of chromatin structure that was associated with a global repression of histone H3S10 phosphorylation levels. These findings provide direct evidence that the epigenetic histone tail modification of H3S10 phosphorylation at interphase can function as a causative regulator of higher-order chromatin structure in Drosophila in vivo.

  2. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment.

    PubMed

    Stewart, M David; Li, Jiwen; Wong, Jiemin

    2005-04-01

    Histone H3 lysine 9 (H3-K9) methylation has been shown to correlate with transcriptional repression and serve as a specific binding site for heterochromatin protein 1 (HP1). In this study, we investigated the relationship between H3-K9 methylation, transcriptional repression, and HP1 recruitment by comparing the effects of tethering two H3-K9-specific histone methyltransferases, SUV39H1 and G9a, to chromatin on transcription and HP1 recruitment. Although both SUV39H1 and G9a induced H3-K9 methylation and repressed transcription, only SUV39H1 was able to recruit HP1 to chromatin. Targeting HP1 to chromatin required not only K9 methylation but also a direct protein-protein interaction between SUV39H1 and HP1. Targeting methyl-K9 or a HP1-interacting region of SUV39H1 alone to chromatin was not sufficient to recruit HP1. We also demonstrate that methyl-K9 can suppress transcription independently of HP1 through a mechanism involving histone deacetylation. In an effort to understand how H3-K9 methylation led to histone deacetylation in both H3 and H4, we found that H3-K9 methylation inhibited histone acetylation by p300 but not its association with chromatin. Collectively, these data indicate that H3-K9 methylation alone can suppress transcription but is insufficient for HP1 recruitment in the context of chromatin exemplifying the importance of chromatin-associated factors in reading the histone code.

  3. Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development.

    PubMed

    Lin, Chih-Jen; Conti, Marco; Ramalho-Santos, Miguel

    2013-09-01

    Histone variants can replace canonical histones in the nucleosome and modify chromatin structure and gene expression. The histone variant H3.3 preferentially associates with active chromatin and has been implicated in the regulation of a diverse range of developmental processes. However, the mechanisms by which H3.3 may regulate gene activity are unclear and gene duplication has hampered an analysis of H3.3 function in mouse. Here, we report that the specific knockdown of H3.3 in fertilized mouse zygotes leads to developmental arrest at the morula stage. This phenotype can be rescued by exogenous H3.3 but not by canonical H3.1 mRNA. Loss of H3.3 leads to over-condensation and mis-segregation of chromosomes as early as the two-cell stage, with corresponding high levels of aneuploidy, but does not appear to affect zygotic gene activation at the two-cell stage or lineage gene transcription at the morula stage. H3.3-deficient embryos have significantly reduced levels of markers of open chromatin, such as H3K36me2 and H4K16Ac. Importantly, a mutation in H3.3K36 that disrupts H3K36 methylation (H3.3K36R) does not rescue the H3.3 knockdown (KD) phenotype. In addition, H3.3 KD embryos have increased incorporation of linker H1. Knockdown of Mof (Kat8), an acetyltransferase specific for H4K16, similarly leads to excessive H1 incorporation. Remarkably, pan-H1 RNA interference (RNAi) partially rescues the chromosome condensation of H3.3 KD embryos and allows development to the blastocyst stage. These results reveal that H3.3 mediates a balance between open and condensed chromatin that is crucial for the fidelity of chromosome segregation during early mouse development.

  4. Double chromodomains cooperate to recognize the methylated histone H3 tail

    SciTech Connect

    Flanagan, John F.; Mi, Li-Zhi; Chruszcz, Maksymilian; Cymborowski, Marcin; Clines, Katrina L.; Kim, Youngchang; Minor, Wladek; Rastinejad, Fraydoon; Khorasanizadeh, Sepideh

    2010-07-19

    Chromodomains are modules implicated in the recognition of lysine-methylated histone tails and nucleic acids. CHD (for chromo-ATPase/helicase-DNA-binding) proteins regulate ATP-dependent nucleosome assembly and mobilization through their conserved double chromodomains and SWI2/SNF2 helicase/ATPase domain. The Drosophila CHD1 localizes to the interbands and puffs of the polytene chromosomes, which are classic sites of transcriptional activity. Other CHD isoforms (CHD3/4 or Mi-2) are important for nucleosome remodelling in histone deacetylase complexes. Deletion of chromodomains impairs nucleosome binding and remodelling by CHD proteins. Here we describe the structure of the tandem arrangement of the human CHD1 chromodomains, and its interactions with histone tails. Unlike HP1 and Polycomb proteins that use single chromodomains to bind to their respective methylated histone H3 tails, the two chromodomains of CHD1 cooperate to interact with one methylated H3 tail. We show that the human CHD1 double chromodomains target the lysine 4-methylated histone H3 tail (H3K4me), a hallmark of active chromatin. Methylammonium recognition involves two aromatic residues, not the three-residue aromatic cage used by chromodomains of HP1 and Polycomb proteins. Furthermore, unique inserts within chromodomain 1 of CHD1 block the expected site of H3 tail binding seen in HP1 and Polycomb, instead directing H3 binding to a groove at the inter-chromodomain junction.

  5. The histone variant H3.3 claims its place in the crowded scene of epigenetics.

    PubMed

    Bano, Daniele; Piazzesi, Antonia; Salomoni, Paolo; Nicotera, Pierluigi

    2017-03-10

    Histones are evolutionarily conserved DNA-binding proteins. As scaffolding molecules, they significantly regulate the DNA packaging into the nucleus of all eukaryotic cells. As docking units, they influence the recruitment of the transcriptional machinery, thus establishing unique gene expression patterns that ultimately promote different biological outcomes. While canonical histones H3.1 and H3.2 are synthetized and loaded during DNA replication, the histone variant H3.3 is expressed and deposited into the chromatin throughout the cell cycle. Recent findings indicate that H3.3 replaces the majority of canonical H3 in non-dividing cells, reaching almost saturation levels in a time-dependent manner. Consequently, H3.3 incorporation and turnover represent an additional layer in the regulation of the chromatin landscape during aging. In this respect, work from our group and others suggest that H3.3 plays an important function in age-related processes throughout evolution. Here, we summarize the current knowledge on H3.3 biology and discuss the implications of its aberrant dynamics in the establishment of cellular states that may lead to human pathology. Critically, we review the importance of H3.3 turnover as part of epigenetic events that influence senescence and age-related processes. We conclude with the emerging evidence that H3.3 is required for proper neuronal function and brain plasticity.

  6. Excess free histone H3 localizes to centrosomes for proteasome-mediated degradation during mitosis in metazoans.

    PubMed

    Wike, Candice L; Graves, Hillary K; Wason, Arpit; Hawkins, Reva; Gopalakrishnan, Jay; Schumacher, Jill; Tyler, Jessica K

    2016-08-17

    The cell tightly controls histone protein levels in order to achieve proper packaging of the genome into chromatin, while avoiding the deleterious consequences of excess free histones. Our accompanying study has shown that a histone modification that loosens the intrinsic structure of the nucleosome, phosphorylation of histone H3 on threonine 118 (H3 T118ph), exists on centromeres and chromosome arms during mitosis. Here, we show that H3 T118ph localizes to centrosomes in humans, flies, and worms during all stages of mitosis. H3 abundance at the centrosome increased upon proteasome inhibition, suggesting that excess free histone H3 localizes to centrosomes for degradation during mitosis. In agreement, we find ubiquitinated H3 specifically during mitosis and within purified centrosomes. These results suggest that targeting of histone H3 to the centrosome for proteasome-mediated degradation is a novel pathway for controlling histone supply, specifically during mitosis.

  7. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription

    PubMed Central

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-01-01

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001 PMID:24668167

  8. Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation

    PubMed Central

    Gao, Shan; Xiong, Jie; Zhang, Chunchao; Berquist, Brian R.; Yang, Rendong; Zhao, Meng; Molascon, Anthony J.; Kwiatkowski, Shaina Y.; Yuan, Dongxia; Qin, Zhaohui; Wen, Jianfan; Kapler, Geoffrey M.; Andrews, Philip C.; Miao, Wei; Liu, Yifan

    2013-01-01

    Replication of nuclear DNA occurs in the context of chromatin and is influenced by histone modifications. In the ciliate Tetrahymena thermophila, we identified TXR1, encoding a histone methyltransferase. TXR1 deletion resulted in severe DNA replication stress, manifested by the accumulation of ssDNA, production of aberrant replication intermediates, and activation of robust DNA damage responses. Paired-end Illumina sequencing of ssDNA revealed intergenic regions, including replication origins, as hot spots for replication stress in ΔTXR1 cells. ΔTXR1 cells showed a deficiency in histone H3 Lys 27 monomethylation (H3K27me1), while ΔEZL2 cells, deleting a Drosophila E(z) homolog, were deficient in H3K27 di- and trimethylation, with no detectable replication stress. A point mutation in histone H3 at Lys 27 (H3 K27Q) mirrored the phenotype of ΔTXR1, corroborating H3K27me1 as a key player in DNA replication. Additionally, we demonstrated interactions between TXR1 and proliferating cell nuclear antigen (PCNA). These findings support a conserved pathway through which H3K27me1 facilitates replication elongation. PMID:23884606

  9. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription.

    PubMed

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-03-25

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001.

  10. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure.

    PubMed

    North, Justin A; Šimon, Marek; Ferdinand, Michelle B; Shoffner, Matthew A; Picking, Jonathan W; Howard, Cecil J; Mooney, Alex M; van Noort, John; Poirier, Michael G; Ottesen, Jennifer J

    2014-04-01

    Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA-histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure.

  11. Transcriptional regulation of 15-lipoxygenase expression by histone h3 lysine 4 methylation/demethylation.

    PubMed

    Liu, Cheng; Xu, Dawei; Han, Hongya; Fan, Yidong; Schain, Frida; Xu, Zhonghua; Claesson, Hans-Erik; Björkholm, Magnus; Sjöberg, Jan

    2012-01-01

    15-Lipoxygenase-1 (15-LOX-1) oxidizes polyunsaturated fatty acids to a rich spectrum of biologically active metabolites and is implicated in physiological membrane remodelling, inflammation and apoptosis. Its deregulation is involved in the pathogenesis of diverse cancer and immune diseases. Recent experimental evidence reveals that dynamic histone methylation/demethylation mediated by histone methyltransferases and demethylases plays a critical role in regulation of chromatin remodelling and gene expression. In the present study, we compared the histone 3 lysine 4 (H3-K4) methylation status of the 15-LOX-1 promoter region of the two Hodgkin lymphoma (HL) cell lines L1236 and L428 with abundant and undetectable 15-LOX-1 expression, respectively. We identified a potential role of H3-K4 methylation in positive regulation of 15-LOX-1 transcription. Furthermore, we found that histone methyltransferase SMYD3 inhibition reduced 15-LOX-1 expression by decreasing promoter activity in L1236 cells. SMYD3 knock down in these cells abolished di-/trimethylation of H3-K4, attenuated the occupancy by the transactivator STAT6, and led to diminished histone H3 acetylation at the 15-LOX-1 promoter. In contrast, inhibition of SMCX, a JmjC-domain-containing H3-K4 tri-demethylase, upregulated 15-LOX-1 expression through induction of H3-K4 trimethylation, histone acetylation and STAT6 recruitment at the 15-LOX-1 promoter in L428 cells. In addition, we observed strong SMYD3 expression in the prostate cancer cell line LNCaP and its inhibition led to decreased 15-LOX-1 expression. Taken together, our data suggest that regulation of histone methylation/demethylation at the 15-LOX-1 promoter is important in 15-LOX-1 expression.

  12. H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes.

    PubMed

    Schenk, Raphael; Jenke, Andreas; Zilbauer, Matthias; Wirth, Stefan; Postberg, Jan

    2011-06-01

    The incorporation of histone variants into chromatin plays an important role for the establishment of particular chromatin states. Six human histone H3 variants are known to date, not counting CenH3 variants: H3.1, H3.2, H3.3 and the testis-specific H3.1t as well as the recently described variants H3.X and H3.Y. We report the discovery of H3.5, a novel non-CenH3 histone H3 variant. H3.5 is encoded on human chromosome 12p11.21 and probably evolved in a common ancestor of all recent great apes (Hominidae) as a consequence of H3F3B gene duplication by retrotransposition. H3.5 mRNA is specifically expressed in seminiferous tubules of human testis. Interestingly, H3.5 has two exact copies of ARKST motifs adjacent to lysine-9 or lysine-27, and lysine-79 is replaced by asparagine. In the Hek293 cell line, ectopically expressed H3.5 is assembled into chromatin and targeted by PTM. H3.5 preferentially colocalizes with euchromatin, and it is associated with actively transcribed genes and can replace an essential function of RNAi-depleted H3.3 in cell growth.

  13. Identification of the amino acid residues responsible for stable nucleosome formation by histone H3.Y.

    PubMed

    Kujirai, Tomoya; Horikoshi, Naoki; Xie, Yan; Taguchi, Hiroyuki; Kurumizaka, Hitoshi

    2017-05-04

    Histone H3.Y is conserved among primates. We previously reported that exogenously produced H3.Y accumulates around transcription start sites, suggesting that it may play a role in transcription regulation. The H3.Y nucleosome forms a relaxed chromatin conformation with flexible DNA ends. The H3.Y-specific Lys42 residue is partly responsible for enhancing the flexibility of the nucleosomal DNA. To our surprise, we found that H3.Y stably associates with chromatin and nucleosomes in vivo and in vitro. However, the H3.Y residues responsible for its stable nucleosome incorporation have not been identified yet. In the present study, we performed comprehensive mutational analyses of H3.Y, and determined that the H3.Y C-terminal region including amino acid residues 124-135 is responsible for its stable association with DNA. Among the H3.Y C-terminal residues, the H3.Y Met124 residue significantly contributed to the stable DNA association with the H3.Y-H4 tetramer. The H3.Y M124I mutation substantially reduced the H3.Y-H4 association in the nucleosome. In contrast, the H3.Y K42R mutation affected the nucleosome stability less, although it contributes to the flexible DNA ends of the nucleosome. Therefore, these H3.Y-specific residues, Lys42 and Met124, play different and specific roles in nucleosomal DNA relaxation and stable nucleosome formation, respectively, in chromatin.

  14. Differential Subnuclear Localization and Replication Timing of Histone H3 Lysine 9 Methylation States

    PubMed Central

    Wu, Rong; Terry, Anna V.; Singh, Prim B.; Gilbert, David M.

    2005-01-01

    Mono-, di-, and trimethylation of specific histone residues adds an additional level of complexity to the range of histone modifications that may contribute to a histone code. However, it has not been clear whether different methylated states reside stably at different chromatin sites or whether they represent dynamic intermediates at the same chromatin sites. Here, we have used recently developed antibodies that are highly specific for mono-, di-, and trimethylated lysine 9 of histone H3 (MeK9H3) to examine the subnuclear localization and replication timing of chromatin containing these epigenetic marks in mammalian cells. Me1K9H3 was largely restricted to early replicating, small punctate domains in the nuclear interior. Me2K9H3 was the predominant MeK9 epitope at the nuclear and nucleolar periphery and colocalized with sites of DNA synthesis primarily in mid-S phase. Me3K9H3 decorated late-replicating pericentric heterochromatin in mouse cells and sites of DAPI-dense intranuclear heterochromatin in human and hamster cells that replicated throughout S phase. Disruption of the Suv39h1,2 or G9a methyltransferases in murine embryonic stem cells resulted in a redistribution of methyl epitopes, but did not alter the overall spatiotemporal replication program. These results demonstrate that mono-, di-, and trimethylated states of K9H3 largely occupy distinct chromosome domains. PMID:15788566

  15. Trimethylation of histone H3 lysine 36 by human methyltransferase PRDM9 protein.

    PubMed

    Eram, Mohammad S; Bustos, Susan P; Lima-Fernandes, Evelyne; Siarheyeva, Alena; Senisterra, Guillermo; Hajian, Taraneh; Chau, Irene; Duan, Shili; Wu, Hong; Dombrovski, Ludmila; Schapira, Matthieu; Arrowsmith, Cheryl H; Vedadi, Masoud

    2014-04-25

    PRDM9 (PR domain-containing protein 9) is a meiosis-specific protein that trimethylates H3K4 and controls the activation of recombination hot spots. It is an essential enzyme in the progression of early meiotic prophase. Disruption of the PRDM9 gene results in sterility in mice. In human, several PRDM9 SNPs have been implicated in sterility as well. Here we report on kinetic studies of H3K4 methylation by PRDM9 in vitro indicating that PRDM9 is a highly active histone methyltransferase catalyzing mono-, di-, and trimethylation of the H3K4 mark. Screening for other potential histone marks, we identified H3K36 as a second histone residue that could also be mono-, di-, and trimethylated by PRDM9 as efficiently as H3K4. Overexpression of PRDM9 in HEK293 cells also resulted in a significant increase in trimethylated H3K36 and H3K4 further confirming our in vitro observations. Our findings indicate that PRDM9 may play critical roles through H3K36 trimethylation in cells.

  16. Histone H3.3 regulates dynamic chromatin states during spermatogenesis

    PubMed Central

    Yuen, Benjamin T. K.; Bush, Kelly M.; Barrilleaux, Bonnie L.; Cotterman, Rebecca; Knoepfler, Paul S.

    2014-01-01

    The histone variant H3.3 is involved in diverse biological processes, including development, transcriptional memory and transcriptional reprogramming, as well as diseases, including most notably malignant brain tumors. Recently, we developed a knockout mouse model for the H3f3b gene, one of two genes encoding H3.3. Here, we show that targeted disruption of H3f3b results in a number of phenotypic abnormalities, including a reduction in H3.3 histone levels, leading to male infertility, as well as abnormal sperm and testes morphology. Additionally, null germ cell populations at specific stages in spermatogenesis, in particular spermatocytes and spermatogonia, exhibited increased rates of apoptosis. Disruption of H3f3b also altered histone post-translational modifications and gene expression in the testes, with the most prominent changes occurring at genes involved in spermatogenesis. Finally, H3f3b null testes also exhibited abnormal germ cell chromatin reorganization and reduced protamine incorporation. Taken together, our studies indicate a major role for H3.3 in spermatogenesis through regulation of chromatin dynamics. PMID:25142466

  17. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms

    PubMed Central

    2010-01-01

    Background The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM) at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins. Results In the light of recent progress in understanding the tree of eukaryotic life we discovered the origin of histone H3 by phylogenetic analyses of variants from all supergroups, which allowed the reconstruction of ancestral states. We found that H3 variants evolved frequently but independently within related species of almost all eukaryotic supergroups. Interestingly, we found all core histone types encoded in the genome of a basal dinoflagellate and H3 variants in two other species, although is was reported that dinoflagellate chromatin is not organized into nucleosomes. Most probably one or more animal/nuclearid H3.3-like variants gave rise to H3 variants of all opisthokonts (animals, choanozoa, fungi, nuclearids, Amoebozoa). H3.2 and H3.1 as well as H3.1t are derivatives of H3.3, whereas H3.2 evolved already in early branching animals, such as Trichoplax. H3.1 and H3.1t are probably restricted to mammals. We deduced a model for protoH3 of the last eukaryotic common ancestor (LECA) confirming a remarkable degree of sequence conservation in comparison to canonical human H3.1. We found evidence that multiple PTMs are conserved even in

  18. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms.

    PubMed

    Postberg, Jan; Forcob, Sakeh; Chang, Wei-Jen; Lipps, Hans J

    2010-08-25

    The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM) at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins. In the light of recent progress in understanding the tree of eukaryotic life we discovered the origin of histone H3 by phylogenetic analyses of variants from all supergroups, which allowed the reconstruction of ancestral states. We found that H3 variants evolved frequently but independently within related species of almost all eukaryotic supergroups. Interestingly, we found all core histone types encoded in the genome of a basal dinoflagellate and H3 variants in two other species, although is was reported that dinoflagellate chromatin is not organized into nucleosomes.Most probably one or more animal/nuclearid H3.3-like variants gave rise to H3 variants of all opisthokonts (animals, choanozoa, fungi, nuclearids, Amoebozoa). H3.2 and H3.1 as well as H3.1t are derivatives of H3.3, whereas H3.2 evolved already in early branching animals, such as Trichoplax. H3.1 and H3.1t are probably restricted to mammals.We deduced a model for protoH3 of the last eukaryotic common ancestor (LECA) confirming a remarkable degree of sequence conservation in comparison to canonical human H3.1. We found evidence that multiple PTMs are conserved even in putatively early branching

  19. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing

    PubMed Central

    Tie, Feng; Banerjee, Rakhee; Stratton, Carl A.; Prasad-Sinha, Jayashree; Stepanik, Vincent; Zlobin, Andrei; Diaz, Manuel O.; Scacheri, Peter C.; Harte, Peter J.

    2009-01-01

    Summary Trimethylation of histone H3 lysine 27 (H3K27me3) by Polycomb repressive complex 2 (PRC2) is essential for transcriptional silencing of Polycomb target genes, whereas acetylation of H3K27 (H3K27ac) has recently been shown to be associated with many active mammalian genes. The Trithorax protein (TRX), which associates with the histone acetyltransferase CBP, is required for maintenance of transcriptionally active states and antagonizes Polycomb silencing, although the mechanism underlying this antagonism is unknown. Here we show that H3K27 is specifically acetylated by Drosophila CBP and its deacetylation involves RPD3. H3K27ac is present at high levels in early embryos and declines after 4 hours as H3K27me3 increases. Knockdown of E(Z) decreases H3K27me3 and increases H3K27ac in bulk histones and at the promoter of the repressed Polycomb target gene abd-A, suggesting that these indeed constitute alternative modifications at some H3K27 sites. Moderate overexpression of CBP in vivo causes a global increase in H3K27ac and a decrease in H3K27me3, and strongly enhances Polycomb mutant phenotypes. We also show that TRX is required for H3K27 acetylation. TRX overexpression also causes an increase in H3K27ac and a concomitant decrease in H3K27me3 and leads to defects in Polycomb silencing. Chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) analysis reveals that H3K27ac and H3K27me3 are mutually exclusive and that H3K27ac and H3K4me3 signals coincide at most sites. We propose that TRX-dependent acetylation of H3K27 by CBP prevents H3K27me3 at Polycomb target genes and constitutes a key part of the molecular mechanism by which TRX antagonizes or prevents Polycomb silencing. PMID:19700617

  20. Interplay between histone H3 lysine 56 deacetylation and chromatin modifiers in response to DNA damage.

    PubMed

    Simoneau, Antoine; Delgoshaie, Neda; Celic, Ivana; Dai, Junbiao; Abshiru, Nebiyu; Costantino, Santiago; Thibault, Pierre; Boeke, Jef D; Verreault, Alain; Wurtele, Hugo

    2015-05-01

    In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56Ac) is present in newly synthesized histones deposited throughout the genome during DNA replication. The sirtuins Hst3 and Hst4 deacetylate H3K56 after S phase, and virtually all histone H3 molecules are K56 acetylated throughout the cell cycle in hst3∆ hst4∆ mutants. Failure to deacetylate H3K56 causes thermosensitivity, spontaneous DNA damage, and sensitivity to replicative stress via molecular mechanisms that remain unclear. Here we demonstrate that unlike wild-type cells, hst3∆ hst4∆ cells are unable to complete genome duplication and accumulate persistent foci containing the homologous recombination protein Rad52 after exposure to genotoxic drugs during S phase. In response to replicative stress, cells lacking Hst3 and Hst4 also displayed intense foci containing the Rfa1 subunit of the single-stranded DNA binding protein complex RPA, as well as persistent activation of DNA damage-induced kinases. To investigate the basis of these phenotypes, we identified histone point mutations that modulate the temperature and genotoxic drug sensitivity of hst3∆ hst4∆ cells. We found that reducing the levels of histone H4 lysine 16 acetylation or H3 lysine 79 methylation partially suppresses these sensitivities and reduces spontaneous and genotoxin-induced activation of the DNA damage-response kinase Rad53 in hst3∆ hst4∆ cells. Our data further suggest that elevated DNA damage-induced signaling significantly contributes to the phenotypes of hst3∆ hst4∆ cells. Overall, these results outline a novel interplay between H3K56Ac, H3K79 methylation, and H4K16 acetylation in the cellular response to DNA damage. Copyright © 2015 by the Genetics Society of America.

  1. Interplay Between Histone H3 Lysine 56 Deacetylation and Chromatin Modifiers in Response to DNA Damage

    PubMed Central

    Simoneau, Antoine; Delgoshaie, Neda; Celic, Ivana; Dai, Junbiao; Abshiru, Nebiyu; Costantino, Santiago; Thibault, Pierre; Boeke, Jef D.; Verreault, Alain; Wurtele, Hugo

    2015-01-01

    In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56Ac) is present in newly synthesized histones deposited throughout the genome during DNA replication. The sirtuins Hst3 and Hst4 deacetylate H3K56 after S phase, and virtually all histone H3 molecules are K56 acetylated throughout the cell cycle in hst3∆ hst4∆ mutants. Failure to deacetylate H3K56 causes thermosensitivity, spontaneous DNA damage, and sensitivity to replicative stress via molecular mechanisms that remain unclear. Here we demonstrate that unlike wild-type cells, hst3∆ hst4∆ cells are unable to complete genome duplication and accumulate persistent foci containing the homologous recombination protein Rad52 after exposure to genotoxic drugs during S phase. In response to replicative stress, cells lacking Hst3 and Hst4 also displayed intense foci containing the Rfa1 subunit of the single-stranded DNA binding protein complex RPA, as well as persistent activation of DNA damage–induced kinases. To investigate the basis of these phenotypes, we identified histone point mutations that modulate the temperature and genotoxic drug sensitivity of hst3∆ hst4∆ cells. We found that reducing the levels of histone H4 lysine 16 acetylation or H3 lysine 79 methylation partially suppresses these sensitivities and reduces spontaneous and genotoxin-induced activation of the DNA damage-response kinase Rad53 in hst3∆ hst4∆ cells. Our data further suggest that elevated DNA damage–induced signaling significantly contributes to the phenotypes of hst3∆ hst4∆ cells. Overall, these results outline a novel interplay between H3K56Ac, H3K79 methylation, and H4K16 acetylation in the cellular response to DNA damage. PMID:25786853

  2. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos.

    PubMed

    Liu, Honglin; Kim, Jin-Moon; Aoki, Fugaku

    2004-05-01

    Epigenetic modifications of the genome, such as covalent modification of histone residues, ensure appropriate gene activation during pre-implantation development, and are probably involved in the asymmetric reprogramming of the parental genomes after fertilization. We investigated the methylation patterns of histone H3 at lysine 9 (H3/K9), and the regulatory mechanism involved in the asymmetric remodeling of parental genomes during early preimplantation development in mice. Immunocytochemistry with an antibody that specifically recognizes methylated H3/K9 showed a very weak or absent methylation signal in the male pronucleus, whereas a distinct methylation signal was detected in the female pronucleus. This asymmetric H3/K9 methylation pattern in the different parental genomes persisted until the two-cell stage. However, de novo methylation of H3/K9 occurred and the asymmetry was lost during the four-cell stage. The unmethylated male pronucleus underwent de novo methylation when it was transferred into enucleated GV- or MII-stage oocytes, which suggests that histone H3 methylase is active before fertilization, but not afterwards, and that the asymmetric methylation pattern is generated by this change in methylase activity in the cytoplasm after fertilization. Thus, histone H3 is methylated only in the maternal chromosomes, which are present in the oocytes before fertilization, and is not methylated in the paternal chromosomes, which are absent. The maintenance of asymmetric H3/K9 methylation patterns in early embryos is an active process that depends on protein synthesis and zygotic transcription, as de novo methylation in the male pronucleus occurred when either protein synthesis or gene expression was inhibited by cycloheximide or alpha-amanitin, respectively. In addition, corresponding de novo methylation of H3/K9 and DNA occurred when the male pronucleus was transferred to an enucleated GV oocyte. Our results suggest that H3/K9 methylation is an epigenetic

  3. Structural Insights into Selective Histone H3 Recognition by the Human Polybromo bromodomain 2

    SciTech Connect

    Charlop-Powers, Z.; Zeng, L; Zhang, Q; Zhou, M

    2010-01-01

    The Polybromo (PB) protein functions as a key component of the human PBAF chromatin remodeling complex in regulation of gene transcription. PB is made up of modular domains including six bromodomains that are known as acetyl-lysine binding domains. However, histone-binding specificity of the bromodomains of PB has remained elusive. In this study, we report biochemical characterization of all six PB bromodomains' binding to a suite of lysine-acetylated peptides derived from known acetylation sites on human core histones. We demonstrate that bromodomain 2 of PB preferentially recognizes acetylated lysine 14 of histone H3 (H3K14ac), a post-translational mark known for gene transcriptional activation. We further describe the molecular basis of the selective H3K14ac recognition of bromodomain 2 by solving the protein structures in both the free and bound forms using X-ray crystallography and NMR, respectively.

  4. SUMOylation of DNA topoisomerase IIα regulates histone H3 kinase Haspin and H3 phosphorylation in mitosis

    PubMed Central

    Yoshida, Makoto M.; Ting, Lily; Gygi, Steven P.

    2016-01-01

    DNA topoisomerase II (TOP2) plays a pivotal role in faithful chromosome separation through its strand-passaging activity that resolves tangled genomic DNA during mitosis. Additionally, TOP2 controls progression of mitosis by activating cell cycle checkpoints. Recent work showed that the enzymatically inert C-terminal domain (CTD) of TOP2 and its posttranslational modification are critical to this checkpoint regulation. However, the molecular mechanism has not yet been determined. By using Xenopus laevis egg extract, we found that SUMOylation of DNA topoisomerase IIα (TOP2A) CTD regulates the localization of the histone H3 kinase Haspin and phosphorylation of histone H3 at threonine 3 at the centromere, two steps known to be involved in the recruitment of the chromosomal passenger complex (CPC) to kinetochores in mitosis. Robust centromeric Haspin localization requires SUMOylated TOP2A CTD binding activity through SUMO-interaction motifs and the phosphorylation of Haspin. We propose a novel mechanism through which the TOP2 CTD regulates the CPC via direct interaction with Haspin at mitotic centromeres. PMID:27325792

  5. Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase.

    PubMed

    Kurihara, Daisuke; Matsunaga, Sachihiro; Omura, Tomohiro; Higashiyama, Tetsuya; Fukui, Kiichi

    2011-04-28

    Haspin kinases are mitotic kinases that are well-conserved from yeast to human. Human Haspin is a histone H3 Thr3 kinase that has important roles in chromosome cohesion during mitosis. Moreover, phosphorylation of histone H3 at Thr3 by Haspin in fission yeast, Xenopus, and human is required for accumulation of Aurora B on the centromere, and the subsequent activation of Aurora B kinase activity for accurate chromosome alignment and segregation. Although extensive analyses of Haspin have been carried out in yeast and animals, the function of Haspin in organogenesis remains unclear. Here, we identified a Haspin kinase, designated AtHaspin, in Arabidopsis thaliana. The purified AtHaspin phosphorylated histone H3 at both Thr3 and Thr11 in vitro. Live imaging of AtHaspin-tdTomato and GFP-α-tubulin in BY-2 cells showed that AtHaspin-tdTomato localized on chromosomes during prometaphase and metaphase, and around the cell plate during cytokinesis. This localization of AtHaspin overlapped with that of phosphorylated Thr3 and Thr11 of histone H3 in BY-2 cells. AtHaspin-GFP driven by the native promoter was expressed in root meristems, shoot meristems, floral meristems, and throughout the whole embryo at stages of high cell division. Overexpression of a kinase domain mutant of AtHaspin decreased the size of the root meristem, which delayed root growth. Our results indicated that the Haspin kinase is a histone H3 threonine kinase in A. thaliana. AtHaspin phosphorylated histone H3 at both Thr3 and Thr11 in vitro. The expression and dominant-negative analysis showed that AtHaspin may have a role in mitotic cell division during plant growth. Further analysis of coordinated mechanisms involving Haspin and Aurora kinases will shed new light on the regulation of chromosome segregation in cell division during plant growth and development.

  6. Qualitative and quantitative analysis of lysine acetylation and methylation in yeast histone H3

    NASA Astrophysics Data System (ADS)

    Zhang, Kangling

    2008-01-01

    Histone post-translational modifications play important roles in cell functions and the modification patterns vary significantly among different organisms. It is important that histone modification patterns be identified. Flowing our previous work-identification of acetylation and methylation sites of histone H3 in a typical transcription most inactive chromatin isolated from chicken erythrocytes, here, we report using mass spectrometry to qualitatively and quantitatively analyze histone modification pattern of H3 in a typical transcription most active chromatin isolated from Saccharomyces cerevisiae. We compared the modification patterns of histone H3 between these two functionally opposite chromatins and observed that acetylation level at K9, K14, K27, K56 and methylation level at K4 and K79 are significantly higher in S. cerevisiae than in chicken erythrocytes, methylation at K9 is higher in chicken erythrocytes than in S. cerevisiae and methylation level at K36 is unchanged in these two chromatins. Contrary to other sites, acetylation levels at K18 and K23 are higher in chicken erythrocytes than in S. cerevisiae. Our data revealed the difference of acetylation and methylation pattern of individual H3 lysine between two distinct chromatins, one with more inactive form versus the other with more active form.

  7. Histone methyltransferase TXR1 is required for both H3 and H3.3 lysine 27 methylation in the well-known ciliated protist Tetrahymena thermophila.

    PubMed

    Zhao, Xiaolu; Wang, Yuanyuan; Wang, Yurui; Liu, Yifan; Gao, Shan

    2017-03-01

    DNA replication elongation is tightly controlled by histone-modifying enzymes. Our previous studies showed that the histone methytransferase TXR1 (Tetrahymena Trithorax related protein 1) specifically catalyzes H3K27 monomethylation and affects DNA replication elongation in Tetrahymena thermophila. In this study, we investigated whether TXR1 has a substrate preference to the canonical H3 over the replacement variant H3.3. We demonstrated by histone mutagenesis that K27Q mutation in H3.3 further aggravated the replication stress phenotype of K27Q mutation in canonical H3, supporting H3.3 as a physiologically relevant substrate of TXR1. This result is in apparent contrast to the strong preference for canonical H3 recently reported in Arabidopsis homologues ATXR5 and ATXR6, and further corroborates the role of TXR1 in DNA replication.

  8. Histone H3 specific acetyltransferases are essential for cell cycle progression

    PubMed Central

    Howe, LeAnn; Auston, Darryl; Grant, Patrick; John, Sam; Cook, Richard G.; Workman, Jerry L.; Pillus, Lorraine

    2001-01-01

    Longstanding observations suggest that acetylation and/or amino-terminal tail structure of histones H3 and H4 are critical for eukaryotic cells. For Saccharomyces cerevisiae, loss of a single H4-specific histone acetyltransferase (HAT), Esa1p, results in cell cycle defects and death. In contrast, although several yeast HAT complexes preferentially acetylate histone H3, the catalytic subunits of these complexes are not essential for viability. To resolve the apparent paradox between the significance of H3 versus H4 acetylation, we tested the hypothesis that H3 modification is essential, but is accomplished through combined activities of two enzymes. We observed that Sas3p and Gcn5p HAT complexes have overlapping patterns of acetylation. Simultaneous disruption of SAS3, the homolog of the MOZ leukemia gene, and GCN5, the hGCN5/PCAF homolog, is synthetically lethal due to loss of acetyltransferase activity. This key combination of activities is specific for these two HATs because neither is synthetically lethal with mutations of other MYST family or H3-specific acetyltransferases. Further, the combined loss of GCN5 and SAS3 functions results in an extensive, global loss of H3 acetylation and arrest in the G2/M phase of the cell cycle. The strikingly similar effect of loss of combined essential H3 HAT activities and the loss of a single essential H4 HAT underscores the fundamental biological significance of each of these chromatin-modifying activities. PMID:11731478

  9. Molecular dynamics simulation on HP1 protein binding by histone H3 tail methylation and phosphorylation

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Ke; Zou, Jian-Wei; Wu, Yu-Qian; Zhang, Na; Yu, Qing-Sen; Jiang, Yong-Jun

    Trimethylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Phosphorylation of histone H3 has been linked with mitotic chromatin condensation. During mitosis in vivo, H3 lysine 9 methylation and serine 10 phosphorylation can occur concomitantly on the same histone tail, whereas the influence of phosphorylation to trimethylation H3 tail recruiting HP1 remains controversial. In this work, molecular dynamics simulation of HP1 complexed with both trimethylated and phosphorylated H3 tail were performed and compared with the results from the previous methylated H3-HP1 trajectory. It is clear from the 10-ns dynamics simulation that two adjacent posttranslational modifications directly increase the flexibility of the H3 tail and weaken HP1 binding to chromatin. A combinatorial readout of two adjacent posttranslational modifications-a stable methylation and a dynamic phosphorylation mark-establish a regulatory mechanism of protein-protein interactions.

  10. Histone H3 Recogntion and Presentation by the WDR5 Module of the MLL1 Complex

    SciTech Connect

    Ruthenburg,A.; Wang, W.; Graybosch, D.; Li, H.; Allis, D.; Patel, D.; Verdine, G.

    2006-01-01

    WDR5 is a core component of SET1-family complexes that achieve transcriptional activation via methylation of histone H3 on Nzeta of Lys4 (H3K4). The role of WDR5 in the MLL1 complex has recently been described as specific recognition of dimethyl-K4 in the context of a histone H3 amino terminus; WDR5 is essential for vertebrate development, Hox gene activation and global H3K4 trimethylation. We report the high-resolution X-ray structures of WDR5 in the unliganded form and complexed with histone H3 peptides having unmodified and mono-, di- and trimethylated K4, which together provide the first comprehensive analysis of methylated histone recognition by the ubiquitous WD40-repeat fold. Contrary to predictions, the structures reveal that WDR5 does not read out the methylation state of K4 directly, but instead serves to present the K4 side chain for further methylation by SET1-family complexes.

  11. Analysis of the Histone H3.1 Interactome: A Suitable Chaperone for the Right Event

    PubMed Central

    Campos, Eric I.; Smits, Arne H.; Kang, Young-Hoon; Landry, Sébastien; Escobar, Thelma M.; Nayak, Shruti; Ueberheide, Beatrix M.; Durocher, Daniel; Vermeulen, Michiel; Hurwitz, Jerard; Reinberg, Danny

    2015-01-01

    SUMMARY Despite minimal disparity at the sequence level, mammalian H3 variants bind to distinct sets of polypeptides. Though histone H3.1 predominates in cycling cells, our knowledge of the soluble complexes that it forms en route to deposition or following eviction from chromatin remains limited. Here, we provide a comprehensive analysis of the H3.1-binding proteome, with emphasis on its interactions with histone chaperones and components of the replication fork. Quantitative mass spectrometry revealed 170 protein interactions, whereas a large-scale biochemical fractionation of H3.1 and associated enzymatic activities uncovered over twenty stable protein complexes in dividing human cells. The sNASP and ASF1 chaperones play pivotal roles in the processing of soluble histones, but do not associate with the active CDC45/MCM2-7/GINS (CMG) replicative helicase. We also find TONSL-MMS22L to function as a H3-H4 histone chaperone. It associates with the regulatory MCM5 subunit of the replicative helicase. PMID:26527279

  12. Loss of histone H3 methylation at lysine 4 triggers apoptosis in Saccharomyces cerevisiae.

    PubMed

    Walter, David; Matter, Anja; Fahrenkrog, Birthe

    2014-01-01

    Monoubiquitination of histone H2B lysine 123 regulates methylation of histone H3 lysine 4 (H3K4) and 79 (H3K79) and the lack of H2B ubiquitination in Saccharomyces cerevisiae coincides with metacaspase-dependent apoptosis. Here, we discovered that loss of H3K4 methylation due to depletion of the methyltransferase Set1p (or the two COMPASS subunits Spp1p and Bre2p, respectively) leads to enhanced cell death during chronological aging and increased sensitivity to apoptosis induction. In contrast, loss of H3K79 methylation due to DOT1 disruption only slightly affects yeast survival. SET1 depleted cells accumulate DNA damage and co-disruption of Dot1p, the DNA damage adaptor protein Rad9p, the endonuclease Nuc1p, and the metacaspase Yca1p, respectively, impedes their early death. Furthermore, aged and dying wild-type cells lose H3K4 methylation, whereas depletion of the H3K4 demethylase Jhd2p improves survival, indicating that loss of H3K4 methylation is an important trigger for cell death in S. cerevisiae. Given the evolutionary conservation of H3K4 methylation this likely plays a role in apoptosis regulation in a wide range of organisms.

  13. Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content.

    PubMed

    Houben, Andreas; Demidov, Dmitri; Gernand, Dorota; Meister, Armin; Leach, Carolyn R; Schubert, Ingo

    2003-03-01

    Strong methylation of lysine 4 (K4) and low methylation of lysine 9 (K9) have been proposed as modifications of histone H3, typical for transcriptionally active euchromatin and the opposite for inactive heterochromatin. We have analysed the correlation between the global distribution of histone H3, methylated at either lysine 4 or lysine 9, and of microscopically detectable euchromatic or heterochromatic regions in relation to genome size for 24 plant species. Two different distribution patterns of methylated (K9)H3 (Met(K9)H3) were found that depend on genome size. For most species with small genomes (1C <500 Mbp), including Arabidopsis thaliana, strong methylation of (K9)H3 was restricted to constitutive heterochromatin. Species with larger genomes showed a uniform distribution of Met(K9)H3. Contrary to this and regardless of the genome size, methylated (K4)H3 (Met(K4)H3) was found to be enriched within the euchromatin of all species. Transcriptionally less active B chromosomes showed the same patterns as basic A chromosomes. We thus propose that large genomes with high amounts of dispersed repetitive sequences (mainly retroelements) have to silence these sequences and therefore display epigenetic modifications such as methylation of DNA and (K9)H3 also within euchromatic regions.

  14. Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes

    PubMed Central

    Messier, Terri L.; Gordon, Jonathan A. R.; Boyd, Joseph R.; Tye, Coralee E.; Browne, Gillian; Stein, Janet L.; Lian, Jane B.; Stein, Gary S.

    2016-01-01

    The onset and progression of breast cancer are linked to genetic and epigenetic changes that alter the normal programming of cells. Epigenetic modifications of DNA and histones contribute to chromatin structure that result in the activation or repression of gene expression. Several epigenetic pathways have been shown to be highly deregulated in cancer cells. Targeting specific histone modifications represents a viable strategy to prevent oncogenic transformation, tumor growth or metastasis. Methylation of histone H3 lysine 4 has been extensively studied and shown to mark genes for expression; however this residue can also be acetylated and the specific function of this alteration is less well known. To define the relative roles of histone H3 methylation (H3K4me3) and acetylation (H3K4ac) in breast cancer, we determined genomic regions enriched for both marks in normal-like (MCF10A), transformed (MCF7) and metastatic (MDA-MB-231) cells using a genome-wide ChIP-Seq approach. Our data revealed a genome-wide gain of H3K4ac associated with both early and late breast cancer cell phenotypes, while gain of H3K4me3 was predominantly associated with late stage cancer cells. Enrichment of H3K4ac was over-represented at promoters of genes associated with cancer-related phenotypic traits, such as estrogen response and epithelial-to-mesenchymal transition pathways. Our findings highlight an important role for H3K4ac in predicting epigenetic changes associated with early stages of transformation. In addition, our data provide a valuable resource for understanding epigenetic signatures that correlate with known breast cancer-associated oncogenic pathways. PMID:26783963

  15. Histone H3 Lysine 56 Acetylation and the Response to DNA Replication Fork Damage

    PubMed Central

    Wurtele, Hugo; Kaiser, Gitte Schalck; Bacal, Julien; St-Hilaire, Edlie; Lee, Eun-Hye; Tsao, Sarah; Dorn, Jonas; Maddox, Paul; Lisby, Michael; Pasero, Philippe

    2012-01-01

    In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs in newly synthesized histones that are deposited throughout the genome during DNA replication. Defects in H3K56ac sensitize cells to genotoxic agents, suggesting that this modification plays an important role in the DNA damage response. However, the links between histone acetylation, the nascent chromatin structure, and the DNA damage response are poorly understood. Here we report that cells devoid of H3K56ac are sensitive to DNA damage sustained during transient exposure to methyl methanesulfonate (MMS) or camptothecin but are only mildly affected by hydroxyurea. We demonstrate that, after exposure to MMS, H3K56ac-deficient cells cannot complete DNA replication and eventually segregate chromosomes with intranuclear foci containing the recombination protein Rad52. In addition, we provide evidence that these phenotypes are not due to defects in base excision repair, defects in DNA damage tolerance, or a lack of Rad51 loading at sites of DNA damage. Our results argue that the acute sensitivity of H3K56ac-deficient cells to MMS and camptothecin stems from a failure to complete the repair of specific types of DNA lesions by recombination and/or from defects in the completion of DNA replication. PMID:22025679

  16. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites.

    PubMed

    Borde, Valérie; Robine, Nicolas; Lin, Waka; Bonfils, Sandrine; Géli, Vincent; Nicolas, Alain

    2009-01-21

    The function of histone modifications in initiating and regulating the chromosomal events of the meiotic prophase remains poorly understood. In Saccharomyces cerevisiae, we examined the genome-wide localization of histone H3 lysine 4 trimethylation (H3K4me3) along meiosis and its relationship to gene expression and position of the programmed double-strand breaks (DSBs) that initiate interhomologue recombination, essential to yield viable haploid gametes. We find that the level of H3K4me3 is constitutively higher close to DSB sites, independently of local gene expression levels. Without Set1, the H3K4 methylase, 84% of the DSB sites exhibit a severely reduced DSB frequency, the reduction being quantitatively correlated with the local level of H3K4me3 in wild-type cells. Further, we show that this differential histone mark is already established in vegetative cells, being higher in DSB-prone regions than in regions with no or little DSB. Taken together, our results demonstrate that H3K4me3 is a prominent and preexisting mark of active meiotic recombination initiation sites. Novel perspectives to dissect the various layers of the controls of meiotic DSB formation are discussed.

  17. Histone H3 lysine 56 acetylation and the response to DNA replication fork damage.

    PubMed

    Wurtele, Hugo; Kaiser, Gitte Schalck; Bacal, Julien; St-Hilaire, Edlie; Lee, Eun-Hye; Tsao, Sarah; Dorn, Jonas; Maddox, Paul; Lisby, Michael; Pasero, Philippe; Verreault, Alain

    2012-01-01

    In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs in newly synthesized histones that are deposited throughout the genome during DNA replication. Defects in H3K56ac sensitize cells to genotoxic agents, suggesting that this modification plays an important role in the DNA damage response. However, the links between histone acetylation, the nascent chromatin structure, and the DNA damage response are poorly understood. Here we report that cells devoid of H3K56ac are sensitive to DNA damage sustained during transient exposure to methyl methanesulfonate (MMS) or camptothecin but are only mildly affected by hydroxyurea. We demonstrate that, after exposure to MMS, H3K56ac-deficient cells cannot complete DNA replication and eventually segregate chromosomes with intranuclear foci containing the recombination protein Rad52. In addition, we provide evidence that these phenotypes are not due to defects in base excision repair, defects in DNA damage tolerance, or a lack of Rad51 loading at sites of DNA damage. Our results argue that the acute sensitivity of H3K56ac-deficient cells to MMS and camptothecin stems from a failure to complete the repair of specific types of DNA lesions by recombination and/or from defects in the completion of DNA replication.

  18. Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants.

    PubMed

    Pajoro, A; Severing, E; Angenent, G C; Immink, R G H

    2017-06-01

    Global warming severely affects flowering time and reproductive success of plants. Alternative splicing of pre-messenger RNA (mRNA) is an important mechanism underlying ambient temperature-controlled responses in plants, yet its regulation is poorly understood. An increase in temperature promotes changes in plant morphology as well as the transition from the vegetative to the reproductive phase in Arabidopsis thaliana via changes in splicing of key regulatory genes. Here we investigate whether a particular histone modification affects ambient temperature-induced alternative splicing and flowering time. We use a genome-wide approach and perform RNA-sequencing (RNA-seq) analyses and histone H3 lysine 36 tri-methylation (H3K36me3) chromatin immunoprecipitation sequencing (ChIP-seq) in plants exposed to different ambient temperatures. Analysis and comparison of these datasets reveal that temperature-induced differentially spliced genes are enriched in H3K36me3. Moreover, we find that reduction of H3K36me3 deposition causes alteration in temperature-induced alternative splicing. We also show that plants with mutations in H3K36me3 writers, eraser, or readers have altered high ambient temperature-induced flowering. Our results show a key role for the histone mark H3K36me3 in splicing regulation and plant plasticity to fluctuating ambient temperature. Our findings open new perspectives for the breeding of crops that can better cope with environmental changes due to climate change.

  19. Functional antagonism between histone H3K4 demethylases in vivo

    PubMed Central

    Di Stefano, Luisa; Walker, James A.; Burgio, Giosalba; Corona, Davide F.V.; Mulligan, Peter; Näär, Anders M.; Dyson, Nicholas J.

    2011-01-01

    Dynamic regulation of histone modifications is critical during development, and aberrant activity of chromatin-modifying enzymes has been associated with diseases such as cancer. Histone demethylases have been shown to play a key role in eukaryotic gene transcription; however, little is known about how their activities are coordinated in vivo to regulate specific biological processes. In Drosophila, two enzymes, dLsd1 (Drosophila ortholog of lysine-specific demethylase 1) and Lid (little imaginal discs), demethylate histone H3 at Lys 4 (H3K4), a residue whose methylation is associated with actively transcribed genes. Our studies show that compound mutation of Lid and dLsd1 results in increased H3K4 methylation levels. However, unexpectedly, Lid mutations strongly suppress dLsd1 mutant phenotypes. Investigation of the basis for this antagonism revealed that Lid opposes the functions of dLsd1 and the histone methyltransferase Su(var)3–9 in promoting heterochromatin spreading at heterochromatin–euchromatin boundaries. Moreover, our data reveal a novel role for dLsd1 in Notch signaling in Drosophila, and a complex network of interactions between dLsd1, Lid, and Notch signaling at euchromatic genes. These findings illustrate the complexity of functional interplay between histone demethylases in vivo, providing insights into the epigenetic regulation of heterochromatin/euchromatin boundaries by Lid and dLsd1 and showing their involvement in Notch pathway-specific control of gene expression in euchromatin. PMID:21205864

  20. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease.

    PubMed

    Ryu, Hoon; Lee, Junghee; Hagerty, Sean W; Soh, Byoung Yul; McAlpin, Sara E; Cormier, Kerry A; Smith, Karen M; Ferrante, Robert J

    2006-12-12

    Chromatin remodeling and transcription regulation are tightly controlled under physiological conditions. It has been suggested that altered chromatin modulation and transcription dysfunction may play a role in the pathogenesis of Huntington's disease (HD). Increased histone methylation, a well established mechanism of gene silencing, results in transcriptional repression. ERG-associated protein with SET domain (ESET), a histone H3 (K9) methyltransferase, mediates histone methylation. We show that ESET expression is markedly increased in HD patients and in transgenic R6/2 HD mice. Similarly, the protein level of trimethylated histone H3 (K9) was also elevated in HD patients and in R6/2 mice. We further demonstrate that both specificity protein 1 (Sp1) and specificity protein 3 (Sp3) act as transcriptional activators of the ESET promoter in neurons and that mithramycin, a clinically approved guanosine-cytosine-rich DNA binding antitumor antibiotic, interferes with the DNA binding of these Sp family transcription factors, suppressing basal ESET promoter activity in a dose dependent manner. The combined pharmacological treatment with mithramycin and cystamine down-regulates ESET gene expression and reduces hypertrimethylation of histone H3 (K9). This polytherapy significantly ameliorated the behavioral and neuropathological phenotype in the R6/2 mice and extended survival over 40%, well beyond any existing reported treatment in HD mice. Our data suggest that modulation of gene silencing mechanisms, through regulation of the ESET gene is important to neuronal survival and, as such, may be a promising treatment in HD patients.

  1. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast.

    PubMed

    Shankaranarayana, Gurumurthy D; Motamedi, Mohammad R; Moazed, Danesh; Grewal, Shiv I S

    2003-07-15

    Hypoacetylated histones are a hallmark of heterochromatin in organisms ranging from yeast to humans. Histone deacetylation is carried out by both NAD(+)-dependent and NAD(+)-independent enzymes. In the budding yeast Saccharomyces cerevisiae, deacetylation of histones in heterochromatic chromosomal domains requires Sir2, a phylogenetically conserved NAD(+)-dependent deacetylase. In the fission yeast Schizosaccharomyces pombe, NAD(+)-independent histone deacetylases are required for the formation of heterochromatin, but the role of Sir2-like deacetylases in this process has not been evaluated. Here, we show that spSir2, the S. pombe Sir2-like protein that is the most closely related to the S. cerevisiae Sir2, is an NAD(+)-dependent deacetylase that efficiently deacetylates histone H3 lysine 9 (K9) and histone H4 lysine 16 (K16) in vitro. In sir2 Delta cells, silencing at the donor mating-type loci, telomeres, and the inner centromeric repeats (imr) is abolished, while silencing at the outer centromeric repeats (otr) and rDNA is weakly reduced. Furthermore, Sir2 is required for hypoacetylation and methylation of H3-K9 and for the association of Swi6 with the above loci in vivo. Our findings suggest that the NAD(+)-dependent deacetylase Sir2 plays an important and conserved role in heterochromatin assembly in eukaryotes.

  2. Phosphorylation of histone H3 is functionally linked to retinoic acid receptor β promoter activation

    PubMed Central

    Lefebvre, Bruno; Ozato, Keiko; Lefebvre, Philippe

    2002-01-01

    Ligand-dependent transcriptional activation of retinoic acid receptors (RARs) is a multistep process culminating in the formation of a multimeric co-activator complex on regulated promoters. Several co-activator complexes harbor an acetyl transferase activity, which is required for retinoid-induced transcription of reporter genes. Using murine P19 embryonal carcinoma cells, we examined the relationship between histone post-translational modifications and activation of the endogenous RARβ2 promoter, which is under the control of a canonical retinoic acid response element and rapidly induced upon retinoid treatment. While histones H3 and H4 were constitutively acetylated at this promoter, retinoid agonists induced a rapid phosphorylation at Ser10 of histone H3. A retinoid antagonist, whose activity was independent of co-repressor binding to RAR, could oppose this agonist-induced H3 phosphorylation. Since such post-translational modifications were not observed at several other promoters, we conclude that histone H3 phosphorylation may be a molecular signature of the activated, retinoid-controlled mRARβ2 gene promoter. PMID:11897660

  3. Lysyl oxidase-like 2 (LOXL2) oxidizes trimethylated lysine 4 in histone H3.

    PubMed

    Herranz, Nicolás; Dave, Natàlia; Millanes-Romero, Alba; Pascual-Reguant, Laura; Morey, Lluis; Díaz, Víctor M; Lórenz-Fonfría, Víctor; Gutierrez-Gallego, Ricardo; Jerónimo, Celia; Iturbide, Ane; Di Croce, Luciano; García de Herreros, Antonio; Peiró, Sandra

    2016-12-01

    Methylation of histone H3 lysine 4 is linked to active transcription and can be removed by LSD1 or the JmjC domain-containing proteins by amino-oxidation or hydroxylation, respectively. Here we describe that its deamination can be catalyzed by lysyl oxidase-like 2 protein (LOXL2), presenting an unconventional chemical mechanism for H3K4 modification. Infrared spectroscopy and mass spectrometry analyses demonstrated that recombinant LOXL2 specifically deaminates trimethylated H3K4. Moreover, by regulating H3K4me3 deamination, LOXL2 activity is linked with the transcriptional control of the CDH1 gene. These results reveal the existence of further H3 modification as well as a novel mechanism for H3K4me3 demethylation.

  4. Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy.

    PubMed

    Awad, Salma; Kunhi, Muhammad; Little, Gillian H; Bai, Yan; An, Woojin; Bers, Donald; Kedes, Larry; Poizat, Coralie

    2013-09-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a central role in pathological cardiac hypertrophy, but the mechanisms by which it modulates gene activity in the nucleus to mediate hypertrophic signaling remain unclear. Here, we report that nuclear CaMKII activates cardiac transcription by directly binding to chromatin and regulating the phosphorylation of histone H3 at serine-10. These specific activities are demonstrated both in vitro and in primary neonatal rat cardiomyocytes. Activation of CaMKII signaling by hypertrophic agonists increases H3 phosphorylation in primary cardiac cells and is accompanied by concomitant cellular hypertrophy. Conversely, specific silencing of nuclear CaMKII using RNA interference reduces both H3 phosphorylation and cellular hypertrophy. The hyper-phosphorylation of H3 associated with increased chromatin binding of CaMKII occurs at specific gene loci reactivated during cardiac hypertrophy. Importantly, H3 Ser-10 phosphorylation and CaMKII recruitment are associated with increased chromatin accessibility and are required for chromatin-mediated transcription of the Mef2 transcription factor. Unlike phosphorylation of H3 by other kinases, which regulates cellular proliferation and immediate early gene activation, CaMKII-mediated signaling to H3 is associated with hypertrophic growth. These observations reveal a previously unrecognized function of CaMKII as a kinase signaling to histone H3 and remodeling chromatin. They suggest a new epigenetic mechanism controlling cardiac hypertrophy.

  5. Differential contributions of histone H3 and H4 residues to heterochromatin structure.

    PubMed

    Yu, Qun; Olsen, Lars; Zhang, Xinmin; Boeke, Jef D; Bi, Xin

    2011-06-01

    Transcriptional silencing in Saccharomyces cerevisiae is mediated by heterochromatin. There is a plethora of information regarding the roles of histone residues in transcriptional silencing, but exactly how histone residues contribute to heterochromatin structure is not resolved. We address this question by testing the effects of a series of histone H3 and H4 mutations involving residues in their aminoterminal tails, on the solvent-accessible and lateral surfaces of the nucleosome, and at the interface of the H3/H4 tetramer and H2A/H2B dimer on heterochromatin structure and transcriptional silencing. The general state, stability, and conformational heterogeneity of chromatin are examined with a DNA topology-based assay, and the primary chromatin structure is probed by micrococcal nuclease. We demonstrate that the histone mutations differentially affect heterochromatin. Mutations of lysine 16 of histone H4 (H4-K16) and residues in the LRS (loss of rDNA silencing) domain of nucleosome surface markedly alter heterochromatin structure, supporting the notion that H4-K16 and LRS play key roles in heterochromatin formation. Deletion of the aminoterminal tail of H3 moderately alters heterochromatin structure. Interestingly, a group of mutations in the globular domains of H3 and H4 that abrogate or greatly reduce transcriptional silencing increase the conformational heterogeneity and/or reduce the stability of heterochromatin without affecting its overall structure. Surprisingly, yet another series of mutations abolish or reduce silencing without significantly affecting the structure, stability, or conformational heterogeneity of heterochromatin. Therefore, histone residues may contribute to the structure, stability, conformational heterogeneity, or other yet-to-be-characterized features of heterochromatin important for transcriptional silencing.

  6. Transcription of DNA templates associated with histone (H3 x H4)(2) tetramers.

    PubMed

    Chirinos, M; Hernández, F; Palacián, E

    1999-10-15

    To investigate the in vitro transcription by bacteriophage T7 RNA polymerase of oligonucleosomes lacking histone H2A x H2B dimers, templates were assembled from histone (H3 x H4)(2) tetramers with and without the complementary amount of H2A x H2B dimers and two different DNA species: pGEMEX-1, devoid of nucleosome positioning sequences, and T7-207-18, which contains downstream from the promoter 18 tandem repeats of a 207-bp positioning sequence. Assembly with core histone octamers affects pGEMEX-1 transcription mainly at the initiation level, while T7-207-18 is almost exclusively inhibited at the level of elongation. With both DNA templates and under different salt conditions, RNA synthesis is much more efficient on oligonucleosomes containing only (H3 x H4)(2) tetramers than on those with whole histone octamers. Under conditions promoting a low transcription rate, it is unambiguously shown with pGEMEX-1 that the block to initiation due to the presence of core histone octamers is substantially removed when (H3 x H4)(2) is substituted for the whole octamer. With T7-207-18, under assay conditions allowing transcription of the whole coding region of the naked DNA, analysis of the transcription products indicates that RNA elongation on the template containing (H3 x H4)(2) tetramers takes place as easily as on free DNA, in contrast with the significant inhibition observed in the presence of whole histone octamers. Copyright 1999 Academic Press.

  7. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem.

    PubMed

    Hussey, Steven G; Mizrachi, Eshchar; Groover, Andrew; Berger, Dave K; Myburg, Alexander A

    2015-05-10

    Histone modifications play an integral role in plant development, but have been poorly studied in woody plants. Investigating chromatin organization in wood-forming tissue and its role in regulating gene expression allows us to understand the mechanisms underlying cellular differentiation during xylogenesis (wood formation) and identify novel functional regions in plant genomes. However, woody tissue poses unique challenges for using high-throughput chromatin immunoprecipitation (ChIP) techniques for studying genome-wide histone modifications in vivo. We investigated the role of the modified histone H3K4me3 (trimethylated lysine 4 of histone H3) in gene expression during the early stages of wood formation using ChIP-seq in Eucalyptus grandis, a woody biomass model. Plant chromatin fixation and isolation protocols were optimized for developing xylem tissue collected from field-grown E. grandis trees. A "nano-ChIP-seq" procedure was employed for ChIP DNA amplification. Over 9 million H3K4me3 ChIP-seq and 18 million control paired-end reads were mapped to the E. grandis reference genome for peak-calling using Model-based Analysis of ChIP-Seq. The 12,177 significant H3K4me3 peaks identified covered ~1.5% of the genome and overlapped some 9,623 protein-coding genes and 38 noncoding RNAs. H3K4me3 library coverage, peaking ~600 - 700 bp downstream of the transcription start site, was highly correlated with gene expression levels measured with RNA-seq. Overall, H3K4me3-enriched genes tended to be less tissue-specific than unenriched genes and were overrepresented for general cellular metabolism and development gene ontology terms. Relative expression of H3K4me3-enriched genes in developing secondary xylem was higher than unenriched genes, however, and highly expressed secondary cell wall-related genes were enriched for H3K4me3 as validated using ChIP-qPCR. In this first genome-wide analysis of a modified histone in a woody tissue, we optimized a ChIP-seq procedure suitable

  8. RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition

    PubMed Central

    Newhart, Alyshia; Powers, Sara Lawrence; Shastrula, Prashanth Krishna; Sierra, Isabel; Joo, Lucy M.; Hayden, James E.; Cohen, Andrew R.; Janicki, Susan M.

    2016-01-01

    In mammals, histone H3.3 is a critical regulator of transcription state change and heritability at both euchromatin and heterochromatin. The H3.3-specific chaperone, DAXX, together with the chromatin-remodeling factor, ATRX, regulates H3.3 deposition and transcriptional silencing at repetitive DNA, including pericentromeres and telomeres. However, the events that precede H3.3 nucleosome incorporation have not been fully elucidated. We previously showed that the DAXX-ATRX-H3.3 pathway regulates a multi-copy array of an inducible transgene that can be visualized in single living cells. When this pathway is impaired, the array can be robustly activated. H3.3 is strongly recruited to the site during activation where it accumulates in a complex with transcribed sense and antisense RNA, which is distinct from the DNA/chromatin. This suggests that transcriptional events regulate H3.3 recruited to its incorporation sites. Here we report that the nucleolar RNA proteins Rpp29, fibrillarin, and RPL23a are also components of this H3.3/RNA complex. Rpp29 is a protein subunit of RNase P. Of the other subunits, POP1 and Rpp21 are similarly recruited suggesting that a variant of RNase P regulates H3.3 chromatin assembly. Rpp29 knockdown increases H3.3 chromatin incorporation, which suggests that Rpp29 represses H3.3 nucleosome deposition, a finding with implications for epigenetic regulation. PMID:26842893

  9. Relationship between lunasin's sequence and its inhibitory activity of histones H3 and H4 acetylation.

    PubMed

    Hernández-Ledesma, Blanca; Hsieh, Chia-Chien; de Lumen, Ben O

    2011-07-01

    Dysfunction of histone acetyltransferases (HATs) or histone deacetylases (HDACs) involved in histones acetylation has been associated with cancer. Inhibitors of these enzymes are becoming potential targets for new therapies. This study reports by Western-Blot analysis, that peptide lunasin is mainly an in vitro inhibitor of histone H4 acetylation by P300/cAMP-response element-binding protein (CBP)-associated factor (PCAF), with IC₅₀ values dependent on the lysine position sensitive to be acetylated (0.83 μM (H4-Lys 8), 1.27 μM (H4-Lys 12) and 0.40 μM (H4-Lys 5, 8, 12, 16)). Lunasin is also capable of inhibiting H3 acetylation (IC₅₀ of 5.91 μM (H3-Lys 9) and 7.81 μM (H3-Lys 9, 14)). Studies on structure-activity relationship establish that lunasin's sequence are essential for inhibiting H4 acetylation whereas poly-D sequence is the main active sequence responsible for H3 acetylation inhibition. Lunasin also inhibits H3 and H4 acetylation and cell proliferation (IC₅₀ of 181 μM) in breast cancer MDA-MB-231 cells. Moreover, this peptide decreases expression of cyclins and cyclin dependent kinases-4 and -6, implicated in cell cycle pathways. Results from this study demonstrates lunasin's role as modulator of histone acetylation and protein expression that might contribute on its chemopreventive properties against breast cancer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Methylation of histone H3K23 blocks DNA damage in pericentric heterochromatin during meiosis

    PubMed Central

    Papazyan, Romeo; Voronina, Ekaterina; Chapman, Jessica R; Luperchio, Teresa R; Gilbert, Tonya M; Meier, Elizabeth; Mackintosh, Samuel G; Shabanowitz, Jeffrey; Tackett, Alan J; Reddy, Karen L; Coyne, Robert S; Hunt, Donald F; Liu, Yifan; Taverna, Sean D

    2014-01-01

    Despite the well-established role of heterochromatin in protecting chromosomal integrity during meiosis and mitosis, the contribution and extent of heterochromatic histone posttranslational modifications (PTMs) remain poorly defined. Here, we gained novel functional insight about heterochromatic PTMs by analyzing histone H3 purified from the heterochromatic germline micronucleus of the model organism Tetrahymena thermophila. Mass spectrometric sequencing of micronuclear H3 identified H3K23 trimethylation (H3K23me3), a previously uncharacterized PTM. H3K23me3 became particularly enriched during meiotic leptotene and zygotene in germline chromatin of Tetrahymena and C. elegans. Loss of H3K23me3 in Tetrahymena through deletion of the methyltransferase Ezl3p caused mislocalization of meiosis-induced DNA double-strand breaks (DSBs) to heterochromatin, and a decrease in progeny viability. These results show that an evolutionarily conserved developmental pathway regulates H3K23me3 during meiosis, and our studies in Tetrahymena suggest this pathway may function to protect heterochromatin from DSBs. DOI: http://dx.doi.org/10.7554/eLife.02996.001 PMID:25161194

  11. Histone H3.3 regulates mitotic progression in mouse embryonic fibroblasts.

    PubMed

    Ors, Aysegul; Papin, Christophe; Favier, Bertrand; Roulland, Yohan; Dalkara, Defne; Ozturk, Mehmet; Hamiche, Ali; Dimitrov, Stefan; Padmanabhan, Kiran

    2017-08-01

    H3.3 is a histone variant that marks transcription start sites as well as telomeres and heterochromatic sites on the genome. The presence of H3.3 is thought to positively correlate with the transcriptional status of its target genes. Using a conditional genetic strategy against H3.3B, combined with short hairpin RNAs against H3.3A, we essentially depleted all H3.3 gene expression in mouse embryonic fibroblasts. Following nearly complete loss of H3.3 in the cells, our transcriptomic analyses show very little impact on global gene expression or on the localization of histone variant H2A.Z. Instead, fibroblasts displayed slower cell growth and an increase in cell death, coincident with large-scale chromosome misalignment in mitosis and large polylobed or micronuclei in interphase cells. Thus, we conclude that H3.3 may have an important under-explored additional role in chromosome segregation, nuclear structure, and the maintenance of genome integrity.

  12. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy

    PubMed Central

    Wurtele, Hugo; Tsao, Sarah; Lépine, Guylaine; Mullick, Alaka; Tremblay, Jessy; Drogaris, Paul; Lee, Eun-Hye; Thibault, Pierre; Verreault, Alain; Raymond, Martine

    2014-01-01

    Candida albicans is a major fungal pathogen that causes serious systemic and mucosal infections in immunocompromised individuals. In yeast, histone H3 Lys56 acetylation (H3K56ac) is an abundant modification regulated by enzymes that have fungal-specific properties, making them appealing targets for antifungal therapy. Here we demonstrate that H3K56ac in C. albicans is regulated by the RTT109 and HST3 genes, which respectively encode the H3K56 acetyltransferase (Rtt109p) and deacetylase (Hst3p). We show that reduced levels of H3K56ac sensitize C. albicans to genotoxic and antifungal agents. Inhibition of Hst3p activity by conditional gene repression or nicotinamide treatment results in a loss of cell viability associated with abnormal filamentous growth, histone degradation and gross aberrations in DNA staining. We show that genetic or pharmacological alterations in H3K56ac levels reduce virulence in a mouse model of C. albicans infection. Our results demonstrate that modulation of H3K56ac is a unique strategy for treatment of C. albicans and, possibly, other fungal infections. PMID:20601951

  13. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae

    PubMed Central

    Sorenson, Matthew R.; Jha, Deepak K.; Ucles, Stefanie A.; Flood, Danielle M.; Strahl, Brian D.; Stevens, Scott W.; Kress, Tracy L.

    2016-01-01

    ABSTRACT Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved. To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We found that mutation of H3 lysine 36 (H3K36) – a residue methylated by Set2 during transcription elongation – exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic interactions between genes encoding RNA splicing factors and genes encoding the H3K36 methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA polymerase II and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast. PMID:26821844

  14. The dynamics of histone H3 modifications is species-specific in plant meiosis.

    PubMed

    Oliver, Cecilia; Pradillo, Mónica; Corredor, Eduardo; Cuñado, Nieves

    2013-07-01

    Different histone modifications often modify DNA-histone interactions affecting both local and global structure of chromatin, thereby providing a vast potential for functional responses. Most studies have focused on the role of several modifications in gene transcription regulation, being scarce on other aspects of eukaryotic chromosome structure during cell division, mainly in meiosis. To solve this issue we have performed a cytological analysis to determine the chromosomal distribution of several histone H3 modifications throughout all phases of both mitosis and meiosis in different plant species. We have chosen Aegilops sp. and Secale cereale (monocots) and Arabidopsis thaliana (dicots) because they differ in their phylogenetic affiliation as well as in content and distribution of constitutive heterochromatin. In the species analyzed, the patterns of H3 acetylation and methylation were held constant through mitosis, including modifications associated with "open chromatin". Likewise, the immunolabeling patterns of H3 methylation remained invariable throughout meiosis in all cases. On the contrary, there was a total loss of acetylated H3 immunosignals on condensed chromosomes in both meiotic divisions, but only in monocot species. Regarding the phosphorylation of histone H3 at Ser10, present on condensed chromosomes, although we did not observe any difference in the dynamics, we found slight differences between the chromosomal distribution of this modification between Arabidopsis and cereals (Aegilops sp. and rye). Thus far, in plants chromosome condensation throughout cell division appears to be associated with a particular combination of H3 modifications. Moreover, the distribution and dynamics of these modifications seem to be species-specific and even differ between mitosis and meiosis in the same species.

  15. The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis.

    PubMed

    Manzanero, S; Arana, P; Puertas, M J; Houben, A

    2000-01-01

    Plant (Secale cereale, Triticum aestivum) and animal (Eyprepocnemis plorans) meiocytes were analyzed by indirect immunostaining with an antibody recognizing histone H3 phosphorylated at serine 10, to study the relationship between H3 phosphorylation and chromosome condensation at meiosis. To investigate whether the dynamics of histone H3 phosphorylation differs between chromosomes with a different mode of segregation, we included in this study mitotic cells and also meiotic cells of individuals forming bivalents plus three different types of univalents (A chromosomes, B chromosomes and X chromosome). During the first meiotic division, the H3 phosphorylation of the entire chromosomes initiates at the transition from leptotene to zygotene in rye and wheat, whereas in E. plorans it does so at diplotene. In all species analyzed H3 phosphorylation terminates toward interkinesis. The immunosignals at first meiotic division are identical in bivalents and univalents of A and B chromosomes, irrespective of their equational or reductional segregation at anaphase I. The grasshopper X chromosome, which always segregates reductionally, also shows the same pattern. Remarkable differences were found at second meiotic division between plant and animal material. In E. plorans H3 phosphorylation occurred all along the chromosomes, whereas in plants only the pericentromeric regions showed strong immunosignals from prophase II until telophase II. In addition, no immunolabeling was detectable on single chromatids resulting from equational segregation of plant A or B chromosome univalents during the preceding anaphase I. Simultaneous immunostaining with anti-tubulin and anti-phosphorylated H3 antibodies demonstrated that the kinetochores of all chromosomes interact with microtubules, even in the absence of detectable phosphorylated H3 immunosignals. The different pattern of H3 phosphorylation in plant and animal meiocytes suggests that this evolutionarily conserved post

  16. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes

    SciTech Connect

    Miao, Jiamin; Frazier, Taylor; Huang, Linkai; Zhang, Xinquan; Zhao, Bingyu

    2016-07-12

    Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1 genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.

  17. KDM6 Demethylase Independent Loss of Histone H3 Lysine 27 Trimethylation during Early Embryonic Development

    PubMed Central

    Shpargel, Karl B.; Starmer, Joshua; Yee, Della; Pohlers, Michael; Magnuson, Terry

    2014-01-01

    The early mammalian embryo utilizes histone H3 lysine 27 trimethylation (H3K27me3) to maintain essential developmental genes in a repressive chromatin state. As differentiation progresses, H3K27me3 is removed in a distinct fashion to activate lineage specific patterns of developmental gene expression. These rapid changes in early embryonic chromatin environment are thought to be dependent on H3K27 demethylases. We have taken a mouse genetics approach to remove activity of both H3K27 demethylases of the Kdm6 gene family, Utx (Kdm6a, X-linked gene) and Jmjd3 (Kdm6b, autosomal gene). Male embryos null for active H3K27 demethylation by the Kdm6 gene family survive to term. At mid-gestation, embryos demonstrate proper patterning and activation of Hox genes. These male embryos retain the Y-chromosome UTX homolog, UTY, which cannot demethylate H3K27me3 due to mutations in catalytic site of the Jumonji-C domain. Embryonic stem (ES) cells lacking all enzymatic KDM6 demethylation exhibit a typical decrease in global H3K27me3 levels with differentiation. Retinoic acid differentiations of these ES cells demonstrate loss of H3K27me3 and gain of H3K4me3 to Hox promoters and other transcription factors, and induce expression similar to control cells. A small subset of genes exhibit decreased expression associated with reduction of promoter H3K4me3 and some low-level accumulation of H3K27me3. Finally, Utx and Jmjd3 mutant mouse embryonic fibroblasts (MEFs) demonstrate dramatic loss of H3K27me3 from promoters of several Hox genes and transcription factors. Our results indicate that early embryonic H3K27me3 repression can be alleviated in the absence of active demethylation by the Kdm6 gene family. PMID:25101834

  18. Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated.

    PubMed

    Zhang, Suisheng; Roche, Kevin; Nasheuer, Heinz-Peter; Lowndes, Noel Francis

    2011-10-28

    The monosaccharide, β-N-acetylglucosamine (GlcNAc), can be added to the hydroxyl group of either serines or threonines to generate an O-linked β-N-acetylglucosamine (O-GlcNAc) residue (Love, D. C., and Hanover, J. A. (2005) Sci. STKE 2005 312, 1-14; Hart, G. W., Housley, M. P., and Slawson, C. (2007) Nature 446, 1017-1022). This post-translational protein modification, termed O-GlcNAcylation, is reversible, analogous to phosphorylation, and has been implicated in many cellular processes. Here, we present evidence that in human cells all four core histones of the nucleosome are substrates for this glycosylation in the relative abundance H3, H4/H2B, and H2A. Increasing the intracellular level of UDP-GlcNAc, the nucleotide sugar donor substrate for O-GlcNAcylation enhanced histone O-GlcNAcylation and partially suppressed phosphorylation of histone H3 at serine 10 (H3S10ph). Expression of recombinant H3.3 harboring an S10A mutation abrogated histone H3 O-GlcNAcylation relative to its wild-type version, consistent with H3S10 being a site of histone O-GlcNAcylation (H3S10glc). Moreover, O-GlcNAcylated histones were lost from H3S10ph immunoprecipitates, whereas immunoprecipitation of either H3K4me3 or H3K9me3 (active or inactive histone marks, respectively) resulted in co-immunoprecipitation of O-GlcNAcylated histones. We also examined histone O-GlcNAcylation during cell cycle progression. Histone O-GlcNAcylation is high in G(1) cells, declines throughout the S phase, increases again during late S/early G(2), and persists through late G(2) and mitosis. Thus, O-GlcNAcylation is a novel histone post-translational modification regulating chromatin conformation during transcription and cell cycle progression.

  19. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics

    PubMed Central

    Bernier, Morgan; Luo, Yi; Nwokelo, Kingsley C.; Goodwin, Michelle; Dreher, Sarah J.; Zhang, Pei; Parthun, Mark R.; Fondufe-Mittendorf, Yvonne; Ottesen, Jennifer J.; Poirier, Michael G.

    2015-01-01

    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1. PMID:26648124

  20. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics.

    PubMed

    Bernier, Morgan; Luo, Yi; Nwokelo, Kingsley C; Goodwin, Michelle; Dreher, Sarah J; Zhang, Pei; Parthun, Mark R; Fondufe-Mittendorf, Yvonne; Ottesen, Jennifer J; Poirier, Michael G

    2015-12-09

    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1.

  1. Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling

    PubMed Central

    Tsurumi, Amy; Dutta, Pranabanada; Yan, Shian-Jang; Sheng, Robin; Li, Willis X.

    2013-01-01

    The dynamic regulation of chromatin structure by histone post-translational modification is an essential regulatory mechanism that controls global gene transcription. The Kdm4 family of H3K9me2,3 and H3K36me2,3 dual specific histone demethylases has been implicated in development and tumorigenesis. Here we show that Drosophila Kdm4A and Kdm4B are together essential for mediating ecdysteroid hormone signaling during larval development. Loss of Kdm4 genes leads to globally elevated levels of the heterochromatin marker H3K9me2,3 and impedes transcriptional activation of ecdysone response genes, resulting in developmental arrest. We further show that Kdm4A interacts with the Ecdysone Receptor (EcR) and colocalizes with EcR at its target gene promoter. Our studies suggest that Kdm4A may function as a transcriptional co-activator by removing the repressive histone mark H3K9me2,3 from cognate promoters. PMID:24100631

  2. In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration.

    PubMed

    Suzuki, Miyuki; Takagi, Chiyo; Miura, Shinichirou; Sakane, Yuto; Suzuki, Makoto; Sakuma, Tetsushi; Sakamoto, Naoaki; Endo, Tetsuya; Kamei, Yasuhiro; Sato, Yuko; Kimura, Hiroshi; Yamamoto, Takashi; Ueno, Naoto; Suzuki, Ken-ichi T

    2016-04-01

    Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification-specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac-Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac-Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species (ROS). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac-Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration.

  3. DNA promoter and histone H3 methylation downregulate NGX6 in gastric cancer cells.

    PubMed

    Liu, Jian; Zhu, Xinjiang; Xu, Xiaoyang; Dai, Dongqiu

    2014-01-01

    Nasopharyngeal carcinoma-associated gene 6 (NGX6) is a novel candidate tumor metastasis suppressor gene. Our study was to determine whether DNA hypermethylation and histone modification at the NGX6 gene promoter play important roles in silencing NGX6 expression in gastric cancer. NGX6 expression was downregulated in all gastric cancer cells and 76.19 % tissues. In three GC cell lines, hypermethylated NGX6 loci were characterized by histone H3-K9 hypoacetylation and hypermethylation. Trichostatin A treatment could moderately increase H3-K9 acetylation at the silenced loci; however, it had no effect on DNA and H3-K9 methylation and minimal effects on NGX6 expression. In contrast, 5'aza-2'-deoxycytidine treatment could rapidly decrease DNA and H3-K9 methylation at the silenced loci, leading to the reexpression of NGX6. Combined treatment with 5'aza-2'-deoxycytidine and trichostatin A had synergistic effects on the reexpression of NGX6 at the hypermethylation loci. Our current study shows that NGX6 expression is downregulated in GC cancer cells and tissues due to NGX6 promoter methylation and H3-K9 methylation, but not H3-K9 acetylation. Our findings indicate that the downregulation of NGX6 expression contributes to the development and progression of gastric cancer. More studies are needed to determine the precise mechanism of NGX6 in the progression of gastric cancer.

  4. Basal aurora kinase B activity is sufficient for histone H3 phosphorylation in prophase.

    PubMed

    Le, Ly-Thuy-Tram; Vu, Hong-Lien; Nguyen, Chi-Hung; Molla, Annie

    2013-04-15

    Histone H3 phosphorylation is the hallmark of mitosis deposited by aurora kinase B. Benzo[e]pyridoindoles are a family of potent, broad, ATP-competitive aurora kinase inhibitors. However, benzo[e]pyridoindole C4 only inhibits histone H3 phosphorylation in prophase but not in metaphase. Under the C4 treatment, the cells enter into mitosis with dephosphorylated histone H3, assemble chromosomes normally and progress to metaphase, and then to anaphase. C4 also induces lagging chromosome in anaphase but we demonstrated that these chromosome compaction defects are not related to the absence of H3 phosphorylation in prophase. As a result of C4 action, mitosis lasts longer and the cell cycle is slowed down. We reproduced the mitotic defects with reduced concentrations of potent pan aurora kinase as well as with a specific aurora B ATP-competitive inhibitor; we therefore propose that histone H3 phosphorylation and anaphase chromosome compaction involve the basal activity of aurora kinase B. Our data suggest that aurora kinase B is progressively activated at mitosis entry and at anaphase onset. The full activation of aurora kinase B by its partners, in prometaphase, induces a shift in the catalytic domain of aurora B that modifies its affinity for ATP. These waves of activation/deactivation of aurora B correspond to different conformations of the chromosomal complex revealed by FRAP. The presence of lagging chromosomes may have deleterious consequences on the daughter cells and, unfortunately, the situation may be encountered in patients receiving treatment with aurora kinase inhibitors.

  5. Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1

    PubMed Central

    Zhang, Wei; Tyl, Marek; Ward, Richard; Sobott, Frank; Maman, Joseph; Murthy, Andal S.; Watson, Aleksandra A.; Fedorov, Oleg; Bowman, Andrew; Owen-Hughes, Tom; EL-Mkami, Hassane; Murzina, Natalia V.; Norman, David; Laue, Ernest D.

    2012-01-01

    The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of histones H3–H4 with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3–H4 between these two histone chaperones plays a central role in the assembly of new nucleosomes and we show here that the H3–H4 complex has a surprising structural plasticity, which is important for this exchange. PMID:23178455

  6. Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1.

    PubMed

    Zhang, Wei; Tyl, Marek; Ward, Richard; Sobott, Frank; Maman, Joseph; Murthy, Andal S; Watson, Aleksandra A; Fedorov, Oleg; Bowman, Andrew; Owen-Hughes, Tom; El Mkami, Hassane; Murzina, Natalia V; Norman, David G; Laue, Ernest D

    2013-01-01

    The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of the histone H3-H4 complex with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3-H4 between these two histone chaperones has a central role in the assembly of new nucleosomes, and we show here that the H3-H4 complex has an unexpected structural plasticity, which is important for this exchange.

  7. Site-specific human histone H3 methylation stability: fast K4me3 turnover

    PubMed Central

    Zheng, Yupeng; Tipton, Jeremiah D.; Thomas, Paul M.; Kelleher, Neil L.; Sweet, Steve M.M.

    2014-01-01

    We employ stable isotope labelling and quantitative mass spectrometry to track histone methylation stability. We show that H3 trimethyl K9 and K27 are slow to be established on new histones and slow to disappear from old histones, with half-lives of multiple cell divisions. By contrast the transcription-associated marks K4me3 and K36me3 turn over far more rapidly, with half-lives of 6.8 h and 57 h, respectively. Inhibition of demethylases increases K9 and K36 methylation, with K9 showing the largest and most robust increase. We interpret different turnover rates in light of genome-wide localization data and transcription-dependent nucleosome rearrangements proximal to the transcription start site. PMID:24826939

  8. Site-specific human histone H3 methylation stability: fast K4me3 turnover.

    PubMed

    Zheng, Yupeng; Tipton, Jeremiah D; Thomas, Paul M; Kelleher, Neil L; Sweet, Steve M M

    2014-10-01

    We employ stable-isotope labeling and quantitative mass spectrometry to track histone methylation stability. We show that H3 trimethyl K9 and K27 are slow to be established on new histones and slow to disappear from old histones, with half-lives of multiple cell divisions. By contrast, the transcription-associated marks K4me3 and K36me3 turn over far more rapidly, with half-lives of 6.8 h and 57 h, respectively. Inhibition of demethylases increases K9 and K36 methylation, with K9 showing the largest and most robust increase. We interpret different turnover rates in light of genome-wide localization data and transcription-dependent nucleosome rearrangements proximal to the transcription start site.

  9. K4, K9, and K18 in Human Histone H3 are Targets for Biotinylation by Biotinidase

    PubMed Central

    Kobza, Keyna; Camporeale, Gabriela; Rueckert, Brian; Kueh, Alice; Griffin, Jacob B.; Sarath, Gautam; Zempleni, Janos

    2005-01-01

    Histones are modified posttranslationally, e.g., by methylation of lysine and arginine residues, and by phosphorylation of serine residues. These modifications regulate processes such as gene expression, DNA repair, and mitosis and meiosis. Recently, evidence has been provided that histones are also modified by covalent binding of the vitamin biotin. Aims of this study were to identify biotinylation sites in histone H3, and to investigate the crosstalk among histone biotinylation, methylation, and phosphorylation. Synthetic peptides based on the sequence of human histone H3 were used as substrates for enzymatic biotinylation by biotinidase; biotin in peptides was probed using streptavidin peroxidase. These studies provided evidence that K4, K9, and K18 in histone H3 are good targets for biotinylation; K14 and K23 are relatively poor targets. Antibodies were generated to histone H3, biotinylated either at K4, K9, or K18. These antibodies localized to nuclei in human placental cells in immunocytochemistry and immunoblotting experiments, suggesting that lysines in histone H3 are biotinylated in vivo. Dimethylation of R2, R8, and R17 increased biotinylation of K4, K9, and K18, respectively, by biotinidase; phosphorylation of S10 abolished biotinylation of K9. These observations are consistent with crosstalk between biotinylation of histones and other known modifications of histones. We speculate that this crosstalk provides a link to known roles for biotin in gene expression and cell proliferation. PMID:16098205

  10. K4, K9 and K18 in human histone H3 are targets for biotinylation by biotinidase.

    PubMed

    Kobza, Keyna; Camporeale, Gabriela; Rueckert, Brian; Kueh, Alice; Griffin, Jacob B; Sarath, Gautam; Zempleni, Janos

    2005-08-01

    Histones are modified post-translationally, e.g. by methylation of lysine and arginine residues, and by phosphorylation of serine residues. These modifications regulate processes such as gene expression, DNA repair, and mitosis and meiosis. Recently, evidence has been provided that histones are also modified by covalent binding of the vitamin biotin. The aims of this study were to identify biotinylation sites in histone H3, and to investigate the crosstalk among histone biotinylation, methylation and phosphorylation. Synthetic peptides based on the sequence of human histone H3 were used as substrates for enzymatic biotinylation by biotinidase; biotin in peptides was probed using streptavidin peroxidase. These studies provided evidence that K4, K9 and K18 in histone H3 are good targets for biotinylation; K14 and K23 are relatively poor targets. Antibodies were generated to histone H3, biotinylated either at K4, K9 or K18. These antibodies localized to nuclei in human placental cells in immunocytochemistry and immunoblotting experiments, suggesting that lysines in histone H3 are biotinylated in vivo. Dimethylation of R2, R8 and R17 increased biotinylation of K4, K9 and K18, respectively, by biotinidase; phosphorylation of S10 abolished biotinylation of K9. These observations are consistent with crosstalk between biotinylation of histones and other known modifications of histones. We speculate that this crosstalk provides a link to known roles for biotin in gene expression and cell proliferation.

  11. Association Between Phosphorylated Histone H3 and Oncotype DX Recurrence Scores in Breast Cancer

    PubMed Central

    Lee, Lik Hang; Swanson, Paul E.; Tang, Patricia A.; Bigras, Gilbert

    2017-01-01

    We investigate the association between phosphorylated histone H3 (PhH3) and Oncotype DX recurrence score (RS). All invasive breast carcinoma with RS results from our city between 2007 and 2010 (n=47) were reviewed. Whole-tumor sections were stained for PhH3. Mitotic and PhH3 counts were performed and clinical charts reviewed. PhH3 correlated well with RS (r=0.69, P<0.001). Other correlations were: PhH3 versus mitotic count (r=0.87, P<0.001), PhH3 versus mitotic score (r=0.71, P<0.001), PhH3 versus modified Bloom-Richardson-Elston (MBR) grade (r=0.65, P<0.001), RS versus mitotic count (r=0.62, P<0.001), RS versus mitotic score (r=0.44, P=0.002), and RS versus MBR grade (r=0.49, P=0.001). Significant correlation between PhH3 and RS remained after controlling for mitotic count (r=0.39, P=0.007), mitotic score (r=0.60, P<0.001), MBR grade (r=0.56, P<0.001), and all 3 (r=0.37, P=0.014) by partial correlation. Two patients died of metastasis at 12 and 38 months after diagnosis. One had intermediate RS, and 1 high RS; both were in the top-third of PhH3 count. All other patients are alive and recurrence free. Correlation between PhH3 and RS was statistically significant in our cohort, and remained significant after controlling for traditional measures of proliferation. Given that RS has an established strong relationship with prognosis and therapy responsiveness, PhH3 may thus also be an important prognostic/predictive marker in breast cancer. PMID:26371428

  12. Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation.

    PubMed

    Diallo, Amadou Oury; Ali-Benali, Mohamed Ali; Badawi, Mohamed; Houde, Mario; Sarhan, Fathey

    2012-07-01

    The transition to flowering in winter wheat requires prolonged exposure to low temperature, a process called vernalization. This process is regulated by a genetic pathway that involves at least three genes, Triticum aestivum VERNALIZATION 1 (TaVRN1), Triticum aestivum VERNALIZATION 2 (TaVRN2) and Triticum aestivum FLOWERING LOCUS T-like 1 (TaFT1). These genes regulate flowering by integrating environmental and developmental cues. To determine whether the expression of these genes is associated with the chromatin methylation state during vernalization in wheat, the level of two markers of histone modifications, the activator histone H3 trimethylation of lysine 4 (H3K4me3) and the repressor histone H3 trimethylation of lysine 27 (H3K27me3) were measured at the promoter regions of these three genes. Bioinformatics analysis of these promoters demonstrates the presence of conserved cis-acting elements in the promoters of the three vernalization genes, TaVRN1, TaVRN2 and TaFT1. These elements are targeted by common transcription factors in the vernalization responsive cereals. These promoters also contain the functional "units" PRE/TRE targeted by Polycomb and Trithorax proteins that maintain repressed or active transcription states of developmentally regulated genes. These proteins are known to be associated with the regulation of H3K4me3 and H3K27me3. Expression studies indicate that TaVRN1 and TaFT1 are up-regulated by vernalization in winter wheat. This up-regulation is associated with increased level of the activator H3K4me3 with no change in the level of the repressor H3K27me3 at the promoter region. This study shows that the flowering transition induced by vernalization in winter wheat is associated with histone methylation at the promoter level of TaVRN1 and TaFT1 while the role of these markers is less evident in TaVRN2 repression. This may represent part of the cellular memory of vernalization in wheat.

  13. Regulation of histone H3K4 methylation in brain development and disease.

    PubMed

    Shen, Erica; Shulha, Hennady; Weng, Zhiping; Akbarian, Schahram

    2014-09-26

    The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders.

  14. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation.

    PubMed

    Kondo, Yutaka; Shen, Lanlan; Yan, Pearlly S; Huang, Tim Hui-Ming; Issa, Jean-Pierre J

    2004-05-11

    Switching from acetylation to methylation at histone H3 lysine 9 (K9) has recently been shown to contribute to euchromatin gene silencing. To identify genes silenced by K9 modifications, we probed a human CpG island microarray with DNA obtained by chromatin immunoprecipitation (ChIP) in a cancer cell line using an anti-H3-K9 methylated antibody or an anti-H3-K9 acetylated antibody. Of the 27 clones with the highest signal ratio of K9 methylation over acetylation (Me/Ac), 13 contained repetitive sequences. Among 14 nonrepetitive clones, we identified 11 genes (seven known and four previously undescribed), one EST, and two unknown fragments. Using ChIP-PCR, all 18 examined clones showed higher ratios of H3-K9 Me/Ac than the active gene control, P21, thus confirming the microarray data. In addition, we found a strong correlation between the K9 Me/Ac ratio and CpG island DNA methylation (R = 0.92, P < 0.01), and five of seven genes examined (megalin, thrombospondin-4, KR18, latrophilin-3, and phosphatidylinositol-3-OH kinase P101 subunit) showed lack of expression by RT-PCR and reactivation by DNA methylation and/or histone deacetylase inhibition, suggesting that these genes are true targets of silencing through histone modifications. All five genes also showed significant DNA methylation in a cell line panel and in primary colon cancers. Our data suggest that CpG island microarray coupled with ChIP can identify novel targets of gene silencing in cancer. This unbiased approach confirms the tight coupling between DNA methylation and histone modifications in cancer and could be used to probe gene silencing in nonneoplastic conditions as well.

  15. Context dependency of Set1/COMPASS-mediated histone H3 Lys4 trimethylation

    PubMed Central

    Thornton, Janet L.; Westfield, Gerwin H.; Takahashi, Yoh-hei; Cook, Malcolm; Gao, Xin; Woodfin, Ashley R.; Lee, Jung-Shin; Morgan, Marc A.; Jackson, Jessica; Smith, Edwin R.; Couture, Jean-Francois; Skiniotis, Georgios; Shilatifard, Ali

    2014-01-01

    The stimulation of trimethylation of histone H3 Lys4 (H3K4) by H2B monoubiquitination (H2Bub) has been widely studied, with multiple mechanisms having been proposed for this form of histone cross-talk. Cps35/Swd2 within COMPASS (complex of proteins associated with Set1) is considered to bridge these different processes. However, a truncated form of Set1 (762-Set1) is reported to function in H3K4 trimethylation (H3K4me3) without interacting with Cps35/Swd2, and such cross-talk is attributed to the n-SET domain of Set1 and its interaction with the Cps40/Spp1 subunit of COMPASS. Here, we used biochemical, structural, in vivo, and chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) approaches to demonstrate that Cps40/Spp1 and the n-SET domain of Set1 are required for the stability of Set1 and not the cross-talk. Furthermore, the apparent wild-type levels of H3K4me3 in the 762-Set1 strain are due to the rogue methylase activity of this mutant, resulting in the mislocalization of H3K4me3 from the promoter-proximal regions to the gene bodies and intergenic regions. We also performed detailed screens and identified yeast strains lacking H2Bub but containing intact H2Bub enzymes that have normal levels of H3K4me3, suggesting that monoubiquitination may not directly stimulate COMPASS but rather works in the context of the PAF and Rad6/Bre1 complexes. Our study demonstrates that the monoubiquitination machinery and Cps35/Swd2 function to focus COMPASS's H3K4me3 activity at promoter-proximal regions in a context-dependent manner. PMID:24402317

  16. Citrullination of Histone H3 Interferes with HP1-Mediated Transcriptional Repression

    PubMed Central

    Sharma, Priyanka; Azebi, Saliha; England, Patrick; Christensen, Tove; Møller-Larsen, Anné; Petersen, Thor; Batsché, Eric; Muchardt, Christian

    2012-01-01

    Multiple Sclerosis (MS) is an autoimmune disease associated with abnormal expression of a subset of cytokines, resulting in inappropriate T-lymphocyte activation and uncontrolled immune response. A key issue in the field is the need to understand why these cytokines are transcriptionally activated in the patients. Here, we have examined several transcription units subject to pathological reactivation in MS, including the TNFα and IL8 cytokine genes and also several Human Endogenous RetroViruses (HERVs). We find that both the immune genes and the HERVs require the heterochromatin protein HP1α for their transcriptional repression. We further show that the Peptidylarginine Deiminase 4 (PADI4), an enzyme with a suspected role in MS, weakens the binding of HP1α to tri-methylated histone H3 lysine 9 by citrullinating histone H3 arginine 8. The resulting de-repression of both cytokines and HERVs can be reversed with the PADI-inhibitor Cl-amidine. Finally, we show that in peripheral blood mononuclear cells (PBMCs) from MS patients, the promoters of TNFα, and several HERVs share a deficit in HP1α recruitment and an augmented accumulation of histone H3 with a double citrulline 8 tri-methyl lysine 9 modifications. Thus, our study provides compelling evidence that HP1α and PADI4 are regulators of both immune genes and HERVs, and that multiple events of transcriptional reactivation in MS patients can be explained by the deficiency of a single mechanism of gene silencing. PMID:23028349

  17. Homeobox genes gain trimethylation of histone H3 lysine 4 in glioblastoma tissue

    PubMed Central

    Luo, Kun; Luo, Donghui; Wen, Hao

    2016-01-01

    Glioblastoma multiforme (GBM) exhibits considerable heterogeneity and associates with genome-wide alterations of the repressed chromatin marks DNA methylation and H3 lysine 27 trimethylation (H3K27me3). Tri-methylation on lysine 4 of histone H3 (H3K4me3) is an activating epigenetic mark that is enriched at promoter and promotes expression. It will be helpful in GBM diagnosis and treatment to identify the alteration of H3K4me3 between human GBM and GBM-surrounding tissues. Here, we performed an analysis using next-generation sequencing techniques to identify H3K4me3 modification in a case of GBM and the GBM-surrounding tissues. The results revealed a global decrease in H3K4me3 in GBM, especially at promoters and CpG islands. In GBM, homeobox genes gain H3K4me3, whereas the cell–cell adhesion-related cadherin genes lose H3K4me3. The products of the homeobox genes are highly connected with Ras-signalling and PI3K-Akt signalling pathways. Using The Cancer Genome Atlas (TCGA) data, we inferred the homeobox-regulated genes’ expression is higher in 548 GBM cases than in 27 lower grade glioma cases giving that OLIG2 expression can be a reference. The results suggested that the H3K4me3 alteration is related to the formation and migration of GBM cells. We also found an extremely high reads count at epidermal growth factor receptor (EGFR) promoter, probably due to an amplification of copy number. Our analysis provides a case study about the change of H3K4me3 during shift to GBM. PMID:27160082

  18. The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation

    PubMed Central

    de la Barre, Anne-Elisabeth; Angelov, Dimitri; Molla, Annie; Dimitrov, Stefan

    2001-01-01

    We have studied the role of individual histone N-termini and the phosphorylation of histone H3 in chromosome condensation. Nucleosomes, reconstituted with histone octamers containing different combinations of recombinant full-length and tailless histones, were used as competitors for chromosome assembly in Xenopus egg extracts. Nucleosomes reconstituted with intact octamers inhibited chromosome condensation as efficiently as the native ones, while tailless nucleosomes were unable to affect this process. Importantly, the addition to the extract of particles containing only intact histone H2B strongly interfered with chromosome formation while such an effect was not observed with particles lacking the N-terminal tail of H2B. This demonstrates that the inhibition effect observed in the presence of competitor nucleosomes is mainly due to the N-terminus of this histone, which, therefore, is essential for chromosome condensation. Nucleosomes in which all histones but H3 were tailless did not impede chromosome formation. In addition, when competitor nucleosome particles were reconstituted with full-length H2A, H2B and H4 and histone H3 mutated at the phosphorylable serine 10 or serine 28, their inhibiting efficiency was identical to that of the native particles. Hence, the tail of H3, whether intact or phosphorylated, is not important for chromosome condensation. A novel hypothesis, termed ‘the ready production label’ was suggested to explain the role of histone H3 phosphorylation during cell division. PMID:11707409

  19. Comprehensive histone phosphorylation analysis and identification of Pf14-3-3 protein as a histone H3 phosphorylation reader in malaria parasites.

    PubMed

    Dastidar, Eeshita G; Dzeyk, Kristina; Krijgsveld, Jeroen; Malmquist, Nicholas A; Doerig, Christian; Scherf, Artur; Lopez-Rubio, Jose-Juan

    2013-01-01

    The important role of histone posttranslational modifications, particularly methylation and acetylation, in Plasmodium falciparum gene regulation has been established. However, the role of histone phosphorylation remains understudied. Here, we investigate histone phosphorylation utilizing liquid chromatography and tandem mass spectrometry to analyze histones extracted from asexual blood stages using two improved protocols to enhance preservation of PTMs. Enrichment for phosphopeptides lead to the detection of 14 histone phospho-modifications in P. falciparum. The majority of phosphorylation sites were observed at the N-terminal regions of various histones and were frequently observed adjacent to acetylated lysines. We also report the identification of one novel member of the P. falciparum histone phosphosite binding protein repertoire, Pf14-3-3I. Recombinant Pf14-3-3I protein bound to purified parasite histones. In silico structural analysis of Pf14-3-3 proteins revealed that residues responsible for binding to histone H3 S10ph and/or S28ph are conserved at the primary and the tertiary structure levels. Using a battery of H3 specific phosphopeptides, we demonstrate that Pf14-3-3I preferentially binds to H3S28ph over H3S10ph, independent of modification of neighbouring residues like H3S10phK14ac and H3S28phS32ph. Our data provide key insight into histone phosphorylation sites. The identification of a second member of the histone modification reading machinery suggests a widespread use of histone phosphorylation in the control of various nuclear processes in malaria parasites.

  20. An H3-H4 histone gene pair in the marine copepod Tigriopus californicus, contains an intergenic dyad symmetry element.

    PubMed

    Porter, D; Brown, D; Wells, D

    1991-01-01

    Histone genes are one of the most widely studied multigene families in eucaryotes. Over 200 histone genes have been sequenced, primarily in vertebrates, echinoderms, fungi and plants. We present here the structure and genomic orientation of an H3-H4 histone gene pair from the marine copepod, Tigriopus californicus. These histone gene sequences are the first to be determined for the class Crustacea and among the first to be determined for protostomes. The H4 and H3 genes in Tigriopus are shown to be adjacent, to have opposite polarity, and to contain a 26 bp region of dyad symmetry centrally located within the spacer region between the two genes. A similarly located dyad element has been found in yeast which contributes to the coordinated cell cycle control of the adjacent histone genes. The Tigriopus H3-H4 histone gene pair is clustered with one H2A and two H2B histone genes on a 15 kb genomic Bam H1 fragment. The H4 gene sequence predicts an H4 protein with an unusual serine to threonine substitution at the amino terminal residue. The H3 gene sequence predicts an H3 protein which is identical to the vertebrate H3.2 histone.

  1. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation.

    PubMed

    Feng, Yunpeng; Vlassis, Arsenios; Roques, Céline; Lalonde, Marie-Eve; González-Aguilera, Cristina; Lambert, Jean-Philippe; Lee, Sung-Bau; Zhao, Xiaobei; Alabert, Constance; Johansen, Jens V; Paquet, Eric; Yang, Xiang-Jiao; Gingras, Anne-Claude; Côté, Jacques; Groth, Anja

    2016-01-18

    During DNA replication, thousands of replication origins are activated across the genome. Chromatin architecture contributes to origin specification and usage, yet it remains unclear which chromatin features impact on DNA replication. Here, we perform a RNAi screen for chromatin regulators implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger-containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1 that specifically acetylates histone H3K14, and genomewide analysis shows high enrichment of BRPF3, HBO1 and H3K14ac at ORC1-binding sites and replication origins found in the vicinity of TSSs. Consistent with this, BRPF3 is necessary for H3K14ac at selected origins and efficient origin activation. CDC45 recruitment, but not MCM2-7 loading, is impaired in BRPF3-depleted cells, identifying a BRPF3-dependent function of HBO1 in origin activation that is complementary to its role in licencing. We thus propose that BRPF3-HBO1 acetylation of histone H3K14 around TSS facilitates efficient activation of nearby replication origins. © 2015 The Authors.

  2. Genomic and Gene-Level Distribution of Histone H3 Dimethyl Lysine-27 (H3K27me2) in Arabidopsis

    PubMed Central

    Park, Sunchung; Oh, Sookyung; van Nocker, Steve

    2012-01-01

    Histone lysine methylation patterns underlie much of the functional diversity of nucleosomes in eukaryotes, and an interesting aspect of histone methylation is the potential functional specificity for different methylation states on a given lysine. Trimethylation of histone H3 (H3K27me3) is intimately related to developmental gene silencing through the so-called Polycomb Group (PcG) mechanism. How this modification becomes established at PcG-repressed loci is generally not known, but it has been suggested that it may be facilitated by prior occupancy by H3K27me2. In this study we mapped the genomic and gene-level distribution of H3K27me2 in Arabidopsis thaliana using ChIP and a high-density tiling microarray, and integrated this with previous maps of other chromatin features and gene expression data. At the genome level, H3K27me2 enrichment sites were sparsely distributed across chromosomes, within an average size expected for a single nucleosome, and contrasted with the longer domains seen for H3K27me3. In both heterochromatic and euchromatic segments of the genome, H3K27me2 enrichment was often localized within transposon-related genes, with the longest genomic stretches of this modification corresponding to retroelements. However, H3K27me2 was more frequently found within protein-coding genes. These genes generally also showed moderate enrichment for H3K27me3, but H3K27me2 was strongly depleted within those genes most enriched in H3K27me3. H3K27me2 within highly transcribed genes was at highest levels at transcriptional starts and was strongly depleted throughout the transcribed regions, and reached higher levels at active than at silent promoters. PMID:23285203

  3. Citrullinated histone H3: a novel target for the treatment of sepsis.

    PubMed

    Li, Yongqing; Liu, Zhengcai; Liu, Baoling; Zhao, Ting; Chong, Wei; Wang, Yanming; Alam, Hasan B

    2014-08-01

    We have recently demonstrated that in a rodent model of lipopolysaccharide (LPS)-induced shock, an increase in circulating citrullinated histone H3 (Cit H3) is associated with lethality of sepsis, and treatment with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor (HDACI), significantly improves survival. However, the role of Cit H3 in pathogenesis and therapeutics of sepsis are largely unknown. The present study was designed to test whether treatment with HDACI could inhibit cellular Cit H3 production, and inhibition of peptidylarginine deiminase (PAD, an enzyme producing Cit H3) with Cl-amidine (PAD inhibitor) or neutralization of blood Cit H3 with anti-Cit H3 antibody could improve survival in a clinically relevant mouse model of cecal ligation and puncture (CLP)-induced septic shock. Three experiments were carried out. In experiment I, HL-60 neutrophilic cells grown on a coverslip were treated with LPS (100 ng/mL) in the presence or absence of SAHA (5 μmol) for 3 hours, and subjected to immunostaining with anti-Cit H3 antibody to assess effect of SAHA on Cit H3 production under a fluorescence microscope. The ratio of Cit H3 positive cells was calculated as mean values ± SD (n = 3). In experiment II, male C57BL/6J mice were subjected to CLP, and 1 hour later randomly divided into 2 groups for intraperitoneal injection as follows: (1) Dimethyl sulfoxide (DMSO), (2) SAHA (50 mg/kg) in DMSO, and (3) Cl-amidine (80 mg/kg) in DMSO (n = 10/group). In experiment III, male C57BL/6J mice were divided into control and treatment groups, and subjected to CLP. Two hours later, immunoglobulin (Ig)G and Cit H3 antibody (20 mg/kg IV; n = 5/group) were injected into the control and treatment groups, respectively. Survival was monitored for ≤10 days. In experiment I, LPS induced Cit H3 production in the HL-60 cells, and SAHA treatment inhibited H3 citrullination significantly (P < .05). In experiment II, all vehicle-injected mice died within 3

  4. The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats

    PubMed Central

    Bowman, Andrew; Lercher, Lukas; Singh, Hari R.; Zinne, Daria; Timinszky, Gyula; Carlomagno, Teresa; Ladurner, Andreas G.

    2016-01-01

    Eukaryotic chromatin is a complex yet dynamic structure, which is regulated in part by the assembly and disassembly of nucleosomes. Key to this process is a group of proteins termed histone chaperones that guide the thermodynamic assembly of nucleosomes by interacting with soluble histones. Here we investigate the interaction between the histone chaperone sNASP and its histone H3 substrate. We find that sNASP binds with nanomolar affinity to a conserved heptapeptide motif in the globular domain of H3, close to the C-terminus. Through functional analysis of sNASP homologues we identified point mutations in surface residues within the TPR domain of sNASP that disrupt H3 peptide interaction, but do not completely disrupt binding to full length H3 in cells, suggesting that sNASP interacts with H3 through additional contacts. Furthermore, chemical shift perturbations from 1H-15N HSQC experiments show that H3 peptide binding maps to the helical groove formed by the stacked TPR motifs of sNASP. Our findings reveal a new mode of interaction between a TPR repeat domain and an evolutionarily conserved peptide motif found in canonical H3 and in all histone H3 variants, including CenpA and have implications for the mechanism of histone chaperoning within the cell. PMID:26673727

  5. The COMPASS Family of Histone H3K4 Methylases: Mechanisms of Regulation in Development and Disease Pathogenesis

    PubMed Central

    Shilatifard, Ali

    2014-01-01

    The Saccharomyces cerevisiae Set1/COMPASS was the first histone H3 lysine 4 (H3K4) methylase identified over ten years ago. Since then, it has been demonstrated that Set1/COMPASS and its enzymatic product, H3K4 methylation, is highly conserved across the evolutionary tree. Although there is only one COMPASS in yeast, human cells bear at least six COMPASS family members each capable of methylating H3K4 with non-redundant functions. In yeast, the monoubiquitination of histone H2B by Rad6/Bre1 is required for proper H3K4 and H3K79 trimethylations. This histone crosstalk and its machinery are also highly conserved from yeast to human. In this review, the process of histone H2B monoubiquitination-dependent and independent histone H3K4 methylation as a mark of active transcription, enhancer signatures, and developmentally poised genes will be discussed. The misregulation of histone H2B monoubiquitination and H3K4 methylation results in the pathogenesis of human diseases including cancer. Recent findings in this regard will also be examined. PMID:22663077

  6. PRB1 Is Required for Clipping of the Histone H3 N Terminal Tail in Saccharomyces cerevisiae

    PubMed Central

    Xue, Yong; Vashisht, Ajay A.; Tan, Yuliang; Su, Trent; Wohlschlegel, James A.

    2014-01-01

    Cathepsin L, a lysosomal protein in mouse embryonic stem cells has been shown to clip the histone H3 N- terminus, an activity associated with gene activity during mouse cell development. Glutamate dehydrogenase (GDH) was also identified as histone H3 specific protease in chicken liver, which has been connected to gene expression during aging. In baker’s yeast, Saccharomyces cerevisiae, clipping the histone H3 N-terminus has been associated with gene activation in stationary phase but the protease responsible for the yeast histone H3 endopeptidase activity had not been identified. In searching for a yeast histone H3 endopeptidase, we found that yeast vacuolar protein Prb1 is present in the cellular fraction enriched for the H3 N-terminus endopeptidase activity and this endopeptidase activity is lost in the PRB1 deletion mutant (prb1Δ). In addition, like Cathepsin L and GDH, purified Prb1 from yeast cleaves H3 between Lys23 and Ala24 in the N-terminus in vitro as shown by Edman degradation. In conclusion, our data argue that PRB1 is required for clipping of the histone H3 N-terminal tail in Saccharomyces cerevisiae. PMID:24587380

  7. PRB1 is required for clipping of the histone H3 N terminal tail in Saccharomyces cerevisiae.

    PubMed

    Xue, Yong; Vashisht, Ajay A; Tan, Yuliang; Su, Trent; Wohlschlegel, James A

    2014-01-01

    Cathepsin L, a lysosomal protein in mouse embryonic stem cells has been shown to clip the histone H3 N- terminus, an activity associated with gene activity during mouse cell development. Glutamate dehydrogenase (GDH) was also identified as histone H3 specific protease in chicken liver, which has been connected to gene expression during aging. In baker's yeast, Saccharomyces cerevisiae, clipping the histone H3 N-terminus has been associated with gene activation in stationary phase but the protease responsible for the yeast histone H3 endopeptidase activity had not been identified. In searching for a yeast histone H3 endopeptidase, we found that yeast vacuolar protein Prb1 is present in the cellular fraction enriched for the H3 N-terminus endopeptidase activity and this endopeptidase activity is lost in the PRB1 deletion mutant (prb1Δ). In addition, like Cathepsin L and GDH, purified Prb1 from yeast cleaves H3 between Lys23 and Ala24 in the N-terminus in vitro as shown by Edman degradation. In conclusion, our data argue that PRB1 is required for clipping of the histone H3 N-terminal tail in Saccharomyces cerevisiae.

  8. Changes in the stability of a human H3 histone mRNA during the HeLa cell cycle.

    PubMed Central

    Morris, T D; Weber, L A; Hickey, E; Stein, G S; Stein, J L

    1991-01-01

    A major component of the regulation of histone protein synthesis during the cell cycle is the modulation of the half-life of histone mRNA. We have uncoupled transcriptional and posttranscriptional regulation by using a Drosophila hsp70-human H3 histone fusion gene that produces a marked human H3 histone mRNA upon heat induction. Transcription of this gene can be switched on and off by raising and lowering cell culture temperatures, respectively. HeLa cell lines containing stably integrated copies of the fusion gene were synchronized by double thymidine block. Distinct populations of H3 histone mRNA were produced by heat induction in early S-phase, late S-phase, or G2-phase cells, and the stability of the induced H3 histone mRNA was measured. The H3 histone mRNA induced during early S phase decayed with a half-life of 110 min, whereas the same transcript induced during late S phase had a half-life of 10 to 15 min. The H3 histone mRNA induced in non-S-phase cells is more stable than that induced in late S phase, with a half-life of 40 min. Thus, the stability of histone mRNA is actively regulated throughout the cell cycle. Our results are consistent with an autoregulatory model in which the stability of histone mRNA is determined by the level of free histone protein in the cytoplasm. Images PMID:1986245

  9. Evidence for gene-specific rather than transcription rate-dependent histone H3 exchange in yeast coding regions.

    PubMed

    Gat-Viks, Irit; Vingron, Martin

    2009-02-01

    In eukaryotic organisms, histones are dynamically exchanged independently of DNA replication. Recent reports show that different coding regions differ in their amount of replication-independent histone H3 exchange. The current paradigm is that this histone exchange variability among coding regions is a consequence of transcription rate. Here we put forward the idea that this variability might be also modulated in a gene-specific manner independently of transcription rate. To that end, we study transcription rate-independent replication-independent coding region histone H3 exchange. We term such events relative exchange. Our genome-wide analysis shows conclusively that in yeast, relative exchange is a novel consistent feature of coding regions. Outside of replication, each coding region has a characteristic pattern of histone H3 exchange that is either higher or lower than what was expected by its RNAPII transcription rate alone. Histone H3 exchange in coding regions might be a way to add or remove certain histone modifications that are important for transcription elongation. Therefore, our results that gene-specific coding region histone H3 exchange is decoupled from transcription rate might hint at a new epigenetic mechanism of transcription regulation.

  10. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks.

    PubMed

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-08-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.

  11. A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks

    PubMed Central

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-01-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3–H4. Our first structure shows an H3–H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3–H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2–7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3–H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication. PMID:26167883

  12. Mutation of histone H3 serine 86 disrupts GATA factor Ams2 expression and precise chromosome segregation in fission yeast.

    PubMed

    Lim, Kim Kiat; Ong, Terenze Yao Rui; Tan, Yue Rong; Yang, Eugene Guorong; Ren, Bingbing; Seah, Kwi Shan; Yang, Zhe; Tan, Tsu Soo; Dymock, Brian W; Chen, Ee Sin

    2015-09-15

    Eukaryotic genomes are packed into discrete units, referred to as nucleosomes, by organizing around scaffolding histone proteins. The interplay between these histones and the DNA can dynamically regulate the function of the chromosomal domain. Here, we interrogated the function of a pair of juxtaposing serine residues (S86 and S87) that reside within the histone fold of histone H3. We show that fission yeast cells expressing a mutant histone H3 disrupted at S86 and S87 (hht2-S86AS87A) exhibited unequal chromosome segregation, disrupted transcriptional silencing of centromeric chromatin, and reduced expression of Ams2, a GATA-factor that regulates localization of the centromere-specific histone H3 variant CENP-A. We found that overexpression of ams2(+) could suppress the chromosome missegregation phenotype that arose in the hht2-S86AS87A mutant. We further demonstrate that centromeric localization of SpCENP-A(cnp1-1) was significantly compromised in hht2-S86AS87A, suggesting synergism between histone H3 and the centromere-targeting domain of SpCENP-A. Taken together, our work presents evidence for an uncharacterized serine residue in fission yeast histone H3 that affects centromeric integrity via regulating the expression of the SpCENP-A-localizing Ams2 protein. [173/200 words].

  13. A jumonji (Jarid2) protein complex represses cyclin D1 expression by methylation of histone H3-K9.

    PubMed

    Shirato, Haruki; Ogawa, Satoko; Nakajima, Kuniko; Inagawa, Masayo; Kojima, Mizuyo; Tachibana, Makoto; Shinkai, Yoichi; Takeuchi, Takashi

    2009-01-09

    Covalent modifications of histone tails have critical roles in regulating gene expression. Previously, we identified the jumonji (jmj, Jarid2) gene, the jmjC domain, and a Jmj family. Recently, many Jmj family proteins have been shown to be histone demethylases, and jmjC is the catalytic domain. However, Jmj does not have histone demethylase activity because the jmjC domain lacks conserved residues for binding to cofactors. Independently of these studies, we previously showed that Jmj binds to the cyclin D1 promoter and represses the transcription of cyclin D1. Here, we show the mechanisms by which Jmj represses the transcription of cyclin D1. We found that a protein complex of Jmj had histone methyltransferase activity toward histone H3 lysine 9 (H3-K9). We also found that Jmj bound to the H3-K9 methyltransferases G9a and GLP. Expression of Jmj recruited G9a and GLP to the cyclin D1 promoter and increased H3-K9 methylation. Inactivation of both G9a and GLP, but not of only G9a, inhibited the methylation of H3-K9 in the cyclin D1 promoter and repression of cyclin D1 expression by Jmj. These results suggest that Jmj methylates H3-K9 and represses cyclin D1 expression through G9a and GLP, and that Jmj family proteins can regulate gene expression by not only histone demethylation but also other histone modification.

  14. Analysis of Histones H3 and H4 Reveals Novel and Conserved Post-Translational Modifications in Sugarcane.

    PubMed

    Moraes, Izabel; Yuan, Zuo-Fei; Liu, Shichong; Souza, Glaucia Mendes; Garcia, Benjamin A; Casas-Mollano, J Armando

    2015-01-01

    Histones are the main structural components of the nucleosome, hence targets of many regulatory proteins that mediate processes involving changes in chromatin. The functional outcome of many pathways is "written" in the histones in the form of post-translational modifications that determine the final gene expression readout. As a result, modifications, alone or in combination, are important determinants of chromatin states. Histone modifications are accomplished by the addition of different chemical groups such as methyl, acetyl and phosphate. Thus, identifying and characterizing these modifications and the proteins related to them is the initial step to understanding the mechanisms of gene regulation and in the future may even provide tools for breeding programs. Several studies over the past years have contributed to increase our knowledge of epigenetic gene regulation in model organisms like Arabidopsis, yet this field remains relatively unexplored in crops. In this study we identified and initially characterized histones H3 and H4 in the monocot crop sugarcane. We discovered a number of histone genes by searching the sugarcane ESTs database. The proteins encoded correspond to canonical histones, and their variants. We also purified bulk histones and used them to map post-translational modifications in the histones H3 and H4 using mass spectrometry. Several modifications conserved in other plants, and also novel modified residues, were identified. In particular, we report O-acetylation of serine, threonine and tyrosine, a recently identified modification conserved in several eukaryotes. Additionally, the sub-nuclear localization of some well-studied modifications (i.e., H3K4me3, H3K9me2, H3K27me3, H3K9ac, H3T3ph) is described and compared to other plant species. To our knowledge, this is the first report of histones H3 and H4 as well as their post-translational modifications in sugarcane, and will provide a starting point for the study of chromatin regulation in

  15. POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in Arabidopsis

    PubMed Central

    Kim, Yun Ju; Wang, Ruozhong; Gao, Lei; Li, Dongming; Xu, Chi; Mang, Hyunggon; Jeon, Jien; Chen, Xiangsong; Kwak, June M.; Mo, Beixin; Xiao, Langtao

    2016-01-01

    Histone acetylation is a major epigenetic control mechanism that is tightly linked to the promotion of gene expression. Histone acetylation levels are balanced through the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Arabidopsis HDAC genes (AtHDACs) compose a large gene family, and distinct phenotypes among AtHDAC mutants reflect the functional specificity of individual AtHDACs. However, the mechanisms underlying this functional diversity are largely unknown. Here, we show that POWERDRESS (PWR), a SANT (SWI3/DAD2/N-CoR/TFIII-B) domain protein, interacts with HDA9 and promotes histone H3 deacetylation, possibly by facilitating HDA9 function at target regions. The developmental phenotypes of pwr and hda9 mutants were highly similar. Three lysine residues (K9, K14, and K27) of H3 retained hyperacetylation status in both pwr and hda9 mutants. Genome-wide H3K9 and H3K14 acetylation profiling revealed elevated acetylation at largely overlapping sets of target genes in the two mutants. Highly similar gene-expression profiles in the two mutants correlated with the histone H3 acetylation status in the pwr and hda9 mutants. In addition, PWR and HDA9 modulated flowering time by repressing AGAMOUS-LIKE 19 expression through histone H3 deacetylation in the same genetic pathway. Finally, PWR was shown to physically interact with HDA9, and its SANT2 domain, which is homologous to that of subunits in animal HDAC complexes, showed specific binding affinity to acetylated histone H3. We therefore propose that PWR acts as a subunit in a complex with HDA9 to result in lysine deacetylation of histone H3 at specific genomic targets. PMID:27930340

  16. Distinct Roles of Histone H3 and H2A Tails in Nucleosome Stability

    PubMed Central

    Li, Zhenhai; Kono, Hidetoshi

    2016-01-01

    Nucleosome breathing potentially increases the DNA exposure, which in turn recruits DNA-binding protein and regulates gene transcription. Numerous studies have shown the critical roles of N-terminal tails of histones H3 and H4 in gene expression; however, few studies have focused on the H2A C-terminal tail. Here we present thorough computational studies on a single nucleosome particle showing the linker DNA closing and opening, which is thought to be nucleosome breathing. With our simulation, the H2A C-terminal and H3 N-terminal tails were found to modulate the nucleosome conformation differently. The H2A C-terminal tail regulates nucleosome conformation by binding to linker DNA at different locations, whereas the H3 N-terminal tail regulates linker DNA by binding to it in different patterns. Further MD simulation on tail truncated structures corroborates this analysis. These findings replenish our understanding of the histone tail regulation mechanism on atomic level. PMID:27527579

  17. Multifaceted Histone H3 Methylation and Phosphorylation Readout by the Plant Homeodomain Finger of Human Nuclear Antigen Sp100C.

    PubMed

    Zhang, Xiaojie; Zhao, Dan; Xiong, Xiaozhe; He, Zhimin; Li, Haitao

    2016-06-10

    The decoding of histone post-translational modifications by chromatin-binding modules ("readers") constitutes one major mechanism of epigenetic regulation. Nuclear antigen Sp100 (SPECKLED, 100 kDa), a constitutive component of the promyelocytic leukemia nuclear bodies, plays key roles in intrinsic immunity and transcriptional repression. Sp100C, a splicing isoform specifically up-regulated upon interferon stimulation, harbors a unique tandem plant homeodomain (PHD) finger and bromodomain at its C terminus. Combining structural, quantitative binding, and cellular co-localization studies, we characterized Sp100C PHD finger as an unmethylated histone H3 Lys(4) (H3K4me0) reader that tolerates histone H3 Thr(3) phosphorylation (H3T3ph), histone H3 Lys(9) trimethylation (H3K9me3), and histone H3 Ser(10) phosphorylation (H3S10ph), hallmarks associated with the mitotic chromosome. In contrast, whereas H3K4me0 reader activity is conserved in Sp140, an Sp100C paralog, the multivalent tolerance of H3T3ph, H3K9me3, and H3S10ph was lost for Sp140. The complex structure determined at 2.1 Å revealed a highly coordinated lysine ϵ-amine recognition sphere formed by an extended N-terminal motif for H3K4me0 readout. Interestingly, reader pocket rigidification by disulfide bond formation enhanced H3K4me0 binding by Sp100C. An additional complex structure solved at 2.7 Å revealed that H3T3ph is recognized by the arginine residue, Arg(713), that is unique to the PHD finger of Sp100C. Consistent with a restrictive cellular role of Sp100C, these results establish a direct chromatin targeting function of Sp100C that may regulate transcriptional gene silencing and promyelocytic leukemia nuclear body-mediated intrinsic immunity in response to interferon stimulation.

  18. H3F3A (Histone 3.3) G34W Immunohistochemistry

    PubMed Central

    Amary, Fernanda; Berisha, Fitim; Ye, Hongtao; Gupta, Manu; Gutteridge, Alice; Baumhoer, Daniel; Gibbons, Rebecca; Tirabosco, Roberto; O’Donnell, Paul

    2017-01-01

    Giant cell tumor of bone (GCTB) is a locally aggressive subarticular tumor. Having recently reported that H3.3 G34W mutations are characteristic of this tumor type, we have now investigated the sensitivity and specificity of the anti-histone H3.3 G34W rabbit monoclonal antibody in a wide variety of tumors including histologic mimics of GCTB to assess its value as a diagnostic marker. We also determined the incidence of H3.3 G34 mutations in primary malignant bone tumors as assessed by genotype and H3.3 G34W immunostaining. A total of 3163 tumors were tested. Totally, 213/235 GCTB (90.6%) showed nuclear H3.3 p.G34W immunoreactivity. This was not the case for the rare variants, p.G34L, M, and V, which occurred most commonly in the small bones of the hands, patella, and the axial skeleton. If these sites were excluded from the analysis, H3.3 G34W expression was found in 97.8% of GCTB. Malignant bone tumors initially classified as osteosarcomas were the only other lesions (n=11) that showed G34W expression. Notably an additional 2 previously reported osteosarcomas with a p.G34R mutation were not immunoreactive for the antibody. A total of 11/13 of these malignant H3.3-mutant tumors exhibited an osteoclast-rich component: when imaging was available all but one presented at a subarticular site. We propose that subarticular primary malignant bone sarcoma with H3.3 mutations represent true malignant GCTB, even in the absence of a benign GCTB component. PMID:28505000

  19. DNA methylation and histone H3-K9 modifications contribute to MUC17 expression.

    PubMed

    Kitamoto, Sho; Yamada, Norishige; Yokoyama, Seiya; Houjou, Izumi; Higashi, Michiyo; Goto, Masamichi; Batra, Surinder K; Yonezawa, Suguru

    2011-02-01

    MUC17 glycoprotein is a membrane-associated mucin that is mainly expressed in the digestive tract. It has been suggested that MUC17 expression is correlated with the malignancy potential of pancreatic ductal adenocarcinomas (PDACs). In the present study, we provided the first report of the MUC17 gene expression through epigenetic regulation such as promoter methylation, histone modification and microRNA (miRNA) expression. Near the transcriptional start site, the DNA methylation level of MUC17-negative cancer cell lines (e.g. PANC1) was high, whereas that of MUC17-positive cells (e.g. AsPC-1) was low. Histone H3-K9 (H3-K9) modification status was also closely related to MUC17 expression. Our results indicate that DNA methylation and histone H3-K9 modification in the 5' flanking region play a critical role in MUC17 expression. Furthermore, the hypomethylation status was observed in patients with PDAC. This indicates that the hypomethylation status in the MUC17 promoter could be a novel epigenetic marker for the diagnosis of PDAC. In addition, the result of miRNA microarray analysis showed that five potential miRNA candidates existed. It is also possible that the MUC17 might be post-transcriptionally regulated by miRNA targeting to the 3'-untranslated region of its mRNA. These understandings of the epigenetic changes of MUC17 may be of importance for the diagnosis of carcinogenic risk and the prediction of outcomes for cancer patients.

  20. Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response

    PubMed Central

    Schaefer, Uwe; Mecklenbrauker, Ingrid; Stienen, Astrid; Dewell, Scott; Chen, Marie S.; Rioja, Inmaculada; Parravicini, Valentino; Prinjha, Rab K.; Chandwani, Rohit; MacDonald, Margaret R.; Lee, Kevin; Rice, Charles M.

    2012-01-01

    Effective antiviral immunity depends on the ability of infected cells or cells triggered with virus-derived nucleic acids to produce type I interferon (IFN), which activates transcription of numerous antiviral genes. However, disproportionately strong or chronic IFN expression is a common cause of inflammatory and autoimmune diseases. We describe an epigenetic mechanism that determines cell type–specific differences in IFN and IFN-stimulated gene (ISG) expression in response to exogenous signals. We identify di-methylation of histone H3 at lysine 9 (H3K9me2) as a suppressor of IFN and IFN-inducible antiviral gene expression. We show that levels of H3K9me2 at IFN and ISG correlate inversely with the scope and amplitude of IFN and ISG expression in fibroblasts and dendritic cells. Accordingly, genetic ablation or pharmacological inactivation of lysine methyltransferase G9a, which is essential for the generation of H3K9me2, resulted in phenotypic conversion of fibroblasts into highly potent IFN-producing cells and rendered these cells resistant to pathogenic RNA viruses. In summary, our studies implicate H3K9me2 and enzymes controlling its abundance as key regulators of innate antiviral immunity. PMID:22412156

  1. Histone H3 phosphorylation and elimination of paternal X chromosomes at early cleavages in sciarid flies.

    PubMed

    Escribá, M Carmen; Goday, Clara

    2013-07-15

    In sciarid flies (Diptera, Sciaridae), one or two paternally derived X chromosomes are discarded from the soma at early cleavages to determine the sex of the embryo (XX, females; X0, males). X chromosome(s) elimination is achieved by an abnormal anaphase segregation so that X sister chromatids do not reach the poles and are not included in the daughter nuclei. A cis-acting locus (CE) within the heterochromatin proximal to the centromere is known to regulate X chromosome elimination. By immunofluorescence analysis in early embryos from Sciara ocellaris and Sciara coprophila, we investigated histone H3 phosphorylation at Ser10, Ser28 and Thr3 prior to, and during, the X elimination process. We found that the regular syncytial nuclear divisions are characterized by a gradual loss of H3S10 phosphorylation along the chromosome arms at anaphase. Importantly, the eliminating X chromosomes show a retardation in anaphase chromatid segregation and high levels of H3S10 phosphorylation in the chromosome arms. In the present study, we provide the first evidence linking the hyper-phosphorylated H3 status of the X chromosome with a delay in sister chromatid separation at anaphase. Our findings support the idea that the CE induces a deficiency in H3 dephosphorylation in the paternal X chromosomes to be eliminated.

  2. Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing.

    PubMed

    Tie, Feng; Banerjee, Rakhee; Saiakhova, Alina R; Howard, Benny; Monteith, Kelsey E; Scacheri, Peter C; Cosgrove, Michael S; Harte, Peter J

    2014-03-01

    Trithorax (TRX) antagonizes epigenetic silencing by Polycomb group (PcG) proteins, stimulates enhancer-dependent transcription, and establishes a 'cellular memory' of active transcription of PcG-regulated genes. The mechanisms underlying these TRX functions remain largely unknown, but are presumed to involve its histone H3K4 methyltransferase activity. We report that the SET domains of TRX and TRX-related (TRR) have robust histone H3K4 monomethyltransferase activity in vitro and that Tyr3701 of TRX and Tyr2404 of TRR prevent them from being trimethyltransferases. The trx(Z11) missense mutation (G3601S), which abolishes H3K4 methyltransferase activity in vitro, reduces the H3K4me1 but not the H3K4me3 level in vivo. trx(Z11) also suppresses the impaired silencing phenotypes of the Pc(3) mutant, suggesting that H3K4me1 is involved in antagonizing Polycomb silencing. Polycomb silencing is also antagonized by TRX-dependent H3K27 acetylation by CREB-binding protein (CBP). We show that perturbation of Polycomb silencing by TRX overexpression requires CBP. We also show that TRX and TRR are each physically associated with CBP in vivo, that TRX binds directly to the CBP KIX domain, and that the chromatin binding patterns of TRX and TRR are highly correlated with CBP and H3K4me1 genome-wide. In vitro acetylation of H3K27 by CBP is enhanced on K4me1-containing H3 substrates, and independently altering the H3K4me1 level in vivo, via the H3K4 demethylase LSD1, produces concordant changes in H3K27ac. These data indicate that the catalytic activities of TRX and CBP are physically coupled and suggest that both activities play roles in antagonizing Polycomb silencing, stimulating enhancer activity and cellular memory.

  3. Histone H3 Serine 57 and Lysine 56 Interplay in Transcription Elongation and Recovery from S-Phase Stress

    PubMed Central

    Aslam, Aamir; Logie, Colin

    2010-01-01

    Background Acetylation of lysine 56 of histone H3 plays an important role in the DNA damage response and it has been postulated to play an as yet undefined role in transcription, both in yeast and in higher eukaryotes. Because phosphorylated human histone H3 serine 57 peptides have been detected by mass spectrometry we examined whether H3-S57 phosphorylation interplays with H3-K56 acetylation in vivo. Methodology/Principal Findings To explore the physiological role of H3-S57, H3-K56 was mutated to mimic constitutively (un)acetylated forms of H3-K56 and these were combined with constitutively (un)phosphorylated mimics of H3-S57, in yeast. A phosphorylated serine mimic at position 57 lessened sensitivities to a DNA replication fork inhibitor and to a transcription elongation inhibitor that were caused by an acetylated lysine mimic at position 56, while the same substitution exacerbated sensitivities due to mimicking a constitutive non-acetylated lysine at position 56. Strikingly, opposite results were obtained in the context of a serine to alanine substitution at position 57 of histone H3. Conclusions/Significance The phenotypes elicited and the context-dependent interplay of the H3-K56 and -S57 point mutations that mimic their respective modification states suggest that serine 57 phosphorylation promotes a nucleosomal transaction when lysine 56 is acetylated. We speculate that histone H3-S57 couples H3-K56 acetylation to histone quaternary structures involving arginine 40 on histone H4 helix 1. PMID:20520775

  4. Thermodynamic stability of Hoogsteen and Watson-Crick base pairs in the presence of histone H3-mimicking peptide.

    PubMed

    Pramanik, Smritimoy; Nakamura, Kaori; Usui, Kenji; Nakano, Shu-ichi; Saxena, Sarika; Matsui, Jun; Miyoshi, Daisuke; Sugimoto, Naoki

    2011-03-14

    We found that Hoogsteen base pairs were stabilized by molecular crowding and a histone H3-mimicking peptide, which was not observed for Watson-Crick base pairs. Our findings demonstrate that the type of DNA base pair is critical for the interaction between DNA and histones.

  5. Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36.

    PubMed

    Poulin, Myles B; Schneck, Jessica L; Matico, Rosalie E; McDevitt, Patrick J; Huddleston, Michael J; Hou, Wangfang; Johnson, Neil W; Thrall, Sara H; Meek, Thomas D; Schramm, Vern L

    2016-02-02

    Nuclear receptor SET domain containing protein 2 (NSD2) catalyzes the methylation of histone H3 lysine 36 (H3K36). It is a determinant in Wolf-Hirschhorn syndrome and is overexpressed in human multiple myeloma. Despite the relevance of NSD2 to cancer, there are no potent, selective inhibitors of this enzyme reported. Here, a combination of kinetic isotope effect measurements and quantum chemical modeling was used to provide subangstrom details of the transition state structure for NSD2 enzymatic activity. Kinetic isotope effects were measured for the methylation of isolated HeLa cell nucleosomes by NSD2. NSD2 preferentially catalyzes the dimethylation of H3K36 along with a reduced preference for H3K36 monomethylation. Primary Me-(14)C and (36)S and secondary Me-(3)H3, Me-(2)H3, 5'-(14)C, and 5'-(3)H2 kinetic isotope effects were measured for the methylation of H3K36 using specifically labeled S-adenosyl-l-methionine. The intrinsic kinetic isotope effects were used as boundary constraints for quantum mechanical calculations for the NSD2 transition state. The experimental and calculated kinetic isotope effects are consistent with an SN2 chemical mechanism with methyl transfer as the first irreversible chemical step in the reaction mechanism. The transition state is a late, asymmetric nucleophilic displacement with bond separation from the leaving group at (2.53 Å) and bond making to the attacking nucleophile (2.10 Å) advanced at the transition state. The transition state structure can be represented in a molecular electrostatic potential map to guide the design of inhibitors that mimic the transition state geometry and charge.

  6. Developmentally arrested Austrofundulus limnaeus embryos have changes in post-translational modifications of histone H3.

    PubMed

    Toni, Lee S; Padilla, Pamela A

    2016-02-01

    Although vertebrate embryogenesis is typically a continuous and dynamic process, some embryos have evolved mechanisms to developmentally arrest. The embryos of Austrofundulus limnaeus, a killifish that resides in ephemeral ponds, routinely enter diapause II (DII), a reversible developmental arrest promoted by endogenous cues rather than environmental stress. DII, which starts at 24-26 days post-fertilization and can persist for months, is characterized by a significant decline in heart rate and an arrest of development and differentiation. Thus, A. limnaeus is a unique model to study epigenetic features associated with embryonic arrest. To investigate chromosome structures associated with mitosis or gene expression, we examined the post-translational modifications of histone H3 (phosphorylation of serine 10, mono-, di- and tri-methylation of lysine 4 or 27) in preDII, DII and postDII embryos. As seen by microscopy analysis, DII embryos have a significant decrease in the H3S10P marker for mitotic nuclei and an inner nuclear membrane localization of the H3K27me2 marker associated with silencing of gene expression. ELISA experiments reveal that the levels of methylation at H3K4 and H3K27 are significantly different between preDII, DII and postDII embryos, indicating that there are molecular differences between embryos of different chronological age and stage of development. Furthermore, in DII embryos relative to preDII embryos, there are differences in the level of H3K27me3 and H3K4me3, which may reflect critical chromatin remodeling that occurs prior to arrest of embryogenesis. This work helps lay a foundation for chromatin analysis of vertebrate embryo diapause, an intriguing yet greatly understudied phenomenon.

  7. Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36

    PubMed Central

    Poulin, Myles B.; Schneck, Jessica L.; Matico, Rosalie E.; McDevitt, Patrick J.; Huddleston, Michael J.; Hou, Wangfang; Johnson, Neil W.; Thrall, Sara H.; Meek, Thomas D.; Schramm, Vern L.

    2016-01-01

    Nuclear receptor SET domain containing protein 2 (NSD2) catalyzes the methylation of histone H3 lysine 36 (H3K36). It is a determinant in Wolf–Hirschhorn syndrome and is overexpressed in human multiple myeloma. Despite the relevance of NSD2 to cancer, there are no potent, selective inhibitors of this enzyme reported. Here, a combination of kinetic isotope effect measurements and quantum chemical modeling was used to provide subangstrom details of the transition state structure for NSD2 enzymatic activity. Kinetic isotope effects were measured for the methylation of isolated HeLa cell nucleosomes by NSD2. NSD2 preferentially catalyzes the dimethylation of H3K36 along with a reduced preference for H3K36 monomethylation. Primary Me-14C and 36S and secondary Me-3H3, Me-2H3, 5′-14C, and 5′-3H2 kinetic isotope effects were measured for the methylation of H3K36 using specifically labeled S-adenosyl-l-methionine. The intrinsic kinetic isotope effects were used as boundary constraints for quantum mechanical calculations for the NSD2 transition state. The experimental and calculated kinetic isotope effects are consistent with an SN2 chemical mechanism with methyl transfer as the first irreversible chemical step in the reaction mechanism. The transition state is a late, asymmetric nucleophilic displacement with bond separation from the leaving group at (2.53 Å) and bond making to the attacking nucleophile (2.10 Å) advanced at the transition state. The transition state structure can be represented in a molecular electrostatic potential map to guide the design of inhibitors that mimic the transition state geometry and charge. PMID:26787850

  8. Timing of Transcriptional Quiescence during Gametogenesis Is Controlled by Global Histone H3K4 Demethylation

    PubMed Central

    Xu, Mengshu; Soloveychik, Maria; Ranger, Mathieu; Schertzberg, Michael; Shah, Zarna; Raisner, Ryan; Venkatasubrahmanyan, Shivkumar; Tsui, Kyle; Gebbia, Marinella; Hughes, Tim; van Bakel, Harm; Nislow, Corey; Madhani, Hiten D.; Meneghini, Marc D.

    2013-01-01

    SUMMARY Gametes are among the most highly specialized cells produced during development. Although gametogenesis culminates in transcriptional quiescence in plants and animals, regulatory mechanisms controlling this are unknown. Here, we confirm that gamete differentiation in the single-celled yeast Saccharomyces cerevisiae is accompanied by global transcriptional shutoff following the completion of meiosis. We show that Jhd2, a highly conserved JARID1-family histone H3K4 demethylase, activates protein-coding gene transcription in opposition to this programmed transcriptional shutoff, sustaining the period of productive transcription during spore differentiation. Moreover, using genome-wide nucleosome, H3K4me, and transcript mapping experiments, we demonstrate that JHD2 globally represses intergenic noncoding transcription during this period. The widespread transcriptional defects of JHD2 mutants are associated with precocious differentiation and the production of stress-sensitive spores, demonstrating that Jhd2 regulation of the global postmeiotic transcriptional program is critical for the production of healthy meiotic progeny. PMID:23123093

  9. Timing of transcriptional quiescence during gametogenesis is controlled by global histone H3K4 demethylation.

    PubMed

    Xu, Mengshu; Soloveychik, Maria; Ranger, Mathieu; Schertzberg, Michael; Shah, Zarna; Raisner, Ryan; Venkatasubrahmanyan, Shivkumar; Tsui, Kyle; Gebbia, Marinella; Hughes, Tim; van Bakel, Harm; Nislow, Corey; Madhani, Hiten D; Meneghini, Marc D

    2012-11-13

    Gametes are among the most highly specialized cells produced during development. Although gametogenesis culminates in transcriptional quiescence in plants and animals, regulatory mechanisms controlling this are unknown. Here, we confirm that gamete differentiation in the single-celled yeast Saccharomyces cerevisiae is accompanied by global transcriptional shutoff following the completion of meiosis. We show that Jhd2, a highly conserved JARID1-family histone H3K4 demethylase, activates protein-coding gene transcription in opposition to this programmed transcriptional shutoff, sustaining the period of productive transcription during spore differentiation. Moreover, using genome-wide nucleosome, H3K4me, and transcript mapping experiments, we demonstrate that JHD2 globally represses intergenic noncoding transcription during this period. The widespread transcriptional defects of JHD2 mutants are associated with precocious differentiation and the production of stress-sensitive spores, demonstrating that Jhd2 regulation of the global postmeiotic transcriptional program is critical for the production of healthy meiotic progeny.

  10. The histone chaperone Vps75 forms multiple oligomeric assemblies capable of mediating exchange between histone H3–H4 tetramers and Asf1–H3–H4 complexes

    PubMed Central

    Hammond, Colin M.; Sundaramoorthy, Ramasubramanian; Larance, Mark; Lamond, Angus; Stevens, Michael A.; El-Mkami, Hassane; Norman, David G.; Owen-Hughes, Tom

    2016-01-01

    Vps75 is a histone chaperone that has been historically characterized as homodimer by X-ray crystallography. In this study, we present a crystal structure containing two related tetrameric forms of Vps75 within the crystal lattice. We show Vps75 associates with histones in multiple oligomers. In the presence of equimolar H3–H4 and Vps75, the major species is a reconfigured Vps75 tetramer bound to a histone H3–H4 tetramer. However, in the presence of excess histones, a Vps75 dimer bound to a histone H3–H4 tetramer predominates. We show the Vps75–H3–H4 interaction is compatible with the histone chaperone Asf1 and deduce a structural model of the Vps75–Asf1-H3–H4 (VAH) co-chaperone complex using the Pulsed Electron-electron Double Resonance (PELDOR) technique and cross-linking MS/MS distance restraints. The model provides a molecular basis for the involvement of both Vps75 and Asf1 in Rtt109 catalysed histone H3 K9 acetylation. In the absence of Asf1 this model can be used to generate a complex consisting of a reconfigured Vps75 tetramer bound to a H3–H4 tetramer. This provides a structural explanation for many of the complexes detected biochemically and illustrates the ability of Vps75 to interact with dimeric or tetrameric H3–H4 using the same interaction surface. PMID:27036862

  11. Heterochromatin Protein 1a stimulates histone H3 lysine 36 demethylation by the Drosophila KDM4A demethylase

    PubMed Central

    Lin, Chia-Hui; Li, Bing; Swanson, Selene; Zhang, Ying; Florens, Laurence; Washburn, Michael P.; Abmayr, Susan M.; Workman, Jerry L.

    2008-01-01

    Summary Recent discoveries of histone demethylases demonstrate that histone methylation is reversible. However, mechanisms governing the targeting and regulation of histone demethylation remain elusive. Here we report that a Drosophila melanogaster JmjC domain-containing protein, dKDM4A, is a histone H3K36 demethylase. dKDM4A specifically demethylates H3K36me2 and me3 both in vitro and in vivo. Affinity purification and mass spectrometry analysis revealed that Heterochromatin Protein 1a (HP1a) associates with dKDMA4A. We found that the chromoshadow domain of HP1a and a HP1-interacting motif of dKDM4A are responsible for this interaction. HP1a stimulates the histone H3K36 demethylation activity of dKDM4A and this stimulation depends on the H3K9me binding motif of HP1a. Finally, we provide in vivo evidence suggesting that HP1a and dKDM4A interact with each other and loss of HP1a leads to increased level of histone H3K36me3. Collectively, these results suggest a function of HP1a in transcription facilitating H3K36 demethylation at transcribed and/or heterochromatin regions. PMID:19061644

  12. Hinge and chromoshadow of HP1α participate in recognition of K9 methylated histone H3 in nucleosomes.

    PubMed

    Mishima, Yuichi; Watanabe, Makoto; Kawakami, Toru; Jayasinghe, Chanika D; Otani, Junji; Kikugawa, Yusuke; Shirakawa, Masahiro; Kimura, Hiroshi; Nishimura, Osamu; Aimoto, Saburo; Tajima, Shoji; Suetake, Isao

    2013-01-09

    The majority of the genome in eukaryotes is packaged into transcriptionally inactive chromatin. Heterochromatin protein 1 (HP1) is a major player in the establishment and maintenance of heterochromatin. HP1 specifically recognizes a methylated lysine residue at position 9 in histone H3 through its N-terminal chromo domain (CD). To elucidate the binding properties of HP1α to nucleosomes in vitro, we reconstituted nucleosomes containing histone H3 trimethylated at lysine 9. HP1α exhibited high-affinity binding to nucleosomes containing methylated histone H3 in a nucleosome core-number-dependent manner. The hinge region (HR) connecting the CD and C-terminal chromoshadow domain (CSD), and the CSD contributed to the selective binding of HP1α to histone H3 with trimethylated lysine 9 through weak DNA binding and by suppressing the DNA binding, respectively. We propose that not only the specific recognition of lysine 9 methylation of histone H3 by the CD but also the HR and the CSD cooperatively contribute to the selective binding of HP1α to histone H3 lysine 9 methylated nucleosomes.

  13. Expression and purification of histone H3 proteins containing multiple sites of lysine acetylation using nonsense suppression.

    PubMed

    Young, Isaac A; Mittal, Chitvan; Shogren-Knaak, Michael A

    2016-02-01

    Lysine acetylation is a common post-translational modification, which is especially prevalent in histone proteins in chromatin. A number of strategies exist for generating histone proteins containing lysine acetylation, but an especially attractive approach is to genetically encode acetyl-lysine residues using nonsense suppression. This strategy has been successfully applied to single sites of histone acetylation. However, because histone acetylation can often occur at multiple sites simultaneously, we were interested in determining whether this approach could be extended. Here we show that we can express histone H3 proteins that incorporate up to four sites of lysine acetylation on the histone tail. Because the amount of expressed multi-acetylated histone is reduced relative to the wild type, a purification strategy involving affinity purification and ion exchange chromatography was optimized. This expression and purification strategy ultimately generates H3 histone uniformly acetylated at the desired position at levels and purity sufficient to assemble histone octamers. Histone octamers containing four sites of lysine acetylation were assembled into mononucleosomes and enzymatic assays confirmed that this acetylation largely blocks further acetylation by the yeast SAGA acetyltransferase complex.

  14. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells.

    PubMed

    Wen, Bo; Wu, Hao; Shinkai, Yoichi; Irizarry, Rafael A; Feinberg, Andrew P

    2009-02-01

    Higher eukaryotes must adapt a totipotent genome to specialized cell types with stable but limited functions. One potential mechanism for lineage restriction is changes in chromatin, and differentiation-related chromatin changes have been observed for individual genes. We have taken a genome-wide view of histone H3 lysine 9 dimethylation (H3K9Me2) and find that differentiated tissues show surprisingly large K9-modified regions (up to 4.9 Mb). These regions are highly conserved between human and mouse and are differentiation specific, covering only approximately 4% of the genome in undifferentiated mouse embryonic stem (ES) cells, compared to 31% in differentiated ES cells, approximately 46% in liver and approximately 10% in brain. These modifications require histone methyltransferase G9a and are inversely related to expression of genes within the regions. We term these regions large organized chromatin K9 modifications (LOCKs). LOCKs are substantially lost in cancer cell lines, and they may provide a cell type-heritable mechanism for phenotypic plasticity in development and disease.

  15. Enhancer regions show high histone H3.3 turnover that changes during differentiation

    PubMed Central

    Deaton, Aimee M; Gómez-Rodríguez, Mariluz; Mieczkowski, Jakub; Tolstorukov, Michael Y; Kundu, Sharmistha; Sadreyev, Ruslan I; Jansen, Lars ET; Kingston, Robert E

    2016-01-01

    The organization of DNA into chromatin is dynamic; nucleosomes are frequently displaced to facilitate the ability of regulatory proteins to access specific DNA elements. To gain insight into nucleosome dynamics, and to follow how dynamics change during differentiation, we used a technique called time-ChIP to quantitatively assess histone H3.3 turnover genome-wide during differentiation of mouse ESCs. We found that, without prior assumptions, high turnover could be used to identify regions involved in gene regulation. High turnover was seen at enhancers, as observed previously, with particularly high turnover at super-enhancers. In contrast, regions associated with the repressive Polycomb-Group showed low turnover in ESCs. Turnover correlated with DNA accessibility. Upon differentiation, numerous changes in H3.3 turnover rates were observed, the majority of which occurred at enhancers. Thus, time-ChIP measurement of histone turnover shows that active enhancers are unusually dynamic in ESCs and changes in highly dynamic nucleosomes predominate at enhancers during differentiation. DOI: http://dx.doi.org/10.7554/eLife.15316.001 PMID:27304074

  16. The F box protein partner of paired regulates stability of Drosophila centromeric histone H3, CenH3(CID).

    PubMed

    Moreno-Moreno, Olga; Medina-Giró, Sònia; Torras-Llort, Mònica; Azorín, Fernando

    2011-09-13

    Centromere identity and function is determined by the specific localization of CenH3 (reviewed in [1-7]). Several mechanisms regulate centromeric CenH3 localization, including proteasome-mediated degradation that, both in budding yeast and Drosophila, regulates CenH3 levels and prevents promiscuous misincorporation throughout chromatin [8, 9]. CenH3(CENP-A) proteolysis has also been reported in senescent human cells [10] or upon infection with herpes simplex virus 1 [11]. Little is known, however, about the actual mechanisms that regulate CenH3 proteolysis. Recent work in budding yeast identified Psh1 as an E3-ubiquitin ligase that mediates degradation of CenH3(Cse4p) [12, 13], but E3-ligases regulating CenH3 stability in metazoans are unknown. Here, we report that the F box protein partner of paired (Ppa), which is a variable subunit of the main E3-ligase SCF [14-17], mediates CenH3(CID) stability in Drosophila. Our results show that Ppa depletion results in increased CenH3(CID) levels. Ppa physically interacts with CenH3(CID) through the CATD(CID) that, in the fly, mediates Ppa-dependent CenH3(CID) stability. Altogether, these results strongly suggest that, in Drosophila, SCF(Ppa) regulates CenH3(CID) proteolysis. Interestingly, most known SCF complexes are inactive when, at mitosis, de novo CenH3(CID) deposition takes place at centromeres, suggesting that, in Drosophila, CenH3(CID) deposition and proteolysis are synchronized events.

  17. Histone H3 K56 Hyperacetylation Perturbs Replisomes and Causes DNA Damage

    PubMed Central

    Celic, Ivana; Verreault, Alain; Boeke, Jef D.

    2008-01-01

    Deacetylation of histone H3 K56, regulated by the sirtuins Hst3p and Hst4p, is critical for maintenance of genomic stability. However, the physiological consequences of a lack of H3 K56 deacetylation are poorly understood. Here we show that cells lacking Hst3p and Hst4p, in which H3 K56 is constitutively hyperacetylated, exhibit hallmarks of spontaneous DNA damage, such as activation of the checkpoint kinase Rad53p and upregulation of DNA-damage inducible genes. Consistently, hst3 hst4 cells display synthetic lethality interactions with mutations that cripple genes involved in DNA replication and DNA double-strand break (DSB) repair. In most cases, synthetic lethality depends upon hyperacetylation of H3 K56 because it can be suppressed by mutation of K56 to arginine, which mimics the nonacetylated state. We also show that hst3 hst4 phenotypes can be suppressed by overexpression of the PCNA clamp loader large subunit, Rfc1p, and by inactivation of the alternative clamp loaders CTF18, RAD24, and ELG1. Loss of CTF4, encoding a replisome component involved in sister chromatid cohesion, also suppresses hst3 hst4 phenotypes. Genetic analysis suggests that CTF4 is a part of the K56 acetylation pathway that converges on and modulates replisome function. This pathway represents an important mechanism for maintenance of genomic stability and depends upon proper regulation of H3 K56 acetylation by Hst3p and Hst4p. Our data also suggest the existence of a precarious balance between Rfc1p and the other RFC complexes and that the nonreplicative forms of RFC are strongly deleterious to cells that have genomewide and constitutive H3 K56 hyperacetylation. PMID:18579506

  18. KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans.

    PubMed

    Gacek-Matthews, Agnieszka; Noble, Luke M; Gruber, Clemens; Berger, Harald; Sulyok, Michael; Marcos, Ana T; Strauss, Joseph; Andrianopoulos, Alex

    2015-05-01

    Aspergillus nidulans kdmA encodes a member of the KDM4 family of jumonji histone demethylase proteins, highly similar to metazoan orthologues both within functional domains and in domain architecture. This family of proteins exhibits demethylase activity towards lysines 9 and 36 of histone H3 and plays a prominent role in gene expression and chromosome structure in many species. Mass spectrometry mapping of A. nidulans histones revealed that around 3% of bulk histone H3 carried trimethylated H3K9 (H3K9me3) but more than 90% of histones carried either H3K36me2 or H3K36me3. KdmA functions as H3K36me3 demethylase and has roles in transcriptional regulation. Genetic manipulation of KdmA levels is tolerated without obvious effect in most conditions, but strong phenotypes are evident under various conditions of stress. Transcriptome analysis revealed that - in submerged early and late cultures - between 25% and 30% of the genome is under KdmA influence respectively. Transcriptional imbalance in the kdmA deletion mutant may contribute to the lethal phenotype observed upon exposure of mutant cells to low-density visible light on solid medium. Although KdmA acts as transcriptional co-repressor of primary metabolism genes, it is required for full expression of several genes involved in biosynthesis of secondary metabolites. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  19. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic

    SciTech Connect

    Avdic, Vanja; Zhang, Pamela; Lanouette, Sylvain; Voronova, Anastassia; Skerjanc, Ilona; Couture, Jean-Francois

    2011-08-24

    The SET1 family of methyltransferases carries out the bulk of histone H3 Lys-4 methylation in vivo. One of the common features of this family is the regulation of their methyltransferase activity by a tripartite complex composed of WDR5, RbBP5, and Ash2L. To selectively probe the role of the SET1 family of methyltransferases, we have developed a library of histone H3 peptide mimetics and report herein the characterization of an N{alpha} acetylated form of histone H3 peptide (N{alpha}H3). Binding and inhibition studies reveal that the addition of an acetyl moiety to the N terminus of histone H3 significantly enhances its binding to WDR5 and prevents the stimulation of MLL1 methyltransferase activity by the WDR5-RbBP5-Ash2L complex. The crystal structure of N{alpha}H3 in complex with WDR5 reveals that a high-affinity hydrophobic pocket accommodates the binding of the acetyl moiety. These results provide the structural basis to control WDR5-RbBP5-Ash2L-MLL1 activity and a tool to manipulate stem cell differentiation programs.-Avdic, V., Zhang, P., Lanouette, S., Voronova, A., Skerjanc, I., Couture, J.-F. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic.

  20. H3K23me1 is an evolutionary conserved histone modification associated with CG DNA methylation in Arabidopsis.

    PubMed

    Trejo-Arellano, Minerva S; Mahrez, Walid; Nakamura, Miyuki; Moreno-Romero, Jordi; Nanni, Paolo; Köhler, Claudia; Hennig, Lars

    2017-02-09

    Amino-terminal tails of histones are targets for diverse post-translational modifications whose combinatorial action may constitute a code that will be read and interpreted by cellular proteins to define particular transcriptional states. Here, we describe monomethylation of histone H3 lysine 23 (H3K23me1) as a histone modification not previously described in plants. H3K23me1 is an evolutionary conserved mark in diverse flowering plant species. Chromatin immunoprecipitation followed by high-throughput sequencing in Arabidopsis thaliana showed that H3K23me1 was highly enriched in pericentromeric regions and depleted from chromosome arms. In transposable elements, it co-localized with CG, CHG and CHH DNA methylation as well as with the heterochromatic histone mark H3K9me2. Transposable elements are often rich in H3K23me1 but different families vary in their enrichment: LTR-Gypsy elements are most enriched and RC/Helitron elements are least enriched. The histone methyltransferase KRYPTONITE and normal DNA methylation were required for normal levels of H3K23me1 on transposable elements. Immunostaining experiments confirmed the pericentromeric localization and also showed mild enrichment in less condensed regions. Accordingly, gene bodies of protein coding genes had intermediate H3K23me1 levels, which coexisted with CG DNA methylation. Enrichment of H3K23me1 along gene bodies did not correlate with transcription levels. Together, this work establishes H3K23me1 as a not previously described component of the plant histone code. This article is protected by copyright. All rights reserved.

  1. Histone H3-K9 methyltransferase ESET is essential for early development.

    PubMed

    Dodge, Jonathan E; Kang, Yong-Kook; Beppu, Hideyuki; Lei, Hong; Li, En

    2004-03-01

    Methylation of histone H3 at lysine 9 (H3-K9) mediates heterochromatin formation by forming a binding site for HP1 and also participates in silencing gene expression at euchromatic sites. ESET, G9a, SUV39-h1, SUV39-h2, and Eu-HMTase are histone methyltransferases that catalyze H3-K9 methylation in mammalian cells. Previous studies demonstrate that the SUV39-h proteins are preferentially targeted to the pericentric heterochromatin, and mice lacking both Suv39-h genes show cytogenetic abnormalities and an increased incidence of lymphoma. G9a methylates H3-K9 in euchromatin, and G9a null embryos die at 8.5 days postcoitum (dpc). G9a null embryo stem (ES) cells show altered DNA methylation in the Prader-Willi imprinted region and ectopic expression of the Mage genes. So far, an Eu-HMTase mouse knockout has not been reported. ESET catalyzes methylation of H3-K9 and localizes mainly in euchromatin. To investigate the in vivo function of Eset, we have generated an allele that lacks the entire pre- and post-SET domains and that expresses lacZ under the endogenous regulation of the Eset gene. We found that zygotic Eset expression begins at the blastocyst stage and is ubiquitous during postimplantation mouse development, while the maternal Eset transcripts are present in oocytes and persist throughout preimplantation development. The homozygous mutations of Eset resulted in peri-implantation lethality between 3.5 and 5.5 dpc. Blastocysts null for Eset were recovered but in less than Mendelian ratios. Upon culturing, 18 of 24 Eset(-/-) blastocysts showed defective growth of the inner cell mass and, in contrast to the approximately 65% recovery of wild-type and Eset(+/-) ES cells, no Eset(-/-) ES cell lines were obtained. Global H3-K9 trimethylation and DNA methylation at IAP repeats in Eset(-/-) blastocyst outgrowths were not dramatically altered. Together, these results suggest that Eset is required for peri-implantation development and the survival of ES cells.

  2. Stage and gene specific signatures defined by histones H3K4me2 and H3K27me3 accompany mammalian retina maturation in vivo.

    PubMed

    Popova, Evgenya Y; Xu, Xuming; DeWan, Andrew T; Salzberg, Anna C; Berg, Arthur; Hoh, Josephine; Zhang, Samuel S; Barnstable, Colin J

    2012-01-01

    The epigenetic contribution to neurogenesis is largely unknown. There is, however, growing evidence that posttranslational modification of histones is a dynamic process that shows many correlations with gene expression. Here we have followed the genome-wide distribution of two important histone H3 modifications, H3K4me2 and H3K27me3 during late mouse retina development. The retina provides an ideal model for these studies because of its well-characterized structure and development and also the extensive studies of the retinal transcriptome and its development. We found that a group of genes expressed only in mature rod photoreceptors have a unique signature consisting of de-novo accumulation of H3K4me2, both at the transcription start site (TSS) and over the whole gene, that correlates with the increase in transcription, but no accumulation of H3K27me3 at any stage. By in silico analysis of this unique signature we have identified a larger group of genes that may be selectively expressed in mature rod photoreceptors. We also found that the distribution of H3K4me2 and H3K27me3 on the genes widely expressed is not always associated with their transcriptional levels. Different histone signatures for retinal genes with the same gene expression pattern suggest the diversities of epigenetic regulation. Genes without H3K4me2 and H3K27me3 accumulation at any stage represent a large group of transcripts never expressed in retina. The epigenetic signatures defined by H3K4me2 and H3K27me3 can distinguish cell-type specific genes from widespread transcripts and may be reflective of cell specificity during retina maturation. In addition to the developmental patterns seen in wild type retina, the dramatic changes of histone modification in the retinas of mutant animals lacking rod photoreceptors provide a tool to study the epigenetic changes in other cell types and thus describe a broad range of epigenetic events in a solid tissue in vivo.

  3. Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis

    PubMed Central

    Dubin, Manu; Fuchs, Jörg; Gräf, Ralph; Schubert, Ingo; Nellen, Wolfgang

    2010-01-01

    The centromeric histone H3 variant (CenH3) serves to target the kinetochore to the centromeres and thus ensures correct chromosome segregation during mitosis and meiosis. The Dictyostelium H3-like variant H3v1 was identified as the CenH3 ortholog. Dictyostelium CenH3 has an extended N-terminal domain with no similarity to any other known proteins and a histone fold domain at its C-terminus. Within the histone fold, α-helix 2 (α2) and an extended loop 1 (L1) have been shown to be required for targeting CenH3 to centromeres. Compared to other known and putative CenH3 histones, Dictyostelium CenH3 has a shorter L1, suggesting that the extension is not an obligatory feature. Through ChIP analysis and fluorescence microscopy of live and fixed cells, we provide here the first survey of centromere structure in amoebozoa. The six telocentric centromeres were found to mostly consist of all the DIRS-1 elements and to associate with H3K9me3. During interphase, the centromeres remain attached to the centrosome forming a single CenH3-containing cluster. Loading of Dictyostelium CenH3 onto centromeres occurs at the G2/prophase transition, in contrast to the anaphase/telophase loading of CenH3 observed in metazoans. This suggests that loading during G2/prophase is the ancestral eukaryotic mechanism and that anaphase/telophase loading of CenH3 has evolved more recently after the amoebozoa diverged from the animal linage. PMID:20675719

  4. Ubiquitination of Lysine 867 of the Human SETDB1 Protein Upregulates Its Histone H3 Lysine 9 (H3K9) Methyltransferase Activity

    PubMed Central

    Ishimoto, Kenji; Kawamata, Natsuko; Uchihara, Yoshie; Okubo, Moeka; Fujimoto, Reiko; Gotoh, Eiko; Kakinouchi, Keisuke; Mizohata, Eiichi; Hino, Nobumasa; Okada, Yoshiaki; Mochizuki, Yasuhiro; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Inoue, Tsuyoshi; Tachibana, Keisuke; Doi, Takefumi

    2016-01-01

    Posttranslational modifications (PTMs) of proteins play a crucial role in regulating protein-protein interactions, enzyme activity, subcellular localization, and stability of the protein. SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that regulates the methylation of histone H3 on lysine 9 (H3K9), gene silencing, and transcriptional repression. The C-terminal region of SETDB1 is a key site for PTMs, and is essential for its enzyme activity in mammalian and insect cells. In this study, we aimed to evaluate more precisely the effect of PTMs on the H3K9 methyltransferase activity of SETDB1. Using mass spectrometry analysis, we show that the C-terminal region of human SETDB1 purified from insect cells is ubiquitinated. We also demonstrate that the ubiquitination of lysine 867 of the human SETDB1 is necessary for full H3K9 methyltransferase activity in mammalian cells. Finally, we show that SETDB1 ubiquitination regulates the expression of its target gene, serpin peptidase inhibitor, clade E, member 1 (SERPINE1) by methylating H3K9. These results suggest that the ubiquitination of SETDB1 at lysine 867 controls the expression of its target gene by activating its H3K9 methyltransferase activity. PMID:27798683

  5. Histone H3G34R mutation causes replication stress, homologous recombination defects and genomic instability in S. pombe

    PubMed Central

    Yadav, Rajesh K; Jablonowski, Carolyn M; Fernandez, Alfonso G; Lowe, Brandon R; Henry, Ryan A; Finkelstein, David; Barnum, Kevin J; Pidoux, Alison L; Kuo, Yin-Ming; Huang, Jie; O’Connell, Matthew J; Andrews, Andrew J; Onar-Thomas, Arzu; Allshire, Robin C; Partridge, Janet F

    2017-01-01

    Recurrent somatic mutations of H3F3A in aggressive pediatric high-grade gliomas generate K27M or G34R/V mutant histone H3.3. H3.3-G34R/V mutants are common in tumors with mutations in p53 and ATRX, an H3.3-specific chromatin remodeler. To gain insight into the role of H3-G34R, we generated fission yeast that express only the mutant histone H3. H3-G34R specifically reduces H3K36 tri-methylation and H3K36 acetylation, and mutants show partial transcriptional overlap with set2 deletions. H3-G34R mutants exhibit genomic instability and increased replication stress, including slowed replication fork restart, although DNA replication checkpoints are functional. H3-G34R mutants are defective for DNA damage repair by homologous recombination (HR), and have altered HR protein dynamics in both damaged and untreated cells. These data suggest H3-G34R slows resolution of HR-mediated repair and that unresolved replication intermediates impair chromosome segregation. This analysis of H3-G34R mutant fission yeast provides mechanistic insight into how G34R mutation may promote genomic instability in glioma. DOI: http://dx.doi.org/10.7554/eLife.27406.001 PMID:28718400

  6. Association of H3K9me3 and H3K27me3 repressive histone marks with breast cancer subtypes in the Nurses' Health Study.

    PubMed

    Healey, Megan A; Hu, Rong; Beck, Andrew H; Collins, Laura C; Schnitt, Stuart J; Tamimi, Rulla M; Hazra, Aditi

    2014-10-01

    Repressive histone tail modifications have been associated with molecular breast cancer subtypes. We investigated whether histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 lysine 27 trimethylation (H3K27me3) were associated with tumor features and subtypes while adjusting for prospectively collected reproductive and lifestyle breast cancer risk factors. We have tissue microarray data with immunohistochemical marker information on 804 incident cases of invasive breast cancer diagnosed from 1976-2000 in the Nurses' Health Study. Tissue microarray sections were stained for global H3K9me3 and H3K27me3, and scored into four categories. Multivariate odds ratios (OR) and 95 % confidence intervals (CI) were calculated using logistic regression models for tumor features and subtypes, adjusting for breast cancer risk factors. While there were no significant associations between H3K9me3 and tumor features, H3K27me3 was significantly associated with lower grade tumors compared to high grade tumors in the multivariate model (OR = 1.95, 95 % CI 1.35-2.81, p = 0.0004). H3K27me3 was suggestively associated with estrogen receptor-positive (ER+) tumors (OR = 1.47, 95 % CI 0.97-2.23, p = 0.07). In subtype analyses, H3K27me3 was positively associated with the luminal A subtype compared to all other subtypes (OR = 1.42, 95 % CI 1.14-1.77, p = 0.002), and was inversely associated with HER2-type (OR = 0.58, 95 % CI 0.37-0.91, p = 0.02) and basal-like breast cancer (OR = 0.52, 95 % CI 0.36-0.76, p = 0.0006). In the largest immunohistochemical examination of H3K9me3 and H3K27me3 in breast cancer, we found that H3K27me3 positivity, but not H3K9me3, was associated with lower grade tumors and the luminal A subtype after adjusting for reproductive and lifestyle breast cancer risk factors.

  7. Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation

    PubMed Central

    Soloveychik, Maria; Xu, Mengshu; Zaslaver, Olga; Lee, Kwanyin; Narula, Ashrut; Jiang, River; Rosebrock, Adam P.; Caudy, Amy A.; Meneghini, Marc D.

    2016-01-01

    Histone demethylation by Jumonji-family proteins is coupled with the decarboxylation of α-ketoglutarate (αKG) to yield succinate, prompting hypotheses that their activities are responsive to levels of these metabolites in the cell. Consistent with this paradigm we show here that the Saccharomyces cerevisiae Jumonji demethylase Jhd2 opposes the accumulation of H3K4me3 in fermenting cells only when they are nutritionally manipulated to contain an elevated αKG/succinate ratio. We also find that Jhd2 opposes H3K4me3 in respiratory cells that do not exhibit such an elevated αKG/succinate ratio. While jhd2∆ caused only limited gene expression defects in fermenting cells, transcript profiling and physiological measurements show that JHD2 restricts mitochondrial respiratory capacity in cells grown in non-fermentable carbon in an H3K4me-dependent manner. In association with these phenotypes, we find that JHD2 limits yeast proliferative capacity under physiologically challenging conditions as measured by both replicative lifespan and colony growth on non-fermentable carbon. JHD2’s impact on nutrient response may reflect an ancestral role of its gene family in mediating mitochondrial regulation. PMID:27897198

  8. The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression.

    PubMed

    Yang, Yong-Jin; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung

    2010-01-01

    Parafibromin, a component of the RNA polymerase II-associated PAF1 complex, is a tumor suppressor linked to hyperparathyroidism-jaw tumor syndrome and sporadic parathyroid carcinoma. Parafibromin induces cell cycle arrest by repressing cyclin D1 via an unknown mechanism. Here, we show that parafibromin interacts with the histone methyltransferase, SUV39H1, and functions as a transcriptional repressor. The central region (128-227 amino acids) of parafibromin is important for both the interaction with SUV39H1 and transcriptional repression. Parafibromin associated with the promoter and coding regions of cyclin D1 and was required for the recruitment of SUV39H1 and the induction of H3 K9 methylation but not H3 K4 methylation. RNA interference analysis showed that SUV39H1 was critical for cyclin D1 repression. These data suggest that parafibromin plays an unexpected role as a repressor in addition to its widely known activity associated with transcriptional activation. Parafibromin as a part of the PAF1 complex might downregulate cyclin D1 expression by integrating repressive H3 K9 methylation during transcription.

  9. A sequence in the Drosophila H3-H4 promoter triggers 1 Histone Locus Body assembly and biosynthesis of replication-coupled histone mRNAs

    PubMed Central

    Salzler, Harmony R.; Tatomer, Deirdre C.; Malek, Pamela Y.; McDaniel, Stephen L.; Orlando, Anna N.; Marzluff, William F.; Duronio, Robert J.

    2013-01-01

    Compartmentalization of RNA biosynthetic factors into nuclear bodies (NBs) is a ubiquitous feature of eukaryotic cells. How NBs initially assemble and ultimately affect gene expression remains unresolved. The histone locus body (HLB) contains factors necessary for replication-coupled histone mRNA transcription and processing and associates with histone gene clusters. Using a transgenic assay for ectopic Drosophila HLB assembly, we show that a sequence located between, and transcription from, the divergently transcribed H3-H4 genes nucleates HLB formation and activates other histone genes in the histone gene cluster. In the absence of transcription from the H3-H4 promoter, “proto-HLBs”, containing only a subset of HLB components, form and the adjacent histone H2a-H2b genes are not expressed. Proto-HLBs also transiently form in mutant embryos with the histone locus deleted. We conclude that HLB assembly occurs through a stepwise process involving stochastic interactions of individual components that localize to a specific sequence in the H3-H4 promoter. PMID:23537633

  10. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences.

    PubMed Central

    Vidali, G; Boffa, L C; Bradbury, E M; Allfrey, V G

    1978-01-01

    Exposure of HeLa cells to Na butyrate leads to an accumulation of multiacetylated forms of histones H3 and H4. Our studies of histone acetylation in HeLa S-3 cells show that 7 mM butyrate suppresses the deacetylation of histones without influencing the rate of radioactive acetate incorporation. An alteration in nucleosome structure in highly acetylated chromatin is indicated by an increased rate of DNA degradation by DNase I. A close association of acetylated histones with the DNase I-sensitive sequences is confirmed by the finding that histones remaining after limited DNase I digestion are depleted in the multiacetylated forms of histones H3 and H4. DNase I treatment has also been found to selectively release [3H]acetyl-labeled H3 and H4 from avian erythrocyte nuclei under conditions previously shown to preferentially degrade the globlin genes in erthyrocyte chromatin. Our results are consistent with the view that histone acetylation provides a key to the mechanism for altering chromatin structure at the nucleosomal level, and that this may explain the selective DNase I sensitivity of transcriptionally active DNA sequences in different cell types. PMID:276864

  11. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies.

    PubMed

    Thakar, Amit; Gupta, Pooja; Ishibashi, Toyotaka; Finn, Ron; Silva-Moreno, Begonia; Uchiyama, Susumu; Fukui, Kiichi; Tomschik, Miroslav; Ausio, Juan; Zlatanova, Jordanka

    2009-11-24

    Histone variants play important roles in regulation of chromatin structure and function. To understand the structural role played by histone variants H2A.Z and H3.3, both of which are implicated in transcription regulation, we conducted extensive biochemical and biophysical analysis on mononucleosomes reconstituted from either random-sequence DNA derived from native nucleosomes or a defined DNA nucleosome positioning sequence and recombinant human histones. Using established electrophoretic and sedimentation analysis methods, we compared the properties of nucleosomes containing canonical histones and histone variants H2A.Z and H3.3 (in isolation or in combination). We find only subtle differences in the compaction and stability of the particles. Interestingly, both H2A.Z and H3.3 affect nucleosome positioning, either creating new positions or altering the relative occupancy of the existing nucleosome position space. On the other hand, only H2A.Z-containing nucleosomes exhibit altered linker histone binding. These properties could be physiologically significant as nucleosome positions and linker histone binding partly determine factor binding accessibility.

  12. PHD Finger Recognition of Unmodified Histone H3R2 Links UHRF1 to Regulation of Euchromatic Gene Expression

    SciTech Connect

    Rajakumara, Eerappa; Wang, Zhentian; Ma, Honghui; Hu, Lulu; Chen, Hao; Lin, Yan; Guo, Rui; Wu, Feizhen; Li, Haitao; Lan, Fei; Shi, Yujiang Geno; Xu, Yanhui; Patel, Dinshaw J.; Shi, Yang

    2011-08-29

    Histone methylation occurs on both lysine and arginine residues, and its dynamic regulation plays a critical role in chromatin biology. Here we identify the UHRF1 PHD finger (PHD{sub UHRF1}), an important regulator of DNA CpG methylation, as a histone H3 unmodified arginine 2 (H3R2) recognition modality. This conclusion is based on binding studies and cocrystal structures of PHD{sub UHRF1} bound to histone H3 peptides, where the guanidinium group of unmodified R2 forms an extensive intermolecular hydrogen bond network, with methylation of H3R2, but not H3K4 or H3K9, disrupting complex formation. We have identified direct target genes of UHRF1 from microarray and ChIP studies. Importantly, we show that UHRF1's ability to repress its direct target gene expression is dependent on PHD{sub UHRF1} binding to unmodified H3R2, thereby demonstrating the functional importance of this recognition event and supporting the potential for crosstalk between histone arginine methylation and UHRF1 function.

  13. PHD Finger Recognition of Unmodified Histone H3R2 Links UHRF1 to Regulation of Euchromatic Gene Expression

    SciTech Connect

    E Rajakumara; Z Wang; H Ma; L Hu; H Chen; Y Lin; R Guo; F Wu; H Li; et al.

    2011-12-31

    Histone methylation occurs on both lysine and arginine residues, and its dynamic regulation plays a critical role in chromatin biology. Here we identify the UHRF1 PHD finger (PHD{sub UHRF1}), an important regulator of DNA CpG methylation, as a histone H3 unmodified arginine 2 (H3R2) recognition modality. This conclusion is based on binding studies and cocrystal structures of PHD{sub UHRF1} bound to histone H3 peptides, where the guanidinium group of unmodified R2 forms an extensive intermolecular hydrogen bond network, with methylation of H3R2, but not H3K4 or H3K9, disrupting complex formation. We have identified direct target genes of UHRF1 from microarray and ChIP studies. Importantly, we show that UHRF1's ability to repress its direct target gene expression is dependent on PHD{sub UHRF1} binding to unmodified H3R2, thereby demonstrating the functional importance of this recognition event and supporting the potential for crosstalk between histone arginine methylation and UHRF1 function.

  14. PHD Finger Recognition of Unmodified Histone H3R2 Links UHRF1 to Regulation of Euchromatic Gene Expression

    PubMed Central

    Ma, Honghui; Hu, Lulu; Chen, Hao; Lin, Yan; Guo, Rui; Wu, Feizhen; Li, Haitao; Lan, Fei; Shi, Yujiang Geno; Xu, Yanhui; Patel, Dinshaw J.; Shi, Yang

    2015-01-01

    SUMMARY Histone methylation occurs on both lysine and arginine residues, and its dynamic regulation plays a critical role in chromatin biology. Here we identify the UHRF1 PHD finger (PHDUHRF1), an important regulator of DNA CpG methylation, as a histone H3 unmodified arginine 2 (H3R2) recognition modality. This conclusion is based on binding studies and cocrystal structures of PHDUHRF1 bound to histone H3 peptides, where the guanidinium group of unmodified R2 forms an extensive intermolecular hydrogen bond network, with methylation of H3R2, but not H3K4 or H3K9, disrupting complex formation. We have identified direct target genes of UHRF1 from microarray and ChIP studies. Importantly, we show that UHRF1's ability to repress its direct target gene expression is dependent on PHDUHRF1 binding to unmodified H3R2, thereby demonstrating the functional importance of this recognition event and supporting the potential for crosstalk between histone arginine methylation and UHRF1 function. PMID:21777816

  15. A mouse speciation gene encodes a meiotic histone H3 methyltransferase.

    PubMed

    Mihola, Ondrej; Trachtulec, Zdenek; Vlcek, Cestmir; Schimenti, John C; Forejt, Jiri

    2009-01-16

    Speciation genes restrict gene flow between the incipient species and related taxa. Three decades ago, we mapped a mammalian speciation gene, hybrid sterility 1 (Hst1), in the intersubspecific hybrids of house mouse. Here, we identify this gene as Prdm9, encoding a histone H3 lysine 4 trimethyltransferase. We rescued infertility in male hybrids with bacterial artificial chromosomes carrying Prdm9 from a strain with the "fertility" Hst1(f) allele. Sterile hybrids display down-regulated microrchidia 2B (Morc2b) and fail to compartmentalize gammaH2AX into the pachynema sex (XY) body. These defects, seen also in Prdm9-null mutants, are rescued by the Prdm9 transgene. Identification of a vertebrate hybrid sterility gene reveals a role for epigenetics in speciation and opens a window to a hybrid sterility gene network.

  16. Characterization of Centromeric Histone H3 (CENH3) Variants in Cultivated and Wild Carrots (Daucus sp.)

    PubMed Central

    Dunemann, Frank; Schrader, Otto; Budahn, Holger; Houben, Andreas

    2014-01-01

    In eukaryotes, centromeres are the assembly sites for the kinetochore, a multi-protein complex to which spindle microtubules are attached at mitosis and meiosis, thereby ensuring segregation of chromosomes during cell division. They are specified by incorporation of CENH3, a centromere specific histone H3 variant which replaces canonical histone H3 in the nucleosomes of functional centromeres. To lay a first foundation of a putative alternative haploidization strategy based on centromere-mediated genome elimination in cultivated carrots, in the presented research we aimed at the identification and cloning of functional CENH3 genes in Daucus carota and three distantly related wild species of genus Daucus varying in basic chromosome numbers. Based on mining the carrot transcriptome followed by a subsequent PCR-based cloning, homologous coding sequences for CENH3s of the four Daucus species were identified. The ORFs of the CENH3 variants were very similar, and an amino acid sequence length of 146 aa was found in three out of the four species. Comparison of Daucus CENH3 amino acid sequences with those of other plant CENH3s as well as their phylogenetic arrangement among other dicot CENH3s suggest that the identified genes are authentic CENH3 homologs. To verify the location of the CENH3 protein in the kinetochore regions of the Daucus chromosomes, a polyclonal antibody based on a peptide corresponding to the N-terminus of DcCENH3 was developed and used for anti-CENH3 immunostaining of mitotic root cells. The chromosomal location of CENH3 proteins in the centromere regions of the chromosomes could be confirmed. For genetic localization of the CENH3 gene in the carrot genome, a previously constructed linkage map for carrot was used for mapping a CENH3-specific simple sequence repeat (SSR) marker, and the CENH3 locus was mapped on the carrot chromosome 9. PMID:24887084

  17. Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.).

    PubMed

    Dunemann, Frank; Schrader, Otto; Budahn, Holger; Houben, Andreas

    2014-01-01

    In eukaryotes, centromeres are the assembly sites for the kinetochore, a multi-protein complex to which spindle microtubules are attached at mitosis and meiosis, thereby ensuring segregation of chromosomes during cell division. They are specified by incorporation of CENH3, a centromere specific histone H3 variant which replaces canonical histone H3 in the nucleosomes of functional centromeres. To lay a first foundation of a putative alternative haploidization strategy based on centromere-mediated genome elimination in cultivated carrots, in the presented research we aimed at the identification and cloning of functional CENH3 genes in Daucus carota and three distantly related wild species of genus Daucus varying in basic chromosome numbers. Based on mining the carrot transcriptome followed by a subsequent PCR-based cloning, homologous coding sequences for CENH3s of the four Daucus species were identified. The ORFs of the CENH3 variants were very similar, and an amino acid sequence length of 146 aa was found in three out of the four species. Comparison of Daucus CENH3 amino acid sequences with those of other plant CENH3s as well as their phylogenetic arrangement among other dicot CENH3s suggest that the identified genes are authentic CENH3 homologs. To verify the location of the CENH3 protein in the kinetochore regions of the Daucus chromosomes, a polyclonal antibody based on a peptide corresponding to the N-terminus of DcCENH3 was developed and used for anti-CENH3 immunostaining of mitotic root cells. The chromosomal location of CENH3 proteins in the centromere regions of the chromosomes could be confirmed. For genetic localization of the CENH3 gene in the carrot genome, a previously constructed linkage map for carrot was used for mapping a CENH3-specific simple sequence repeat (SSR) marker, and the CENH3 locus was mapped on the carrot chromosome 9.

  18. Social exclusion changes histone modifications H3K4me3 and H3K27ac in liver tissue of wild house mice.

    PubMed

    Krause, Linda; Haubold, Bernhard; Börsch-Haubold, Angelika G

    2015-01-01

    Wild house mice form social hierarchies with aggressive males defending territories, in which females, young mice and submissive adult males share nests. In contrast, socially excluded males are barred from breeding groups, have numerous bite wounds and patches of thinning fur. Since their feeding times are often disrupted, we investigated whether social exclusion leads to changes in epigenetic marks of metabolic genes in liver tissue. We used chromatin immunoprecipitation and quantitative PCR to measure enrichment of two activating histone marks at 15 candidate loci. The epigenetic profiles of healthy males sampled from nest boxes differed significantly from the profiles of ostracized males caught outside of nests and showing bite wounds indicative of social exclusion. Enrichment of histone-3 lysine-4 trimethylation (H3K4me3) changed significantly at genes Cyp4a14, Gapdh, Nr3c1, Pck1, Ppara, and Sqle. Changes at histone-3 lysine-27 acetylation (H3K27ac) marks were detected at genes Fasn, Nr3c1, and Plin5. A principal components analysis separated the socialized from the ostracized mice. This was independent of body weight for the H3K4me3 mark, and partially dependent for H3K27ac. There was no separation, however, between healthy males that had been sampled from two different nests. A hierarchical cluster analysis also separated the two phenotypes, which was independent of body weight for both markers. Our study shows that a period of social exclusion during adult life leads to quantitative changes in histone modification patterns in mouse liver tissue. Similar epigenetic changes might occur during the development of stress-induced metabolic disorders in humans.

  19. Histone H3K4 methylation regulates deactivation of the spindle assembly checkpoint through direct binding of Mad2.

    PubMed

    Schibler, Andria; Koutelou, Evangelia; Tomida, Junya; Wilson-Pham, Marenda; Wang, Li; Lu, Yue; Cabrera, Alexa Parra; Chosed, Renee J; Li, Wenqian; Li, Bing; Shi, Xiaobing; Wood, Richard D; Dent, Sharon Y R

    2016-05-15

    Histone H3 methylation on Lys4 (H3K4me) is associated with active gene transcription in all eukaryotes. In Saccharomyces cerevisiae, Set1 is the sole lysine methyltransferase required for mono-, di-, and trimethylation of this site. Although H3K4me3 is linked to gene expression, whether H3K4 methylation regulates other cellular processes, such as mitosis, is less clear. Here we show that both Set1 and H3K4 mutants display a benomyl resistance phenotype that requires components of the spindle assembly checkpoint (SAC), including Bub3 and Mad2. These proteins inhibit Cdc20, an activator of the anaphase-promoting complex/cyclosome (APC/C). Mutations in Cdc20 that block Mad2 interactions suppress the benomyl resistance of both set1 and H3K4 mutant cells. Furthermore, the HORMA domain in Mad2 directly binds H3, identifying a new histone H3 "reader" motif. Mad2 undergoes a conformational change important for execution of the SAC. We found that the closed (active) conformation of both yeast and human Mad2 is capable of binding methylated H3K4, but, in contrast, the open (inactive) Mad2 conformation limits interaction with methylated H3. Collectively, our data indicate that interactions between Mad2 and H3K4 regulate resolution of the SAC by limiting closed Mad2 availability for Cdc20 inhibition.

  20. A PWWP Domain of Histone-Lysine N-Methyltransferase NSD2 Binds to Dimethylated Lys-36 of Histone H3 and Regulates NSD2 Function at Chromatin*

    PubMed Central

    Sankaran, Saumya M.; Wilkinson, Alex W.; Elias, Joshua E.; Gozani, Or

    2016-01-01

    The readout of histone modifications plays a critical role in chromatin-regulated processes. Dimethylation at Lys-36 on histone H3 (H3K36me2) is associated with actively transcribed genes, and global up-regulation of this modification is associated with several cancers. However, the molecular mechanism by which H3K36me2 is sensed and transduced to downstream biological outcomes remains unclear. Here we identify a PWWP domain within the histone lysine methyltransferase and oncoprotein NSD2 that preferentially binds to nucleosomes containing H3K36me2. In cells, the NSD2 PWWP domain interaction with H3K36me2 plays a role in stabilizing NSD2 at chromatin. Furthermore, NSD2's ability to induce global increases in H3K36me2 via its enzymatic activity, and consequently promote cellular proliferation, is compromised by mutations within the PWWP domain that specifically abrogate H3K36me2-recognition. Together, our results identify a pivotal role for NSD2 binding to its catalytic product in regulating its cellular functions, and suggest a model for how this interaction may facilitate epigenetic spreading and propagation of H3K36me2. PMID:26912663

  1. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis.

    PubMed

    Tachibana, Makoto; Sugimoto, Kenji; Nozaki, Masami; Ueda, Jun; Ohta, Tsutomu; Ohki, Misao; Fukuda, Mikiko; Takeda, Naoki; Niida, Hiroyuki; Kato, Hiroyuki; Shinkai, Yoichi

    2002-07-15

    Covalent modification of histone tails is crucial for transcriptional regulation, mitotic chromosomal condensation, and heterochromatin formation. Histone H3 lysine 9 (H3-K9) methylation catalyzed by the Suv39h family proteins is essential for establishing the architecture of pericentric heterochromatin. We recently identified a mammalian histone methyltransferase (HMTase), G9a, which has strong HMTase activity towards H3-K9 in vitro. To investigate the in vivo functions of G9a, we generated G9a-deficient mice and embryonic stem (ES) cells. We found that H3-K9 methylation was drastically decreased in G9a-deficient embryos, which displayed severe growth retardation and early lethality. G9a-deficient ES cells also exhibited reduced H3-K9 methylation compared to wild-type cells, indicating that G9a is a dominant H3-K9 HMTase in vivo. Importantly, the loss of G9a abolished methylated H3-K9 mostly in euchromatic regions. Finally, G9a exerted a transcriptionally suppressive function that depended on its HMTase activity. Our results indicate that euchromatic H3-K9 methylation regulated by G9a is essential for early embryogenesis and is involved in the transcriptional repression of developmental genes.

  2. MMP-9 facilitates selective proteolysis of the histone H3 tail at genes necessary for proficient osteoclastogenesis

    PubMed Central

    Kim, Kyunghwan; Punj, Vasu; Kim, Jin-Man; Lee, Sunyoung; Ulmer, Tobias S.; Lu, Wange; Rice, Judd C.; An, Woojin

    2016-01-01

    Although limited proteolysis of the histone H3 N-terminal tail (H3NT) is frequently observed during mammalian differentiation, the specific genomic sites targeted for H3NT proteolysis and the functional significance of H3NT cleavage remain largely unknown. Here we report the first method to identify and examine H3NT-cleaved regions in mammals, called chromatin immunoprecipitation (ChIP) of acetylated chromatin (ChIPac). By applying ChIPac combined with deep sequencing (ChIPac-seq) to an established cell model of osteoclast differentiation, we discovered that H3NT proteolysis is selectively targeted near transcription start sites of a small group of genes and that most H3NT-cleaved genes displayed significant expression changes during osteoclastogenesis. We also discovered that the principal H3NT protease of osteoclastogenesis is matrix metalloproteinase 9 (MMP-9). In contrast to other known H3NT proteases, MMP-9 primarily cleaved H3K18-Q19 in vitro and in cells. Furthermore, our results support CBP/p300-mediated acetylation of H3K18 as a central regulator of MMP-9 H3NT protease activity both in vitro and at H3NT cleavage sites during osteoclastogenesis. Importantly, we found that abrogation of H3NT proteolysis impaired osteoclastogenic gene activation concomitant with defective osteoclast differentiation. Our collective results support the necessity of MMP-9-dependent H3NT proteolysis in regulating gene pathways required for proficient osteoclastogenesis. PMID:26744418

  3. The expression and nuclear deposition of histone H3.1 in murine oocytes and preimplantation embryos.

    PubMed

    Kawamura, Machika; Akiyama, Tomohiko; Tsukamoto, Satoshi; Suzuki, Masataka G; Aoki, Fugaku

    2012-01-01

    Differentiated oocytes acquire totipotency through fertilization. During this transition, genome-wide chromatin remodeling occurs, which leads to change in gene expression. However, the mechanism that underlies this global change in chromatin structure has not been fully elucidated. Histone variants play a key role in defining chromatin structure and are implicated in inheritance of epigenetic information. In this study, we analyzed the nuclear localization and expression of H3.1 to elucidate the role of this histone variant in chromatin remodeling during oogenesis and preimplantation development. Analysis using Flag-tagged H3.1 transgenic mice revealed that Flag-H3.1 was not present in differentiated oocytes or early preimplantation embryos before the morula stage, although Flag-H3.1 mRNA was expressed at all stages examined. In addition, the expression levels of endogenous H3.1 genes were low at the stages where H3.1 was not present in chromatin. These results suggest that H3.1 is not incorporated into chromatin due to the inactivity of the histone chaperone and low mRNA expression level. The significance of the dynamics of H3.1 is evaluated in terms of chromatin remodeling that takes place during development.

  4. The BAH domain of Rsc2 is a histone H3 binding domain

    PubMed Central

    Chambers, Anna L.; Pearl, Laurence H.; Oliver, Antony W.; Downs, Jessica A.

    2013-01-01

    Bromo-adjacent homology (BAH) domains are commonly found in chromatin-associated proteins and fall into two classes; Remodels the Structure of Chromatin (RSC)-like or Sir3-like. Although Sir3-like BAH domains bind nucleosomes, the binding partners of RSC-like BAH domains are currently unknown. The Rsc2 subunit of the RSC chromatin remodeling complex contains an RSC-like BAH domain and, like the Sir3-like BAH domains, we find Rsc2 BAH also interacts with nucleosomes. However, unlike Sir3-like BAH domains, we find that Rsc2 BAH can bind to recombinant purified H3 in vitro, suggesting that the mechanism of nucleosome binding is not conserved. To gain insight into the Rsc2 BAH domain, we determined its crystal structure at 2.4 Å resolution. We find that it differs substantially from Sir3-like BAH domains and lacks the motifs in these domains known to be critical for making contacts with histones. We then go on to identify a novel motif in Rsc2 BAH that is critical for efficient H3 binding in vitro and show that mutation of this motif results in defective Rsc2 function in vivo. Moreover, we find this interaction is conserved across Rsc2-related proteins. These data uncover a binding target of the Rsc2 family of BAH domains and identify a novel motif that mediates this interaction. PMID:23907388

  5. Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function.

    PubMed

    Bergmann, Jan H; Jakubsche, Julia N; Martins, Nuno M; Kagansky, Alexander; Nakano, Megumi; Kimura, Hiroshi; Kelly, David A; Turner, Bryan M; Masumoto, Hiroshi; Larionov, Vladimir; Earnshaw, William C

    2012-01-15

    Human kinetochores are transcriptionally active, producing very low levels of transcripts of the underlying alpha-satellite DNA. However, it is not known whether kinetochores can tolerate acetylated chromatin and the levels of transcription that are characteristic of housekeeping genes, or whether kinetochore-associated 'centrochromatin', despite being transcribed at a low level, is essentially a form of repressive chromatin. Here, we have engineered two types of acetylated chromatin within the centromere of a synthetic human artificial chromosome. Tethering a minimal NF-κB p65 activation domain within kinetochore-associated chromatin produced chromatin with high levels of histone H3 acetylated on lysine 9 (H3K9ac) and an ~10-fold elevation in transcript levels, but had no substantial effect on kinetochore assembly or function. By contrast, tethering the herpes virus VP16 activation domain produced similar modifications in the chromatin but resulted in an ~150-fold elevation in transcripts, approaching the level of transcription of an endogenous housekeeping gene. This rapidly inactivated kinetochores, causing a loss of assembled CENP-A and blocking further CENP-A assembly. Our data reveal that functional centromeres in vivo show a remarkable plasticity--kinetochores tolerate profound changes to their chromatin environment, but appear to be critically sensitive to the level of centromeric transcription.

  6. The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4–DNA complexes

    PubMed Central

    Donham, Douglas C.; Scorgie, Jean K.; Churchill, Mair E. A.

    2011-01-01

    The deposition of the histones H3/H4 onto DNA to give the tetrasome intermediate and the displacement of H3/H4 from DNA are thought to be the first and the last steps in nucleosome assembly and disassembly, respectively. Anti-silencing function 1 (Asf1) is a chaperone of the H3/H4 dimer that functions in both of these processes. However, little is known about the thermodynamics of chaperone–histone interactions or the direct role of Asf1 in the formation or disassembly of histone–DNA complexes. Here, we show that Saccharomyces cerevisiae Asf1 shields H3/H4 from unfavorable DNA interactions and aids the formation of favorable histone–DNA interactions through the formation of disomes. However, Asf1 was unable to disengage histones from DNA for tetrasomes formed with H3/H4 and strong nucleosome positioning DNA sequences or tetrasomes weakened by mutant (H3K56Q/H4) histones or non-positioning DNA sequences. Furthermore, Asf1 did not associate with preformed tetrasomes. These results are consistent with the measured affinity of Asf1 for H3/H4 dimers of 2.5 nM, which is weaker than the association of H3/H4 for DNA. These studies support a mechanism by which Asf1 aids H3/H4 deposition onto DNA but suggest that additional factors or post-translational modifications are required for Asf1 to remove H3/H4 from tetrasome intermediates in chromatin. PMID:21447559

  7. The impact of solubility and electrostatics on fibril formation by the H3 and H4 histones

    PubMed Central

    Topping, Traci B; Gloss, Lisa M

    2011-01-01

    The goal of this study was to examine fibril formation by the heterodimeric eukaryotic histones (H2A-H2B and H3-H4) and homodimeric archaeal histones (hMfB and hPyA1). The histone fold dimerization motif is an obligatorily domain-swapped structure comprised of two fused helix:β-loop:helix motifs. Domain swapping has been proposed as a mechanism for the evolution of protein oligomers as well as a means to form precursors in the formation of amyloid-like fibrils. Despite sharing a common fold, the eukaryotic histones of the core nucleosome and archaeal histones fold by kinetic mechanisms of differing complexity with transient population of partially folded monomeric and/or dimeric species. No relationship was apparent between fibrillation propensity and equilibrium stability or population of kinetic intermediates. Only H3 and H4, as isolated monomers and as a heterodimer, readily formed fibrils at room temperature, and this propensity correlates with the significantly lower solubility of these polypeptides. The fibrils were characterized by ThT fluorescence, FTIR, and far-UV CD spectroscopies and electron microscopy. The helical histone fold comprises the protease-resistant core of the fibrils, with little or no protease protection of the poorly structured N-terminal tails. The highly charged tails inhibit fibrillation through electrostatic repulsion. Kinetic studies indicate that H3 and H4 form a co-fibril, with simultaneous incorporation of both histones. The potential impact of H3 and H4 fibrillation on the cytotoxicity of extracellular histones and α-synuclein-mediated neurotoxicity and fibrillation is considered. PMID:21953551

  8. The impact of solubility and electrostatics on fibril formation by the H3 and H4 histones.

    PubMed

    Topping, Traci B; Gloss, Lisa M

    2011-12-01

    The goal of this study was to examine fibril formation by the heterodimeric eukaryotic histones (H2A-H2B and H3-H4) and homodimeric archaeal histones (hMfB and hPyA1). The histone fold dimerization motif is an obligatorily domain-swapped structure comprised of two fused helix:β-loop:helix motifs. Domain swapping has been proposed as a mechanism for the evolution of protein oligomers as well as a means to form precursors in the formation of amyloid-like fibrils. Despite sharing a common fold, the eukaryotic histones of the core nucleosome and archaeal histones fold by kinetic mechanisms of differing complexity with transient population of partially folded monomeric and/or dimeric species. No relationship was apparent between fibrillation propensity and equilibrium stability or population of kinetic intermediates. Only H3 and H4, as isolated monomers and as a heterodimer, readily formed fibrils at room temperature, and this propensity correlates with the significantly lower solubility of these polypeptides. The fibrils were characterized by ThT fluorescence, FTIR, and far-UV CD spectroscopies and electron microscopy. The helical histone fold comprises the protease-resistant core of the fibrils, with little or no protease protection of the poorly structured N-terminal tails. The highly charged tails inhibit fibrillation through electrostatic repulsion. Kinetic studies indicate that H3 and H4 form a co-fibril, with simultaneous incorporation of both histones. The potential impact of H3 and H4 fibrillation on the cytotoxicity of extracellular histones and α-synuclein-mediated neurotoxicity and fibrillation is considered. Copyright © 2011 The Protein Society.

  9. Arabidopsis KINETOCHORE NULL2 Is an Upstream Component for Centromeric Histone H3 Variant cenH3 Deposition at Centromeres[W

    PubMed Central

    Lermontova, Inna; Kuhlmann, Markus; Friedel, Swetlana; Rutten, Twan; Heckmann, Stefan; Sandmann, Michael; Demidov, Dmitri; Schubert, Veit; Schubert, Ingo

    2013-01-01

    The centromeric histone H3 variant cenH3 is an essential centromeric protein required for assembly, maintenance, and proper function of kinetochores during mitosis and meiosis. We identified a KINETOCHORE NULL2 (KNL2) homolog in Arabidopsis thaliana and uncovered features of its role in cenH3 loading at centromeres. We show that Arabidopsis KNL2 colocalizes with cenH3 and is associated with centromeres during all stages of the mitotic cell cycle, except from metaphase to mid-anaphase. KNL2 is regulated by the proteasome degradation pathway. The KNL2 promoter is mainly active in meristematic tissues, similar to the cenH3 promoter. A knockout mutant for KNL2 shows a reduced level of cenH3 expression and reduced amount of cenH3 protein at chromocenters of meristematic nuclei, anaphase bridges during mitosis, micronuclei in pollen tetrads, and 30% seed abortion. Moreover, knl2 mutant plants display reduced expression of suppressor of variegation 3-9 homologs2, 4, and 9 and reduced DNA methylation, suggesting an impact of KNL2 on the epigenetic environment for centromere maintenance. PMID:24014547

  10. CHD1 Regulates Deposition of Histone Variant H3.3 During Bovine Early Embryonic Development.

    PubMed

    Zhang, Kun; Rajput, Sandeep K; Wang, Shaohua; Folger, Joseph K; Knott, Jason G; Smith, George W

    2016-06-01

    The CHD family of proteins is characterized by the presence of chromodomains and SNF2-related helicase/ATPase domains, which alter gene expression by modification of chromatin structure. Chd1-null embryos arrest at the peri-implantation stage in mice. However, the functional role of CHD1 during preimplantation development remains unclear, given maternal-derived CHD1 may mask the essential role of CHD1 during this stage in traditional knockout models. The objective of this study was to characterize CHD1 expression and elucidate its functional role in preimplantation development using the bovine model. CHD1 mRNA was elevated after meiotic maturation and remained increased through the 16-cell stage, followed by a sharp decrease at morula to blastocyst stage. Similarly, immunoblot analysis indicated CHD1 protein level is increased after maturation, maintained at high level after fertilization and declined sharply afterwards. CHD1 mRNA level was partially decreased in response to alpha-amanitin (RNA polymerase II inhibitor) treatment, suggesting that CHD1 mRNA in eight-cell embryos is of both maternal and zygotic origin. Results of siRNA-mediated silencing of CHD1 in bovine early embryos demonstrated that the percentages of embryos developing to the 8- to 16-cell and blastocyst stages were both significantly reduced. However, expression of NANOG (inner cell mass marker) and CDX2 (trophectoderm marker) were not affected in CHD1 knockdown blastocysts. In addition, we found that histone variant H3.3 immunostaining is altered in CHD1 knockdown embryos. Knockdown of H3.3 using siRNA resulted in a similar phenotype to CHD1-ablated embryos. Collectively, our results demonstrate that CHD1 is required for bovine early development, and suggest that CHD1 may regulate H3.3 deposition during this period.

  11. Immunogold electron microscopy and confocal analyses reveal distinctive patterns of histone H3 phosphorylation during mitosis in MCF-7 cells.

    PubMed

    Yan, Yitang; Cummings, Connie A; Sutton, Deloris; Yu, Linda; Castro, Lysandra; Moore, Alicia B; Gao, Xiaohua; Dixon, Darlene

    2016-04-01

    Histone phosphorylation has a profound impact on epigenetic regulation of gene expression, chromosome condensation and segregation, and maintenance of genome integrity. Histone H3 Serine 10 is evolutionally conserved and heavily phosphorylated during mitosis. To examine Histone H3 Serine 10 phosphorylation (H3S10ph) dynamics in mitosis, we applied immunogold labeling and confocal microscopy to visualize H3S10ph expression in MCF-7 cells. Confocal observations showed that MCF-7 cells had abundant H3S10ph expression in prophase and metaphase. In anaphase, the H3S10ph expression was significantly decreased and displayed only sparsely localized staining that mainly associated with the chromatid tips. We showed that immunogold bead density distribution followed the H3S10ph expression patterns observed in confocal analysis. At a higher magnification in metaphase, the immunogold beads were readily visible and the bead distribution along the condensed chromosomes was distinctive, indicating the specificity and reliability of the immunogold staining procedure. In anaphase, the beads were found to distribute focally in specific regions of chromatids, reinforcing the confocal observations of differential H3 phosphorylation. To our knowledge, this is the first report to show the specific H3S10ph expression with an immunogold technique and transmission electron microscopy. Additionally, with confocal microscopy, we analyzed H3S10ph expression in an immortalized cell line derived from benign uterine smooth muscle tumor cells. H3S10ph epitope was expressed more abundantly during anaphase in the benign tumor cells, and there was no dramatic differential expression within the condensed chromatid clusters as observed in MCF-7 cells. The differences in H3S10ph expression pattern and dynamics may contribute to the differential proliferative potential between benign tumor cells and MCF-7 cells. Published 2016. This article is a U.S. Government work and is in the public domain in the

  12. An Essential Role of Variant Histone H3.3 for Ectomesenchyme Potential of the Cranial Neural Crest

    PubMed Central

    Cox, Samuel G.; Kim, Hyunjung; Garnett, Aaron Timothy; Medeiros, Daniel Meulemans; An, Woojin; Crump, J. Gage

    2012-01-01

    The neural crest (NC) is a vertebrate-specific cell population that exhibits remarkable multipotency. Although derived from the neural plate border (NPB) ectoderm, cranial NC (CNC) cells contribute not only to the peripheral nervous system but also to the ectomesenchymal precursors of the head skeleton. To date, the developmental basis for such broad potential has remained elusive. Here, we show that the replacement histone H3.3 is essential during early CNC development for these cells to generate ectomesenchyme and head pigment precursors. In a forward genetic screen in zebrafish, we identified a dominant D123N mutation in h3f3a, one of five zebrafish variant histone H3.3 genes, that eliminates the CNC–derived head skeleton and a subset of pigment cells yet leaves other CNC derivatives and trunk NC intact. Analyses of nucleosome assembly indicate that mutant D123N H3.3 interferes with H3.3 nucleosomal incorporation by forming aberrant H3 homodimers. Consistent with CNC defects arising from insufficient H3.3 incorporation into chromatin, supplying exogenous wild-type H3.3 rescues head skeletal development in mutants. Surprisingly, embryo-wide expression of dominant mutant H3.3 had little effect on embryonic development outside CNC, indicating an unexpectedly specific sensitivity of CNC to defects in H3.3 incorporation. Whereas previous studies had implicated H3.3 in large-scale histone replacement events that generate totipotency during germ line development, our work has revealed an additional role of H3.3 in the broad potential of the ectoderm-derived CNC, including the ability to make the mesoderm-like ectomesenchymal precursors of the head skeleton. PMID:23028350

  13. Chromosome mapping of H3 and H4 histone gene clusters in 35 species of acridid grasshoppers.

    PubMed

    Cabrero, Josefa; López-León, Ma Dolores; Teruel, María; Camacho, Juan Pedro M

    2009-01-01

    We analyse chromosome location of H3 and H4 histone gene clusters by fluorescence in-situ hybridization (FISH) in 35 species of Acrididae grasshoppers belonging to seven subfamilies. As in other organisms, H3 and H4 co-localized in the same chromosome region in the 11 species where double FISH was performed with the H3 and H4 DNA probes. Chromosome location of H3-H4 histone gene clusters showed high regularity in the species analysed, with all of them carrying a single H3-H4 cluster in an autosome which, in most cases, was located interstitially in the proximal chromosome third. In 17 out of the 21 species with 2n masculine = 23 acrocentric chromosomes, the H3-H4-carrying autosome was about eighth in order of decreasing size. Two of the four exceptions changed H3-H4 localization to proximal (Pezotettix giornae) or distal (Tropidopola graeca) in the eighth-sized autosome, but the remainder (the two Eyprepocnemis species) showed the H3-H4 cluster distally located in the second-sized autosome. All 14 species with 2n masculine = 17 chromosomes (including three long metacentric autosome pairs, five acrocentric autosome pairs and an acrocentric X chromosome) carried an interstitial H3-H4 cluster in the short arm of the smallest of the three long metacentric pairs. These results suggest that chromosome location of H3-H4 histone gene clusters seem to be highly conservative in Acrididae grasshoppers. The change in H3-H4 location from the acrocentric medium-sized autosome in the 2n masculine = 23 karyotype to the long metacentric autosome in the 2n masculine = 17 karyotype is most parsimoniously explained by common ancestry, i.e. by the involvement of the H3-H4-carrying acrocentric in the centric fusion that gave rise to the smallest of the three long metacentric autosomes of 2n masculine = 17 species.

  14. Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus.

    PubMed

    Kera, Yohei; Katoh, Yasutake; Ohta, Mineto; Matsumoto, Mitsuyo; Takano-Yamamoto, Teruko; Igarashi, Kazuhiko

    2013-05-10

    MATII biosynthesizes AdoMet, which supplies methyl group for methylation of molecules, including histone. MATII interacts with histone methyltransferase SETDB1 and inhibits COX-2 gene expression. AdoMet synthesis and histone methylation are coupled on chromatin by a physical interaction of MATII and SETDB1 at the MafK target genes. MATII may be important for both gene-specific and epigenome-wide regulation of histone methylation. Methionine adenosyltransferase (MAT) synthesizes S-adenosylmethionine (AdoMet), which is utilized as a methyl donor in transmethylation reactions involving histones. MATIIα, a MAT isozyme, serves as a transcriptional corepressor in the oxidative stress response and forms the AdoMet-integrating transcription regulation module, affecting histone methyltransferase activities. However, the identities of genes regulated by MATIIα or its associated methyltransferases are unclear. We show that MATIIα represses the expression of cyclooxygenase 2 (COX-2), encoded by Ptgs2, by specifically interacting with histone H3K9 methyltransferase SETDB1, thereby promoting the trimethylation of H3K9 at the COX-2 locus. We discuss both gene-specific and epigenome-wide functions of MATIIα.

  15. Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in histone H3.

    PubMed

    Kobza, Keyna; Sarath, Gautam; Zempleni, Janos

    2008-04-30

    BirA ligase is a prokaryotic ortholog of holocarboxylase synthetase (HCS) that can biotinylate proteins. This study tested the hypothesis that BirA ligase catalyzes the biotinylation of eukaryotic histones. If so, this would mean that recombinant BirA ligase is a useful surrogate for HCS in studies of histone biotinylation. The biological activity of recombinant BirA ligase was confirmed by enzymatic biotinylation of p67. In particular, it was found that BirA ligase biotinylated both calf thymus histone H1 and human bulk histone extracts. Incubation of recombinant BirA ligase with H3-based synthetic peptides showed that lysines 4, 9, 18, and 23 in histone H3 are the targets for the biotinylation by BirA ligase. Modification of the peptides (e.g., serine phosphorylation) affected the subsequent biotinylation by BirA ligase, suggesting crosstalk between modifications. In conclusion, this study suggests that prokaryotic BirA ligase is a promiscuous enzyme and biotinylates eukaryotic histones. Moreover the biotinylation of histones by BirA ligase is consistent with the proposed role of human HCS in chromatin.

  16. Histone gene replacement reveals a post-transcriptional role for H3K36 in maintaining metazoan transcriptome fidelity

    PubMed Central

    Meers, Michael P; Henriques, Telmo; Lavender, Christopher A; McKay, Daniel J; Strahl, Brian D; Duronio, Robert J; Adelman, Karen; Matera, A Gregory

    2017-01-01

    Histone H3 lysine 36 methylation (H3K36me) is thought to participate in a host of co-transcriptional regulatory events. To study the function of this residue independent from the enzymes that modify it, we used a ‘histone replacement’ system in Drosophila to generate a non-modifiable H3K36 lysine-to-arginine (H3K36R) mutant. We observed global dysregulation of mRNA levels in H3K36R animals that correlates with the incidence of H3K36me3. Similar to previous studies, we found that mutation of H3K36 also resulted in H4 hyperacetylation. However, neither cryptic transcription initiation, nor alternative pre-mRNA splicing, contributed to the observed changes in expression, in contrast with previously reported roles for H3K36me. Interestingly, knockdown of the RNA surveillance nuclease, Xrn1, and members of the CCR4-Not deadenylase complex, restored mRNA levels for a class of downregulated, H3K36me3-rich genes. We propose a post-transcriptional role for modification of replication-dependent H3K36 in the control of metazoan gene expression. DOI: http://dx.doi.org/10.7554/eLife.23249.001 PMID:28346137

  17. Histone H3 Lysine 36 Dimethylation (H3K36me2) Is Sufficient to Recruit the Rpd3s Histone Deacetylase Complex and to Repress Spurious Transcription*

    PubMed Central

    Li, Bing; Jackson, Jessica; Simon, Matthew D.; Fleharty, Brian; Gogol, Madelaine; Seidel, Chris; Workman, Jerry L.; Shilatifard, Ali

    2009-01-01

    Histone methylation is associated with both transcription activation and repression. However, the functions of different states of methylation remain largely elusive. Here, using methyl-lysine analog technology, we demonstrate that the histone deacetylase complex, Rpd3S, can distinguish the nucleosomes methylated to different extents and that K36me2 is sufficient to target Rpd3S in vitro. Through a genome-wide survey, we identified a few mutants in which the level of K36me3 is significantly reduced, whereas the level of K36me2 is sustained. Transcription analysis and genome-wide histone modification studies on these mutants suggested that K36me2 is sufficient to target Rpd3S in vivo, thereby maintaining a functional Set2-Rpd3S pathway. PMID:19155214

  18. Mechanism of Histone H3K4me3 Recognition by the Plant Homeodomain of Inhibitor of Growth 3*

    PubMed Central

    Kim, Sophia; Natesan, Senthil; Cornilescu, Gabriel; Carlson, Samuel; Tonelli, Marco; McClurg, Urszula L.; Binda, Olivier; Robson, Craig N.; Markley, John L.; Balaz, Stefan

    2016-01-01

    Aberrant access to genetic information disrupts cellular homeostasis and can lead to cancer development. One molecular mechanism that regulates access to genetic information includes recognition of histone modifications, which is carried out by protein modules that interact with chromatin and serve as landing pads for enzymatic activities that regulate gene expression. The ING3 tumor suppressor protein contains a plant homeodomain (PHD) that reads the epigenetic code via recognition of histone H3 tri-methylated at lysine 4 (H3K4me3), and this domain is lost or mutated in various human cancers. However, the molecular mechanisms targeting ING3 to histones and the role of this interaction in the cell remain elusive. Thus, we employed biochemical and structural biology approaches to investigate the interaction of the ING3 PHD finger (ING3PHD) with the active transcription mark H3K4me3. Our results demonstrate that association of the ING3PHD with H3K4me3 is in the sub-micromolar range (KD ranging between 0.63 and 0.93 μm) and is about 200-fold stronger than with the unmodified histone H3. NMR and computational studies revealed an aromatic cage composed of Tyr-362, Ser-369, and Trp-385 that accommodate the tri-methylated side chain of H3K4. Mutational analysis confirmed the critical importance of Tyr-362 and Trp-385 in mediating the ING3PHD-H3K4me3 interaction. Finally, the biological relevance of ING3PHD-H3K4me3 binding was demonstrated by the failure of ING3PHD mutant proteins to enhance ING3-mediated DNA damage-dependent cell death. Together, our results reveal the molecular mechanism of H3K4me3 selection by the ING3PHD and suggest that this interaction is important for mediating ING3 tumor suppressive activities. PMID:27281824

  19. Histone H3 Lysine 9 Methyltransferase DIM5 Is Required for the Development and Virulence of Botrytis cinerea

    PubMed Central

    Zhang, Xiaoli; Liu, Xinqiang; Zhao, Yanli; Cheng, Jiasen; Xie, Jiatao; Fu, Yanping; Jiang, Daohong; Chen, Tao

    2016-01-01

    Histone methylation is widely present in animals, plants and fungi, and the methylation modification of histone H3 has important biological functions. Methylation of Lys9 of histone H3 (H3K9) has been proven to regulate chromatin structure, gene silencing, transcriptional activation, plant metabolism, and other processes. In this work, we investigated the functions of a H3K9 methyltransferase gene BcDIM5 in Botrytis cinerea, which contains a PreSET domain, a SET domain and a PostSET domain. Characterization of BcDIM5 knockout transformants showed that the hyphal growth rate and production of conidiophores and sclerotia were significantly reduced, while complementary transformation of BcDIM5 could restore the phenotypes to the levels of wild type. Pathogenicity assays revealed that BcDIM5 was essential for full virulence of B. cinerea. BcDIM5 knockout transformants exhibited decreased virulence, down-regulated expression of some pathogenic genes and drastically decreased H3K9 trimethylation level. However, knockout transformants of other two genes heterochromatin protein 1 (HP1) BcHP1 and DNA methyltransferase (DIM2) BcDIM2 did not exhibit significant change in the growth phenotype and virulence compared with the wild type. Our results indicate that H3K9 methyltransferase BcDIM5 is required for H3K9 trimethylation to regulate the development and virulence of B. cinerea. PMID:27597848

  20. Inhibition of H3K27me3 Histone Demethylase Activity Prevents the Proliferative Regeneration of Zebrafish Lateral Line Neuromasts

    PubMed Central

    Bao, Beier; He, Yingzi; Tang, Dongmei; Li, Wenyan; Li, Huawei

    2017-01-01

    The H3K27 demethylases are involved in a variety of biological processes, including cell differentiation, proliferation, and cell death by regulating transcriptional activity. However, the function of H3K27 demethylation in the field of hearing research is poorly understood. Here, we investigated the role of H3K27me3 histone demethylase activity in hair cell regeneration using an in vivo animal model. Our data showed that pharmacologic inhibition of H3K27 demethylase activity with the specific small-molecule inhibitor GSK-J4 decreased the number of regenerated hair cells in response to neomycin damage. Furthermore, inhibition of H3K27me3 histone demethylase activity dramatically suppressed cell proliferation and activated caspase-3 levels in the regenerating neuromasts of the zebrafish lateral line. GSK-J4 administration also increased the expression of p21 and p27 in neuromast cells and inhibited the ERK signaling pathway. Collectively, our findings indicate that H3K27me3 demethylation is a key epigenetic regulator in the process of hair cell regeneration in zebrafish and suggest that H3K27me3 histone demethylase activity might be a novel therapeutic target for the treatment of hearing loss. PMID:28348517

  1. The Histone Demethylase UTX Promotes Brown Adipocyte Thermogenic Program Via Coordinated Regulation of H3K27 Demethylation and Acetylation*

    PubMed Central

    Zha, Lin; Li, Fenfen; Wu, Rui; Artinian, Liana; Rehder, Vincent; Yu, Liqing; Liang, Houjie; Xue, Bingzhong; Shi, Hang

    2015-01-01

    Brown adipocytes function to dissipate energy as heat through adaptive thermogenesis. Understanding the molecular mechanisms underlying the brown fat thermogenic program may provide insights for the development of therapeutic approaches in the treatment of obesity. Most studies investigating the mechanisms underlying brown fat development focus on genetic mechanisms; little is known about the epigenetic mechanisms in this process. We have discovered that ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), a histone demethylase for di- or tri-methylated histone 3 lysine 27 (H3K27me2/3), plays a potential role in regulating brown adipocyte thermogenic program. We found that UTX is up-regulated during brown adipocyte differentiation and by cold exposure in both brown adipose tissue (BAT) and white adipose tissue (WAT) of mice, suggesting a potential role in thermogenesis. Inactivation of UTX down-regulates brown fat specific gene expression, while overexpression of UTX does the opposite. Notably, activation of β adrenergic signaling recruits UTX to the UCP1 and PGC1α promoters, leading to decreased H3K27me3, a histone transcriptional repressive mark. UTX demethylates H3K27me3 and subsequently interacts with the histone acetyltransferase (HAT) protein CBP, resulting in increased H3K27 acetylation (H3K27ac), a histone transcriptional active mark. UTX positively regulate brown adipocyte thermogenic program through coordinated control of demethylating H3K27me3 and acetylating H3K27, switching the transcriptional repressive state to the transcriptional active state at the promoters of UCP1 and PGC1α. We conclude that UTX may play a potential role in regulation of brown adipocyte gene expression and may mediate β adrenergic activation of brown fat function. PMID:26306033

  2. Distinct chromatin environment associated with phosphorylated H3S10 histone during pollen mitosis I in orchids.

    PubMed

    Sharma, Santosh Kumar; Yamamoto, Maki; Mukai, Yasuhiko

    2017-01-01

    Pollen developmental pathway in plants involving synchronized transferal of cellular divisions from meiosis (microsporogenesis) to mitosis (pollen mitosis I/II) eventually offers a unique "meiosis-mitosis shift" at pollen mitosis I. Since the cell type (haploid microspore) and fate of pollen mitosis I differ from typical mitosis (in meristem cells), it is immensely important to analyze the chromosomal distribution of phosphorylated H3S10 histone during atypical pollen mitosis I to comprehend the role of histone phosphorylation in pollen development. We investigated the chromosomal phosphorylation of H3S10 histone during pollen mitosis I in orchids using immunostaining technique. The chromosomal distribution of H3S10ph during pollen mitosis I revealed differential pattern than that of typical mitosis in plants, however, eventually following the similar trends of mitosis in animals where H3S10 phosphorylation begins in the pericentromeric regions first, later extending to the whole chromosomes, and finally declining at anaphase/early cytokinesis (differentiation of vegetative and generative cells). The study suggests that the chromosomal distribution of H3S10ph during cell division is not universal and can be altered between different cell types encoded for diverse cellular processes. During pollen development, phosphorylation of histone might play a critical role in chromosome condensation events throughout pollen mitosis I in plants.

  3. Alteration of histone H3 lysine 9 dimethylation in peripheral white blood cells of septic patients with trauma and cancer

    PubMed Central

    Jiang, Linghui; Wang, Yiqin; Zhu, Duming; Xue, Zhanggang; Mao, Hailei

    2016-01-01

    The present study aimed to investigate the clinical significance of histone methylation in sepsis. A total of 43 blood samples from trauma and esophageal cancer patients with or without sepsis were collected. Immunofluorescence staining of isolated peripheral white blood cells (WBCs) was conducted. Co-stained 293T cells served as a reference, to allow the levels of histone methylation in different types of WBCs from patients to be determined. Immunostaining analyses revealed different levels of histone 3 lysine 9 dimethylation (H3K9me2) in neutrophils (Neu), lymphocytes (Lym), and monocytes (Mon) from trauma patients. Compared with trauma patients, the levels of H3K9me2 were elevated in the three types of WBCs from cancer patients. When combined with sepsis, trauma patients demonstrated increased H3K9me2 levels in Neu (P=0.0005) and Mon (P=0.0002), whereas cancer patients had a significant decrease of H3K9me2 levels in the three types of WBCs (Neu, P=0.0003; Lym, P=0.007; Mon, P=0.007). The H3K9me2 alterations in patients with trauma and cancer were different with the occurrence of sepsis. A larger cohort study is warranted to explore the diagnostic significance and prognostic implications of altered histone methylation in septic patients. PMID:27878270

  4. Alteration of histone H3 lysine 9 dimethylation in peripheral white blood cells of septic patients with trauma and cancer.

    PubMed

    Jiang, Linghui; Wang, Yiqin; Zhu, Duming; Xue, Zhanggang; Mao, Hailei

    2016-12-01

    The present study aimed to investigate the clinical significance of histone methylation in sepsis. A total of 43 blood samples from trauma and esophageal cancer patients with or without sepsis were collected. Immunofluorescence staining of isolated peripheral white blood cells (WBCs) was conducted. Co‑stained 293T cells served as a reference, to allow the levels of histone methylation in different types of WBCs from patients to be determined. Immunostaining analyses revealed different levels of histone 3 lysine 9 dimethylation (H3K9me2) in neutrophils (Neu), lymphocytes (Lym), and monocytes (Mon) from trauma patients. Compared with trauma patients, the levels of H3K9me2 were elevated in the three types of WBCs from cancer patients. When combined with sepsis, trauma patients demonstrated increased H3K9me2 levels in Neu (P=0.0005) and Mon (P=0.0002), whereas cancer patients had a significant decrease of H3K9me2 levels in the three types of WBCs (Neu, P=0.0003; Lym, P=0.007; Mon, P=0.007). The H3K9me2 alterations in patients with trauma and cancer were different with the occurrence of sepsis. A larger cohort study is warranted to explore the diagnostic significance and prognostic implications of altered histone methylation in septic patients.

  5. Molecular evolution of NASP and conserved histone H3/H4 transport pathway

    PubMed Central

    2014-01-01

    Background NASP is an essential protein in mammals that functions in histone transport pathways and maintenance of a soluble reservoir of histones H3/H4. NASP has been studied exclusively in Opisthokonta lineages where some functional diversity has been reported. In humans, growing evidence implicates NASP miss-regulation in the development of a variety of cancers. Although a comprehensive phylogenetic analysis is lacking, NASP-family proteins that possess four TPR motifs are thought to be widely distributed across eukaryotes. Results We characterize the molecular evolution of NASP by systematically identifying putative NASP orthologs across diverse eukaryotic lineages ranging from excavata to those of the crown group. We detect extensive silent divergence at the nucleotide level suggesting the presence of strong purifying selection acting at the protein level. We also observe a selection bias for high frequencies of acidic residues which we hypothesize is a consequence of their critical function(s), further indicating the role of functional constraints operating on NASP evolution. Our data indicate that TPR1 and TPR4 constitute the most rapidly evolving functional units of NASP and may account for the functional diversity observed among well characterized family members. We also show that NASP paralogs in ray-finned fish have different genomic environments with clear differences in their GC content and have undergone significant changes at the protein level suggesting functional diversification. Conclusion We draw four main conclusions from this study. First, wide distribution of NASP throughout eukaryotes suggests that it was likely present in the last eukaryotic common ancestor (LECA) possibly as an important innovation in the transport of H3/H4. Second, strong purifying selection operating at the protein level has influenced the nucleotide composition of NASP genes. Further, we show that selection has acted to maintain a high frequency of functionally relevant

  6. Development of Multiple Cell-Based Assays for the Detection of Histone H3 Lys27 Trimethylation (H3K27me3)

    PubMed Central

    Lu, Lihui; Wu, Jianghong

    2013-01-01

    Abstract Posttranslational modification of histone proteins in eukaryotes plays an important role in gene transcription and chromatin structure. Dysregulation of the enzymes involved in histone modification has been linked to many cancer forms, making this target class a potential new area for therapeutics. A reliable assay to monitor small-molecule inhibition of various epigenetic enzymes should play a critical role in drug discovery to fight cancer. However, it has been challenging to develop cell-based assays for high-throughput screening (HTS) and compound profiling. Recently, two homogeneous cell-based assay kits using the AlphaLISA® and LanthaScreen® technologies to detect trimethyl histone H3 Lysine 27 have become commercially available, and a heterogeneous cell assay with modified dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA®) format has been reported. To compare their pros and cons, we evaluated, optimized, and validated these three assay formats in three different cell lines and compared their activities with traditional Western blot detection of histone methylation inhibition by using commercial and in-house small-molecule inhibitors. Our data indicate that, although all four formats produced acceptable results, the homogeneous AlphaLISA assay was best suited for HTS and compound profiling due to its wider window and ease of automation. The DELFIA and Western blot assays were useful as validation tools to confirm the cell activities and eliminate potential false-positive compounds. PMID:23992119

  7. Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway.

    PubMed

    Faucher, David; Wellinger, Raymund J

    2010-08-26

    Eukaryotic genomes are associated with a number of proteins such as histones that constitute chromatin. Post-translational histone modifications are associated with regulatory aspects executed by chromatin and all transactions on genomic DNA are dependent on them. Thus, it will be relevant to understand how histone modifications affect genome functions. Here we show that the mono ubiquitylation of histone H2B and the tri-methylation of histone H3 on lysine 4 (H3K4me3), both known for their involvement in transcription, are also important for a proper response of budding yeast cells to DNA damaging agents and the passage through S-phase. Cells that cannot methylate H3K4 display a defect in double-strand break (DSB) repair by non-homologous end joining. Furthermore, if such cells incur DNA damage or encounter a stress during replication, they very rapidly lose viability, underscoring the functional importance of the modification. Remarkably, the Set1p methyltransferase as well as the H3K4me3 mark become detectable on a newly created DSB. This recruitment of Set1p to the DSB is dependent on the presence of the RSC complex, arguing for a contribution in the ensuing DNA damage repair process. Taken together, our results demonstrate that Set1p and its substrate H3K4me3, which has been reported to be important for the transcription of active genes, also plays an important role in genome stability of yeast cells. Given the high degree of conservation for the methyltransferase and the histone mark in a broad variety of organisms, these results could have similar implications for genome stability mechanisms in vertebrate and mammalian cells.

  8. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo.

    PubMed Central

    Mann, R K; Grunstein, M

    1992-01-01

    Recent work has shown that the yeast histone H4 N-terminus, while not essential for viability, is required for repression of the silent mating loci and activation of GAL1 and PHO5 promoters. Because histone H3 shares many structural features with histone H4 and is intimately associated with H4 in the assembled nucleosome, we asked whether H3 has similar functions. While the basic N-terminal domain of H3 is found to be non-essential (deletion of residues 4-40 of this 135 amino acid protein allows viability), its removal has only a minor effect on mating. Surprisingly, both deletions (of residues 4-15) and acetylation site substitutions (at residues 9, 14 and 18) within the N-terminus of H3 allow hyperactivation of the GAL1 promoter as well as a number of other GAL4-regulated genes including GAL2, GAL7 and GAL10. To a limited extent glucose repression is also alleviated by H3 N-terminal deletions. Expression of another inducible promoter, PHO5, is shown to be relatively unaffected. We conclude that the H3 and H4 N-termini have different functions in both the repression of the silent mating loci and in the regulation of GAL1. Images PMID:1505519

  9. The histone H3 N-terminal tail: a computational analysis of the free energy landscape and kinetics.

    PubMed

    Zheng, Yuqing; Cui, Qiang

    2015-05-28

    Histone tails are the short peptide protrusions outside of the nucleosome core particle and they play a critical role in regulating chromatin dynamics and gene activity. A histone H3 N-terminal tail, like other histone tails, can be covalently modified on different residues to activate or repress gene expression. Previous studies have indicated that, despite its intrinsically disordered nature, the histone H3 N-terminal tail has regions of notable secondary structural propensities. To further understand the structure-dynamics-function relationship in this system, we have carried out 75.6 μs long implicit solvent simulations and 29.3 μs long explicit solvent simulations. The extensive samplings allow us to better characterize not only the underlying free energy landscape but also kinetic properties through Markov state models (MSM). Dihedral principal component analysis (dPCA) and locally scaled diffusion map (LSDMap) analysis yield consistent results that indicate an overall flat free energy surface with several shallow basins that correspond to conformations with a high α-helical propensity in two regions of the peptide. Kinetic information extracted from Markov state models reveals rapid transitions between different metastable states with mean first passage times spanning from several hundreds of nanoseconds to hundreds of microseconds. These findings shed light on how the dynamical nature of the histone H3 N-terminal tail is related to its function. The complementary nature of dPCA, LSDMap and MSM for the analysis of biomolecules is also discussed.

  10. Recognition of Histone H3 Lysine-4 Methylation by the Double Tudor Domain of JMJD2A

    SciTech Connect

    Huang,Y.; Fang, J.; Bedford, M.; Zhang, Y.; Xu, R.

    2006-01-01

    Biological responses to histone methylation critically depend on the faithful readout and transduction of the methyl-lysine signal by 'effector' proteins, yet our understanding of methyl-lysine recognition has so far been limited to the study of histone binding by chromodomain and WD40-repeat proteins. The double tudor domain of JMJD2A, a Jmjc domain-containing histone demethylase, binds methylated histone H3-K4 and H4-K20. We found that the double tudor domain has an interdigitated structure, and the unusual fold is required for its ability to bind methylated histone tails. The cocrystal structure of the JMJD2A double tudor domain with a trimethylated H3-K4 peptide reveals that the trimethyl-K4 is bound in a cage of three aromatic residues, two of which are from the tudor-2 motif, whereas the binding specificity is determined by side-chain interactions involving amino acids from the tudor-1 motif. Our study provides mechanistic insights into recognition of methylated histone tails by tudor domains and reveals the structural intricacy of methyl-lysine recognition by two closely spaced effector domains.

  11. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    SciTech Connect

    Yang, Hanna; Kwon, Chang Seob; Choi, Yoonjung; Lee, Daeyoup

    2016-08-05

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.

  12. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast.

    PubMed

    Yang, Hanna; Kwon, Chang Seob; Choi, Yoonjung; Lee, Daeyoup

    2016-08-05

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5' promoter and 3' termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S.

    PubMed

    Xu, Chao; Cui, Gaofeng; Botuyan, Maria Victoria; Mer, Georges

    2008-11-12

    Deacetylation of nucleosomes by the Rpd3S histone deacetylase along the path of transcribing RNA polymerase II regulates access to DNA, contributing to faithful gene transcription. The association of Rpd3S with chromatin requires its Eaf3 subunit, which binds histone H3 methylated at lysine 36 (H3K36). Eaf3 is also part of NuA4 acetyltransferase that recognizes methylated H3K4. Here we show that Eaf3 in Saccharomyces cerevisiae contains a chromo barrel-related domain that binds methylated peptides, including H3K36 and H3K4, with low specificity and millimolar-range affinity. Nuclear magnetic resonance structure determination of Eaf3 bound to methylated H3K36 was accomplished by engineering a linked Eaf3-H3K36 molecule with a chemically incorporated methyllysine analog. Our study uncovers the molecular details of Eaf3-methylated H3K36 complex formation, and suggests that, in the cell, Eaf3 can only function within a framework of combinatorial interactions. This work also provides a general method for structure determination of low-affinity protein complexes implicated in methyllysine recognition.

  14. Structure–function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2

    SciTech Connect

    Chen, Shoudeng; Rufiange, Anne; Huang, Hongda; Rajashankar, Kanagalaghatta R.; Nourani, Amine; Patel, Dinshaw J.

    2015-06-15

    Cells use specific mechanisms such as histone chaperones to abrogate the inherent barrier that the nucleosome poses to transcribing polymerases. The current model postulates that nucleosomes can be transiently disrupted to accommodate passage of RNA polymerases and that histones H3 and H4 possess their own chaperones dedicated to the recovery of nucleosomes. Here, we determined the crystal structure of the conserved C terminus of human Suppressors of Ty insertions 2 (hSpt2C) chaperone bound to an H3/H4 tetramer. The structural studies demonstrate that hSpt2C is bound to the periphery of the H3/H4 tetramer, mimicking the trajectory of nucleosomal-bound DNA. These structural studies have been complemented with in vitro binding and in vivo functional studies on mutants that disrupt key intermolecular contacts involving two acidic patches and hydrophobic residues on Spt2C. We show that contacts between both human and yeast Spt2C with the H3/H4 tetramer are required for the suppression of H3/ H4 exchange as measured by H3K56ac and new H3 deposition. Furthermore, these interactions are also crucial for the inhibition of spurious transcription from within coding regions. In conclusion, together, our data indicate that Spt2 interacts with the periphery of the H3/H4 tetramer and promotes its recycling in the wake of RNA polymerase.

  15. Structure–function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2

    DOE PAGES

    Chen, Shoudeng; Rufiange, Anne; Huang, Hongda; ...

    2015-06-15

    Cells use specific mechanisms such as histone chaperones to abrogate the inherent barrier that the nucleosome poses to transcribing polymerases. The current model postulates that nucleosomes can be transiently disrupted to accommodate passage of RNA polymerases and that histones H3 and H4 possess their own chaperones dedicated to the recovery of nucleosomes. Here, we determined the crystal structure of the conserved C terminus of human Suppressors of Ty insertions 2 (hSpt2C) chaperone bound to an H3/H4 tetramer. The structural studies demonstrate that hSpt2C is bound to the periphery of the H3/H4 tetramer, mimicking the trajectory of nucleosomal-bound DNA. These structuralmore » studies have been complemented with in vitro binding and in vivo functional studies on mutants that disrupt key intermolecular contacts involving two acidic patches and hydrophobic residues on Spt2C. We show that contacts between both human and yeast Spt2C with the H3/H4 tetramer are required for the suppression of H3/ H4 exchange as measured by H3K56ac and new H3 deposition. Furthermore, these interactions are also crucial for the inhibition of spurious transcription from within coding regions. In conclusion, together, our data indicate that Spt2 interacts with the periphery of the H3/H4 tetramer and promotes its recycling in the wake of RNA polymerase.« less

  16. Structure-function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2.

    PubMed

    Chen, Shoudeng; Rufiange, Anne; Huang, Hongda; Rajashankar, Kanagalaghatta R; Nourani, Amine; Patel, Dinshaw J

    2015-06-15

    Cells use specific mechanisms such as histone chaperones to abrogate the inherent barrier that the nucleosome poses to transcribing polymerases. The current model postulates that nucleosomes can be transiently disrupted to accommodate passage of RNA polymerases and that histones H3 and H4 possess their own chaperones dedicated to the recovery of nucleosomes. Here, we determined the crystal structure of the conserved C terminus of human Suppressors of Ty insertions 2 (hSpt2C) chaperone bound to an H3/H4 tetramer. The structural studies demonstrate that hSpt2C is bound to the periphery of the H3/H4 tetramer, mimicking the trajectory of nucleosomal-bound DNA. These structural studies have been complemented with in vitro binding and in vivo functional studies on mutants that disrupt key intermolecular contacts involving two acidic patches and hydrophobic residues on Spt2C. We show that contacts between both human and yeast Spt2C with the H3/H4 tetramer are required for the suppression of H3/H4 exchange as measured by H3K56ac and new H3 deposition. These interactions are also crucial for the inhibition of spurious transcription from within coding regions. Together, our data indicate that Spt2 interacts with the periphery of the H3/H4 tetramer and promotes its recycling in the wake of RNA polymerase. © 2015 Chen et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis

    PubMed Central

    Wike, Candice L; Graves, Hillary K; Hawkins, Reva; Gibson, Matthew D; Ferdinand, Michelle B; Zhang, Tao; Chen, Zhihong; Hudson, Damien F; Ottesen, Jennifer J; Poirier, Michael G; Schumacher, Jill; Tyler, Jessica K

    2016-01-01

    Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.11402.001 PMID:26878753

  18. An Analog of BIX-01294 Selectively Inhibits a Family of Histone H3 Lysine 9 Jumonji Demethylases

    SciTech Connect

    Upadhyay, Anup K.; Rotili, Dante; Han, Ji Woong; Hu, Ruogu; Chang, Yanqi; Labella, Donatella; Zhang, Xing; Yoon, Young-sup; Mai, Antonello; Cheng, Xiaodong

    2012-03-26

    BIX-01294 and its analogs were originally identified and subsequently designed as potent inhibitors against histone H3 lysine 9 (H3K9) methyltransferases G9a and G9a-like protein. Here, we show that BIX-01294 and its analog E67 can also inhibit H3K9 Jumonji demethylase KIAA1718 with half-maximal inhibitory concentrations in low micromolar range. Crystallographic analysis of KIAA1718 Jumonji domain in complex with E67 indicated that the benzylated six-membered piperidine ring was disordered and exposed to solvent. Removing the moiety (generating compound E67-2) has no effect on the potency against KIAA1718 but, unexpectedly, lost inhibition against G9a-like protein by a factor of 1500. Furthermore, E67 and E67-2 have no effect on the activity against histone H3 lysine 4 (H3K4) demethylase JARID1C. Thus, our study provides a new avenue for designing and improving the potency and selectivity of inhibitors against H3K9 Jumonji demethylases over H3K9 methyltransferases and H3K4 demethylases.

  19. p300-mediated Acetylation of Histone H3 Lysine 56 Functions in DNA Damage Response in Mammals*

    PubMed Central

    Vempati, Rahul K.; Jayani, Ranveer S.; Notani, Dimple; Sengupta, Amrita; Galande, Sanjeev; Haldar, Devyani

    2010-01-01

    The packaging of newly replicated and repaired DNA into chromatin is crucial for the maintenance of genomic integrity. Acetylation of histone H3 core domain lysine 56 (H3K56ac) has been shown to play a crucial role in compaction of DNA into chromatin following replication and repair in Saccharomyces cerevisiae. However, the occurrence and function of such acetylation has not been reported in mammals. Here we show that H3K56 is acetylated and that this modification is regulated in a cell cycle-dependent manner in mammalian cells. We also demonstrate that the histone acetyltransferase p300 acetylates H3K56 in vitro and in vivo, whereas hSIRT2 and hSIRT3 deacetylate H3K56ac in vivo. Further we show that following DNA damage H3K56 acetylation levels increased, and acetylated H3K56, which is localized at the sites of DNA repair. It also colocalized with other proteins involved in DNA damage signaling pathways such as phospho-ATM, CHK2, and p53. Interestingly, analysis of occurrence of H3K56 acetylation using ChIP-on-chip revealed its genome-wide spread, affecting genes involved in several pathways that are implicated in tumorigenesis such as cell cycle, DNA damage response, DNA repair, and apoptosis. PMID:20587414

  20. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere

    PubMed Central

    1994-01-01

    Centromeres are the differentiated chromosomal domains that specify the mitotic behavior of chromosomes. To examine the molecular basis for the specification of centromeric chromatin, we have cloned a human cDNA that encodes the 17-kD histone-like centromere antigen, CENP-A. Two domains are evident in the 140 aa CENP-A polypeptide: a unique NH2- terminal domain and a 93-amino acid COOH-terminal domain that shares 62% identity with nucleosomal core protein, histone H3. An epitope tagged derivative of CENP-A was faithfully targeted to centromeres when expressed in a variety of animal cells and this targeting activity was shown to reside in the histone-like COOH-terminal domain of CENP-A. These data clearly indicate that the assembly of centromeres is driven, at least in part, by the incorporation of a novel core histone into centromeric chromatin. PMID:7962047

  1. Isoxazole‐Derived Amino Acids are Bromodomain‐Binding Acetyl‐Lysine Mimics: Incorporation into Histone H4 Peptides and Histone H3

    PubMed Central

    Sekirnik (née Measures), Angelina R.; Hewings, David S.; Theodoulou, Natalie H.; Jursins, Lukass; Lewendon, Katie R.; Jennings, Laura E.; Rooney, Timothy P. C.; Heightman, Tom D.

    2016-01-01

    Abstract A range of isoxazole‐containing amino acids was synthesized that displaced acetyl‐lysine‐containing peptides from the BAZ2A, BRD4(1), and BRD9 bromodomains. Three of these amino acids were incorporated into a histone H4‐mimicking peptide and their affinity for BRD4(1) was assessed. Affinities of the isoxazole‐containing peptides are comparable to those of a hyperacetylated histone H4‐mimicking cognate peptide, and demonstrated a dependence on the position at which the unnatural residue was incorporated. An isoxazole‐based alkylating agent was developed to selectively alkylate cysteine residues in situ. Selective monoalkylation of a histone H4‐mimicking peptide, containing a lysine to cysteine residue substitution (K12C), resulted in acetyl‐lysine mimic incorporation, with high affinity for the BRD4 bromodomain. The same technology was used to alkylate a K18C mutant of histone H3. PMID:27264992

  2. Solution structure of histone chaperone ANP32B: interaction with core histones H3-H4 through its acidic concave domain.

    PubMed

    Tochio, Naoya; Umehara, Takashi; Munemasa, Yoshiko; Suzuki, Toru; Sato, Shin; Tsuda, Kengo; Koshiba, Seizo; Kigawa, Takanori; Nagai, Ryozo; Yokoyama, Shigeyuki

    2010-08-06

    Eukaryotic gene expression is regulated by histone deposition onto and eviction from nucleosomes, which are mediated by several chromatin-modulating factors. Among them, histone chaperones are key factors that facilitate nucleosome assembly. Acidic nuclear phosphoprotein 32B (ANP32B) belongs to the ANP32 family, which shares N-terminal leucine-rich repeats (LRRs) and a C-terminal variable anionic region. The C-terminal region functions as an inhibitor of histone acetylation, but the functional roles of the LRR domain in chromatin regulation have remained elusive. Here, we report that the LRR domain of ANP32B possesses histone chaperone activity and forms a curved structure with a parallel beta-sheet on the concave side and mostly helical elements on the convex side. Our analyses revealed that the interaction of ANP32B with the core histones H3-H4 occurs on its concave side, and both the acidic and hydrophobic residues that compose the concave surface are critical for histone binding. These results provide a structural framework for understanding the functional mechanisms of acidic histone chaperones. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Domain Requirements of the JIL-1 Tandem Kinase for Histone H3 Serine 10 Phosphorylation and Chromatin Remodeling in Vivo*

    PubMed Central

    Li, Yeran; Cai, Weili; Wang, Chao; Yao, Changfu; Bao, Xiaomin; Deng, Huai; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M.

    2013-01-01

    The JIL-1 kinase localizes to Drosophila polytene chromosome interbands and phosphorylates histone H3 at interphase, counteracting histone H3 lysine 9 dimethylation and gene silencing. JIL-1 can be divided into four main domains, including an NH2-terminal domain, two separate kinase domains, and a COOH-terminal domain. In this study, we characterize the domain requirements of the JIL-1 kinase for histone H3 serine 10 (H3S10) phosphorylation and chromatin remodeling in vivo. We show that a JIL-1 construct without the NH2-terminal domain is without H3S10 phosphorylation activity despite the fact that it localizes properly to polytene interband regions and that it contains both kinase domains. JIL-1 is a double kinase, and we demonstrate that both kinase domains of JIL-1 are required to be catalytically active for H3S10 phosphorylation to occur. Furthermore, we provide evidence that JIL-1 is phosphorylated at serine 424 and that this phosphorylation is necessary for JIL-1 H3S10 phosphorylation activity. Thus, these data are compatible with a model where the NH2-terminal domain of JIL-1 is required for chromatin complex interactions that position the kinase domain(s) for catalytic activity in the context of the state of higher order nucleosome packaging and chromatin structure and where catalytic H3S10 phosphorylation activity mediated by the first kinase domain is dependent on autophosphorylation of serine 424 by the second kinase domain. Furthermore, using a lacO repeat tethering system to target mutated JIL-1 constructs with or without catalytic activity, we show that the epigenetic H3S10 phosphorylation mark itself functions as a causative regulator of chromatin structure independently of any structural contributions from the JIL-1 protein. PMID:23723094

  4. H3K9me-Independent Gene Silencing in Fission Yeast Heterochromatin by Clr5 and Histone Deacetylases

    PubMed Central

    Hansen, Klavs R.; Hazan, Idit; Shanker, Sreenath; Watt, Stephen; Verhein-Hansen, Janne; Bähler, Jürg; Martienssen, Robert A.; Partridge, Janet F.; Cohen, Amikam; Thon, Geneviève

    2011-01-01

    Nucleosomes in heterochromatic regions bear histone modifications that distinguish them from euchromatic nucleosomes. Among those, histone H3 lysine 9 methylation (H3K9me) and hypoacetylation have been evolutionarily conserved and are found in both multicellular eukaryotes and single-cell model organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well-characterized heterochromatic region, is hardly affected in cells lacking the H3K9 methyltransferase Clr4. We document the existence of a pathway parallel to H3K9me ensuring gene repression in the absence of Clr4 and identify a silencing factor central to this pathway, Clr5. We find that Clr5 controls gene expression at multiple chromosomal locations in addition to affecting the mating-type region. The histone deacetylase Clr6 acts in the same pathway as Clr5, at least for its effects in the mating-type region, and on a subset of other targets, notably a region recently found to be prone to neo-centromere formation. The genomic targets of Clr5 also include Ste11, a master regulator of sexual differentiation. Hence Clr5, like the multi-functional Atf1 transcription factor which also modulates chromatin structure in the mating-type region, controls sexual differentiation and genome integrity at several levels. Globally, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci. PMID:21253571

  5. Chromosomal evolution of rDNA and H3 histone genes in representative Romaleidae grasshoppers from northeast Brazil

    PubMed Central

    2013-01-01

    Background Grasshoppers from the Romaleidae family are well distributed in the Neotropical Region and represent a diversified and multicolored group in which the karyotype is conserved. Few studies have been conducted to understand the evolutionary dynamics of multigene families. Here, we report the chromosomal locations of the 18S and 5S rDNA and H3 histone multigene families in four grasshopper species from the Romaleidae family, revealed by fluorescent in situ hybridization (FISH). Results The 5S rDNA gene was located in one or two chromosome pairs, depending on the species, and was found in a basal distribution pattern. Its chromosomal location was highly conserved among these species. The 18S rDNA was located in a single medium-sized chromosomal pair in all species analyzed. Its chromosomal location was near the centromere in the proximal or pericentromeric regions. The location of the H3 histone gene was highly conserved, with slight chromosomal location differences among some species. To our knowledge, this is the first report of a megameric chromosome carrying both the chromosomal markers 18S rDNA and the H3 histone genes, thereby expanding our understanding of such chromosomes. Conclusions The 5S and 18S rDNA genes and the H3 histone genes showed a conservative pattern in the species that we analyzed. A basal distribution pattern for 5S rDNA was observed with a location on the fourth chromosomal pair, and it was identified as the possible ancestral bearer. The 18S rDNA and H3 histone genes were restricted to a single pair of chromosomes, representing an ancestral pattern. Our results reinforce the known taxonomic relationships between Chromacris and Xestotrachelus, which are two close genera. PMID:24090216

  6. Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a.

    PubMed

    Zhang, Xi; Wu, Jianguo; Choiniere, Jonathan; Yang, Zhihong; Huang, Yi; Bennett, Jason; Wang, Li

    2016-08-01

    It is well established that increased liver cancer incidence is strongly associated with epigenetic silencing of tumor suppressor genes; the latter is contributed by the environmental exposure to arsenic. Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial protein that regulates the TCA cycle. However, the epigenetic mechanisms mediated by arsenic to control PDK4 expression remain elusive. In the present study, we showed that histone methyltransferase G9a- and Suv39H-mediated histone H3 lysine 9 (H3K9) methylations contributed to PDK4 silencing in hepatic cells. The PDK4 expression was induced by G9a inhibitor BRD4770 (BRD) and Suv39H inhibitor Chaetocin (CHA). In contrast, arsenic exposure decreased PDK4 expression by inducing G9a and increasing H3K9 di- and tri-methylations levels (H3K9me2/3). In addition, arsenic exposure antagonizes the effect of BRD by enhancing the enrichment of H3K9me2/3 in the PKD4 promoter. Moreover, knockdown of G9a using siRNA induced PDK4 expression in HCC cells. Furthermore, arsenic decreased hepatic PDK4 expression as well as diminished the induction of PDK4 by BRD in mouse liver and hepatocytes. Overall, the results suggest that arsenic causes aberrant repressive histone modification to silence PDK4 in both HCC cells and in mouse liver. Published by Elsevier Inc.

  7. Insulin induced alteration in post-translational modifications of histone H3 under a hyperglycemic condition in L6 skeletal muscle myoblasts.

    PubMed

    Kabra, Dhiraj G; Gupta, Jeena; Tikoo, Kulbhushan

    2009-06-01

    Chromatin remodelling events, especially histone modifications are proposed to form the mainstay for most of the biological processes. However, the role of these histone modifications in the progression of diabetes is still unknown. Hyperglycemia plays a major role in diabetes and its complications. The present study was undertaken to check the effect of insulin on alterations in post-translational modifications of histone H3 in L6 myoblasts under a hyperglycemic condition. We provide first evidence that insulin under hyperglycemic condition alters multiple histone modifications by enhanced production of reactive oxygen species. Insulin induces dose dependent changes in Lysine 4 and 9 methylation, Ser 10 phosphorylation and acetylation of histone H3. Interestingly, insulin induced generation of reactive oxygen species induces dephosphorylation and deacetylation of histone H3. Preincubation with catalase and DPI prevents these changes in post-translational modifications of histone H3. Furthermore, changes in histone H3 phosphorylation was found to be independent of ERK, p38, RSK2 and MSK1. Moreover, serine/threonine phosphatase inhibitor, okadaic acid attenuates insulin induced dephosphorylation and deacetylation of histone H3, suggesting a role of serine/threonine phosphatases in altering modifications of histone H3. These changes in epigenetic modifications can provide new insights into pathogenesis of diabetes.

  8. SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa).

    PubMed

    Liu, Bing; Wei, Gang; Shi, Jinlei; Jin, Jing; Shen, Ting; Ni, Ting; Shen, Wen-Hui; Yu, Yu; Dong, Aiwu

    2016-04-01

    As a key epigenetic modification, the methylation of histone H3 lysine 36 (H3K36) modulates chromatin structure and is involved in diverse biological processes. To better understand the language of H3K36 methylation in rice (Oryza sativa), we chose potential histone methylation enzymes for functional exploration. In particular, we characterized rice SET DOMAIN GROUP 708 (SDG708) as an H3K36-specific methyltransferase possessing the ability to deposit up to three methyl groups on H3K36. Compared with the wild-type, SDG708-knockdown rice mutants displayed a late-flowering phenotype under both long-day and short-day conditions because of the down-regulation of the key flowering regulatory genes Heading date 3a (Hd3a), RICE FLOWERING LOCUS T1 (RFT1), and Early heading date 1 (Ehd1). Chromatin immunoprecipitation experiments indicated that H3K36me1, H3K36me2, and H3K36me3 levels were reduced at these loci in SDG708-deficient plants. More importantly, SDG708 was able to directly target and effect H3K36 methylation on specific flowering genes. In fact, knockdown of SDG708 led to misexpression of a set of functional genes and a genome-wide decrease in H3K36me1/2/3 levels during the early growth stages of rice. SDG708 is a methyltransferase that catalyses genome-wide deposition of all three methyl groups on H3K36 and is involved in many biological processes in addition to flowering promotion. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor α target gene activation.

    PubMed

    Zhang, Xuesen; Bolt, Michael; Guertin, Michael J; Chen, Wei; Zhang, Sheng; Cherrington, Brian D; Slade, Daniel J; Dreyton, Christina J; Subramanian, Venkataraman; Bicker, Kevin L; Thompson, Paul R; Mancini, Michael A; Lis, John T; Coonrod, Scott A

    2012-08-14

    Cofactors for estrogen receptor α (ERα) can modulate gene activity by posttranslationally modifying histone tails at target promoters. Here, we found that stimulation of ERα-positive cells with 17β-estradiol (E2) promotes global citrullination of histone H3 arginine 26 (H3R26) on chromatin. Additionally, we found that the H3 citrulline 26 (H3Cit26) modification colocalizes with ERα at decondensed chromatin loci surrounding the estrogen-response elements of target promoters. Surprisingly, we also found that citrullination of H3R26 is catalyzed by peptidylarginine deiminase (PAD) 2 and not by PAD4 (which citrullinates H4R3). Further, we showed that PAD2 interacts with ERα after E2 stimulation and that inhibition of either PAD2 or ERα strongly suppresses E2-induced H3R26 citrullination and ERα recruitment at target gene promoters. Collectively, our data suggest that E2 stimulation induces the recruitment of PAD2 to target promoters by ERα, whereby PAD2 then citrullinates H3R26, which leads to local chromatin decondensation and transcriptional activation.

  10. Chromatin condensation and recruitment of PHD finger proteins to histone H3K4me3 are mutually exclusive

    PubMed Central

    Gatchalian, Jovylyn; Gallardo, Carmen Mora; Shinsky, Stephen A.; Ospina, Ruben Rosas; Liendo, Andrea Mansilla; Krajewski, Krzysztof; Klein, Brianna J.; Andrews, Forest H.; Strahl, Brian D.; M. van Wely, Karel H.; Kutateladze, Tatiana G.

    2016-01-01

    Histone post-translational modifications, and specific combinations they create, mediate a wide range of nuclear events. However, the mechanistic bases for recognition of these combinations have not been elucidated. Here, we characterize crosstalk between H3T3 and H3T6 phosphorylation, occurring in mitosis, and H3K4me3, a mark associated with active transcription. We detail the molecular mechanisms by which H3T3ph/K4me3/T6ph switches mediate activities of H3K4me3-binding proteins, including those containing plant homeodomain (PHD) and double Tudor reader domains. Our results derived from nuclear magnetic resonance chemical shift perturbation analysis, orthogonal binding assays and cell fluorescence microscopy studies reveal a strong anti-correlation between histone H3T3/T6 phosphorylation and retention of PHD finger proteins in chromatin during mitosis. Together, our findings uncover the mechanistic rules of chromatin engagement for H3K4me3-specific readers during cell division. PMID:27016734

  11. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression.

    PubMed

    Wen, Hong; Li, Yuanyuan; Xi, Yuanxin; Jiang, Shiming; Stratton, Sabrina; Peng, Danni; Tanaka, Kaori; Ren, Yongfeng; Xia, Zheng; Wu, Jun; Li, Bing; Barton, Michelle C; Li, Wei; Li, Haitao; Shi, Xiaobing

    2014-04-10

    Recognition of modified histones by 'reader' proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific 'Ser 31' residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.

  12. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma.

    PubMed

    Huang, Tina Y; Piunti, Andrea; Lulla, Rishi R; Qi, Jin; Horbinski, Craig M; Tomita, Tadanori; James, C David; Shilatifard, Ali; Saratsis, Amanda M

    2017-04-17

    Diffuse midline gliomas (including diffuse intrinsic pontine glioma, DIPG) are highly morbid glial neoplasms of the thalamus or brainstem that typically arise in young children and are not surgically resectable. These tumors are characterized by a high rate of histone H3 mutation, resulting in replacement of lysine 27 with methionine (K27M) in genes encoding H3 variants H3.3 (H3F3A) and H3.1 (HIST1H3B). Detection of these gain-of-function mutations has clinical utility, as they are associated with distinct tumor biology and clinical outcomes. Given the paucity of tumor tissue available for molecular analysis and relative morbidity of midline tumor biopsy, CSF-derived tumor DNA from patients with diffuse midline glioma may serve as a viable alternative for clinical detection of histone H3 mutation. We demonstrate the feasibility of two strategies to detect H3 mutations in CSF-derived tumor DNA from children with brain tumors (n = 11) via either targeted Sanger sequencing of H3F3A and HIST1H3B, or H3F3A c.83 A > T detection via nested PCR with mutation-specific primers. Of the six CSF specimens from children with diffuse midline glioma in our cohort, tumor DNA sufficient in quantity and quality for analysis was isolated from five (83%), with H3.3K27M detected in four (66.7%). In addition, H3.3G34V was identified in tumor DNA from a patient with supratentorial glioblastoma. Test sensitivity (87.5%) and specificity (100%) was validated via immunohistochemical staining and Sanger sequencing in available matched tumor tissue specimens (n = 8). Our results indicate that histone H3 gene mutation is detectable in CSF-derived tumor DNA from children with brain tumors, including diffuse midline glioma, and suggest the feasibility of "liquid biopsy" in lieu of, or to complement, tissue diagnosis, which may prove valuable for stratification to targeted therapies and monitoring treatment response.

  13. Epigenetically repressing human cytomegalovirus lytic infection and reactivation from latency in THP-1 model by targeting H3K9 and H3K27 histone demethylases

    PubMed Central

    Yu, Yanyan; Yi, Wei; Zhu, Shanshan; Li, En

    2017-01-01

    Human Cytomegalovirus (hCMV) infects a broad range of the population and establishes life-long latency in the infected individuals. Periodically the latently infected virus can reactivate and becomes a significant cause of morbidity and mortality in immunocompromised individuals. In latent infection, the viral genome is suppressed in a heterochromatic state and viral gene transcription is silenced. Upon reactivation, the repressive chromatin is remodeled to an active form, allowing viral lytic gene transcription, initiated by the expression of viral Immediate Early (IE) genes. During this process, a number of histone modification enzymes, including histone demethylases (HDMs), play important roles in driving IE expression, but the mechanisms involved are not fully understood. To get a better understanding of these mechanisms, we focused on two HDMs, KDM4 and KDM6, which reverse the repressive histone H3-lysine 9 and lysine 27 methylation, respectively. Our studies show that in lytic infection, both demethylases are important in the activation of viral IE gene expression. Simultaneous disruption of both via genetic or chemical methods leads to severely impaired viral IE gene expression and viral replication. Additionally, in an experimental latency-reactivation model in THP-1 cells, the KDM6 family member JMJD3 is induced upon viral reactivation and its knockdown resulted in reduced IE gene transcription. These findings suggest pharmacological inhibition of these HDMs may potentially block hCMV lytic infection and reactivation, and control the viral infection associated diseases, which are of significant unmet medical needs. PMID:28407004

  14. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome

    PubMed Central

    Liang, Gangning; Lin, Joy C. Y.; Wei, Vivian; Yoo, Christine; Cheng, Jonathan C.; Nguyen, Carvell T.; Weisenberger, Daniel J.; Egger, Gerda; Takai, Daiya; Gonzales, Felicidad A.; Jones, Peter A.

    2004-01-01

    Almost 1-2% of the human genome is located within 500 bp of either side of a transcription initiation site, whereas a far larger proportion (≈25%) is potentially transcribable by elongating RNA polymerases. This observation raises the question of how the genome is packaged into chromatin to allow start sites to be recognized by the regulatory machinery at the same time as transcription initiation, but not elongation, is blocked in the 25% of intragenic DNA. We developed a chromatin scanning technique called ChAP, coupling the chromatin immunoprecipitation assay with arbitrarily primed PCR, which allows for the rapid and unbiased comparison of histone modification patterns within the eukaryotic nucleus. Methylated lysine 4 (K4) and acetylated K9/14 of histone H3 were both highly localized to the 5′ regions of transcriptionally active human genes but were greatly decreased downstream of the start sites. Our results suggest that the large transcribed regions of human genes are maintained in a deacetylated conformation in regions read by elongating polymerase. Common models depicting widespread histone acetylation and K4 methylation throughout the transcribed unit do not therefore apply to the majority of human genes. PMID:15123803

  15. The convergent chemical synthesis of histone H3 protein for site-specific acetylation at Lys56 and ubiquitination at Lys122.

    PubMed

    Qi, Yun-Kun; He, Qiao-Qiao; Ai, Hua-Song; Guo, Jing; Li, Jia-Bin

    2017-03-29

    Deposition of (H3-H4)2 tetramers is believed to be the critical step in nucleosome assembly. Site-specific acetylation and ubiquitination of histone H3 have been speculated to synergistically facilitate the formation and deposition of (H3-H4)2 tetramers. Here we report our endeavors toward the first chemical synthesis of homogenous histone H3, which bears Lys56 acetylation and Lys122 ubiquitination, for in vitro biochemical and biophysical studies.

  16. Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium.

    PubMed

    Nagaki, Kiyotaka; Yamamoto, Maki; Yamaji, Naoki; Mukai, Yasuhiko; Murata, Minoru

    2012-01-01

    Due to the ease with which chromosomes can be observed, the Allium species, and onion in particular, have been familiar materials employed in cytogenetic experiments in biology. In this study, centromeric histone H3 (CENH3)-coding cDNAs were identified in four Allium species (onion, welsh onion, garlic and garlic chives) and cloned. Anti-CENH3 antibody was then raised against a deduced amino acid sequence of CENH3 of welsh onion. The antibody recognized all CENH3 orthologs of the Allium species tested. Immunostaining with the antibody enabled clear visualization of chromosome behavior during mitosis in the species. Furthermore, three-dimensional (3D) observation of mitotic cell division was achieved by subjecting root sections to immunohistochemical techniques. The 3D dynamics of the cells and position of cell-cycle marker proteins (CENH3 and α-tubulin) were clearly revealed by immunohistochemical staining with the antibodies. The immunohistochemical analysis made it possible to establish an overview of the location of dividing cells in the root tissues. This breakthrough in technique, in addition to the two centromeric DNA sequences isolated from welsh onion by chromatin immuno-precipitation using the antibody, should lead to a better understanding of plant cell division. A phylogenetic analysis of Allium CENH3s together with the previously reported plant CENH3s showed two separate clades for monocot species tested. One clade was made from CENH3s of the Allium species with those of Poaceae species, and the other from CENH3s of a holocentric species (Luzula nivea). These data may imply functional differences of CENH3s between holocentric and monocentric species. Centromeric localization of DNA sequences isolated from welsh onion by chromatin immuno-precipitation (ChIP) using the antibody was confirmed by fluorescence in situ hybridization and ChIP-quantitative PCR.

  17. Chromosome Dynamics Visualized with an Anti-Centromeric Histone H3 Antibody in Allium

    PubMed Central

    Nagaki, Kiyotaka; Yamamoto, Maki; Yamaji, Naoki; Mukai, Yasuhiko; Murata, Minoru

    2012-01-01

    Due to the ease with which chromosomes can be observed, the Allium species, and onion in particular, have been familiar materials employed in cytogenetic experiments in biology. In this study, centromeric histone H3 (CENH3)-coding cDNAs were identified in four Allium species (onion, welsh onion, garlic and garlic chives) and cloned. Anti-CENH3 antibody was then raised against a deduced amino acid sequence of CENH3 of welsh onion. The antibody recognized all CENH3 orthologs of the Allium species tested. Immunostaining with the antibody enabled clear visualization of chromosome behavior during mitosis in the species. Furthermore, three-dimensional (3D) observation of mitotic cell division was achieved by subjecting root sections to immunohistochemical techniques. The 3D dynamics of the cells and position of cell-cycle marker proteins (CENH3 and α-tubulin) were clearly revealed by immunohistochemical staining with the antibodies. The immunohistochemical analysis made it possible to establish an overview of the location of dividing cells in the root tissues. This breakthrough in technique, in addition to the two centromeric DNA sequences isolated from welsh onion by chromatin immuno-precipitation using the antibody, should lead to a better understanding of plant cell division. A phylogenetic analysis of Allium CENH3s together with the previously reported plant CENH3s showed two separate clades for monocot species tested. One clade was made from CENH3s of the Allium species with those of Poaceae species, and the other from CENH3s of a holocentric species (Luzula nivea). These data may imply functional differences of CENH3s between holocentric and monocentric species. Centromeric localization of DNA sequences isolated from welsh onion by chromatin immuno-precipitation (ChIP) using the antibody was confirmed by fluorescence in situ hybridization and ChIP-quantitative PCR. PMID:23236469

  18. Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver.

    PubMed

    Mikula, Michal; Majewska, Aneta; Ledwon, Joanna Karolina; Dzwonek, Artur; Ostrowski, Jerzy

    2014-12-01

    Obesity contributes to the development of non-alcoholic fatty liver disease (NAFLD), which is characterized by the upregulated expression of two key inflammatory mediators: tumor necrosis factor (Tnfa) and monocyte chemotactic protein 1 (Mcp1; also known as Ccl2). However, the chromatin make-up at these genes in the liver in obese individuals has not been explored. In this study, to identify obesity-mediated epigenetic changes at Tnfa and Ccl2, we used a murine model of obesity induced by a high-fat diet (HFD) and hyperphagic (ob/ob) mice. Chromatin immunoprecipitation (ChIP) assay was used to determine the abundance of permissive histone marks, namely histone H3 lysine 9 and 18 acetylation (H3K9/K18Ac), H3 lysine 4 trimethylation (H3K4me3) and H3 lysine 36 trimethylation (H3K36me3), in conjunction with polymerase 2 RNA (Pol2) and nuclear factor (Nf)-κB recruitment in the liver. Additionally, to correlate the liver tissue-derived ChIP measurements with a robust in vitro transcriptional response at the Tnfa and Ccl2 genes, we used lipopolysaccharide (LPS) treatment to induce an inflammatory response in Hepa1-6 cells, a cell line derived from murine hepatocytes. ChIP revealed increased H3K9/K18Ac at Tnfa and Ccl2 in the obese mice, although the differences were only statistically significant for Tnfa (p<0.05). Unexpectedly, the levels of H3K4me3 and H3K36me3 marks, as well as Pol2 and Nf-κB recruitment, did not correspond with the increased expression of these two genes in the obese mice. By contrast, the acute treatment of Hepa1-6 cells with LPS significantly increased the H3K9/K18Ac marks, as well as Pol2 and Nf-κB recruitment at both genes, while the levels of H3K4me3 and H3K36me3 marks remained unaltered. These results demonstrate that increased Tnfa and Ccl2 expression in fatty liver at the chromatin level corresponds to changes in the level of histone H3 acetylation.

  19. The Nrde Pathway Mediates Small-RNA-Directed Histone H3 Lysine 27 Trimethylation in Caenorhabditis elegans.

    PubMed

    Mao, Hui; Zhu, Chengming; Zong, Dandan; Weng, Chenchun; Yang, Xiangwei; Huang, Hui; Liu, Dun; Feng, Xuezhu; Guang, Shouhong

    2015-09-21

    Small-RNA-mediated chromatin modifications have been widely studied in plants and S. pombe. However, direct evidence of small-RNA-guided sequence-specific chromatin alterations is scarce in animals. In C. elegans, the nuclear RNAi defective (Nrde) pathway functions to transport siRNA from the cytoplasm to the nucleus, modulate transcription elongation, induce histone H3 lysine 9 (H3K9) trimethylation, and mediate transgenerational inheritance of RNAi. Here, we show that both exogenous RNAi and NRDE-bound endogenous 22G RNAs can direct sequence-specific histone H3 lysine 27 (H3K27) trimethylation at targeted loci through the Nrde pathway. The resulting H3K27me3 status can be inherited by progeny for multiple generations. piRNAs and WAGO-1-associated siRNAs induce H3K27 methylation as well. Interestingly, CSR-1-associated endogenous siRNAs fail to trigger H3K27 methylation, whereas exogenous provision of dsRNAs can induce H3K27 methylation at the CSR-1-targeted loci via the Nrde pathway. We further observed distinct genetic requirements of H3K9 and H3K27 trimethylation. Whereas set-25 and met-2 are required for K9 methylation, mes-2 is required for K27 methylation. The depletion of mes-2 leads to a nuclear RNAi defective phenotype. These results indicate that dsRNA-triggered chromatin modification is a sequence-specific response that engages the Nrde pathway in C. elegans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Fusarium graminearum Histone H3 K27 Methyltransferase KMT6 Regulates Development and Expression of Secondary Metabolite Gene Clusters

    PubMed Central

    Freitag, Michael

    2013-01-01

    The cereal pathogen Fusarium graminearum produces secondary metabolites toxic to humans and animals, yet coordinated transcriptional regulation of gene clusters remains largely a mystery. By chromatin immunoprecipitation and high-throughput DNA sequencing (ChIP-seq) we found that regions with secondary metabolite clusters are enriched for trimethylated histone H3 lysine 27 (H3K27me3), a histone modification associated with gene silencing. H3K27me3 was found predominantly in regions that lack synteny with other Fusarium species, generally subtelomeric regions. Di- or trimethylated H3K4 (H3K4me2/3), two modifications associated with gene activity, and H3K27me3 are predominantly found in mutually exclusive regions of the genome. To find functions for H3K27me3, we deleted the gene for the putative H3K27 methyltransferase, KMT6, a homolog of Drosophila Enhancer of zeste, E(z). The kmt6 mutant lacks H3K27me3, as shown by western blot and ChIP-seq, displays growth defects, is sterile, and constitutively expresses genes for mycotoxins, pigments and other secondary metabolites. Transcriptome analyses showed that 75% of 4,449 silent genes are enriched for H3K27me3. A subset of genes that were enriched for H3K27me3 in WT gained H3K4me2/3 in kmt6. A largely overlapping set of genes showed increased expression in kmt6. Almost 95% of the remaining 2,720 annotated silent genes showed no enrichment for either H3K27me3 or H3K4me2/3 in kmt6. In these cases mere absence of H3K27me3 was insufficient for expression, which suggests that additional changes are required to activate genes. Taken together, we show that absence of H3K27me3 allowed expression of an additional 14% of the genome, resulting in derepression of genes predominantly involved in secondary metabolite pathways and other species-specific functions, including putative secreted pathogenicity factors. Results from this study provide the framework for novel targeted strategies to control the “cryptic genome

  1. Histone Acetyl Transferase 1 Is Essential for Mammalian Development, Genome Stability, and the Processing of Newly Synthesized Histones H3 and H4

    PubMed Central

    Nagarajan, Prabakaran; Ge, Zhongqi; Sirbu, Bianca; Doughty, Cheryl; Agudelo Garcia, Paula A.; Schlederer, Michaela; Annunziato, Anthony T.; Cortez, David; Kenner, Lukas; Parthun, Mark R.

    2013-01-01

    Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1−/− neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1−/− mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1−/− MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly. PMID:23754951

  2. Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4.

    PubMed

    Nagarajan, Prabakaran; Ge, Zhongqi; Sirbu, Bianca; Doughty, Cheryl; Agudelo Garcia, Paula A; Schlederer, Michaela; Annunziato, Anthony T; Cortez, David; Kenner, Lukas; Parthun, Mark R

    2013-06-01

    Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1(-/-) neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1(-/-) mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1(-/-) MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly.

  3. Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus.

    PubMed

    Hamada, Yoshimasa; Bando, Tetsuya; Nakamura, Taro; Ishimaru, Yoshiyasu; Mito, Taro; Noji, Sumihare; Tomioka, Kenji; Ohuchi, Hideyo

    2015-09-01

    Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)(RNAi) and was increased by Gb'Utx(RNAi). Regenerated Gb'E(z)(RNAi) cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'Utx(RNAi) cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)(RNAi) regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'Utx(RNAi) regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression. © 2015. Published by The Company of Biologists Ltd.

  4. Histone H3 Phosphorylation in Human Skin Histoculture as a Tool to Evaluate Patient’s Response to Antiproliferative Drugs

    PubMed Central

    Ugarte, Fernando; Porth, Katherine; Sadekova, Svetlana

    2015-01-01

    Evaluation of patient’s response to chemotherapeutic drugs is often difficult and time consuming. Skin punch biopsies are easily accessible material that can be used for the evaluation of surrogate biomarkers of a patient’s response to a drug. In this study, we hypothesized that assessment of phosphorylated histone H3 in human skin punch biopsies could be used as a pharmacodynamics biomarker of patient’s response to the kinesin spindle protein inhibitor SCH2047069. To test this hypothesis, we used a human skin histoculture technique that allows culturing intact human skin in the presence of the drug. Human melanoma and skin histocultures were treated with SCH2047069, and the effect of the drug was assessed by increasing histone H3 phosphorylation using immunohistochemistry. Our results demonstrate that SCH2047069 has a significant effect on cell proliferation in human melanoma and skin histoculture and justify using human skin punch biopsies for evaluation of the pharmacodynamic changes induced by SCH2047069. ACRONYMS Histone subunit H3 (H3), Kinesin spindle protein (KSP), 5-ethynyl-2′-deoxyuridine (EDU), Dimethyl sulfoxide (DMSO), Formalin-fixed paraffin embedded (FFPE). PMID:26917945

  5. Clipping of flexible tails of histones H3 and H4 affects the structure and dynamics of the nucleosome.

    PubMed

    Nurse, Nathan P; Jimenez-Useche, Isabel; Smith, Ian Tad; Yuan, Chongli

    2013-03-05

    Förster resonance energy transfer was used to monitor the dynamic conformations of mononucleosomes under different chromatin folding conditions to elucidate the role of the flexible N-terminal regions of H3 and H4 histones. The H3 tail was shown to partake in intranucleosomal interactions by restricting the DNA breathing motion and compacting the nucleosome. The H3 tail effects were mostly independent of the ionic strength and valency of the ions. The H4 tail was shown to not greatly affect the nucleosome conformation, but did slightly influence the relative population of the preferred conformation. The role of the H4 tail varied depending on the valency and ionic strength, suggesting that electrostatic forces play a primary role in H4 tail interactions. Interestingly, despite the H4 tail's lack of influence, when H3 and H4 tails were simultaneously clipped, a more dramatic effect was seen than when only H3 or H4 tails were clipped. The combinatorial effect of H3 and H4 tail truncation suggests a potential mechanism by which various combinations of histone tail modifications can be used to control accessibility of DNA-binding proteins to nucleosomal DNA. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin

    PubMed Central

    Giri, Sumanprava; Aggarwal, Vasudha; Pontis, Julien; Shen, Zhen; Chakraborty, Arindam; Khan, Abid; Mizzen, Craig; Prasanth, Kannanganattu V; Ait-Si-Ali, Slimane; Ha, Taekjip; Prasanth, Supriya G

    2015-01-01

    Heterochromatic domains are enriched with repressive histone marks, including histone H3 lysine 9 methylation, written by lysine methyltransferases (KMTs). The pre-replication complex protein, origin recognition complex-associated (ORCA/LRWD1), preferentially localizes to heterochromatic regions in post-replicated cells. Its role in heterochromatin organization remained elusive. ORCA recognizes methylated H3K9 marks and interacts with repressive KMTs, including G9a/GLP and Suv39H1 in a chromatin context-dependent manner. Single-molecule pull-down assays demonstrate that ORCA-ORC (Origin Recognition Complex) and multiple H3K9 KMTs exist in a single complex and that ORCA stabilizes H3K9 KMT complex. Cells lacking ORCA show alterations in chromatin architecture, with significantly reduced H3K9 di- and tri-methylation at specific chromatin sites. Changes in heterochromatin structure due to loss of ORCA affect replication timing, preferentially at the late-replicating regions. We demonstrate that ORCA acts as a scaffold for the establishment of H3K9 KMT complex and its association and activity at specific chromatin sites is crucial for the organization of heterochromatin structure. DOI: http://dx.doi.org/10.7554/eLife.06496.001 PMID:25922909

  7. Histone H3 lysine 23 acetylation is associated with oncogene TRIM24 expression and a poor prognosis in breast cancer.

    PubMed

    Ma, Li; Yuan, Lili; An, Jing; Barton, Michelle C; Zhang, Qingyuan; Liu, Zhaoliang

    2016-11-01

    Acetylated H3 lysine 23 (H3K23ac) is a specific histone post-translational modification recognized by oncoprotein TRIM24. However, it is not clear whether H3K23ac levels are correlated with TRIM24 expression and what role H3K23ac may have in cancer. In this study, we collected breast carcinoma samples from 121 patients and conducted immunohistochemistry to determine the levels of TRIM24 and H3K23ac in breast cancer. Our results demonstrated that TRIM24 expression is positively correlated with H3K23ac levels, and high levels of both TRIM24 and H3K23ac predict shorter overall survival of breast cancer patients. We also showed that both TRIM24 and H3K23ac are higher in HER2-positive patients, and their levels were positively correlated with HER2 levels in breast cancer. Moreover, TRIM24 expression is associated with estrogen receptor (ER) and progesterone receptor (PR) statuses in both our cohort and The Cancer Genome Atlas (TCGA) breast carcinoma. In summary, our results revealed an important role of TRIM24 and H3K23ac in breast cancer and provided further evidence that TRIM24 small-molecule inhibitors may benefit ER- and PR-negative or HER2-positive breast cancer patients.

  8. Structure and regulation of the mDot1 gene, a mouse histone H3 methyltransferase.

    PubMed Central

    Zhang, Wenzheng; Hayashizaki, Yoshihide; Kone, Bruce C

    2004-01-01

    The nucleotide sequence data reported have been deposited in the DDBJ, EMBL, GenBank(R) and GSDB Nucleotide Sequence Databases under accession numbers AY196089, AY196090, AY376663, AY377920 and AY376664. Recently, a new class of histone methyltransferases that plays an indirect role in chromatin silencing by targeting a conserved lysine residue in the nucleosome core was described, namely the Dot1 (disruptor of telomeric silencing) family [Feng, Wang, Ng, Erdjument-Bromage, Tempst, Struhl and Zhang (2002) Curr. Biol. 12, 1052-1058; van Leeuwen, Gafken and Gottschling (2002) Cell (Cambridge, Mass.) 109, 745-756; Ng, Feng, Wang, Erdjument-Bromage, Tempst, Zhang and Struhl (2002) Genes Dev. 16, 1518-1527]. In the present study, we report the isolation, genomic organization and in vivo expression of a mouse Dot1 homologue (mDot1). Expressed sequence tag analysis identified five mDot1 mRNAs (mDot1a-mDot1e) derived from alternative splicing. mDot1a and mDot1b encode 1540 and 1114 amino acids respectively, whereas mDot1c-mDot1e are incomplete at the 5'-end. mDot1a is closest to its human counterpart (hDot1L), sharing 84% amino acid identity. mDot1b is truncated at its N- and C-termini and contains an internal deletion. The five mDot1 isoforms are encoded by 28 exons on chromosome 10qC1, with exons 24 and 28 further divided into two and four sections respectively. Alternative splicing occurs in exons 3, 4, 12, 24, 27 and 28. Northern-blot analysis with probes corresponding to the methyltransferase domain or the mDot1a-coding region detected 7.6 and 9.5 kb transcripts in multiple tissues, but only the 7.6 kb transcript was evident in mIMCD3-collecting duct cells. Transfection of mDot1a-EGFP constructs (where EGFP stands for enhanced green fluorescent protein) into human embryonic kidney (HEK)-293T or mIMCD3 cells increased the methylation of H3-K79 but not H3-K4, -K9 or -K36. Furthermore, DMSO induced mDot1 gene expression and methylation specifically at H3-K79 in mIMCD3

  9. Arabidopsis TFL2/LHP1 Specifically Associates with Genes Marked by Trimethylation of Histone H3 Lysine 27

    PubMed Central

    Farrona, Sara; Martin-Magniette, Marie-Laure; Guillaume, Elodie; Buisine, Nicolas; Gagnot, Séverine; Martienssen, Robert A; Coupland, George; Colot, Vincent

    2007-01-01

    TERMINAL FLOWER 2/LIKE HETEROCHROMATIN PROTEIN 1 (TFL2/LHP1) is the only Arabidopsis protein with overall sequence similarity to the HETEROCHROMATIN PROTEIN 1 (HP1) family of metazoans and S. pombe. TFL2/LHP1 represses transcription of numerous genes, including the flowering-time genes FLOWERING LOCUS T (FT) and FLOWERING LOCUS C (FLC), as well as the floral organ identity genes AGAMOUS (AG) and APETALA 3 (AP3). These genes are also regulated by proteins of the Polycomb repressive complex 2 (PRC2), and it has been proposed that TFL2/LHP1 represents a potential stabilizing factor of PRC2 activity. Here we show by chromatin immunoprecipitation and hybridization to an Arabidopsis Chromosome 4 tiling array (ChIP-chip) that TFL2/LHP1 associates with hundreds of small domains, almost all of which correspond to genes located within euchromatin. We investigated the chromatin marks to which TFL2/LHP1 binds and show that, in vitro, TFL2/LHP1 binds to histone H3 di- or tri-methylated at lysine 9 (H3K9me2 or H3K9me3), the marks recognized by HP1, and to histone H3 trimethylated at lysine 27 (H3K27me3), the mark deposited by PRC2. However, in vivo TFL2/LHP1 association with chromatin occurs almost exclusively and co-extensively with domains marked by H3K27me3, but not H3K9me2 or -3. Moreover, the distribution of H3K27me3 is unaffected in lhp1 mutant plants, indicating that unlike PRC2 components, TFL2/LHP1 is not involved in the deposition of this mark. Rather, our data suggest that TFL2/LHP1 recognizes specifically H3K27me3 in vivo as part of a mechanism that represses the expression of many genes targeted by PRC2. PMID:17542647

  10. Immunohistochemical analysis of histone H3 acetylation and methylation—Evidence for altered epigenetic signaling following traumatic brain injury in immature rats☆

    PubMed Central

    Gao, Wei-Min; Chadha, Mandeep S.; Kline, Anthony E.; Clark, Robert S.B.; Kochanek, Patrick M.; Dixon, C. Edward; Jenkins, Larry W.

    2009-01-01

    Posttranslational modifications (PTMs) of histone proteins may result in altered epigenetic signaling after pediatric traumatic brain injury (TBI). Hippocampal histone H3 acetylation and methylation in immature rats after moderate TBI were measured and decreased only in CA3 at 6 h and 24 h with persistent methylation decreases up to 72 h after injury. Decreased histone H3 acetylation and methylation suggest altered hippocampal CA3 epigenetic signaling during the first hours to days after TBI. PMID:16406269

  11. NIRF, a Novel Ubiquitin Ligase, Inhibits Hepatitis B Virus Replication Through Effect on HBV Core Protein and H3 Histones.

    PubMed

    Qian, Guanhua; Hu, Bin; Zhou, Danlin; Xuan, Yanyan; Bai, Lu; Duan, Changzhu

    2015-05-01

    Np95/ICBP90-like RING finger protein (NIRF), a novel E3 ubiquitin ligase, has been shown to interact with HBc and promote its degradation. This study investigated the effects of NIRF on replication of hepatitis B virus (HBV) and the mechanisms. We have shown that NIRF inhibits replication of HBV DNA and secretion of HBsAg and HBeAg in HepG2 cells transfected with pAAV-HBV1.3. NIRF also inhibits the replication and secretion of HBV in a mouse model that expressed HBV. NIRF reduces acetylation of HBV cccDNA-bound H3 histones. These results showed that NIRF is involved in the HBV replication cycle not only through direct interaction with HBc but also reduces acetylation of HBV cccDNA-bound H3 histones.

  12. Slowly on, Slowly off: Bisubstrate-Analogue Conjugates of 5-Iodotubercidin and Histone H3 Peptide Targeting Protein Kinase Haspin.

    PubMed

    Kestav, Katrin; Viht, Kaido; Konovalov, Anton; Enkvist, Erki; Uri, Asko; Lavogina, Darja

    2017-02-09

    The atypical protein kinase Haspin serves as one of a key players in mitosis by catalysing phosphorylation of Thr3 in histone H3, and thus sustaining the normal functioning of the chromosomal passenger complex. Here, we report the development of bisubstrate-analogue inhibitors targeting Haspin. The compounds were constructed by linking 5-iodotubercidin moiety to the N-terminal sequence of histone H3. The new conjugates possessed high affinity (KD in the subnanomolar range) towards Haspin as well as slow kinetics of association and dissociation (residence time on the scale of several hours), which reflected their unique binding mode and translated into improved selectivity. The latter was confirmed in a biochemical binding/displacement assay with a panel of 10 protein kinases, in thermal shift assay with off-targets of 5-iodotubercidin represented by adenosine kinase and the Cdc2-like kinase family, as well as in assay with spiked lysates of HeLa cells.

  13. Association of Taf14 with acetylated histone H3 directs gene transcription and the DNA damage response

    PubMed Central

    Shanle, Erin K.; Andrews, Forest H.; Meriesh, Hashem; McDaniel, Stephen L.; Dronamraju, Raghuvar; DiFiore, Julia V.; Jha, Deepak; Wozniak, Glenn G.; Bridgers, Joseph B.; Kerschner, Jenny L.; Krajewski, Krzysztof; Martín, Glòria Mas; Morrison, Ashby J.; Kutateladze, Tatiana G.; Strahl, Brian D.

    2015-01-01

    The YEATS domain, found in a number of chromatin-associated proteins, has recently been shown to have the capacity to bind histone lysine acetylation. Here, we show that the YEATS domain of Taf14, a member of key transcriptional and chromatin-modifying complexes in yeast, is a selective reader of histone H3 Lys9 acetylation (H3K9ac). Structural analysis reveals that acetylated Lys9 is sandwiched in an aromatic cage formed by F62 and W81. Disruption of this binding in cells impairs gene transcription and the DNA damage response. Our findings establish a highly conserved acetyllysine reader function for the YEATS domain protein family and highlight the significance of this interaction for Taf14. PMID:26341557

  14. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites.

    PubMed

    Czermin, Birgit; Melfi, Raffaella; McCabe, Donna; Seitz, Volker; Imhof, Axel; Pirrotta, Vincenzo

    2002-10-18

    Enhancer of Zeste is a Polycomb Group protein essential for the establishment and maintenance of repression of homeotic and other genes. In the early embryo it is found in a complex that includes ESC and is recruited to Polycomb Response Elements. We show that this complex contains a methyltransferase activity that methylates lysine 9 and lysine 27 of histone H3, but the activity is lost when the E(Z) SET domain is mutated. The lysine 9 position is trimethylated and this mark is closely associated with Polycomb binding sites on polytene chromosomes but is also found in centric heterochromatin, chromosome 4, and telomeric sites. Histone H3 methylated in vitro by the E(Z)/ESC complex binds specifically to Polycomb protein.

  15. High Affinity Binding of Chp1 Chromodomain to K9 Methylated Histone H3 is Required to Establish Centromeric Hterochromatin

    SciTech Connect

    Schalch, T.; Job, G; Noffsinger, V; Shanker, S; Kuscu, C; Joshua-Tor, L; Partridge, J

    2009-01-01

    In fission yeast, assembly of centromeric heterochromatin requires the RITS complex, which consists of Ago1, Tas3, Chp1, and siRNAs derived from centromeric repeats. Recruitment of RITS to centromeres has been proposed to depend on siRNA-dependent targeting of Ago1 to centromeric sequences. Previously, we demonstrated that methylated lysine 9 of histone H3 (H3K9me) acts upstream of siRNAs during heterochromatin establishment. Our crystal structure of Chp1's chromodomain in complex with a trimethylated lysine 9 H3 peptide reveals extensive sites of contact that contribute to Chp1's high-affinity binding. We found that this high-affinity binding is critical for the efficient establishment of centromeric heterochromatin, but preassembled heterochromatin can be maintained when Chp1's affinity for H3K9me is greatly reduced.

  16. The Y641C mutation of EZH2 alters substrate specificity for histone H3 lysine 27 methylation states.

    PubMed

    Wigle, Tim J; Knutson, Sarah K; Jin, Lei; Kuntz, Kevin W; Pollock, Roy M; Richon, Victoria M; Copeland, Robert A; Scott, Margaret Porter

    2011-10-03

    Mutations at tyrosine 641 (Y641F, Y641N, Y641S and Y641H) in the SET domain of EZH2 have been identified in patients with certain subtypes of non-Hodgkin lymphoma (NHL). These mutations were shown to change the substrate specificity of EZH2 for various methylation states of lysine 27 on histone H3 (H3K27). An additional mutation at EZH2 Y641 to cysteine (Y641C) was also found in one patient with NHL and in SKM-1 cells derived from a patient with myelodisplastic syndrome (MDS). The Y641C mutation has been reported to dramatically reduce enzymatic activity. Here, we demonstrate that while the Y641C mutation ablates enzymatic activity against unmethylated and monomethylated H3K27, it is superior to wild-type in catalyzing the formation of trimethylated H3K27 from the dimethylated precursor.

  17. Structure and Activity of the Peptidyl-Prolyl Isomerase Domain from the Histone Chaperone Fpr4 toward Histone H3 Proline Isomerization*

    PubMed Central

    Monneau, Yoan R.; Soufari, Heddy; Nelson, Christopher J.; Mackereth, Cameron D.

    2013-01-01

    The FK506-binding protein (FKBP) family of peptidyl-prolyl isomerases (PPIases) is characterized by a common catalytic domain that binds to the inhibitors FK506 and rapamycin. As one of four FKBPs within the yeast Saccharomyces cerevisiae, Fpr4 has been described as a histone chaperone, and is in addition implicated in epigenetic function in part due to its mediation of cis-trans conversion of proline residues within histone tails. To better understand the molecular details of this activity, we have determined the solution structure of the Fpr4 C-terminal PPIase domain by using NMR spectroscopy. This canonical FKBP domain actively increases the rate of isomerization of three decapeptides derived from the N terminus of yeast histone H3, whereas maintaining intrinsic cis and trans populations. Observation of the uncatalyzed and Fpr4-catalyzed isomerization rates at equilibrium demonstrate Pro16 and Pro30 of histone H3 as the major proline targets of Fpr4, with little activity shown against Pro38. This alternate ranking of the three target prolines, as compared with affinity determination or the classical chymotrypsin-based fluorescent assay, reveals the mechanistic importance of substrate residues C-terminal to the peptidyl-prolyl bond. PMID:23888048

  18. Structure and activity of the peptidyl-prolyl isomerase domain from the histone chaperone Fpr4 toward histone H3 proline isomerization.

    PubMed

    Monneau, Yoan R; Soufari, Heddy; Nelson, Christopher J; Mackereth, Cameron D

    2013-09-06

    The FK506-binding protein (FKBP) family of peptidyl-prolyl isomerases (PPIases) is characterized by a common catalytic domain that binds to the inhibitors FK506 and rapamycin. As one of four FKBPs within the yeast Saccharomyces cerevisiae, Fpr4 has been described as a histone chaperone, and is in addition implicated in epigenetic function in part due to its mediation of cis-trans conversion of proline residues within histone tails. To better understand the molecular details of this activity, we have determined the solution structure of the Fpr4 C-terminal PPIase domain by using NMR spectroscopy. This canonical FKBP domain actively increases the rate of isomerization of three decapeptides derived from the N terminus of yeast histone H3, whereas maintaining intrinsic cis and trans populations. Observation of the uncatalyzed and Fpr4-catalyzed isomerization rates at equilibrium demonstrate Pro(16) and Pro(30) of histone H3 as the major proline targets of Fpr4, with little activity shown against Pro(38). This alternate ranking of the three target prolines, as compared with affinity determination or the classical chymotrypsin-based fluorescent assay, reveals the mechanistic importance of substrate residues C-terminal to the peptidyl-prolyl bond.

  19. The Histone H3 Acetylase dGcn5 Is a Key Player in Drosophila melanogaster Metamorphosis

    PubMed Central

    Carré, Clément; Szymczak, Dimitri; Pidoux, Josette; Antoniewski, Christophe

    2005-01-01

    Although it has been well established that histone acetyltransferases (HATs) are involved in the modulation of chromatin structure and gene transcription, there is only little information on their developmental role in higher organisms. Gcn5 was the first transcription factor with HAT activity identified in eukaryotes. Here we report the isolation and characterization of Drosophila melanogaster dGcn5 mutants. Null dGcn5 alleles block the onset of both oogenesis and metamorphosis, while hypomorphic dGcn5 alleles impair the formation of adult appendages and cuticle. Strikingly, the dramatic loss of acetylation of the K9 and K14 lysine residues of histone H3 in dGcn5 mutants has no noticeable effect on larval tissues. In contrast, strong cell proliferation defects in imaginal tissues are observed. In vivo complementation experiments revealed that dGcn5 integrates specific functions in addition to chromosome binding and acetylation. Surprisingly, a dGcn5 variant protein with a deletion of the bromodomain, which has been shown to recognize acetylated histones, appears to be fully functional. Our results establish dGcn5 as a major histone H3 acetylase in Drosophila which plays a key role in the control of specific morphogenetic cascades during developmental transitions. PMID:16135811

  20. Increased Histone H3 Phosphorylation in Neurons in Specific Brain Structures after Induction of Status Epilepticus in Mice

    PubMed Central

    Mori, Tetsuji; Wakabayashi, Taketoshi; Ogawa, Haruyuki; Hirahara, Yukie; Koike, Taro; Yamada, Hisao

    2013-01-01

    Status epilepticus (SE) induces pathological and morphological changes in the brain. Recently, it has become clear that excessive neuronal excitation, stress and drug abuse induce chromatin remodeling in neurons, thereby altering gene expression. Chromatin remodeling is a key mechanism of epigenetic gene regulation. Histone H3 phosphorylation is frequently used as a marker of chromatin remodeling and is closely related to the upregulation of mRNA transcription. In the present study, we analyzed H3 phosphorylation levels in vivo using immunohistochemistry in the brains of mice with pilocarpine-induced SE. A substantial increase in H3 phosphorylation was detected in neurons in specific brain structures. Increased H3 phosphorylation was dependent on neuronal excitation. In particular, a robust upregulation of H3 phosphorylation was detected in the caudate putamen, and there was a gradient of phosphorylated H3+ (PH3+) neurons along the medio-lateral axis. After unilateral ablation of dopaminergic neurons in the substantia nigra by injection of 6-hydroxydopamine, the distribution of PH3+ neurons changed in the caudate putamen. Moreover, our histological analysis suggested that, in addition to the well-known MSK1 (mitogen and stress-activated kinase)/H3 phosphorylation/c-fos pathway, other signaling pathways were also activated. Together, our findings suggest that a number of genes involved in the pathology of epileptogenesis are upregulated in PH3+ brain regions, and that H3 phosphorylation is a suitable indicator of strong neuronal excitation. PMID:24147063

  1. Egg jelly induces the phosphorylation of histone H3 in spermatozoa of the sea urchin Arbacia punctulata.

    PubMed

    Vacquier, V D; Porter, D C; Keller, S H; Aukerman, M

    1989-05-01

    When spermatozoa of Arbacia punctulata are labeled with 32P and treated with soluble egg jelly, radiolabel is incorporated into histone H3. The time course of labeling correlates with the period of chromatin decondensation of sperm pronuclei in eggs. Phosphorylation is on serine and may result from increased turnover of phosphate on H3. The macromolecular fraction of egg jelly (and not the peptide fraction) is the inducer of H3 phosphorylation. The reaction is dependent on external Ca2+ and is induced by monensin and A23187. H3 phosphorylation is not induced by the phosphodiesterase inhibitor IBMX and relatively high (250 microM) concentrations of the protein kinase inhibitor H8 are needed to block the reaction, suggesting that it is cAMP independent. A surprising finding is that merely diluting the cells into Na+ free media is the most effective method to induce the radiolabeling of H3. These results are in contrast to findings on the egg jelly induced phosphorylation of histone H1 in S. purpuratus spermatozoa. These species differences must reflect the great evolutionary divergence between these two sea urchin species in the mechanism of regulation of the phosphorylation of nuclear proteins during fertilization.

  2. The MES-2/MES-3/MES-6 complex and regulation of histone H3 methylation in C. elegans.

    PubMed

    Bender, Laurel B; Cao, Ru; Zhang, Yi; Strome, Susan

    2004-09-21

    The C. elegans proteins MES-2 and MES-6, orthologs of the Polycomb group (PcG) chromatin repressors E(Z) and ESC, exist in a complex with their novel partner MES-3. The MES system participates in silencing the X chromosomes in the hermaphrodite germline. Loss of maternal MES function leads to germline degeneration and sterility. We report here that the MES complex is responsible for di- and trimethylation of histone H3 Lys27 (H3-K27) in the adult germline and in early embryos and that MES-dependent H3-K27 marks are concentrated on the X's. Another H3-K27 HMT functions in adult somatic cells, oocytes, and the PGCs of embryos. In PGCs, the MES complex may specifically convert dimethyl to trimethyl H3-K27. The HMT activity of the MES complex appears to be dependent on the SET domain of MES-2. MES-2 thus joins its orthologs Drosophila E(Z) and human EZH2 among SET domain proteins known to function as HMTs (reviewed in ). Methylation of histones is important for long-term epigenetic regulation of chromatin and plays a key role in diverse processes such as X inactivation and oncogenesis. Our results contribute to understanding the composition and roles of E(Z)/MES-2 complexes across species.

  3. Quantitative analysis of histone H3 and H4 post-translational modifications in doxorubicin-resistant leukemia cells.

    PubMed

    Liu, Tao; Guo, Qingcheng; Guo, Huaizu; Hou, Sheng; Li, Jing; Wang, Hao

    2016-04-01

    The epigenetic remodeling of chromatin through histone modifications has been widely implicated in drug resistance of cancer cells. However, whether epigenetic mechanisms contribute specifically to doxorubicin resistance in leukemia has not been carefully examined. Using a stable and sensitive workflow based on LC-MS, we quantitatively compared the extents of methylation and acetylation of histone H3 and H4 in acute leukemia cell line HL60 and its doxorubicin-resistant derivative, HL60/ADR, as well as the chronic leukemia cell line K562 and its doxorubicin-resistant derivative, K562/ADR. We found that increased levels of H3K9 methylation, H3K14, H3K18 and H3K23 acetylation, and potentially H4K20 methylation, are associated with drug resistance in both cells. Our results demonstrated that the doxorubicin-resistant acute and chronic leukemia cell lines may share a common epigenetic mechanism that involves a combination of transcriptional activation and silencing.

  4. Cyclin E and histone H3 levels are regulated by 5-fluorouracil in a DNA mismatch repair-dependent manner

    PubMed Central

    Chung, Heekyung; Chaudhry, Joy; Lopez, Claudia G

    2010-01-01

    Several studies indicate that the DNA mismatch repair (MMR) system may trigger cytotoxicity upon 5-fluorouracil (5-FU) recognition, but signaling pathways regulated by MMR in response to 5-FU are unknown. We hypothesize that recognition of 5-FU in DNA by MMR proteins trigger specific signaling cascades that results in slowing of the cell cycle and cell death. Whole human genome cDNA microarrays were used to examine relative signaling responses induced in MMR-proficient cells after 5-FU (5 µM) treatment for 24 hours. Analysis revealed 43 pathways differentially affected by 5-FU compared to control (p < 0.05), including cyclin and cell cycle regulation involving G1-S cell cycle transition, activation of Src, MAP K, p53 and base excision repair. In particular, 5-FU upregulated cyclins E1 and E2 (≥1.4-fold) and downregulated cdc25C, cyclins B1 and B2, histone H2A, H2B and H3 (≤-1.4-fold) over control. Cell cycle analysis revealed a G1/S arrest by 5-FU that was congruent with increased cyclin E and decreased cdc25C protein expression. Importantly, with knockdown of hMLH1 and hMSH2, we observed that decreased histone H3 expression by 5-FU was dependent on hMLH1. Additionally, 5-FU treatment dramatically decreased levels of several histone H3 modifications. Our data suggest that 5-FU induces a G1/S arrest by regulating cyclin E and cdc25C expression and MMR recognition of 5-FU in DNA may modulate cyclin E to affect the cell cycle. Furthermore, MMR recognition of 5-FU reduces histone H3 levels that could be related to DNA access by proteins and/or cell death during the G1/S phase of the cell cycle. PMID:20930505

  5. Structural Basis for Specific Binding of Human MPP8 Chromodomain to Histone H3 Methylated at Lysine 9

    SciTech Connect

    Li, Jing; Li, Zhihong; Ruan, Jianbin; Xu, Chao; Tong, Yufeng; Pan, Patricia W.; Tempel, Wolfram; Crombet, Lissete; Min, Jinrong; Zang, Jianye

    2012-02-27

    M-phase phosphoprotein 8 (MPP8) was initially identified to be a component of the RanBPM-containing large protein complex, and has recently been shown to bind to methylated H3K9 both in vivo and in vitro. MPP8 binding to methylated H3K9 is suggested to recruit the H3K9 methyltransferases GLP and ESET, and DNA methyltransferase 3A to the promoter of the E-cadherin gene, mediating the E-cadherin gene silencing and promote tumor cell motility and invasion. MPP8 contains a chromodomain in its N-terminus, which is used to bind the methylated H3K9. Here, we reported the crystal structures of human MPP8 chromodomain alone and in complex with the trimethylated histone H3K9 peptide (residue 1-15). The complex structure unveils that the human MPP8 chromodomain binds methylated H3K9 through a conserved recognition mechanism, which was also observed in Drosophila HP1, a chromodomain containing protein that binds to methylated H3K9 as well. The structure also reveals that the human MPP8 chromodomain forms homodimer, which is mediated via an unexpected domain swapping interaction through two {beta} strands from the two protomer subunits. Our findings reveal the molecular mechanism of selective binding of human MPP8 chromodomain to methylated histone H3K9. The observation of human MPP8 chromodomain in both solution and crystal lattice may provide clues to study MPP8-mediated gene regulation furthermore.

  6. Interaction between γ-radiation and dietary folate starvation metabolically reprograms global hepatic histone H3 methylation at lysine 4 and lysine 27 residues.

    PubMed

    Batra, Vipen; Devasagayam, Thomas Paul Asir

    2012-03-01

    The objective of the present study was to investigate the regulatory control of histone H3 methylation at lysine 4 (H3K4) and lysine 27 (H3K27) residues in response to the effect of folate deficiency and gamma (γ)-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93M formula, were subjected to 2-4 Gy total body γ-irradiation. There was a significant decrease in liver folate levels with concomitant depletion of S-adenosylmethionine (SAM) reserves. Folate deficiency and γ-radiation together induced H3K4 histone methyltransferase (H3K4HMTase) and suppressed H3K27 histone methyltransferase (H3K27HMTase) activities in a dose and time dependent manner. Our studies suggested radiation induced metabolic reprogramming of H3K4/H3K27 methylation patterns in FFD animals. We showed that radiation toxicity diverted one-carbon (C1) flux in FFD fed animals towards H3K4 methylation. Present work on methylation pattern of histone lysine residues gains particular importance as methylation of H3K4 residues is associated with euchromatin while methylated H3K27 residues promote gene silencing. In conclusion, our study suggests that maintenance of genomic histone methylation under γ-radiation stress might be a very dynamic, progressive process that could be modulated by dietary folate deficiency leading to formation of epigenetically reprogrammed cells.

  7. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time.

    PubMed

    Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh

    2017-09-01

    Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails.

    PubMed

    Stützer, Alexandra; Liokatis, Stamatios; Kiesel, Anja; Schwarzer, Dirk; Sprangers, Remco; Söding, Johannes; Selenko, Philipp; Fischle, Wolfgang

    2016-01-21

    Post-translational histone modifications and linker histone incorporation regulate chromatin structure and genome activity. How these systems interface on a molecular level is unclear. Using biochemistry and NMR spectroscopy, we deduced mechanistic insights into the modification behavior of N-terminal histone H3 tails in different nucleosomal contexts. We find that linker histones generally inhibit modifications of different H3 sites and reduce H3 tail dynamics in nucleosomes. These effects are caused by modulations of electrostatic interactions of H3 tails with linker DNA and largely depend on the C-terminal domains of linker histones. In agreement, linker histone occupancy and H3 tail modifications segregate on a genome-wide level. Charge-modulating modifications such as phosphorylation and acetylation weaken transient H3 tail-linker DNA interactions, increase H3 tail dynamics, and, concomitantly, enhance general modifiability. We propose that alterations of H3 tail-linker DNA interactions by linker histones and charge-modulating modifications execute basal control mechanisms of chromatin function.

  9. The Histone Variant H3.3 Is Enriched at Drosophila Amplicon Origins but Does Not Mark Them for Activation

    PubMed Central

    Paranjape, Neha P.; Calvi, Brian R.

    2016-01-01

    Eukaryotic DNA replication begins from multiple origins. The origin recognition complex (ORC) binds origin DNA and scaffolds assembly of a prereplicative complex (pre-RC), which is subsequently activated to initiate DNA replication. In multicellular eukaryotes, origins do not share a strict DNA consensus sequence, and their activity changes in concert with chromatin status during development, but mechanisms are ill-defined. Previous genome-wide analyses in Drosophila and other organisms have revealed a correlation between ORC binding sites and the histone variant H3.3. This correlation suggests that H3.3 may designate origin sites, but this idea has remained untested. To address this question, we examined the enrichment and function of H3.3 at the origins responsible for developmental gene amplification in the somatic follicle cells of the Drosophila ovary. We found that H3.3 is abundant at these amplicon origins. H3.3 levels remained high when replication initiation was blocked, indicating that H3.3 is abundant at the origins before activation of the pre-RC. H3.3 was also enriched at the origins during early oogenesis, raising the possibility that H3.3 bookmarks sites for later amplification. However, flies null mutant for both of the H3.3 genes in Drosophila did not have overt defects in developmental gene amplification or genomic replication, suggesting that H3.3 is not essential for the assembly or activation of the pre-RC at origins. Instead, our results imply that the correlation between H3.3 and ORC sites reflects other chromatin attributes that are important for origin function. PMID:27172191

  10. Reduction of phosphorylated histone H3 serine 10 and serine 28 cell cycle marker intensities after DNA damage.

    PubMed

    Ozawa, Kazuo

    2008-06-01

    Phosphorylated histone H3 at serine 10 and serine 28 (H3Ser10 and H3Ser28) have been recognized as cell cycle markers to evaluate the late-G(2)/M status of cell and tissue samples. I report about the reduction phenomena of H3Ser10 and Ser28 phosphorylation (H3Ser10P and 28P) at the late-G(2) through M cell cycle phases in association with DNA damage caused by hydrogen peroxide (H(2)O(2)). The levels of H3Ser10P and Ser28P decreased between 15 and 60 min after H(2)O(2) addition in an inverse correlation manner with H2AX Ser139 phosphorylation (gammaH2AX). Experiments using wortmannin suggested that the reduction events of H3Ser10P/28P are under the control of phosphatidylinositol 3-kinase-like kinases. Fluorescence microscopic observation showed that H3Ser10 and Ser28 on telomeric portions of condensed M-phase chromosomes retained their strongly phosphorylated status even after 60 min of H(2)O(2) treatment. In addition, these chromosome parts were poorly gammaH2AX positive showing mutually exclusive distribution patterns between H3Ser10P/28P and gammaH2AX. Considering these data, I hypothesize that the reduction of the H3Ser10P/28P is a part of the DNA damage response processes. It is advisable to pay careful attention to these phenomena at the time of designing cell cycle assay protocols with H3Ser10P or Ser28P mitosis markers when DNA damaging process is expected to occur.

  11. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells.

    PubMed

    Mathew, Omana P; Ranganna, Kasturi; Yatsu, Frank M

    2010-12-01

    HDACs and HATs regulate histone acetylation, an epigenetic modification that controls chromatin structure and through it, gene expression. Butyrate, a dietary HDAC inhibitor, inhibits VSMC proliferation, a crucial factor in atherogenesis, and the principle mechanism in arterial and in-stent restenosis. Here, the link between antiproliferation action of butyrate and the portraits of global covalent modifications of histone H3 that it induces are characterized to understand the mechanics of butyrate-arrested VSMC proliferation. Analysis of histone H3 modifications specific to butyrate arrested VSMC proliferation display induction of histone H3-Lysine9 acetylation, inhibition of histone H3-Serine10 phosphorylation, reduction of histone H3-Lysine9 dimethylation and stimulation of histone H3-Lysine4 di-methylation, which is linked to transcriptional activation, cell cycle/mitosis, transcriptional suppression and activation, respectively. Conversely, untreated VSMCs exhibit inhibition of H3-Lysine9 acetylation, induction of H3-Serine10 phosphorylation, stimulation of H3-Lysine9 di-methylation and reduction in H3-Lysine4 di-methylation. Butyrate's cooperative effects on H3-Lysine9 acetylation and H3-Serine10 phosphorylation, and contrasting effects on di-methylation of H3-Lysine9 and H3-Lysine4 suggests that the interplay between these site-specific modifications cause distinct chromatin alterations that allow cyclin D1 and D3 induction, G1-specific cdk4, cdk6 and cdk2 downregulation, and upregulation of cdk inhibitors, p15INK4b and p21Cip1. Regardless of butyrate's effect on D-type cyclins, downregulation of G1-specific cdks and upregulation of cdk inhibitors by butyrate prevents cell cycle progression by failing to inactivate Rb. Overall, through chromatin remodeling, butyrate appears to differentially alter G1-specific cell cycle proteins to ensure proliferation arrest of VSMCs, a crucial cellular component of blood vessel wall.

  12. An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair.

    PubMed

    Jha, Deepak Kumar; Strahl, Brian D

    2014-06-09

    Histone modifications are major determinants of DNA double-strand break (DSB) response and repair. Here we elucidate a DSB repair function for transcription-coupled Set2 methylation at H3 lysine 36 (H3K36me). Cells devoid of Set2/H3K36me are hypersensitive to DNA-damaging agents and site-specific DSBs, fail to properly activate the DNA-damage checkpoint, and show genetic interactions with DSB-sensing and repair machinery. Set2/H3K36me3 is enriched at DSBs, and loss of Set2 results in altered chromatin architecture and inappropriate resection during G1 near break sites. Surprisingly, Set2 and RNA polymerase II are programmed for destruction after DSBs in a temporal manner--resulting in H3K36me3 to H3K36me2 transition that may be linked to DSB repair. Finally, we show a requirement of Set2 in DSB repair in transcription units--thus underscoring the importance of transcription-dependent H3K36me in DSB repair.

  13. The PBAP remodeling complex is required for histone H3.3 replacement at chromatin boundaries and for boundary functions.

    PubMed

    Nakayama, Takahiro; Shimojima, Tsukasa; Hirose, Susumu

    2012-12-01

    Establishment and maintenance of epigenetic memories are essential for development. Replacement of canonical histone H3 by its variant H3.3 has been implicated in cellular memory. Drosophila sequence-specific DNA-binding protein GAGA factor and a chromatin factor FACT direct H3.3 replacement in conjunction with H3.3-specific chaperone HIRA at chromatin boundaries to counteract the spreading of silent chromatin. However, little is known about which ATP-driven chromatin remodeling factor is responsible for the H3.3 replacement at chromatin boundaries. Here, we report that GAGA factor associates with the Polybromo-associated Brm (PBAP) remodeling complex, which consists of many Trithorax group proteins, and recruits this complex to chromatin boundaries d1 (which is downstream of w), the Fab-7 DNase-hypersensitive site (HS) 1 of Abd-B and the bxd region of Ubx. Trl-encoding GAGA factor, brm and polybromo/bap180 mutations compromise the H3.3 replacement and boundary functions in a synergistic manner. Furthermore, Polybromo is necessary for generation of the DNase HS at d1, and HIRA functions to restore the alteration. Taken together, we propose that FACT and PBAP complexes are recruited to chromatin boundaries in a GAGA factor-dependent manner, and are needed for H3.3 replacement to execute boundary functions. Our results provide new insight into the function of the trithorax group during development.

  14. Coupling of T cell receptor specificity to natural killer T cell development by bivalent histone H3 methylation.

    PubMed

    Dobenecker, Marc-Werner; Kim, Jong Kyong; Marcello, Jonas; Fang, Terry C; Prinjha, Rab; Bosselut, Remy; Tarakhovsky, Alexander

    2015-03-09

    The fidelity of T cell immunity depends greatly on coupling T cell receptor signaling with specific T cell effector functions. Here, we describe a chromatin-based mechanism that enables integration of TCR specificity into definite T cell lineage commitment. Using natural killer T cells (iNKT cell) as a model of a T cell subset that differentiates in response to specific TCR signaling, we identified a key role of histone H3 lysine 27 trimethylation (H3K27me3) in coupling iNKT cell TCR specificity with the generation of iNKT cells. We found that the Zbtb16/PLZF gene promoter that drives iNKT cell differentiation possesses a bivalent chromatin state characterized by the simultaneous presence of negative and positive H3K27me3 and H3K4me3 modifications. Depletion of H3K27me3 at the Zbtb16/PLZF promoter leads to uncoupling of iNKT cell development from TCR specificity and is associated with accumulation of iNKT-like CD4(+) cells that express a non-iNKT cell specific T cell repertoire. In turn, stabilization of H3K27me3 leads to a drastic reduction of the iNKT cell population. Our data suggest that H3K27me3 levels at the bivalent Zbtb16/PLZF gene define a threshold enabling precise coupling of TCR specificity to lineage commitment.

  15. Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18.

    PubMed

    Bao, Baolong; Pestinger, Valerie; Hassan, Yousef I; Borgstahl, Gloria E O; Kolar, Carol; Zempleni, Janos

    2011-05-01

    Holocarboxylase synthetase (HCS) mediates the binding of biotin to lysine (K) residues in histones H2A, H3 and H4; HCS knockdown disturbs gene regulation and decreases stress resistance and lifespan in eukaryotes. We tested the hypothesis that HCS interacts physically with histone H3 for subsequent biotinylation. Co-immunoprecipitation experiments were conducted and provided evidence that HCS co-localizes with histone H3 in human cells; physical interactions between HCS and H3 were confirmed using limited proteolysis assays. Yeast two-hybrid (Y2H) studies revealed that the N-terminal and C-terminal domains in HCS participate in H3 binding. Recombinant human HCS was produced and exhibited biological activity, as evidenced by biotinylation of its known substrate, recombinant p67. Recombinant histone H3.2 and synthetic H3-based peptides were also good targets for biotinylation by recombinant HCS (rHCS) in vitro, based on tracing histone-bound biotin with [(3)H]biotin, streptavidin and anti-biotin antibody. Biotinylation site-specific antibodies were generated and revealed that both K9 and K18 in H3 were biotinylated by HCS. Collectively, these studies provide conclusive evidence that HCS interacts directly with histone H3, causing biotinylation of K9 and K18. We speculate that the targeting of HCS to distinct regions in human chromatin is mediated by DNA sequence, biotin, RNA, epigenetic marks or chromatin proteins.

  16. Different Patterns of Acetylation and Dimethylation of Histone H3 between Young and Aged Cases with Chronic Tonsillitis: Influences of Inflammation and Aging.

    PubMed

    Saito, Akihiko; Watanabe, Ken-Ichi; Egawa, Seiko; Okubo, Kimihiro

    2016-01-01

    Epigenetics is now considered to be crucially involved in normal genetics and differentiation and in pathological conditions, such as cancer, aging, and inflammation. Epigenetic mechanisms involve DNA methylation and histone modifications. The purpose of this study was to investigate the effects of inflammation on epigenetics in young subjects and the effect of aging. The palatine tonsils were extracted from child and adult patients with chronic tonsillitis. Hematoxylin-eosin staining was performed to examine the morphology of the palatine tonsils. A fluorescence immunological examination was also performed to detect acetyl-histone H3 or dimethyl-histone H3. Confocal scanning microscopy was used for observations. Acetylated histone H3 was detected in tonsils from child patients but not from adult patients. Dimethylated histone H3 was not detected in tonsils from either group of patients. Degeneration of the tonsillar structures was apparent in tonsils from adult patients. The differential expression of acetylated histone H3 Lys9 may reflect immunological differences between young and aged tonsils. The decrease observed in the activity of histone methyltransferase induced the down-regulated expression of methylated histone H3. Our results suggest that epigenetic changes participate in chronic inflammation and aging in the palatine tonsils. Although the results do not lead to a direct treatment, the epigenetic pathogenesis of chronic inflammation, such as immunoglobulin A nephropathy, by focal infections will be described in greater detail in future studies, which will lead to new treatments being developed.

  17. Histone H3 K4 Demethylation during Activation and Attenuation of GAL1 Transcription in Saccharomyces cerevisiae▿ ‡

    PubMed Central

    Ingvarsdottir, Kristin; Edwards, Chris; Lee, Min Gyu; Lee, Jung Shin; Schultz, David C.; Shilatifard, Ali; Shiekhattar, Ramin; Berger, Shelley L.

    2007-01-01

    In mammalian cells, histone lysine demethylation is carried out by two classes of enzymes, the LSD1/BHC110 class and the jumonji class. The enzymes of the jumonji class in the yeast Saccharomyces cerevisiae have recently also been shown to have lysine demethylation activity. Here we report that the protein encoded by YJR119c (termed KDM5), coding for one of five predicted jumonji domain proteins in yeast, specifically demethylates trimethylated histone H3 lysine 4 (H3K4me3), H3K4me2, and H3K4me1 in vitro. We found that loss of KDM5 increased mono-, di-, and trimethylation of lysine 4 during activation of the GAL1 gene. Interestingly, cells deleted of KDM5 also displayed a delayed reduction of K4me3 upon reestablishment of GAL1 repression. These results indicate that K4 demethylation has two roles at GAL1, first to establish appropriate levels of K4 methylation during gene activation and second to remove K4 trimethylation during the attenuation phase of transcription. Thus, analysis of lysine demethylation in yeast provides new insight into the physiological roles of jumonji demethylase enzymes. PMID:17875926

  18. Histone H3 trimethylation at lysine 9 marks the inactive metaphase X chromosome in the marsupial Monodelphis domestica.

    PubMed

    Zakharova, Irina S; Shevchenko, Alexander I; Shilov, Alexander G; Nesterova, Tatyana B; Vandeberg, John L; Zakian, Suren M

    2011-04-01

    In somatic cells of female marsupial and eutherian mammals, X chromosome inactivation (XCI) occurs. XCI results in the transcriptional silencing of one of the two X chromosomes and is accompanied by specific covalent histone modifications attributable to the inactive chromatin state. Because data about repressed chromatin of the inactive X chromosome (Xi) in marsupials are sparse, we examined in more detail the distribution of active and inactive chromatin markers on metaphase X chromosomes of an American marsupial, Monodelphis domestica. Consistent with data reported previously both for eutherian and marsupial mammals, we found that the Xi of M. domestica lacks active histone markers-H3K4 dimethylation and H3K9 acetylation. We did not observe on metaphase spreads enrichment of the Xi with H3K27 trimethylation which is involved in XCI in eutherians and was detected on the Xi in the interphase nuclei of mature female M. domestica in an earlier study. Moreover, we found that the Xi of M. domestica was specifically marked with H3K9 trimethylation, which is known to be a component of the Xi chromatin in eutherians and is involved in both marsupials and eutherians in meiotic sex chromosome inactivation which has been proposed as an ancestral mechanism of XCI.

  19. Adult Diffuse Astrocytoma in the Medulla Oblongata: Molecular Biological Analyses Including H3F3A Mutation of Histone H3.3

    PubMed Central

    Uekawa, Ken; Nakamura, Hideo; Shinojima, Naoki; Takezaki, Tatsuya; Yano, Shigetoshi; Kuratsu, Jun-ichi

    2016-01-01

    Unlike in children, brain stem gliomas in adult are rare and still poorly understood. In addition, most adult brain stem gliomas result predominantly in the pons and are less often found in the medulla oblongata. Here, we report a case of an adult glioma in the medulla oblongata and its molecular biological features. A 46-year-old male presented with gait disturbance, paresthesia, and dysphagia. Magnetic resonance imaging (MRI) showed a diffuse hyper-intensive lesion in the medulla oblongata on a T2-weighted image without gadolinium contrast enhancement. We performed an open biopsy and the lesion was pathologically diagnosed as a diffuse astrocytoma. Molecular biological analyses revealed the absence of histone H3.3 mutation (H3F3A K27M), and presence of methylation of O-6-methylguanine-DNA methyltransferase (MGMT) promoter and a mutation in isocitrate dehydrogenase 1 (IDH-1). The patient received local radiotherapy and temozolomide chemotherapy. The patient’s symptoms were ameliorated, and MRI showed no tumor growth at 6 months after the initial treatment. Biopsy for brain stem lesions is generally thought to have risk of complications, but if performed minimally, it is useful to diagnose and determine treatment strategy. Obtaining patient characteristics and molecular biological features will provide insight towards therapeutic treatment for adult brain stem gliomas. PMID:28663993

  20. Histone H3.3K27M Represses p16 to Accelerate Gliomagenesis in a Murine Model of DIPG.

    PubMed

    Cordero, Francisco J; Huang, Zhiqing; Grenier, Carole; He, Xingyao; Hu, Guo; McLendon, Roger E; Murphy, Susan K; Hashizume, Rintaro; Becher, Oren J

    2017-09-01

    Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brainstem tumor genetically distinguished from adult GBM by the high prevalence of the K27M mutation in the histone H3 variant H3.3 (H3F3A). This mutation reprograms the H3K27me3 epigenetic landscape of DIPG by inhibiting the H3K27-specific histone methyltransferase EZH2. This globally reduces H3K27me2/3, critical repressive marks responsible for cell fate decisions, and also causes focal gain of H3K27me3 throughout the epigenome. To date, the tumor-driving effects of H3.3K27M remain largely unknown. Here, it is demonstrated that H3.3K27M cooperates with PDGF-B in vivo, enhancing gliomagenesis and reducing survival of p53 wild-type (WT) and knockout murine models of DIPG. H3.3K27M expression drives increased proliferation of tumor-derived murine neurospheres, suggesting that cell-cycle deregulation contributes to increased malignancy in mutant tumors. RNA sequencing on tumor tissue from H3.3K27M-expressing mice indicated global upregulation of PRC2 target genes, and a subset of newly repressed genes enriched in regulators of development and cell proliferation. Strikingly, H3.3K27M induced targeted repression of the p16/ink4a (CDKN2A) locus, a critical regulator of the G0-G1 to S-phase transition. Increased levels of H3K27me3 were observed at the p16 promoter; however, pharmacologic reduction of methylation at this promoter did not rescue p16 expression. Although DNA methylation is also present at this promoter, it is not K27M dependent. Intriguingly, inhibition of DNA methylation restores p16 levels and is cytotoxic against murine tumor cells. Importantly, these data reveal that H3.3K27M-mediated p16 repression is an important mechanism underlying the proliferation of H3.3K27M tumor cells, as in vivo cdkn2a knockout eliminates the survival difference between H3.3K27M and H3.3WT tumor-bearing mice.Implications: This study shows that H3.3K27M mutation and PDGF signaling act in concert to

  1. Substitutions in the Amino-Terminal Tail of Neurospora Histone H3 Have Varied Effects on DNA Methylation

    PubMed Central

    Adhvaryu, Keyur K.; Berge, Emanuela; Tamaru, Hisashi; Freitag, Michael; Selker, Eric U.

    2011-01-01

    Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substitution at K9 (hH3K9L or hH3K9R) causes global loss of DNA methylation in the presence of wild-type hH3 (hH3WT). We investigated whether other residues in the N-terminal tail of H3 are important for methylation of DNA and of H3K9. Mutations in the N-terminal tail of H3 were generated and tested for effects in vitro and in vivo, in the presence or absence of the wild-type allele. Substitutions at K4, K9, T11, G12, G13, K14, K27, S28, and K36 were lethal in the absence of a wild-type allele. In contrast, mutants bearing substitutions of R2, A7, R8, S10, A15, P16, R17, K18, and K23 were viable. The effect of substitutions on DNA methylation were variable; some were recessive and others caused a semi-dominant loss of DNA methylation. Substitutions of R2, A7, R8, S10, T11, G12, G13, K14, and P16 caused partial or complete loss of DNA methylation in vivo. Only residues R8-G12 were required for DIM-5 activity in vitro. DIM-5 activity was inhibited by dimethylation of H3K4 and by phosphorylation of H3S10, but not by acetylation of H3K14. We conclude that the H3 tail acts as an integrating platform for signals that influence DNA methylation, in part through methylation of H3K9. PMID:22242002

  2. Failure of long-term memory formation in juvenile snails is determined by acetylation status of histone H3 and can be improved by NaB treatment.

    PubMed

    Danilova, Alexandra B; Grinkevich, Larisa N

    2012-01-01

    Animals' capacities for different forms of learning do not mature simultaneously during ontogenesis but the molecular mechanisms behind the delayed development of specific types of memory are not fully understood. Mollusks are considered to be among the best models to study memory formation at the molecular level. Chromatin remodeling in developmental processes, as well as in long-term memory formation, was recently shown to play a major role. Histone acetylation is a key process in the chromatin remodeling and is regulated through the signaling cascades, for example MAPK/ERK. Previously, we found that MAPK/ERK is a key pathway in the formation of the food aversion reflex in Helix. Pretreatment with upstream ERK kinase inhibitor PD98059 prevented food avoidance learning in adult Helix. In contrast to adult snails, juveniles possess immature plasticity mechanisms of the avoidance reflex until the age of 2-3 months while the MAPK/ERK cascade is not activated after aversive learning. In the present study, we focused on the potential MAPK/ERK target--histone H3. Here we found that a significant increase in histone H3 acetylation occurs in adult animals after learning, whereas no corresponding increase was observed in juveniles. The acetylation of histone H3 is regulated by ERK kinase, since the upstream ERK kinase inhibitor PD98059 prevented the increase of histone H3 acetylation upon learning. We found that the injection of histone deacetylase inhibitor sodium butyrate (NaB) prior to training led to induction in histone H3 acetylation and significantly ameliorated long-term memory formation in juvenile snails. Thus, MAPK/ERK-dependent histone H3 acetylation plays an essential role in the formation of food aversion in Helix. Dysfunction of the MAPK/ERK dependent histone H3 acetylation might determine the deficiency of avoidance behavior and long-term plasticity in juvenile animals. Stimulation of histone H3 acetylation in juvenile animals by NaB promoted avoidance

  3. Quantitative proteomics reveals that the specific methyltransferases Txr1p and Ezl2p differentially affect the mono-, di- and trimethylation states of histone H3 lysine 27 (H3K27).

    PubMed

    Zhang, Chunchao; Molascon, Anthony J; Gao, Shan; Liu, Yifan; Andrews, Philip C

    2013-06-01

    Nuclear DNA in eukaryotic cells is assembled into the hierarchical chromatin structure via a process that is dynamically affected by the combinatorial set of post-translational modifications (PTMs) of histones in a dynamic manner responsive to physiological and environmental changes. The precise quantification of these complex modifications is challenging. Here we present a robust MS-based quantitative proteomics method for studying histone PTMs using (15)N metabolically labeled histones as the internal reference. Using this approach, we identified Tetrahymena trithorax related 1 (Txr1p) as a histone methyltransferase in Tetrahymena thermophila and characterized the relationships of the Txr1p and Ezl2p methyltransferases to histone H3 modification. We identified 32 PTMs in more than 60 tryptic peptides from histone H3 of the ciliate model organism Tetrahymena thermophila, and we quantified them (average coefficient of variation: 13%). We examined perturbations to histone modification patterns in two knockout strains of SET-domain-containing histone methyltransferases (HMT). Knockout of TXR1 led to progressively decreased mono-, di-, and tri-methylation of H3K27 and apparent reduced monomethylation of H3K36 in vivo. In contrast, EZL2 knockout resulted in dramatic reductions in both di- and tri-methylation of H3K27 in vivo, whereas the levels of monomethylation of H3K27 increased significantly. This buildup of monomethyl H3K27 is consistent with its role as a substrate for Ezl2p. These results were validated via immunoblotting using modification site-specific antibodies. Taken together, our studies define Txr1p as an H3K27 monomethylation-specific HMT that facilitates the buildup of H3K27 di- and trimethylation by the canonical H3K27-specific HMT, Ezl2p. Our studies also delineate some of the interdependences between various H3 modifications, as compensatory increases in monomethylation at H3K4, H3K23, and H3K56 were also observed for both TXR1 and ELZ2 mutants.

  4. Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase

    SciTech Connect

    Sawada,K.; Yang, Z.; Horton, J.; Collins, R.; Zhang, X.; Cheng, X.

    2004-01-01

    Methylation of Lys{sup 79} on histone H3 by Dot1p is important for gene silencing. The elongated structure of the conserved core of yeast Dot1p contains an N-terminal helical domain and a seven-stranded catalytic domain that harbors the binding site for the methyl-donor and an active site pocket sided with conserved hydrophobic residues. The S-adenosyl-L-homocysteine exhibits an extended conformation distinct from the folded conformation observed in structures of SET domain histone lysine methyltransferases. A catalytic asparagine (Asn{sup 479}), located at the bottom of the active site pocket, suggests a mechanism similar to that employed for amino methylation in DNA and protein glutamine methylation. The acidic, concave cleft between the two domains contains two basic residue binding pockets that could accommodate the outwardly protruding basic side chains around Lys{sup 79} of histone H3 on the disk-like nucleosome surface. Biochemical studies suggest that recombinant Dot1 proteins are active on recombinant nucleosomes, free of any modifications.

  5. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2.

    PubMed

    Bheda, Poonam; Swatkoski, Stephen; Fiedler, Katherine L; Boeke, Jef D; Cotter, Robert J; Wolberger, Cynthia

    2012-04-17

    Although the biological roles of many members of the sirtuin family of lysine deacetylases have been well characterized, a broader understanding of their role in biology is limited by the challenges in identifying new substrates. We present here an in vitro method that combines biotinylation and mass spectrometry (MS) to identify substrates deacetylated by sirtuins. The method permits labeling of deacetylated residues with amine-reactive biotin on the ε-nitrogen of lysine. The biotin can be utilized to purify the substrate and identify the deacetylated lysine by MS. The biotinyl-lysine method was used to compare deacetylation of chemically acetylated histones by the yeast sirtuins, Sir2 and Hst2. Intriguingly, Sir2 preferentially deacetylates histone H3 lysine 79 as compared to Hst2. Although acetylation of K79 was not previously reported in Saccharomyces cerevisiae, we demonstrate that a minor population of this residue is indeed acetylated in vivo and show that Sir2, and not Hst2, regulates the acetylation state of H3 lysine 79. The in vitro biotinyl-lysine method combined with chemical acetylation made it possible to identify this previously unknown, low-abundance histone acetyl modification in vivo. This method has further potential to identify novel sirtuin deacetylation substrates in whole cell extracts, enabling large-scale screens for new deacetylase substrates.

  6. Replisome Function During Replicative Stress Is Modulated by Histone H3 Lysine 56 Acetylation Through Ctf4

    PubMed Central

    Luciano, Pierre; Dehé, Pierre-Marie; Audebert, Stéphane; Géli, Vincent; Corda, Yves

    2015-01-01

    Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collapse at natural replication block sites. This lethality is not a direct consequence of chromatin assembly defects during replication fork progression. Rather, our genetic analyses suggest that in the presence of replicative stress H3 lysine 56 acetylation uncouples the Cdc45–Mcm2-7–GINS DNA helicase complex and DNA polymerases through the replisome component Ctf4. In addition, we discovered that the N-terminal domain of Ctf4, necessary for the interaction of Ctf4 with Mms22, an adaptor protein of the Rtt101-Mms1 E3 ubiquitin ligase, is required for the function of the H3 lysine 56 acetylation pathway, suggesting that replicative stress promotes the interaction between Ctf4 and Mms22. Taken together, our results indicate that Ctf4 is an essential member of the H3 lysine 56 acetylation pathway and provide novel mechanistic insights into understanding the role of H3 lysine 56 acetylation in maintaining genome stability upon replication stress. PMID:25697176

  7. Histone H3K56 Acetylation, CAF1, and Rtt106 Coordinate Nucleosome Assembly and Stability of Advancing Replication Forks

    PubMed Central

    Clemente-Ruiz, Marta; González-Prieto, Román; Prado, Félix

    2011-01-01

    Chromatin assembly mutants accumulate recombinogenic DNA damage and are sensitive to genotoxic agents. Here we have analyzed why impairment of the H3K56 acetylation-dependent CAF1 and Rtt106 chromatin assembly pathways, which have redundant roles in H3/H4 deposition during DNA replication, leads to genetic instability. We show that the absence of H3K56 acetylation or the simultaneous knock out of CAF1 and Rtt106 increases homologous recombination by affecting the integrity of advancing replication forks, while they have a minor effect on stalled replication fork stability in response to the replication inhibitor hydroxyurea. This defect in replication fork integrity is not due to defective checkpoints. In contrast, H3K56 acetylation protects against replicative DNA damaging agents by DNA repair/tolerance mechanisms that do not require CAF1/Rtt106 and are likely subsequent to the process of replication-coupled nucleosome deposition. We propose that the tight connection between DNA synthesis and histone deposition during DNA replication mediated by H3K56ac/CAF1/Rtt106 provides a mechanism for the stabilization of advancing replication forks and the maintenance of genome integrity, while H3K56 acetylation has an additional, CAF1/Rtt106-independent function in the response to replicative DNA damage. PMID:22102830

  8. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem

    Treesearch

    Steven G Hussey; Eshchar Mizrachi; Andrew Groover; Dave K Berger; Alexander A Myburg

    2015-01-01

    Background: Histone modifications play an integral role in plant development, but have been poorly studied inwoody plants. Investigating chromatin organization in wood-forming tissue and its role in regulating gene expression allows us to understand the mechanisms underlying cellular differentiation during xylogenesis (wood...

  9. The Essential Gene wda Encodes a WD40 Repeat Subunit of Drosophila SAGA Required for Histone H3 Acetylation

    PubMed Central

    Guelman, Sebastián; Suganuma, Tamaki; Florens, Laurence; Weake, Vikki; Swanson, Selene K.; Washburn, Michael P.; Abmayr, Susan M.; Workman, Jerry L.

    2006-01-01

    Histone acetylation provides a switch between transcriptionally repressive and permissive chromatin. By regulating the chromatin structure at specific promoters, histone acetyltransferases (HATs) carry out important functions during differentiation and development of higher eukaryotes. HAT complexes are present in organisms as diverse as Saccharomyces cerevisiae, humans, and flies. For example, the well-studied yeast SAGA is related to three mammalian complexes. We previously identified Drosophila melanogaster orthologues of yeast SAGA components Ada2, Ada3, Spt3, and Tra1 and demonstrated that they associate with dGcn5 in a high-molecular-weight complex. To better understand the function of Drosophila SAGA (dSAGA), we sought to affinity purify and characterize this complex in more detail. A proteomic approach led to the identification of an orthologue of the yeast protein Ada1 and the novel protein encoded by CG4448, referred to as WDA (will decrease acetylation). Embryos lacking both alleles of the wda gene exhibited reduced levels of histone H3 acetylation and could not develop into adult flies. Our results point to a critical function of dSAGA and histone acetylation during Drosophila development. PMID:16980620

  10. Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders

    PubMed Central

    Vallianatos, Christina N; Iwase, Shigeki

    2015-01-01

    MethylationofhistoneH3lysine4(H3K4me)isanintricatelyregulatedposttranslational modification, which is broadly associated with enhancers and promoters of actively transcribed genomic loci. Recent advances in next-generation sequencing have identified a number of H3K4me regulators mutated in neurodevelopmental disorders including intellectual disabilities, autism spectrum disorders, and schizophrenia. Here, we aim to summarize the molecular function of H3K4me-regulating enzymes in brain development and function. We describe four H3K4me methyltransferases (KMT2A, KMT2C, KMT2D, KMT2F), four demethylases (KDM1A, KDM5A, KDM5B, KDM5C), and two reader proteins (PHF21A, PHF8) mutated in neurodevelopmental disorders. Understanding the role of these chromatin regulators in the development and maintenance of neural connections will advance therapeutic opportunities for prevention and treatment of these lifelong neurodevelopmental disorders. PMID:26077434

  11. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    SciTech Connect

    Shrestha, Chandan; Ito, Takashi; Kawahara, Ko-ichi; Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto; Maruyama, Ikuro

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  12. Cloning and Functional Analysis of Histones H3 and H4 in Nuclear Shaping during Spermatogenesis of the Chinese Mitten Crab, Eriocheir sinensis.

    PubMed

    Wu, Jiang-Li; Kang, Xian-Jiang; Guo, Ming-Shen; Mu, Shu-Mei; Zhang, Zhao-Hui

    2015-01-01

    During spermatogenesis in most animals, the basic proteins associated with DNA are continuously changing and somatic-typed histones are partly replaced by sperm-specific histones, which are then successively replaced by transition proteins and protamines. With the replacement of sperm nuclear basic proteins, nuclei progressively undergo chromatin condensation. The Chinese Mitten Crab (Eriocheir sinensis) is also known as the hairy crab or river crab (phylum Arthropoda, subphylum Crustacea, order Decapoda, and family Grapsidae). The spermatozoa of this species are aflagellate, and each has a spherical acrosome surrounded by a cup-shaped nucleus, peculiar to brachyurans. An interesting characteristic of the E. sinensis sperm nucleus is its lack of electron-dense chromatin. However, its formation is not clear. In this study, sequences encoding histones H3 and H4 were cloned by polymerase chain reaction amplification. Western blotting indicated that H3 and H4 existed in the sperm nuclei. Immunofluorescence and ultrastructural immunocytochemistry demonstrated that histones H3 and H4 were both present in the nuclei of spermatogonia, spermatocytes, spermatids and mature spermatozoa. The nuclear labeling density of histone H4 decreased in sperm nuclei, while histone H3 labeling was not changed significantly. Quantitative real-time PCR showed that the mRNA expression levels of histones H3 and H4 were higher at mitotic and meiotic stages than in later spermiogenesis. Our study demonstrates that the mature sperm nuclei of E. sinensis contain histones H3 and H4. This is the first report that the mature sperm nucleus of E. sinensis contains histones H3 and H4. This finding extends the study of sperm histones of E. sinensis and provides some basic data for exploring how decapod crustaceans form uncondensed sperm chromatin.

  13. Cloning and Functional Analysis of Histones H3 and H4 in Nuclear Shaping during Spermatogenesis of the Chinese Mitten Crab, Eriocheir sinensis

    PubMed Central

    Wu, Jiang-Li; Kang, Xian-Jiang; Guo, Ming-Shen; Mu, Shu-Mei; Zhang, Zhao-Hui

    2015-01-01

    During spermatogenesis in most animals, the basic proteins associated with DNA are continuously changing and somatic-typed histones are partly replaced by sperm-specific histones, which are then successively replaced by transition proteins and protamines. With the replacement of sperm nuclear basic proteins, nuclei progressively undergo chromatin condensation. The Chinese Mitten Crab (Eriocheir sinensis) is also known as the hairy crab or river crab (phylum Arthropoda, subphylum Crustacea, order Decapoda, and family Grapsidae). The spermatozoa of this species are aflagellate, and each has a spherical acrosome surrounded by a cup-shaped nucleus, peculiar to brachyurans. An interesting characteristic of the E. sinensis sperm nucleus is its lack of electron-dense chromatin. However, its formation is not clear. In this study, sequences encoding histones H3 and H4 were cloned by polymerase chain reaction amplification. Western blotting indicated that H3 and H4 existed in the sperm nuclei. Immunofluorescence and ultrastructural immunocytochemistry demonstrated that histones H3 and H4 were both present in the nuclei of spermatogonia, spermatocytes, spermatids and mature spermatozoa. The nuclear labeling density of histone H4 decreased in sperm nuclei, while histone H3 labeling was not changed significantly. Quantitative real-time PCR showed that the mRNA expression levels of histones H3 and H4 were higher at mitotic and meiotic stages than in later spermiogenesis. Our study demonstrates that the mature sperm nuclei of E. sinensis contain histones H3 and H4. This is the first report that the mature sperm nucleus of E. sinensis contains histones H3 and H4. This finding extends the study of sperm histones of E. sinensis and provides some basic data for exploring how decapod crustaceans form uncondensed sperm chromatin. PMID:25993499

  14. SPR-5 is a histone H3K4 demethylase with a role in meiotic double-strand break repair.

    PubMed

    Nottke, Amanda C; Beese-Sims, Sara E; Pantalena, Luiz F; Reinke, Valerie; Shi, Yang; Colaiácovo, Monica P

    2011-08-02

    Regulation of histone methylation levels has long been implicated in multiple cellular processes, many of which involve transcription. Here, however, we report a unique role for the Caenorhabditis elegans histone demethylase SPR-5 in meiotic DNA double-strand break repair (DSBR). SPR-5 shows enzymatic activity toward H3K4me2 both in vitro and in the nematode germline, and spr-5 mutants show several phenotypes indicating a perturbation of DSBR, including increased p53-dependent germ cell apoptosis, increased levels of the DSBR marker RAD-51, and sensitivity toward DSB-inducing treatments. spr-5 mutants show no transcriptional misregulation of known DSBR involved genes. Instead, SPR-5 shows a rapid subcellular relocalization upon DSB-inducing treatment, which suggests that SPR-5 may function directly in DSBR.

  15. Histone Methyltransferase MMSET/NSD2 Alters EZH2 Binding and Reprograms the Myeloma Epigenome through Global and Focal Changes in H3K36 and H3K27 Methylation

    PubMed Central

    Giannopoulou, Eugenia G.; Zhang, Quanwei; Zhang, Qingyang; Ezponda, Teresa; Shah, Mrinal Y.; Zheng, Yupeng; Will, Christine M.; Small, Eliza C.; Hua, Youjia; Bulic, Marinka; Jiang, Yanwen; Carrara, Matteo; Calogero, Raffaele A.; Kath, William L.; Kelleher, Neil L.; Wang, Ji-Ping; Elemento, Olivier; Licht, Jonathan D.

    2014-01-01

    Overexpression of the histone methyltransferase MMSET in t(4;14)+ multiple myeloma patients is believed to be the driving factor in the pathogenesis of this subtype of myeloma. MMSET catalyzes dimethylation of lysine 36 on histone H3 (H3K36me2), and its overexpression causes a global increase in H3K36me2, redistributing this mark in a broad, elevated level across the genome. Here, we demonstrate that an increased level of MMSET also induces a global reduction of lysine 27 trimethylation on histone H3 (H3K27me3). Despite the net decrease in H3K27 methylation, specific genomic loci exhibit enhanced recruitment of the EZH2 histone methyltransferase and become hypermethylated on this residue. These effects likely contribute to the myeloma phenotype since MMSET-overexpressing cells displayed increased sensitivity to EZH2 inhibition. Furthermore, we demonstrate that such MMSET-mediated epigenetic changes require a number of functional domains within the protein, including PHD domains that mediate MMSET recruitment to chromatin. In vivo, targeting of MMSET by an inducible shRNA reversed histone methylation changes and led to regression of established tumors in athymic mice. Together, our work elucidates previously unrecognized interplay between MMSET and EZH2 in myeloma oncogenesis and identifies domains to be considered when designing inhibitors of MMSET function. PMID:25188243

  16. A Modified “Cross-talk” between Histone H2B Lys-120 Ubiquitination and H3 Lys-79 Methylation*

    PubMed Central

    Darwanto, Agus; Curtis, Matthew P.; Schrag, Matthew; Kirsch, Wolff; Liu, Peng; Xu, Guoliang; Neidigh, Jonathan W.; Zhang, Kangling

    2010-01-01

    Western blot analysis is currently the major method utilized for quantitatively assessing histone global modifications. However, there is a growing need to develop a highly specific, accurate, and multisite quantitative method. Herein, we report a liquid chromatography-tandem mass spectrometry-multiple reaction monitoring method to simultaneously quantify multisite modifications with unmatched specificity, sensitivity, and throughput. With one set of purification of histones by high pressure liquid chromatography or SDS-PAGE, nearly 20 modification sites including acetylation, propionylation, methylation, and ubiquitination were quantified within 2 h for two samples to be compared. Using this method, the relative levels of H2B ubiquitination and H3 Lys-79 methylation were quantified in the U937 human leukemia cell line, U937 derivative cell lines overexpressing anti-secretory factor 10 (AF10) and mutant AF10 with the deletion of the hDot1 binding domain OM-LZ. We found that H2B ubiquitination is inversely correlated with H3 Lys-79 methylation. Therefore, we propose that a catalytic and inhibitory loop mechanism may better describe the cross-talk relationship between H2B ubiquitination and H3 Lys-79 methylation. PMID:20442396

  17. Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype.

    PubMed

    Lefevre, Gaelle M; Patel, Sanjeevkumar R; Kim, Doyeob; Tessarollo, Lino; Dressler, Gregory R

    2010-10-28

    Methylation of specific lysine residues in core histone proteins is essential for embryonic development and can impart active and inactive epigenetic marks on chromatin domains. The ubiquitous nuclear protein PTIP is encoded by the Paxip1 gene and is an essential component of a histone H3 lysine 4 (H3K4) methyltransferase complex conserved in metazoans. In order to determine if PTIP and its associated complexes are necessary for maintaining stable gene expression patterns in a terminally differentiated, non-dividing cell, we conditionally deleted PTIP in glomerular podocytes in mice. Renal development and function were not impaired in young mice. However, older animals progressively exhibited proteinuria and podocyte ultra structural defects similar to chronic glomerular disease. Loss of PTIP resulted in subtle changes in gene expression patterns prior to the onset of a renal disease phenotype. Chromatin immunoprecipitation showed a loss of PTIP binding and lower H3K4 methylation at the Ntrk3 (neurotrophic tyrosine kinase receptor, type 3) locus, whose expression was significantly reduced and whose function may be essential for podocyte foot process patterning. These data demonstrate that alterations or mutations in an epigenetic regulatory pathway can alter the phenotypes of differentiated cells and lead to a chronic disease state.

  18. Reduced histone H3K9 acetylation of clock genes and abnormal glucose metabolism in ob/ob mice.

    PubMed

    Ishikawa-Kobayashi, Eiko; Ushijima, Kentarou; Ando, Hitoshi; Maekawa, Tomohiro; Takuma, Masashi; Furukawa, Yusuke; Fujimura, Akio

    2012-10-01

    Recent chronobiological studies found significant correlation between lack of clock function and metabolic abnormalities. We previously showed that clock gene expressions were dampened in the peripheral tissues of obese and diabetic ob/ob mice. However, the molecular mechanism of the disturbance remained to be determined. In this study, we demonstrated for the first time that acetylation levels of histone H3 lysine 9 (H3K9) at the promoter regions of clock genes, such as Dbp, Per2, and Bmal1, in the adipose tissue of ob/ob mice were significantly reduced compared with those of its control C57BL/6J mice. Treatment with histone deacetylase (HDAC) inhibitors increased Dbp, but not Per2 or Bmal1, mRNA expression in adipose tissue, and it decreased blood glucose in these animals. In addition, 2-deoxyglucose uptake activity was significantly suppressed by silencing Dbp expression in cultured adipocytes. These results suggest that reduced H3K9 acetylation and subsequent decreased mRNA expression of the Dbp gene in adipose tissue are involved in the mechanism of development of abnormal glucose metabolism in ob/ob mice.

  19. Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C

    PubMed Central

    Liu, Xi-yu

    2017-01-01

    Aims. Latent autoimmune diabetes in adults (LADA) is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods. Blood CD4+ T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect histone H3 lysine 4 and H3 lysine 9 methylation status. Results. Reduced global H3 lysine 9 methylation was observed in LADA patients' CD4+ T lymphocytes, compared to healthy controls (P < 0.05). H3 lysine 4 methylation was not statistically different. The reduced H3 lysine 9 methylation was associated with GADA titer but not correlated with glycosylated hemoglobin (HbA1c). When the LADA patient group was divided into those with complication and those without, relatively reduced global H3 lysine 9 methylation was observed in LADA patients with complication (P < 0.05). The expression of histone methyltransferase SUV39H2 for H3 lysine 9 methylation was downregulated in LADA patients, and the expression of histone demethylase KDM4C which made H3 lysine 9 demethylation was upregulated. Conclusion. The reduction of histone H3 lysine 9 methylation which may due to the downregulation of methyltransferase SUV39H2 and the upregulation of demethylase KDM4C was found in CD4+ T lymphocytes of LADA patients. PMID:28396876

  20. Similar DNA methylation and histone H3 lysine 9 dimethylation patterns in tripronuclear and corrected bipronuclear human zygotes.

    PubMed

    Chen, Xinjie; Fan, Yong; Long, Xiaolin; Sun, Xiaofang

    2010-06-01

    After fertilization, male and female gametes undergo extensive reprogramming to restore totipotency. Both DNA methylation and histone modification are important epigenetic reprogramming events. Previous studies have reported that the paternal pronucleus of the human zygote is actively demethylated to some extent, while the maternal pronucleus remains methylated. However, to our knowledge, the relationship between DNA methylation and H3K9 dimethylation patterns in human embryos has not been reported. In this study, we examined the dynamic DNA methylation and H3K9 dimethylation patterns in triploid and bipronucleated zygotes and early developing embryos. We sought to gain further insight into the relationship between DNA methylation and H3K9 dimethylation and to investigate whether removing a pronucleus from triploid zygotes affects DNA methylation and H3K9 dimethylation patterns. We found that active DNA demethylation of the two male pronuclei occurred in tripronuclear human zygotes while the female pronucleus remained methylated at 20 h post-insemination. In tripronuclear human zygotes, H3K9 was hypomethylated in the two paternal pronuclei relative to the maternal pronucleus. Our data show that there are no differences in the DNA methylation and H3K9 dimethylation patterns between tripronuclear and corrected bipronuclear human zygotes. However, correction of 3PN human zygotes dispermic in origin could not improve subsequent embryo development. In conclusion, DNA methylation and H3K9 dimethylation patterns are well correlated in tripronuclear zygotes and embryos; early embryo development is not affected by removal of a male pronucleus. Our results imply that limited developmental potential of either 3PN or corrected 2PN embryos may not be caused by the abnormalities in DNA methylation or H3K9 dimethylation modification.

  1. Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation

    SciTech Connect

    Ding, Donglin; Qu, Xiying; Li, Lin; Zhou, Xin; Liu, Sijie; Lin, Shiguan; Wang, Pengfei; Liu, Shaohui; Kong, Chuijin; Wang, Xiaohui; Liu, Lin; Zhu, Huanzhang

    2013-06-05

    Understanding the mechanism of HIV-1 latency is crucial to eradication of the viral reservoir in HIV-1-infected individuals. However, the role of histone methyltransferase (HMT) G9a-like protein (GLP) in HIV-1 latency is still unclear. In the present work, we established four clonal cell lines containing HIV-1 vector. We found that the integration sites of most clonal cell lines favored active gene regions. However, we also observed hypomethylation of CpG of HIV 5′LTR in all four clonal cell lines. Additionally, 5′-deoxy-5′-methylthioadenosine (MTA), a broad-spectrum histone methyltransferase inhibitor, was used to examine the role of histone methylation in HIV-1 latency. MTA was found to decrease the level of H3K9 dimethylation, causing reactivation of latent HIV-1 in C11 cells. GLP knockdown by small interfering RNA clearly induced HIV-1 LTR expression. Results suggest that GLP may play a significant role in the maintenance of HIV-1 latency by catalyzing dimethylation of H3K9. - Highlights: ► We have established an in vitro model of HIV-1 latency. ► The integration sites of most clonal cell lines favor in active gene regions. ► Hypomethylation occurs in CpG islands of HIV 5′LTR in all four clonal cell lines. ► MTA can reactivate latent HIV-1 by decreasing the level of H3K9 me2 in C11 cells. ► HMT GLP may play a significant role in the maintenance of HIV-1 latency.

  2. KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation

    PubMed Central

    Ang, Siang-Yun; Uebersohn, Alec; Spencer, C. Ian; Huang, Yu; Lee, Ji-Eun; Ge, Kai; Bruneau, Benoit G.

    2016-01-01

    KMT2D, which encodes a histone H3K4 methyltransferase, has been implicated in human congenital heart disease in the context of Kabuki syndrome. However, its role in heart development is not understood. Here, we demonstrate a requirement for KMT2D in cardiac precursors and cardiomyocytes during cardiogenesis in mice. Gene expression analysis revealed downregulation of ion transport and cell cycle genes, leading to altered calcium handling and cell cycle defects. We further determined that myocardial Kmt2d deletion led to decreased H3K4me1 and H3K4me2 at enhancers and promoters. Finally, we identified KMT2D-bound regions in cardiomyocytes, of which a subset was associated with decreased gene expression and decreased H3K4me2 in mutant hearts. This subset included genes related to ion transport, hypoxia-reoxygenation and cell cycle regulation, suggesting that KMT2D is important for these processes. Our findings indicate that KMT2D is essential for regulating cardiac gene expression during heart development primarily via H3K4 di-methylation. PMID:26932671

  3. Deposition of newly synthesized histones: new histones H2A and H2B do not deposit in the same nucleosome with new Histones H3 and H4

    SciTech Connect

    Jackson, V.

    1987-04-21

    The authors have developed procedures to study histone-histone interactions during the deposition of histones in replicating cells. Cells are labeled for 60 min with dense amino acids, and subsequently, the histones within the nucleosomes are cross-linked into an octameric complex with formaldehyde. These complexes are sedimented to equilibrium in density gradients and octamer and dioctamer complexes separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With reversal of the cross-link, the distribution of the individual density-labeled histones in the octamer is determined. Newly synthesized H3 and H4 deposits as a tetramer and are associated with old H2A and H2B. Newly synthesized H2A and H2B deposit as a dimer associated with old H2A, H2B, H3, and H4. The significance of these results with respect to the dynamics of histone interactions in the nucleus is discussed. Control experiments are presented to test for artifactual formation of these complexes during preparative procedures. In addition, reconstitution experiments were performed to demonstrate that the composition of these octameric complexes can be determined from their distribution of density gradients.

  4. S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3.

    PubMed

    Jayaram, Hariharan; Hoelper, Dominik; Jain, Siddhant U; Cantone, Nico; Lundgren, Stefan M; Poy, Florence; Allis, C David; Cummings, Richard; Bellon, Steven; Lewis, Peter W

    2016-05-31

    Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases.

  5. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast

    PubMed Central

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-01-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast. PMID:23382177

  6. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast.

    PubMed

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-04-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast.

  7. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human

    PubMed Central

    Takahashi, Yoh-hei; Westfield, Gerwin H.; Oleskie, Austin N.; Trievel, Raymond C.; Shilatifard, Ali; Skiniotis, Georgios

    2011-01-01

    Histone H3 lysine 4 (H3K4) methylation is catalyzed by the highly evolutionarily conserved multiprotein complex known as Set1/COMPASS or MLL/COMPASS-like complexes from yeast to human, respectively. Here we have reconstituted fully functional yeast Set1/COMPASS and human MLL/COMPASS-like complex in vitro and have identified the minimum subunit composition required for histone H3K4 methylation. These subunits include the methyltransferase C-terminal SET domain of Set1/MLL, Cps60/Ash2L, Cps50/RbBP5, Cps30/WDR5, and Cps25/Dpy30, which are all common components of the COMPASS family from yeast to human. Three-dimensional (3D) cryo-EM reconstructions of the core yeast complex, combined with immunolabeling and two-dimensional (2D) EM analysis of the individual subcomplexes reveal a Y-shaped architecture with Cps50 and Cps30 localizing on the top two adjacent lobes and Cps60-Cps25 forming the base at the bottom. EM analysis of the human complex reveals a striking similarity to its yeast counterpart, suggesting a common subunit organization. The SET domain of Set1 is located at the juncture of Cps50, Cps30, and the Cps60-Cps25 module, lining the walls of a central channel that may act as the platform for catalysis and regulative processing of various degrees of H3K4 methylation. This structural arrangement suggested that COMPASS family members function as exo-methylases, which we have confirmed by in vitro and in vivo studies. PMID:22158900

  8. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human.

    PubMed

    Takahashi, Yoh-hei; Westfield, Gerwin H; Oleskie, Austin N; Trievel, Raymond C; Shilatifard, Ali; Skiniotis, Georgios

    2011-12-20

    Histone H3 lysine 4 (H3K4) methylation is catalyzed by the highly evolutionarily conserved multiprotein complex known as Set1/COMPASS or MLL/COMPASS-like complexes from yeast to human, respectively. Here we have reconstituted fully functional yeast Set1/COMPASS and human MLL/COMPASS-like complex in vitro and have identified the minimum subunit composition required for histone H3K4 methylation. These subunits include the methyltransferase C-terminal SET domain of Set1/MLL, Cps60/Ash2L, Cps50/RbBP5, Cps30/WDR5, and Cps25/Dpy30, which are all common components of the COMPASS family from yeast to human. Three-dimensional (3D) cryo-EM reconstructions of the core yeast complex, combined with immunolabeling and two-dimensional (2D) EM analysis of the individual subcomplexes reveal a Y-shaped architecture with Cps50 and Cps30 localizing on the top two adjacent lobes and Cps60-Cps25 forming the base at the bottom. EM analysis of the human complex reveals a striking similarity to its yeast counterpart, suggesting a common subunit organization. The SET domain of Set1 is located at the juncture of Cps50, Cps30, and the Cps60-Cps25 module, lining the walls of a central channel that may act as the platform for catalysis and regulative processing of various degrees of H3K4 methylation. This structural arrangement suggested that COMPASS family members function as exo-methylases, which we have confirmed by in vitro and in vivo studies.

  9. Saccharomyces cerevisiae MHF complex structurally resembles the histones (H3-H4)₂ heterotetramer and functions as a heterotetramer.

    PubMed

    Yang, Hui; Zhang, Tianlong; Tao, Ye; Wu, Lijing; Li, Hong-Tao; Zhou, Jin-Qiu; Zhong, Chen; Ding, Jianping

    2012-02-08

    Fanconi anemia (FA) is a chromosomal instability disorder associated with deficiencies in the Fanconi anemia complementation group (FANC) network. A complex consisting of FANCM-associated histone-fold proteins 1 and 2 (MHF1 and MHF2) has been shown to act cooperatively with FANCM in DNA damage repair in the FA pathway. Here we report the structure of Saccharomyces cerevisiae MHF complex in which MHF1 and MHF2 assume a typical histone fold, and the complex has a heterotetrameric architecture similar to that of the histones (H3-H4)₂ heterotetramer. Loop L2 of MHF1 is probably involved in DNA binding, and loop L3 and helices α2 and α3 of one MHF1 subunit interact with those of the other to form two heterotetramer interfaces. Further genetic data demonstrate that the heterotetramer assembly is essential for the function of the complex in DNA repair. These results provide, to the best of our knowledge, new mechanistic insights into the function of the MHF complex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Interplay among nucleosomal DNA, histone tails, and corepressor CoREST underlies LSD1-mediated H3 demethylation

    PubMed Central

    Pilotto, Simona; Speranzini, Valentina; Tortorici, Marcello; Durand, Dominique; Fish, Alexander; Valente, Sergio; Mai, Antonello; Sixma, Titia K.; Vachette, Patrice; Mattevi, Andrea

    2015-01-01

    With its noncatalytic domains, DNA-binding regions, and a catalytic core targeting the histone tails, LSD1-CoREST (lysine-specific demethylase 1; REST corepressor) is an ideal model system to study the interplay between DNA binding and histone modification in nucleosome recognition. To this end, we covalently associated LSD1-CoREST to semisynthetic nucleosomal particles. This enabled biochemical and biophysical characterizations of nucleosome binding and structural elucidation by small-angle X-ray scattering, which was extensively validated through binding assays and site-directed mutagenesis of functional interfaces. Our results suggest that LSD1-CoREST functions as an ergonomic clamp that induces the detachment of the H3 histone tail from the nucleosomal DNA to make it available for capture by the enzyme active site. The key notion emerging from these studies is the inherently competitive nature of the binding interactions because nucleosome tails, chromatin modifiers, transcription factors, and DNA represent sites for multiple and often mutually exclusive interactions. PMID:25730864

  11. Association of Reading Disabilities With Regions Marked by Acetylated H3 Histones in KIAA0319

    PubMed Central

    Couto, Jillian M.; Livne-Bar, Izzy; Huang, Katherine; Xu, Zhaodong; Cate-Carter, Tasha; Feng, Yu; Wigg, Karen; Humphries, Tom; Tannock, Rosemary; Kerr, Elizabeth N.; Lovett, Maureen W.; Bremner, Rod; Barr, Cathy L.

    2017-01-01

    Reading disabilities (RDs) have been associated with chromosome 6p with recent studies pointing to two genes, DCDC2 and KIAA0319. In this study, markers across the 6p region were tested for association with RD. Our strongest findings were for association with markers in KIAA0319, although with the opposite alleles compared with a previous study. We also found association with markers in VMP, but not with DCDC2. Current evidence indicates that differential regulation of KIAA0319 and DCDC2 contributes to RD, thus we used chromatin immunoprecipitation coupled with genomic tiling arrays (ChIP-chip) to map acetylated histones, a molecular marker for regulatory elements, across a 500 kb genomic region covering the RD locus on 6p. This approach identified several regions marked by acetylated histones that mapped near associated markers, including intron 7 of DCDC2 and the 5′ region of KIAA0319. The latter is located within the 70 kb region previously associated with differential expression of KIAA0319. Interestingly, five markers associated with RD in independent studies were also located within the 2.7 kb acetylated region, and six additional associated markers, including the most significant one in this study, were located within a 22 kb haplotype block that encompassed this region. Our data indicates that this putative regulatory region is a likely site of genetic variation contributing to RD in our sample, further narrowing the candidate region. PMID:19588467

  12. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin).

    PubMed

    Duan, Ming-Rui; Smerdon, Michael J

    2014-03-21

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.

  13. H3 Histone Tail Conformation within the Nucleosome and the Impact of K14 Acetylation Studied Using Enhanced Sampling Simulation

    PubMed Central

    Ikebe, Jinzen; Sakuraba, Shun; Kono, Hidetoshi

    2016-01-01

    Acetylation of lysine residues in histone tails is associated with gene transcription. Because histone tails are structurally flexible and intrinsically disordered, it is difficult to experimentally determine the tail conformations and the impact of acetylation. In this work, we performed simulations to sample H3 tail conformations with and without acetylation. The results show that irrespective of the presence or absence of the acetylation, the H3 tail remains in contact with the DNA and assumes an α-helix structure in some regions. Acetylation slightly weakened the interaction between the tail and DNA and enhanced α-helix formation, resulting in a more compact tail conformation. We inferred that this compaction induces unwrapping and exposure of the linker DNA, enabling DNA-binding proteins (e.g., transcription factors) to bind to their target sequences. In addition, our simulation also showed that acetylated lysine was more often exposed to the solvent, which is consistent with the fact that acetylation functions as a post-translational modification recognition site marker. PMID:26967163

  14. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain

    PubMed Central

    Ranjitkar, Prerana; Press, Maximilian O.; Yi, Xianhua; Baker, Richard; MacCoss, Michael J.; Biggins, Sue

    2010-01-01

    Summary Proper centromere function is critical to maintain genomic stability and to prevent aneuploidy, a hallmark of tumors and birth defects. A conserved feature of all eukaryotic centromeres is an essential histone H3 variant called CENP-A that requires a centromere targeting domain (CATD) for its localization. Although proteolysis prevents CENP-A from mislocalizing to euchromatin, regulatory factors have not been identified. Here, we identify an E3 ubiquitin ligase called Psh1 that leads to the degradation of Cse4, the budding yeast CENP-A homolog. Cse4 overexpression is toxic to psh1Δ cells and results in euchromatic localization. Strikingly, the Cse4 centromere targeting domain is a key regulator of its stability and helps Psh1 discriminate Cse4 from histone H3. Taken together, we propose that the CATD has a previously unknown role in maintaining the exclusive localization of Cse4 by preventing its mislocalization to euchromatin via Psh1-mediated degradation. PMID:21070971

  15. Unmodified Histone H3K4 and DNA-Dependent Protein Kinase Recruit Autoimmune Regulator to Target Genes

    PubMed Central

    Žumer, Kristina; Low, Audrey K.; Jiang, Huimin; Saksela, Kalle

    2012-01-01

    Autoimmune regulator (AIRE) directs the expression of otherwise tissue-restricted antigens (TRAs) in medullary thymic epithelial cells, allowing their presentation to developing T cells, which leads to central tolerance. We addressed the conundrum of how AIRE is recruited to these otherwise silent genes in cells. Our studies confirmed that interactions between AIRE and the unmodified histone H3K4 (H3K4me0) are important for targeting AIRE to the mouse insulin promoter in chromatin. By replacing its H3K4me0-binding module with one that binds to the methylated H3K4me3, we redirected the mutant AIRE.ING protein to an actively transcribed gene. Nevertheless, the mutant AIRE D297A protein, which could not bind to H3K4me0, still activated the human insulin promoter on an episomal plasmid target. This targeting was due to DNA-dependent protein kinase (DNA-PK). Thus, in cells that lacked the catalytic subunit of DNA-PK (DNA-PKcs), the assembly and activity of AIRE on DNA, whether in chromatin or on episomal plasmids, was abrogated. However, by the heterologous tethering of AIRE to DNA, we could restore its activity on a plasmid target in DNA-PKcs-negative cells. Importantly, mutations in the putative DNA-binding residues in its SAND domain had no effect on the transcriptional effects of AIRE. Thus, AIRE is recruited to TRA genes in chromatin via cooperative interactions with H3K4me0 and DNA-PK. PMID:22310661

  16. Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS.

    PubMed

    Beilharz, Traude H; Harrison, Paul F; Miles, Douglas Maya; See, Michael Ming; Le, Uyen Minh Merry; Kalanon, Ming; Curtis, Melissa Jane; Hasan, Qambar; Saksouk, Julie; Margaritis, Thanasis; Holstege, Frank; Geli, Vincent; Dichtl, Bernhard

    2017-01-01

    Methylation of histone H3 lysine 4 (H3K4) by Set1 complex/COMPASS is a hallmark of eukaryotic chromatin, but it remains poorly understood how this post-translational modification contributes to the regulation of biological processes like the cell cycle. Here, we report a H3K4 methylation-dependent pathway in Saccharomyces cerevisiae that governs toxicity toward benomyl, a microtubule destabilizing drug. Benomyl-sensitive growth of wild-type cells required mono- and dimethylation of H3K4 and Pho23, a PHD-containing subunit of the Rpd3L complex. Δset1 and Δpho23 deletions suppressed defects associated with ipl1-2 aurora kinase mutant, an integral component of the spindle assembly checkpoint during mitosis. Benomyl resistance of Δset1 strains was accompanied by deregulation of all four tubulin genes and the phenotype was suppressed by tub2-423 and Δtub3 mutations, establishing a genetic link between H3K4 methylation and microtubule function. Most interestingly, sine wave fitting and clustering of transcript abundance time series in synchronized cells revealed a requirement for Set1 for proper cell-cycle-dependent gene expression and Δset1 cells displayed delayed entry into S phase. Disruption of G1/S regulation in Δmbp1 and Δswi4 transcription factor mutants duplicated both benomyl resistance and suppression of ipl1-2 as was observed with Δset1 Taken together our results support a role for H3K4 methylation in the coordination of cell-cycle progression and proper assembly of the mitotic spindle during mitosis. Copyright © 2017 by the Genetics Society of America.

  17. Heterochromatic genome stability requires regulators of histone H3 K9 methylation.

    PubMed

    Peng, Jamy C; Karpen, Gary H

    2009-03-01

    Heterochromatin contains many repetitive DNA elements and few protein-encoding genes, yet it is essential for chromosome organization and inheritance. Here, we show that Drosophila that lack the Su(var)3-9 H3K9 methyltransferase display significantly elevated frequencies of spontaneous DNA damage in heterochromatin, in both somatic and germ-line cells. Accumulated DNA damage in these mutants correlates with chromosomal defects, such as translocations and loss of heterozygosity. DNA repair and mitotic checkpoints are also activated in mutant animals and are required for their viability. Similar effects of lower magnitude were observed in animals that lack the RNA interference pathway component Dcr2. These results suggest that the H3K9 methylation and RNAi pathways ensure heterochromatin stability.

  18. Genome-Wide Alteration of Histone H3K9 Acetylation Pattern in Mouse Offspring Prenatally Exposed to Arsenic

    PubMed Central

    Cronican, Andrea A.; Fitz, Nicholas F.; Carter, Alexis; Saleem, Muzamil; Shiva, Sruti; Barchowsky, Aaron; Koldamova, Radosveta; Schug, Jonathan; Lefterov, Iliya

    2013-01-01

    Chronic exposure to arsenic in drinking water, especially in utero or perinatal exposure, can initiate neurological and cognitive dysfunction, as well as memory impairment. Several epidemiological studies have demonstrated cognitive and learning deficits in children with early exposure to low to moderate levels of arsenic, but pathogenic mechanisms or etiology for these deficits are poorly understood. Since in vivo studies show a role for histone acetylation in cognitive performance and memory formation, we examined if prenatal exposure to arsenic causes changes in the epigenomic landscape. We exposed C57Bl6/J mice to 100 μg/L arsenic in the drinking water starting 1 week before conception till birth and applied chromatin immunoprecipitation followed by high-throughput massive parallel sequencing (ChIP-seq) to evaluate H3K9 acetylation pattern in the offspring of exposed and control mice. Arsenic exposure during embryonic life caused global hypo-acetylation at H3K9 and changes in functional annotation with highly significant representation of Krüppel associated box (KRAB) transcription factors in brain samples from exposed pups. We also found that arsenic exposure of adult mice impaired spatial and episodic memory, as well as fear conditioning performance. This is the first study to demonstrate: a) genome wide changes in H3K9 acetylation pattern in an offspring prenatally exposed to arsenic, and b) a connection between moderate arsenic exposure and cognitive impairment in adult mice. The results also emphasize the applicability of Next Generation Sequencing methodology in studies aiming to reveal the role of environmental factors, other than dietary restriction, in developmental reprogramming through histone modifications during embryonic development. PMID:23405071

  19. Vitamin K3 (menadione)-induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation.

    PubMed

    Scott, Gary K; Atsriku, Christian; Kaminker, Patrick; Held, Jason; Gibson, Brad; Baldwin, Michael A; Benz, Christopher C

    2005-09-01

    The vitamin K analog menadione (K3), capable of both redox cycling and arylating nucleophilic substrates by Michael addition, has been extensively studied as a model stress-inducing quinone in both cell culture and animal model systems. Exposure of keratin 8 (k-8) expressing human breast cancer cells (MCF7, T47D, SKBr3) to K3 (50-100 microM) induced rapid, sustained, and site-specific k-8 serine phosphorylation (pSer73) dependent on signaling by a single mitogen activated protein kinase (MAPK) pathway, MEK1/2. Normal nuclear morphology and k-8 immunofluorescence coupled with the lack of DNA laddering or other features of apoptosis indicated that K3-induced cytotoxicity, evident within 4 h of treatment and delayed but not prevented by MEK1/2 inhibition, was due to a form of stress-activated cell death known as oncosis. Independent of MAPK signaling was the progressive appearance of K3-induced cellular fluorescence, principally nuclear in origin and suggested by in vitro fluorimetry to have been caused by K3 thiol arylation. Imaging by UV transillumination of protein gels containing nuclear extracts from K3-treated cells revealed a prominent 17-kDa band shown to be histone H3 by immunoblotting and mass spectrometry (MS). K3 arylation of histones in vitro followed by electrospray ionization-tandem MS analyses identified the unique Cys110 residue within H3, exposed only in the open chromatin of transcriptionally active genes, as a K3 arylation target. These findings delineate new pathways associated with K3-induced stress and suggest a potentially novel role for H3 Cys110 as a nuclear stress sensor.

  20. Multilocus loss of DNA methylation in individuals with mutations in the histone H3 Lysine 4 Demethylase KDM5C

    PubMed Central

    2013-01-01

    Background A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment. Results Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP. Conclusions We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain. PMID:23356856

  1. Proteomic Analysis of Fatty-acylated Proteins in Mammalian Cells with Chemical Reporters Reveals S-Acylation of Histone H3 Variants

    PubMed Central

    Wilson, John P.; Raghavan, Anuradha S.; Yang, Yu-Ying; Charron, Guillaume; Hang, Howard C.

    2011-01-01

    Bioorthogonal chemical reporters are useful tools for visualizing and identifying post-translational modifications on proteins. Here we report the proteomic analysis of mammalian proteins targeted by a series of fatty acid chemical reporters ranging from myristic to stearic acid. The large-scale analysis of total cell lysates from fully solubilized Jurkat T cells identified known fatty-acylated proteins and many new candidates, including nuclear proteins and in particular histone H3 variants. We demonstrate that histones H3.1, H3.2, and H3.3 are modified with fatty acid chemical reporters and identify the conserved cysteine 110 as a new site of S-acylation on histone H3.2. This newly discovered modification of histone H3 could have implications for nuclear organization and chromatin regulation. The unbiased proteomic analysis of fatty-acylated proteins using chemical reporters has revealed a greater diversity of lipid-modified proteins in mammalian cells and identified a novel post-translational modification of histones. PMID:21076176

  2. Mitotic accumulation of dimethylated lysine 79 of histone H3 is important for maintaining genome integrity during mitosis in human cells.

    PubMed

    Guppy, Brent J; McManus, Kirk J

    2015-02-01

    The loss of genome stability is an early event that drives the development and progression of virtually all tumor types. Recent studies have revealed that certain histone post-translational modifications exhibit dynamic and global increases in abundance that coincide with mitosis and exhibit essential roles in maintaining genomic stability. Histone H2B ubiquitination at lysine 120 (H2Bub1) is regulated by RNF20, an E3 ubiquitin ligase that is altered in many tumor types. Through an evolutionarily conserved trans-histone pathway, H2Bub1 is an essential prerequisite for subsequent downstream dimethylation events at lysines 4 (H3K4me2) and 79 (H3K79me2) of histone H3. Although the role that RNF20 plays in tumorigenesis has garnered much attention, the downstream components of the trans-histone pathway, H3K4me2 and H3K79me2, and their potential contributions to genome stability remain largely overlooked. In this study, we employ single-cell imaging and biochemical approaches to investigate the spatial and temporal patterning of RNF20, H2Bub1, H3K4me2, and H3K79me2 throughout the cell cycle, with a particular focus on mitosis. We show that H2Bub1, H3K4me2, and H3K79me2 exhibit distinct temporal progression patterns throughout the cell cycle. Most notably, we demonstrate that H3K79me2 is a highly dynamic histone post-translational modification that reaches maximal abundance during mitosis in an H2Bub1-independent manner. Using RNAi and chemical genetic approaches, we identify DOT1L as a histone methyltransferase required for the mitotic-associated increases in H3K79me2. We also demonstrate that the loss of mitotic H3K79me2 levels correlates with increases in chromosome numbers and increases in mitotic defects. Collectively, these data suggest that H3K79me2 dynamics during mitosis are normally required to maintain genome stability and further implicate the loss of H3K79me2 during mitosis as a pathogenic event that contributes to the development and progression of tumors.

  3. Histone H3 Lysine 36 Trimethylation Is Established over the Xist Promoter by Antisense Tsix Transcription and Contributes to Repressing Xist Expression

    PubMed Central

    Ohhata, Tatsuya; Matsumoto, Mika; Leeb, Martin; Shibata, Shinwa; Sakai, Satoshi; Kitagawa, Kyoko; Niida, Hiroyuki

    2015-01-01

    One of the two X chromosomes in female mammals is inactivated by the noncoding Xist RNA. In mice, X chromosome inactivation (XCI) is regulated by the antisense RNA Tsix, which represses Xist on the active X chromosome. In the absence of Tsix, PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) is established over the Xist promoter. Simultaneous disruption of Tsix and PRC2 leads to derepression of Xist and in turn silencing of the single X chromosome in male embryonic stem cells. Here, we identified histone H3 lysine 36 trimethylation (H3K36me3) as a modification that is recruited by Tsix cotranscriptionally and extends over the Xist promoter. Reduction of H3K36me3 by expression of a mutated histone H3.3 with a substitution of methionine for lysine at position 36 causes a significant derepression of Xist. Moreover, depletion of the H3K36 methylase Setd2 leads to upregulation of Xist, suggesting H3K36me3 as a modification that contributes to the mechanism of Tsix function in regulating XCI. Furthermore, we found that reduction of H3K36me3 does not facilitate an increase in H3K27me3 over the Xist promoter, indicating that additional mechanisms exist by which Tsix blocks PRC2 recruitment to the Xist promoter. PMID:26370508

  4. A nucleosome-like structure containing DNA and the arginine-rich histones H3 and H4.

    PubMed

    Moss, T; Stephens, R M; Crane-Robinson, C; Bradbury, E M

    1977-07-01

    The low-angle X-ray diffraction pattern from fibres of reconstituted H3/H4/DNA complexes is very similar to that of chromatin and has well defined maxima at 10.6, 5.4, 3.4 and 2.6 nm. Staphyloccal nuclease digestion of reconstituted H3/H4/DNA yields DNA fragments of length 49, 69, 100, 128, 193 and 255 b.p. as principal components. Comparison of the relative amounts of DNA fragments shows that the larger components (100 and 128 b.p.) increase with respect to the smaller (49 and 69 b.p.) as the histone to DNA ratio increases. A structural unit containing intergral of 65 b.p. of DNA and tetrameric (H3/H4)2 is proposed such that longer DNA fragments result from multiples of this unit. The principal nucleo-protein particle resulting from nuclease digestion contains 128/139 b.p. of DNA and has electrophoretic mobility very close to that of 'core' nucleosome. It probably represents a dimer of the basic structural unit.

  5. Monoallele deletion of CBP leads to pericentromeric heterochromatin condensation through ESET expression and histone H3 (K9) methylation.

    PubMed

    Lee, Junghee; Hagerty, Sean; Cormier, Kerry A; Kim, Jinho; Kung, Andrew L; Ferrante, Robert J; Ryu, Hoon

    2008-06-15

    Chromatin remodeling is tightly controlled under physiological conditions. Alterations in chromatin structure are involved in the pathogenesis of neuronal systems. We found that the monoallelic deletion of CREB binding protein (CBP) results in the induction of ERG-associated protein with SET domain (ESET) and increases trimethylation of histone H3 (K9) and condensation of pericentromeric heterochromatin structure in neurons. Nested deletion and mutational analysis of the ESET promoter further demonstrated that the Ets-2 transcription factor regulates transcriptional activity of the ESET gene. In CBP+/- mice, Ets-2 occupancy in the ESET promoter DNA was markedly elevated. Our results suggest that CBP is a transcriptional repressor of ESET gene expression by limiting Ets-2 transcriptional activity, while CBP siRNA enhances basal and Ets-2-dependent ESET transcriptional activity. Altered expression of the ESET gene and hypertrimethylation of H3 (K9) correlate with striatal neuron atrophy and dysfunction in CBP+/- mice. These results establish an alternative pathway that loss of CBP leads to the pericentric heterochromatin condensation through ESET expression and trimethylation of H3 (K9).

  6. Retinoblastoma tumor suppressor protein–dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit

    PubMed Central

    Blais, Alexandre; van Oevelen, Chris J.C.; Margueron, Raphaël; Acosta-Alvear, Diego; Dynlacht, Brian David

    2007-01-01

    The retinoblastoma tumor suppressor protein (pRb) is involved in mitotic exit, promoting the arrest of myoblasts, and myogenic differentiation. However, it is unclear how permanent cell cycle exit is maintained in differentiated muscle. Using RNA interference, expression profiling, and chromatin immunoprecipitations, we show that pRb is essential for cell cycle exit and the differentiation of myoblasts and is also uniquely required to maintain this arrest in myotubes. Remarkably, we also uncover a function for the pRb-related proteins p107 and p130 as enforcers of a G2/M phase checkpoint that prevents progression into mitosis in cells that have lost pRb. We further demonstrate that pRb effects permanent cell cycle exit in part by maintaining trimethylation of histone H3 lysine 27 (H3K27) on cell cycle genes. H3K27 trimethylation silences other genes, including Cyclin D1, in a pRb-independent but polycomb-dependent manner. Thus, our data distinguish two distinct chromatin-based regulatory mechanisms that lead to terminal differentiation. PMID:18166651

  7. Retinoblastoma tumor suppressor protein-dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit.

    PubMed

    Blais, Alexandre; van Oevelen, Chris J C; Margueron, Raphaël; Acosta-Alvear, Diego; Dynlacht, Brian David

    2007-12-31

    The retinoblastoma tumor suppressor protein (pRb) is involved in mitotic exit, promoting the arrest of myoblasts, and myogenic differentiation. However, it is unclear how permanent cell cycle exit is maintained in differentiated muscle. Using RNA interference, expression profiling, and chromatin immunoprecipitations, we show that pRb is essential for cell cycle exit and the differentiation of myoblasts and is also uniquely required to maintain this arrest in myotubes. Remarkably, we also uncover a function for the pRb-related proteins p107 and p130 as enforcers of a G2/M phase checkpoint that prevents progression into mitosis in cells that have lost pRb. We further demonstrate that pRb effects permanent cell cycle exit in part by maintaining trimethylation of histone H3 lysine 27 (H3K27) on cell cycle genes. H3K27 trimethylation silences other genes, including Cyclin D1, in a pRb-independent but polycomb-dependent manner. Thus, our data distinguish two distinct chromatin-based regulatory mechanisms that lead to terminal differentiation.

  8. Functional analysis of the N- and C-terminus of mammalian G9a histone H3 methyltransferase.

    PubMed

    Estève, Pierre-Olivier; Patnaik, Debasis; Chin, Hang Gyeong; Benner, Jack; Teitell, Michael A; Pradhan, Sriharsa

    2005-01-01

    Methylation of lysine 9 (K9) in the N-terminus tail of histone H3 (H3) in chromatin is associated with transcriptionally silenced genes and is mediated by histone methyltransferases. Murine G9a is a 1263 amino acid H3-K9 methyltransferase that possesses characteristic SET domain and ANK repeats. In this paper, we have used a series of green fluorescent protein-tagged deletion constructs to identify two nuclear localization signals (NLS), the first NLS embedded between amino acids 24 and 109 and the second between amino acids 394 and 401 of murine G9a. Our data show that both long and short G9a isoforms were capable of entering the nucleus to methylate chromatin. Full-length or N-terminus-deleted G9a isoforms were also catalytically active enzymes that methylated recombinant H3 or synthetic peptides representing the N-terminus tail of H3. In vitro methylation reactions using N-terminus tail peptides resulted in tri-methylation of K9 that remained processive, even in G9a enzymes that lacked an N-terminus region by deletion. Co-expression of G9a and H3 resulted in di- and tri-methylation of H3-K9, while siRNA-mediated knockdown of G9a in HeLa cells resulted in reduction of global H3-K9 di- and tri-methylation. A recombinant deletion mutant enzyme fused with maltose-binding protein (MBP-G9aDelta634) was used for steady-state kinetic analysis with various substrates and was compared with full-length G9a (G9aFL). Turnover numbers of MBP-G9aDelta634 for various substrates was approximately 3-fold less compared with G9aFL, while their Michaelis constants (K(m)) for recombinant H3 were similar. The K(AdoMet)m for MBP-G9aDelta634 was approximately 2.3-2.65 microM with various substrates. Catalytic efficiencies (kcat/K(m)) for both MBP-G9aDelta634 and G9aFL were similar, suggesting that the N-terminus is not essential for catalysis. Furthermore, mutation of conserved amino acids R1097A, W1103A, Y1120A, Y1138A and R1162A, or the metal binding C1168A in the catalytic region

  9. Failure of Long-Term Memory Formation in Juvenile Snails Is Determined by Acetylation Status of Histone H3 and Can Be Improved by NaB Treatment

    PubMed Central

    Danilova, Alexandra B.; Grinkevich, Larisa N.

    2012-01-01

    Background Animals’ capacities for different forms of learning do not mature simultaneously during ontogenesis but the molecular mechanisms behind the delayed development of specific types of memory are not fully understood. Mollusks are considered to be among the best models to study memory formation at the molecular level. Chromatin remodeling in developmental processes, as well as in long-term memory formation, was recently shown to play a major role. Histone acetylation is a key process in the chromatin remodeling and is regulated through the signaling cascades, for example MAPK/ERK. Previously, we found that MAPK/ERK is a key pathway in the formation of the food aversion reflex in Helix. Pretreatment with upstream ERK kinase inhibitor PD98059 prevented food avoidance learning in adult Helix. In contrast to adult snails, juveniles possess immature plasticity mechanisms of the avoidance reflex until the age of 2–3 months while the MAPK/ERK cascade is not activated after aversive learning. In the present study, we focused on the potential MAPK/ERK target - histone H3. Methodology/Principal Findings Here we found that a significant increase in histone H3 acetylation occurs in adult animals after learning, whereas no corresponding increase was observed in juveniles. The acetylation of histone H3 is regulated by ERK kinase, since the upstream ERK kinase inhibitor PD98059 prevented the increase of histone H3 acetylation upon learning. We found that the injection of histone deacetylase inhibitor sodium butyrate (NaB) prior to training led to induction in histone H3 acetylation and significantly ameliorated long-term memory formation in juvenile snails. Conclusions/Significance Thus, MAPK/ERK-dependent histone H3 acetylation plays an essential role in the formation of food aversion in Helix. Dysfunction of the MAPK/ERK dependent histone H3 acetylation might determine the deficiency of avoidance behavior and long-term plasticity in juvenile animals. Stimulation of

  10. Hat2p recognizes the histone H3 tail to specify the acetylation of the newly synthesized H3/H4 heterodimer by the Hat1p/Hat2p complex

    PubMed Central

    Li, Yang; Zhang, Li; Liu, Tingting; Chai, Chengliang; Fang, Qianglin; Wu, Han; Agudelo Garcia, Paula A.; Han, Zhifu; Zong, Shuai; Yu, You; Zhang, Xinyue; Parthun, Mark R.; Chai, Jijie; Xu, Rui-Ming; Yang, Maojun

    2014-01-01

    Post-translational modifications of histones are significant regulators of replication, transcription, and DNA repair. Particularly, newly synthesized histone H4 in H3/H4 heterodimers becomes acetylated on N-terminal lysine residues prior to its incorporation into chromatin. Previous studies have established that the histone acetyltransferase (HAT) complex Hat1p/Hat2p medicates this modification. However, the mechanism of how Hat1p/Hat2p recognizes and facilitates the enzymatic activities on the newly assembled H3/H4 heterodimer remains unknown. Furthermore, Hat2p is a WD40 repeat protein, which is found in many histone modifier complexes. However, how the WD40 repeat proteins facilitate enzymatic activities of histone modification enzymes is unclear. In this study, we first solved the high-resolution crystal structure of a Hat1p/Hat2p/CoA/H4 peptide complex and found that the H4 tail interacts with both Hat1p and Hat2p, by which substrate recruitment is facilitated. We further discovered that H3 N-terminal peptides can bind to the Hat2p WD40 domain and solved the structure of the Hat1p/Hat2p/CoA/H4/H3 peptide complex. Moreover, the interaction with Hat2p requires unmodified Arg2/Lys4 and Lys9 on the H3 tail, suggesting a novel model to specify the activity of Hat1p/Hat2p toward newly synthesized H3/H4 heterodimers. Together, our study demonstrated the substrate recognition mechanism by the Hat1p/Hat2p complex, which is critical for DNA replication and other chromatin remodeling processes. PMID:24835250

  11. Efficient differentiation of murine embryonic stem cells requires the binding of CXXC finger protein 1 to DNA or methylated histone H3-Lys4.

    PubMed

    Mahadevan, Jyothi; Skalnik, David G

    2016-12-05

    Mammalian CXXC finger protein 1 (Cfp1) is a DNA-binding protein that is a component of the Setd1 histone methyltransferase complexes and is a critical epigenetic regulator of both histone and cytosine methylation. Murine embryonic stem (ES) cells lacking Cfp1 exhibit a loss of histone H3-Lys4 tri-methylation (H3K4me3) at many CpG islands, and a mis-localization of this epigenetic mark to heterochromatic sub-nuclear domains. Furthermore, these cells fail to undergo cellular differentiation in vitro. These defects are rescued upon introduction of a Cfp1-expression vector. Cfp1 contains an N-terminal plant homeodomain (PHD), a motif frequently observed in chromatin associated proteins that functions as a reader module of histone marks. Here, we report that the Cfp1 PHD domain directly and specifically binds to histone H3K4me1/me2/me3 marks. Introduction of individual mutations at key Cfp1 PHD residues (Y28, D44, or W49) ablates this histone interaction both in vitro and in vivo. The W49A point mutation does not affect the ability of Cfp1 to rescue appropriate restriction of histone H3K4me3 to euchromatic sub-nuclear domains or in vitro cellular differentiation in Cfp1-null ES cells. Similarly, a mutated form of Cfp1 that lacks DNA-binding activity (C169A) rescues in vitro cellular differentiation. However, rescue of Cfp1-null ES cells with a double mutant form of Cfp1 (W49A, C169A) results in partially defective in vitro differentiation. These data define the Cfp1 PHD domain as a reader of histone H3K4me marks and provide evidence that this activity is involved in the regulation of lineage commitment in ES cells.

  12. Kinetochore function and chromosome segregation rely on critical residues in histones H3 and H4 in budding yeast.

    PubMed

    Ng, Tessie M; Lenstra, Tineke L; Duggan, Nicole; Jiang, Shuangying; Ceto, Steven; Holstege, Frank C P; Dai, Junbiao; Boeke, Jef D; Biggins, Sue

    2013-11-01

    Accurate chromosome segregation requires that sister kinetochores biorient and attach to microtubules from opposite poles. Kinetochore biorientation relies on the underlying centromeric chromatin, which provides a platform to assemble the kinetochore and to recruit the regulatory factors that ensure the high fidelity of this process. To identify the centromeric chromatin determinants that contribute to chromosome segregation, we performed two complementary unbiased genetic screens using a library of budding yeast mutants in every residue of histone H3 and H4. In one screen, we identified mutants that lead to increased loss of a nonessential chromosome. In the second screen, we isolated mutants whose viability depends on a key regulator of biorientation, the Aurora B protein kinase. Nine mutants were common to both screens and exhibited kinetochore biorientation defects. Four of the mutants map near the unstructured nucleosome entry site, and their genetic interaction with reduced IPL1 can be suppressed by increasing the dosage of SGO1, a key regulator of biorientation. In addition, the composition of purified kinetochores was altered in six of the mutants. Together, this work identifies previously unknown histone residues involved in chromosome segregation and lays the foundation for future studies on the role of the underlying chromatin structure in chromosome segregation.

  13. Histone H3K9 modifications are a local chromatin event involved in ethanol-induced neuroadaptation of the NR2B gene.

    PubMed

    Qiang, Mei; Denny, Ashley; Lieu, Mai; Carreon, Stephanie; Li, Ji

    2011-09-01

    Expression of the NMDA receptor 2B (NR2B) gene is upregulated following chronic intermittent ethanol (CIE) treatment and withdrawal, which underlies behavioral alterations in addiction. The goal of this study was to characterize the changes of histone modifications induced by CIE treatment and its subsequent removal associated to the upregulation of NR2B gene transcription. To investigate the involvement of histone acetylation in the effect of ethanol on the NR2B gene, we examined the influence of CIE on histone acetylation in the 5' regulatory region of NR2B using a qChIP assay. CIE treatment and its subsequent removal produced a remarkable and selected increase in histone H3K9 acetylation. Interestingly, the majority of the increased H3K9 acetylation occurred after ethanol removal, which was coincident with a decrease in H3K9 methylation in the same time duration. Further examination of the mechanisms of ethanol-induced alterations on the histone modifications revealed that CIE-induced acetylation of H3K9 was not due to the changes in global enzyme activities or the expression of histone acetyltransferases (HATs) and deacetylase (HDACs). Instead, we found a significant downregulation in some histone methyltransferases (HMTs) at both the global level and the local chromatin of the NR2B gene following CIE treatment. Moreover, our experiments also indicated a decrease of G9a, Suv39 h1 and HDAC1-3 in the chromatin of the NR2B gene promoter, which may be responsible for the altered H3K9 modifications. Taken together, the findings suggest a mechanism where the changes in H3K9 modifications in the local chromatin of the NR2B gene underlie alcohol-induced neuroadaptation.

  14. Unabridged Analysis of Human Histone H3 by Differential Top-Down Mass Spectrometry Reveals Hypermethylated Proteoforms from MMSET/NSD2 Overexpression*

    PubMed Central

    Zheng, Yupeng; Fornelli, Luca; Compton, Philip D.; Sharma, Seema; Canterbury, Jesse; Mullen, Christopher; Zabrouskov, Vlad; Fellers, Ryan T.; Thomas, Paul M.; Licht, Jonathan D.; Senko, Michael W.; Kelleher, Neil L.

    2016-01-01

    Histones, and their modifications, are critical components of cellular programming and epigenetic inheritance. Recently, cancer genome sequencing has uncovered driver mutations in chromatin modifying enzymes spurring high interest how such mutations change histone modification patterns. Here, we applied Top-Down mass spectrometry for the characterization of combinatorial modifications (i.e. methylation and acetylation) on full length histone H3 from human cell lines derived from multiple myeloma patients with overexpression of the histone methyltransferase MMSET as the result of a t(4;14) chromosomal translocation. Using the latest in Orbitrap-based technology for clean isolation of isobaric proteoforms containing up to 10 methylations and/or up to two acetylations, we provide extensive characterization of histone H3.1 and H3.3 proteoforms. Differential analysis of modifications by electron-based dissociation recapitulated antagonistic crosstalk between K27 and K36 methylation in H3.1, validating that full-length histone H3 (15 kDa) can be analyzed with site-specific assignments for multiple modifications. It also revealed K36 methylation in H3.3 was affected less by the overexpression of MMSET because of its higher methylation levels in control cells. The co-occurrence of acetylation with a minimum of three methyl groups in H3K9 and H3K27 suggested a hierarchy in the addition of certain modifications. Comparative analysis showed that high levels of MMSET in the myeloma-like cells drove the formation of hypermethyled proteoforms containing H3K36me2 co-existent with the repressive marks H3K9me2/3 and H3K27me2/3. Unique histone proteoforms with such “trivalent hypermethylation” (K9me2/3-K27me2/3-K36me2) were not discovered when H3.1 peptides were analyzed by Bottom-Up. Such disease-correlated proteoforms could link tightly to aberrant transcription programs driving cellular proliferation, and their precise description demonstrates that Top-Down mass spectrometry

  15. Methylations of histone H3 lysine 9 and lysine 36 are functionally linked to DNA replication checkpoint control in fission yeast

    SciTech Connect

    Kim, Hyun Soo; Rhee, Dong Keun; Jang, Yeun Kyu

    2008-04-04

    Recently, histone H4 lysine 20 and H3 lysine 79 methylations were functionally linked to DNA damage checkpoint. The crosstalk between histone methylation and the S-M checkpoint, however, has remained unclear. Here, we show that H3 lysine 9 (K9) and lysine 36 (K36) methylations catalyzed by two histone methyltransferases Clr4 and Set2 are involved in hydroxyurea (HU)-induced replication checkpoint. The clr4-set2 double mutants besides histone H3-K9 and K36 double mutants exhibited HU-sensitivity, a defective HU-induced S-M checkpoint, and a significant reduction of HU-induced phosphorylation of Cdc2. Intriguingly, the clr4-set2 double mutations impaired the HU-induced accumulation of a mitotic inhibitor Mik1. Double mutants in Alp13 and Swi6, which can specifically bind to H3-K36 and K9 methylations, exhibited phenotypes similar to those of the clr4-set2 mutants. Together, these findings suggest that methylations of histone H3-K9 and K36 by Clr4 and Set2 are functionally linked to DNA replication checkpoint via accumulation of Mik1.

  16. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation.

    PubMed

    Alamdar, Ambreen; Xi, Guochen; Huang, Qingyu; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2017-07-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Histone Chaperone Spt6 Is Required for Activation-induced Cytidine Deaminase Target Determination through H3K4me3 Regulation*

    PubMed Central

    Begum, Nasim A.; Stanlie, Andre; Nakata, Mikiyo; Akiyama, Hideo; Honjo, Tasuku

    2012-01-01

    H3K4me3 plays a critical role in the activation-induced cytidine deaminase (AID)-induced DNA cleavage of switch (S) regions in the immunoglobulin heavy chain (IgH) locus during class-switch recombination (CSR). The histone chaperone complex facilitates chromatin transcription (FACT) is responsible for forming H3K4me3 at AID target loci. Here we show that the histone chaperone suppressor of Ty6 (Spt6) also participates in regulating H3K4me3 for CSR and for somatic hypermutation in AID target loci. We found that H3K4me3 loss was correlated with defects in AID-induced DNA breakage and reduced mutation frequencies in IgH loci in both S and variable regions and in non-IgH loci such as metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and small nucleolar RNA host gene 3 (SNHG3). Global gene expression analysis revealed that Spt6 can act as both a positive and negative transcriptional regulator in B cells, affecting ∼5% of the genes that includes suppressor of Ty4 (Spt4) and AID. Interestingly, Spt6 regulates CSR and AID expression through two distinct histone modification pathways, H3K4me3 and H3K36me3, respectively. Tandem SH2 domain of Spt6 plays a critical role in CSR and H3K4me3 regulation involving Set1 histone methyltransferase. We conclude that Spt6 is a unique histone chaperone capable of regulating the histone epigenetic state of both AID targets and the AID locus. PMID:22843687

  18. Impairment of preimplantation porcine embryo development by histone demethylase KDM5B knockdown through disturbance of bivalent H3K4me3-H3K27me3 modifications.

    PubMed

    Huang, Jiaojiao; Zhang, Hongyong; Wang, Xianlong; Dobbs, Kyle B; Yao, Jing; Qin, Guosong; Whitworth, Kristin; Walters, Eric M; Prather, Randall S; Zhao, Jianguo

    2015-03-01

    KDM5B (JARID1B/PLU1) is a H3K4me2/3 histone demethylase that is implicated in cancer development and proliferation and is also indispensable for embryonic stem cell self-renewal, cell fate, and murine embryonic development. However, little is known about the role of KDM5B during preimplantation embryo development. Here we show that KDM5B is critical to porcine preimplantation development. KDM5B was found to be expressed in a stage-specific manner, consistent with demethylation of H3K4me3, with the highest expression being observed from the 4-cell to the blastocyst stages. Knockdown of KDM5B by morpholino antisense oligonucleotides injection impaired porcine embryo development to the blastocyst stage. The impairment of embryo development might be caused by increased expression of H3K4me3 at the 4-cell and blastocyst stages, which disturbs the balance of bivalent H3K4me3-H3K27me3 modifications at the blastocyst stage. Decreased abundance of H3K27me3 at blastocyst stage activates multiple members of homeobox genes (HOX), which need to be silenced for faithful embryo development. Additionally, the histone demethylase KDM6A was found to be upregulated by knockdown of KDM5B, which indicated it was responsible for the decreased abundance of H3K27me3 at the blastocyst stage. The transcriptional levels of Ten-Eleven Translocation gene family members (TET1, TET2, and TET3) are found to be increased by knockdown of KDM5B, which indicates cross talk between histone modifications and DNA methylation. The studies above indicate that KDM5B is required for porcine embryo development through regulating the balance of bivalent H3K4me3-H3K27me3 modifications.

  19. PRMT4 is involved in insulin secretion via the methylation of histone H3 in pancreatic β cells.

    PubMed

    Kim, Joong Kwan; Lim, Yongchul; Lee, Jung Ok; Lee, Young-Sun; Won, Nam Hee; Kim, Hyun; Kim, Hyeon Soo

    2015-06-01

    The relationship between protein arginine methyltransferases (PRMTs) and insulin synthesis in β cells is not yet well understood. In the present study, we showed that PRMT4 expression was increased in INS-1 and HIT-T15 pancreatic β cells under high-glucose conditions. In addition, asymmetric dimethylation of Arg17 in histone H3 was significantly increased in both cell lines in the presence of glucose. The inhibition or knockdown of PRMT4 suppressed glucose-induced insulin gene expression in INS-1 cells by 81.6 and 79% respectively. Additionally, the overexpression of mutant PRMT4 also significantly repressed insulin gene expression. Consistently, insulin secretion induced in response to high levels of glucose was decreased by both PRMT4 inhibition and knockdown. Moreover, the inhibition of PRMT4 blocked high-glucose-induced insulin gene expression and insulin secretion in primary pancreatic islets. These results indicate that PRMT4 might be a key regulator of high-glucose-induced insulin secretion from pancreatic β cells via H3R17 methylation.

  20. Independent Mechanisms Target SMCHD1 to Trimethylated Histone H3 Lysine 9-Modified Chromatin and the Inactive X Chromosome

    PubMed Central

    Brideau, Nicholas J.; Coker, Heather; Gendrel, Anne-Valerie; Siebert, C. Alistair; Bezstarosti, Karel; Demmers, Jeroen; Poot, Raymond A.; Nesterova, Tatyana B.

    2015-01-01

    The chromosomal protein SMCHD1 plays an important role in epigenetic silencing at diverse loci, including the inactive X chromosome, imprinted genes, and the facioscapulohumeral muscular dystrophy locus. Although homology with canonical SMC family proteins suggests a role in chromosome organization, the mechanisms underlying SMCHD1 function and target site selection remain poorly understood. Here we show that SMCHD1 forms an active GHKL-ATPase homodimer, contrasting with canonical SMC complexes, which exist as tripartite ring structures. Electron microscopy analysis demonstrates that SMCHD1 homodimers structurally resemble prokaryotic condensins. We further show that the principal mechanism for chromatin loading of SMCHD1 involves an LRIF1-mediated interaction with HP1γ at trimethylated histone H3 lysine 9 (H3K9me3)-modified chromatin sites on the chromosome arms. A parallel pathway accounts for chromatin loading at a minority of sites, notably the inactive X chromosome. Together, our results provide key insights into SMCHD1 function and target site selection. PMID:26391951

  1. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres.

    PubMed

    Moreno-Moreno, Olga; Torras-Llort, Mònica; Azorín, Fernando

    2006-01-01

    Centromere identity is determined by the formation of a specialized chromatin structure containing the centromere-specific histone H3 variant CENP-A. The precise molecular mechanism(s) accounting for the specific deposition of CENP-A at centromeres are still poorly understood. Centromeric deposition of CENP-A, which is independent of DNA replication, might involve specific chromatin assembly complexes and/or specific interactions with kinetochore components. However, transiently expressed CENP-A incorporates throughout chromatin indicating that CENP-A nucleosomes can also be promiscuously deposited during DNA replication. Therefore, additional mechanisms must exist to prevent deposition of CENP-A nucleosomes during replication and/or to remove them afterwards. Here, using transient expression experiments performed in Drosophila Kc cells, we show that proteasome-mediated degradation restricts localization of Drosophila CENP-A (CID) to centromeres by eliminating mislocalized CID as well as by regulating available CID levels. Regulating available CID levels appears essential to ensure centromeric deposition of transiently expressed CID as, when expression is increased in the presence of proteasome inhibitors, newly synthesized CID mislocalizes. Mislocalization of CID affects cell cycle progression as a high percentage of cells showing mislocalized CID are reactive against alphaPSer(10)H3 antibodies, enter mitosis at a very low frequency and show strong segregation defects. However, cells showing reduced amounts of mislocalized CID show normal cell cycle progression.

  2. Quantification of histone H3 Lys27 trimethylation (H3K27me3) by high-throughput microscopy enables cellular large-scale screening for small-molecule EZH2 inhibitors.

    PubMed

    Luense, Svenja; Denner, Philip; Fernández-Montalván, Amaury; Hartung, Ingo; Husemann, Manfred; Stresemann, Carlo; Prechtl, Stefan

    2015-02-01

    EZH2 inhibition can decrease global histone H3 lysine 27 trimethylation (H3K27me3) and thereby reactivates silenced tumor suppressor genes. Inhibition of EZH2 is regarded as an option for therapeutic cancer intervention. To identify novel small-molecule (SMOL) inhibitors of EZH2 in drug discovery, trustworthy cellular assays amenable for phenotypic high-throughput screening (HTS) are crucial. We describe a reliable approach that quantifies changes in global levels of histone modification marks using high-content analysis (HCA). The approach was validated in different cell lines by using small interfering RNA and SMOL inhibitors. By automation and miniaturization from a 384-well to 1536-well plate, we demonstrated its utility in conducting phenotypic HTS campaigns and assessing structure-activity relationships (SAR). This assay enables screening of SMOL EZH2 inhibitors and can advance the mechanistic understanding of H3K27me3 suppression, which is crucial with regard to epigenetic therapy. We observed that a decrease in global H3K27me3, induced by EZH2 inhibition, comprises two distinct mechanisms: (1) inhibition of de novo DNA methylation and (II) inhibition of dynamic, replication-independent H3K27me3 turnover. This report describes an HCA assay for primary HTS to identify, profile, and optimize cellular active SMOL inhibitors targeting histone methyltransferases, which could benefit epigenetic drug discovery. © 2014 Society for Laboratory Automation and Screening.

  3. Dual modified antiphospho (Ser10)-acetyl (Lys14)-histone H3 predominantly mark the pericentromeric chromatin during mitosis in monokinetic plants.

    PubMed

    Sharma, Santosh Kumar; Yamamoto, Maki; Mukai, Yasuhiko

    2016-12-01

    Epigenetic regulatory posttranslational histone modification marks not only function individually but also capable to act in combination as a unique pattern. A total of 16 plant species belonging to 11 genera of eight families (five dicots and three monocots) including land plants, epiphytes (orchids) and the holokinetic taxa (Drosera spp.) were analysed for chromosomal distribution of dual modified antiphospho (Ser10)-acetyl (K14)-histone H3 (H3S10phK14ac) to understand the combinatorial chromatin dynamics during mitotic cell division in plants. The anti-H3S10phK14ac evidently mark the pericentromeric chromatin on mitotic chromosomes of the plants excluding the holokinetic Drosera species, which revealed the immunolabelling of whole chromosomes all along the arms. The dual modified immunosignals were absent during early stages of mitosis, appeared intensively at metaphase and remained visible until late-anaphase/telophase however, labelled the whole chromosomes during meiotic metaphase I. Colocalization of anti-H3S10phK14ac with an onion's CENH3 antibody on mitotic chromosomes of Allium revealed the chromosomal location of anti-H3S10phK14ac in the region between signals for CENH3 detection. Overall analysis suggests that the unique localization of combinatorial histone modification mark at pericentromeric chromatin might have attributed through 'phospho-acetyl' cross talk that ultimately facilitate the sister chromatid cohesion at pericentromeres following condensation events in mitotic chromosomes. Here, we propose that dual modified H3S10phK14ac histone may serve as an additional cytogenetic landmark to identify pericentromeric chromatin during mitosis in plants. The plausible role of histone cross talk and future perspectives of combinatorial histone modification marks in plant cytogenetics with special reference to chromatin dynamics have been discussed.

  4. The histone-H3K4-specific demethylase KDM5B binds to its substrate and product through distinct PHD fingers.

    PubMed

    Klein, Brianna J; Piao, Lianhua; Xi, Yuanxin; Rincon-Arano, Hector; Rothbart, Scott B; Peng, Danni; Wen, Hong; Larson, Connie; Zhang, Xi; Zheng, Xia; Cortazar, Michael A; Peña, Pedro V; Mangan, Anthony; Bentley, David L; Strahl, Brian D; Groudine, Mark; Li, Wei; Shi, Xiaobing; Kutateladze, Tatiana G

    2014-01-30

    The histone lysine demethylase KDM5B regulates gene transcription and cell differentiation and is implicated in carcinogenesis. It contains multiple conserved chromatin-associated domains, including three PHD fingers of unknown function. Here, we show that the first and third, but not the second, PHD fingers of KDM5B possess histone binding activities. The PHD1 finger is highly specific for unmodified histone H3 (H3K4me0), whereas the PHD3 finger shows preference for the trimethylated histone mark H3K4me3. RNA-seq analysis indicates that KDM5B functions as a transcriptional repressor for genes involved in inflammatory responses, cell proliferation, adhesion, and migration. Biochemical analysis reveals that KDM5B associates with components of the nucleosome remodeling and deacetylase (NuRD) complex and may cooperate with the histone deacetylase 1 (HDAC1) in gene repression. KDM5B is downregulated in triple-negative breast cancer relative to estrogen-receptor-positive breast cancer. Overexpression of KDM5B in the MDA-MB 231 breast cancer cells suppresses cell migration and invasion, and the PHD1-H3K4me0 interaction is essential for inhibiting migration. These findings highlight tumor-suppressive functions of KDM5B in triple-negative breast cancer cells and suggest a multivalent mechanism for KDM5B-mediated transcriptional regulation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Poly(ADP-ribosylation) regulates chromatin organization through histone H3 modification and DNA methylation of the first cell cycle of mouse embryos

    SciTech Connect

    Osada, Tomoharu; Rydén, Anna-Margareta; Masutani, Mitsuko

    2013-04-26

    Highlights: •Histone modification of the mouse pronuclei is regulated by poly(ADP-ribosylation). •Hypermethylation of the mouse female pronuclei is maintained by poly(ADP-ribosylation). •Parp1 is physically interacted with Suz12, which may function in the pronuclei. •Poly(ADP-ribosylation) affects ultrastructure of chromatin of the mouse pronucleus. -- Abstract: We examined the roles of poly(ADP-ribosylation) in chromatin remodeling during the first cell cycle of mouse embryos. Drug-based inhibition of poly(ADP-ribosylation) by a PARP inhibitor, PJ-34, revealed up-regulation of dimethylation of histone H3 at lysine 4 in male pronuclei and down-regulation of dimethylation of histone H3 at lysine 9 (H3K9) and lysine 27 (H3K27). Association of poly(ADP-ribosylation) with histone modification was suggested to be supported by the interaction of Suz12, a histone methyltransferase in the polycomb complex, with Parp1. PARP activity was suggested to be required for a proper localization and maintenance of Suz12 on chromosomes. Notably, DNA methylation level of female pronuclei in one-cell embryos was robustly decreased by PJ-34. Electron microscopic analysis showed a frequent appearance of unusual electron-dense areas within the female pronuclei, implying the disorganized and hypercondensed chromatin ultrastructure. These results show that poly(ADP-ribosylation) is important for the integrity of non-equivalent epigenetic dynamics of pronuclei during the first cell cycle of mouse embryos.

  6. Histone H3K4me3 and H3K27me3 regulatory genes control stable transmission of an epimutation in rice

    PubMed Central

    Chen, Xiangsong; Liu, Xiaoyun; Zhao, Yu; Zhou, Dao-Xiu

    2015-01-01

    DNA methylation loss can produce inheritable active epialleles in plants. The mechanism involved in the stable transmission of hypomethylated epimuations is presently not clear. Here we show that maintenance of a stably hypomethylated active epiallele in rice required a CHD3 protein (CHR729) and that over-expression of an H3K4me3 demethylase (JMJ703) or H3K27me3 methyltransferase (SDG711) could stably resilence the epiallele. CHR729 and JMJ703 have antagonistic function in H3K4me3 in maintaining the active state of the epiallele, whereas SDG711-mediated H3K27me3 was sufficient to stably repress the locus. The data suggest that H3K4me3 and H3K27me3 controlled by these chromatin regulators may be involved in stable transmission/resetting of epigenetic variation in rice. PMID:26285801

  7. Histone H3K4me3 and H3K27me3 regulatory genes control stable transmission of an epimutation in rice.

    PubMed

    Chen, Xiangsong; Liu, Xiaoyun; Zhao, Yu; Zhou, Dao-Xiu

    2015-08-19

    DNA methylation loss can produce inheritable active epialleles in plants. The mechanism involved in the stable transmission of hypomethylated epimuations is presently not clear. Here we show that maintenance of a stably hypomethylated active epiallele in rice required a CHD3 protein (CHR729) and that over-expression of an H3K4me3 demethylase (JMJ703) or H3K27me3 methyltransferase (SDG711) could stably resilence the epiallele. CHR729 and JMJ703 have antagonistic function in H3K4me3 in maintaining the active state of the epiallele, whereas SDG711-mediated H3K27me3 was sufficient to stably repress the locus. The data suggest that H3K4me3 and H3K27me3 controlled by these chromatin regulators may be involved in stable transmission/resetting of epigenetic variation in rice.

  8. Comparative diagnostic and prognostic performances of the hematoxylin-eosin and phospho-histone H3 mitotic count and Ki-67 index in adrenocortical carcinoma.

    PubMed

    Duregon, Eleonora; Molinaro, Luca; Volante, Marco; Ventura, Laura; Righi, Luisella; Bolla, Stefania; Terzolo, Massimo; Sapino, Anna; Papotti, Mauro G

    2014-09-01

    Mitotic count on hematoxylin and eosin slides is a fundamental morphological criterion in the diagnosis and grading of adrenocortical carcinoma in any scoring system employed. Moreover, it is the unique term strongly associated with patient's prognosis. Phospho-histone H3 is a mitosis-specific antibody, which was already proven to facilitate mitotic count in melanoma and other tumors. Therefore, a study was designed to assess the diagnostic and prognostic role of phospho-histone H3 in 52 adrenocortical carcinomas, comparing manual and computerized count to standard manual hematoxylin- and eosin-based method and Ki-67 index. Manual hematoxylin and eosin and phospho-histone H3 mitotic counts were highly correlated (r=0.9077, P<0.0001), better than computer-assisted phospho-histone H3 evaluations, and had an excellent inter-observer reproducibility at Bland-Altman analysis. Three of 15 cases having <5 mitotic figures per 50 high-power fields by standard count on hematoxylin and eosin gained the mitotic figure point of Weiss Score after a manual count on phospho-histone H3 slides. Traditional mitotic count confirmed to be a strong predictor of overall survival (P=0.0043), better than phospho-histone H3-based evaluation (P=0.051), but not as strong as the Ki-67 index (P<0.0001). The latter further segregated adrenocortical carcinomas into three prognostic groups, stratifying cases by low (<20%), intermediate (20-50%), and high (>50%) Ki-67 values. We conclude that (a) phospho-histone H3 staining is a useful diagnostic complementary tool to standard hematoxylin and eosin mitotic count, enabling optimal mitotic figure evaluation (including atypical mitotic figures) even in adrenocortical carcinomas with a low mitotic index and with a very high reproducibility; (b) Ki-67 proved to be the best prognostic indicator of overall survival, being superior to the mitotic index, irrespective of the method (standard on hematoxylin and eosin or phospho-histone H3-based) used to count

  9. Promoter histone H3 lysine 9 di-methylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells.

    PubMed

    Meng, Chun-Feng; Zhu, Xin-Jiang; Peng, Guo; Dai, Dong-Qiu

    2009-11-01

    In the course of gastric cancer development, gene silencing by DNA hypermethylation is an important mechanism. While DNA methylation often co-exists with histone modifications to regulate gene expression, the function of histone modifications in gene silencing in gastric cancer has not been evaluated in detail. p16, a well-known tumor suppressor gene, is frequently silenced in DNA hypermethylation manner in gastric cancer. Accordingly, we chose p16 to clarify whether there is a correlation among histone H3 lysine 9 (H3-K9) di-methylation, H3-K9 acetylation, DNA methylation and p16 expression in human gastric cancer. Three gastric cancer cells, MKN-45, SGC-7901 and BGC-823, were treated with 5-aza-2'-deoxycytidine (5-Aza-dC) and/or trichostatin A (TSA). We investigated p16 promoter DNA methylation status, p16 mRNA levels, regional and global levels of di-methyl-H3-K9 and acetyl-H3-K9 in four groups: i) 5-Aza-dC, ii) TSA, iii) the combination of 5-Aza-dC and TSA and iv) control group with no treatments. p16 silencing is characterized by DNA hypermethylation, H3-K9 hypoacetylation and H3-K9 hypermethylation at the promoter region. Treatment with TSA, increased H3-K9 acetylation at the hypermethylated promoter, but did not affect H3-K9 di-methylation or p16 expression. By contrast, treatment with 5-Aza-dC, reduced H3-K9 di-methylation, increased H3-K9 acetylation at the hypermethylated promoter and reactivated the expression of p16. Combined treatment restored the expression of p16 synergistically. In addition, 5-Aza-dC and the combined treatment did not result in global alteration of H3-K9 di-methylation. These results suggest that H3-K9 di-methylation, H3-K9 acetylation and DNA methylation work in combination to silence p16 in gastric cancer. The decreased H3-K9 di-methylation correlates with DNA demethylation and reactivation of p16. H3-K9 di-methylation as well as DNA methylation related to p16 silencing is limited to the promoter region. In addition to its effect

  10. The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis.

    PubMed

    Chen, Hongfeng; Fan, Meiyun; Pfeffer, Lawrence M; Laribee, R Nicholas

    2012-08-01

    Epigenetic changes in chromatin through histone post-translational modifications are essential for altering gene transcription in response to environmental cues. How histone modifications are regulated by environmental stimuli remains poorly understood yet this process is critical for delineating how epigenetic pathways are influenced by the cellular environment. We have used the target of rapamycin (TOR) pathway, which transmits environmental nutrient signals to control cell growth, as a model to delineate mechanisms underlying this phenomenon. A chemical genomics screen using the TOR inhibitor rapamycin against a histone H3/H4 mutant library identified histone H3 lysine 56 acetylation (H3K56ac) as a chromatin modification regulated by TOR signaling. We demonstrate this acetylation pathway functions in TOR-dependent cell growth in part by contributing directly to ribosomal RNA (rRNA) biogenesis. Specifically, H3K56ac creates a chromatin environment permissive to RNA polymerase I transcription and nascent rRNA processing by regulating binding of the high mobility group protein Hmo1 and the small ribosomal subunit (SSU) processome complex. Overall, these studies identify a novel chromatin regulatory role for TOR signaling and support a specific function for H3K56ac in ribosomal DNA (rDNA) gene transcription and nascent rRNA processing essential for cell growth.

  11. Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning.

    PubMed

    McNally, Anna G; Poplawski, Shane G; Mayweather, Brittany A; White, Kyle M; Abel, Ted

    2016-01-01

    The consolidation of short-term labile memories for long-term storage requires transcription and there is growing interest in defining the epigenetic mechanisms regulating these transcriptional events. In particular, it has been hypothesized that combinations of histone post-translational modifications (PTMs) have the potential to store memory by dynamically defining the transcriptional status of any given gene loci. Studying epigenetic phenomena during long-term memory consolidation, however, is complicated by the complex cellular heterogeneity of the brain, in which epigenetic signal from memory-relevant cells can be obscured or diluted by the surrounding milieu. To address this issue, we have developed a transgenic mouse line expressing a tetO-regulated, hemagglutinin (HA)-tagged histone H3.3 exclusively in excitatory neurons of the forebrain. Unlike canonical histones, histone H3.3 is incorporated at promoter regions of transcriptionally active genes in a DNA replication-independent manner, stably "barcoding" active regions of the genome in post-mitotic cells. Immunoprecipitating H3.3-HA containing nucleosomes from the hippocampus will therefore enrich for memory-relevant chromatin by isolating actively transcribed